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Characterising soft matter using machine learning

Paul S. Clegg,a

Machine learning is making a major impact in materials research. I review current progress across
a selection of areas of ubiquitous soft matter. When applied to particle tracking, machine learning
using convolution neural networks is providing impressive performance but there remain some sig-
nificant problems to solve. Characterising ordered arrangements of particles is a huge challenge
and machine learning has been deployed to create the description, perform the classification and
tease out an interpretation using a wide array of techniques often with good success. In glass
research, machine learning has proved decisive in quantifying very subtle correlations between
the local structure around a site and the susceptibility towards a rearrangement event at that site.
There are also beginning to be some impressive attempts to deploy machine learning in the de-
sign of composite soft materials. The discovery aspect of this new materials design meets the
current interest in teaching algorithms to learn to extrapolate beyond the training data.

1 Introduction
Machine learning algorithms are programs, typically used to find
patterns in data or to make predictions, that function more ef-
fectively with increasing experience. They become increasingly
useful when the quantity of data is large or the data or model
complexity is significant. There are a wide array of techniques
from simple linear regression1 to sophisticated deep learning;2

choosing the appropriate algorithm is a critical step.

One of the algorithms which appears repeatedly below is the
support vector machine (SVM) that divides data points into two
disjoint classes. For example, imagine carrying out a large num-
ber of experiments, you have several parameters describing the
composition of each sample and a few more parameters describ-
ing how each sample was processed, in addition you are in a po-
sition to determine whether each experiment was a success or
a failure. Taking the data points to be scattered in the multi-
dimensional feature space of compositions and processing param-
eters, the SVM algorithm determines the hyperplane that best di-
vides the data into the two classes (success or failure). It does this
via a non-linear mapping to a higher dimensional space in which
the two classes are more-or-less linearly separable. The hyper-
plane chosen is the one that best separates the two classes. The
support vectors are the normal vectors connecting the hyperplane
to the nearest data points in each class.1,3 Once the SVM has been
trained, you are in a position to predict the outcome of a future
experiment and also to investigate the nature of past experiments
that are close to or far from the dividing hyperplane.
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This is an example of supervised learning: each data point has
an outcome (success or failure) associated with it that can be used
to train the algorithm. Because the outcome designates which
group the data point belongs to, this is a classification problem. If
an algorithm had been chosen to learn a value, such as the yield
stress of the sample, then this is a regression problem. When ma-
chine learning is carried out with the aim of looking for patterns
in data, where no outcome is known, the task is called unsuper-
vised.

The application of machine learning is becoming ever more
prominent across scientific research including in soft matter. Ex-
isting review articles introduce machine learning4,5 and cover
topics such as drug discovery,6 multiscale design,7,8 active mat-
ter9, fluid mechanics,10 and chemical engineering.11 I have cho-
sen a handful of example cases, hence unfortunately I miss a
great deal of the existing literature, for example, on amyloid
assembly,12–14 analysis of image data,15–17 density functional
theory,18,19 drying blood,20 liquid crystals,21–26 modeling dif-
ferential equations27–29 nanoparticle assembly,30,31 network ag-
ing,32 optimising microscopy,33 polymers,34–41 speeding up sim-
ulations42,43 and 3d printing.44–46

Machine learning has a reputation for being applied in haste
with too little follow-up. As a worrying counter-example from
the field of accelerated drug discovery, when a follow-up machine
learning study with the same data was carried out it led to dif-
ferent conclusions.47 The Google Accelerated Science Team have
documented three challenges they have recently encountered.48

Firstly, in a supervised learning problem the existing data is di-
vided up into a training set (for training the algorithm) and a
testing set (for evaluating performance). Often making a random
division of the data into these two groups is not good enough,
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the division needs to be made so that each set is representative in
the terms of the problem being tackled. Secondly, the algorithm
may well be making predictions based on a confounding param-
eters and not the parameters that were being controlled. Thirdly,
the quantity to be minimized while training the algorithm should
carefully capture the goals of the project.47,48

Below I review the application of machine learning to parti-
cle dispersions, ordered particle clusters and crystals, glasses and
composite materials. I have tried to choose topics where several
different teams have attacked the same problem. In each case,
machine learning has been applied to data from computer simula-
tions and from experiments. In some examples machine learning
is being used as part of a data analysis pipeline, in others the aim
is to aid the design of new materials and in a few it is being used
to provide a framework for understanding previously intractable
data.

2 Dilute dispersions

Machine learning can be used to provide information on dilute,
rapidly changing, colloidal dispersions as a function of time.49–53

Rather than tackling an unsolved problem, this is an attempt to
provide a performance enhancement for a tool which is already
commercially available. Colloids that approach in size the wave-
length of light, scatter light into a complex pattern as described
by Mie and Lorenz. The scattered light forms a concentric ring
pattern when it interferes with the unscattered beam.54 This is
the basis of a form of colloidal microscopy in which classical im-
age analysis of two-dimensional image frames can be used to de-
termine particle locations and sizes. Tracking the position and
identity of microscopic particles, via such a route, is essential for
flow visualization, microrheology, force microscopy and transport
studies within biological cells.

Fig. 1 Showing (a) the parts that go to make up an individual neuron and
(b) how neurons are combined in layers to construct an artificial neural
network. Reproduced with permission from Ref. 5

Yevick and coworkers use support vector regression (SVR), an
adaptation of SVM to regression, to offer a huge speed up com-
pared to non-linear least squares fitting with image data.49 When
SVM is turned into a regression tool, the new measurement is
compared to a library of training data which make up the support
vectors. A prediction is made that is a weighted sum of the com-
parisons to these support vectors.55 If the relationship between
the property to be predicted (radius, refractive index, depth) and
the experimental data (the radial profile of the concentric ring
pattern) is linear, then the similarity between the radial profile
and the support vectors is evaluated via the calculation of dot
products. For more complex relationships a non-linear kernel is
used; in this work the kernel is based on the assumption that the
similarity decreases exponentially with the distance between the
experimental observation (radial profile) and a support vector.

