
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The role of RNAbinding proteins in mediating adaptive
responses in Grampositive bacteria

Citation for published version:
Christopoulou, N & Granneman, S 2021, 'The role of RNAbinding proteins in mediating adaptive responses
in Grampositive bacteria', Febs Journal. https://doi.org/10.1111/febs.15810

Digital Object Identifier (DOI):
10.1111/febs.15810

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Febs Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

https://doi.org/10.1111/febs.15810
https://doi.org/10.1111/febs.15810
https://www.research.ed.ac.uk/en/publications/d40b9207-7543-429a-ba58-a598dbb61603


STATE-OF-THE-ART REVIEW

The role of RNA-binding proteins in mediating adaptive
responses in Gram-positive bacteria
Niki Christopoulou and Sander Granneman

Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, UK

Keywords

adaptive responses; bacteria; gram-negative;

gram-positive; protein–RNA interactions;

RNA-binding proteins

Correspondence

Sander Granneman, Centre for Synthetic

and Systems Biology, School of Biological

Sciences, University of Edinburgh,

Edinburgh EH9 3BF, UK

Tel: +44 131 6519082

E-mail: Sander.Granneman@ed.ac.uk

(Received 11 December 2020, revised 5

March 2021, accepted 9 March 2021)

doi:10.1111/febs.15810

Bacteria are constantly subjected to stressful conditions, such as antibiotic

exposure, nutrient limitation and oxidative stress. For pathogenic bacteria,

adapting to the host environment, escaping defence mechanisms and cop-

ing with antibiotic stress are crucial for their survival and the establishment

of a successful infection. Stress adaptation relies heavily on the rate at

which the organism can remodel its gene expression programme to coun-

teract the stress. RNA-binding proteins mediating co- and post-transcrip-

tional regulation have recently emerged as important players in regulating

gene expression during adaptive responses. Most of the research on these

layers of gene expression regulation has been done in Gram-negative model

organisms where, thanks to a wide variety of global studies, large post-

transcriptional regulatory networks have been uncovered. Unfortunately,

our understanding of post-transcriptional regulation in Gram-positive bac-

teria is lagging behind. One possible explanation for this is that many pro-

teins employed by Gram-negative bacteria are not well conserved in Gram-

positives. And even if they are conserved, they do not always play similar

roles as in Gram-negative bacteria. This raises the important question

whether Gram-positive bacteria regulate gene expression in a significantly

different way. The goal of this review was to discuss this in more detail by

reviewing the role of well-known RNA-binding proteins in Gram-positive

bacteria and by highlighting their different behaviours with respect to some

of their Gram-negative counterparts. Finally, the second part of this review

introduces several unusual RNA-binding proteins of Gram-positive species

that we believe could also play an important role in adaptive responses.

Introduction

Co- and post-transcriptional regulation involves control

of transcription, translation efficiency and mRNA tran-

script stability. RNA-binding proteins (RBPs) are fun-

damental components of bacterial co- and post-

transcriptional regulatory networks. They can influence

transcription and translation in many ways. For exam-

ple, they can block translation by binding ribosome-

binding sites, and they can trigger transcription

termination or promote transcription elongation by

altering the structure of the mRNA (attenuation and

antitermination, respectively). Our understanding of the

antitermination and attenuation mechanisms in bacteria

has been facilitated by research on various RBPs, such

as the Bgl-Sac protein family in Escherichia coli and

Bacillus subtilis and the TRAP attenuation protein of

B. subtilis as recently described in a very informative
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review [1]. In addition, RBPs often act in cooperation

with small RNAs (sRNAs) to manipulate the function

of their target molecules, by guiding sRNA–RNA inter-

actions or recruiting RNA degradation factors to con-

trol RNA degradation rates [2,3].

Technological advances in studying protein–RNA and

RNA–RNA interactions revealed that bacteria express

many more RBPs than expected and unearthed huge net-

works of sRNA–RNA interactions that link diverse cellu-

lar pathways [4–16]. A surprising finding from these high-

throughput proteomic studies was the sheer abundance of

unconventional RBPs, including metabolic enzymes, such

as aconitase (IRP1) and glyceraldehyde-3-phosphate

dehydrogenase (GAPDH). In many cases are these pro-

teins and their RNA-binding activity conserved in bacte-

ria [11,12,17–19]. Since a number of reviews have recently

been published that discuss the findings from these high-

throughput studies in detail [20–30], we will not further

discuss this here. Additionally, the roles of many well-

characterized bacterial RBPs, including RNA decay fac-

tors, have recently been thoroughly reviewed [3,9,31–36].
Here, we mainly focus on the role of RBPs in regulat-

ing gene expression in Gram-positive bacteria, as these

are relatively understudied. In the first part of the

review, we discuss a number of conserved RBPs and,

where possible, compare their role in Gram-positives to

their Gram-negative counterparts. It is becoming

increasingly clear that Gram-positive bacteria may, in

some ways, ‘do things differently’ when it comes to reg-

ulation of gene expression. What do we mean with ‘do-

ing things differently’? For example, even though many

well-studied RBPs of Gram-negative bacteria are con-

served in Gram-positives, these proteins do not always

seem to contribute to post-transcriptional regulation in

the same way or to the same extent. One goal of this

review was to shed light on some of these differences.

