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Aim: The present work proposes the study of the neuromotor activity of the masseter-
jaw-tongue articulation during diadochokinetic exercising to establish functional
statistical relationships between surface Electromyography (sEMG), 3D Accelerometry
(3DAcc), and acoustic features extracted from the speech signal, with the aim
of characterizing Hypokinetic Dysarthria (HD). A database of multi-trait signals of
recordings from an age-matched control and PD participants are used in the
experimental study.

Hypothesis: The main assumption is that information between sEMG and 3D
acceleration, and acoustic features may be quantified using linear regression methods.

Methods: Recordings from a cohort of eight age-matched control participants (4
males, 4 females) and eight PD participants (4 males, 4 females) were collected
during the utterance of a diadochokinetic exercise (the fast repetition of diphthong
[aI]). The dynamic and acoustic absolute kinematic velocities produced during the
exercises were estimated by acoustic filter inversion and numerical integration and
differentiation of the speech signal. The amplitude distributions of the absolute kinematic
and acoustic velocities (AKV and AFV) are estimated to allow comparisons in terms of
Mutual Information.

Results: The regression results show the relationships between sEMG and dynamic and
acoustic estimates. The projection methodology may help in understanding the basic
neuromotor muscle activity regarding neurodegenerative speech in remote monitoring
neuromotor and neurocognitive diseases using speech as the vehicular tool, and in the
study of other speech-related disorders. The study also showed strong and significant
cross-correlations between articulation kinematics, both for the control and the PD
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cohorts. The absolute kinematic variables presents an observable difference for the PD
participants compared to the control group.

Conclusion: Kinematic distributions derived from acoustic analysis may be useful
biomarkers toward characterizing HD in neuromotor disorders providing new
insights into PD.

Keywords: speech kinematics, surface electromyography, neuromechanics, hypokinetic dysarthria, neuromotor
disorders

INTRODUCTION

Background
Speech production is a dynamic neuromechanical activity
which involves cognitive and neuromotor resources of extreme
complexity, and which is not yet well understood (Duffy,
2013). The natural way in which it is acquired and used
shades the sophisticated processes which are placed into work
during its normal expression. Speech is instantiated in the
linguistic neuromotor cortex (Demonet et al., 2005), and its
execution demands the concourse of cognitive, neuromotor,
neuromuscular, and musculoskeletal processes (Duffy, 2013).
Through speech, thoughts and emotions are projected to the
knowledge of others by cognitive-linguistic messages. These are
programmed for their neuromotor expression by the activation,
time-alignment and sensorimotor projection, extension, and
strength of a large amount of diverse muscles and associated
biomechanical structures. The neuromotor areas from the
Central Nervous System (CNS), where planning, programming
and control is provided are responsible of activating the
respiratory, phonatory and articulatory muscular structures
innervated by the Peripheral Nervous System (PNS), see Kandel
et al. (2013). The resulting speech is a sequence of acoustic
interactions between the glottal source signal and the vocal
tract cavities, both driven by neuromotor impulses. This imprint
conveys the cognitive-linguistic message. The alteration or
dysfunction of any key vocal production mechanisms will result
in a deficient production of speech known as a speech disorder.
Among them, Motor Speech Disorders (MSD) are the result
of dysfunctional neurologic structures involved in the planning,
sequencing, activating, and monitoring the neuromuscular
structures responsible of speech sound production, modulation
and projection. One of the most active neuromuscular structures
involved in speech production is the masseter-jaw-tongue
complex, including part of the facial muscles and tissues attached
to the mandible (Duffy, 2013). This structure is responsible
for the production of open or closed, and front or back
phonations perceptible in vowels and vowel-related sounds
(Greenberg, 2004). Specifically, the quasi-steady positioning of
this structure (for more than 30–50 ms) gives rise to vowel-
like phonations, whereas its rapid movement is responsible for
the acoustical representation of many consonant-like sounds.
Neuromotor diseases affect the functional operation of this
structure, and its central role in speech articulation suggests
it could likely reflect key pathological changes reflected the
neuromotor behavior. A well-known indicative neuromotor

disorder known for its prevalence and social impact is Parkinson’s
Disease (PD), also known as shaking palsy. It is a well-known
neurodegenerative disorder since it was first described by J.
Parkinson (2002). Its etiology is unclear in most of the cases,
but evidence is accumulated in the sense that it may be due
to different dysfunctions taking place in the fine control of
muscular actions in the interplay of the brain subsystems
responsible of musculoskeletal control, as the hypothalamus,
the cerebellum, the primary and secondary neuromotor control
areas, and the frontal lobes (Brown et al., 2009). A compelling
and comprehensive overall view is given in Duffy (2013): “The
motor system is present at all of the major anatomic levels of the
nervous system and is directly responsible for all motor activity
involving . . . to the planning, control, and execution of voluntary
movement, including speech.” It is a well-established fact that
PD causes considerable alterations in speech and phonation
(Ricciardi et al., 2016; Brabenec et al., 2017). Broadly speaking,
speech alterations may be classified as dysphonia (on voice
production), dysarthria (on speech articulation), dysprosody (on
the fundamental frequency sequence), and dysfluency (on the
rhythm and speech sequence of intersyllabic and intersegment
blocks). These alterations are jointly referred to as Hypokinetic
Dysarthria (HD). Harel B. et al. (2004) give a summary of the
symptoms associated with HD “Hypokinetic dysarthria, a speech
disorder characterized by indistinctness of articulation, weakness
of voice, lack of inflection, burst of speech, and hesitations and
stoppages, is an integral part of the motoric changes in PD.” In this
same sense, there is “compelling evidence to suggest that speech
can help quantify not only motor symptoms... but generalized
diverse symptoms in PD” (Tsanas, 2012). Godino et al. (2017)
stress the fact that “The low levels of dopamine that appear in
patients with PD lead to dysfunctions of the basal ganglia. . .
These deficits negatively affect the three main anatomic subsystems
involved in the speech production: respiration, phonation and
articulation.” A good description of the neuromotor systems
involved in speech production, and how they may be affected
by neurodegenerative diseases is to be found in Duffy (2013).
Therefore, the search of neuromotor degenerative biomarkers in
speech is to be concentrated on phonation (study of the glottal
signals in terms of distortion and biomechanics), on speech
articulation (study of acoustic and biomechanic clues as formants
and jaw-tongue kinematics), on the prosodic flow (concentrated
in the time evolution of the fundamental frequency and speech
energy stability), and on fluency (syllabic and intersyllabic
intervals, duration, stability, and fluctuation of the speaking rate).
This is well documented in the work of Mekyska et al. (2015).
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Moreover, speech can be used to investigate the nature and
extent of vocal impairment in individuals who are at risk
of developing PD and can provide a crucial opportunity to
intervene in prodromal stages. For example, we have recently
demonstrated some very compelling findings when comparing
speech signals between a control group, people diagnosed with
Sleep Behavior Disorder (SBD), which is among the strongest
known predictors of PD risk, and a PD cohort (Arora et al., 2021).
Furthermore, we have demonstrated that we can accurately
telemonitor PD symptom severity using speech signals collected
over the standard telephone network, thus alleviating the need for
frequent physical patient visits to the clinic (Tsanas et al., 2021).
The main compelling facts favoring speech-based PD biomarkers
are the low cost of the required equipment, smart-phones and
tablets being increasingly affordable and generally accessible
devices, and the contact-less factor, which is particularly useful
to facilitate remote studies. Summarizing, the acoustic markers
induced by HD in PD speech allows to conclude that speech
analysis might become a non-invasive and cost-effective tool to
characterize and monitor PD. The role of speech as a possible
biomarker in PD detection is well established in the state of
the art research literature, with many studies discussing speech-
based PD features sensitive to HD. In the present study the focus
is placed on the study of acoustic and biomechanical clues, as
formants, and jaw-tongue kinematics.

