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Abstract

Kinetoplastid parasites are responsible for both human and animal diseases across the globe
where they have a great impact on health and economic well-being. Many species and life
cycle stages are difficult to study due to limitations in isolation and culture, as well as to
their existence as heterogeneous populations in hosts and vectors. Single-cell transcriptomics
(scRNA-seq) has the capacity to overcome many of these difficulties, and can be leveraged to
disentangle heterogeneous populations, highlight genes crucial for propagation through the
life cycle, and enable detailed analysis of host–parasite interactions. Here, we provide a review
of studies that have applied scRNA-seq to protozoan parasites so far. In addition, we provide
an overview of sample preparation and technology choice considerations when planning
scRNA-seq experiments, as well as challenges faced when analysing the large amounts of
data generated. Finally, we highlight areas of kinetoplastid research that could benefit from
scRNA-seq technologies.

Introduction

Parasites within the class Kinetoplastea (commonly referred to as kinetoplastids) comprise
unicellular pathogens capable of parasitizing most plant and animal species and severely
impacting global health and economic well-being (Jackson et al., 2016; Filardy et al., 2018).
Three kinetoplastids infect humans, causing widespread disease: Trypanosoma brucei sp.
(human African trypanosomiasis or sleeping sickness), Trypanosoma cruzi (Chagas disease)
and Leishmania spp. (leishmaniasis). All three are recognized as neglected tropical diseases
(NTDs) by the World Health Organization due to the substantial loss of life and disability
caused to those living with the infection. Infection of livestock causes further socio-economic
burden due to loss in farming production (Swallow, 1999; Muhanguzi et al., 2017). This is par-
ticularly evident in the ‘tsetse belt’ of sub-Saharan Africa, where there are extensive infections
of agricultural animals by T. vivax, T. congolense and, to a lesser extent, T. brucei spp.
(Giordani et al., 2016), causing wasting diseases. The evolution of mechanical transmission
has allowed T. vivax and T. b. evansi to spread further into South America (Desquesnes
et al., 2013), as well as Asia in the case of T. b. evansi (Payne et al., 1991; Lun et al., 1993).
T. cruzi and Leishmania spp. are also frequently found in wild and domesticated animals pro-
viding major reservoirs for human disease (Mazloumi Gavgani et al., 2002; Kaszak et al., 2015;
Jansen et al., 2018; Medkour et al., 2019). Study of these diverse pathogens has largely been
dependent on research with relatively few culture-adapted strains and life cycle stages, mostly
the replicative forms of T. b. brucei, many Leishmania spp. and T. cruzi. Methods allowing
investigation of non-adapted strains, which may be more virulent and transmissible, will be
highly valuable to assess the relevance of this research to disease. Additionally, kinetoplastids
are frequently found as heterogeneous populations, such as differentiating life cycle phases
(Kramer, 2012), including among diverse host cells (both intra and extracellularly) and various
tissues. Some rare life cycle forms have also been reported, such as persister-like cells (Barrett
et al., 2019) and gametes (Peacock et al., 2011; Gibson and Peacock, 2019), and these are often
difficult to isolate and characterise. Thus, single-cell transcriptomics could be leveraged to pro-
vide important new insights into many aspects of kinetoplastid biology and disease.

Unusually, kinetoplastids lack gene expression control via regulation of transcription initi-
ation for virtually all genes (Campbell et al., 2003; Kramer, 2012; Clayton, 2016) (with the not-
able exception of variant surface glycoprotein (VSG) expression by African trypanosomes).
Genes are arranged in arrays with common promotor regions and are co-transcribed
(Berriman, 2005; Kazemi, 2011; Berná et al., 2019). Coordinated trans-splicing of the 5′

RNA splice leader (SL) cap and polyadenylation generates mature individual transcripts.
Thus, kinetoplastids primarily rely on mRNA degradation, storage, translation regulation
and protein degradation to regulate gene expression. Nonetheless, population-based transcrip-
tomic analyses have revealed extensive modulation of transcript levels across the cell cycle and
life cycle, and during stress response regulation (Cohen-Freue et al., 2007; Geiger et al., 2011;
Siegel et al., 2011; Cantacessi et al., 2015; Haydock et al., 2015; Patino and Ramírez, 2017).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S003118202100041X
Downloaded from https://www.cambridge.org/core. IP address: 91.125.53.221, on 01 Apr 2021 at 08:51:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/par
https://doi.org/10.1017/S003118202100041X
mailto:emma.briggs@ed.ac.uk
mailto:thomasdan.otto@glasgow.ac.uk
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://orcid.org/0000-0002-6740-8882
https://crossmark.crossref.org/dialog?doi=10.1017/S003118202100041X&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S003118202100041X
https://www.cambridge.org/core


Profiling gene expression of individual cells with scRNA-seq
allows a more detailed analysis of heterogeneous populations,
detection of rare cell types and dissection of developmental pro-
cesses (Wen and Tang, 2018). Recently, scRNA-seq has been
applied to the field of parasitology with exciting results. ‘Cell
atlases’ have been complied of the complete Plasmodium berghei
(Howick et al., 2019) and Toxoplasma gondii (Xue et al., 2020) life
cycles, where the transcriptomes of parasites from every life cycle
stage have been sequenced and compared. Constructing a compu-
tational model of the life cycle with these cells allows gene expres-
sion changes across the life cycle to be inferred dynamically and in
greater detail than is obtainable by bulk-analysis of mixed popu-
lations. Additionally, complete atlases provide a resource that can
be mined for cell sub-populations, such as male and female
Plasmodium falciparum gametes (Real et al., 2020). These, and
other, scRNA-seq data sets have allowed apicomplexan parasitol-
ogists to study the dynamic gene expression change during devel-
opmental processes, such as the sexual commitment of
Plasmodium species and T. gondii tachyzoite to bradyzoite differ-
entiation (Waldman et al., 2020; Xue et al., 2020), and identify
putative novel regulators. Additionally, cells from a query
scRNA-seq sample can be mapped to these reference atlases to
assess their developmental stage and unique gene expression dif-
ferences (Howick et al., 2019; Real et al., 2020). For example,
Howick et al., mapped P. malariae and P. falciparum from clinical
samples to the P. berghei life cycle atlas to clearly identify the
parasite stages present in the infected patients (Howick et al.,
2019).

In kinetoplastids, published scRNA-seq studies are currently
limited to T. brucei and the whole life cycle has not yet been
explored. Expression dynamics during differentiation of slender
to stumpy bloodstream forms in the mammal (Briggs et al.,
2020), and epimastigote to metacyclic development in the tsetse
salivary glands (Vigneron et al., 2020), have both been dissected
using scRNA-seq. We identified transient expression patterns of
several genes unidentified by bulk-RNA-seq analysis and gener-
ated a bloodstream form T. brucei reference cell atlas, to which
we could map perturbed cells for comparison (Briggs et al.,
2020). Vigneron et al., were able to separate the mixed population
of parasites present in the tsetse fly salivary glands and high-
lighted the expression of an invariant family of surface proteins
specific to metacyclic stages (Vigneron et al., 2020). Expression
switching of the monoallelic expressed VSGs in bloodstream
form T. brucei parasites has also been investigated using
scRNA-seq (Müller et al., 2018). We additionally found
scRNA-seq a powerful method for detailing gene expression
dynamics during the T. brucei cell cycle (Briggs et al., 2020), as
have others for P. falciparum (Reid et al., 2018) and T. gondii
(Xue et al., 2020).