In particle tracking, SVR is used to compare the theoretical Mie-
Lorenz scattering pattern and the signal from each particle in the
experimental data. By this route it is possible to predict the ra-
dius, refractive index and depth of single particles. Using SVR,
the precision is 10 times worse than non-linear fitting, however,
the speed 1000 times faster.49 When fitting the theoretical scat-
tering pattern to the two-dimensional image data the particle size,
refractive index and depth are optimized to give the best corre-
spondence. This process has a problematic sensitivity to the initial
guess of the particle centre meaning that the fitting has to be re-
peated for many candidate centres. In this work, this problem is
avoided because the particle centres are found by using a convo-
lution procedure to identify the centre of rotational symmetry of
the scattering pattern.56 The support vectors for SVR are 5,000
training sets of calculated radial profiles from theory. The perfor-
mance was demonstrated for mixed batches of particles and for a
single descending particle.

Artificial neural networks (ANN) have been deployed exten-
sively in the research described below. This is a machine learning
tool for modeling the functional relationship between input pa-
rameters and output state inspired by neuroanatomy. The output
state can be a classification or a value. The network is made
up of separate elements, neurons, that are connected together
in layers. Each neuron takes several inputs from the output of
other neurons or from the input data. These inputs are combined
linearly and the output of the neuron emerges via a non-linear
activation function, Fig. 1(a). If this function is a step, the neu-
ron is known as a perceptron. Other choices such as a tanh or
a rectified linear unit (ReLU, Fig. 2b) have advantages for train-
ing.3,5 The final internal layer connects all neurons to the output
as part of the final regression or classification step. This is known
as a fully connected (FC) layer. The first and last layer of neu-
rons are known as the input and output layers, the internal layers
are known as hidden layers. Having multiple hidden layers is the
defining characteristic of deep learning, Fig. 1(b).

Schneider and coworkers use an ANN based image analysis
method to rapidly measure the core and shell diameters for a
stream of core-shell particles.50 They have in mind an applica-
tion where microfluidics is used to separate structured particles
into separate channels and hence they are pleased to achieve rea-
sonable performance with synthetic images of isolated, centred
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Fig. 2 Showing (a) the tracking task broken into two separate steps each handled by convolution layers (CL) with the concentric ring scattering pattern
inset and (b) the convolution neural network in detail, convolution layers (green), fully connected layers (FC, gray), course graining (Max Pool) and
activation function (here a rectified linear unit, which gives 0 if the input is negative or the input itself if it is positive, ReLU) indicated. In (b) the size of
the input image, in terms of pixels, is specified. Below this, the size of the grid of neurons in each convolution layer is given as width × height × depth.
Each layer of depth corresponds to a different convolution kernel. At each Max Pool layer the degree of course graining is also indicated numerically.
At the end of the convolution stages a Max Pool layer is employed to reduce the final grid of neurons to a 401 unit long vector. The elements of this
vector are combined via an ReLU function to reduce the vector to 20 elements that are fully connected via three separate ReLU functions to provide
the estimates of depth zp, size ap and refractive index np for the particle. Reprinted with permission from Ref. 53 Copyright 2020 American Chemical
Society.

particles with relatively constrained characteristics. Both the SVR
approach, described above,49 and the ANN approach analyse the
scattering from a particle via the use of a large quantity of calcu-
lated scattering patterns. The ANN is trained using the calculated
patterns and then provides predictions of the size parameters that
vary smoothly over the range spanned by the training data.50 The
SVR makes predictions based on a direct comparison to the train-
ing data. The discrete sampling of the parameter space, implied
by SVR, can lead to predictions being unhelpfully dominated by
one support vector or another which can lead to systematic errors.

For many problems, a neural network where every part of the
input can be combined with every other part is not ideal.57 For
example, in an image processing problem it may be that only lo-
cal pixels need to be considered together. Convolution neural
networks (CNN) were developed to address this situation. The
output from one layer of the network is passed on to the input
of the next layer via convolution with a kernel of limited size.5

Because the convolution process treats a local set of pixels in the
same way based on their relative positions, but regardless of their
absolute location on the input grid, the CNN has the property
of translational invariance. CNNs do not typically have a con-
volution step at each layer, instead these are interspersed with
coarse graining layers. These layers sub-sample the previous one,
for example, feeding forward the maximum value from a group
of neighbouring outputs, Fig. 2(b). Such a sub-sampling layer,
which achieves coarse graining via replacing a small region of
neurons by the maximum value from those neuron, is known as a

Max Pool layer.

Newby and coworkers use a CNN for finding and determining
the precise position of particles with the frames and movies for
training the system again created via simulation. Here a wide
range of styles of data are considered.51 This system is excep-
tional at avoiding false positives (finding a particle where none
exists) and false negatives (failing to find a particle that does
exist). However, the position determination is outperformed by
simpler methods that do not involve machine learning, especially
when each time point consists of a single image rather than a
z-stack.

