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Computing the linear viscoelastic properties of soft gels using an Optimally
Windowed Chirp protocol.

Mehdi Bouzid*,1, a) Bavand Keshavarz*,2, b) Michela Geri,2, c) Thibaut Divoux,3, 4, d) Emanuela Del Gado,1, e)

and Gareth H. McKinley2, f)
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37th and O Streets, N.W., Washington, D.C. 20057, USA
2)Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, Massachusetts 02139, USA
3)Centre de Recherche Paul Pascal, CNRS UMR 5031 - Université de Bordeaux, 115 avenue Dr. Schweitzer,
33600 Pessac, France
4)MultiScale Material Science for Energy and Environment, UMI 3466, CNRS-MIT, 77 Massachusetts Avenue,
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We use molecular dynamics simulations of a model three-dimensional particulate gel, to investigate the linear
viscoelastic response. The numerical simulations are combined with a novel test protocol (the optimally-
windowed chirp or OWCh), in which a continuous exponentially-varying frequency sweep windowed by a
tapered cosine function is applied. The mechanical response of the gel is then analyzed in the Fourier
domain. We show that i) OWCh leads to an accurate computation of the full frequency spectrum at a rate
significantly faster than with the traditional discrete frequency sweeps, and with a reasonably high signal-to-
noise ratio, and ii) the bulk viscoelastic response of the microscopic model can be described in terms of a simple
mesoscopic constitutive model. The simulated gel response is in fact well described by a mechanical model
corresponding to a fractional Kelvin-Voigt model with a single Scott-Blair (or springpot) element and a spring
in parallel. By varying the viscous damping and the particle mass used in the microscopic simulations over a
wide range of values, we demonstrate the existence of a single master curve for the frequency dependence of
the viscoelastic response of the gel that is fully predicted by the constitutive model. By developing a fast and
robust protocol for evaluating the linear viscoelastic spectrum of these soft solids, we open the path towards
novel multiscale insight into the rheological response for such complex materials.

I. INTRODUCTION

Self-assembled soft solids with gel-like properties and
a complex and hierarchical microstructure are com-
monly formed in colloidal suspensions, proteins and other
biopolymers1–7. Their highly adaptive and tunable rhe-
ological response is of interest for novel technologies and
smart material design, but distinguishing the role of dif-
ferent microstructural features over different lengthscales
and timescales in order to fully understand and control
the wide relaxation spectrum of these soft materials is ex-
tremely difficult. Recent advancements in experimental
techniques have enabled accurate and efficient determi-
nation of the rheological response of soft materials across
a broad range of linear and non-linear deformations8–15

and the combination of such approaches with imaging,
ultrasound velocimetry or spectroscopy provides unique
opportunities to bridge the gap between the macroscopic
rheological behavior of a material and its micro- and even
nano-scale structure/dynamics16–26. Nevertheless, con-
stitutive models that capture the link between the mi-
crostructure and the mechanical response are still fun-
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damentally lacking, and this limits quantitative interpre-
tation of the rheological measurements. Computational
models, in which the constitutive behavior emerges from
a more microscopic and physically-grounded description
of the gel structure and dynamics, can therefore play a
crucial role in complementing experiments and theories.
Recent studies have demonstrated that computational
coarse-grained methods for soft matter can properly cap-
ture the structural and mechanical heterogeneities of soft
gels, and help unravel and disentangle the microscopic
processes underlying non-linear response, aging and hy-
drodynamic interactions in such materials27–34. Combin-
ing such numerical approaches with advanced experimen-
tal techniques and appropriate quantitative constitutive
models offers the potential to transform rheological stud-
ies of soft gels and advance our fundamental understand-
ing of such versatile materials.

Here we address two of the most formidable challenges
in computational rheological studies of soft gels, i.e. (i)
performing simulations that adequately probe the very
broad width of their viscoelastic spectrum as well as (ii)
overcoming the numerical fluctuations in the measured
moduli, which requires large ensemble sizes and extensive
computing time to obtain converged statistics. These
concerns significantly limit the effectiveness and scope
of computational studies. In the present study, we use
the particle gel model introduced in ref.35, which pro-
duces stable porous networks (even at low volume frac-
tions) that feature extended relaxation spectra, micro-
scopic dynamics and mechanics consistent with several
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observations in colloidal and protein gels29,35. A typical
snapshot of the model gel is shown in Fig. 1 (a), where
only the interparticle links are shown for clarity. We per-
form a detailed numerical study of the model rheological
response using a Non-Equilibrium-Molecular-Dynamics
approach with overdamped equations of motion for the
particles in athermal conditions (i.e. neglecting the ther-
mal fluctuations). To help overcome the computational
challenges mentioned above we use signal processing se-
quences adapted from radar chirp sequences. Such an ap-
proach was first employed computationally by Visscher et
al.36 to evaluate the linear viscoelastic properties of un-
gelled Brownian dispersions. We extend this approach
and reduce the numerical errors in the computed moduli
by employing both amplitude- and frequency-modulated
profiles similar to those used by bats and dolphins in
echolocation37. In particular, we use a novel optimization
scheme based on acoustical and optical signal processing
algorithms that was recently developed for experimen-
tal measurements of linear viscoelasticity38 and which is
employed here for the first time in a numerical study.
The resulting algorithm effectively reduces the time re-
quired to determine the viscoelastic spectrum by two or-
ders of magnitude as well as eliminating ringing artifacts
and fluctuations that otherwise can strongly affect such
calculations36.

These advancements allow us to directly and quanti-
tatively evaluate the complex modulus G∗(ω) of the par-
ticulate gel over a wide range of frequencies ω and show
that it can be compactly described by a fractional Kelvin-
Voigt constitutive model (FKVM). This model predicts
a plateau in the elastic modulus at low frequencies (the
equilibrium modulus G0 of the gel), as well as a broad
power-law dependence over a wide range of intermediate
frequencies in the loss modulus. Such features reflect the
very broad and self-similar spectrum of time- and length
scales over which the microstructure can relax residual
stresses in this type of materials. In fact, viscoelastic
characteristics of this type have been observed experi-
mentally in a wide range of different gelled and partially
cross-linked systems (see for example refs.39–41) as well
as in many biological materials42,43 and even capillary-
bridged suspensions44. For polymeric gels and elas-
tomers, molecular models have been developed45,46 that
integrate rubber elasticity theories of imperfectly-cross-
linked networks with reptation dynamics of the dangling
chains in order to describe quantitatively the power-
law relaxation that is observed experimentally. However
equivalent micromechanical models describing similar re-
laxation dynamics in attractive colloidal gels do not yet
exist. Our comparison of the viscoelastic spectrum of
the numerical gel and of the FKVM model is a first step
toward constructing a constitutive model framework for
soft particulate gels. The FKVM model is parameter-
ized by only three material constants12 [see Fig. 1 (b)]
and we show below that it can provide a quantitative de-
scription of the viscoelastic properties of the attractive
colloidal gels simulated numerically over 4.5 decades of

a b

FIG. 1. (a) Snapshot of the colloidal gel network extracted
from the simulation and formed at a number density ρ = 0.14,
which corresponds to a volume fraction φ ' 7.3% and N =
5324 particles. Each bond is represented by a segment, when
the distance dij between two particles i and j is dij ≤ 1.3d.
(b) Schematic of the mechanical model of the gel. The model
is composed of a mass M connected to a spring of stiffness
G0 in parallel with a springpot, or fractional viscoelastic el-
ement, characterized by two parameters: a quasi-property V
(in Pa·sα) and a dimensionless exponent α.

dimensionless frequency (or Deborah number). Because
of the computational efficacy of the Optimized Windowed
Chirp algorithm we can thus rapidly evaluate the full,
frequency-dependent complex modulus of a large num-
ber of simulated gels. The analysis provides scaling re-
lationships that bring quantitative insight into how mi-
croscopic properties such as the viscous dissipation as-
sociated with damped particle motion and particle mass
affect the macroscopic linear viscoelastic properties of the
resulting gels.

