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Summary

The structure and diversity of all open microbial com-
munities are shaped by individual births, deaths, spe-
ciation and immigration events; the precise timings
of these events are unknowable and unpredictable.
This randomness is manifest as ecological drift in
the population dynamics, the importance of which
has been a source of debate for decades. There are
theoretical reasons to suppose that drift would be
imperceptible in large microbial communities, but
this is at odds with circumstantial evidence that
effects can be seen even in huge, complex communi-
ties. To resolve this dichotomy we need to observe
dynamics in simple systems where key parame-
ters, like migration, birth and death rates can be
directly measured. We monitored the dynamics in
the abundance of two genetically modified strains
of Escherichia coli, with tuneable growth character-
istics, that were mixed and continually fed into

10 identical chemostats. We demonstrated that the
effects of demographic (non-environmental)
stochasticity are very apparent in the dynamics.
However, they do not conform to the most parsimo-
nious and commonly applied mathematical models,
where each stochastic event is independent. For
these simple models to reproduce the observed
dynamics we need to invoke an ‘effective commu-
nity size’, which is smaller than the census
community size.

Introduction

It is widely accepted that ecological drift plays a role in
shaping all biological communities (Vellend and
Agrawal, 2010). However, its relative importance remains
a source of debate with potential important conse-
quences, especially for quantifying the uncertainty in
strategies to manipulate microbial communities for engi-
neering, medical of agricultural practices (Zhou and
Ning, 2017). The doubt about the importance of demo-
graphic randomness, which causes drift, is particularly
pertinent to microbial communities because, theoretically
(Nee, 2005; Ricklefs, 2006), the importance diminishes
with increasing population size. Thus, for example,
Nee (2005) and Ricklefs (2006) considered the dynamics
resulting from a stochastic birth–death model, where
each event is independent and randomly distributed in
space and time. They showed that in a large population
the drift associated with randomness would occur over
unfeasibly long timescales and, therefore, would be
unobservable and entirely swamped by the environmen-
tal effects on the population. Most microbial communities
of consequence to us, such as those in soil, the gut,
wastewater or infections, comprise huge numbers of indi-
vidual organisms.

Yet this theoretical argument is at odds with many
results from researchers who have just gone ahead and
deployed stochastic birth–death processes to describe
community assembly (Sloan et al., 2006; Woodcock
et al., 2007; Morris et al., 2013; Adair et al., 2018; Ling
et al., 2018; Mo et al., 2018). The interest in random
effects was initially brought into focus, and simulta-
neously polarized (McGill, 2003), by neutral theory
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(Hubbell, 2001), which is an extreme case where only
drift is at play in local communities. So, for example, most
theoretical manifestations of the purely neutral assump-
tions yield the results that the abundance of an individual
taxa in an isolated community is beta distributed (Sloan
et al., 2006) and that the taxa-abundance distribution of
all taxa in that community adheres to a Dirichlet distribu-
tion (Sloan et al., 2007). It has been shown, using a suite
of different methods, that these distributions fit data from
a single community or multiple, similar, but geographi-
cally distinct communities for single snap-shots in time
(Volkov et al., 2003; Sloan et al., 2006; Woodcock
et al., 2007). However, fitting stationary taxa abundance
distribution to observations will only ever provide circum-
stantial evidence of the importance of ecological drift.
The models may fit but for the wrong reasons; a range of
different processes could yield very similar stationary dis-
tributions. There are at least as many studies where the
neutral models do not fit the data (Clark and
McLachlan, 2003; Dornelas et al., 2006). In addition, the
assumption of neutrality, where all taxa have the same
specific birth and death rate, is at odds with biologists’
experience in the laboratory. The fact that neutral models
deliver an extreme manifestation of the effects of drift is
sometimes overlooked and where neutral models fail to
describe patterns in ecology the whole concept of demo-
graphic stochasticity and thus drift is dismissed in favour
of alternative models built on entirely different axioms
(Tilman, 2004). Yet to discard the building block of a ran-
dom birth–death process as a collateral effect of dis-
missing the neutral assumption would seem hasty. The
drift effects of demographic stochasticity may still be
manifest in the dynamics of communities where growth
rates are differentiated by species.
The dichotomy of theoretical slow drift in large commu-

nities alongside circumstantial experimental evidence of
its importance in shaping community composition can
only be resolved with richer datasets. In particular, time
series of the population dynamics in systems where
some of the key parameters that determine the magni-
tude and speed of the random effects can be directly
measured. Time series of abundance of bacteria in com-
munities are quite rare. Ofiţeru et al. (2010) were able to
calibrate a stochastic birth–death process for microbes in
a wastewater treatment plant and provide stronger evi-
dence that somehow the demographic stochasticity was
indeed important, even in large communities. However,
the complexity of that environment made it difficult to dis-
cover why the phenomena might be observed in such a
large population; the key parameters could only be
inferred. Cira et al. (2018) created time series using rela-
tively complex synthetic communities of bacteria and
again inferred parameter values. In a forest, where a
comprehensive time series of tree species exist, again

using model inference alone it appearred that the role of
demographic stochasticity was difficult to disentangle
from environmental variance (Chisholm et al., 2014).
Here, we observe the dynamics in a set of very simple
experiments where the environment, as far as is possible,
stays constant and the factors that are known to affect
the rate of drift are controlled and measured.

