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UPSCALING VECTOR APPROXIMATE MESSAGE PASSING

Nikolajs Skuratovs, Michael Davies

School of Engineering and Electronics, The University of Edinburgh

ABSTRACT

In this paper we consider the problem of recovering a sig-
nal x of size N from noisy and compressed measurements
y = Ax+w of size M , where the measurement matrix A is
right-orthogonally invariant (ROI). Vector Approximate Mes-
sage Passing (VAMP) demonstrates great reconstruction re-
sults for even highly ill-conditioned matrices A in relatively
few iterations. However, performing each iteration is chal-
lenging due to either computational or memory point of view.
On the other hand, a recently proposed Conjugate Gradient
(CG) Expectation Propagation (CG-EP) framework is able to
sacrifice some performance for efficiency, but requires access
to exact singular spectrum of A. In this work we develop a
CG-VAMP algorithm that does not require such information,
is feasible to implement and converges to the neighborhood
of the original VAMP.

Index Terms— Compressed Sensing, Vector Approxi-
mate Message Passing, Expectation Propagation

1. INTRODUCTION

Consider the recovery of a random signal x ∈ RN from a
general linear model

y = Ax + w (1)

where y ∈ RM is the measurement vector, w ∈ RM is a
zero-mean i.i.d. Gaussian noise vector w ∼ N(0, vwIM )
and A ∈ RM×N is a measurement matrix. We consider
the compressed sensing scenario M << N with the ratio
M
N = δ = O(1) fixed. In this work we assume that x has
finite 4th order moment and variance vx = limN→∞

1
N xTx.

Additionally, following [6], we assume that in the SVD of
A = USVT the matrix V is Haar distributed and therefore
A is a right-orthogonally invariant (ROI) matrix.

The Vector Approximate Message Passing (VAMP) algo-
rithm [6], [2] is an iterative algorithm that estimates the signal
x from (1) and can be derived from the Expectation Propaga-
tion (EP) framework. VAMP can achieve Bayes-optimal re-
construction results [6] when A is ROI and the two estimators
involved in VAMP are chosen to be Bayes optimal. While the
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first estimator, the denoiser gB , tries to estimate the signal
x from a zero-mean i.i.d. Gaussian channel, the second esti-
mator, the LMMSE estimator gA, is supposed to estimate an
intrinsic i.i.d. Gaussian signal x0 substituted in (1) from y.
The challenge in implementing VAMP is the design of these
estimators and computation of their parameters, divergences
and Mean Squared Error (MSE) estimates, that ensures cor-
rect and efficient operation of the algorithm.

Designing good denoisers gB and computing the corre-
sponding parameters is a relatively studied problem (refer to
[3] and [7] and references therein). In contrast there has been
much less focus on efficiently implementing the LMMSE es-
timator (with the exception of [11] and [8]). The LMMSE es-
timator operating in the VAMP algorithm requires computing
a linear mapping that involves inverting either anN×N [6] or
M ×M [10] matrix. Inversion of such a matrix has complex-
ity O(N3) and for large-scale problems is not feasible. This
problem persists even when there exist fast implementations
of the measurement matrix, A. In the original VAMP [6], this
computation was addressed by precomputing the SVD of the
measurement matrix A, reducing the required computation to
order O(N2). However, when both N and M are of order
of hundred of thousands or more, as in CT imaging, storing
the matrix of the singular vectors becomes not possible. In
such applications even the measurement matrix A might not
be stored, but only computed on-the-fly.

The computational/memory problem was partially ad-
dressed in [11], where the authors suggested to approximate
the LMMSE solution with the Conjugate Gradient (CG) al-
gorithm, which only requires computation of matrix-vector
products with AAT , and proposed a rigorous method for
estimating the key parameters of the algorithm. However,
estimation of those parameters required the computation of
the moments of the singular spectrum of AAT of order up
to 2i + 2, where i is the number of CG iterations. Even if
these moments were available (which generally they are not),
for highly ill-conditioned A, the higher order moments of
AAT are not feasible to manipulate with on devices with
finite precision arithmetic. A final weakness of the CG ap-
proximation to the EP algorithm (CG-EP) is that it has worse
convergence guarantees due to the LMMSE approximation
which can result is inferior phase transition performance.

The contributions of this paper are twofold. First, we de-
velop a practical method of estimating the key parameters for



the CG-EP algorithm without referring to the singular mo-
ments of A. Second, the proposed method is used to con-
struct the auto-tuned CG algorithm that computes its own di-
vergence and the MSE of the produced estimate, and chooses
such a number of iterations that ensures consistent progres-
sion of the overall CG-VAMP algorithm. The per-iteration
cost of the proposed CG algorithm is only twice larger then
of the CG algorithm in [11].