The remainder of this article is structured as follows.
In section II, we outline the damped molecular simulation
scheme and the gel preparation protocol. Section III A
is dedicated to a detailed comparison between the Op-
timally Windowed Chirp method and traditional small
amplitude oscillatory shear (SAOS) protocols which use
discrete input frequencies to determine G∗(ω). The frac-
tional Kelvin-Voigt model (FKVM) is introduced in sec-
tion III B and used to quantify the dependence of the gel
complex modulus on the key parameters of the model in
section III C. The study is concluded with a discussion in
section IV.

II. NUMERICAL MODEL

A. Equations of motion

We perform molecular dynamics simulations of a model
colloidal gel composed of N particles each with a mass
m and diameter d in a cubic simulation box of size L.
The particles interact through a potential composed of
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two terms:

U(ri, ..., rN ) = ε

[∑
i>j

U2
(rij
d

)
+
∑
i

j,k 6=i∑
j>k

U3
(rij
d
,
rik
d

)]
(1)

where rij = rj−ri, with ri denoting the position vector of
the i-th particle, and ε the strength of the attraction that
sets the energy scale. Typical values of d and ε for col-
loidal particles range respectively from d ' 10 to 100 nm
and from ε ' 10 to 100 kBT , with kB the Boltzmann
constant and T the absolute temperature. The first con-
tribution to U is a two-body potential à la Lennard-Jones,
U2, which consists of a repulsive core and a narrow at-
tractive well that can be expressed in the following di-
mensionless form :

U2(r) = A

(
a

r18
− 1

r16

)
(2)

where r is the distance rescaled by the particle diame-
ter d, while a and A are dimensionless parameters that
control the width and the depth of the potential respec-
tively. The second contribution to U is a three-body term
U3 that confers an angular rigidity to the inter-particle
bonds, which prevents the formation of dense clusters.
For two particles both bonded to a third one and whose
relative position with respect to it are represented by the
vectors r and r′ (also rescaled by the particle diameter),
it takes the following form:

U3(r, r′) = BΛ(r)Λ(r′) exp

[
−
(
r · r′
rr′
− cos θ

)2

u−2

]
(3)

where B, θ and u are dimensionless parameters. The
radial modulation Λ(r) that controls the strength of the
interaction reads:

Λ(r) = r−10
[
1− (r/2)10

]2H(2− r) (4)

where H denotes the Heaviside function, which ensures
that U3 vanishes beyond the diameter of two particles. In
conclusion, the potential energy (Eq. 1) depends para-
metrically on five dimensionless quantities, which are
fixed to the following values: A = 6.27, a = 0.85,
B = 67.27, θ = 65◦ and u = 0.3. Tuning these pa-
rameters leads to a vast zoology of stable and porous
microstructures. In the following, these values are cho-
sen such that a disordered and thin percolating network
starts to self-assemble for low particle volume fractions
(φ . 0.1), at ε = 20kBT , where kB is the Boltzmann
constant and T is the absolute temperature. The self-
assembly, the aging and the mechanical properties un-
der external deformation of the resulting gel-like net-
work structure have been studied extensively29,33,35,47

and exhibit several mechanical features consistent with
the response measured in soft particulate gels in various
experiments48–52.

B. Initial configuration

The system is composed of N particles in a cubic sim-
ulation box of size L with periodic boundary conditions.
The initial gel configuration is prepared with the protocol
described in29, which consists in starting from a gaseous
configuration at kBT /ε = 0.5 and letting the gel self-
assemble upon slow cooling down to kBT /ε = 0.05. The
kinetic energy is then completely drawn from the system
(down to 10−24) by means of a dissipative microscopic
dynamics:

m
d2ri
dt2

= −∇riU − ηf
dri
dt
, (5)

where ηf is the damping coefficient associated with cou-
pling of the particle motion to the surrounding fluid.
The timestep δt used for the numerical integration is
δt = 0.005. Distances are expressed in terms of the par-
ticle diameter d, masses are expressed in units of m0,
the energy in terms of the strength of the attraction ε
and the time in the units of the characteristic timescale
τ0 =

√
m0d2/ε. All data discussed here refer to a num-

ber particle density N/L3 = 0.14, which corresponds to
an approximate solid volume fraction φ ' 7.3, and to
N = 19652 and L = 52d (except to investigate the system
size dependence where the number particle density has
slightly been changed and set to N/L3 = 0.16). All simu-
lations have been performed using a version of LAMMPS
suitably modified by us53.

C. Mechanical test and stress calculation

To determine the gel mechanical viscoelastic proper-
ties, the particles are submitted to a continuous shear
strain γ(t) in the xy plane according to the following
equation:

m
d2ri
dt2

= −∇riU − ηf
(
dri
dt
− γ̇(t)yiex

)
(6)

The specific form of γ̇(t) will be introduced in the next
section, and we use Lees-Edwards boundary conditions
while applying the deformation54.

It is worth noting that the equations of motion used
here contain explicitly an inertial term (with mass m)
for computational convenience, since this form allows for
the use of effective and precise numerical integrators55.
Nevertheless, the limit m → 0 is the only one relevant
to real colloidal gels in experiments, since in those sys-
tems the particle motion is completely overdamped and
inertial effects are negligible. The timescales over which
the particle motion is affected by inertia in our simula-
tions are of the order 1τ0 − 10τ0 (for the values of m
and ηf chosen). For a spherical colloidal (silica) par-
ticle of diameter d ' 100nm and interaction strengths
ε ' 10 − 20kBT , the inertial timescale τ0 ' 10−6s, i.e.,
it corresponds to timescales (and lengthscales, in terms
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of particle displacements) that are not accessible in typi-
cal rheometric experiments. Just for comparison, typical
time scales associated with the viscous damping of the
same particle when subjected to the same interactions in
aqueous solution would be ηfd

2/ε ' 5·10−4s. As a conse-
quence, for a finite value of m the part of the viscoelastic
spectra discussed in the following that is relevant to the
experiments is only the one at low frequencies ω � τ−10 .