Previous Work
The number of studies focusing on the field of speech and
neurodegenerative disorders has been consistently growing over
the last 10–15 years, and for the sake of brevity only the most
relevant ones will be mentioned in what follows. Brown et al.
(2009) give a good description of the relationship between
the premotor and motor cortex areas with speech production.
Good descriptions of the neuromotor system of the phonation
and articulation including neuromotor to muscular pathways
affecting the larynx, pharynx, oral, and nasal cavities may
be found in Jürgens (2002). Bourchard et al. (2016) offer a
description of the relationship between simultaneously recorded
neural activity and the kinematics of the lips, jaw, tongue, and
larynx. An interesting review on neurophysiology of language
may be found in Demonet et al. (2005). Relevant information
on the neuromotor pathways on vocal control can be found
in Goodman and Hasson (2017). A classical and detailed
biomechanical description of tongue movement control may
be found in Sanguinetti et al. (1997). The influence of PD on
facial muscle sEMG is given in Wu et al. (2014), and for the
articulatory and acoustic changes due to Amyotrophic Lateral
Sclerosis (ALS) see Mefferd and Dietrich (2020). Relating acoustic
features to articulation gesture the reader may see, Gerard et al.
(2006), Buchaillard et al. (2009); Dromey et al. (2013). On
diphthong articulation kinematics see Tasko and Greilick (2010);
for tongue positioning during vowel articulation in speakers with
dysartria see Yunusova et al. (2011); for tongue movements in
speakers with ALS see Yunusova et al. (2012). For the use of
speech signals from longitudinal assessment of PD we refer to
Tsanas et al. (2011) and Tsanas (2012), and the specific ones
by Green et al. (2013); Sapir (2014), Mekyska et al. (2015), or

Brabenec et al. (2017). On PD and multiple sclerosis see Tjaden
et al. (2013), for vowel articulation positions as a marker of
neurodegenerative progress see Skodda et al. (2012).

Objectives
The present study builds on previous work to characterize
the relationship between acoustic, 3D accelerometry traces, and
electromyographical correlates of speech, in relation with the
jaw-tongue structure when carrying on diadochokinetic exercises
of clinical interest in neuromotor degenerative disorders as PD
(Gómez et al., 2019a,b). We have three primary objectives in the
study. Firstly, it is focused to evaluate the functional relationship
between neuromotor action in the masseter derived from sEMG
and 3Dacc with respect to the acoustic outcomes measured by
the two first formants on signals produced both by male and
female controls and PD participants exercising on a specific
voiced diadochokinetic utterance (repeated sequence of [aI],
according to the International Phonetic Alphabet, IPA, 2005). It is
assumed that cross-correlations between sEMG, 3D acceleration,
and acoustic features may help in determining the optimal time-
delays to estimate the weights of projection models by linear
regression methods. Secondly, we aim to explore the possibility
of establishing inverse relationships between acoustic features
and neuromotor activity estimated from sEMG measured on the
masseter. Thirdly, we aim to establish whether there are notable
differences between controls and PD participants in terms of the
absolute kinematic behavior derived from the diadochokinetic
exercise from the repetition of [aI] to define new HD biomarkers.

MATERIALS AND METHODS

Speech Neuromechanics
Speech is a complex activity which involves the coordinated
joint action of respiration, phonation and articulation muscles,
controlled by different cranial nerves (V, VII, IX, X, and XII) and
phrenic nerves from the spinal cord, which are responsible for
producing speech (Duffy, 2013). Motor activity related to speech
is expressed by the cortical areas for motor speech planning
and programming of the Central Nervous System (CNS) in
Brodmann Area 4 (Primary Motor Cortex: PMC) located in the
dorsal portion of the frontal lobe (see Figure 1). The programmed
activity is transferred to the Peripheral Nervous System (PMS)
by connections from the PMC, working in association with
other motor areas (premotor cortex, supplementary motor area,
posterior parietal cortex, and other subcortical brain regions,
which play a role on motor planning and execution). The Upper
Motor Neurons (UMNs) are neurons in the PMC, which together
with other cortical areas connect with the Lower Motor Neurons
(LMNs) in the PMS by the corticobulbar and corticospinal tracts.
This is known as the direct pathway. LMNs are alpha-type motor
neurons whose axons directly activate the muscles. The LMN
and the muscle fibers it activates is known as the Motor Unit
(MU). The MUs activating a given muscle, are known as the
Final Common Pathways (FCPs). In the case of the masseter
(the subject of the present study), the FCPs are grouped in
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FIGURE 1 | Simplified view of the neural circuits involved in the action of the masseter neuromotor units. PM: Pre-motor Cortex (BA4, Brodmann’s Area 4); UMN,
Upper Motor Neuron; BG, Basal Ganglia; TH, Thalamus; CB, Cerebellum; LMN, Lower Motor Neuron; MB, Midbrain; dark blue, direct and final common pathways;
light blue, indirect control pathways from CB and BG; green, sensory pathways; purple, inhibitory pathways.

the trigeminal maxillary branch, the third subdivision of the
cranial nerve V (V3).

In the case of interest for the present study, the motor
end plates of the FCPs innervate the masseter fibers producing
the muscle contraction. The masseter activation is induced
as well by indirect pathways. The fine control of a muscle
movement requires some kind of feedback. This is provided by
sensory pathways (in green) consisting in neurons activated by
spindles (terminal sensors detecting fiber stretching) attached
to the muscles, providing proprioceptive sensing to the LMNs
in two ways. A direct feedback loop is provided by inhibitory
interneurons (in purple). A more complex feedback loop
connects sensor units with the Basal Ganglia (BG) and the
Cerebellum (CB). These structures serve feedback information to
the motor and frontal cortices, as well as to the LMN (blue lines).
The BG control circuit assists the PMC in accurate and fine motor
speech programming. The CB control circuit coordinates PMC
motor planning from proprioceptive information.

Motor speech disorders are produced by specific problems
affecting some of the described direct or indirect pathways of

activation, or the muscle fibers. These disorders are commonly
referred to as dysarthrias. In the case of PD, the speech disorder
is known as HD, related with the pathological behavior of
the complex BG control circuit. It will affect any or all the
mentioned systems responsible for the neuromechanical control
of speech: respiration, phonation, and articulation. The term
“hypokinetic” refers to weak small range and rigid movement,
giving the impression of flat, soft, and expressionless speech
(Duffy, 2013). The activity of the BG control circuit is inhibitory
on the PMC areas to modulate cortical activity. An excessive
inhibition may result in HD. Most motor problems related
with the BG motor circuit have to see with neurotransmitters.
Specifically, dopaminergic deficits due to the progressive death
of dopaminergic neurons in the substantia nigra pars compacta
(located at the MB) are the main reason behind PD neuromotor
symptoms: “The substantia nigra is the origin of the nigrostriatal
pathway, which travels to various structures within the basal
ganglia. . . The dopamine deficiency in this nigrostriatal pathway
and the basal ganglia account for most of the typical features
of PD. Once the brain is no longer able to compensate for this
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dopamine loss, there are a number of effects which can occur.
Typical symptoms include muscle rigidity, akinesia, bradykinesia,
and tremor. . .” (Goberman and Coelho, 2002), more specifically
“The essential neuropathological changes in PD are a loss of
melanine-containing dopaminergic neurons in the substantia nigra
pars compacta. . . This results in a dysfunction of the basal ganglia
circuitry, which is an integral part of cortico-basal ganglia-cortical
loops that mediate motoric and cognitive functions” (Harel B.T.
et al., 2004).

In the present study, a biomechanical system of the jaw-
tongue will be used, which may be modeled to estimate the
neuromotor behavior of the system, and provide specific markers
of proper or improper neuromotor activity. The selection of the
masseter as the target muscle obey to the following reasons:
it is a powerful muscle developing a strong sEMG when
contracting, it is accessible (beneath the caudal section of the
cheek), it may modify strongly the oral cavity when contracting
or relaxing leaving a clear acoustic signature in formants, and
its biomechanical activity is well understood. The study of the
masseter neuromechanics is based on the electrical, dynamic, and
kinematic activity of the muscle as a functional structure.