Most recently, Altman and Grier broke the problem of charac-
terizing a colloidal dispersion into two parts: firstly, they locate
the particles in two dimensions and, secondly, they determine the
radius, refractive index and depth of the particle, Fig. 2(a).53 The
two halves are very different kinds of problem but they are each
solved here using a CNN. The first problem is to provide a “yes” or
“no” answer to the question of whether there is a particle at each
location; the second problem is to provide real numbered values
to three characteristics. The output of the first stage is used to
isolate small regions of the image, which contain the concentric
ring pattern, that are then passed to the second CNN for analysis
(this is markedly different to the SVR approach by some of the
same team49,56). Here, training has been carried out using syn-
thetic data based on a single particle, together with added noise,
in each training image. The performance of the first stage is a
huge improvement over conventional algorithms where the au-
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thors suggest that 40 % of particles are missed (false negatives).
Using the CNN they find that there are fewer than 0.1 % of false
negatives. The conventional approach misses very large parti-
cles whereas the CNN approach misses a few of the very smallest
particles. Alongside detecting the particles, the first stage CNN
provides coordinates to high accuracy as well as an estimate of
the extent of the ring pattern. The second stage CNN provides
estimates of radius, refractive index and depth to within 10 % for
synthetic data. For an experimental test, the authors attempt to
discriminate between four different sizes of particle made from
two different materials. The results from the commercial system
are taken as the ground truth; the machine learning approach re-
ports a somewhat larger number of features. The speed at which
features are identified means that the machine learning approach
can establish the particle concentration in real time. However,
it is found that the CNN struggles significantly to identify the
size and the refractive index of the larger polystyrene particles
i.e. there is no real cluster in feature space associated with these
particles (the smaller polystyrene particles are not great either).
The results can be markedly improved by adding a third stage (of
non-linear model fitting) to the image data meaning that a robust
end-to-end analysis system is achieved by this route.

(a)

(b)

Fig. 3 Showing (a) the ingredients for calculating a symmetry function.
Sites within a cutoff Rc form part of the symmetry function for the yel-
low site and are calculated using the relative positions, Ri j, and relative
angles, θi jk. (b) The layout of an autoencoder based on two neural net-
works. The encoder produces the low dimensional representation and
the decoder reconstructs the input from this representation. Reprinted
from Ref. 58 and Ref. 59, with the permission of AIP Publishing.

As an addition to tracking, machine learning has also been
applied to the analysis of particle tracks once they have been
recorded.60 The intention is to be able to accurately assess track
statistics recorded for heterogeneous materials while making as
few assumptions as possible. Hierarchical agglomerative cluster-
ing, is an unsupervised algorithm that begins with all data points
separated and then progressively merges them into larger and

larger clusters based on a measure of the distance between clus-
ters. This distance measure can then be used to decide on the
optimal number of clusters.1 Here, such clustering based on the
track statistics (the standard deviation of the step size distribu-
tion) is used to divide particle tracks into similar clusters and
then the tracks within each cluster are used to characterise the
associated stochastic process. The method has been road tested
on agarose gels, mucous and a range of other heterogeneous en-
vironments.

Evidently, much progress has been made with particle tracking
using machine learning, the problem of feature identification can
reasonably be described as solved, at least for dilute dispersions.
The problem of determining the precise particle location, size and
refractive index, at least at high speed, remains a significant chal-
lenge.

3 Ordered particle arrangements
Investigating self-assembly and the onset of order is an essen-
tial aspect of understanding matter on the colloidal scale. Here,
computer simulations often play a crucial role, leading to very
significant challenges in scoping very large data sets or in coarse
graining complex colloidal system.

3.1 Classifying order

Inspired by the pioneering work of Behler and Parrinello,61 sym-
metry functions and neural networks have been used by Geiger
and Dellago in the detection of ordered structures in molecular
dynamics simulations.58 The problem is to rapidly identify known
ordered crystal structures and related defect configurations based
on the local arrangement of atoms. The main computational cost
is characterising this local arrangement via the calculation of sym-
metry functions, Fig. 3(a). Training is carried out based on the
simulation of known ordered phases. Provided that the training
data includes the relevant phases then the neural network is fast
and efficient; it even succeeds for the more challenging phases of
ice.

Dietz and coworkers developed a complete analysis that relies
only on nearest neighbours, idenfied via the Delaunay neighbour-
hood.62 To give scale invariance, the distances are normalised by
the average neighbour distance. In order to be able to distin-
guish between the crystal structures of interest the site signature
is composed of the nearest neighbour distance, the bond angles,
the Minkowski structure metric, the Minkowski tensor and the
number of neighbours. A modified scalar product of bond ori-
entation order parameters is used to establish whether a site is
ordered or disordered. A multi-layer perceptron (ANN using a
step function) is trained and then tested on different crystal struc-
tures with added noise. The tool is finally used to demonstrate a
new level of understanding of the crystallization in a gravitational
field where transitions between crystal structures as a function of
temperature become evident.

Going to the opposite extreme, Ziletti and coworkers work with
an average over a significant region of crystal rather than looking
at the neighbour hood of a single site.63 The averaging makes
their procedure spectacularly robust, even for highly defective
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crystals. The machine learning is carried out using the CNNs
that were originally developed for classifying images. In order
to turn the crystal structure into an image they calculate a com-
posite diffraction pattern made up of the superposition of nine
diffraction patterns using three colours. One colour is chosen for
each orthogonal axis; for each axis the pattern is calculated for
the initial orientation and one rotated ±45◦ about that axis. The
same is repeated for the other two axes using different colours
each time. A library of these images for perfect crystal structures
make the training and the test data. The trained classifier then
performs well for highly imperfect crystals. The authors make the
division between an imperfect crystal and an amorphous structure
based on the Lindemann criterion. Each classification comes with
a probability that the pattern belongs to that structure. For imper-
fect crystals, this probability reflects the degree of disorder. The
downside to this research is the inability to distinguish between
crystal structures whose symmetries mean they are identical in
the composite diffraction pattern.

