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Abstract—A wearable electrical impedance tomographic 

(wEIT) sensor with 8 electrodes is developed to realize gesture 
recognition with machine learning algorithms. To optimize the 
wEIT sensor, gesture recognition rates are compared by using a 
series of electrodes with different materials and shapes. To 
improve the gesture recognition rates, several Machine Learning 
algorithms are used to recognize three different gestures with the 
obtained voltage data. To clarify the gesture recognition 
mechanism, an electrical model of the electrode-skin contact 
impedance is established. Experimental results show that: 
rectangular copper electrodes realize the highest recognition rate; 
the existence of the electrode-skin contact impedance could 
improve the gesture recognition rate; Medium Gaussian SVM 
(Support Vector Machine) algorithm is the optimal algorithm 
with an average recognition rate of 95%.  
 

Index Terms—Wearable sensor, Electrical impedance 
tomography, Machine learning, Gesture recognition, Contact 
impedance 
 

I. INTRODUCTION 

LECTRICAL Impedance Tomography (EIT) has the 
advantages of non-invasive, non-hazardous, simple 

structure and low cost [1]. It has been successfully applied to 
clinical monitoring of pulmonary respiratory functions [2-4]. 
EIT technique is utilized to study the changes in the internal 
conductivity of the human body, and then infer the 
physiological state of the human body from the changes in the 
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internal conductivity of the human body [5]. The reconstructed 
images by EIT contain a wealth of anatomical information, 
from which, electrical properties of different tissues under 
different physiological conditions can be obtained [6, 7]. 

With the development, the traditional touch and mouse and 
keyboard human-computer interaction methods are not enough 
to meet the requirements. More convenient human-computer 
interaction approach is required. Gesture recognition is an 
important means of human-computer interaction. Gesture 
recognition is one of the effective approaches to realize 
humanized interaction [8]. The existing gesture recognition 
approach mainly includes two major categories, which are 
machine vision technology and sensor technology [9].  

Machine vision is a technique that uses a camera to capture 
images of human motion and uses image processing techniques 
to resolve position and pose [10]. First, the image of the 
experimental object is detected and collected, and the feature 
information is extracted from the acquired image. Then, based 
on the extracted feature information, a training model is 
established, such as Hidden Markov model (HMM). Finally, 
the trained model is applied to perform gesture recognition on 
the image information collected later [11]. Machine vision 
technology is relatively mature, and a large number of products 
have been applied to the market, such as LEAP MOTION's 3D 
motion controller. Itkarkar et al. concluded that the existing 
challenges of machine vision technology are complex gestures 
and occlusion problems [12]. The advantage of machine vision 
is that it does not require the subject to wear the sensing device, 
and the recognition rate is high. The disadvantage is that it is 
susceptible to external environment (such as light, color), and 
gestures will be blocked during motion to lose information. For 
example, if a person controls an unmanned drone in the case of 
outdoor movement, it may be out of the scope of the camera. At 
this time, it is not suitable to use machine vision recognition 
gestures, and sensor technology can be applied. 

Sensor technology mainly includes surface myoelectric 
sensors and motion sensors. The surface myoelectric sensor 
uses the electrodes placed on the surface of the skin to collect 
bioelectrical signals generated when the human body moves. 
Tang et al. developed a multi-channel surface electromyogram 
(sEMG) sensor for multi-hand movement recognition [13]. 
Samadani et al. developed an inter-individual gesture 
recognition model based on Hidden Markov Model, which 
receives surface EMG signals as input and predicts 
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corresponding gestures [14]. Bioelectrical signals contain a 
wealth of information, and the accuracy of static gesture 
recognition is high. However, the surface EMG sensor cannot 
capture large-scale motion. Even the bioelectrical signals 
collected are complex, making it difficult to analyze accurately. 
The motion sensor reconstructs the motion trajectory by 
capturing the acceleration and angular velocity information 
during the movement of the human body [15]. Gupta et al. used 
accelerometers and gyroscopes to identify continuous gestures 
[16]. The advantage of the motion sensor is that it is suitable for 
dynamic gesture recognition and is not easily restricted by the 
external environment. However, it has low sensitivity to 
low-speed motion and contains limited gesture information. 

Different gestures in the wrist cause a movement of the 
internal muscle tissue and bone, which changes the internal 
conductivity distribution of the arm. EIT could reconstruct the 
internal conductivity distribution of the arm. Since the 
electrode sensor of the EIT is attached to the skin surface like 
the myoelectric sensor, it has the advantage of being unaffected 
by the external environment as compared with machine vision. 
In the EIT method, current source is applied to a pair of 
electrodes, voltage signals are detected and processed from 
other electrodes. In this case, the signal is easier to identify than 
bioelectrical signal. 