A Model Mediating Jaw Kinematics on
Acoustic Features
The present study builds on a previous masseter-jaw-tongue
biomechanical model (Gómez et al., 2019b), where the active
contribution of other muscles (styloglossus, geniohyoid,
intrinsic glossal, etc.) has not been taken into account, and
the passive contribution of other tissues, as the oro-facial
substructures are implicitly included in the inertial moment.
The articulation gestures based on the masseter-jaw-tongue
structure as considered in the present study are described as
follows: the jaw (J) is fixed to the skull bone at fulcrum (F)
as in a third-class lever system. The tongue (T) is a complex
muscular and vascular structure supported on the jaw and the
hyoid bone. Some other extrinsic muscles fix it to the cranial
structure (mainly the styloglossus and geniohyoid). These
muscles and the tissues surrounding the jaw will be considered
part of the lumped equivalent of masses, forces and moments
at the reference point of the jaw-tongue system PrJT , defined at
{xr ,yr}, where forces acting on the system induce movements in
the sagittal plane (x: horizontal, or rostral-caudal, y: vertical, or
dorsal-ventral); these forces are f m (exerted by the masseter),
f sg (by the styloglossus), f gi (by the intrinsic glossus), f h (by the
geniohyoid), and f g (gravity). Consequently, the PrJT may be
defined as a hypothetical point in the sagittal plane (x: caudal-
rostral; y: dorsal-ventral) with static coordinates {xr , yr} where
the sum of dynamic and inertial forces is null. The force exerted
by the masseter f m will pull up the low mandible acting as a
third-order lever with fulcrum at the maxillary attachment (F). In
the present study we will not consider extrinsic actions other than
by geniohyoid, and by the intrinsic glossus system, therefore, the
only forces to be considered contributing to the lever momentum
will be f m, f h, and f g . The kinematic displacements experienced
by PrJT are given as {1xr1yr}. Lateral movements orthogonal to
the sagittal plane are assumed small enough not to be considered

(system with only two degrees of freedom). The functioning of
the speech articulation neuromotor and biomechanical system
is ilustrated Figure 2. Speech articulation is defined by the
configuration of the articulation organs, such as the mandible,
tongue, lips, and velo-pharyngeal tissues, among others of lesser
interest for the present study (Dromey et al., 2013; Cattaneo
and Pavesi, 2014; Whitfield and Goberman, 2014). Therefore,
vowel articulation has been traditionally described in terms of
the open-close gesture (also low-high attending to lower jaw
position relative to upper jaw), the front-back gesture, and
round-oval configurations (Dromey et al., 2013). These gestures
determine certain acoustic features known as formants, which
are defined as frequency positions where the harmonic structure
of the vowel is especially enhanced, by means of the resonances
of the Oro-Naso-Pharyngeal Tract (ONPT, see Figure 2). The
open-close gesture, mainly dominated by the jaw, is affecting
the first formant F1. Pulling up the jaw by the masseter against
gravity (f m−f g) is the dominant gesture in the phonation of
high vowels as [i:] and [u:], whereas depressing the jaw under
the force of gravity and the geniohyoid muscle action (f h+f g) is
the gesture to phonate low vowel as [a:]. The front-back gesture
is controlled also by the jaw position, although in high vowels
like [i:] and [u:] the tongue position affects mainly the second
formant F2 (pushing the tongue forward is the gesture for [i:],
pulling it back results in [u:]). Therefore, the articulation gesture
of the jaw may be studied to relate articulatory gestures and
acoustic features as the first two formants (F1, F2), as proposed in
the Articulation Kinematic Model (AKM) shown in Figure 2C.
The study is based on the dynamic tracking of the kinematic
activity of the jaw-tongue reference point (PrJT) by means of 3D
accelerometry (3Dacc).

The articulation dynamics foresees that the resonant
properties of the ONPT will change in time regarding the
position of the PrJT under the action of the forces mentioned,
modifying, and producing dynamic changes in the first two
formants{F1, F2}. From the perspective of speech production,
the general problem of acoustic to articulatory inversion may be
presented in general terms as the mapping A(s) = F (Ouni and
Laprie, 2005), where s is the articulatory vector which presents
the general shape of the vocal tract at a specific time instant for
instance, the k parameters of an articulatory synthesis model,
and F is the acoustics vector (typically the first m formants). A:
s→g is a non-linear many-to-one mapping transforming the
articulatory feature space s to the acoustic feature space g. In this
sense, the inverse mapping presents several important problems:
on the one hand the mapping A is non-linear, on the other hand,
it is a many-to-one (Qin and Carreira-Perpiñán, 2007). Besides,
g is an approximation to the values of the true resonances of
the vocal tract, obtained usually from Linear Prediction Inverse
Filtering (LPIF), and therefore, subject to strong assumptions on
the representation of the real oro-naso-pharyngeal tract (ONPT)
by a concatenation of rigid-wall cylindrical-tube sections on a
straightened medial axis, the number of sections, depending
on the sampling rate and the order of the LPIF (Deller et al.,
1993). On the other hand, the feature vector s will depend
on the specific generative model used. In many studies the
seven following features are used: jaw position (high-low),
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FIGURE 2 | Fundamentals of the jaw-tongue articulation. (A) Upper pulling (levator active against gravity, depressor inactive) As the jaw is high, the first formant F1 is
low. (B) Lower pulling (depressor and gravity active, levator inactive) As the jaw is low the first formant is high. (C) Jaw-Tongue Biomechanical System. The jaw bone
is represented in light gray; the tongue structure is represented in light orange. The point PrJT given by {xr, yr} is the reference point of the biomechanical system. HT,
Hypothalamus; fm, force exerted by the masseter; fg, gravity force; fh, force exerted by the geniohyoid; F, attach joint of the jaw to the skull; H, hyoid bone; T, tongue
(in orange); J, jaw (in gray).

tongue dorsum position (backward-forward), tongue dorsum
shape (rounded-unrounded), tongue tip shape (up-down),
lip height (open-close), lip protrusion (forward-backward),
and larynx height (high-low). The solutions proposed are
based on reproducing a reduced articulatory feature space s
which may generate an approximation to the acoustic feature
vector g, following an optimization process reducing the cost
function | g-g| to a minimum value. Several approaches are
used such as codebook-based inversion, articulatory modeling,
articulatory modeling, and statistical mapping (Sivaraman et al.,
2019). The present study proposes a mapping model which is
a simplification of the general one following several important
assumptions:

• Only the vertical and horizontal components of the jaw-
tongue position (high-low) are considered from the set
of articulatory features s. These features are estimated
using a 3D accelerometer fixed to the participant’s chin.

A transformation of coordinates from the 3D accelerometer
to absolute ones in the sagittal plane is used (rotation
and projection).
• The set of acoustic features is reduced to the first two

formants F1 and F2.
• A kinematic-acoustic variable estimated from formant

acoustics (AFV).
• A kinematic-dynamic variable estimated from jaw

kinematics (AKV).
• A non-linear model projecting acoustic features to a

kinematic-acoustic variable is proposed
• A linear model mapping acoustic features to dynamic

variables is proposed.

Having these assumptions in mind, the present study is
focused on the evaluation of a linear model on data produced
by control and PD participants in the fast and repeated
utterance of the diphthong [aI]. The reasons for selecting such
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a diadochokinetic exercise are that, on the one hand this
pattern ensures that the jaw-tongue system moves through a
range where linearity governs the link between articulation and
sound features “For /aI/ the strength of the acoustic-kinematic
association was robust across movements that differed in duration
or displacements” (Dromey et al., 2013). On the other hand,
this exercise is mainly governed by the dynamic activity of
the masseter, a very accessible facial muscle producing good
sEMG recordings. Another important fact is that this exercise
does not involve lip protrusion or rounding changes (Dromey
et al., 2013). Therefore, the association between the jaw-tongue
reference point movement may be associated with the first two
formants in a one-to-one mapping. The complementary use of
a 3D accelerometer on the jaw helps in providing a second
assessment method to avail this association by an alternative
acoustic-to-dynamic mapping.