Birth, death and immigration rates can be controlled
in chemostats, so we describe experiments where we
operate 10 identical chemostats in parallel and record
the dynamics of two strains of E. coli. The strains only
differ in having a single copy of a different antibiotic
resistance gene added to exactly the same position in
their genomes. They behave neutrally when mixed
without antibiotics or can be disadvantaged by adding
one or other of the antibiotics. We then fit a modest
adaptation of the birth–death–immigration model in
Ofiţeru et al. (2010) to the experimentally observed
population dynamics to ascertain whether drift
explains the dynamics in the chemostats. There are
two random effects in our experimental data: the drift,
which is a fundamental component of the real dynam-
ics, and experimental errors. Drift is manifest as a ran-
dom walk where steps are a function of the strain’s
abundance and successive data in a time series are
correlated. Experimental error is manifest as the addi-
tion of independent realizations of a normally distrib-
uted random variable to the true population numbers
at each time point. Our model and fitting method dis-
tinguishes between these. We can independently ver-
ify the estimate of measurement error from repeat
measurements and thus it is possible to reliably quan-
tify the drift. We believe our approach is a uniquely
rigorous exploration of drift that is particularly suited to
the tractable microbial community dynamics in our
experimental setup.

Methods

Two bacterial strains

Truly neutral species would have identical growth rates in
all environmental conditions. Unfortunately, it would be
extremely difficult to guarantee such equivalence in two
naturally occurring species. Thus, we created two geneti-
cally modified strains of E. coli from a common laboratory
parent strain (K-12) by replacing the single-copy non-
essential pepA gene in its genome with two different anti-
biotic resistance genes: one conveying chloramphenicol
resistance and the other kanamycin resistance. This was
achieved through recombination-mediated genetic engi-
neering using bacteriophage lambda-encoded recombi-
nation enzymes (Supplementary Note 1), which is
reported to be precise and efficient (Datsenko and
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Wanner, 2000). Placing the antibiotic resistance gene in
the chromosome, rather than on a plasmid, offers more
stability. We tested that the single copy pepA gene was
replaced by only one copy of the antibiotic resistance
genes (Supplementary Note 2) and, hence, that we could
quantify the abundance of the two modified strains, when
they were mixed in known ratios, using qPCR (Supple-
mentary Note 3). This meant we could be confident in
qPCR estimates of the abundance of the two populations
when mixed and fluctuating in the subsequent chemostat
experiments.

In benign conditions, the growth characteristics of the
two modified strains should be identical. We showed that
this was indeed the case by estimating the growth in trip-
licate batches for different substrate (tryptone broth) con-
centrations at 37�C (Supplementary Note 4). The
relationship between growth rate and substrate concen-
tration was then characterized using a Monod kinetic
model; and the maximum growth rate, μmax ffi 0.85 h−1,
and the half-saturation constant, Ksat ffi 2.5 g L−1, for both
strains. We similarly fitted Monod curves to the relation-
ship between substrate concentration and growth rate
when the strains were inhibited by the addition of antibi-
otics. In the presence of 0.5 μg ml−1 chloramphenicol the
growth rate of the chloramphenicol resistant, μc, strain is
two times that of the kanamycin-resistant strain, μk,
across a wide range of substrate concentrations (Supple-
mentary Note 4). The kinetic curves also allowed us to
design the chemostat setup using a conventional

deterministic mathematical model of chemostats to
ensure that the biomass was turned over and retained in
the system.