In the present study, a wearable Electrical Impedance 
Tomographic (wEIT) sensor is proposed to realize the gesture 
recognition by combining the sensor technology and the EIT 
technology. To clarify the optimal material of the wEIT sensor, 
the recognition rates using a series of electrodes with different 
materials and shapes are compared in the experiments. Then, 
several machine learning algorithms are used to improve the 
recognition rate. Moreover, an electrical model of the 
electrode-skin contact impedance is established to clarify the 
gesture recognition mechanism. Finally, the optimal material 
and algorithm are used to recognize three different gestures. 

II. GESTURE RECOGNITION DETECTION SYSTEM 

A. The wearable Electrical Impedance Tomographic (wEIT) 
sensor 

The wearable Electrical Impedance Tomographic (wEIT) 
sensor is fabricated with 8 electrodes and an elastic bandage. 
The electrodes are used to inject an excitation current signal 
and collect the correspond voltage signal. Several issues should 
be considered, such as the comfort of wearing, the larger 
contact area between the electrode and the skin, the lower 
contact impedance between the electrode and the skin. Contact 
impedance produces larger noise in the measurement, which 
will decrease the recognition rate [17]. The contact impedance 
can be reduced by the following two aspects: increasing the 
pressure and contact area between the electrode and the skin; 
applying a certain amount of medical conductive fluid on the 
skin in contact with the electrode. During this experiment, the 
measurement time is long, and the conductive fluid may be 
dried during the experiment, resulting in inaccurate results. In 
this experiment, conductive gel is used instead of conductive 
fluid for the medical electrode.  

Since materials and shapes of the wEIT sensor greatly affect 
the gesture recognition rate, the electrodes used in the 
experiment are mainly divided into three categories: copper 
electrodes, conductive cloth electrodes and medical electrodes 
as shown in Table I. The conductive liquid is self-contained on 
the medical electrode. The medical electrodes are produced by 
Hangzhou Xunda Radio Equipment Co., Ltd. The copper 
electrodes are divided into curved electrodes and rectangular 
electrodes.  

 
Fig. 1 Electrode structure, (a) conductive cloth electrode, (b) medical electrode. 
 

The rectangular copper electrode has a large contact area and 
has a good uniformity of electric field distribution. The curved 
copper electrode contact surface has a curved surface, which 
can reduce the gap between the electrode and the skin. 
Especially, the details of the conductive cloth electrode and the 
medical electrode are shown in Fig. 1. 

TABLE I 
ELECTRODE SENSOR COMPARISON 

Electrode 
Material 3D Model Contact 

Area /mm2 
Fixed 
Way 

Conductive 
Fluid 

Rectangular 
Copper 

Electrode  
11×15 

Elastic 
Bandage 

No 

Curved 
Copper 

Electrode  
16π 

Elastic 
Bandage 

No 

Conductive 
Cloth 

Electrode 
10×14 

Elastic 
Bandage 

No 

Medical 
Electrode 

16π 
Medical 

Tape 
Have 
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B. Gesture recognition system 

Fig. 2 shows the experimental set-up of the gesture 
recognition, which includes a Red Pitaya STEMlab, a high 
output impedance Voltage Controlled Current Source (VCCS), 
a high performance analog multiplexer modules, electrode 
array sensors and a PC [5]. The computer sends a command to 
Red Pitaya STEMlab to generate a sinusoidal AC voltage signal 
with a frequency from f = 0 Hz to f = 200 KHz with an 
amplitude of Vm = ± 1 V; the VCCS module is used to convert 
the voltage signal into a stable sinusoidal AC current signal; the 
current signal is injected into the electrode pair of the bracelet 
through the analog multiplexer module; the voltage signals of 
the remaining electrodes pass through the analog multiplexer 
module. The voltage signal is collected by Red Pitaya 
STEMlab and transmitted to the computer for image 
reconstruction with an image reconstruction algorithm.  

 

 
Fig. 2 Experimental set-up of EIT gesture recognition. 

C. Electrical model of electrode-skin contact impedance for 
gesture recognition 

 

 
 
Fig. 3 Electrical model of electrode-skin contact impedance for gesture 
recognition. 
 