As stated above, many of the novel RBPs that were

recently identified do not contain conventional RNA-

binding domains and we would not be surprised if

these types of RBPs will be much more in the limelight

in the near future. Therefore, the second part of this

review focusses on three atypical RBPs that we believe

deserve more attention.

The role of well-known RBPs in
regulating adaptive responses in
Gram-positive bacteria

Hfq only plays important roles in some

Gram-positive bacteria

Near-universal bacterial RBP Hfq and Gram-negative-

specific ProQ have been shown to play a very

important role in co- and post-transcriptional gene

regulation in Gram-negative bacteria by facilitating

sRNA–mRNA interactions and controlling the stabil-

ity and translation of transcripts [6,37–43]. Both pro-

teins have been extensively studied in Gram-negative

bacteria and were shown to regulate bacterial virulence

and adaptation to stress (reviewed in detail in Ref.

[37,38,44,45]). Hfq is an Sm-like RBP that plays an

important role in mediating base-pairing interactions

between many sRNAs and their RNA substrates. Hfq

forms homohexamic rings (Fig. 1A) that have many

surfaces for binding RNAs in a sequence-specific man-

ner, including the lateral/rim, distal and proximal

regions and the C-terminal tail. The distal face of Hfq

binds mRNA A-rich sequences, while the proximal

face binds A/U-rich sequences and sRNAs [46]. The

efficiency of the Hfq chaperone activity was shown to

depend on the number of arginine residues in the Hfq

rim motif (RRER in E. coli; Fig. 1; [47]). ProQ is

another Gram-negative RNA chaperone protein that,

like Hfq, plays an important role in mediating RNA–
RNA interactions. Unlike Hfq, ProQ is a monomeric

protein that has preference for structured RNAs [6,41].

However, in Gram-positive bacteria, ProQ is not pre-

sent, and the function of Hfq in Gram-positives

appears to be somewhat controversial (discussed

below). This is surprising, given that these two pro-

teins are such big players in post-transcriptional regu-

lation in Gram-negative bacteria.

What could be the explanation for this? Hfq is

absent in several low GC Gram-positive bacteria,

including Streptococcus pyogenes, Streptococcus pneu-

moniae and Enterococcus faecium [48] (see Table 1 for

GC content). Interestingly, those proteobacteria where

Hfq plays an important function, such as E. coli and

Salmonella enterica, have a relatively high GC content

(≥50%), especially compared with Gram-positive bac-

teria (~32% in Staphylococcus aureus; see Table 1)

[49]. Thus, it was proposed that the involvement of

Hfq in sRNA-mediated regulation is linked to the GC

content of the genome and its function is most impor-

tant for high GC content organisms. A model was

proposed where strong sRNA–mRNA interactions

that occur due to the high GC content need to be

loosened by a protein chaperone, so that a functional

regulatory interaction is produced [49]. High GC con-

tent can also lead to stable intramolecular sRNA or

mRNA structures that may need to be relaxed to

allow optimal regulation. For example, some mRNAs

form inhibitory hairpins at their 50 end. Hfq has been

shown to be necessary for relieving these structures

and promoting the interactions with regulatory sRNAs

[50]. Similarly, RNA interference in eukaryotes is more
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efficient when siRNAs (small interfering RNAs) with a

relatively low GC content are used [51], supporting the

idea that high GC content could be less favourable for

sRNA-mediated regulation or it could be more depen-

dent on RNA chaperones.

However, some features of Hfq cannot be explained

by the above hypothesis. E. coli Hfq strand displace-

ment and annealing activity were indeed shown to be

strongly associated with the GC content of the RNA

substrates in vitro. However, this had little to do with

the thermodynamic properties of the duplex, but more

with the preference of Hfq for binding AU-rich

sequence elements [52]. Also, in some GC-rich Gram-

positive actinobacterial lineages, such as Mycobac-

terium, Hfq is completely absent [53]. In Clostrid-

ium difficile, a Gram-positive pathogen which has a

low GC content of 29% (Table 1), Hfq plays diverse

roles and has been proposed to regulate many genes

involved in sporulation [54]. In C. difficile, Hfq is

essential for normal growth and cell morphology,

while its deletion reduces the stress tolerance and

increases the ability of sporulation and biofilm

S. aureus Hfq with poly-A RNA

(3QSU)

E. coli Hfq with poly-A RNA

(4HT8)

B. subtilis Hfq with poly-A RNA

(3HSB)

RRER
motif

KANQ
motif

RKEN
motif

MAKGQSLQDPFLNALRRERVPVSIYLVNGIKLQGQIESFDQFVILLKNT-VSQMVYKHAISTVVPSRPVSHHSNNAGGGE. coli Hfq

S. aureus Hfq

B. subtilis Hfq

1 10 20 30 40 50 6060 7010

MIANENIQDKALENFKANQTEVTVFFLNGFQMKGVIEEYDKYVVSLNSQGKQHLIYKHAISTYTVETEGQASTESEE..