The proposed model for projecting articulation kinematics to
changes of the first two formants F1 and F2 can be described as:[

4F1(t)
4F2(t)

]
=

[
a11 a12
a21 a22

] [
4xr(t)
4yr(t)

]
(1)

where {aij} are the parameters relating the dynamic changes of
the formant values with the oscillations of the PrJT . The utility
of these relations is conditioned by the possibility of estimating
the set of parameters {aij} from the signals produced by a 3D
accelerometer fixed on the chin of a participant under test, as
shown in Figure 2C. The accelerometer reference axes are the
chin-normal (xa) and tangential (ya), which will be changing
following jaw displacements. The accelerometry signals may be
transformed to the reference coordinates {xr , yr} by means of
a rotation in terms of ϑ, the angle between the axes xa and
xr . The set of parameters {aij} relating acoustic features and
articulation dynamics may be estimated by regression-based
methods using specific repetitive diadochokinetic exercises, such
as the repetition of the gliding sequence [. . .aIa. . .] as it will be
shown in what follows. Assuming that (1) is time-invariant and
invertible we would have:[

dxr(t)/dt
dyr(t)/dt

]
=

[
w11 w12
w21 w22

] [
∂F1(t)/∂t
∂F2(t)/∂t

]
(2)

where {wij} are the coefficients of the transference matrix inverse
W = A−1: [

w11 w12
w21 w22

]
=

[
a11 a12
a21 a22

]−1

(3)

With these expressions in mind it will be possible to define the
Absolute Formant Velocity (AFV) of the reference point (PrJT)
as:

|vf (t)| =

[
H1

(
dF1(t)

dt

)2
+H2

(
dF2(t)

dt

)2
+H12

dF1(t)
dt

dF2(t)
dt

]1/2

(4)
where H1, H2 and H12 are quadratic forms of {wij} (see Gómez
et al., 2019b). Reliable estimates for {wij} may be obtained from
articulations involving changes in the positions of the reference
point showing predictable dynamic changes, as in this and other

diadochokinetic exercises. The AFV may be estimated in the
following steps:

• Speech s(t) is sampled at 50 kHz and 16 bits, down-sampled
to 8 kHz and inverse filtered (Alku et al., 2019) to obtain a
K-th order adaptive prediction vector {bi} representing the
inverse vocal tract.
• The first two formants F1 and F2 are estimated by detecting

the zeros of B(z) in the complex plane:

B (z = zi) = 1−
k∑

i=1

biz−i
i = 0;

zi = riejϕi; Fi = ϕi/(2πτ); ϕi ≥ 0 (5)

τ being the sampling rate in the time domain.
Similarly, an Absolute Kinematic Velocity (AKV) of the

reference point may be derived from the normal and tangential
acceleration components on the sagittal plane {aXa(t), aYa(t)}
measured directly by the 3D accelerometer as:

|vd (t)| =

[(∫ t

ζ=0
axd (ζ) dζ

)2

+

(∫ t

ζ=0
ayd (ζ) dζ

)2]1/2

(6)

where {axd(t), ayd(t)} are the acceleration components in the
sagittal plane rotated from the measurements recorded on the
native accelerometer axes {aXa(t), aYa(t)}.

The estimation procedure of the AKV would involve the
following steps:

• The acceleration component means {âXa(t,W), âYa(t,W)} are
used to estimate the 3D accelerometer angle ϑ on short time
windows (W) to preserve time invariance. The acceleration
components are rotated to the reference axes to produce
{axd(t), ayd(t)}.
• Rotated acceleration components are used to estimate the

AKV following (6).

Distributions of Absolute Velocity Values
The probability distributions of both AFV and AKV from (4)
and (6) are very relevant statistical descriptors of articulation
kinematics. They can be directly estimated from their normalized
amplitude histograms over bins between 0 and 20 (cm.s−1)
as:

• The speech signal is low-pass filtered to 4 kHz (antialiasing)
and downsampled to 8 kHz. The 3D acceleration signals are
low-pass filtered to 250 Hz and downsampled to 500 Hz.
• The first two formants are estimated every 2 ms on short time

windows of 64 ms, equivalent to 512 samples with an overlap
of 97% (62/64).
• The weights {wij} are estimated from linear regression

between dynamic displacements {1xr , 1yr} and formant
deviations {1F1, 1F2}. The quadratic coefficients H1, H2,
and H12 are calculated from {wij}.
• The AFV (| vf (t)|) is estimated from (4).
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• The accelerations {axd(t), ayd(t)} are obtained by rotating the
signals recorded by the 3D accelerometer downsampled to
500 Hz and integrated numerically. Detrend filtering must be
used to avoid integration drifts.
• The AKV (| vd(t)|) is estimated from (6).
• An N-bin histogram of counts by amplitudes is built from

each participant’s AFV and AKV. The interval covered
for speeds is [0, | vr| max], with | vr| max = 20 cm.s−1,
and N = 100, therefore each bin size is 1bk = [| vr|
max/N] = 0.2 cm.s−1 wide.
• The following histogram of counts is built for each bin

bk = k•1bk:
if bk−1 ≤ | vr(t)| < bk then ck = ck+1
ck being the number of counts for bin bk.
• Count histograms ck (0 ≤ k ≤ N) are normalized to their

total number of counts CT = 6bk (0 ≤ k ≤ N), therefore
they could be considered estimators of probability density
functions pk = ck/CT .

Thence p(| vrk|) = pk will be an estimate of the AFV and
AKV probability density functions. It has been proven that this
feature is relevant in separating dysarthric from normative speech
(Gómez et al., 2017).

Entropy-Based Detection
The AFV and AKV distribution show a two-degrees of freedom
χ2 behavior, therefore they are an estimation of the speaker’s
jaw mobility in terms of similarity with a certain “articulation
temperature.” The probability distributions may be used to
estimate the divergence between utterances from different
speakers in terms of entropy based metrics (Cover and Thomas,
2006) between two probability distributions (i, j) in terms Jensen-
Shannon’s Divergence (JSD) as:

DJSij
{

pi (|vr|) , pj (|vr|)
}
=

1
2

DKL
{

pi, pm
}
+

1
2

DKL
{

pj, pm
}
;

pm =
pi + pj

2
(7)

where pi(vr) and pj(vr) are two distributions (either AFV or AKV)
from two different participants, and DKL is Kullback-Leibler’s
Divergence (Cover and Thomas, 2006):

DKLij = DKL
{

pi (|vr|) , pj (|vr|)
}
= −

∫
∞

ζ=0
pi(ζ)log

[
pi(ζ)

pj(ζ)

]
dζ

(8)
The main advantage of JSD is that it is bounded and symmetrical
(DJSij = DJSji). The AFV and AKV estimates from (4) and (6) and
their normalized histograms were evaluated as described before.
Two sets of distributions were produced, respectively, for the
control participants (CP: pCP) and the PD participants (PD: pPP}.
The average of the pCP distributions was used as the control
reference:

pCP =
1

kC

kC∑
i=1

pCPi (9)

where kC is the number of participants in the CP set separately
for AFV and for AKV. The JSD between each participant in the

sets CP and PD was estimated with respect to the average pCP.
Therefore, the divergences used in the present study are:

DJSfi∈CP = DJS
{

pif, pCPf
}
; DJSfi∈PD = DJS

{
pif, pCPf

}
;

DJSdi∈CP = DJS
{

pid, pCPd
}
; DJSdi∈PD = DJS

{
pid, pCPd

}
(10)

where the suffixes f and d specify JSDs estimated from AFV or
AKV, respectively.

Masseter sEMG
The selection of the masseter as the reference muscle in studying
the relationship of neuromotor activity and acoustic speech
dynamics is based on the following reasons:

• The masseter changes the position of the jaw-tongue
structure toward high and slightly forward positions when
activated. Correspondingly, the vocal tract is modified from
low-mid to high-front vocal resonances (Dromey et al.,
2013). The relationship between neuromuscular action and
acoustics seems to be quite direct.
• The masseter is a powerful muscle, its neuromotor activity

induces strong sEMG signals on the back lower part of the
cheek. Signal recording is feasible and very productive.
• The neuromotor pathways from the midbrain to the masseter

are short and fast, the delays due to impulse propagation on
the neural pathways, and the motor unit action potentials
are small. This allows producing faster oscillation movements
than other larger and more distant muscles, extending the
high frequency limits of voluntary and involuntary tremor.

The procedure to record sEMG activity on the masseter
is represented in Figure 3 following the works of De Luca
(1997) and Castroflorio et al. (2005).