3.2 Unsupervised discovery of ordered motifs

Philips and Voth use two approaches to characterise local order in
monatomic solids.64 The first approach is to analyse how many
neighbours are within the first and subsequent shells i.e. the size
of the neighbourhood. The second approach is to use a Fourier
description of the arrangement of the neighbouring sites. The
size data or the arrangement data are then used to find clusters
of similar sites via unsupervised learning using a density based
clustering algorithm called DBSCAN.65 For the size data, this can
be carried out for every site; for the arrangement data, a subset
of sites is used for the learning step and then an archetypal site is
found from the centre of each resulting large cluster. The result-
ing library of archetypes is then compared to the full set of sites
in order to create a complete classification. The global descrip-
tion of a sample is given by the complete histogram of sizes or
arrangements found; the strength of this approach is the extent
to which it is data driven.

When unsupervised cluster formation is being used, it is be-
cause we assume that there is some parameter, which we do not
have access to, that takes a value characteristic of each cluster. A
popular route to clustering is the Gaussian mixture model, where
it is assumed that this unknown parameter takes on a Gaussian
distribution of values within each cluster.5 Spellings and Glotzer
have used a description of the atomic environment based on bond
orientation to drive first unsupervised (via a Gaussian mixture
model) and then supervised (via artificial neural networks) auto-
mated analysis of simulation results.66 The training data for the
supervised case could have been established using the unsuper-
vised approach first. In both unsupervised and supervised cases,
the phase diagram of the simulation results is similar to that de-
termined by manual analysis; the ANN approach succeeded with
complex crystal structures for polyatomic systems where manual
analysis had previously been avoided.

In a new departure, Boattini and coworkers used a neural-
network based autoencoder to create a compact representation
of the bond order around each site.59 An autoencoder begins life

(a)

(b)

Fig. 4 (a) Schematic of the relationship between numbered sites which
is captured by a diffusion map. The blue lines are one step; the yellow
and green routes are alternative paths between “1” and “6”. (b) Showing
the geometrical structure revealed by a diffusion map. Reproduced with
permission from Ref. 67

as two neural networks, the first (the encoder) performs a dimen-
sional reduction and the second neural network (the decoder)
takes this compact representation and expands it again, Fig. 3(b).
The pair are trained by evaluating whether the input data is repro-
duced at the output of the decoder.14 Once the training is com-
plete, the decoder is discarded and the encoder is used alone to
create a compact description which here was then formed into
clusters without supervision via a Gaussian mixture model. The
key bond order components, that most influenced the compact
description created by the autoencoder, could also be identified.
This made it possible to understand which symmetries were driv-
ing the clustering. The authors applied this approach to a very
wide variety of example systems; it was able to cluster the sites
into groupings equally well to the historic, manually tuned ap-
proaches.

3.3 Finding pathways between ordered motifs

Unsupervised machine learning can be used to suggest the path-
way via which an arrangement of particles was formed so as to
illuminate the process of self-assembly. One example system,
explored by Long and Ferguson, is anisotropic patchy particles
studied via Brownian dynamics simulations.69 Here the pathway
refers to a connected trajectory through a space in which patchy
particle aggregates of different size and shape appear as distinct
points. To be useful, similar aggregates should be close together
in this space; progress along the pathway could then indicate how
aggregates might grow or redisperse. To achieve this, each ag-
gregate of particles is represented as a graph and similarity is
identified by using the graph-matching IsoRank algorithm.70 If
two aggregates are similar it implies that there is a small absolute
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Fig. 5 Landscapes for the self-assembly of Janus particles in an AC electric field. Ψ2 and Ψ3 are the eigenvalues that are being used to describe the
self-assembly as controlled using the amplitude, E, and the frequency, f , of the field. Reproduced from Ref. 68 with permission from The Royal Society
of Chemistry.

difference between corresponding particle locations. A character-
istic distance between two aggregates captures the differences in
location (due to fluctuations or bonding arrangement). Similar-
ity between aggregates, which require a great deal of information
to describe, is now being measured as though it were a distance
in space. This measure is then used as the basis for a diffusion
map, as described below. The resulting pathways, for this specific
system, are often composed of two paths that join more-or-less
at a right angle. One path is made up of the points representing
small compact aggregates and a longer path includes the larger
more extended aggregates. As outlined next, the diffusion map
is able to execute a dimensionality reduction that captures this
non-linear path.

Diffusion mapping was first presented in ref.71 and is an attrac-
tive approach to dimensionality reduction in complex data sets.67

For comparison, a traditional method for solving this problem is
principal components analysis (PCA) where the data is reduced to
the d eigenvectors with the largest eigenvalues from the covari-
ance matrix.1 By this route, an n dimensional data set is reduced
to the d < n dimensions that capture the largest variability in the
data. This technique is not appropriate when the largest variabil-
ity of the data occurs along well-connected but non-linear paths.
By contrast, a diffusion map can be constructed by first defining

a Gaussian kernel which plays the role of a step size distribution
for a random walk.67 Sites connected by steps of these sizes form
a neighbourhood. Then a diffusion matrix can be calculated for
any two sites giving the probability of a single step leading from
one site to the other. Powers of the diffusion matrix then give
the probabilities of taking increasing numbers of steps to move
between the two sites, Fig. 4(a). The diffusion map captures the
probability of diffusion between two sites for a particular number
of time steps. The diffusion distance is small if there are many
high probability paths between the two sites. The dimensionality
reduction is achieved by keeping only the dominant d eigenvec-
tors of the diffusion map. Now non-linear paths can be identified
as the directions that capture the largest variability in the data,
Fig. 4(b).