Several reviews have detailed the choices in technology
(Ziegenhain et al., 2017); Svensson et al., 2017; Hwang
et al., 2018; Lafzi et al., 2018; Chen et al., 2019; Natarajan
et al., 2019), associated costs (Ziegenhain et al., 2017); Natarajan
et al., 2019) and data processing methods (Vallejos et al., 2017;
Hwang et al., 2018; Chen et al., 2019; Luecken and Theis, 2019;
Vieth et al., 2019) involved in single-cell transcriptomics, and
more options are likely to become available as the field evolves.
Here, we review methods reported to date with protozoan parasites
and their potential application to kinetoplastid research.

Methodology and challenges

Method selection

Common steps required for scRNA-seq include the isolation of
individual cells, lysis to release RNA, barcoding of transcripts

with specialized library adaptors, reverse transcription to generate
cDNA, and cDNA amplification (summarised in Fig. 1). The
result is a library suitable for next-generation sequencing.
However, technologies vary in how these steps are achieved.
Importantly, the endpoint data captured will vary between tech-
nologies and so which is the most applicable will often be dictated
by the biological question being addressed. Aspects to consider
include the level of expression of the gene(s) of interest, the occur-
rence of rare cell types within a sample, the sequence similarity
between members of the same gene families under investigation,
and the effect of preparation methods on parasite viability.

All scRNA-seq approaches aim to isolate the RNA of an indi-
vidual cell and label transcripts with the same uniquely barcoded
library adaptor. Each cell is isolated and once lysed, the released
polyadenylated transcripts ligate to these adaptors and are labelled
with the unique barcode, allowing the user to identify transcripts
that originated from the same cell. The most widely used methods
can be broadly grouped as droplet-based or plate-based, including
droplet capture techniques Drop-seq (Poran et al., 2017) and
Chromium (Howick et al., 2019; Sà et al., 2020; Vigneron et al.,
2020), and the popular plate-based method, SMART-seq2
(Müller et al., 2018; Ngara et al., 2018; Reid et al., 2018;
Howick et al., 2019; Xue et al., 2020). The former methods encap-
sulate each cell with an adaptor-coated bead using microfluidics,
whereas the latter sort cells into individual wells of plates along
with the unique barcoded adaptors. Alternative plate-based assays
include SCRB-seq (Soumillon et al., 2014) and the NEBNext®
Single Cell/Low Input RNA Library Prep Kit for Illumina® (New
England Biolabs Inc. n.d.), both of which have been used to
study P. falciparum (Brancucci et al., 2018; Real et al., 2020).
Detailed summaries of the available methods can be found in
reviews elsewhere (Haque et al., 2017; Hwang et al., 2018). The
primary difference between these groups of methods is a trade-off
between the higher throughput droplet-based technologies, which
capture more cells per experiment, and the higher coverage of
plate-based methods, which capture a greater number of tran-
scripts per cell (Table 1). Even a greater number of cells can be
captured with the microwell array-based method, Seq-well S3

(Hughes et al., 2020), which outperforms Chromium and
Drop-seq in terms of the number of parasites recovered (Table 1).

As only a small number of the total transcripts are recovered
per cell with scRNA-seq, the lowest expressed genes are unlikely
to be captured. If the aim is to characterize gene expression
change for as many genes as possible, or target genes of interest
that have known low expression, then a high-coverage approach
may be necessary. Some cell types also have low RNA content
[e.g. Plasmodium ring stages (Poran et al., 2017; Howick et al.,
2019) and T. brucei metacyclics (Vigneron et al., 2020)] and
may require more sensitive approaches. In the protozoan parasite
studies discussed here, SMART-seq2 frequently recovered the
most genes per cell (Table 1). The plate-based method
SCRB-seq (Soumillon et al., 2014) has also been used to study
protozoan parasites (P. falciparum) (Brancucci et al., 2018), and
although the number of genes captured per cell was lower com-
pared to the SMART-seq2 analysis of extracted P. falciparum
(Reid et al., 2018), insight into sexual commitment was still
gained. NEB also offers a single cell/low input RNA Illumina
library preparation kit (New England Biolabs Inc.), which Real
et al., used to perform scRNA-seq of P. falciparum and documen-
ted the parasite’s journey through the mosquito in detail (Real
et al., 2020). These methods all rely on assays being performed
in 96- or 384-well plates, limiting the number of cells that can
be analysed. If the aim is to characterize a cell type of interest
that appears as a low or unknown proportion of the sampled
population, then a higher throughput method may be preferable,
such as Chromium, Drop-seq or Seq-well (Table 1). Only one
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available study has used Seq-well to study protozoan parasites;
Waldman et al., profiled 26,560 T. gondii parasites, recovering
an average of 685 genes comparable with other droplet-based
methods, but fewer than the SMART-seq2 analysis of T. gondii
in similar culture conditions (862–1290 average genes per cell;
Table 1).

Preparation methods (see below) will also impact the number
of transcripts recovered. For example, slender and stumpy blood-
stream form T. brucei prepared in culture (Briggs et al., 2020)
resulted in greater recovery of transcripts compared to T. brucei
stages extracted from the tsetse salivary gland (Vigneron et al.,
2020), despite both studies employing Chromium technology
(Table 1). Notably, NEB reports more than three times greater
recovery of transcripts compared to SMART-seq2 with the
NEBNext® kit for low input RNA (New England Biolabs Inc.
n.d.). The studies discussed here (Table 1) can aid users in select-
ing an appropriate method, considering the depth and cell num-
ber required to answer the biological question, in the context of
the cell type and the necessary sample preparation steps.

Importantly, most methods (including Drop-seq, 3′ chemistry
Chromium kits, Seq-well and SCRB-seq) only sequence the 3′ end
of transcripts, whereas SMART-seq2 and NEBNext® sequence

full-length transcripts. This consideration can be important, for
instance, for studying highly similar paralog families where the
3′ end sequences may be indistinguishable, such as VSGs in T.
brucei (Müller et al., 2018), var genes of Plasmodium species
(Reid et al., 2018) and SAG1-related sequences (SRS) of T. gondii
(Xue et al., 2020). Full-length transcripts are also key to studying
splicing variation. However, kinetoplastids lack cis-splicing for all
but a few genes (Campbell et al., 2003; Liang et al., 2003) and so
this is not a concern for scRNA-seq studies with these parasites.