The sEMG signal recorded is related with the summation of
the MUAPs traveling along the muscle fibers on the muscle cell
membranes as described in Martínez-Valdés et al. (2017):

sEMG (n) =
∑

k

H
(
k
)
sMUAP

(
n− k

)
e(n) (11)

where sEMG(n) is the recorded sEMG signal, H(k) is a transfer
weight having into account skin and fat conductivity and time
propagation effects, sMUAP(n) are the MUAPs traveling along the
muscle fibers, e(n) is the recording noise, and n is the time index
(Farina and Merletti, 2001; Teklemariam et al., 2016). Concerning
the dynamic action exerted by the muscle during activation it will
be assumed that the force exerted by the muscle in the upper
vertical direction f m(t) is a correlate of the sEMG recorded on
the bulk of the masseter sm(t) (Roark et al., 2002; Lee, 2010)
and therefore, it may be expressed as the joint action of these
individual actions, therefore:

fm (t) = Jmrm (t) ; Jm =
Tm

lmcosϑ
; rm (t) =

∫ t

ζ=0
|sm(ζ)| dζ (12)

where Jm is the mioelectric proportionality parameter when small
oscillations are assumed, Tm is the angular neuromotor torque,
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FIGURE 3 | sEMG production and recording model. The two active electrodes are fixed at both ends of the masseter muscle, on the skin, capturing a signal which is
the additive composition of the Motor Unit Action Potentials (MUAPs) traveling along the muscle fibers. A ground electrode fixed at the forehead serves as a
reference point. The equipment used in the recordings is a WiFi-connected electrode terminal unit which communicates the signals on a wireless link to a Biopac
M150 recording system.

lm is the effective jaw arm length (considering the jaw-tongue
system as a lumped load), ϑ is the rotation angle (Hogan, 1984)
and rm(t) is the integral of the rectified sEMG on the masseter.
The sEMG is low-pass filtered at 250 Hz and downsampled to
500 Hz. Its rectified value is numerically integrated following
(12). Detrending filtering must be used to avoid integration drifts.
The reason behind force being related to the integral of the
rectified sEMG, and not to sEMG, has to see with the way in
which sEMG is recorded, using pairs of electrodes symmetrically
placed at both sides of the neuromotor innervation zone on the
muscle (see Figure 3), as suggested by the experts (De Luca, 1997;
De Luca et al., 2010). The integral of the rectified sEMG will be
referred in the sequel as the Electromyographic Correlate of the
Masseter Force (ECMF).

Linear Regression-Based Statistical
Mapping
The present study is intended to link the masseter neuromotor
activity (estimated from the sEMG signal) with jaw-tongue
kinematics (estimated from 3D accelerometry) and acoustic
dynamics (estimated from the first two formants of voice).
Cross-correlation (time lag correlation) is used to estimate the
optimum time-lag alignment between two signals, determined
by the maximum absolute values of Pearson’s correlation
coefficients. Linear regression between the aligned signals is used
to estimate the weights of the corresponding projection model.
Cross-correlation methods have been already used in acoustic-
kinematic mapping are standard procedures (see Ouni and
Laprie, 2005; Dromey et al., 2013; Mitra et al., 2017; Sivaraman
et al., 2019). The aim of the present study is based on the
inherent relationship between the masseter activity and jaw
movement, to show that the front-to-end causality chain from
Neuromotor Activity → Masseter sEMG → Vertical Force →
Vertical Position→ {1F1, 1F2} may be quantitatively described
by a simple model, and that the model parameters might be

estimated in a first approximation by linear methods. Having in
mind that the force exerted by the masseter could not be inferred
directly, the present study opens the possibility of making this
estimation possible relating acoustic features with neuromotor
activity in an inverse relationship, using speech, sEMG and
3D accelerometry.

The methodology used is based on linear regression and
cross-correlation on the mentioned signals and estimates, as
represented in Figure 4.

The systemic approach is intended to establish the strength
of the relationships in the cause-effect chain expressed by the
following links: Neuromotor Activity → Masseter sEMG →
Vertical Force → Vertical Position → {1F1, 1F2}. In this
problem sNA is the ground truth (not directly observable), sEMG
is its observable correlate, and acx and acy are the observable
dynamic correlates. The estimates of the acoustic accelerations afx
and afy help in establishing a validation for the indirect estimation
of kinematic variables directly from acoustics. These kinematic
variables would allow estimating the neuromotor activity directly
from acoustics using speech recordings from remote devices
(Palacios et al., 2020).

Materials
Eight volunteering speakers (four males and four females)
were recruited among PD participants from the APARKAM
association of Alcorcón and Leganés, two cities in the southwest
of the community of Madrid, Spain. The inclusion criteria were
non having had a diagnosis of any laryngeal pathology, being in
H&Y stage 2, and non-smokers. Another set of eight participants
of both genders with not known laryngeal or neurological
pathologies in a similar age range were selected to serve as
controls. Their biometrical description is given in Table 1.

The study was approved by the Ethical Committee of
Universidad Politécnica de Madrid, and the participants signed
an informed consent. The experimentation protocols were
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FIGURE 4 | Systemic view of the study. The neuromotor activity induced in the masseter sNA(n) produces accelerations in the horizontal and vertical directions of
the jaw-tongue structure on the sagittal plane [acx(n) and acy(n)] which may be directly estimated from the 3D accelerometer. The dynamic action on this structure
changes the configuration of the ONPT, and its filtering function FONPT(z). The radiated speech signal sr(n) is the result of filtering the glottal excitation ug(n) by the
ONPT. The inverse filtering of speech reconstructs the inverse transfer function HLP(z), which is used to determine the first two formants F1(n) and F2(n). The
dynamic behavior of the first two formants is used to indirectly estimate the correlates of the horizontal and vertical accelerations in the sagittal plane afx(n) and afy(n).
Cross-correlation between dynamic and acoustic estimations of acceleration and force from sEMG measurements is used to optimally align formants and
accelerations. Linear regression between dynamic and acoustic variables is used to estimate the model weights.

aligned with the Declaration of Helsinki. The data recording
protocol consisted in the synchronous and simultaneous
recording of voice, 3D accelerometry and sEMG as shown in
Figure 5.

The speech samples were recorded at 50 kHz with16 bits
resolution on a MOTU Traveler sound card by a wireless link,
using a clip cardioid microphone (Audio Technica) at the speech
therapist studio. No special soundproofing room was required
due to the short distance to the microphone and its high
directionality. The samples from the sEMG and the 3Dacc were
recorded at 2.5 kHz. The five signal channels were acquired and
digitized by a Biopac M150.

RESULTS

The methodology described refers to concurrent recording
of speech, sEMG and 3D accelerometry. The results
presented here refer to the use of rotated vertical
accelerometry only with respect to the first and second

formant oscillations. As an example, the corresponding
records for the male participant CMa when executing the
diadochokinetic exercise of repeating [..aI..] are shown in
Figure 6.

The ECMF, the rotated vertical acceleration (dynamic) and
the vertical acceleration estimated from the first two formants
(acoustic) are shown in detail in Figure 7.

The relationship between the vertical displacement 1y and the
formant oscillations 1F1 and 1F2 may be studied using linear
regression on the respective signals. The results are presented in
Figure 8.

Other aspects of interest are the relationships between
the ECMF and the vertical rotated accelerations measured
by the accelerometer (dynamic) and estimated from formants
(acoustic). As the relationship between these two variables is also
of interest for the study the results are presented in Figure 9.

The results of similar evaluations for each participant in the
study are given in Table 2 for comparative purposes.

As HD is a manifestation of the neuromotor failure in
responding to rapid movements, the concepts of absolute velocity
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TABLE 1 | Participants’ biometrical data.

Participant’s code Gender Age Condition H&Y

CFa F 67 C

CFb F 62 C

CFc F 66 C

CFd F 67 C

CMa M 69 C

CMb M 71 C

CMc M 68 C

CMd M 69 C

PFa F 73 P 2

PFb F 66 P 2

PFc F 65 P 2

PFd F 70 P 2

PMa M 69 P 2

PMb M 73 P 2

PMc M 72 P 2

PMd M 69 P 2

defined in (4) and (6) may help in evaluating and quantifying
this manifestation. The AKVs and AFVs from a control and a PD
participant are represented in Figure 10.

The JSD of each participant with respect to the average
distribution of the control participants pCP defined in (9)
to explain individual kinematics with respect to a common
reference is given in Table 3.

The results from the PD cohort are compared with the ones
from the control participants using three types of tests: Student’s
t-test, Kolmogorov-Smirnov (KS) and Mann-Whitney (MW).
Previously, the results from each cohort have been tested for
normality using the Lilliefors test. The normality hypothesis was
not rejected for any of the cohorts (controls and PD). The results
of the three tests are given at the bottom of the table. In this case,
t-test and KS test rejected the null hypothesis of same means
under a 0.05 significance level. MW test also rejected the null
hypothesis of equal distributions from both cohort results under
a 0.05 significance level.