At the volume fraction used here, the gels are very soft
due to the sparsely connected structure even in presence
of relatively strong (with respect to kBT ) interparticle
interactions, hence we focus on the effect of the imposed
deformation and neglect the role of thermal fluctuations
in the structural rearrangements underlying the rheolog-
ical response. Future work, building on the results ob-
tained here, will be able to explore the changes of the lin-
ear viscoelastic spectrum due to the presence of thermal
fluctuations that can assist in breaking network connec-
tions and redistributing stresses33.

We also note that for all frequencies considered, in ab-
sence of thermal fluctuations, there is no breakage of ex-
isting bonds, nor formation of new bonds. The deforma-
tion amplitude used in the oscillatory tests (γ0 = 1%)
is in the linear response regime, as extensively studied
in29,34: in the absence of thermal fluctuations the lin-
ear response regime is substantially rate independent and
can be estimated to extend up to strains γ0 ≈ 10%, while
there is no bond broken or or newly formed up to strains
γ0 ≈ 50%.

The average state of stress of the gel is given by the
virial stresses as σαβ = − 1

L3

∑
i s
i
αβ , where the Greek

subscripts stand for the Cartesian components x, y, z and
siαβ represents the contribution to the stress tensor of all

the interactions involving the particle i56. The latter
contribution is calculated for each particle, by splitting
the contributions of the two-body and the three-body
forces according to the following equation29:

siαβ = −1

2

N2∑
n=1

(riαF
i
β+r′αF

′
β)+

1

3

N3∑
n=1

(riαF
i
β+r′αF

′
β+r′′αF

′′
β )

(7)
The first term denotes the contribution of the two-body
interaction, where the sum runs over all the N2 pairs
of interactions that involve the particle i. The couples
(ri, F i) and (r′, F ′) denote respectively the position and
the forces on the two interacting particles. In the same
way, the second term indicates the three-body interac-
tions involving the particle i and two neighbors denoted
by the prime and double prime quantities.

III. LINEAR FREQUENCY RESPONSE

For each gel self-assembled following the procedure de-
scribed in Section II B, we investigate its linear viscoelas-
tic properties in the athermal limit (i.e. kBT /ε ' 0).
Similar to experiments, the viscoelastic response of the
gel at a discrete frequency ωi can also be measured

in simulations by imposing an oscillatory shear strain
γ(t) = γ0 sin(ωit) and monitoring the corresponding re-
sponse through the shear component σ(t) of the stress
tensor over a finite time T . Assuming a linear response
regime, the elastic and loss moduli, G′ and G′′ respec-
tively, are calculated as

G′(ωi) = Re
{
σ̃(ωi)

γ̃(ωi)

}
G′′(ωi) = Im

{
σ̃(ωi)

γ̃(ωi)

} (8)

where σ̃ and γ̃ are the Fourier transforms of the stress
and strain signals respectively57. The whole viscoelastic
spectrum is then reconstructed by performing a discrete
series of tests at various frequencies, also known as “fre-
quency sweep”. The finite duration of the input signal
leads to the appearance of artificial components in the
frequency spetrum, also referred to as “spectral leakage”,
which limit the accuracy of the values of G′ and G′′ ob-
tained. For a periodic signal58, the spectral leakage can
be reduced by choosing T = n(2π/ωi), with integer val-
ues of n ≥ 1, which requires a minimum signal length of
T = 2π/ωi. This requires very long tests especially for
measurements at low frequencies. In Brownian dynamics
simulations, the signal/noise ratio also decreases at low
frequencies because of the low values of the dimension-
less strain rate, or bead-Péclet number, often necessitat-
ing the use of variance reduction techniques. Minimizing
the measurement time is essential to reduce the computa-
tional effort, and is also of great importance, for example,
in experiments studying rapidly gelling systems41,59,60.
To overcome these issues, a compact signal in the time
domain, that spans over a broad range in the frequency
domain, is desired. Holly et al.61 suggested a “multi-
wave” technique based on applying a waveform that is
a linear superposition of a fundamental frequency and
a few of its corresponding harmonics. This technique
indeed enabled researchers to measure the viscoelastic
properties of different gels at several frequencies with an
experimental duration that is much shorter than with
the discrete frequency approach62–67. However, in such
a multi-wave method, the amplitude of the multi-wave
input signal is not constant and each modes contribution
to the total strain can combine additively, exceeding the
linear limit of the material, or combine subtractively, and
thus fall below the sensitivity of the instrument sensor.

Inspired by studies of signal design for radar and acous-
tic applications68–70, Ghiringhelli et al.71 more recently
used a chirp signal for studying the rheology of alginate
gels. The signal consists of an oscillating trigonometric
signal with a phase angle that is exponentially increas-
ing with time over a predetermined range of selected fre-
quencies. They showed that with this compact signal
one can rapidly determine the linear viscoelastic behav-
ior of the material over the specified range of frequencies.
The compactness of this measurement technique, coined
“Optimal Fourier Rheometry” (OFR)71, inspired Cur-
tis and coworkers72 to use OFR to study the behavior
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of a rapidly gelling collagen system. These experimen-
tal studies demonstrated that chirp signals can indeed
be successfully used to obtain the mechanical spectrum
of a time-evolving gel over almost a decade in frequency
throughout the gelation process. Earlier numerical stud-
ies by Heyes and coworkers36,73,74 used similar types of
chirp signals in Brownian dynamics simulations of hard
spherical dispersions to reduce the computational time
required to evaluate the viscoelastic spectrum. How-
ever, their calculations of the resulting viscoelastic mod-
uli were affected by spectral leakage, featuring fluctu-
ations that could not be entirely eliminated even after
post-processing the signal through a short-time–Fourier-
transform using a Gaussian filter36.

In fact, the short duration of the input signal in the
OFR technique, despite being a key feature, also strongly
affects the precision of the measurements. Spectral leak-
age at frequencies beyond the minimum and maximum
imposed values and set by the signal duration and the
sampling frequency respectively, leads to ringing artifacts
in the frequency spectrum. The ringing is also known as
the Gibbs phenomenon in signal processing75 and results
in artificial fluctuations in the computed values of the
frequency-dependent storage and loss moduli obtained
from the chirp input signals36. Studies of spectral anal-
ysis and signal design have shown that by using win-
dowing functions, which modulate the amplitude of the
input signal, one can significantly reduce the leakage er-
ror in the resulting Fourier analysis58,76. Recently, Geri
et al.38 used amplitude modulation of exponential chirp
signals to perform high accuracy rheological measure-
ments. By enveloping the exponentially-varying chirp
signal with a symmetrically tapered window (known as a
Tukey window77), Geri and co-workers demonstrated on
several materials, including a semi-dilute entangled poly-
mer solution and a time-evolving cross-linked biopolymer
gel, that a significant reduction in the spectral leakage er-
ror can be achieved, improving the quantitative determi-
nation of the elastic and loss moduli. The present study
builds upon this Optimally Windowed Chirp (OWCh)
method by using an exponential chirp signal whose am-
plitude is a tapered Tukey window as the strain input to
the numerically-simulated gels. The tapering ratio used
here is described below and is similar to the optimum
value determined by Geri et al.38.