M.KPINIQDQFLNQIRKENTYVTVFLLNGFQLRFQVKGFDNFTVLLESEGKQQLIYKHAISTFAPQKNVQLELE.....

β1β11 β2 β3 β4 β5
motif

RNA binding in lateral, distal and proximal regions

Rim

A

B

Fig. 1. Hfq binding to RNA differs between Gram-negative and Gram-positive bacteria. (A) Crystal structures of Hfq hexamers from the

Gram-negative E. coli and Gram-positive B. subtilis and S. aureus bound to poly-A RNA [60,155,156]. The different monomers of Hfq are

indicated in different colours. The location of the rim RNA-binding motifs in the hexamer is indicated with spheres. The arginine and lysine

amino acids highlighted in red are essential for RNA binding. The images were generated using PyMol. (B) Sequence alignment of Hfq

proteins from E. coli, S. aureus and B. subtilis. The structural sequence alignment was adapted from Stanek et al 2017 [157] and was

generated using MAFFT [158] and MUSCLE [159]. Sequence accession numbers: Escherichia coli (BAE78173.1), Staphylococcus aureus

(ADC37472.1), Bacillus subtilis (BAM57957.1). The location of the rim RNA-binding motif is indicated with a solid box. The dashed box

indicates regions where there are differences in the way Hfq homologs interact with RNA (based on crystal structural studies). Structures

showing RNA interactions with Hfq lateral regions were only available for E. coli and therefore are only shown for this organism. Similarly,

interactions between B. subtilis proximal regions and RNA are also not available and therefore not highlighted. Residues previously

described to contact the RNA on the rim (lateral), distal and proximal regions of Hfq are marked with green, blue and red boxes,

respectively [156,157,160,161].
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formation [54]. The altered expression of genes

involved in cell wall metabolism, sporulation, stress

response and transcription regulation in the hfq

mutant shows that Hfq could play a crucial role for

C. difficile physiology by participating in RNA regula-

tion [54]. Hfq also appears to mediate sRNA regula-

tion in Listeria monocytogenes that has a GC content

of 38% (Table 1) [55,56]. Although L. monocytogenes

Hfq is not essential for cell viability, it contributes to

pathogenicity and its absence impairs adaptation to

various stresses [39]. It interacts with several RNAs

and is required for the interaction of the regulatory

sRNA LhrA with its target RNAs (Fig. 2A) [55,56].

Thus, the correlation between GC content and the

involvement of Hfq in sRNA-mediated regulation

should be further investigated, as it appears that Hfq

has various important roles in species with low and

high GC content.

The functionality of Hfq homologues is often

assessed by their ability to complement Hfq deletion

phenotypes in E. coli or Salmonella [57,58]. Hfq from

both L. monocytogenes and C. difficile is able to effec-

tively replace E. coli Hfq, which supports a role in

sRNA-mediated regulation [56,57]. However, S. aureus

and B. subtilis Hfq cannot [58,59], implying that the

functional differences between different species Hfqs

are more likely to be linked to structural differences

and how they interact with RNA (Fig. 1A). Interest-

ingly, the RRER motif in E. coli Hfq that plays an

important role in annealing activity is absent in S. au-

reus Hfq and not well conserved in B. subtilis. Both

these Gram-positive Hfqs have poor annealing activity

in vitro [47] (Fig. 1A). Therefore, this suggests that in

S. aureus and B. subtilis Hfq may not be involved in

mediating sRNA–RNA interactions. Furthermore, it

has been suggested that sRNA–mRNA interactions

are facilitated by Hfq binding to mRNAs and sRNAs,

from the distal and proximal face, respectively (see

Fig. 1B for interacting regions). However, RNA bind-

ing to the distal face of Hfq is different between

Gram-negative and Gram-positive species: while in

Gram-negative bacteria, the distal face contains tripar-

tite binding motifs for poly-(ARN)n sequences (R is

purine, and N is any nucleotide), in Gram-positives

there are bipartite binding motifs, interacting with

poly-(AN)n repeats [60]. Finally, Gram-positive Hfq

proteins also lack the extended and structurally disor-

dered C terminus found in E. coli, which also makes

an important contribution to the Hfq chaperone func-

tion [61,62]