Cost and equipment availability will undoubtably also impact
choice. Drop-seq can be compiled in-house, whereas Chromium
technology requires the Chromium controller instrument to
encapsulate single cells with barcoded beads. Although,
Drop-seq may require more thorough optimization than the com-
mercialized Chromium method. Seq-well, SMART-seq2 and
SCRB-seq only need microarrays or plates to separate individual
cells; although manual picking can be used, cell sorting machinery
is often required to place cells into each well (Hu et al., 2016). The
cost of scRNA-seq experiments is largely determined by the high
price of library preparation consumables, reviewed here
(Ziegenhain et al., 2017)). Notably, SCRB-seq (Soumillon et al.,
2014) employed by Brancucci et al. was highly cost affective, at

Fig. 1. Overview of the scRNA-seq experimental approach. Single parasites, suspended free from debris and containing ideally >90% viable cells, (1) can be cap-
tured individually with barcoded library adaptors and lysis buffer either via droplet-based technology (2) or by sorting into individual plate-wells (5). Cells are then
lysed (3) and polyadenylated RNA is reverse transcribed with barcode adaptors into cDNA and amplified (4). The resultant library is then sequenced by next-
generation sequencing (6). Reads are mapped to the reference genome (7), and unique reads mapping to each gene are counted to generate raw transcript counts
per gene, per cell (8). Quality control filtering, pre-processing and final analysis can then be performed (9). See Fig. 4 for an analysis overview. Note, Seq-well, which
uses microarrays to capture cells, is not described in this figure but has been used to study T. gondii parasites (Waldman et al., 2020) (created with BioRender.com).
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∼$30 per cell (Brancucci et al., 2018). In the case of
high-throughput droplet-based methods, the cost can be reduced
by mixing species with distinct transcriptomes that can be easily
separated bioinformatically (Tung et al., 2017; Kang et al.,
2018), as has been done with P. berghei and P. knowlesi (Reid
et al., 2018; Howick et al., 2019), and T. brucei and L. mexicana
(Briggs et al., 2020; Warren et al., unpublished). This approach
also allows a doublet rate to be calculated (see below). Seq-well
(Gierahn et al., 2017) and updated ‘Seq-well S3’ (Hughes et al.,
2020) offer a comparable cost per read sequenced to Chromium
v3, but has the advantage that it avoids the need to purchase
Chromium instruments (Hughes et al., 2020). Sample labelling
may also allow a further cost reduction in the future by multiplex-
ing; for instance, methods such as CITE-seq (Stoeckius et al., 2017)
or cell hashing (Stoeckius et al., 2018) rely on oligo-labelled anti-
bodies that target expressed surface proteins and are captured
with the individual cells they bind to. In the library preparation
and sequencing steps, the sample barcode is captured along with
the cell barcode, allowing transcripts to be traced to both the indi-
vidual cell and the sample to which the cell belongs. In kinetoplas-
tids, these approaches are more problematic, as commercial
barcoded antibodies are not available, life cycle stages express
unique surface proteins (Valente et al., 2019), and several promin-
ent surface antigens are expressed from highly variable gene fam-
ilies, limiting options to generate in-house barcoded antibodies.
MULTI-seq allows multiplexing of most cells by incorporating
lipid-modified oligopeptides (LMOs) (McGinnis et al., 2019a)
into the plasma membrane, and so will likely be highly useful for
sample labelling and cost-cutting in kinetoplastid research.

Sample preparation

Irrespective of the method of scRNA-seq chosen, each sample
should be a single cell suspension free from debris, where ideally
at least 90% of the population are viable. Dead cells release cyto-
plasmic RNA into the sample, meaning a significant number of

dying cells will result in both the poor capture of transcripts
and the potential for contamination of all living cell transcrip-
tomes with the free mRNA (Yang et al., 2020). Thus, the isolation
of viable cells is critical. Cells that have clumped together will
likely be labelled with the same barcode, meaning two distinct
cell types could be considered as one during analysis. These lim-
itations can be corrected downstream (see below), although cell
clumps in the sample often prevent the formation of droplets, if
using such methods, stopping the isolation of single cells.

Sample preparation is most easily achieved with extracellular
parasites grown in culture, thus these conditions are most likely
to result in the capture of high-quality transcriptomes, such as
with bloodstream form T. brucei (Müller et al., 2018; Briggs
et al., 2020). Here, the preparation may be as simple as washing
and suspending cells in an appropriate buffer, such as PBS supple-
mented with glucose, to maintain viability. Isolation of extracellular
forms from the host for in vivo studies will depend on the particu-
lar experiment (Vigneron et al., 2020). In this case, methods need
to be optimized to ensure sufficient parasites are captured and cel-
lular stress is minimized. Plate-based approaches will likely, add-
itionally, require fluorescence-activated cell sorting (FACS) for
cells to be sorted into individual wells, the impact of which on cel-
lular stress and gene expression should be considered. Interestingly,
FACS can also be leveraged to gain additional information of the
cells before lysing; for instance, cell types can be quantified and
enriched for if stained with specific fluorophore-conjugated anti-
bodies. Furthermore, staining information and the plate position
of positive cells can be recorded for subsequent association with
the sequenced transcriptome (Paul et al., 2015).

In the case of intracellular life cycle stages (such as amastigote
Leishmania and T. cruzi), scRNA-seq may be applied directly to
the infected host cells. However, detection of the parasite-derived
transcripts may be reduced due to the volume of host transcripts
and individual parasites infecting the same host will not be distin-
guishable. The intracellular parasites could instead be extracted
prior to scRNA-seq sample preparation. Single-cell analysis for

Table 1. Comparison of scRNA-seq experiments described with protozoan parasites

Technique Species Cells recovered per experiment described Average genes per cell References