A. Optimally windowed chirp rheometry

In this subsection, we compare quantitatively the re-
sults of traditional small amplitude oscillatory shear flow
(SAOS) at discrete input frequencies with that of the
Optimally Windowed Chirp (OWCh) method for deter-
mining the linear viscoelastic properties of the gel we
simulate numerically. We first consider the traditional
discrete frequency sweep consisting of an imposed os-
cillatory shear applied to the system following Eq. 6,
where the shear strain is modulated periodically accord-

a

b

FIG. 2. (a) The input strain signal that is applied to the
gel is an exponential chirp (Eq. 9) with ω1 = 10−4 τ−1

0 , ω2 =
18 τ−1

0 , T = 62510 τ0, and a corresponding time-bandwidth
product TB ' 1.79×105. The amplitude envelope is a Tukey
window with a tapering parameter b = 0.45. (b) Resulting
shear stress σxy measured as a function of time.

ing to γ(t) = γ0 sin(ωit). The strain amplitude is fixed
to γ0 = 0.01 which is known to be in the linear re-
sponse regime for the model gel29 and the frequency ωi
is changed in discrete steps to explore the viscoelastic
spectrum over five orders in magnitude of frequency. For
each frequency ωi, the signal duration is chosen to be
an integer multiple of the signal period to avoid spectral
leakage in the subsequent Fourier analysis. We contrast
this classical approach with the OWCh scheme in which
we apply an exponential chirp signal for the input strain
[Fig. 2(a)] that reads:

γ(t) = W (t; b)γ0 sin
[
(Lω1)(et/L − 1)

]
(9)

where γ0 is the strain amplitude and L = T/ ln(ω2/ω1)
is the characteristic time over which the phase of the
signal exponentially grows from the initial frequency ω1

to the final frequency ω2 within the duration of the signal
T . The window function W (t; b) sets the shape of the
amplitude envelope. It is taken here to be an asymmetric
Tukey window with the following form:

W (t; b) =

 1 if 0 ≤ t/T ≤ (1− b/2)

cos2
[
π
b

(
t
T − 1 + b

2

)]
if (1− b/2) ≤ t/T


(10)

where the tapering parameter b is the duration of the
falling part of the envelope normalized by T . The du-
ration of the signal T is kept close to the period of the
lowest imposed frequency, so that T ∼ O(2π/ω1).
A dimensionless parameter that characterizes the leakage
behavior of a chirp signal in the spectral domain is the
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FIG. 3. Storage and loss moduli, G′ (•) and G′′ (�) as a
function of the frequency ω. The symbols are calculated using
the classical discrete frequency sweep, while the continuous
red and blue lines are measured using the OWCh protocol.
The black dashed line corresponds to the inertialess limit and
the best fit of the data by the fractional model introduced in
Fig. 1(b), with G0 = 5.10−4ε/d3 , V = 0.025 and α = 0.53.

time-bandwidth product TB ≡ T (ω2−ω1)/2π. High val-
ues of the time-bandwidth product reduce the artifacts
associated with the ringing of the data68. For a fixed
frequency range, this can be achieved by increasing the
signal length T . However, in rapidly-gelling systems a
low value of T is also a vital feature. As shown by Geri
et al.38, for a fixed value of TB (and in the absence of
noise in the output signal) a range of 0.1 ≤ b ≤ 1 op-
timizes the signal envelope and significantly reduces the
measurement errors compared to the non-windowed sig-
nals (b = 0) (see Fig. 9 in the appendix). By monitoring
the shear stress response of the material σxy(t) over time
[Fig. 2(b)], we can extract the viscoelastic moduli using
the same Fourier transform protocol displayed in Eq. 8.

The results obtained with both the discrete SAOS and
the OWCh methods are displayed in Fig. 3 as discrete
symbols and continuous lines respectively. Both methods
lead to the same quantitative results. The gel behaves as
a soft solid at low frequency with an asymptotic equilib-
rium modulus G0 as ωτ0 → 0. As the dimensionless oscil-
latory frequency increases, both moduli display a power
law increase up to a crossover point beyond which the
elastic modulus becomes smaller than the viscous mod-
ulus. At higher frequencies, the elastic modulus exhibits
a maximum G′max at a characteristic frequency we de-
note ωc, before experiencing an abrupt cutoff at larger
frequencies. By contrast, the viscous modulus shows a
power-law response over the entire range of frequency.
The maximum in G′(ω) can be understood because each
particle in our simulations is, as a matter of fact, a non-
linear harmonic oscillator with mass m and subjected to
a viscous damping ηf (see eq.6). The presence of inertia
introduces a resonance in the spectrum, which manifests
itself in a change in sign in the in-phase contribution of

b

c

a

d

FIG. 4. Total duration of the simulations to measure nu-
merically the frequency dependence of the viscoelastic moduli
over a frequency range ω ∈ [10−4τ−1

0 , τ−1
0 ]: (a) Using the tra-

ditional discrete frequency sweep with 20 discrete frequency
points. Each data point corresponds to an independent simu-
lation performed with a single-core CPU and the total dura-
tion is calculated by summing the duration of the 20 runs. (b)
Using the OWCh method with a single-core CPU. (c) Using
the traditional discrete frequency sweep in a parallelized sim-
ulation distributed over a multi-core processor with 20 cores,
for each frequency. (d) Using the OWCh method in a paral-
lelized simulation as in (c). The simulation performance are
improved by a factor of ∼ 3 in (b) a factor of ∼ 16 in (c) and
by a factor of ∼ 50 in (d).

the response (i.e., the storage modulus G′(ω)) at high fre-
quencies. Inertia induced resonances in rheological mea-
surements are discussed at more length in78.

Interestingly, the key difference between the two meth-
ods (discrete SAOS and OWCh) lies in the speed of com-
putation of the mechanical spectrum, as illustrated in
Fig. 4. The advantage of using OWCh comes from the
fact that in the SAOS one needs to average over several
cycles (we used 3 in the specific case) to obtain reason-
able statistics. The averaging is mostly needed at low fre-
quency, with the low frequency calculations always con-
stituting the more time-consuming part of the spectrum
calculation. The number of cycles needed for the aver-
aging in SAOS can be reduced by increasing the system
size, that is the number of particles N , therefore increas-
ing in turn the number of iterations required to compute
inter-particle interactions in a Molecular Dynamics code,
which is the true limiting factor in the simulations of
particle based models. In Fig. 4, we also show that the
OWCh performance can be further improved by using
multi-core processors, as one would expect. On a 20-
core processor we obtained a factor 16. The same gain
for the same nodes configuration is obtained also with
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SAOS, but the gain due to OWCh (by not requiring the
averaging over several cycles) will remain. That is, for
our calculation the OWCh protocol is 3 times faster than
a traditional SAOS discrete frequency sweep on a com-
puter equipped with one single core CPU and up to 50
times faster with a 20 core processor. This demonstrates
the power of the OWCh protocol for characterizing com-
putationally the viscoelasticity of model soft gels.