The paper is organized as follows. In the second section
we discuss the key ingredients and limitations of the VAMP
algorithm and consider the main constraints of its approxi-
mated version – CG-EP algorithm. In the third section it is
introduced the main theoretical tool for the practical imple-
mentation of the CG-VAMP algorithm. In the next section
the proposed tool is used to construct the auto-tuned CG al-
gorithm that ensures certain per-iteration progression of the
CG-VAMP algorithm. The last section is dedicated to numer-
ical experiments of the proposed methods.

2. EXPECTATION PROPAGATION BASED
ALGORITHMS

For the measurement system (1) with ROI A, iterative re-
covery of the signal x can be addressed by a family of al-
gorithms derived from Expectation Propagation (EP). Vector
Approximated Message Passing (VAMP) is one of the first
EP-motivated inference algorithms designed for recovery of
x from measurements (1). Although next we concentrate on
VAMP algorithm, we note that VAMP [6], the exact EP for
ROI measurements [10] and the CG-EP [11] are all instances
of a general EP-based framework shown in Algorithm 1.

The EP-based framework from Algorithm 1 represents it-
erative passing of the messages xtA→B and xtB→A between
two blocks: Block A and Block B. Under some mild condi-
tions on gA and gB [2] and for ROI matrices A, it can be
shown that in the LSL these messages are equivalent to the
true signal x corrupted by some additive noise

xtA→B = x + ht (2)
xtB→A = x + qt (3)

Notably, due to the Haar matrix V and the choice of the
scalars γtA and γtB , the noise vector ht can be shown to be
equivalent to a zero-mean i.i.d. Gaussian vector that is inde-
pendent of x [10]. Variances vtA→B and vtB→A of both noise
vectors ht and qt respectively define the current state of the
algorithm. At each iteration t, the functions gA and gB at-
tempt to reduce the variances of the noise terms.

Calculation of the two messages requires the computation
of two pairs of scalars: γtA and γtB , and ṽtA→B and ṽtB→A.
Here, the scalars γtA and γtB correspond to (the inverse of
the) divergence of the functions gA and gB and allows the
progress of the algorithm to be described by a simple one di-
mensional State Evolution (SE). Additionally, the functions
fA and fB produce estimates ṽtA→B and ṽtB→A of the true
variances vtA→B and vtB→A.

Algorithm 1: EP-based Algorithm

Initialization: x0
B→A = 0, ṽ0B→A = ṽx, t = 0

1 while t < Tmax and ṽtB→A ≥ ε do
2 Block A
3 µtA = gA(xtB→A, ṽB→A, ṽw)

4 1
γt
A

= 1
N∇(xt

B→A) ·
(
ATgA(xtB→A, ṽ

t
B→A, ṽw)

)
5 xtA→B = xtB→A − γtAATµtA
6 ṽtA→B = fA(µtA,x

t
B→A, ṽB→A, ṽw)

7 Block B
8 µt+1

B = gB(xtA→B , ṽ
t
A→B)

9 γt+1
B = 1

N∇xt
A→B

· gB(xtA→B , ṽ
t
A→B)

10 xt+1
B→A = 1

1− γt
B

(
µt+1
B − γt+1

B xtA→B

)
11 ṽt+1

B→A = fB(µt+1
B ,xtB→A, ṽA→B)

12 t = t+ 1

Output: µtB
In the VAMP version of Algorithm 1, the function gB is

chosen to estimate x from the message xtA→B , which from
(2) allows gB to be interpreted as a denoiser. Today, there are
numerous Plug-and-Play methods for denoising signal from a
Gaussian channel, including BM3D [1], Convolutional De-
noisers/Neural Networks [2] etc. Additionally, computing
the divergence and MSE estimates for these denoisers can be
done using Monte-Carlo SURE techniques [5] [9].