An electrical model of electrode-skin contact impedance for 
gesture recognition is established in Fig. 3. A contact 
impedance is generated between the electrode and the skin, 
which mainly contains a body fluid and air. The contact 
impedance greatly increases the electrical conductivity between 
the electrode and the skin, even reaches 10~100 times. In the 

meantime, the contact impedance changes with the arm 
movement, which provide a potential approach to capture the 
electrical signal change of the gesture. The established 
electrical equivalent circuit in Fig. 3 provide a basic model to 
explain the electrode-skin contact impedance in the 
experiments. 
 

D. Image reconstruction algorithm 

Some exploratory work has been carried out to solve the 
inverse problem with image reconstruction algorithms for EIT 
[18-21]. The image reconstruction algorithm used in this paper 
is generalized vector sampled pattern matching (GVSPM), 
which is an algorithm for solving linear equations through 
iteration. Conventional iterative algorithms have drawbacks 
[19]. GVSPM is a target criterion based on the minimum angle 
between the input vector and the solution vector, which 
effectively overcomes the drawbacks of the iterative algorithm. 
The GVSPM solution contains an objective function and 
converges without any empirical value [22]. The objective 
function F of the k-th iterative particle distribution σ(k), f(σ(k)) is 
given by: 

F = f(σ(k)) = U’(exp) U’(k) → 1.0                   (1) 
Where U(exp) is the voltage vector from experiment, U(k) is the 

voltage vector from the k-th iteration, (ʹ) is the normalized 
quantities. 

III. EXPERIMENTAL METHOD 

A. Gesture measurement method 

Three subjects were recruited to measure the gesture by 
using the wEIT sensor and the developed EIT system. Three 
gestures of the right hand are measured, which are a fist, palm 
open (five fingers close together) and palm bent (the same five 
fingers are close together and the wrist is bent to the right), as 
shown in Fig. 4.  In order to control the influences of the 
variables, the subjects are all 20 to 25 adult males to ensure that 
the skin tissue, water content and other factors are relatively 
stable. The test area should be cleaned before the experiment. 
All the experimental data of the same person under the same 
electrode in this experiment were obtained in one measurement, 
to reduce the changes of the contact impedance caused by 
changing of wearing position and contact condition between 
the electrodes and the skin. In order to ensure the consistency of 
the experimental data, different kinds of electrode positions 
need to be marked on the bracelet sensors and the skin of the 
subject to ensure that the relative positional deviation of the 
electrodes is minimized. Each subject was measured 10 times 
for each gesture. 
 

       
Gesture 1                             Gesture 2                           Gesture 3 

Fig. 4.  Three measured gestures in the experiments, Gesture 1, a fist, Gesture 2, 
palm open, Gesture 3, palm bent. 
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Classification learner, a toolbox of MATLAB, is used to 

recognize different gestures. There are three kinds of gestures, 
10 sets of data for each gesture, each containing 40 obtained 
voltage data. For defined validation method, the default 
Ross-Validation option is used in training, in which 
Cross-Validation folds is 5 folds and MATLAB uses hands. An 
operation process is: select a number of folds (or divisions) to 
partition the data set using the slider control, if you choose k 
folds, then the app: 1, Partitions the data into k disjoint sets or 
folds; 2, For each fold: 2a, Trains a model using the out-of-fold 
observations, 2b, Assess model performance using in-fold data; 
3, Calculates the average test error over all folds. 

This method gives a good estimate of the predictive accuracy 
of the final model trained with all the data. It requires multiple 
fits but makes efficient use of all the data, so it is recommended 
for small data sets.  

B. Contact impedance detection 

The collected signal in the gesture measurements consist of 
three parts: internal changes in the arm section, changes in 
section shape, and changes in contact impedance [17]. The state 
change of the human arm bones and muscles is the reason why 
the human body can make different gestures. The internal state 
and cross-sectional shape of different arm sections correspond 
to different gestures one by one.  

 

Z1 Z3Z2

E1

E4

E2 E3

Vin GND

R V2

V1

Arm

 
(a) 

Z1 Z3Z2

E1

E4

E2 E3

Vin

GND

R V4

V3

Arm
 

(b) 
Fig. 5.  Calculation method of the electrode-skin contact impedance.   

 
The objective is to reconstruct the internal cross sectional 

shape of the arm for gestures and to identify different gestures. 
In EIT measurement process, the contact between the electrode 
and the skin will produce contact impedance, and the contact 
impedance is affected by factors such as pressure and size of 
contact area. The contact impedance changes during the 
different gesture measurement processes [23]. The 
four-electrode measurement method is used to the 
measurement of the electrode-skin contact impedance. Fig. 5 

shows the calculation model of the electrode-skin contact 
impedance [24].  