Possible finite system size effects in the results of the
numerical simulations have been ruled out as shown in
Fig. 5, which confirms that the OWCh protocol allows to
easily span large system sizes over the whole frequency
spectrum (N varies between 5 · 103 and 105). The data
also show that the power-law increase of G′(ω) with fre-
quency and the location of the resonance do not depend
on the total number of particles N .

B. Fractional Kelvin-Voigt model

A central feature of the frequency response reported
in Fig. 3 is the low frequency plateau modulus G0

that resembles the predictions of a Kelvin-Voigt Model
(KVM)79. However, the power-law behavior observed
upon increasing the frequency is not captured by a clas-
sical Kelvin-Voigt model. The weak power-law-like be-
havior of soft materials such as food gels and particulate
gels can be better captured, in a phenomenological sense,
by a spring-pot element, which interpolates between a
spring and a dashpot. Such a spring-pot element, which
was originally introduced by Scott Blair80,81 and has re-
cently been applied with success to a broad variety of soft
viscoelastic materials12,82 can be represented in terms of
a fractional derivative that relates the stress σ and the
strain γ as follows:

σ = V
dαγ

dtα
(11)

where α is a dimensionless exponent (0 ≤ α ≤ 1) and
V is referred to as a quasi-property with dimension of
Pa.sα. Here the operator dα/dtα is the Caputo fractional
derivative defined as83:

dα

dtα
f(t) =

1

Γ(1− α)

∫ t

0

(t− t′)−αf(t′)dt′ (12)

with Γ the Euler gamma function. This mechanical
model captures, in a relatively simple way, a continuous
relaxation spectrum that results in a relaxation modulus
that decays as a power law in time G(t) = Vt−α/Γ(1−α).
To describe the complex modulus of our weak particu-
late gel, we use therefore a fractional Kelvin-Voigt Model
(FKVM) built upon a spring-pot element in parallel
with an elastic spring. A functionally-identical modified
Kelvin-Voigt model was adopted by Curro and Pincus to
describe power-law relaxation in incompletely crosslinked
elastomeric systems84. To be able to reproduce the full
spectrum, including the resonance that arises from the

FIG. 5. Frequency dependence of the storage modulus G′(ω)
for different system size: N = 5324, 19652 and 108000 par-
ticles. Other parameters are set to φ ∼ 8.2%, m = 1 and
ηf = 0.35, the dashed brown line represents the best fit of
the data by the fractional model introduced in Fig. 1(b) and
eq. (13), in the intertialess limit of M → 0.

particle inertia, we have constructed a FKVM in which
the spring-pot and the elastic spring are connected in se-
ries to an inertial element M that has the dimensions
of a mass per unit length [Fig. 1(b)]. This mechanical
system has three lumped parameters that physically rep-
resent the gel elasticity (the spring G0), the power-law
viscous dissipation in the gel (the springpot V, α), and
the effective inertia contribution to the spectrum (the
mass element M).

The equation of motion (per unit length) for this me-
chanical system is a 2nd order fractional differential equa-
tion connecting the strain γ(t) to the total stress in the
system that reads:

M
d2γ

dt2
= −Vd

αγ

dtα
−G0γ + σ(t) (13)

Knowing that the Fourier transform F of a fractional
derivative is given by85:

F

{
dα

dtα
f(t);ω

}
= (iω)αf̃(ω) (14)

one can transform the equation of motion (Eq. 13) to
the following form:

σ̃(ω) = (−Mω2 +V(iω)α +G0)γ̃(ω) (15)

where the tilde denotes the Fourier transform. Using the
continuous expressions displayed in Eq. 8, we can derive
analytical predictions for the elastic and viscous modulus
of the FKVM from the real and imaginary components
of the transform:

G′(ω)

G0
= 1−

(
ω

ωn

)2

+

(
ω

ωn

)α
ξ cos

(
α
π

2

)
(16a)
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G′′(ω)

G0
=

(
ω

ωn

)α
ξ sin

(
α
π

2

)
(16b)

where ωn ≡
√
G0/M is the natural resonance frequency

of the mass-spring elements and ξ ≡ V/
√
MαG2−α

0 is

the dimensionless damping ratio that describes the over-
all power-law dissipative behavior in the system. These
predictions from the fractional Kelvin-Voigt model can be
used to fit the frequency spectrum obtained by numerical
simulations. Indeed, the two equations (16a) and (16b)
with the following set of parameters: G0 = 5.10−4ε/d3,
V =0.025, M = 0.12, and α = 0.53 capture very well the
entire frequency dependence of the elastic and viscous
modulus (see black dashed lines in Fig. 3). We only ob-
serve small deviations in the viscous modulus at high fre-
quencies, corresponding to the timescales over which the
single particle motion is not completely overdamped (see
Eq.6) and depending on the specific shape of the interac-
tion potential. The fractional element of the FKV model
(V, α) accounts for the power-law behavior observed in
both the elastic and viscous moduli (corresponding to
the terms scaling as ωα in Eq. (16), while the elastic el-
ement (G0) contributes a constant value to the elastic
modulus, which dominates at low frequencies. Finally,
the effective inertia M of the N particles in the simula-
tion box introduces a mechanical resonance by contribut-
ing the term −G0(ω/ωn)2 to the elastic modulus. This
can lead to an unphysical sign change in the apparent
elastic modulus that we discuss further below (see Ap-
pendix IV C) The effective inertia M has units of mass
per unit length and G0 has dimensions of an energy per
volume, hence they will be proportional, respectively, to
m0/d and ε/d3 in the underlying microstructural com-
putational model. Therefore the natural resonance fre-
quency ωn is proportional to the inverse of the character-
istic time scale τ0 =

√
m0d2/ε, while the proportionality

factor in the scaling of G0 with ε/d3 a priori results in a
non-trivial way from the structural connectivity of the gel
network and the particle volume fraction. In the present
work we focus only on the scaling of G0 with ε/d3 and
the more complicated question of the dependence of G0

on the structure of the particulate gel will be subject of
future work.

The power-law scaling of the viscous modulus with the
frequency G′′(ω) ∼ ωα (Eq. 16b) can be understood fol-
lowing a rationale developed by Bagley and Torvik86,87

using a modified Rouse theory for soft polymeric mate-
rials. The relaxation spectrum can be viewed as a sum
of Rouse-like relaxation modes, with G0 ∝ nkBT and
τ1 ∝ η/G0, where n is polymer concentration, τ1 is the
Rouse time and η represents the viscous contribution of
the underlying structure. The summed response of the
individual relaxation modes leads to a power-law me-
chanical response that can be represented in terms of a
fractional element with a quasi-property V ∝ nkBT τα1 ∝
G0(η/G0)α, with α = 1/2. Following the same general
argument, we can deduce the following expected scaling
for the numerical gel: V ∝ G0(ηfd/G0)α = (ηfd)αG1−α

0 ,

where we have assumed that for a fixed gel topology the
viscous contribution of the gel structure to the response
is η ∝ ηfd. We can now directly test these scaling rela-
tionships by varying the particle mass m and the viscous
damping ηf in the numerical simulations of the same gel
structure (keeping all other parameters fixed), and sub-
sequently determining the frequency-dependent complex
modulus G∗(ω) of the gel with the OWCh method.