A completely different picture is observed in the Block A.
In VAMP [6] and in exact EP for ROI matrices A [10], the
function gA is the linear mapping

gA(xtB→A) = W−1
t

(
y −AxtB→A

)
= zt (4)

where the matrix Wt is
Wt = ṽwIM + ṽtB→AAAT (5)

and ṽw is an estimate of the variance of the measurement
noise w in (1). For this choice of gA, the scalar γtA corre-
sponds to (

γtA
)−1

=
(
N
)−1

Tr
{
ATW−1

t A
}

(6)

Additionally, in the LSL, an unbiased estimate ṽtA→B of
would have the following simple form [10]

ṽtA→B = γtA − ṽtB→A
Despite the potential optimality of the resulting algorithm,

computing the mapping (4) and the corresponding divergence
γtA (6) is costly from either a computational or a memory
point of view. In [11] the authors addressed this by approx-
imating (4) using the CG algorithm shown on Algorithm 2.
The new CG-EP algorithm involved the function g

i[t]
A corre-

sponding to i[t] iterations of the CG algorithm that approxi-
mates the solution to

Wtµ
t
A = y −AxtB→A = zt (7)

The authors further show that CG-EP has a new State Evo-
lution (SE) ([11], Theorem 1) and derive the expressions for
the divergence γt,i[t]A with i[t] iterations and for the variance
vtA→B . Both of the expressions depend on moments



Algorithm 2: CG Algorithm for approximating
Wµ = z

Initialization: µ = 0, r0 = p0 = z, i = 0
1 while i < imax do
2 αi = ||ri||2

||W1/2pi||2

3 µi+1 = µi + αipi

4 ri+1 = ri − αiWpi

5 βi = ||ri+1||2
||ri||2

6 pi+1 = ri+1 + βipi = z−Wµi+1 + βipi

7 i = i+ 1

Output: µi+1

ξj =
∫
λjρ(λ), where ρ(λ) is the LSL density function of

eigenvalues of AAT [11]. More precisely, it was shown that
calculation of the two scalars requires the moments ξj of or-
der up to j = 2i + 2. In practice, the suggested method for
computing γt,i[t]A and vtA→B might be impossible for the rea-
sons discussed before.

3. MONTE-CARLO-BASED ESTIMATES

We consider estimation of γt,i[t]A and vtA→B in the LSL, where
we expect to observe high accuracy of the Strong Law of
Large Numbers (for details, see Theorem 1 in [10]). Al-
though, in general CG iterations constitute nonlinear map-
pings, as shown in [9], in the LSL, the CG approximation
of (7) with i[t] iterations gi[t]A is the following linear mapping

g
i[t]
A = UH

i[t]
t UT (8)

where U is the matrix of left-singular vectors of A and the
matrix Ht is a diagonal matrix with entries depending only
on singular spectrum of A, vw and vtB→A. Note that (8)
also does not depend on the vector being mapped (zt = y −
AxtB→A), but only depends on the variances of vectors w
and qt involved in y and xtB→A respectively. Additionally,
by using the definition of vector y from (1) and the message
xtB→A from (3), the vector zt can be rewritten as

zt = y −AxtB→A = w −Aqt = w −UΣVTqt (9)
which is independent of the signal x. Furthermore, it was
proved in [6] and [10] that the vector

VTqt = bt ∼ N(0, vtB→AIN ) (10)
and is independent of w, U and Σ. By using (8), (9) and (10)
we conclude that the output of the CG algorithm

µ
t,i[t]
A = UH

i[t]
t UT

(
w −UΣbt

)
corresponds to a linear mapping of a Gaussian vector. We
therefore propose the following method for estimating γt,i[t]A

and vtA→B . The first step is to generate two synthetic vectors
ẏ = 0 + ẇ ∼ N(0,vwIM)

ẋtB→A = 0 + q̇t ∼ N(0,vt
B→AIN)

where the 0 highlights that we have effectively set the syn-
thetic signal ẋ = 0. We then form the corresponding syn-
thetic vector żt

żt = ẏ −AẋtB→A = ẇ −Aq̇t

and execute the CG algorithm with the original matrix Wt on
the synthesized vector żt

µ̇
t,i[t]
A = g

i[t]
A (żt) = g

i[t]
A

(
ẇ −UΣVT q̇t

)
Lastly, we show that

lim
N→∞

1

N
q̇Tt A

T µ̇
t,i[t]
A

(a)
= lim

N→∞

1

N
E
[
q̇Tt A

T µ̇
t,i[t]
A

]
= lim
N→∞

1

N
Tr
{
Cov

[
VT q̇t,g

i[t]
A

(
ż
)]
UΣ

}
(b)
= lim

N→∞

1

N
Tr
{
Cov

[
VT q̇t,V

T q̇t
]
∇(VT q̇t)g

i[t]
A

(
ż
)
UΣ

}
(c)
= lim

N→∞
vtB→A

1

N
Tr
{

ΣTH
i[t]
t UTUΣ

}
= vtB→A

1

γ̇
t,i[t]
A

where in (a) we used the Strong Law of Large Numbers, in (b)
we used (10) and the Stein’s Lemma and in (c) we used (8).
Since the divergence γ̇t,i[t]A for the synthesized data is only a
function of A, vw and vtB→A, in the limit, the two terms will
be the same

lim
N→∞

γ̇
t,i[t]
A = γ

t,i[t]
A

Therefore we propose the following estimator of (γ
t,i[t]
A )−1

1

γ̃
t,i[t]
A

=
1
N q̇Tt A

Tg
i[t]
A (żt)