SMART-seq2 P. falciparum 161–191 1712–2090 Reid et al., 2018

P. berghii 102–517* 202–2995* Howick et al., 2019

P. berghii 144 1981 Reid et al., 2018

T gondii 849–2198 862–1290 Xue et al., 2020

T. brucei 418 1572 Müller et al., 2018

P. falciparum (iRBCs) 92 300–800* Ngara et al., 2018

Chromium P. falciparum 6737 438 Howick et al., 2019

P. berghii 4884 791 Howick et al., 2019

P. knowlesi 4237 557 Howick et al., 2019

P. vivax 22–2098 1019$ Sà et al., 2020

T. brucei 2045 298 Vigneron et al., 2020

T. brucei 2295–5321 1117–1494 Briggs et al., 2020

Drop-seq P. falciparum (iRBCs) 436–2993 224–681 Poran et al., 2017

Seq-well T. gondii 26 560 685 Waldman et al., 2020

SCRB-Seq P. falciparum 191–364 212–503 Brancucci et al., 2018

NEBNext P. falciparum 88–451* 108–1496.5* Real et al., 2020

For each experiment, the method and species are given. iRBCs indicate the infected red blood cells were analysed without releasing parasites beforehand. The number of cells recovered after
quality control filtering is given per experiment, as reported by the authors.
The asterisk indicates exceptions where the numbers of cell recovered are given for each life cycle stage studied. The average is given for the genes recovered per cell for each experiment or
life cycle stage (asterisk), except where the dollar indicates the average of all experiments. NEBNext refers to NEBNext Single Cell/Low Input RNA Library Prep Kit for Illumina (New England
Biolabs Inc.).
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kinetoplastids isolated from host cells has not been published to
date, but has been used for apicomplexans: blood-stage
Plasmodium spp (Reid et al., 2018; Howick et al., 2019) and T.
gondii from human host cells (Waldman et al., 2020; Xue et al.,
2020). Cellular stresses caused by these methods need to be con-
sidered and potentially tested. Interestingly, Poran et al., applied
Drop-seq to P. falciparum infected red blood cells (iRBCs) with-
out extracting parasites with encouraging results (224–681 average
genes per cell). However, this method required each sample to be
checked manually by microscopy for the number of parasites
infecting each RBC to ensure >95% of iRBCs contained only
one parasite (Poran et al., 2017). Ngara et al., used
SMART-seq2 to profile iRBCs and recovered similar transcript
levels (average of 300–800 per cell depending on P. falciparum
life cycle stage). Here, the authors were able to confirm only
one parasite was present in each iRBC by staining with
MitoTracker dye and cell sorting (Ngara et al., 2018). Similar
approaches will be useful for kinetoplastid research where extrac-
tion of parasites from host cells is difficult and therefore likely to
significantly affect parasite viability and gene expression.

If it is not possible to use live cells, such as for clinical samples
or time point preservation, cells may be cryopreserved with the
cryoprotectant dimethyl-sulfoxide (DMSO) without affecting
gene expression (Guillaumet-Adkins et al., 2017; Wohnhaas
et al., 2019). Alternatively, cells can be fixed with methanol, stored
and subsequently rehydrated for analysis (Chen et al., 2018),
although comparisons with mammalian cells have found this
method less favourable than cryofreezing (Wohnhaas et al.,
2019). We ran a Chromium analysis of bloodstream from T. bru-
cei fixed in methanol, following protocols from 10x Genomics,
and sequenced ∼30,000 reads per cell (Fig. 2). The percentage
of cells recovered after quality control (QC) filtering (discussed
below) was only 9.02% for fixed parasites vs 46.55% for live para-
sites. Although the percentage of kDNA and rRNA transcripts per
cell (used for QC, discussed below; Fig. 2B and C) was similar in
live and fixed samples, the number of genes per cell and unique
transcripts (unique molecular identifiers; UMIs) per cell were

dramatically reduced in the fixed sample (Fig. 2A). The effects
of these differences meant that no clear grouping of slender and
stumpy forms was detected in the fixed parasites, unlike in live
parasites (Fig. 2D and E). Methanol preserved P. falciparum
and P. malariae clinical samples have been profiled (Howick
et al., 2019). Here, SMART-seq2 was used and resulted in more
genes per cell being detected [630–1355 median genes per cell,
dependant on life cycle stage (Howick et al., 2019)] compared
with our Chromium analysis of fixed T. brucei (163 median
cells per cell; Fig. 2A). However, relatively few P. falciparum
and P. malariae transcriptomes were successfully profiled using
fixed parasites, with just 2% and 45% of the starting cell number
of early and late blood stages reaching quality control cut-offs,
respectively (Howick et al., 2019). Comparison and optimization
of fixed and cryostored samples will undoubtedly open new
options for single-cell analysis of kinetoplastids in the future.

Sequencing and read mapping

Sequencing depth also impacts the analysis of scRNA-seq, as
increasing depth will increase the number of unique transcripts
returned. Although increasing sequencing depth will therefore
increase the information captured, the proportion of newly cap-
tured transcripts to sequencing reads will decrease with increasing
depth (Fig. 3A). Thus, it is advisable to perform rounds of
sequencing and analyse the return of unique transcripts with
each round to balance the cost of extensive sequencing and data
recovered. The cell ranger tool [10x Genomics (10x Genomics,
2020a)] estimates the unique transcripts to reads mapped ratio,
termed sequencing saturation, to guide the user. As it is not pos-
sible to uniquely map short-read sequencing to repetitive genomic
regions, a large proportion of reads sequenced may be unusable
when working with highly repetitive genomes. Thus, calculations
should consider confidently mapped reads and greater sequencing
depth may be required in these cases. We tested the effect of
sequencing depth on the identification of clusters and variable
genes using bloodstream form T. brucei Chromium data (Briggs

Fig. 2. Comparison of methanol fixed and live T. brucei Chromium scRNA-seq data. Methanol fixed (20,000 cells; 1,804 recovered) and live (15,000 cells; 6,938 recov-
ered) T. brucei bloodstream form parasites were previously subjected to Chromium scRNA-seq to a depth of ∼30,000 reads per cell (Briggs et al., 2020). (A) UMI
(unique molecular identifier;x-axis) and gene ( y-axis) per cell counts for methanol fixed (above, red) and live (below, blue) cells. Each point is one cell. The red
dashed line indicates the QC threshold used for filtering each sample. (B) As in a, where the percentage of transcripts aligning to the maxi circle kDNA sequence
is used as a QC threshold ( y-axis). (C) As in a, with a percentage of transcripts aligning to rRNA genes used as a QC threshold ( y-axis). (D) UMAPs of each sample
(methanol-fixed above, live below), generated as described previously (Briggs et al., 2020) using an identifical method and parameters, with the expections of the
QC thresholds indicated in a, b and c. Each data point is one cell coloured by the cluster identity, where each cluster is a group of cells with similar transcriptomic
profiles. Colours are not transferred between plots. (E) UMAP plots of cells coloured by expression of one slender marker gene (GAPDH; Tb927.6.4280) and one
stumpy marker gene (PAD2; Tb927.7.5940). The scale shows the raw transcript count per cell.
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et al., 2020). The return of new transcripts for increased
sequencing depth (sequencing saturation) is shown in Fig. 3A.
Sequencing to a total depth of 52 ,971 mean reads per cell was
performed (Briggs et al., 2020). After selecting different propor-
tions (0.1, 0.25, 0.5 and 0.75) of these total mapped reads by
downsampling, we found the mean genes per cell increased
from 1,046 when using ∼5,000 read per cells, to 1,121 with all
reads (∼50,000) per cell (Fig. 3A). The increase in mean UMIs
per cell was greater, increasing from 1,324 to 1,680 (Fig. 3B).
This increase translated into an increased number of clusters
being identified (when using a clustering resolution of 0.35 in
all cases; Fig. 3D) and revealed far more differentially expressed
genes between clusters (Fig. 3C). Hence, sequencing depth can
have a large impact on the biological conclusions that can be
drawn from the data.