C. Frequency Dependency of Gel Viscoelasticity

The viscoelastic properties of gels that have different
particle mass, while keeping the viscous damping ηf in
the equation of motion for each particle constant, are re-
ported in Fig. 6(a). Together, the data of Fig. 6(a) and
Fig. 5 clearly prove that the resonance in the spectrum
obtained from the simulations is due to the single par-

a

cb

-0.32
-0.68

FIG. 6. (a) Frequency dependence of the storage modulus
G′(ω) for different values of the particle mass m varied over
more than a decade with a fixed value of the viscous damping
ηf = 0.5. The solid black curve corresponds to equation (16a)
for the data (m = 5). Similar qualities of fit are obtained
for each data set, and the corresponding values of the model
parameters are given in the text. The dashed line represents
to the best fit of the data by the fractional model introduced
in Fig. 1(b), in the limit of M → 0. (b) Scaling of the critical
frequency ωc at which the storage modulus passes through a
maximum vs the particle mass. (c) Evolution of the maximum
value of the storage modulus G′max vs the mass m. The two
black continuous lines correspond to the scaling prediction by
the fractional model (see text).
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ticle inertia.The resonance frequency ωc changes indeed
as we change m (while keeping the total number of par-
ticles N constant) and shifts to higher frequency upon
decreasing m, consistent with the limit M → 0 obtained
for the FKVM model and shown in Fig. 5. ωc does not
change, instead, if we change the total mass of the sys-
tem M̄ = Nm by changing only N while keeping m fixed,
whereas it does change even when we change m and keep
M̄ constant (see also Fig. 10 in the Appendix IV).

Both the maximum G′max and ωc decrease as power-
laws for increasing particle mass m with the following
scalings G′max ∼ m−2/3 and ωc ∼ m−1/3 [Fig. 6(b) and
(c) where the scaling exponents where obtained by a self-
consistent fitting procedure].

Additional simulations show that the elastic modu-
lus of gels prepared at constant particle mass but with
different values of the viscous damping ηf also show
a similar shape with a maximum at a finite frequency
[Fig. 7(a)]. However, both the maximum value of the
elastic modulus G′max and the corresponding critical fre-
quency ωc increase for increasing viscous damping ηf ,

and follow power-law scalings of the form G′max ∼ η
2/3
f

and ωc ∼ η1/3f over the following range of viscous damp-

ing 0.05
√
εm0/d2 ≤ ηf ≤ 0.75

√
εm0/d2.

From a physical viewpoint we can see that by increas-
ing the particle mass, the critical frequency above which
inertia effects dominate the gel’s response, shifts system-
atically to smaller values and concomitantly the maxi-
mum in the gel elastic modulus decreases. Conversely, in-
creasing viscous damping leads to the opposite trend and
delays the onset of significant inertial effects to higher
frequencies, which is consistent with the larger values of
G′max for more heavily damped systems shown in Fig 7.

Pursuing the comparison between the numerical gel
composed of N = 19652 particles and the 3 parame-
ter fractional Kelvin-Voigt model with inertia, we can
find analytical predictions from Eq. (16) for both the
maximum elastic modulus G′max and the corresponding
frequency ωc. The maximum in G′(w) is defined by
dG′(ω)/dω|ωc

= 0. Using Eq. (16a) we find the following
expression for the critical frequency:

ωc = ωn

(
αξ cos(απ/2)

2

)1/(2−α)

(17)

which combined with Eq. (16b), leads to the following
expression for the maximum value of the elastic modulus:

G′max

G0
=
G′(ωc)

G0
= 1 +

(
2

α
− 1

)(
αξ cos(απ/2)

2

)2/(2−α)

(18)

Recalling that ξ ≡ V/
√
MαG2−α

0 and using the scaling

we proposed in section III B for the quasi-property, i.e.
V ∝ ηαfG1−α

0 , we can now convert the last two expressions

cb

a

0.68
0.32

FIG. 7. (a) Frequency dependence of the storage modulus
G′(ω) for different values of the viscous damping ηf with a
fixed value of the particle mass, m = 1. The solid black curve
corresponds to equation (16a) for the data (ηf = 0.1). Similar
goodness of fits are obtained for each data set, and the corre-
sponding values of the model parameters are given in the text.
(b) Scaling of the critical frequency ωc at which the storage
modulus is maximum as the viscous damping ηf is varied. (c)
Scaling of the maximum value of the storage modulus G′max

vs the viscous damping ηf . The two black continuous lines
correspond to the scaling prediction from the fractional model
(obtained by a self-consistent fitting procedure).

into the following appropriate scaling laws:

ωc ∼
√
G0

M

α cos(απ/2)ηαfG
1−α
0

2
√
MαG2−α

0

1/(2−α)

G′m
G0
− 1 ∼

(
2

α
− 1

)α cos(απ/2)ηαfG
1−α
0

2
√
MαG2−α

0

2/(2−α).

(19)

When considering variations in particle mass and vis-
cous damping, these scaling laws can be reduced to ωc ∼
η
α/(2−α)
f M−1/(2−α) and G′max ∼ η

2α/(2−α)
f M−α/(2−α).

Substituting α = 0.5, as determined by the fit of this
model to the linear rheology in Fig. 3, we find scaling
laws with the same numerical exponents as the ones mea-
sured on the numerical gels and reported in Fig. 6(b) and
(c), and Fig. 7(b) and (c).

We can now use Eq. 19 to rescale the elastic moduli
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a b

8

FIG. 8. Normalized frequency dependence of the storage mod-
ulus corresponding to the data presented in Fig. 6(a) and 7(a).
Both axes are normalized using the scaling laws predicted
with the fractional Kelvin-Voigt model. Insets: (a) Critical
frequency ωc at which the elastic modulus is determined to be
maximum vs the scaling estimate from the fractional model.
(b) Same for the maximum of the elastic modulus.

computed for all of the simulated particulate gels onto a
single dimensionless plot. In Fig. 8 we show the elastic
modulus for all of the numerical gels prepared by vary-
ing either the particle mass m or the viscous damping
ηf . The horizontal and vertical axis have been normal-
ized by the scaling expressions extracted from the frac-
tional model predictions (Eq. 19). The collapse of all the
numerical data onto a single master curve demonstrates
that the agreement with the FKVM lumped parameter
model, despite its simplicity, is not just coincidental. The
FKV model, in fact, correctly captures the relationships
between the different model parameters characterizing
the gel (i.e. the particle mass and the viscous damping co-
efficient) and correctly predicts how the relaxation spec-
trum of the numerically-simulated gel depends on these
parameters over a wide range of frequencies.