As shown, E1, E2, E3, and E4 indicate the contact impedance 
between the four electrodes and the skin, respectively. Z1, Z2, Z3 
represent the internal impedance of the arm, R represents the 
external standard resistance, and Vin represents the voltage 
signal of the excitation. In Fig. 5(a), the current I through the 
human body and the impedance Z2 inside the arm: 

I = V2/R                                         (2) 
Z2 = V1/I                                        (3) 

From Figure 5(b): 
I = V4/R                                         (4) 

E2 + Z2 = V3/I                                       (5) 
The contact impedance E2 is calculated from Eqs. (4)-(7): 

E2 = (V3 ×R)/V4 - (V1×R)/2                      (6) 
 

IV. EXPERIMENTAL RESULT 

A. Gesture recognition measurement result 

Six subjects were recruited to participate in the experiment. 
The electrical impedances were measured under different 
gestures. Each subject wear the wEIT at the wrist. The voltage 
data of the three gestures for each electrode pair are shown in 
Fig. 6. The shapes of the three sets of waveforms are roughly 
similar, but the voltage amplitude value of different gestures 
are very different, and the gesture can be identified based on 
these measured data. 

0

0.0005

0.001

0.0015

0.002

0.0025

1 5 9 13 17 21 25 29 33 37

V
ol

ta
ge

 [V
]

Electrode pair [-]
 

Fig. 6.  Voltage comparison of three gestures among a series of electrode pair.   
 
When the voltage data of the Gesture 1 was used as a 

reference, the voltage data of the Gesture 2 and the voltage data 
of the Gesture 3 are respectively subtracted from the voltage 
data of the Gesture 1. The reconstructed image of the wrist 
cross-section  with the Generalized Vector Sampled Pattern 
Matching (GVSPM) algorithm as shown in TABLE II. 

Without changing the position of the wEIT sensor, the three 
gestures of three subjects were measured 10 times each, using 
classification learning toolbox in MATLAB for gesture 
recognition [25]. The recognition rate of gesture recognition 
was different with different electrodes (TABLE I). The 
recognition rate is the highest with the rectangular copper 
electrode, which can reach an average of 98%. The recognition 
rate under medical electrode is the lowest, with an average of 

Gesture 1 Gesture 2 
Gesture 3 
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only about 80%. Different machine learning algorithms also 
produce different recognition rates. The final results are shown 
in Table III. 

 

B. Contact impedance detection results 

In order to observe the influence of contact impedance, the 
contact impedance was measured with medical electrodes and 
rectangular copper electrodes from f = 10 kHz to f = 1 MHz. 
The input voltage is 0.1 V. The reference resistance R = 200 Ω 
is used for medical electrode measurement, and there is 
conductive fluid between the electrode and the skin; the 
reference resistance R = 1000 Ω is used for rectangular copper 
electrode measurement. There is no conductive fluid between 
the electrode and the skin. The final measured contact 
impedance is shown in Fig. 8. The contact impedance by 
rectangular copper electrode is higher than that of the medical 
electrode, which means that, if the contact impedance could be 
used to observe the changes of the gesture, rectangular copper 
electrode is a better choice. 
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Fig. 7.  Relationship between contact impedance and input voltage frequency. 
 

V. DISCUSSION 

A. Influence of the contact impedance 

The contact impedance detection was carried out by 
four-electrode method. The contact impedance decreases with 
the increase of the frequency of the input excitation signal and 
decreases obviously at 50 kHz, but as the frequency continues 
to rise and the contact impedance tends to stabilize, it can be 
considered that the capacitive component of the contact 
impedance has basically disappeared. The input signal used by 
EIT is a current signal, and a voltage-controlled current source 
(VCCS) is required to convert the voltage signal output from 
the FPGA to a current signal. The ideal VCCS output resistance 
should be infinite, but in practical engineering, the VCCS 
output resistance decreases with the increase of frequency, and 
the high frequency will make the VCCS no longer be the 
constant current source. Therefore, it is reasonable to choose 
the input excitation signal frequency at f = 50 kHz in the gesture 
recognition experiment. Moreover, from f = 50 kHz, the contact 
impedance becomes stable (Fig. 7). 

In the experiment, the contact impedance was reduced when 
the conductive fluid was used in the medical electrode (Fig. 7). 
However, a less contact impedance makes the gesture 
recognition more difficult. Therefore, we conclude from the 
experiment that, a proper contact impedance helps to improve 
the gesture recognition rate. 