DISCUSSION

Starting with the recordings from the example presented in
Figure 6 it may be seen that the sEMG shows spike-like bursts
which correspond to muscle contractions during the articulation
movements produced to utter the diadichokinetic exercise (a).
The placement of the electrodes is of crucial importance, as well
as cleaning the skin with deionized water or a soft de-makeup
napkin prior to electrode placement. The ECMF, shown in (b)
is well aligned with the rotated vertical acceleration given in (c).
Both signals show similar oscillations, which presents narrow
peaks, possibly due to the antagonist action of the geniohyoid
muscle. The speech envelope (d) shows a larger intensity when
the vocal opening is larger (lower sounds when the articulation
moves to [a]) as the release of acoustic energy is larger during
these intervals. It must be mentioned that formants do not arrive

to extreme positions on the vowel triangle (→[a] and →[I]),
swinging instead between a low and a high vowel, which can be
described phonetically as [æ→I→æ]. In (e) the first two formants
(in blue and red) show a counter-phase oscillation, which is delay-
aligned with the acceleration. Similar plots were also produced
from each participant.

Regarding Figure 7, it may be seen that the rotated vertical
acceleration as measured by the accelerometer (b) shows a
sharper behavior during vertical pull-ups when compared to the
ECMF (a), although their positive peaks are well aligned. This
may be due to the action of the antagonist muscles (mainly the
geniohyoid), which apparently retain the vertical movement up
to a point where they suspend the retention and a sharp vertical
peak is released. The acoustical vertical acceleration (c) shows a
smoother behavior, and although it is also aligned with (a) and
(b) a small delay may be observed in the acoustical acceleration,
due to the inertial response of the positioning of the jaw, which
conditions the establishment of formants within some delay. An
added factor to explain this delay is the time required for the
acoustic wave to produce the sustained standing waves in the
ONPT which are responsible of formants. These delays can be
inferred from the regression study shown in Figure 9.

The results of applying linear regression are given in Figure 8,
showing that the influence of the vertical displacement affects
more the second formant than the first one (an oscillation of
2 mm produces a formant swing of almost 100 Hz on F1, and
about 200 Hz in F2, peak-to-peak). The effect is reversed on
each formant: whereas positive displacements in the vertical axis
result in negative displacements on F1, they induce a rise on F2,
as expected from the description given in Figures 2A,B). The
correlation coefficients (Pearson and Spearman) are both large
and significant. The delays suggest that the formants react to the
vertical displacement with a delay between 14 and 18 ms. This
delay is due to the inertial moment of the jaw-tongue structure,
and to the time required for the formants to emerge acoustically
as standing waves within the acoustical structures, a factor which
is also regulated by the quality factors of the resonances, and
ultimately on the energy losses caused by viscoelastic factors
on the biological tissues, an interesting problem which would
deserve further study.

Regarding the regression results shown in Figure 9 between
the ECMF and vertical acceleration Ayd measured from
the accelerometer (a: dynamical) and Ayf from the indirect
estimation on the first two formants (b: acoustical) it may be
seen that there is a direct regression in both cases, showing large
and significant correlation coefficients (Pearson). Nevertheless,
the dynamical acceleration shows a small delay with respect
to the ECMF (2 ms, which corresponds to a single sample
interval at an effective sample frequency of 500 Hz). On its
turn, the delay between the acoustical acceleration Ayf and the
ECMF is of 32 ms. When checking the correlation between
the dynamical and the acoustical acceleration estimates, a delay
of 28 ms is observed in the second one with respect to the
first one. The disagreement when considering the delays of
both signals in regard to the ECMF is of 4 ms (2 sampling
intervals at 500 ms), which could be attributed to small signal
misalignment errors.
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FIGURE 5 | Data recording from a normative male participant: a) the sEMG on the masseter muscle is taken by white and red contact electrodes on the masseter
and a reference electrode (black) on the forefront; b) the 3D acceleration is acquired by a 3D accelerometer attached to the chin; the speech signal by a clip wireless
cardioid microphone on the chest at 25 cm from the mouth. Jaw-fixed accelerometers are to be used only during signal recording to establish and validate a
hands-off acoustic to kinematic projection model, to ultimate use only acoustic signals for at-home monitoring, producing indirect estimations of the neuromotor
kinematic characteristics of the participant using the projection model resulting from the study. The participant consented the publication of this anonymized picture.

An exhaustive examination of the results presented in
Table 2 shows some interesting observations. For instance,
the regression between the vertical displacement and the first
formant oscillations (r21) is the largest in absolute value for CMb,
whereas PFb shows the smallest one. No significant difference is
appreciated between control and PD participants in this respect.
The gain factor a21 is the largest for PMb, whereas for CMa
it is the smallest. In this case, this factor is significantly largest
for PD participants than for controls, a fact that would require
further study. The regression between the vertical displacement
and the second formant oscillations (r22) is the largest for CFa,
and the smallest for PFb. No significant differences were found
between control and PD participants. The smallest oscillation
gain (a22) was found for CFd, and the largest for PMb. In
this case the estimations from controls and PD participants
were also significant. The regression between ECMF and the
dynamic vertical acceleration (rsd) showed the largest value for
PFc, and the smallest for PMb. No significant differences were
observed between the two datasets. The oscillation gain (wsd)
produced rather disperse estimations in this case, the largest
value is observed for CMc and the lowest for PFa. The regression
results between ECMF and the vertical acoustic acceleration (rsf )
show the largest value for PFa, and the smallest one for PMb
(negative in this case, a counter-intuitive result, possibly due to
an inefficient small amplitude recording due to low conductance,
this fact requiring a further study). No significant differences were
found between the two datasets. The oscillation gain (wsf ) showed
again a strong dispersion, and the singularity of PMb producing
a large and negative value again. This dispersion in the values of
wsd and wsf may be related with a less efficient recording of the

sEMG in some cases, due to skin and fat conductance, as well as
electrode placement. On its turn, the correlation between vertical
dynamic and acoustic accelerations (rdf ) showed large values,
the difference between the largest (CMb) and the smallest (PFb)
being relatively small. No significant differences were observed
between the two datasets. Finally, the gain factor between both
accelerations (wdf ) showed the largest and lowest values for PMd
and PFb. In this case, a significant difference was observed.

The results presented in Figure 10 show that the distributions
corresponding to the control participant extend to higher values
of the absolute velocity (5–6 cm.s−1) than the values from the
PD participant, which barely extend to 3 cm.s−1 (AKV) and
do not surpass 1.5 cm.s−1 (AFV). This may be an indication of
hypokinetic behavior, compatible with HD. This same situation
was present in all the PD participants tested, as showed in the
results found in Table 3. The statistical relevance of this different
behavior has been assessed by three statistical tests: t-test,
Kolmogorov-Smirnov and Mann-Whitney. The rejection of the
null hypothesis of equality of distributions may be interpreted in
the sense that the sets of JSD from the control and PD participants
come from different distributions and are separable based on
the value of their respective JSDs. Therefore, the p-values of
the tests avail a statistical differentiation between controls and
patients using JSDs estimated from AKV (dynamic) as well as
from AFV (acoustic).

As a general summary it may be said that the correlation
studies on sEMG relative to Ayd and Ayf presented relevant
results both for control and PD participants, which means that
the disease in itself is not a differentiation factor regarding
the association of myoelectric, dynamic, and acoustic signals,
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FIGURE 6 | Example recordings when uttering the repetition of [. . .aI. . .] by a control participant (CMa): (A) the sEMG on the masseter muscle; (B) the ECMF; (C)
acceleration on the vertical axis (sagittal plane); (D) speech signal; (E) first two formant oscillations (unbiased). Where (*) stands for the multiplication operation.

allowing to build chain models to infer the neuromotor activity
in the masseter exclusively from acoustic estimates, therefore the
assignment from acoustics to neuromotor (the objective of the
present work) will work equivalently for both groups, allowing
the design and use of an inverse model to project acoustic
estimates to neuromotor ones.