How could these structural differences affect the

impact of Hfq on the transcriptome? Studies in S. aur-

eus and B. subtilis have shown that deletion of Hfq doesT
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not impact the stability of many transcripts [59,63,64],

and therefore, it is reasonable to assume that the loss of

Hfq annealing activity in these species has resulted in a

less impactful role in co- and post-transcriptional regu-

lation. Using global RNA-binding approaches such as

UV cross-linking and immunoprecipitation experiments
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Fig. 2. Mechanisms of post-transcriptional regulation in Gram-positive bacteria. (A) In L. monocytogenes, Hfq stimulates the interaction

between the LhrA sRNA and its target mRNA lmo0850, encoding a small hypothetical protein of unknown function. When Hfq is absent,

the sRNA–mRNA interaction is not strong. In the presence of Hfq, LhrA is stabilized and its interaction with lmo0850 is favoured, leading to

inhibition of translation initiation and promoting the degradation of the target mRNA by an unidentified ribonuclease [56]. We can speculate

that Hfq is a key player for sRNA-mediated regulation in L. monocytogenes, and since it is implicated in stress response and virulence [39],

it may regulate the expression of virulence factors. (B) In B. subtilis, CsrA promotes the interaction between the SR1 sRNA and its target

mRNA ahrC that encodes the transcriptional activator of the arginine catabolic operons rocABC and rocDEF. The base pairing of the RNAs

inhibits the translation of the mRNA. If the SR1 levels are high, the complex is formed even in the absence of CsrA. CsrA binding to the

ahrC mRNA is required for the efficient interaction and translation repression, while binding to the SR1 seems to have a minor role [76].

Model adapted from [76]. (C) In S. aureus, CspA regulated its own expression by a negative feedback mechanism. For the translation of

cspA mRNA, processing by RNase III is necessary [101]. However, CspA binds the 5’ UTR of its own mRNA, inhibiting RNase III

processing and therefore downregulating its own expression [92]. Since CspA was found to bind and regulate – either positively or

negatively – transcripts related to virulence and stress response, such as the alternative rb factor (positive regulation) and the cold-shock

protein CspC [92], the model presented in the figure could be a generalized negative regulation mechanism, where CspA antagonizes with

RNase III.
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(CLIP or CRAC [65,66]), it should be possible to figure

out exactly what RNA Hfq directly binds in Gram-posi-

tives, which should help clarify to what extent the pro-

tein impacts the transcriptome and what pathways it

directly regulates. Whether or not Hfq chaperones

sRNA–RNA interactions in Gram-positives in vivo

could be tested using global RNA proximity ligation

approaches such as RIL-seq or CLASH [40,67].

The importance of S. aureus Hfq is also somewhat

obscure, with several research articles presenting con-

flicting findings [64,68,69] (Table 1). Deletion of Hfq

had no effect on growth of most laboratory and clini-

cal S. aureus strains tested (summarized in Table 1)

[64,68]. Although S. aureus Hfq has very poor anneal-

ing activity in vitro [47], the protein does interact with

sRNAs and mRNAs, including the sRNA RNAIII,

which is involved in regulating many virulence genes,

and the spa mRNA, which encodes a protein that pro-

motes immune suppression. However, in the strains

studied (RN6390, Newman, COL), Hfq deletion does

not affect the expression or stability of RNAIII and

the spa mRNA [68,70]; therefore, it seems unlikely that

the protein chaperones this interaction in S. aureus or

this activity is not essential. Our impression is that

Hfq could be more important in some clinically rele-

vant strain backgrounds (see Table 1), but this needs

to be investigated more thoroughly. Deleting Hfq in

the S. aureus 8325-4 strain resulted in increased pig-

mentation and higher resistance to oxidative stress. It

was proposed that the increased oxidative resistance

was related to the higher levels of carotenoid pigments

produced by the mutants, as these pigments act as

antioxidants [64]. It is important to note that 8325-4 is

a strain defective for the stress-associated sigma B fac-

tor (rb), due to a deletion in a positive regulator of

rb, rsbU gene [71]. As a result, the carotenoid produc-

tion in this strain is generally very low and it forms

white colonies. However, a later study showed that

Hfq deletion does not impact pigmentation in several

strains, including 8325-4 [69] (Table 1). It is possible

that some of the differences in the results could be

explained by secondary mutations that somehow

restored carotenoid pigment production in the 8325-4

Hfq deletion strain used by Liu and colleagues [64].