ṽtB→A
(11)

Calculation of an estimate of the variance vtA→B is done in a
similar way. By definition of vtA→B we have

lim
N→∞

vtA→B = lim
N→∞

1

N
||xtA→B − x||2 (12)

which depends only on the singular spectrum of A, vw and
vtB→A. Therefore, substituting the synthesized data in (12)
and calculating the resulting norm will produce the same re-
sult in the LSL. Thus we propose to use the following estima-
tor of the variance vtA→B

ṽtA→B =
1

N
||q̇t + γ̃

t,i[t]
A AT µ̇

t,i[t]
A ||2 (13)

4. AUTO-TUNED CG

By approximating the exact LMMSE solution using the CG
algorithm, the resulting CG-VAMP sacrifices convergence
rates and guarantees. As proved for VAMP [6] and CG-
EP in [11], the progression and the fixed points of the two
algorithms can be defined through the 1D State Evolution
(SE) vt+1 = SE(vt). Because the LMMSE estimator is the
optimal gA [6] and the SE is 1D, then we have [4]

SELMMSE(vt) ≤ SECG(i[t])(vt)

Moreover, by choosing insufficient number of CG iterations,
the variance at iteration t+ 1 may not reduce below the vari-
ance at iteration t, i.e. vt+1 ≥ vt, which is equivalent to the
algorithm converging to a new spurious fixed point.

To ensure progression of Block A, the proposed CG algo-
rithm uses the following simple rule

ṽtA→B(i) ≤ cṽt−1A→B (14)
where a scalar c represents a bound on the expected variance
drop in VAMP (until it is in the neighborhood of the VAMP



fixed point) after each iteration t. Once the inequality (14) is
met or after a maximum number of iterations, the CG algo-
rithm is terminated.

In the proposed CG algorithm, the variance vtA→B(i) is
estimated using (13), which requires calculation of γ̃t,i[t]A first.
Using (11) and noting that the matrix-vector product Aq̇t
needs to be computed only once, the calculation of γ̃t,i[t]A re-
quires only O(N) additional computations per iteration i. On
the other hand, direct evaluation of (13) requires computing
ATµit and would lead to a doubling the complexity. Instead,
by expanding the norm and using the definition of γt,i[t]A , one
can show that (13) is equal to
ṽtA→B =

(
N
)−1(

γ̃
t,i[t]
A

)2(
µ̇
i[t]
t

)T
AAT µ̇

i[t]
t − vtB→A (15)

Next, we expand the matrix-vector product Wtµ̇
i+1
t as

Wtµ̇
i+1
t = σwµ̇

i+1
t + vtB→AAAT µ̇i+1

t

Next, for CG with synthesized data we use the scalars αjt and
βjt from the CG with the real data, and exclude computing the
residual vector ri+1 from Algorithm 2 by using the second
option of calculating the vector pi+1 on line 6. Now, since
the matrix-vector product AAT µ̇i+1

t is a part of the CG al-
gorithm, computing (15) costs only O(N) computations.

5. SIMULATION RESULTS

In this section we empirically investigate the quality of the
estimate ṽtA→B suggested in (15), and the performance of
the auto-tuned CG-VAMP in recovering x from a highly
ill-conditioned measurement system (1). We consider a
Bernoulli-Gaussian signal x of size 214 in the same settings
as in the original VAMP paper [6]. We consider the mea-
surement matrix A with geometric singular values, which is
one of the worst cases, and condition number 10000. The
compression rate is chosen to be δ = 0.5. The auto-tuned
CG algorithm iterates until the inequality (14) is met with
the scalar c = 0.9. The total number of outer iterations t
was chosen to be 50 and we average the results over 100
realizations.

Figure 1(a) plots the change of ṽtA→B over iterations t.
The main line demonstrates the mean, while the shaded re-
gion shows the standard deviation of the variance over 100
realizations. From the plot we observe the consistent reduc-
tion of the variance after each iteration t as it was suggested
by the inequality (14).

The Figure 1(b) illustrates the mean and the standard devi-
ation of normalized squared difference of the estimated using
(15) and true variance vtA→B . As we see, even for moderately
large systems, the quality of the estimator (15) is satisfying
and only gets better as the algorithm progresses.