Regarding the statistical tests reported on Table 3, a clear
different behavior may be appreciated in the PD dataset with
respect to the control dataset, as the JSDs of the PD dataset are
larger to the average control distributions. The smallest JSDs are
found in the control dataset, whereas the largest ones are found
in the PD dataset. It may be seen also that the tests reject the
null hypothesis of equal distributions between the control and
PD participants’ JSDs either estimated from dynamics (AKV)
or from acoustics (AFV) under a 0.05 significance level. The
differentiation between both groups is of most interest to assess
HD by telemonitoring devices recording speech remotely. The
validation of this possibility has been already studied using
acoustic estimates only (Gómez et al., 2017, 2019a), but a wider
study using both methods and ECMF is still pending.

The cross-correlation between the ECMF and the kinematic
variables estimated also the delays for signal alignment. The
following causes have been determined to explain the delays:
the inertial dynamic behavior of the jaw-tongue structure,

included in numerical integration (delay); the acoustic kinematic
estimation, included in numerical differentiation (anticipation),
and the most plausible hypothesis, yet to be tested, which would
have to see with the time required for the standing waves
in the resonances of the ONPT to attain enough intensity to
create an emerging formant, and this process would have to
see with the quality factor involved in the equivalent generating
resonances, ultimately linked to the losses in the ONPT tissue
walls (assumed to be rigid and non-viscous). This hypothesis may
be checked tracking the pole positions after each time step (2 ms
in the present study).

Apparently, the projection model for PD and control
participants does not reveal strong differences as far as regression
results show. On the contrary, the differentiation between
both datasets is relevant in terms of absolute dynamic and
acoustic kinematics. This observation must be taken with some
precaution, given the important weaknesses and limitations
affecting the study, among them the low number of participants
studied, although a steady recruitment process is ongoing facing
future studies. A non-deniable factor to be taken into account
is the potential HD due to aging in the control group, as
a confounding factor regarding neuromotor degeneration by
disease. Another important limitation is that the low number of
participants per gender did not allow a gender-separated study.
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FIGURE 7 | Dynamic signals after processing recordings from the control participant CMa when uttering the repetition of [. . .aI. . .]: (A) ECMF (proportional to the
force exerted by the muscle); (B) acceleration on the vertical axis after rotation (sagittal plane); (C) vertical acceleration estimated from the first two unbiased
formants.

FIGURE 8 | Regression plots between the vertical displacement estimated from accelerometry (1y) and the first two formant unbiased oscillations: (A) relative to
1F1; (B) relative to 1F2.

Another possible limiting fact is that all PD participants that
have been recruited in the study were H&Y stage 2 and hence the
generalization of our findings for different PD stages need to be
evaluated in a follow-up study. This was a pragmatic constraint
mandated by practical challenges in the recruitment. The study
was conducted on members of PD associations in the southwest

area of Madrid. These participants had been diagnosed and
followed by the public healthcare system and accepted willingly
and enthusiastically participating. However, for ethical reasons
we could not test them in the OFF state. Therefore, participants in
an early H&Y stage 1 did not manifest motor problems associated
to speech quite clearly, and most of the recordings were not valid.

Frontiers in Human Neuroscience | www.frontiersin.org 14 March 2021 | Volume 15 | Article 622825

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-622825 March 10, 2021 Time: 17:32 # 15

Gómez et al. Acoustic to Neuromotor Projection Model

FIGURE 9 | Regression results between the ECMF and the estimated accelerations (dynamical and acoustical) from the participant CMa: (A) regression plot
between the vertical dynamic acceleration (Ayd) and the ECMF; (B) regression plot between the vertical acoustic acceleration (Ayf) and the ECMF; (C) regression
between the vertical dynamic and acoustic accelerations.

On the other hand, participants in more advanced PD (above
state 2) suffered from other co-morbidities, ad it was challenging
to recruit them for the needs of the study. Besides, we observed
on the available participants in H&Y stage 3, that the recording
session, although not lasting more than 25–30 min for a control
participant, was for them an exhausting task. Indeed, most of
the time was spent in the preparation of the face skin, fixing
electrodes, accelerometer, and microphone. Recordings which
would typically last 5–10 min for a control participant, almost

doubled in these cases, due to misunderstanding of instructions,
repetitions, and participants’ fatigue.

The effects of choosing PD participants in H&Y stage 2
only, could be assessed observing if the estimations of each
feature listed in Table 2 differed significantly between HC and
PD participants. If both distributions did not differ significantly
between HC and PD participants in H&Y 2, possibly it
could be expected that distributions from PD participants in
H&Y < 2 would not differ significantly as well. Extrapolating
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TABLE 2 | Linear regression results.

Participants CFa CFb CFc CFd CMa CMb CMc CMd PFa PFb PFc PFd PMa PMb PMc PMd

r21 −0.9 −0.77 −0.79 −0.88 −0.84 −0.94 −0.92 −0.91 −0.93 −0.64 −0.85 −0.9 −0.86 −0.93 −0.81 −0.91

a21 (x103) −55.5 −58.1 −76.1 −55 −44.8 −78.4 −94.8 −67.5 −205 −74.1 −95.9 −115 −145 −289 −185 −159

r22 0.94 0.86 0.76 0.85 0.86 0.88 0.87 0.86 0.84 0.53 0.93 0.84 0.81 0.89 0.65 0.83

a22 (x103) 110 152 135 43.1 86.1 62.0 99.6 71.5 258 119 173 151 173 267 153 181

rsd 0.7 0.78 0.83 0.66 0.79 0.58 0.53 0.71 0.74 0.78 0.81 0.86 0.6 0.49 0.63 0.84

wsd 36.9 8.81 5.01 8.84 4.48 9.24 95.8 35.0 3.94 5.52 30.9 7.27 32.2 26.4 14.2 15.5

rsf 0.72 0.8 0.79 0.69 0.81 0.53 0.59 0.74 0.84 0.79 0.82 0.76 0.67 −0.41 0.68 0.83

wsf 20.4 5.05 3.4 4.9 2.77 4.06 44.9 15.9 0.75 0.96 14.1 3.67 8.15 −14.4 4.23 14.4

rdf 0.92 0.87 0.82 0.87 0.81 0.95 0.79 0.93 0.87 0.77 0.91 0.91 0.81 0.91 0.78 0.93

wdf 0.50 0.49 0.58 0.46 0.49 0.46 0.40 0.38 0.15 0.13 0.41 0.52 0.18 0.59 0.22 0.87

r21 and r22: Pearson’s correlation coefficients between vertical displacement and the first two formants; a21 and a22: projection weights defined in expression (1); rsd , and
rsf : Pearson’s correlation coefficients between vertical accelerations estimated from dynamic and acoustic signals and the force estimated from the sEMG; rdf : Pearson’s
correlation coefficient between the vertical accelerations estimated from dynamic and acoustic signals; wsd , wsf : regression slopes between vertical displacement and
the dynamic force estimated from the sEMG; wdf : regression slope between the vertical accelerations estimated from dynamic and acoustic signals.

FIGURE 10 | Absolute Kinematic and Formant Velocities (AKV and AFV): (A) AKV from participant CMa; (B) AFV from participant CMa; (C) AKV from participant
PMa; (D) AFV from the PD participant PMa. In each plot the subplot (a) represents the horizontal and vertical velocities or the corresponding formant derivatives in
the time domain. The subplot (b) represents the instantaneous value of the absolute velocity. The subplot (c) gives the density distribution (in blue) and the
accumulated distribution (in red). The range of the common scale of velocities goes from 0 to 20 cm.s−1.

this observation to PD participants in H&Y > 2 is not possible
considering the data available right now. The comparisons have
been done using three statistical tests on the null hypothesis of
equal distributions: a parametric t-test, and two non-parametric
ones, Kolmogorov-Smirnov (KS), and Mann-Whitney (MW)
on the correlation and model projection coefficients given in
Table 2 (10 features, one per row). We adjusted the significance
level of 0.05 per each feature accordingly to Holm-Bonferroni’s

correction (Holm, 1979). The adjusted significance levels per
feature (in parenthesis) were 0.0050 (1), 0.0056 (2), 0.0063 (3),
0.0071 (4), 0.0083 (5), 0.0100 (6), 0.0125 (7), 0.0167 (8), 0.0250
(9), 0.0500 (10). The sorted p-values per row (in parenthesis) were
0.0017 (4), 0.0064 (2), 0.1790 (8), 0.1966 (3), 0.4386 (10), 0.4881
(6), 0.5901 (7), 0.7176 (1), 0.7263 (5), 0.7832 (9). Therefore,
the null hypothesis could only be rejected for feature a22 (4),
because its p-value (0.0017) was under the lowest significance
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level (0.0050). Comparing the results from the KS test in a similar
way, the null hypothesis could only be rejected for feature a21
(p-value of 0.0014). The results from the MW test rejected the
null hypothesis for both a21 and a22 (p-values of 0.0011), but not
for the remnant features. The overall comparison results point to
the global acceptance of the complementary hypothesis of equal
means, except for the specific features a21 and a22.