Impressively, in S. aureus and B. subtilis the impact

of Hfq deletion was measured under nearly 2000

growth conditions [59,68] and B. subtillis Hfq only

seemed to be important for survival in stationary phase

in rich medium [59]. B. subtilis Hfq is not essential for

sRNA-dependent post-transcriptional regulation, but it

binds and stabilizes a small number of sRNAs

[59,63,72,73]. Interestingly, another Bacillus species,

B. anthracis, expresses three Hfq homologs. Two are

chromosome encoded (Hfq1 and Hfq2), and one is

expressed from a virulence plasmid (Hfq3) [74]. Hfq2

has the closest protein sequence to the B. subtilis Hfq

and forms the typical hexamer, while Hfq1 is a mono-

mer. Although Hfq3 has the most divergent sequence

compared with other Bacillus Hfqs, it can form hexam-

ers and can partially complement Hfq function in

E. coli [75]. Remarkably, its overexpression is toxic and

leads to severe growth defects, a phenotype associated

with residues on the distal face of the protein, which

usually binds mRNA in other species [75].

In conclusion, the function as well as the importance

of Hfq in S. aureus and many other Gram-positive

bacteria remain a bit of mystery and clearly more

detailed analyses need to be performed to clarify its

role and significance in these microorganisms. Regard-

less, although Hfq is found in many Gram-positives, it

does not seem to function in the same way or have a

major impact on gene expression.

The role of CsrA in Gram-positive bacteria

As ProQ is absent in Gram-positive bacteria, and Hfq

does not seem to play an equally important role as in

Gram-negative bacteria [76], a major question in the

field is whether Gram-positives employ or actually

need general RNA chaperones for post-transcriptional

regulation. For example, Gram-positives may simply

utilize a diverse number of chaperones that have speci-

ficity towards some sRNA-target interactions. Alterna-

tively, it is certainly possible that many sRNA-target

interactions in Gram-positives may not need a chaper-

one as they could involve extensive base-pairing inter-

actions that do not need to be stabilized or mediated

by RNA chaperones. To better understand how

sRNA–RNA interactions are regulated in Gram-posi-

tive bacteria, significant effort is being made to iden-

tify RBPs that could mediate RNA–RNA interactions

(e.g. see [77]). One protein that has been proposed to

play an important contribution in sRNA–RNA inter-

actions in Gram-positive bacteria is CsrA.

The global post-transcriptional regulatory system

carbon storage regulator/repressor of secondary

metabolites (Csr/Rsm) is broadly conserved in bacteria

and has been extensively studied in Gram-negative

bacteria (reviewed in [78]). Its basic component, CsrA

(or RsmA), is a global post-transcriptional regulator,

involved in various aspects of the bacterial physiology,

including motility, biofilm formation and virulence

[78]. Structural studies of E. coli CsrA, which is a

small homodimeric protein, have shown that it con-

tains five b-strands and one a-helix, with the amino

acids within the b1 and b5 strands contributing to
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RNA binding [79–81]. CsrA has a strong preference

for binding purine (AG)-rich RNA sequences in the

5’-UTR of target mRNAs, including Shine–Dalgarno

(SD) sequences [66,82]. Binding of CsrA to the SD

sequence can trigger degradation of the RNA by

blocking ribosome access. However, CsrA can also

enhance mRNA stability and promote translation, by

protecting transcripts from RNase activity or prevent-

ing the formation of structures that would otherwise

inhibit ribosome binding [1,83,84]. sRNAs, such as

CsrB in E. coli, can bind (or sponge or sequester)

CsrA and act as antagonists by preventing its associa-

tion with target mRNAs [78].

The Csr/Rsm regulatory system plays an important

role in pathogenicity, by regulating the expression of

virulence factors in proteobacterial pathogens, such as

Pseudomonas, Salmonella and pathogenic E. coli (re-

viewed in [78,84]). Putative homologs of CsrA have

also been found in many Gram-positive bacteria [79];

however, the protein has only been studied in detail in

Clostridium and B. subtilis. In Clostridium aceto-

butylicum, a species used commercially for the produc-

tion of chemicals and biofuels, CsrA is involved in

regulation of metabolic pathways such as flagella

assembly, membrane transportation system, sporula-

tion and central carbon metabolism [85]. A recent

study in C. difficile showed that CsrA may contribute

to carbon metabolism and also has a crucial role in

virulence-associated processes, such as toxin produc-

tion and motility [86].

In B. subtilis, CsrA is involved in flagella biosynthe-

sis [83]. Until recently, the only target mRNA that had

been identified was the hag mRNA that codes for the

flagellin protein of B. subtilis. Similar to how CsrA

controls gene expression in Gram-negative bacteria, B.

subtilis CsrA binds to the hag mRNA Shine–Dalgarno

sequence and causes translational repression. Although

CsrA homologues are abundantly present in Gram-

positive bacteria and appear to function in a similar

way as in Gram-negatives, how the activity of CsrA is

regulated in Gram-positives is different. As mentioned

above, in the Gram-negative E. coli sRNAs regulate

CsrA activity by sponging it or sequestering it [78]. In

B. subtilis, however, the FliW protein plays the role of

the CsrA antagonist. The interaction between these

proteins is important for regulating flagellin biosynthe-

sis [87]. FliW inhibits CsrA binding to target mRNAs

using an allosteric noncompetitive mechanism [88].