Like all genomics and transcriptomic studies, only uniquely
mapping reads should be considered. Additionally, controls are
needed to remove duplicate reads generated during the cDNA
amplification steps of library preparation. Many technologies
label individual transcripts with unique barcodes (in addition to
cellular barcodes) before any amplification. Hence, replicate tran-
scripts will be identical in the mapping transcript sequence and
unique barcode, and can be removed to avoid polymerase chain
reaction (PCR) bias. Chromium, Drop-seq, Seq-well and
SCRB-seq incorporate these transcript barcodes into the adaptor
sequences as UMIs, whereas duplicates are identified purely com-
putationally with SMART-seq2. These computationally biased
methods assume all identical reads result from PCR amplification
and, thus, are unable to identify real duplicates originating from
different transcript copies of the same gene, present before amp-
lification steps (for details, see an investigation by Parekh et al.,
2016).

Once mapped to the reference genome, the number of unique
transcripts per gene is counted as a measure of expression level. A
highly problematic issue when mapping to kinetoplastid genomes

is the accuracy of untranslated region (UTR) annotations, as most
methods capture only short sequences upstream of the polyadeny-
lation site. Thus, most reads will map to the last 300 bp of the 3′

UTR (Zheng et al., 2017), which needs to be annotated for the
aligning read to be included in transcript counts.
Polyadenylation site usage, and therefore 3′ UTR sequences, are
also variable between species and life cycle stage (Siegel et al.,
2010; Kramer and Carrington, 2011; Sà et al., 2020), so may
need to be assumed when no accurate reference is available. We
overcame this issue when mapping reads from EATRO Antat
1.1 T. brucei to the TREU927 T. brucei genome (Berriman,
2005) by extending UTR sequences to a maximum of 2,500 bp
(removing all overlaps with neighbouring genomic features).
This dramatically improved the transcripts counted. Sà et al.,
noted different UTR usage between sexual and asexual stage P.
vivax and looked for peaks of unassigned reads to attribute
these to the most proximal genes (Sà et al., 2020). Care needs
to be taken when interpreting results where UTRs are been
assumed, as reads may, in fact, have originated from unannotated
genes or non-coding RNA. Full-length transcripts from
SMART-seq should show better assignment to genes, as docu-
mented in T. brucei when only 400 bp 3′ UTRs were required
for mapping (Müller et al., 2018). Hence, full-length transcripts
may be preferred when an accurate reference transcriptome is
not available. Alternatively, 5′ end methods may be used,
such as Chromium Single Cell 5′ Gene Expression from 10x,
as part of the Single Cell V(D)J Protocol (10x Genomics,
2020b), although the 5′ UTR annotation may still need to be
optimized.

After mapping is performed, read quality and mapping accur-
acy can be investigated with a genome viewer, and the number of
cells captured can be established. As libraries can be stored for
additional sequencing it may be cost-effective to the first sequence
to a low depth (e.g. 5,000 reads per cell), and assess the number
and quality of transcriptomes captured using the methods

Fig. 3. Evaluation of sequencing depth impact on cluster identification and differential gene expression analysis. T. brucei bloodstream form (Briggs et al., 2020)
cells were previous subjected to Chromium scRNA-seq (Briggs et al., 2020) to a depth of 52,971 mean reads per cell. (A) Sequencing saturation [1−(number of
unique reads/number of total mapped reads)] as calculated by cell ranger (10x Genomics, 2020a) for between 5,000 and 52,971 mean reads per cell. The dashed
line is equal to 0.9 (90%) sequence saturation. (B) Median genes per cell for total sequencing (52,971 mean reads per cell) and four downsampled data sets. The
shaded area shows standard deviation (SD.) from the mean for all cells after QC filtering to remove cells with <500 unique transcripts. (C) The median number of
unique transcripts (UMIs) per cell for each data set, shaded area shows SD (D) Number of differentially expressed (DE) genes identified between clusters shown in e,
using MAST (Finak et al., 2015). (E) UMAP plots of each data set. Each data point is one cell coloured by cluster identified with the same parameters (resolution =
0.35). Colours are not transferred between plots. Mean reads per cell for each data set are indicated above in bold. The analysis was performed as described pre-
viously (Briggs et al., 2020).

6 Emma M. Briggs et al.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S003118202100041X
Downloaded from https://www.cambridge.org/core. IP address: 91.125.53.221, on 01 Apr 2021 at 08:51:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S003118202100041X
https://www.cambridge.org/core


described below. Additional sequencing can then be performed in
the knowledge that the library contains viable cells and with a bet-
ter estimate of the cell number. Read length could also be custo-
mized to allow more gene sequence to be captured and improve
mapping (Briggs et al., 2020). For example, for 3′ methods
when performing paired-end sequencing, read 1 sequence con-
tains the cell barcode and the UMI, so biasing sequencing to
read 2 will increase the length of gene-specific sequence
returned.

Data analysis

Methods for the analysis of scRNA-seq data are still evolving and
different methods will likely perform better than others with spe-
cific data sets. Figure 4 summarizes the general data analysis steps,
considerations and decision points where the user is advised to
compare methods and/or parameters.

Quality control and pre-processing

Quality control of kinetoplastid scRNA-seq data is broadly similar
to other cells, whereby transcriptomes with higher than average
levels of total RNA are removed as they are likely to include
reads from two or more cells (doublets). Similarly, those with
low RNA can be removed as they are likely to originate from pre-
maturely lysed cells or where transcript capture has been ineffi-
cient. However, cut-offs need to be considered in the context of
cell types. For example, metacyclic form T. brucei has substantially
less total RNA than epimastigotes (Vigneron et al., 2020), and
RNA levels in Plasmodium life cycle stages vary substantially
(Poran et al., 2017; Reid et al., 2018; Howick et al., 2019; Real
et al., 2020). In mammalian cells, it was found that
mitochondrial-encoded genes are a good indicator of cell quality,
as lysed cells preferentially lose cytoplasmic transcripts (since orga-
nelles are less likely to lyse), and the resulting transcriptomes have

Fig. 4. Outline of the general scRNA-seq analysis steps and user considerations. General analysis steps are indicate by numbers and points of consideration are
listed below each. (1) The choice of technology will depend on the number of cells required, the expression level of genes, whether full-length transcripts are
required, equipment availability and costs. Once scRNA-seq is performed, sequencing is mapped, and transcript counts per gene for each cell are calculated
(2). Counts data will be affected by the accuracy of the genome, gene and UTR annotations, PCR duplicate removal and non-uniquely mapping reads. Data
will then require filtering to remove cells of low quality or doublets (3) and genes for which transcript counts are likely to be inaccurate (4). Once filtered, data
will require normalization, the best method for which will be data set-dependant (5). Data can also be scaled to remove variable gene expression due to total
RNA per cell differences and cell cycle dependant gene expression variation. For further analysis, only the top variable genes should be selected to avoid intro-
ducing noise (6). Genes from multiple selection methods should be considered and some genes may require removal from variable gene lists, such as VSGs, if not
under investigation. (6i) Replicate samples can be integrated, or query cells can be mapped to a control data set or cell ‘atlas’ of the same or different species.
Methods should be compared and will depend on aims. As it is not possible to work in high-dimensional space, data should then be reduced (7) and the appro-
priate number of dimensions to include should be tested. The type of dimensional reduction performed will depend on aims (analysis or visualization) (8). Cells can
be clustered by gene expression using reduced data and labelled by investigating the expression of marker genes. Cluster numbers will be dependent on para-
meters such as resolution. Differential expression (DE) analysis can be performed between clusters or between conditions if data is integrated (9). Tools are
still under development to improve power and false discovery rates, and so methods should be compared. If investigating a biological progression between cellular
states, trajectory inference (TI) can be performed (10). Over 70 tools exist and performance depends on the topology of the data in low-dimensional plots. Results
should be compared and DE across trajectories investigated. (Created with BioRender.com)
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a greater percentage of mitochondrial transcripts (Ilicic et al.,
2016). We found mapping of reads to the kDNA maxi circle of
T. brucei provided an analogous method to remove low-quality
parasites (Briggs et al., 2020). Additionally, we found some cells
with an unusually high percentage of ribosomal RNA (rRNA)
transcripts. As the Chromium adaptors should capture only poly-
adenylated transcripts, those cells with high rRNA were also con-
sidered low quality transcriptomes and were removed. Additional
filtering to remove all rRNA transcript counts from further
analysis can also be performed. Studies of Plasmodium have also
noted contaminating rRNA, which required removal prior to ana-
lysis (Poran et al., 2017; Müller et al., 2018; Reid et al., 2018;
Waldman et al., 2020; Xue et al., 2020).