In the Figure 2 it is shown the average and the standard
deviation of the number of CG iterations needed to satisfy the
inequality (14) at each iteration of the CG-VAMP. As we see,
the required number of CG iterations varies as CG-VAMP
progresses, which confirms the necessity in having a tool for
adaptively choosing the number of CG iterations.

Fig. 1: Mean and standard deviation of vtA→B in (a) and of its
difference from v̇tA→B in (b) versus iteration number t

Fig. 2: Mean and standard deviation of CG iterations versus
iterations number t

6. CONCLUSIONS

In this work, we developed a practical implementation of ap-
proximated VAMP that requires neither inversion of large ma-
trices nor precomputing SVD of A, nor information about the
singular spectrum of A. The CG-VAMP algorithm is guaran-
teed to consistently reduce the MSE of the intrinsic measure-
ments given that the exact VAMP is capable of doing so.

The proposed algorithm relies on the strong statistical
properties of the Haar matrix V and with more practical mea-
surement operators A like FFT matrices, CT operators etc,
one might employ damping to increase the stability as was
suggested in [8]. On the other hand, these types of matri-
ces have fast implementation w.r.t. matrix-vector products
and therefore the per-iteration complexity of the CG-VAMP
will reduce significantly. Analysis of the performance of the
proposed CG-VAMP algorithm with structured A is left as a
further work.



7. REFERENCES

References
[1] K. Dabov et al. “Image Denoising by Sparse 3-D

Transform-Domain Collaborative Filtering”. In: IEEE
Transactions on Image Processing 16.8 (Aug. 2007),
pp. 2080–2095. DOI: 10 . 1109 / TIP . 2007 .
901238.

[2] Alyson K. Fletcher et al. “Plug-in Estimation in High-
Dimensional Linear Inverse Problems: A Rigorous
Analysis”. In: CoRR abs/1806.10466 (2018). arXiv:
1806.10466. URL: http://arxiv.org/abs/
1806.10466.

[3] Chunli Guo and Mike E. Davies. “Near optimal com-
pressed sensing without priors: Parametric SURE Ap-
proximate Message Passing”. In: CoRR abs/1409.0440
(2014). arXiv: 1409.0440. URL: http://arxiv.
org/abs/1409.0440.

[4] Christopher A. Metzler, Arian Maleki, and Richard G.
Baraniuk. “From Denoising to Compressed Sensing”.
In: CoRR abs/1406.4175 (2014). arXiv: 1406.4175.
URL: http://arxiv.org/abs/1406.4175.

[5] Sathish Ramani, Thierry Blu, and Michael Unser.
“Monte-Carlo SURE: A Black-Box Optimization of
Regularization Parameters for General Denoising Al-
gorithms”. In: IEEE transactions on image processing
: a publication of the IEEE Signal Processing Society
17 (Oct. 2008), pp. 1540–54. DOI: 10.1109/TIP.
2008.2001404.

[6] Sundeep Rangan, Philip Schniter, and Alyson K.
Fletcher. “Vector Approximate Message Passing”. In:
CoRR abs/1610.03082 (2016). arXiv: 1610.03082.
URL: http://arxiv.org/abs/1610.03082.

[7] Philip Schniter, Sundeep Rangan, and Alyson K.
Fletcher. “Denoising based Vector Approximate Mes-
sage Passing”. In: CoRR abs/1611.01376 (2016).
arXiv: 1611 . 01376. URL: http : / / arxiv .
org/abs/1611.01376.

[8] Philip Schniter, Sundeep Rangan, and Alyson K.
Fletcher. Plug-and-play Image Recovery using Vector
AMP. 2017. URL: http://www2.ece.ohio-
state . edu / ˜schniter / pdf / basp17 _
poster.pdf.

[9] Charles M. Stein. “Estimation of the Mean of a Mul-
tivariate Normal Distribution”. In: Ann. Statist. 9.6
(Nov. 1981), pp. 1135–1151. DOI: 10.1214/aos/
1176345632. URL: https://doi.org/10.
1214/aos/1176345632.

[10] Keigo Takeuchi. “Rigorous Dynamics of Expectation-
Propagation-Based Signal Recovery from Unitarily
Invariant Measurements”. In: CoRR abs/1701.05284
(2017). arXiv: 1701 . 05284. URL: http : / /
arxiv.org/abs/1701.05284.

[11] Keigo Takeuchi and Chao-Kai Wen. “Rigorous dynam-
ics of expectation-propagation signal detection via the
conjugate gradient method”. In: (July 2017), pp. 1–5.
DOI: 10.1109/SPAWC.2017.8227654.