FliS is a second chaperone also involved in the CsrA-

FliW system of regulating flagellin production [89].

Recently, another role for CsrA in B. subtilis was

discovered. CsrA binds both the small regulatory

RNA SR1 and its target ahrC mRNA and enhances

their interaction. The ahrC mRNA encodes for a tran-

scriptional activator of arginine catabolic operons.

CsrA-mediated binding of SR1 to ahrC blocks ribo-

some binding and translation of the mRNA [76]

(Fig. 2B). CsrA is necessary for the efficient pairing of

the RNAs, and it is the only protein that has been

found to enhance sRNA–mRNA interactions in

Gram-positive species [76]. It was proposed that CsrA

could be acting as a general chaperone that mediates

coupling of sRNAs with their mRNA targets in

Gram-positive bacteria; however, experimental evi-

dence for this is still lacking.

Thus, it appears that CsrA affects some properties

that are necessary for bacterial adaptation to harsh

environments, such as motility and virulence factor

production, in both Gram-negative and Gram-positive

species. However, regulation of this protein activity

seems to be different in these groups: sRNA antago-

nists of CsrA, which usually occur in c-proteobacteria,
have not been yet found in Gram-positives. Further-

more, phylogenetic analyses have shown that noncom-

petitive allosteric regulation of CsrA by a protein like

B. subtilis FliW may also be present in other bacteria

from both groups, except the c-proteobacteria that

lack the FliW protein [87]. In conclusion, all the avail-

able data imply that CsrA plays a more important role

in post-transcriptional regulation than Hfq, in the

Gram-positive species in which it has been studied,

and that it may also contribute significantly to

pathogenicity. Whether CsrA indeed consists a global

regulator of gene expression in Gram-positive bacteria

and whether it mediates more sRNA–RNA interac-

tions remain to be elucidated.

Cold-shock proteins contribute to various stress

responses

Another well-studied category of RBPs regulating bac-

terial adaptive responses is cold-shock proteins (CSPs).

CSPs are a family of small proteins that are highly

conserved in both sequence and structure. These

DNA- and RNA-binding chaperones contain cold-

shock domains (CSD) [90,91] and are widespread

among all kingdoms of life [92]. Many CSPs, as their

name suggests, are highly expressed in response to a

decrease in temperature and help counteract the harm-

ful effects of cold shock. For example, by acting as

RNA chaperones and binding on mRNA, they prevent

the formation of secondary structures in low tempera-

tures, facilitating initiation of translation and therefore

promoting the adaptation and survival to low temper-

atures [93]. The E. coli CspA, the first CSP that was

discovered [94], preferentially binds single-stranded
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pyrimidine-rich sequences on mRNAs, but it has also

been reported to bind RNA hairpins [95]. The RNA

binding is promoted by aromatic amino acid residues

located on a positively charged surface formed by b-
strands [95,96].

The CSPs have been most extensively studied in

E. coli, which contains 9 CSPs, four of which are cold-

inducible [90]. Homologous proteins have been classi-

fied as CSPs in many other bacterial species, including

Gram-positive Firmicutes [97]. Three CSPs have been

discovered in B. subtilis, S. aureus, L. monocytogenes

and Clostridium botulinum. In B. subtilis, the three

CSPs discovered are all cold inducible and the pres-

ence of at least one of them has been shown to be

essential for viability [98]. However, none of the

L. monocytogenes CSPs are essential for viability under

optimal growth conditions, but CspA is critical for

growth in the cold [99]. CSPs homologous genes have

been classified into 5 different clades and 12 subclades,

based on their phylogenetic distance [97]. CSPs of

Gram-positive bacteria were classified in clade Ib,

which are labelled as being involved in regulation of

virulence, cold and osmotic shock resistance.

Cold-shock response is not the only function of

CSPs: they also contribute to other adaptive responses,

such as adaptation to oxidative and osmotic stress,

host cell invasion and nutrient starvation

[92,93,97,100]. Even though most of the studies on

CSPs have focused on E. coli and B. subtilis, there are

data supporting an important role for them in adapta-

tion and stress tolerance in some other important

Gram-positive species, as described below. This makes

them appealing targets for the development of antimi-

crobials to inhibit bacterial adaptation and growth. A

recent study in S. aureus [92] revealed that CspA is a

global post-transcriptional regulator. It binds hundreds

of transcripts in vivo and may therefore have a larger

impact than Hfq on gene expression in this organism.