Doublet rates vary between technologies and individual experi-
ments. To assess the number of doublets when running the max-
imum number of cells (30,000) per Chromium sample, we
combined T. brucei and L. mexicana in a 1:1 ratio. A total of
8.04% of cells were predicted to contain RNA from both parasites
and guided us in removing these cells (Briggs et al., 2020).
Similarly, Howick et al., mixed P. knowlesi and P. berghi 1:1 before
subjecting 10,000 cells to Chromium scRNA-seq and found a
doublet rate of 6.34% (Howick et al., 2019). As well as filtering
transcriptomes with unusually high RNA levels, more sophisti-
cated methods for removing doublets have been proposed, includ-
ing, DoubletFinder (McGinnis, Murrow, and Gartner, 2019b),
DoubletDecon (DePasquale et al., 2019) and souporcell, which
also identifies free RNA released by damaged cells that have con-
taminated other transcriptomes (Heaton et al., 2020).

Spike-in control RNA can be included in various methods,
though they are primarily used with SMART-seq, as done for ana-
lysis of T. brucei (Müller et al., 2018). The usefulness of spike-in
RNA is debated, due to the difficulty with precisely adding equal
amounts to each cell (Kolodziejczyk et al., 2015). However, this
variability has been shown to cause a limited amount of technical
noise (Lun et al., 2017) and spike-in RNA may be helpful for nor-
malization, identification of empty wells and dying cells
(Baran-Gale, Chandra, and Kirschner, 2018), and removing bias
caused by contaminating free RNA (Kolodziejczyk et al., 2015;
Marquina-Sanchez et al., 2020). Additionally, spike-in controls
can help determine absolute RNA levels, although spike-ins are
likely to be captured with different efficiencies to endogenous
RNA (Svensson et al., 2017).

Post-filtering, the data requires normalization and can be log-
transformed, the methods of which have been extensively
reviewed elsewhere (Vallejos et al., 2017; Luecken and Theis,
2019; Lytal et al., 2020). It is worth noting that the total tran-
scripts per cell can have a large effect on plots, and this can be
regressed when scaling the data. The contribution of the cell
cycle to gene expression variability can also be regressed from
the data. However, this requires an assessment of known cell
cycle-regulated genes. This was possible in T. brucei due to previ-
ous marker analysis (Archer et al., 2011), which is also available
for T. cruzi (Chávez et al., 2017). Cell cycle markers are not cur-
rently published for Leishmania spp., although it may be possible
to perform a similar analysis with orthologs of T. brucei and T.
cruzi genes, with consideration of the caveats of inferring markers
this way. However, it may be relevant to retain cell cycle variation
in the data, for example when studying cell cycle exit.

Dimension reduction

Dimension reduction is performed, firstly, to separate biological
variability in the data from technical noise. Many different
approaches for dimension reduction have been developed
(Luecken and Theis, 2019; Sun et al., 2019), including, but not
limited to, variations of principal component (PC) analysis

(PCA), diffusion maps (Angerer et al., 2016) and deep-learning
methods for larger data sets (Sun et al., 2019). In most cases,
the most variable genes must be selected first for use in data
reductions to avoid introducing noise. Here, again, multiple
methods are possible and the genes selected will affect down-
stream findings (Luecken and Theis, 2019; Townes et al., 2019).
Yip et al., compared seven tools with the same data set and
found only two genes were selected as significantly variable
genes with all approaches (Yip et al., 2018). Thus, selecting
genes with several methods and then comparing the results to
select those in common may improve the robustness of analysis
(Yip et al., 2018; Kiselev et al., 2019; Luecken and Theis, 2019).
Differentially expressed gene families may need to be removed
from the variable gene list to avoid grouping cells by predomin-
ately these factors, unless they are the subject of investigation. For
example, when working with bloodstream form T. brucei it may
be necessary to remove VSGs from the variable gene set as these
show high variation between cells in some samples and may lead
to grouping by the expressed VSG alone (Briggs et al., 2020). A
second consideration is the number of PCs, or dimensions, to
select for use in the next steps in the analysis. Selecting too few
will ignore important variability, whereas selecting too many
will introduce noise. Popular methods for selecting PCs include
the JackStraw procedure (Macosko et al., 2015), and assessing
the variability contributed by each PC with elbow plots. Both
are implemented in the popular Seurat workflow (Satija et al.,
2015).

The second aim of dimension reduction is visualization.
PCA plots only allow limited dimensions (normally the top
two) to be plotted and the distance between cells does not
necessarily reflect the real distance between transcriptome simi-
larities. Hence, the method of dimension reduction has to be
considered to avoid overinterpretation of the data in the later
analysis steps (see below). Non-linear dimensionality reduction
methods, such as tSNE, UMAP and PHATE, allow further
complexity to be incorporated and can conserve the distance
between groups of cells. t-SNE plots focus on the local similar-
ity of data points to group them together, at the expense of the
global relationship between groups (Van Der Maaten and
Hinton, 2008). UMAP (Uniform Manifold Approximation
and Projection), however, is better able to conserve the global
structure of data and so depicts the relationships between clus-
tered cells as the distance (McInnes et al., 2018). PHATE pro-
jections capture local and global structure making it a preferred
method for studying continuous data, such as a developmental
progression (Moon et al., 2019). Therefore, UMAP is often bet-
ter suited for scRNA-seq analysis to identify cell clusters and
relationships between clusters (Luecken and Theis, 2019),
whereas PHATE is well suited for trajectory analysis (see
below). Again, the appropriate number of dimensions must
be selected, as described above.