The effects of the H&Y stage choice could also be assessed
observing if the JSD distances considered in Table 3 differed
significantly between HC and PD participants. As it may be seen,
all the tests reject the null hypothesis of equal distributions of JSD
scores respect to a significance level of 0.05, although the case
of KS with JSD scores produced from the AKV distribution, is
only slightly below the significance level (0.049). This means that
probably this test (KS on JSD from AKV) would fail rejecting the
null hypothesis for a set of PD participants in stage H&Y < 2.
How the other tests would work under the same conditions is
less predictable.

The unexplained contribution to the variance in linear
regression results (in terms of 1−r2, where r is the respective
correlation coefficient) by the effects of the ECMF on the vertical
acceleration may be due to the action of the geniohyoid and
other muscles contributing to the elevation and depression of
the jaw-tongue system. The activity of the geniohyoid muscle in
depressing the jaw-tongue structure has not been estimated in
the present study. The inclusion of sEMG recording electrodes
on geniohyoglossus muscle could complement it.

TABLE 3 | Results from JSD comparisons on the AKV and AFV distributions.

Participant’s code JSD/AKV JSD/AFV

CFa 0.169 0.117

CFb 0.091 0.103

CFc 0.110 0.091

CFd 0.257 0.227

CMa 0.120 0.090

CMb 0.101 0.170

CMc 0.133 0.110

CMd 0.283 0.102

PFa 0.326 0.597

PFb 0.223 0.436

PFc 0.213 0.336

PFd 0.124 0.145

PMa 0.345 0.596

PMb 0.453 0.396

PMc 0.423 0.590

PMd 0.332 0.120

p-value t-Test 0.008 0.002

p-value KS 0.049 0.010

p-value MW 0.010 0.002

The mid and right columns give the JSDs of each participant with respect to the
average AKV and AFV distributions of the control set, pPCd and pPCf , respectively.
It may be seen that the JSDs of the PC participants are higher than the ones
estimated on the control group. The p-values at the bottom of the table give
the results of testing the JSDs from the PD set to the JSDs form the control
participants. Values in bold specify the largest and smallest divergences with
respect to the control averages.

There are several limitations affecting the present study,
which have to be mentioned here. First of all, independent
jaw-tongue movements are not analyzed, however, it must be
stressed that the present study is mainly focused on proposing
acoustic features which may be mapped to potential biomarkers
of degenerative speech HD of neuromotor etiology, not on a
general model in the sense of Ouni and Laprie (2005). Therefore,
the proposed model does not cover the whole span of articulatory
movements to acoustic features. Instead, reducing the movement
space to vertical activity, helps in providing more accurate
estimations of neuromotor activity on the masseter. A possible
future extension of the study to independent tongue, jaw and
lip movements would require monitoring the sEMG activity of
other muscles, as the genio-hioglossus or the orbicular muscles.
Besides, the model assumed linear relationship between formants
and kinematics. Having in mind that the relationship with the
biomarkers (acoustic and dynamic AKF and AKV) become non-
linear, this is a necessary approach to allow a first conclusive
study. Another important limitation is the small size of the
dataset included in the study. This limitation will be removed
when the pandemic conditions allow for the inclusion of more
recordings. Once the projection model is validated using the
multi-trait signals (speech, sEMG and 3DAcc) the detection
properties of the proposed biomarkers (AKV and AFV) will be
tested on larger PD speech databases (Sakar et al., 2013; Orozco-
Arroyave et al., 2014), however, as they only contain speech data,
we cannot use them for this validation phase, considering the
novel direction that this work is proposing. Hopefully we will
be able of using the projection model to produce the AKV and
AFV biomarkers, to validate the statistical relevance of a speech-
based home-monitoring approach on these databases and others
recruited by our own using a tele-health platform (see Palacios
et al., 2020). Another limiting factor is that PD participants were
in a moderate stage of motor activity deterioration (H&Y stage
2). This limitation would require extending the analysis to PD
participants across all stages to investigate the changes across the
spectrum of the disease, from very early onset (HY stage 1) to
very late PD stages.

Another important open issue is how speaker dependency
and inter-speaker variability may affect absolute kinematic
distributions as disease biomarkers. In this sense, it may be seen
from the work of Dromey et al. (2013) that the variability of
inter-speaker results for diphthong [aI] is the lowest from all
diphthongs these authors have studied per class (control vs. PD
participants). Moreover, it may be shown that the projection
weights in Table 2, if normalized to the [aij] vector norm as
âij = aij/| aij| (see Gómez et al., 2021) do not show relevant
inter-speaker variability per class. The way that inter-speaker
variability may affect the absolute kinematic distributions (the
proposed biomarkers), works different for controls than for
PD participants, because these biomarkers are the normalized
histogram distributions of the absolute kinematic velocities,
and they only express if movement is more distributed toward
low absolute velocities (hypokinetic), as is the case for the
PD participant plotted in Figures 10C,D or if it spreads
along low and high absolute velocities (normokinetic), as is
the case for the control participant plotted in Figures 10A,B.
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Therefore, inter-speaker variability is expressing if the speaker
is hypokinetic or not, or to put it in other words, inter-speaker
variability between controls and PD participants is an essential
role of the proposed biomarkers, provided they are designed
to differentiate hypokinetic from normokinetic speech. This
separation is availed by the results shown in Table 3, where it
may be seen that biomarker distributions (kinematic AKV, as
well as acoustic AFV) from PD participants show larger distances
(in terms of Jensen-Shannon Divergence) to distributions from
control participants. Summarizing, the biomarkers proposed
show an inter-speaker variability oriented to differentiate control
participants from PD participants, in closed relationship with the
second objective of the study as stated in section “Objectives.”

CONCLUSION

This study presents a multi-trait evaluation of HD, including
speech, 3D accelerometry and sEMG signal acquisition on
the masseter. A cross-correlation signal alignment is carriend
on these signals. A further regression analysis on the re-
aligned acoustic formants, kinematic accelerations and dynamic-
related electromyography signals allows the estimation of the
projection model parameters. The projected acoustic-kinematic
and dynamics-kinematics absolute movement distributions are
used as HD biomarkers. An evaluation of these biomarkers
in terms of Jensen-Shannon Divergence is conducted on data
from control and PD participants, showing the capability of
both biomarkers to detect HD in PD speech. The main findings
derived from the study are the following:

• A multimodal framework for the assessment of the
masseter’s neuromotor activity based on sEMG, 3DAcc and
speech, has been used on diadochokinetic exercises from
PD and control participants.
• Large cross-correlations between the measured and

estimated signals have been observed using linear
regression on a small-size data sample of control and
PD participants.
• The cross-correlation study did not show relevant

differences between control and PD participants.
• The articulation kinematics estimated from 3D

accelerometry and from acoustics showed a relevant
similarity for all the participants included in the study.
• It was possible to differentiate the speech kinematic

behavior of the control and PD participant sets used
in this study, using absolute velocities (dynamic and
acoustic) of the joint jaw-tongue reference point. Therefore,
their amplitude distributions could be used as potential
biomarkers of PD speech HD.

The findings of the current study are preliminary, given the
limited sample size. We are currently extending our efforts

toward the collection of a larger sample size and investigating
how well the presented findings generalize across larger cohorts.
The definition of an inverse model to infer neuromotor activity
from acoustics is also a future objective. The inclusion of sEMG
from other muscles active on the jaw-tongue articulation as the
geniohyoid is also foreseen. A study regarding the delay on
formant-estimated kinematics based on the non-linear properties
of the ONPT is considered as well.
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