A schematic of the experimental system is given in
Fig. 1. It was designed so that different experimental
setups could be implemented by simply switching on or
off pumps. Three separate experiments were conducted:
1. The first experiment aimed to maximize the chance of

observing neutral dynamics, if they occur. In this first
experiment, neither of the strains were disadvantaged
by the addition of antibiotic, so pump B was not active.
The A pumps were active so that the two large
chemostats (2 L) were fed with 10 g L−1 tryptone-broth
at a rate of 0.6 ml min−1 which maintained the pure
cell cultures at similar densities. These pure cultures
were pumped at a rate of 0.55 ml min−1 into two sepa-
rate manifolds and divided evenly between 10 smaller
chemostats where they were mixed and continuously
stirred. No additional substrate was added and so the
mixed cultures in smaller chemostats grew in the
residual substrate entering with the bacteria from the
large chemostats. The small chemostats overflowed
when the volume reached 250 ml and so the volume
was held constant at that value and the volumetric
flow rate of influent and effluent were similar, not
accounting for evaporation. The mass flux of residual
substrate ensured that there was growth in the small
chemostats so the cell density in the effluent always
exceeded that of the influent. The bacteria entering

Fig 1. Schematic of the experimental setup. In experiment 1, which potentially creates neutral dynamics in the 10 small co-culture chemostats,
substrate and migrants entered via the pumps labelled A; the one labelled B was off. In experiment 2, the initially inoculated chemostats were fed
substrate with 0.5 μg L−1 chloramphenicol via pump B, but no new migrants were allowed to enter, so the A pumps were off. In experiment 3, sub-
strate and migrants entered via the A pumps and 0.5 μg L−1 chloramphenicol in substrate was fed in via pump B. [Color figure can be viewed at
wileyonlinelibrary.com]
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the small chemostats will be referred to as immigrants
and those in the effluent as emigrants. The entire
experimental setup was housed in a temperature-
controlled chamber that was maintained at 37�C. The
chemostats were operated identically for 7 days. After
allowing 2 days for the chemostats to achieve steady
cell densities, the large pure-culture chemostats and
the effluent from the 10 smaller chemostats were sam-
pled every 2 h during the 5 remaining days
(08.00–20.00 h) and the cell density (cells ml−1) was
enumerated by QPCR.

2. In the second experiment, the 10 smaller communities
were inoculated with a 50:50 mix of the two bacterial
strains; the stabilizing force of immigration was
removed (pumps A switched off); the small
chemostats were fed bacteria-free Tryptone-broth sub-
strate (pumps B switched on) with 0.5 μg ml−1 chlor-
amphenicol via a manifold at a rate of 1.1 ml min−1

and so the kanamycin-resistant strain was disadvan-
taged. Thus, we would expect the chloramphenicol-
resistant strain to become monodominant with the
dynamics following variable trajectories if demographic
stochasticity plays a role and with identical trajectories
if it does not. In this experiment, the chemostats were
maintained at a volume of 200 ml.

3. In the third, and final experiment, the setup was the
same experiment as 1, but with the addition of
0.5 μg ml−1 chloramphenicol in tryptone media via
pump B at a rate of 0.33 ml min−1 directly into the
10 small chemostats. Also, the small chemostats were
kept at a volume of 200 ml. Here, the
chloramphenicol-resistant strain should dominate, but
the kanamycin-resistant strain ought to be maintained
at low abundance by new migrants. It should be possi-
ble to ascertain whether any dynamics can be attrib-
uted to those induced by the randomness of birth,
death immigration events.

The mathematical model is a modest adaptation of that in
Ofiţeru et al. (2010), which derives from Sloan
et al. (2006) and ultimately Hubbell (2001). It describes a
birth–death-immigration process for the co-culture of the
two species in small chemostats that are maintained with
a constant number of individuals, NT. For the assemblage
to change an individual is selected at random to die or
leave the system. The dead individual is replaced by an
immigrant from a source community with the probability
m or by reproduction by a member of the local community
with probability (1 − m).If we take either one of our two
strains comprising initially of N individuals, then we can
write the probabilities that after one replacement event,
there has been an increase by one, decrease by one, or
no change (Sloan et al., 2006),