IV. DISCUSSION AND CONCLUSION

We have shown that the newly developed OWCh tech-
nique for the efficient sampling of the viscoelastic spec-
trum of complex materials can be successfully used in
computational studies of soft particulate gels. In partic-
ular, we have demonstrated that the performance advan-
tages of OWCh overcome the long-standing challenges
resulting from the length of the numerical tests required
and the spectral leakage. On this basis, the OWCh pro-
tocol offers potentially broad impact on the fast grow-
ing body of computational rheological studies and can
tremendously enhance their capability to complement ex-

periments. The advantages brought forward by OWCh
have allowed us, in this study, to obtain a quantitative
link between the viscoelastic spectrum of a model soft
gel and a mesoscopic constitutive model, the fractional
Kelvin-Voigt mechanical model. While this class of frac-
tional models has been proposed to correctly capture dis-
tinctive features of the viscoelastic spectrum of complex
fluids in many different contexts12,43,88,89, this is the first
time, to our knowledge, that a quantitative connection
with a microscopic computational model has been estab-
lished. Hence our work paves the way to using FKVM to
gain new physical insight into the connection between the
microscopic physical processes on the particulate level
and the resulting macroscopic viscoelastic properties as
well as into the complexity of the gel rheological response.

One specific outcome of this computational study
shows that varying the inertia of the individual particles
and the viscous damping provided by the surrounding
solvent changes the position of the resonance frequency
ωc and the corresponding maximum value of the storage
modulus G′max exactly as predicted by the FKVM scal-
ing through changes in the inertial element M and the
quasi-property V, without changing G0 and α (see Fig. 1
and Figs. 6 - 8).

The inertial element M (with the dimensions of a mass
per unit length or linear density) has been introduced in
the FKVM to account for the combined effects of particle
inertia in the microscopic gel model, since the equations
of motion, solved in our molecular dynamics study in
the over-damped limit, explicitly contain inertia. In a
first instance, M could have been thought of simply as
the total mass per unit length in the system (i.e., M̄/d
- with M̄ = Nm). When we consider that the natural

resonance of the FKVM is ωn =
√
G0/M , the fits to the

simulation data in Figs. 5 and 6 (see also Fig.10 in the
Appendix) show that both the resonance position and the
low frequency modulus G0 do not depend on the number
of particles N for the same gel (for which we change only
m, ηf or N), indicating therefore that M depends on M̄
but not on the discretization N . Hence one can conclude
that M = f(M/Nd), that is, M should be rather thought
of as a mass per unit length distributed over the N par-
ticles. This is confirmed by the scaling obtained in Fig.5
for the numerical model, where m = M̄/N appears with
the same dependence (a power law) as M . Interestingly,
the fact that the resonance ωc in the numerical model
scales with the particle mass m with a power-law (as it
does on M) can be seen as if the effective mass control-
ling the resonance in the FKVM model would depend
on M̄/N with a power law, and hence as if the effective
mass density in the gel leading to the parameter M in
the FKVM was distributed in a fractal way among the
particles, as in a mass fractal90. As a consequence, in
spite of the fact that the parameter M is included in the
model only to reproduce a global feature (the inertia)
that is not resolvable for real colloidal gels, it provides
interesting clues to the physical meaning of the form of
the effective mesoscopic constitutive model.
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Our study also allows us to conclude that G0 and α,
on the other hand, must be essentially determined by
the only features that we do not vary in this study: the
connectivity and the topology of the gel network. Over-
all our findings are not inconsistent with the idea that a
hyperscaling relationship may exist that links the frac-
tional exponent α to the fractal dimension of the gel
network91–93. Nevertheless, we note that the microstruc-
ture of the gel considered here (i.e. the organization of
the gel particles in space), while certainly porous and het-
erogeneous, does not obviously display self-similarity over
a range of length-scales sufficient to justify such type of
connection47. However, in all cases, our results support
a connection between the extended power-law regime ob-
served in the viscoelastic spectrum and the disordered gel
topology, which features extended or quasi-localized soft
modes. Building on the present study, systematic varia-
tions in the gel topology and investigation of the modal
dynamics over a range of different lengths and timescales
can help bring additional understanding of the viscoelas-
tic spectra and of the FKVM parameters.

The viscoelastic response we compute in the molec-
ular dynamics simulations uses the part of the stress
that specifically comes from the inter-particle interac-
tions (Eq. 7) without considering explicitly the flow of the
solvent and the hydrodynamic interactions, while we also
neglect the role of thermal fluctuations. Hence our results
suggest that the complex topology of the particulate gel
network alone, disordered and poorly connected, has a
mechanical equivalent on much larger length scales that
is of the form predicted by a fractional Kelvin-Voigt ele-
ment, in which a power-law frequency-dependence (char-
acterized by the exponent α) arises. Such insight could
not be easily gained through directly comparing the same
FKVM with experiments, since disentangling different
contribution to macroscopic stresses is hard in bulk rheol-
ogy experiments. These findings show that the extended
power-law regimes typically detected in the viscoelastic
spectra of soft materials can already emerge from com-
plex stress transmission through the gel structure, even in
the absence of a long-range hydrodynamic coupling. The
power-law frequency dependence in the dissipation may
originate from the damping of extended soft modes, since
thermal fluctuations are neglected. These modes are es-
sentially determined by the disordered network topology
and involve length-scales larger than the individual parti-
cle size. In future studies, we plan to build on the results
of this analysis: we will systematically explore the role
of the volume fraction of the solid phase in the gel net-
work and use the OWCh protocol to disentangle the roles
of thermal fluctuations and of the structural topological
constraints in the viscoelastic response of soft gels.
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APPENDIX

A. Varying protocol and total inertia

Fig. 9 compares the frequency spectrum of the model
particulate gel, computed with the Optimal Fourier
Rheometry (OFR) protocol and the Optimally Win-
dowed Chirped (OWCh) protocol. The OWCh leads to
a more accurate picture of the frequency spectrum, es-
pecially in the limit of low frequency. See Ref.38 for an
extended comparison. Fig. 10 illustrates the effect of

OWCh

OFR

FIG. 9. Storage and loss moduliG′ andG′′ as a function of the
frequency ω. Comparison between the spectrum computed
with the OFR protocol (−) and the OWCh protocol (•). The
latter data set is displayed in Fig. 3. The OWCh protocol
significantly reduces the leakage error in the low frequency
limit.

varying the individual mass m of particles on the result-
ing frequency dependence of G′ for a gel of constant total
mass M̄ = N × m, where N denotes the total number
of particles. Decreasing the particle mass does not affect
the overall shape of the curve nor the power-law depen-
dence of G′(ω) but leads to a progressive shift towards
larger frequency of the position ωc corresponding to the
maximum of the elastic modulus.