Experimental data can also be used as the basis for a diffusion
map and has been explored for the case of aggregating of Janus
particles in an oscillating electric field and confined to two di-
mensions.68 Many tens of thousands of Janus particle aggregates
were characterised as graphs and compared. The approach mir-
rors that described above for patchy particles with the differences
between the aggregates quantified by a distance metric which is
then used as the basis of the diffusion map. Ultimately, the forma-
tion pathway undergoes significant shape changes in response to
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variations in electric field strength, frequency or salt concentra-
tion. The results on chain formation are particularly impressive.
The diffusion maps suggests trajectories by which electric field
strength and frequency can be used to control whether chains
form of relatively uniform length or whether there is a mixture of
long chains, rings and branched structures, Fig. 5.

The strength of the diffusion mapping approach is that it is
based on kinetic proximity between different system configura-
tions i.e. the map represents the probability of diffusion between
configurations. That the system dynamics are well-modeled as a
diffusion process is an assumption. 72 One application area where
this approach is crucial is in the creation of colloidal memory el-
ements.73 Here transitions between states describe how easy it is
to write to a memory element and subsequently how long lived
the state is. The exploration here is based on Brownian dynamics
simulations of four or six halo particles around a central particle.
The outcome is a design criteria for the relative size of central and
halo particles in each case.

Whereas the preceding examples relate to studies of small ag-
gregates, Reinhart and coworkers propose a method of unsuper-
vised crystal structure identification based on topology by making
use of diffusion mapping.74 Common Neighbour Analysis (CNA)
is used to construct a characteristic signature from the connec-
tivity of a particle’s neighbours.75 This is followed by a graph
matching step (with an MLP-based speed-up) and then by the con-
struction of a diffusion map to reduce the dimensionality. Using
cluster size on the diffusion map as an indicator of importance,
the key structural motifs are identified as corresponding to dif-
ferent crystal structures, surface structures or other defects. A
Voronoi construction is then used to partition the diffusion map
so that all sites can be classified. This approach is particularly
effective close to surfaces and defects; although, this needs to be
weighed against the computational cost. It has been extended
to binary crystals in two dimensions by including specie identity
in the graph and speeded up via the use of relative graphlet fre-
quencies.76 By this route Reinhart and Panagiotopoulos are able
to demonstrate that some crystal structures, previously found in
simulations, are actually part of a continuous transition that runs
across multiple structures.

Dimensional reduction using both linear and non-linear tech-
niques was combined with unsupervised learning by Adorf and
coworkers.77 They went on to provide an alternative route to dis-
covering the pathways to self-assembly, for example crystalliza-
tion via nucleation. They began with a large number of descrip-
tors including bond angles, bond lengths, spherical harmonic or-
der parameters and the bispectrum environment descriptor. Via
PCA they reduce this down to its 20 most important components.
These are further reduced using the uniform manifold approxima-
tion and projection for dimensional reduction (UMAP) algorithm,
an alternative nonlinear route to dimensionality reduction.78 The
resulting space was then used for finding clusters. Solid and liq-
uid regions were easily separated and they were able to identify
particular crystal structures as well as some less perfectly ordered
solid structures. The development of clusters in the reduced di-
mension space gave an indication of the self-assembly route.

As outlined above, the study of self-assembly and the onset of

order on the colloidal scale is now served by a wide array of ma-
chine learning tools. Reducing the problems to a size that is com-
putationally manageable remains a significant challenge.

Fig. 6 Showing (a) a simulation snapshot of the system with particles
coloured according to their softness from red (soft) to blue (hard). (b)
The distribution of softness for the particles that are about to rearrange
(red) compared to all of the particles (black). The solid red indicates that
90 % of the particles that are about to rearrange have a positive softness
value. Reprinted by permission from Springer Nature: Ref. 79

4 Glasses
The dynamics of glasses are characterized by occasional re-
arrangements which are sometimes known as cage breaking
events.81,82 However, previous attempts to relate the likelihood
of a relaxation event to the local structure have been unsuccess-
ful. Typically, the local structure has been characterized via free
volume or bond orientational order which fail to have predictive
power. By contrast, the scattering of sound waves can be used
to successfully demonstrate the existence of defects in the local
structure of glasses.83 Unfortunately, this does not help identify
the associated local structure. As we consider machine learning,
it is interesting to note that glassy dynamics are also exhibited by
under-parameterised deep neural networks, i.e. where the num-
ber of neurons in a hidden layer have been drastically reduced.84

The process of training the network is equivalent to quenching a
liquid to low temperature; the loss function, which is to be min-
imised during training, is analogous to the system energy. Such
glassy dynamics are not observed when training a deep neural
network with a more traditional architecture.

4.1 Supervised learning using dynamics
Machine learning has been used to quantify very subtle correla-
tions between the local structure around a site and the suscepti-
bility towards a rearrangement event at that site, and to develop
a new conceptual approach.79,83,85 This research, led by Liu, be-
gan with data from experiments in two dimensions and computer
simulations in two and three dimensions. The data is in the form
of the structure of sites that are known to be about to rearrange
(labeled 1, ‘soft’) and the structure of sites where no rearrange-
ment occurs (labeled 0, ‘hard’). Instead of characterizing the sites
using free volume or the degree of bond orientational order, a
multitude of structure functions (Fig. 3(a)) are calculated (typi-
cally 160 for each site).61 These fall into two classes: radial struc-
ture functions based on the number of neighbours that fall within
a certain distance and angular structure functions based on the
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Fig. 7 Showing (a) a flowchart of the prediction pipeline used when graph neural networks are applied to glasses; (b) the update steps and, (c) the
repeated cycles corresponding to progressively more distant particles. Reprinted by permission from Springer Nature: Ref. 80

bond angles with near neighbours. This super-abundance of de-
scriptors for each site are then analysed using an SVM which finds
the hyperplane that best separates the ‘soft’ from the ‘hard’ sites.
The ‘softness’ of a site can then be characterized as the sites short-
est distance to the hyperplane. Having determined the location
of the dividing hyperplane using carefully selected data, the ‘soft-
ness’ can then be evaluated for all of the sites in an experimental
or computational system. The authors demonstrate that this ap-
proach identifies 20 – 25 % of the sites in each system as ‘soft’ and
these sites are the location of the majority of rearrangements.83

Hence this measure of local structure is strongly correlated with
the relaxation dynamics of these glasses, Fig. 6.