B. Gesture recognition considering contact impedance  

The contact impedance is considered to play an important 
role in gesture recognition. When different gestures are made, 
internal muscle changes lead to changes in the internal 
conductivity distribution. At the same time, skin deformation 
generates a different contact impedance between the electrode 
and the skin. The different voltage data that caused by different 
gestures is the superimposing of the two voltage changes that 
caused by the two changes above. Although the contact 
impedance by the copper chip is large, when different gestures 
are made, the contact impedance changes greatly when the 
gesture changes, leading to a higher recognition rate. On the 
other hand, when the contact impedance caused by medical 

TABLE II 
RECONSTRUCTED IMAGE OF DIFFERENT GESTURES 

Electrode 
Material 

Subject 1 Subject 2 Subject 3 

2~1 3~1 2~1 3~1 2~1 3~1 

Rectangu
lar 

Copper 
Electrode    

Curved 
Copper 

Electrode    

Conducti
ve Cloth 
Electrode    

Medical 
Electrode 

   

 

TABLE III 
THE HIGHEST RECOGNITION RATE WITH A SERIES OF MACHINE LEARNING 

ALGORITHMS USING DIFFERENT ELECTRODES 
 Subject 1 Subject 2 Subject 3 

Conductive 
Cloth 

Electrode 
 
 

90.0% 
(SVM, 

Ensemble) 

96.7% 
(SVM, Quadratic 

Discriminant, 
Ensemble) 

90.0% 
(SVM) 

Rectangular 
Copper 

Electrode 
 
 

96.7% 
(SVM, 

Quadratic 
discriminant) 

96.7% 
(SVM, Ensemble) 

100% 
(SVM, KNN) 

Curved 
Copper 

Electrode 
 

96.7% 
(Ensemble) 

93.3% 
(SVM, KNN) 

100% 
(Ensemble) 

Medical 
Electrode 

86.7% 
(SVM) 

76.7% 
(SVM) 

76.7% 
(SVM, 

Ensemble) 
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electrode is small, the contact impedance change is also small 
as the gesture changes, leading to a lower recognition rate. That 
is to say, the ability of gesture recognition contains two factors, 
one is the muscle change in the wrist, the other is the contact 
impedance between electrode and skin. 

In order to select the optimal algorithm, a series of 
algorithms in Matlab machine learning toolbox are used 
experimentally in this paper. Among these algorithms, the 
Medium Gaussian SVM, Bagged Trees Ensemble and 
Quadratic Discriminant algorithms show good results. Fig. 8 is 
the recognition rate of these three algorithms for the subjects 
when using rectangular copper electrode. The Medium 
Gaussian SVM algorithm can be obtained by graph with an 
average recognition rate of 97.8%, which is higher than  the 
Bagged Trees Ensemble algorithm (average 92.2%) and the 
Quadratic Discriminant algorithm (average 95.6%). These 
results shows that the Medium Gaussian SVM algorithm is the 
optimal algorithm for gesture recognition. 
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Machine Learning Algorithm
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Fig. 8  Gesture recognition rate of three algorithms when using rectangular 
copper electrodes. 

 
 

 
Fig. 9  Gesture recognition rate among six subjects with SVM. 

 
Fig. 9 shows the gesture recognition rates among six subjects 

with Medium Gaussian SVM. The six subjects include three 
females and three males. The average recognition rate is 95%, 
which is higher than the related research by Yang et al. [26]. 

Because this study applied the original voltage data to 
recognize the gesture. In Yang et al.’s study, they firstly 
reconstructed the image, then recognize the gesture from the 
reconstructed images. The EIT image reconstruction is an 
inverse problem to solve an ill-conditioned matrix, which 
ineluctability decreases the recognition rate. 

In summary, EIT can be used for gesture recognition 
technology, the key problem to be solved is how to control the 
stability of contact impedance, that is, when in the static 
measurement, the contact impedance changes should be as 
small as possible; when the gesture changes, a proper contact 
impedance should be used.  

 

VI. CONCLUSION 

A wearable EIT sensor has been developed for gesture 
recognition. The results are concluded as follows: 

(1)   The wEIT sensor with 8 electrodes was developed. Four 
kinds of electrodes were studied to find the optimum material 
and shape, including conductive cloth electrode, rectangular 
copper electrode, curved copper electrode and medical 
electrode. The rectangular copper electrode is selected as the 
optimal electrode. 

(2) An electrical model of the electrode-skin contact 
impedance is established to clarify the influence of the contact 
impedance on the gesture recognition rate. The rectangular 
copper electrode induces a proper contact impedance, which 
contributes to a higher gesture recognition rate. 

(3) Several Machine Learning algorithms are used to 
recognize three different gestures. The Medium Gaussian SVM 
(Support Vector Machine) algorithm is the optimal algorithm 
with an average recognition rate of 95%. 
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