Pr N+1=Nð Þ= NT−N
NT

� �
mp+ 1+ αð Þ 1−mð Þ N

NT−1

� �� �
=bN,

ð1Þ

Pr N−1=Nð Þ= N
NT

m 1−pð Þ+ 1−αð Þ 1−mð Þ NT−N
NT−1

� �� �
=dN ,

ð2Þ
Pr N=Nð Þ=1−bN−dN , ð3Þ

respectively, where

p=
K

K +Kother
: ð4Þ

and K and Kother are the number of individuals in the
large monoculture of the strain of interest and the other
strain respectively. Thus p is the relative abundance of
the strain in the influent to the smaller chemostats. α is a
parameter that conveys an advantage on the strain by
increasing the probability of its birth relative to other
strain within the chemostat; when this is set to zero the
dynamics are neutral. Note Pr(N/N) is independent of α.
These transition probabilities describe a discrete Markov
chain process that can simulate the dynamics of the
abundance of the species. In the discrete Markov transi-
tion probabilities, each transition represents one replace-
ment event. Simulating the dynamics using this discrete
model rapidly becomes cumbersome as NT gets large.
For microbial communities, where NT is very large
indeed, it is completely impractical. So, it is convenient to
recast the model as a set of continuous stochastic differ-
ential equations (SDEs). The model presented here is
very similar to that of Ofiţeru et al. (2010) but differs
slightly. For the complex wastewater treatment plant,
where they applied their model, the average time
between birth/death random replacements was experi-
mentally intractable and therefore was estimated by
calibration. With the careful experiments conducted
here, we do know how many replacements occur
within a given time period so we can estimate the aver-
age time between replacement events. We can also
estimate the total population size, NT, the source com-
munity relative abundance, p, and the immigration
probability, m, directly from the experimental data. This
allows us to give a richer interpretation of the parame-
ters that are delivered by calibrating our SDE. Hence,
we relate discrete events in time to continuous real-
time in a marginally more intuitive way. We let η be the
average time between individual replacement events in
the populations and define a scaled time τ = t/η. Then
in a time period Δτ = 1 we can expect one replacement
in the community as a whole so that Δτ is, on average,
the transition time in the discrete Markov model. In

© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology

4 W. T. Sloan et al.



general, NT is large we can use the continuous vari-

able X = N
NT

represent the Markov chain process by the

SDE (2),

dX =Mdτ +
ffiffiffiffi
V

p
dWτ, ð5Þ

where Wτ is a standard Wiener process and for small Δτ,

E ΔX=X τð Þ= xð Þ=MΔτ , ð6Þ

and

E ΔXð Þ2=X τð Þ= x
� �

=VΔτ: ð7Þ

For the discrete time model, the smallest change that can
occur is the replacement of one individual, which we
expect to occur in a time Δτ = 1. So, during this time
period the possible changes in X are ΔX = � 1

NT
. Conse-

quently, for x = N
NT
, we have,

E ΔX=X τð Þ= xð Þ= 1
NT

bN−dNð Þ

=
1
NT

m p−xð Þ+2α 1−mð Þx 1−xð Þð Þ
ð8Þ

and

E ΔXð Þ2 X τð Þ= xj Þ= 1

N2
T

2 x 1−xð Þð Þ+ mð1−2xð Þ p−xð Þð Þ
 

ð9Þ

which gives us M and V. In Sloan et al. (2006), it is
argued that the second term in V is an order of magnitude
smaller the first and it is reasonable to ignore it. So that
Eq. 5 becomes

dX =
1
NT

m p−Xð Þ+2α 1−mð ÞX 1−Xð Þð Þdτ

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2
T

2X 1−Xð Þð Þ
s

dWτ: ð10Þ

Now we can convert to real time using dτ = dt=η so that,

dX =
1

ηNT
m p−Xð Þ+2α 1−mð ÞX 1−Xð Þð Þdt

+
1ffiffiffiffiffiffiffiffiffi
ηN2

T

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X 1−Xð Þð Þ

p
dWt : ð11Þ

or

dX = f X,p : θ1,θ2ð Þ+g X : θ3ð ÞdWt, ð12Þ
where

f X,p : θ1,θ2ð Þ= θ1 p−Xð Þ+ θ2X 1−Xð Þ,
g X : θ3ð Þ= θ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X 1−Xð Þð Þ

p
,

θ1 = mdt
ηNT

, θ2 =
2α 1−mð Þdt

ηNT
and θ3 = 1ffiffiffiffiffiffi

ηN2
T

p . This then constitutes

our SDE that we hope will describe the dynamics in rela-
tive abundance of either one of our bacterial strains.

The fitting method

To calibrate the model we have n observations of the
relative abundance {Xi, i = 1, n} that were made every
2 h, dt = 2, in all of the small chemostats, from 08:00
to 20:00 h daily. We also have observations of the
relative abundance {pi, i = 1, n} in the large pure cul-
tures and we can calculate dXi = Xi + 1 − Xi for all
observations except the couplets that span the night,
where the time gap was 12 h, which is too-long. The
relative abundances were quantified using qPCR with
the same standard curve which should minimize
the variability in measurements; nonetheless, there
will be some measurement error. So, for our
measurements,

dXi = f Xi,pi : θ1,θ2ð Þ+g Xi : θ3ð ÞdWt,i + εi ð13Þ

where dWt, i is the ith realization of the standard Weiner

process dWt,i �
ffiffiffiffiffi
dt

p
N 0,1ð Þ at εi is a realization of the

measurement error in X. We make the assumption that
measurement noise, εi, has the effect of adding a con-
stant, σε, to standard deviation in the process. To fit the
model we use maximum likelihood estimation (MLE),
where the log-likelihood function for the parameters given
the data is

L θ1,θ2,θ3,σε : Xi,dXi,pi; i =1,nf gð Þ

= −
Xn
i = 1

dXi− f Xi,Pi : θ1,θ2ð Þdtð Þ2

2 dtg Xi : θ3ð Þ2 + σε2
� �

0
@

0
@

+ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π dtg Xi : θ3ð Þ2 + σε2
� �r� �

ÞÞ ð14Þ

This allows us to make an estimate of all the parame-
ters including the measurement noise σε based solely
on the time-series data, which would not be possible
using, for example, least squares fitting. Then, merely
to gain more information on the quality of the model fit,
the MLE estimate of σε is fixed in Eq. 13, which allows
us to use ordinary least squares, as in Ofiţeru
et al. (2010), to deliver goodness-of-fit statistics.

© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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Results

The time series of relative abundance for both bacterial
strains in all experiments and reactors are given in sup-
plementary materials. We have highlighted the generic
behaviour of the dynamics in relative abundance in the
experiments by plotted graphs for an arbitrarily selected
subset of the reactors. Plotting all reactors for all time
points would lead to too many, or overly complicated, fig-
ures and plotting the averages across all reactors would
defeat the purpose of highlighting the variability between
reactors.
For experiment 1, the time series of bacterial abun-

dance in the pure culture of the chloramphenicol-resistant
strain in the large monoculture chemostat and for two of
the smaller co-culture chemostats are presented in
Fig. 1A. We have not displayed the relative abundance of
the kanamycin strain because it is merely one minus the
relative abundance of the chloramphenicol strain. The
graph shows that for both of these small chemostats the
relative abundance fluctuates around the relative abun-
dance of the large monoculture from which immigrants
are drawn. The dynamics in the fluctuation about the
source community abundance seems to be independent in
the two reactors. This observation is similar for all 10 of
the small co-culture chemostats; Fig. 1B demonstrates this
by plotting the dynamics in abundance for 1 day for all
10 chemostats. So, whilst the abundance of the source of
immigrants strongly influences the abundance in the local
co-culture chemostats, there are serially correlated dynam-
ics occurring independently in each of the vessels, despite
the environmental conditions being the same in each. This
is redolent of ecological drift.
In experiment 2 we inoculate the chemostats and cut-

off immigration, so that the probability of an immigration
event m = 0. The addition of 0.5 μg L−1 of chlorampheni-
col to each of the co-culture chemostats should convey
an advantage to the chloramphenicol-resistant strain. In
Fig. 1C we see that the experimental results, presented
here for just three arbitrarily selected chemostats, bear
this out. The chloramphenicol strain ultimately becomes
dominant in all chemostats, but the route towards domi-
nance differs in the reactors. Indeed, in two of the reac-
tors displayed in Fig. 1C the chloramphenicol-resistant
strain initially fairs less well than the kanamycin-resistant
strain. Again, the dynamics vary from reactor to reactor
despite the environmental conditions being identical.
In experiment 3, we reintroduce migration from the

large monoculture chemostats and see, for two arbitrarily
selected reactors (Fig. 2D), that whilst the chlorampheni-
col strain dominates it does not become monodominant;
the kanamycin-resistant strain is retained in the
chemostat by the steady stream of migrants, despite
being disadvantaged by the antibiotic.

Our use of qPCR allowed us to estimate the total popu-
lation size, NT. Organisms enter the reactor and grow, so
the density in the reactor is higher than in the influent,
however, at a steady state that density stays constant in
time. Therefore, the number of replacements either by
births or by immigration in a unit of time must be equal to
the number leaving in the effluent. So, if the density of
bacteria in the effluent is Neff and the volumetric flow rate
is Q then the total number of replacements in the commu-
nity per unit time is simply QNeff and thus the time

between replacement is simply η= 1
QNeff

. If Nin is the den-

sity of immigrants in the influent, then the number of
immigrants per unit time is QNin and so the probability
that when a replacement event occurs it is by and immi-

grant is just m= QNin
QNeff

= Nin
Neff

. In supplementary materials,

we see that in the presence of 0.5 μg L−1 chloramphenicol
the growth rate of the chloramphenicol resistant, μc,
strain is two times that of the kanamycin-resistant strain,
μk, across a wide range of substrate concentrations.
Thus, μc

μk
= 1+ α

1−α =2 which means that α =0.33. So, esti-

mates of m, η, NT and α can be calculated directly from
the experiments and are given in Table 1.

We can also approximate the standard deviation of the
measurement error, σε. The abundances of each of the
antibiotic-resistant genes were enumerated at all time
points in the small reactors using qPCR with three techni-
cal replicates. All qPCR estimates for each gene used
the same standard curves. With three estimates of the
kanamycin-resistant gene and three of the chlorampheni-
col then we have nine possible combinations to estimate
the total abundance of bacteria in the samples at each
time point. And then if we consider all possible ratios of,
for example, the three measurements of the abundance
of chloramphenicol strain with the nine estimates of total
abundance then there 27 possible values. At each time
point, we calculated the mean and standard deviation of
the possible values and then we calculated the mean of
the standard deviation across all time points to obtain a
crude estimate of σε. We obtained a value of σε ’ 0.07 by
averaging across all the data (Table 1).