Interestingly, the majority of the target mRNAs were

reported to be processed by RNase III [92,101], imply-

ing a putative antagonistic role for CspA, in which it

would inhibit the ribonuclease function, by binding the

targeted mRNA structures (Fig. 2C) [92]. Among the

transcripts bound by S. aureus CspA, many encode

proteins involved in amino acid catabolism, nucleoside

and carbohydrate synthesis, pathogenesis and adapta-

tion to stress. This RNA chaperone can affect the sta-

bility and translation of its targets both positively and

negatively and its deletion results in bacterial aggrega-

tion and lower resistance to oxidative stress [92]. Non-

coding RNAs, such as sRNAs, were also identified

among the chaperone’s targets [92], but it remains

unclear if CspA – like E. coli Hfq and CsrA – can also

mediate the coupling of sRNAs with their RNA sub-

strates.

Like Hfq, E. coli CSPs can also bind DNA through

the cold-shock domain (CSD; [102–104]) and this

activity is conserved in Gram-positive bacteria. In

S. aureus, CspA (MsaB) binds a promoter region of

the cap operon in vitro to activate genes involved cap-

sular polysaccharide formation, which is important for

survival within the host [105]. CspA, together with the

rb transcription factor and the staphyloxanthin

operon, is also involved in a complicated regulatory

network that involves both the RNA-binding activity

and the DNA-binding activity of CspA. Staphyloxan-

thin, the carotenoid pigment that gives the yellow col-

our in S. aureus, is a major virulence factor that

protects the bacteria against oxidative stress during the

host infection, through its powerful antioxidant prop-

erties [106,107]. Deletion of CspA leads to reduced

staphyloxanthin production and lower levels of rb fac-

tor, which is required for the expression of the staphy-

loxanthin biosynthetic operon (crtOPQMN) [92,107].

Thus, the reduced pigmentation in the cspA mutants is

consistent with the reduced resistance to oxidative

stress in these strains [92]. CspA was shown to bind

the rb RNA transcript and upregulate its expression

[92]. However, subsequently, CspA was reported to act

as a transcriptional activator on the crtOPQMN

operon as well, by directly binding to the promoter

[108]. Interestingly, rb was not also required for this

activation but also found to downregulate the tran-

scription of msaB [108]. Therefore, by binding DNA

and RNA, CspA has a major influence on controlling

expression of genes involved in a variety of adaptive

responses as well as controlling pathogenicity.

Ιn L. monocytogenes, CSPs play a crucial role in effi-

cient adaptation to cold, osmotic and oxidative stress

[99,109]. By affecting the expression of genes involved

in flagella biosynthesis and virulence, they promote

host cell pathogenicity, cell aggregation and motility,

properties contributing to survival in harsh conditions

[99,109,110]. Flagella formation and motility were also

observed to be affected by CSPs in the food pathogen

Clostridium botulinum ATCC 3502 [111]. Its three

CSPs are induced upon a temperature drop and con-

tribute to cold-shock response, but several are also

involved in adaptation to salt, pH and ethanol stress

[111]. In the opportunistic pathogen Enterococcus fae-

calis, CSP CspR is upregulated during cold-shock and

stationary face and is required for virulence and effi-

cient survival under stress conditions, such as nutrient

deprivation [100,112].

In conclusion, like CsrA, CSPs are important play-

ers in post-transcriptional regulation of many
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important Gram-positive pathogens, contributing sig-

nificantly to their adaptation in different stressful envi-

ronments and promoting their pathogenicity.

The role of atypical RNA-binding
proteins regulating adaptive
responses in Gram-positive bacteria

Having discussed the roles of well-characterized and

canonical RBPs in adaptive responses in Gram-posi-

tive bacteria in some detail, we felt it was important to

highlight some other interesting RBPs that in our

opinion deserve to be more in the spotlight. This sec-

tion discusses the roles of three RBPs that, at first

glance, do not look like typical RBPs, as they are

missing well-defined RNA-binding domains, but have

received more attention recently as they play an

important role in adaptation to harmful environments.

The DNA- and RNA-binding protein SpoVG, a

global regulator of nutrient adaptation responses

in Gram-positive bacteria

When nutrients become limiting, bacteria tend to exhi-

bit many different behaviours to ensure their survival.

This includes the production of antimicrobial com-

pounds, formation of biofilms and in some species,

such as C. difficile and B. subtilis, sporulation. Since

sporulation renders bacteria almost impenetrable to

antibiotics, this pathway is being extensively studied,

as blocking this process may enable us to find a way

to combat bacterial antibiotic resistance. Research on

sporulation in B. subtilis led to the identification of

SpoVG, a protein that is highly conserved and in

Eubacteria [113–115]. In B. subtilis, SpoVG plays an

important – but not essential – role in sporulation, by

regulating asymmetric septation and promoting cortex

formation [114,116]. Lack of SpoVG does not cause

severe defects, unless SpoIIB, another protein partici-

pating in the engulfment stage of sporulation [117], is

also absent, something that shows synergistic action

and redundancy of these proteins in spore formation

[117,118]. SpoVG is also involved in haemolytic activ-

ity caused by B. subtilis [119]. Recently, it was also

shown to be essential for the formation of B. anthracis

spores, which consist the infectious form of this bac-

terium [118]. The absence of SpoVG completely

impaired its sporulation capabilities, with the inhibi-

tion occurring before the asymmetric division step,

indicating that the B. anthracis SpoVG has a different

role than it does in B. subtilis [118].