B. Power Spectrum of the Window Function

Fig. 11 shows the power spectrum of a series of am-
plitude envelopes that belong to the family of symmetric

https://books.google.com/books?id=kMZ1QgAACAAJ
http://dx.doi.org/10.1088/0950-7671/21/9/301
http://dx.doi.org/10.1088/0950-7671/21/9/301
http://dx.doi.org/10.1088/0950-7671/21/5/302
http://dx.doi.org/10.1088/0950-7671/21/5/302
http://dx.doi.org/ 10.1088/0305-4470/28/23/012
http://dx.doi.org/ 10.1088/0305-4470/28/23/012
http://books.google.com/books/about/Rheology.html?id=Kai7QgAACAAJ{&}pgis=1
http://books.google.com/books/about/Rheology.html?id=Kai7QgAACAAJ{&}pgis=1
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FIG. 10. Storage modulus G′ as a function of the frequency
ω keeping M̄ = N × m = 5324 constant by varying the to-
tal number of particles N and the particle mass m. Other
parameters are set to φ ∼ 7.3% and ηf = 0.5.

Tukey cosine-tapered windows with different values of ta-
pering parameter r. These windows are the symmetric
case of the one-sided tapered function that is used in this
study (equation 10) with r being equivalent to b. For the
rectangular window, with r = 0 being equivalent to the
case of no amplitude modulation, the power spectrum has
a peak at zero frequency but also has other local peaks
at other frequencies. When we apply this window to the
input strain signal, the corresponding Fourier transform
will be the convolution of the individual Fourier trans-
forms of the window and the strain signal. Thus, due

f/fs
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FIG. 11. The power spectrum of different symmetric Tukey
cosine tapered windows. Different colors represent differ-
ent values of the tapering parameter r. The y axis is the
square of the magnitude of the Fourier transform vector
(X(ω) = F {w(t)}) and the x axis is the frequency in the
Fourier domain f = ω/2π normalized by the value of the
sampling frequency fs.

to the inclusive nature of the convolution integral, the
Fourier transform of the input signal will be affected by
the contributions from all frequencies in the power spec-
trum of the window. This leads to the known spectral
leakage error and in order to avoid it a window with nar-
rower power spectrum is desired. It is evident that with
increasing the tapering parameter the power spectrum
of the window becomes narrower and the contributions
of non-zero frequencies decay more rapidly. However, if
we use a very high tapering parameter the power of the
input signal is attenuated and may become comparable
to the existing noise level. This explains why in our sim-
ulation we have used a moderate value for the tapering
parameter r = b = 0.1.

C. Analogy with the Mechanical System and the Bode
Plot

The frequency response of the studied gel can be un-
derstood by studying the vibrational response of its cor-
responding mechanical toy model. This simple anal-
ogy is often used in rheological measurements for un-
derstanding the effect of inertia in the system. A rele-
vant example is the measurement of frequency response
in stress-controlled rheometers when the inertia of the os-
cillating geometry is of significance78,94. As discussed by
Walters78 the inertia of the geometry, similar to the par-
ticle mass in our simulations, plays the role of a vibrating
mass in the mechanical model and the elastic and viscous
moduli of the material are analogous to the spring and
dash-pot elements respectively. If we excite this system
by an external force (around certain frequencies), it is
known that resonance can happen, which translates into
an amplified level of oscillation and a sudden sign change
for the phase angle. Resonance often indicates that the
measured elastic modulus reported by the rheometer de-
viates from the intrinsic elastic modulus of the material
and is dominated by the inertia of the oscillating mass.
A very similar scenario happens in our simulations but
it is due to the presence of particle inertia. In our model
gels, one can think of the stress as the equivalent to the
excitation force in the vibrating system. Similarly, the
strain signal is equivalent to the amplitude response of
the system. A common method for studying the response
of a vibrating system is through construction of the cor-
responding Bode plots in the Fourier/frequency domain.
In a typical Bode plot, we study the frequency behavior
of the response function (normalized output deformation
divided by the input excitation signal) G0γ̃(ω)/σ̃(ω) in
terms of its corresponding magnitude and phase angle.

Figure 12 shows a series of Bode plots for the FKVM
mechanical system that is discussed in the main text [see
Fig. 1(a)]. Different colors represent different values of

the damping ratio ξ ≡ V/
√
MαG2−α

0 . In the simula-

tions, we can change the damping ratio and vary the
particle mass m. All the other parameters are kept con-
stant. By analogy with the mechanical toy model, where
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FIG. 12. Bode plots illustrating inertial resonance of a
damped fractional viscoelastic system described by the Frac-
tional Kelvin-Voigt Model with inertial mass M , and damp-

ing ξ ≡ V/
√
MαG2−α

0 . Continuous lines of different colors

represent different values of the damping ratio ξ and the blue
circles correspond to numerical simulations for a colloidal gels
with N = 19652 particles and of m = 0.25. Inset: resonance
frequency ωτ0 vs the inertial mass M . Again the blue circle
corresponds to a numerical simulation for a model colloidal
gel with N = 19652 particles and of m = 0.25.

the natural resonance frequency is ωn =
√
G0/M , the

natural frequency of the numerical model also decreases
with increasing the particle mass m. The inset in Fig-
ure 12 shows that the resonance frequency diverges to
infinity for zero M (and zero particle mass). That is,
in the limit of massless particles or systems with neg-
ligible inertia the onset of the resonance phenomena is
shifted to such high frequencies that the whole phenom-

ena of resonance may not be detectable in the range of
studied frequencies in a typical experimental/numerical
analysis. On the other hand, one can also observe that
the resonance has two major effects on the measured re-
sponse function of the material. First, as the Bode plot
for the magnitude (top sub-plot in Figure 12) suggests,
the emergence of a peak in the amplitude of the response
function emphasizes the idea of amplified vibration due
to inertial resonance. Second, the phase plot (bottom
sub-plot in Figure 12) clearly shows that as the system
passes through the resonance there is a sign change in the
phase angle (arctan(−G′′/G′)) which is due to the fact
that the in phase contribution to the signal decrease from
positive to negative values as the system passes through
resonance in the frequency domain. Our numerical sim-
ulations for a colloidal gels with N = 19652 particles and
of m = 0.25 (blue circles) show a very similar trend to
the mechanical model. This again emphasizes the fact
that in experimental/numerical systems for which iner-
tia is included one should expect the onset of inertial
resonance at a certain frequency.

Finally it is interesting to note that, in spite of the
analogy and similarities between the numerical model
composed of attractive particles with inertia and the
case of experiments in which inertia is present due to
the rheometer geometry, our study elucidates the follow-
ing difference. In the case of the numerical model, for
which the inertia is a property of the gel and arises due
to particle inertia, the critical frequency ωc at resonance
depends on the individual particle mass m and on the
viscous damping ηf , but not on the total mass M̄ (see
Figs.5, 6 and Fig.10). In contrast, when the inertia is due
to the fluid sample in the rheometer and/or the moment
of inertia of the rheometer fixture, the resonance will de-
pend on the sample size, i.e. vary with the total mass
of the sample and hence with its volume (for a fixed vol-
ume fraction and type of particles). Such observations,
combined with a suitable lumped parameter model of the
form we outline here, can help identify (and at least par-
tially correct for) the source of inertial effects that may
be contaminating rheological measurements in situations
where it is not immediately obvious how to distinguish
different contributions.
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