Clustering analysis

A common aim of scRNA-seq is to identify cell types present in
the data by clustering and marker gene identification. Different
clustering approaches have been applied to scRNA-seq data
(Duò et al., 2018; Sun et al., 2019) and the choice of method
will likely vary between experiments. Sun et al., compared 18 dif-
ferent dimension reduction methods, as well as 3 clustering
approaches (k-means, Louvain and hierarchical), to provide a
helpful guide (Sun et al., 2019). Each cluster can then be labelled
by the cell type identified to begin understanding the biological
significance of each population identified. With an existing cell
atlas, it would be possible to transfer labels directly from these ref-
erence data sets to label cell clusters [a function now integrated
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into the Seurat pipeline (Stuart et al., 2019)]. Assessing the expres-
sion of known marker genes can aid cluster labelling (see differen-
tial expression below) in the absence of transferable labels. By
exploring the clusters as such, the clustering parameters can be
fine-tuned with various iterations to find the most appropriate
number of clusters, in the context of the known biology.

Differential expression

As well as investigating known marker genes, novel differentially
expressed genes can be identified to aid the interrogation of the
identified cell populations. Methods for performing DE analysis
between clusters (and across trajectories, see below) are still devel-
oping and will likely improve. Bulk RNA-seq DE methods have
been applied to scRNA-seq data, although these do not consider
the high dropout rate of scRNA-seq experiments, where only a
proportion of genes are detected in each cell, or the high variabil-
ity of most genes between cells (Vallejos et al., 2017). Gene
expression of each cluster can be combined by ‘pseudo-bulking’
(Lun and Marioni, 2017; Kang et al., 2018; Crowell et al., 2020),
before DE is performed with, for example, edgeR (Robinson
et al., 2009) and DEseq2 (Love et al., 2014). scRNA-seq specia-
lized methods have also been developed to tackle these problems
(Finak et al., n.d.; Kharchenko et al., 2014), although Vieth et al.,
point out that the performance of DE tools was largely dependent
on upstream analysis steps (Vieth et al., 2019). Bulk tools are
improved when introducing gene weights, even out-performing
specialist methods (Van den Berge et al., 2018), although this is
computationally inefficient (Luecken and Theis, 2019). Notably,
muscat has been developed to allow DE of single-cell data, includ-
ing across multiple samples and multiple conditions, in what the
authors’ term ‘differential state analysis’ (Crowell et al., 2020).
Once performed, DE between clusters will reveal marker genes
which can then be investigated to label known and novel cell
types and reveal novel marker genes.

Trajectory inference

Another common aim in analysing scRNA-seq data is trajectory
inference and pseudo-time analysis, which allows gene expression
change across developmental processes to be investigated (Tanay
and Regev, 2017), such as during differentiation of slender to
stumpy T. brucei (Briggs et al., 2020), and tachyzoite to bradyzoite
T. gondii differentiation (Waldman et al., 2020; Xue et al., 2020).
First, an appropriate dimensionally reduced data plot needs to be
generated. In general, PCA plots, diffusion maps (Haghverdi
et al., 2015; Angerer et al., 2016) or PHATE maps (Moon et al.,
2019) can capture simple linear or bifurcating processes that
can then be inferred as a trajectory (Luecken and Theis, 2019;
Saelens et al., 2019). UMAPs (Cao et al., 2019) or PAGA analysis
(Wolf et al., 2019) are better suited to more complex data sets
(Luecken and Theis, 2019). A huge number of trajectory inference
tools now exist and so selecting one can be cumbersome. Saelens
et al., helpfully compared and evaluated the performance of 45 of
these tools (Saelens et al., 2019), concluding the choice is depend-
ent on the topology of the trajectory: Slingshot (Street et al., 2018)
and TSCAN (Ji and Ji, 2016) perform well when analysing linear
processes; Slingshot (Street et al., 2018) also performs well in the
detection of branches (Saelens et al., 2019); and PAGA (Wolf
et al., 2019) was helpful for analysis of complex data with discon-
nected clusters of cells. Monocle v3 (Cao et al., 2019) was not
available for inclusion in the comparison by Saelens et al., but
has since proved helpful for analysing complex data using
UMAP, as it can identify multiple branching and converging
points in development. We inferred the circular trajectory of
the T. brucei cell cycle (Briggs et al., 2020) by fitting a principle

curve (Hastie and Stuetzle, 1989), although alternative approaches
such as reCAT (Liu et al., 2017) are available (Saelens et al., 2019).
Monocle v3 (Cao et al., 2019) provides a pipeline for differential
gene expression across the trajectories it finds using
graph-autocorrelation analysis. Alternatively, tradeSeq allows
expression analysis across simple trajectories by fitting generalized
additive models (Van den Berge et al., 2020).

Data integration

Data integration allows the comparison of replicate experiments,
but also the mapping of a query sample to an established ‘refer-
ence’ data set. For integrating replicate data sets and removing
batch effects, methods include but are not limited to, Seurat
(Stuart et al., 2019), BBKNN (Polański et al., 2020), Harmony
(Korsunsky et al., 2019) and STACAS (Andreatta and Carmona,
2020). More complex data integration can also be performed to
map cells onto a reference or ‘cell atlas’, even across different tech-
nologies, conditions, cells strains and species. We used STACAS
(which is specialized for data sets that are expected to not fully
overlap) to map ZC3H20 null T. brucei onto the trajectory of dif-
ferentiating wild-type parasites to assess the regulation point of
this factor (Briggs et al., 2020). Howick et al., employed scmap
(Kiselev et al., 2018) to build a reference with P. berghei cells
and then map P. falciparum and P. knowlesi transcriptomes to
this complete life cycle atlas using orthologous genes (Howick
et al., 2019). Thus, cells from different species could be directly
compared. The authors were able to extend this approach to
map transcriptomes of methanol-fixed P. malariae and P. falcip-
arum from infected volunteers to the P. berghei atlas. Luecken
et al., recently compared various combinations of pre-
processing and integration methods, concluding Seurat v3
(Stuart et al., 2019) was better suited to simple data integration
tasks, whereas BBKNN (Polański et al., 2020), Scanorama (Hie
et al., 2019) and scVI (Lopez et al., 2018) successfully integrated
more complex data sets (Luecken and Theis, 2019). Helpfully,
the authors also provide their scripts so users can identify the
optimal data integration method for new data sets (Luecken
and Theis, 2019).