One set of parameters was calibrated for each experi-
ment using the time series from all the chemostats
(Table 2). The p-values for the least squares regression
fit demonstrate that the model parameters are signifi-
cantly different from the null hypothesis of them being
zero (no trend). Bearing in mind that we are fitting a SDE
with the aim of explaining the variability between reactors
we would not necessarily expect a high R-square value
for the fit, which is the case, especially for experiment
2 where there is no stabilizing influence of immigration.
Overall, though, the significances of the over-all model
fits are high. It is more important to test the null hypothe-
sis that the weighted residuals are normally distributed.
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A

B

C

D

Fig 2. A. Experiment 1, where we
might expect neutral dynamics. A
graph of the dynamics in relative
abundance of the chloramphenicol-
resistant strain in the large mono-
culture that acts as a source of
immigrants and in two arbitrarily
selected smaller co-culture
chemostats (2 & 5).
B. The relative abundance of the
chloramphenicol-resistant strain
in all 10 of the co-culture
chemostats for a 10 h period dur-
ing experiment 1.
C. Experiment 2, where immigra-
tion to the small chemostats is cut
off and chloramphenicol is added,
which gives the chloramphenicol-
resistant strain an advantage. The
plot shows the chloramphenicol-
resistant strain taking a variety of
trajectories towards becoming
monodominant in an arbitrary
selection of four reactors (2, 5,
6 & 10).
D. Experiment 3, where immi-
grants are equally likely to be of
either strain, but the addition of
chloramphenicol conveys an
advantage on the chloramphenicol-
resistant strain. A graph of both the
relative abundance of chloram-
phenicol and kanamycin-resistant
strains in two of the co-culture
chemostats. The chloramphenicol-
resistant strain is consistently more
abundant but the dynamics vary
between reactors. [Color figure can
be viewed at wileyonlinelibrary.com]
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For the case with no immigration, where the
chloramphenicol-resistant strain becomes mono-
dominant, then 1 and 0 are absorbing boundaries where
the residuals become very close to zero; which errone-
ously skews the distribution of residuals. So we test the
fit for the region just before the process first hits the
boundary, which is analogous to first passage time prob-
lem in survival analysis (Lee and Whitmore, 2006), and
thus we only consider residuals where the abundance
lies between 0.05 and 0.95. Using the Anderson–Darling
test, we fail to reject the null hypothesis of normality at
the 95% level. So, it would appear that the SDEs are
doing a good job of capturing the noisy dynamics across
all the reactors.

Discussion

There was a high degree of variability in the dynamics of
the abundance of the two strains across identically oper-
ated chemostats. We were able to fit the parameters of
our SDEs using the time series data from all three experi-
ments with a high degree of significance. This would sug-
gest that we are observing neutral dynamics with
immigration in experiment 1, selection and drift in experi-
ment 2 and selection and drift mediated by immigration in
experiment 3. Precisely what we anticipated. So, it would
appear, on this evidence, that demographic stochasticity
does play an important role in the dynamics, whether or
not the species have identical growth rates.
The beauty of the simple experimental system we have

used here is that we can actually measure the key

variables in the experiment and compare them to our cali-
brated model parameters. First, the calibrated estimates
of the standard deviation in measurement noise are in
close agreement with that estimated directly from the trip-
licate qPCR measurements. For the other parameters, it
is important to note that in our mathematical model, and
indeed, in every other manifestation of random birth–
death population models, the parameters we calibrate
are compound combinations of the fundamental parame-
ters that describe the process. So, for example, here

θ1 = mdt
ηNT

. If we estimate the compound parameters for our

model using the variables, m, NT, η and α, measured
directly in our experiments (Table 1) do they match the
calibrated model parameters (Table 2)? Table 3 makes
that comparison.

For parameters θ1 and θ2 there is a reasonably good
match between the calibrated and experimentally derived
estimates. However, values of θ3 estimated by calibration
are several orders of magnitude larger than that are cal-
culated from the direct measured variables. θ3 deter-
mines the size of the random step in the stochastic
process and hence the timescales over which stochastic
demography becomes apparent.