This team have shown that there is indeed structure buried
within a disordered glass and that it can be quantified via the
parameter ‘softness’. Indeed, the slow, non-exponential dynamics
of glasses can be related back to the evolution of the ‘softness’ in
time.79 It is satisfying to be able to relate the dynamics to the
structure, this characterization of the local structure, as currently
specified, does rely on substantial detail.86 Using the local coor-
dination number or the local energy are far less successful as pre-
dictors. By contrast, it is possible to identify the subset of struc-
ture functions that most control the ‘softness’ and to ignore the
rest without sacrificing very much predictive power.85 In general,
soft sites have fewer near neighbours with larger angles between
them.83 It may be necessary to accept, that it is quite involved to
describe a broken cage.

A vast quantity of experimental and computational results
have been deployed to show that the same framework can be
used to describe the behaviour of disordered solids over a very
broad range of systems from atomic, through colloidal to gran-
ular.87 The spatial correlation length in the particle positions
and spatial correlation length in softness are found to be essen-
tially equal over seven orders of magnitude in particle diameter.

These lengths are approximately one particle diameter.88 It is
also demonstrated that there is a universal yield strain for such
systems suggesting that the macroscopic shape change that is re-
quired is universal. The change in the mean softness in response
to the applied yield strain may be independent of the particle di-
ameter.

In spite of the disquiet over the detailed particle-level infor-
mation required, the concept of “softness”, established via ma-
chine learning, profoundly informs the understanding of glasses
and can clearly be very widely applied. Experiments on the hop-
ping behaviour of bidisperse colloidal particles have been used
to demonstrate that, while the distribution of hopping times has
a stretched exponential form, the hopping time at a single “soft-
ness” has an exponential form.88 I.e. colloids with similar local
environments are characterised by a particular softness value and
exhibit exponential relaxation with the same activation time. This
had previously been suggested using computer simulations.79

Further simulations of polycrystaline solids have shown that the
idea of an energy barrier related to a “softness” can be extended
to atoms at grain boundaries.89

Subsequent studies have applied the learning of “softness” to
simulations of thin polymer films and pillars and to the analysis of
granular experiments using spheres, dimers and ellipsoids.90–92

In the former case, Sussman and coworkers found that the en-
hanced dynamics close to the surface of a polymer thin film is
uncorrelated with the “softness” parameter. The SVM approach
worked as before for predicting which sites would be likely to
move, it just failed to identify any changes close to the free sur-
face (or to the substrate). The authors tried a broader variety
of techniques in order to search for structural differences close
to the surface but found none. Instead they found an Arrhe-
nius process close to the surface that is wholly unrelated to any
structural differences.90 For the case of polymer pillars, the re-
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lationship between “softness” and mesoscale shear banding was
investigated. Additionally, a parallel classification of planes into
“weak” and “strong” was created by a similar route. The analysis
of the simulation results demonstrated the key role of surface de-
fects in leading to pillar failure.91 The experiments using spheres,
dimers and ellipses demonstrated that a naive implementation of
the “softness” concept worked reasonably for spheres and ellipses
but quite poorly for dimers. Harrington and coworkers modified
the family of structure functions in order to better match the ar-
rangements of anisotropic particles. This gave an excellent abil-
ity to predict rearrangements for ellipses and reasonable perfor-
mance for dimers.92

Inspired by the success of SVMs, the “softness” approach has
been generalized via the use of graph neural networks that are
able to predict the location of structural rearrangements. 80

Graph neural networks are being envisioned as a flexible machine
learning methodology in which the role of the algorithm in shap-
ing the character of the solution can be productively employed.57

The idea is to avoid the distinction between a “hand-engineered”
data pre-processing step (such as choosing a set of structure func-
tions83) and an “end-to-end” approach (where any assumptions
about the data, including those embodied in a pre-processing step
are minimised). With a graph neural network, computations are
performed on entities and the relationships between them. This
makes it possible for the algorithm to learn about the way en-
tities relate to one another rather than this being designed by
hand. However, the algorithm does not have the freedom to de-
cide what the entities are or which ones interact directly. In our
context, within the graph formalism, the entities (i.e. nodes) are
the particles and the relationships (i.e. edges) are the directed
vectors between two particles within a pre-defined distance of
one another; the algorithm then learns how to characterise the
environment of each particle without the explicit use of a family
of structure functions. Unlike a neural network based on fully
connected layers, the graph neural network could not learn that
one particle relaxes in instantaneous response to the location of a
particle that is a great distance away in the sample.