Applications

Kinetoplastids commonly exist as heterogeneous populations due
to their diversity of life cycle stages. For example, infected tsetse
salivary glands contain epimastigotes, early metacyclics and late
metacyclics, as dissected by scRNA-seq (Vigneron et al., 2020),
as well as gametes (Peacock et al., 2011; Gibson and Peacock,
2019). Several other highly varied populations exist: in culture
Leishmania promastigotes exist as procyclic, nectomonad, lepto-
monad and metacyclic forms (Serafim et al., 2018); cell cycle
arrested, or substantially slowed, ‘persister-like’ intracellular amas-
tigote forms of Leishmania and T. cruzi exist as subpopulations
with replicating amastigotes (Vickerman, 1985; Tarleton and
Zhang, 1999; Fernandes and Andrews, 2012; Mandell and
Beverley, 2017; Sánchez-Valdéz et al., 2018; Barrett et al., 2019;
Ward et al., 2020); actively cycling and arrested bloodstream
form African trypanosomes co-exist in the mammal blood and
adipose tissue (Trindade et al., 2016; Rojas and Matthews,
2019); and T. cruzi trypomastigotes, spheromastigotes and epi-
mastigotes are found in the triatomine bug intestinal tract
(Chagas, 1909; Castro et al., 2007). Additionally, sexual life
cycle stages have been noted for T. brucei, T. cruzi and
Leishmania, yet the timing of their development, location within
the host and integration into the respective life cycles are often
poorly characterized. scRNA-seq is likely to aid our understand-
ing of these diverse cell types, which can be difficult, or
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impossible, to separate from populations due to their small num-
ber or lack of marker genes. Additionally, scRNA-seq removes the
need for large cell numbers, often required for bulk analyses.
Thus, a detailed investigation of previously unreachable, rare
populations which cannot be amplified in culture, should now
be possible by profiling parasites immediately after extraction
from the host.

Host-parasite interactions could also be analysed in tandem
with scRNA-seq by, for instance, analysing infected host cells or
capturing host cells along with infecting parasites in in vivo stud-
ies. scRNA-seq has been extensively used to analyse the immune
response (Chattopadhyay et al., 2014; Chattopadhyay and
Roederer, 2015; Buchholz et al., 2016; Buchholz and Flossdorf,
2018) and could be applied to study the host response to kineto-
plastid infection. Comparison of parasites resident in differing
host tissues, such as an invasion of the lymph and blood systems,
skin (Capewell et al., 2016), adipose tissue (Trindade et al., 2016;
Tanowitz et al., 2017) and brain (Grab and Kennedy, 2008;
Kristensson et al., 2010) by African trypanosomes (Alfituri
et al., 2020), should also be facilitated by scRNA-seq. In the
case of T. cruzi, 10–30% of infected individuals will develop
chronic Chagas (World Health Organization, 2002), where para-
sites invade the heart (Bellotti et al., 1996), and, in infected mice,
parasites have been detected in the skeletal muscle, heart, bladder,
peripheral nerve, liver, spleen, adrenal gland, brain and adipose
tissue (Buckner et al., 1999). Understanding if and how T. cruzi
adapts to these diverse host niches could be revealed by
scRNA-seq. Leishmania promastigotes must make their way
through the dermis extracellular matrix before infecting macro-
phages (Arango Duque and Descoteaux, 2015) and neutrophils
(Ribeiro-Gomes et al., 2004) and then differentiating into amasti-
gotes, and it remains possible scRNA-seq will uncover aspects of
this journey. As well as isolating individual host cells and parasites
for the scRNA-seq methods discussed, in situ analysis of single
cells in the surrounding tissue can be performed. 10x Genomics
now provides a spatial transcriptomic platform based on the
method developed by Ståhl et al. (Ståhl et al., 2016). scRNA-seq
can also be used to study cross-talk between physically interacting
cells, such as T. congolense and the epithelial cells the parasites
adhere to (Hemphill et al., 1994; Hemphill and Ross, 1995).
PIC-seq combines cell sorting of physically interacting cells
(PICs) with scRNA-seq, allowing analysis of the interacting cells
and comparison to non-interacting single cells in the same sample
to identify interaction-specific gene expression (Giladi et al.,
2020). Thus, various iterations of scRNA-seq could improve
understanding of the differences between tissue-specific parasites,
as well as host cellular responses.

Complex life cycle stage differentiation can also be analysed in
novel detail. We used trajectory inference to reconstruct the asyn-
chronous differentiation of bloodstream form T. brucei from
slender to stumpy form (Briggs et al., 2020). Epimastigote to
early- and then late-stage metacyclic T. brucei has also been pro-
filed to identify transitioning surface protein expression
(Vigneron et al., 2020). Similar approaches should be capable of
deconvolving the other life cycle stages of T. brucei, arguably
the most tractable model of trypanosome differentiation.
Different data sets from such studies can in the future be inte-
grated (using the methods described above) to generate a T. brucei
life cycle cell atlas. Cell atlases are valuable resources as they docu-
ment gene expression changes across development processes (e.g.
the life cycle or cell cycle) in greater detail than bulk analysis of
selected populations.

Using a similar approach, complexities in the Leishmania life
cycle could also be dissected. Bulk RNA-seq analysis showed
extensive transcript regulation of promastigote, amastigote and
axenic amastigote L. mexicana life cycle stages (Fiebig et al.,

2015). Separating the various promastigote forms (procyclic, nec-
tomonad and leptomonad) from sandfly tissues (Walters et al.,
1989; Lawyer et al., 1990; Walters, 1993; Serafim et al., 2018;
Coutinho-Abreu et al., 2020) is also difficult and so profiling
these as a mixed population may aid understanding. The T.
cruzi life cycle contains equal complexity, with epimastigotes, try-
pomastigotes and spheromastigotes, as well as many intermediate
stages (Schaub, 1989), found together in the triatomine bug intes-
tinal tract (Chagas, 1909; Onyekwelu, 2019). Both amasitogotes
and infective trypomastigotes are additionally found in the mam-
malian host’s blood (Onyekwelu, 2019). Hence, complete cell
atlases for these life cycles would be equally valuable to under-
stand these cell types and the development between stages via
differentiation.

Importantly, these atlases would also provide a reference on
which to map lower quality transcriptomes or those from experi-
ments with low cell numbers. Howick et al., clearly demonstrated
cross-species mapping of Plasmodium to characterize fixed clin-
ical samples using a high-quality cell atlas (Howick et al., 2019).
Clinical or field samples containing kinetoplastids will most likely
also need to be stored before scRNA-seq can be applied. Thus,
methods to improve the analysis of cryopreserved or chemically
fixed parasites will be highly valuable and allow more flexibility
when performing scRNA-seq in the future. With the methods dis-
cussed, scRNA-seq should allow parasitologists to reach beyond
the most well-understood, laboratory-adapted species and cell
types, and doing so will be valuable for the development of
novel therapeutic approaches.

Perspectives

Despite their unusual approach to transcript regulation, single-
cell transcriptomics is a valuable resource for kinetoplastid
research. scRNA-seq should allow researchers to interrogate het-
erogeneous populations, study host–parasite interactions in
greater detail, reconstruct maps of developmental processes, and
study previously inaccessible species and rare cell types. As well
as using the technology and methods discussed here, improved
approaches [such as Seq-well S3 (Hughes et al., 2020)] and
novel computational analysis [such as machine learning
approaches to integration (Lotfollahi et al., 2020)] can be explored
to allow larger kinetoplastid data sets to be leveraged. The gener-
ation of complete cell atlases for the most tractable species will
greatly aid these aims, as will the improvement of protocols to
analyse preserved samples. Equally, resources to make these
large data sets accessible to the community and allow users to
interrogate the data without specific bioinformatic knowledge
will be valuable.
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