So, this takes us straight back to the heart of the
dilemma that we outlined in the introduction. As
Nee (2005) and Ricklefs (2006) suggested, if we use the
actual measured population size, immigration probability
and replacement rate the model predicts the stochastic
contribution to dynamics that is small and would only
become apparent over long timescales. Yet, the
observed dynamics are highly variable and are well rep-
resented by the SDEs albeit with the calibrated parame-
ter that determines the speed of dynamics, θ3, much
larger than we would expect. So, in our tightly controlled
experiments, we see exactly the dichotomy that we
described earlier, based on birth–death processes cali-
brated for more complex environments. This is frustrat-
ing. There is a tantalizing alignment between the models
and the experimental results that is only undermined by
the failure to match one important parameter. Thus, it
appears that our underlying model (Eqs. 1–3), which is

Table 2. The parameter estimates obtained by calibrating the model using the time series of relative abundance for each of the three
experiments.

Experiment θ1 θ2 θ3 σε R2
p-value model
fit .v. no trend

Normally distributed weighted
residuals (AD test)

1. Parameter estimate 0.31 – 0.026 0.071 0.17 2.96 ×10−12 ✓
p-value 8.06 ×10−12 –

2. Parameter estimate – 0.16 0.051 0.077 0.07 3.33×10−5 ×All residuals
p-value – 3.32 × 10−5 ✓Residuals away from

adsorbing boundary
3. Parameter estimate 0.32 0.29 0.041 0.080 0.27 3.59 ×10−18 ✓
p-value 1.20 × 10−18 6.45 × 10−15

Table 1. The values of the variables that form the parameters in the
birth–death-immigration model, estimated directly from the experi-
mental data.

Experiment m η NT / σε

1. 0.68 1.19×10−11 2.26 ×1011 0.07
2. – 4.58× 10−11 6.61× 1010 0.33 0.07
3. 0.31 6.29× 10−12 3.7× 1011 0.33 0.07
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the basis of all birth–death processes in ecology is funda-
mentally flawed.

Before dismissing birth–death processes for our simple
microbial communities it is worth considering their appli-
cation in the related field of population genetics. There
the central premise is that mutations in the genomes of a
population are inevitable, but the precise timing and loca-
tion of the mutations defy characterization. So, the math-
ematics of population genetics, whilst continually
advancing, has adhered to the idea that inheritance is an
intrinsically stochastic process. The simplest models
encapsulate a few fundamental truths for all organisms;
they are born, they die, they inherit mutations and they
accumulate new ones at random. Selection is manifest
as a tweak on the probability that one mutant preferen-
tially reproduces over others. Thus population genetics
has simple random birth–death processes at its heart
and these are deployed to great effect in range of practi-
cal applications including human medicine, animal hus-
bandry, epidemiology and agriculture (Pirchner, 1969).
This is the case even although the model predictions, in
their rawest form, always deviate from observations.
Thus, for example, the models always significantly under-
estimate the variance in the frequency of alleles in suc-
cessive populations (Wright, 1931) when applied using
the census population number. This does not deter
geneticists; confident that the fundamental stochastic pro-
cesses are at play, they retain the birth–death-mutation
model and introduce the idea of an effective population
size. That is, a fictitious smaller population size would
see the model produce the correct results. This is not as
much of a ‘fix’ as it might first seem because there is a
wide variety of biological and demographic reasons why
it is reasonable to assume that not all of the census pop-
ulation will contribute to the genetic diversity of the next
generation. Thus effective population sizes in clonal
populations of bacteria estimated using allele frequencies
have small effective population sizes (Fraser
et al., 2007).

Can we deploy a similar approach here and, based on
the assumption that the random birth–death process
must be occurring, make sense of the rapid drift by
describing an effective parameter that makes biological
sense? The model assumes that every organism that is

replaced is selected independently at random from the
population. Suppose instead that there was some spatial
or temporal correlation in the replacements. This is not
unreasonable since, despite our best efforts, it is impossi-
ble to perfectly mix a reactor and so when an individual
leaves the system it departs at the same time as at least
a few of its neighbours. Furthermore, when a bacterium
divides the offspring are collocated, they are not instanta-
neously transported to randomly selected locations in the
chemostat. In addition, with any bacterial community
some degree of flocculation is common.

Our model does not explicitly represent space. How-
ever, we can explore what size of spatial or temporal
grouping, or ‘clumping’, might yield the stochastic
dynamics we observe. If the cells in the chemostat reside
in clumps, then they would exit the chemostats in those
clumps. So if Nec is the total number of clumps and ηec is
the average time between clumps leaving then,
Necηec = NTη; the turnover in the population is the same it
merely occurs in clumps rather than individuals. Note
then that the first two parameters in our model remain
unchanged if we replace NT with Nec and η with ηe no
matter what their value. If we assume that Necηec is given
by the experimentally defined NTη then we can now cal-
culate the value of Nec that would yield the calibrated
value of θ3, which for experiment 1, 2 and 3 would be
598, 126 and 255 respectively; which is tiny in compari-
son to the number of individuals. Now consider the num-
ber of organisms that would constitute a clump, NT/Nec,
which is 5.56 × 108, 5.21 × 108 and 14.4 × 108, similar
across all three experiments. These seem large, but the
density of organisms is very high in the chemostats.
Indeed, if the organisms were evenly distributed in the liq-
uid then one of these clumps would only occupy approxi-
mately 0.5 ml. If they were correlated in time then it is the
number of organisms that would leave the reactors in
approximately 30 s. It, therefore, does not seem unrea-
sonable to us that spatial or temporal correlation in the
replacement events might be the reason that we seem to
observe stochastic dynamics of a magnitude far higher
than we would expect if events were truly randomly dis-
tributed as they are in our model. We suspect that the
spatial correlation of events will be equally important to
stochastic dynamics in other environments. Thus,