Bapst and coworkers obtain training and test data by carrying
out simulations of a Kob-Anderson mixture in three dimensions
from which they calculate the propensity of each particle.80 The
propensity isthe mean square particle displacement averaged over
particles sites with the same initial configuration that the graph
neural network is trained to predict.95 All N particles from the
simulation are included in the graph; particles within 2 simu-
lation units of each other are connected by edges, information
about particle type is the feature recorded at the nodes. The fea-
ture recorded at each edge is the three-dimensional relative po-
sition of the two neighbours. The first step is to encode these
features via separate multi-layer perceptrons (MLPs) resulting in
a low-dimensional representation. All edges are then updated
based on the characteristics of the neighbouring nodes passed
through an MLP. Subsequently, the nodes are updated based on
their connected edges in a similar manner. This is repeated
through seven cycles (corresponding to particles influences be-
ing propagated to greater distances) and then there is a decoding
step leading to the calculation of the propensity for each particle,

Fig. 8 Showing the ‘self-attention’ in the glass and liquid states. Connec-
tions between particles are shown as green lines with the line thickness
indicating the weight of attention. (c) and (d) show the same data as (a)
and (b) with isolated A-type particles and dimers of B-type particles high-
lighted. Reproduced from Ref. 93 with permission from The Royal Society
of Chemistry.

Fig. 7. In the training process, these propensities are compared
to the expected values; the properties of the MLPs are modified
until the propensities match. Initially, they test their ability to
predict the propensity at long times based on the initial particle
locations and find that the GNN based approach out performs the
competitors including the SVM approach described above. They
further explore predictive ability as a function of both tempera-
ture and shear. Again the GNN approach performs best; none-
the-less they are not able to predict when a sample will yield un-
der shear. To address the complaint that machine learning does
not aid understanding, considerable effort has been expended on
analysing the properties of the network. For example, they vary
the attributes used to describe each particle to establish which
are important. Furthermore, they take a pre-trained network and
require it to make predictions based on constrained input data.
They find that the short time dynamics only depend on the first
two shells of particles. However, the quality of predictions about
the long time dynamics degrades when you lose particles even in
the fourth shell. By conducting this style of analysis as a function
of temperature, they argue that the system exhibits an increasing
correlation length as it becomes a glass.80

Simultaneously, Swanson and coworkers compared the perfor-
mance of convolution neural networks and a related type of graph
neural network analysing particle positions in two dimensional
simulations.93 Both approaches were used to categorise simula-
tion snapshots as either ‘liquid’ or ‘glass’. The CNN took input data
in the form of an image while the GNN took particles as nodes and
relative positions as directed edges. The two techniques were able
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Fig. 9 Showing a flow chart of a self-learning procedure for composite materials design. From Ref. 94 copyright IOP Publishing. Reproduced with
permission.

to classify snapshots essentially without error. In the case of the
GNN, it was possible to gain understanding by evaluating a quan-
tity called the ‘self-attention’.96 Here the aspects of the data that
the algorithm pays most attention to are evaluated. Based on this
information, it was established that the classification was being
made on the basis of the location of B-type particles (the smaller
ones) and their relationship to their neighbours. The B-type parti-
cles form ‘dimers’ with ‘high attention’ edges in the liquid, but not
in the glass, Fig. 8. Furthermore, there is a wealth of information
from the variation of the ‘self-attention’ with temperature.

4.2 Unsupervised learning based on statics alone

More recently, glasses have been addressed using an approach,
first described in Section 3.2, which avoids using information
about the particle dynamics.97 Here snapshots of the arrange-
ment of particles are taken from computer simulations of glasses.
Bond order parameters are combined with an autoencoder to pro-
vide a compact description of the particle sites.59 The compact
description is then the basis of an unsupervised division of the
sites into two classes. For both binary hard spheres and Wahn-
strom glasses, the probability of being in one of the two classes
of site is very highly correlated with the propensity; for the Kob-
Anderson glass the correlation is not quite as strong. The proba-
bility of being a member of the faster cluster is evidently revealing
that there is an essential aspect to the local organization.

Paret and coworkers have also developed an unsupervised clus-
tering procedure based on maximising the information provided
by the clusters (structural communities) without appealing to dy-
namic information to control the process.98 They have explored
this approach for several different glass simulations, separately
using the radial distribution and the angular distribution to es-
tablish which particles belong in each cluster. How the particles
are clustered typically depends on which of these approaches are
chosen. Again, they compare all the variant clusters to the dynam-
ics. The two are well-correlated for the Wahnstrom mixture and
somewhat less well for the Kob-Anderson and harmonic spheres
simulations indicating that the Wahnstrom / Kob-Anderson divi-

sion is robust over two very different implementations.
In glass research, machine learning has added the important

concept of softness and a new way of working. Both supervised
and unsupervised learning are providing additional understand-
ing and will permit a whole slew of questions to be addressed in
the future.

5 Composite materials
Using machine learning in the design of complex materials at the
atomic level has been explored extensively in recent years.100–102

This includes research to optimise specific properties of crystalline
materials via iterating between experiments in the lab and the
generation of refined computational suggestions.103 In this con-
text, a cost function is being minimised for which each new “func-
tion evaluation” involves fabricating a new sample. Optimisation
problems involving a cost function that is punishing to evaluate
have been the focus of machine learning techniques for a long
time. A common approach is to model what is already known
about the parameter space using a Gaussian process104 and then
to further explore the parameter space via a trade off between
regions where the cost function is likely to be low and regions
where the uncertainty in the predictions of the cost function is
very high; the quantity which captures this trade-off is usually
known as the ‘expected improvement’. This approach has var-
iously been called kriging, adaptive design and efficient global
optimization.105 At the moment this approach is not being used
to design soft materials, although it has been deployed to design
polymer molecules,106 image pre-processing protocols107 and to
optimally position boundaries on phase diagrams.108 Alternative
techniques have been used by researchers to design composite
materials at the mesoscale and it is this that I focus on below.

A group led by Buehler have targeted the response of a two-
dimensional “checker–board” material to crack propagation as a
model system for computational design.94,109,110 The aim is to
harness the machine learning technology that proved so success-
ful in winning the game AlphaGo to the service of composite ma-
terials.111 In both game playing and materials design, the num-
ber of possible arrangements or moves is far too large to search
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Fig. 10 Showing a range of anisotropic spinodal-like structures and their properties presented as elastic surfaces. Reproduced with permission from
Ref. 99

exhaustively. Hence better strategies are required which learn to
go beyond what is available from a modest set of training data.
The target here is a sheet of material made up of square patches
with different properties drawn from a palette of two or three op-
tions. The test applied, to judge the material performance, is the
propagation of a crack from one side when the material is under
tension.

In the first example,109 Gu and coworkers consider squares of
material which are either soft or stiff. For 8 × 8 and 16 × 16 grids
they want to discover the optimal arrangement of the soft and
stiff squares. For the training data, a finite element model is used
to calculate strength and toughness of a particular arrangement,
however, they do not attempt to learn real valued quantities here.
Instead they create an ordered list of designs and give the top
half the label “good”, based on toughness or strength, with the
bottom half designated “bad”. It is these categorical labels that
are then the focus of the learning process; new arrangements are
given a probability of being “good” and hence it is possible to rank
the designs based on these probabilities. These ranks can then be
compared to the outcome of the finite element model to evaluate
the performance of the machine learning. As machine learning
approaches, they compare a neural network based on single layer
perceptrons with softmax classifier with a CNN. They show that
strength and toughness can be accurately predicted using this ap-

proach even with a very small amount of training data, from this
they conclude that they could apply this approach to much larger
systems. The common motif of having soft squares to reduce the
stress concentration around the crack tip is straightforward to un-
derstand. The compression response of cellular solids on a similar
grid has also now been tackled, where the full response curve was
learnt rather than a ranking.112

In an effort to push the performance of their model materi-
als well beyond that of the training data, the Buehler team has
targeted a similar two-dimensional material (combined with fi-
nite element modeling of toughness) but here with three differ-
ent building blocks - either isotropic, stiff along x or stiff along
y.110 To move the machine learning model beyond the training
data they introduce a self-learning aspect. In every sampling
loop, 10 % of the designs are based on the top performing designs
from the previous loop. Hence the three different blocks are pref-
erentially placed where they appear to be most effective; noise
is added to prevent the self-learning converging to a local mini-
mum. By this route the composite designs rapidly diverge away
from the training data in terms of both design and performance,
indeed the final output is completely separated in composition
space from the data that was used in the initial training. The
composite designs are also tested experimentally using additive
manufacturing.110
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Yu and coworkers have returned to the soft and stiff squares,
but have now harnessed a genetic algorithm to enhance the self-
learning part of the composite design.94 They begin by training a
CNN on composite designs combined with toughness values cal-
culated using the finite element model. Once trained the output
of the CNN becomes the parent compositions for the genetic al-
gorithm. Self-evolution begins by seeding the CNN with an initial
population of random composite designs. The CNN scores each
one according to its material properties and passes them on to the
genetic algorithm, Fig. 9. The genetic algorithm combines and
mutates the composite designs so as to optimise performance;113

the choice of parents is based on both fitness and diversity. The
children, i.e. new designs, are then re-input to the CNN. After 100
iterations around this loop the toughness has improved markedly.
Part of the design is simply the stress concentration reduction
strategy of soft material near the crack tip. Intriguingly, many of
the high performance composite designs involve soft material at
the edges of the grid which appear to have a significant influence
on the shear stress distribution.

Finally, Kumar and coworkers have taken on the challenge of
complex composite design in three dimensions with the aim of
creating the desired anisotropic elastic properties.99 This team is
keen to create metamaterials while avoiding creating stress con-
centrations due to the use of trusses and or plates. To do this they
focus on materials that are derived from the spinodal domain
pattern familiar from phase separation. They have developed a
machine learning route to determine what spinodal-like arrange-
ment would give the required mechanical properties. They be-
gin with the Gaussian Random Field representation of the spin-
odal pattern114 and introduce anisotropy by parameterising the
direction of the spatial wavevectors in terms of angles θ1,θ2,θ3.
These angular limits, combined with the volume fraction of solid
material, ρ, specify the structure which can range from lamel-
lar, through conventional isotropic spinodal to columnar, Fig. 10.
Elastic properties are calculated via the finite element method and
then represented as a three dimensional elastic surface. They use
a deep neural network to model the relationship between the four
material parameters and the nine independent elastic moduli. At
this point, Kumar and coworkers can predict elastic properties
based on their design parameters; they aim to solve the inverse
problem of finding the design parameters that give the desired
elastic properties. A challenge is that multiple composite designs
may be able to give the required properties. Typically, the neural
network tends to favour sets of θi values that are all intermediate,
even when one angle was extreme in the comparison data; the
volume fraction tends to match the data very accurately. Overall,
this is a bold step towards computer guided materials design.

Optimizing soft composite design is an area in its infancy; in-
deed, the examples above are not traditional soft composite mate-
rials. Nonetheless, the approach of combining machine learning
with a random mutation of design looks to be a fruitful one to
pursue.94

6 Conclusions
Machine learning is becoming increasingly widely used by the soft
matter community. It is enabling old problems to be solved faster

and new problems to be solved for the first time. Within the ex-
amples above, it is interesting to note that there is a clear division
in the way that machine learning is being used. For some, the
ability to make predictions is key and hence the trained algorithm
is the tool. For others, it is the ability to interrogate the algorithm
to determine how it is making predictions that paves the way to
new understanding. The composite materials design community
is currently taking on the challenge of developing approaches that
are able to go beyond the training data. This will have obvious fu-
ture application in discovering new classes of complex soft matter
and new regimes of behaviour.
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