Table 3. Comparison between the compound parameters estimated by calibrating the model and those derived from the experimental variables.

Experiment θ1 θ2 θ3 σε

1. Parameter calibrated 0.31 – 2.6×10−2 0.071
Parameter from experimental variables 0.35 – 1.1×10−6 0.070
2. Parameter estimates – 0.16 5.1× 10−2 0.077
Parameter from experimental variables – 0.21 2.2 × 10−6 0.070
3. Parameter estimate 0.32 0.29 4.1× 10−2 0.080
Parameter from experimental variables 0.29 0.19 1.7 × 10−6 0.070
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predators will plough through a population, consuming
bacteria and their neighbours rather than picking up indi-
viduals at random from across the population. Infiltration
of rainfall in soils, attachment to substratum in a reactor
or indeed in structured biofilms will all promote correlated
random events. Also, it may explain the parameter values
that emerge from studies where neutral models are cali-
brated using stationary taxa abundance distributions. In
Etienne and Alonso (2005) description of the stationary
taxa-abundance distribution for the neutral case, a ‘fun-
damental dispersal number’ is calibrated, and in Sloan
et al.’s (2006) adaption for microbial communities, a simi-
lar compound parameter NTm is calibrated. Typically the
calibrated values of NTm are in the range of 10s to
10 000s depending on the clade of bacteria (Sloan
et al., 2006; Woodcock et al., 2007; Morris et al., 2013;
Adair et al., 2018), which in large populations would sug-
gest very low immigration probabilities. But if NT were
replaced by a much smaller effective community size,
Nec, then immigration could be orders of magnitude
higher and perhaps more realistic for the systems.
The composition and dynamics of any open microbial

community are ultimately shaped by four things (Vellend
and Agrawal, 2010): diversification, dispersal, selection
and drift. If we had a perfect knowledge of every individ-
ual organism in a community, from its position to meta-
bolic function and state, if we could anticipate precisely
where and when migrants entered or departed and if we
had an exact map of the environment now and in the
future then we might, in theory, be able to predict the
effects of these processes on the functioning and the fate
of species and their diversity in microbial communities.
However, we do not have this information even for simple
communities, let alone the complex communities that we
routinely rely on for important biotechnologies in, for
example, agriculture and water treatment. Furthermore, it
is not clear if we will ever be able to routinely collect such
information or choose to deploy the computing power to
process it. So if we are to use models to predict critical
elements of the behaviour of important communities then
must we accept models that are gross-simplifications of
the real world but, importantly, capture stable aspects of
the system (Cox, 1995). In population genetics, this per-
spective is deeply ingrained. Thus, tractable models that
describe the drift and selection of alleles are built on often
overly simplified but convenient assumptions like, random
mating, simultaneous birth of each new generation, constant
population size and equal numbers of children per parent.
When applied to real-world populations, in order for the
‘ideal’ model predictions to match data it is usually neces-
sary to use an effective population size that is smaller than
the census population size. The effective population size
has emerged as one of the most important characteristics in
predicting within-species allele dynamics and diversification.

In microbial ecology, we have no such convention. We are
less inclined to accept such abstractions and more inclined
to limit ourselves to first-order descriptors that take no
account of any underlying conceptual model, even though
we have some consensus (Vellend and Agrawal, 2010).
Here we have demonstrated that by adopting similar effec-
tive community sizes, Nec, which are orders of magnitude
lower than the census population the dynamics in all three
experimental scenarios, neutral, with selection, and totally
insular, the dynamics are consistent with an idealized com-
munity where all births, replacements and immigration
events are independent. Thus, using the effective parameter
allows us to make vital predictions on the dynamics of spe-
cies in the community and the challenge then becomes
determining this fundamental characteristic for different con-
sortia and environments. Nec ,we believe, can be deployed
as a fundamental measure to help characterize the dynam-
ics of mixed bacterial consortia in all sorts of important envi-
ronments from wastewater reactors to the human gut or
soils and ultimately be as useful as effective population size
has been in genetics.
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