Is SpoVG therefore only relevant to spore-forming

bacteria? The answer is no: in S. aureus, SpoVG is

involved in antibiotic resistance [120,121], virulence

[122,123] and cell aggregation [124]. In the strain

N315, it contributes to cell wall biosynthesis and

antibiotic resistance, by binding to the promoter and

controlling the expression of genes participating in

oxacillin resistance and cell wall metabolism [120].

SpoVG also controls the expression of virulence fac-

tors Spa and clumping factor B (ClfB) both by binding

to the promoters of their genes and by regulating Rot,

a regulatory protein that controls the above virulence

factors [123]. Moreover, SpoVG was shown to posi-

tively regulate the ability of S. aureus to bind human

fibrinogen [123] and negatively regulate cell aggrega-

tion, by downregulating the expression of SasC, a sur-

face adhesin [124]. In conclusion, all the available data

suggest that SpoVG could be a key contributor in reg-

ulating a wide variety of adaptive responses.

One of the many reasons why SpoVG is such an

interesting protein is that, like CspA and Hfq, it binds

both DNA and RNA [115,123,125,126], implying a

role as a transcription factor and a post-transcriptional

regulator. This dualistic function makes it possible to

connect multiple regulatory networks and may allow

much finer control of gene expression.

In Borrelia burgdorferi, a Gram-negative bacterium

with an atypical Gram-negative cell membrane [127,128],

SpoVG was found to bind RNA in vitro. Here, SpoVG

binds both its own transcript and its own gene, suggest-

ing a negative feedback mechanism, where the protein

controls its expression both at the transcriptional and

post-transcriptional levels [126]. To the best of our

knowledge, this type of regulation where a protein regu-

lates its own transcription and mRNA translation is rare

in bacteria. SpoVG associates with transcripts that

encode proteins involved in glycerol metabolism and host

colonization, suggesting that it may affect their expres-

sion and influence the adaptation to different environ-

ments [126]. However, these interactions need to be

further studied, in order to understand in which way

SpoVG affects the expression of its target RNAs.

In vitro RNA-binding activity was also observed for

L. monocytogenes SpoVG. The absence of SpoVG

increased lysozyme resistance and virulence, while

causing defects in bacterial motility [125]. Rli31, a

sRNA involved in lysozyme resistance, was found to

bind both SpoVG protein and its mRNA 5’-UTR

in vitro, however without affecting spoVG mRNA or

protein abundance [125]. SpoVG was also shown to

bind multiple RNA molecules in vitro, and its RNA-

binding affinity was higher than its DNA-binding

affinity [125]. Unpublished crystallographic studies on

B. subtilis SpoVG revealed that in vitro, like Hfq, it

can form hexamers [129].
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Although there is still much to be learned about the

DNA- and RNA-binding properties of SpoVG in vivo,

the above findings do suggest that SpoVG could be a

major player in regulating adaptive responses on mul-

tiple levels, which warrants further investigations.

Since SpoVG is widely conserved between bacterial

species [115], it is logical to assume that it also binds

RNA in other Gram-positive bacteria. Whether or not

SpoVG uses the same domains for binding DNA and

RNA remains unclear. How SpoVG is recruited to

RNA and whether it has any sequence specificity are

also not known.

Proteomic studies suggest that almost half of the

identified human RBPs could have dual DNA- and

RNA-binding capability (DRBPs) and are linked to a

multitude of processes, including many stress-respon-

sive proteins involved in DNA repair and transcription

[8,130]. However, while many examples have been

described in higher eukaryotes, DRBPs are still under-

studied in bacteria. Other notable examples of bacte-

rial DRBPs include the S. aureus transcription factor

SarA [131], the E. coli transcriptional repressor H-NS

[132], which regulates the decay of a selected number

of RNAs and S. aureus CspA (as mentioned above).

The biological significance of SarA RNA-binding

activity is not completely clear yet; however, cells lack-

ing SarA showed altered mRNA decay properties of

over 100 transcripts [131,133], implying a role for SarA

in regulating RNA turnover. Excitingly, recent pro-

teomic studies also imply that many more DRBPs may

exist in bacteria [11,12,134], and therefore, we expect

that many more examples of bacterial DRBPs will be

described in the near future.

Bacterial RBPs can manipulate the host

Quite possibly the most stressful environment for bac-

teria is the host environment. Here, invading microor-

ganisms need to find ways to extract essential nutrients

from an otherwise nutrient-poor environment. In addi-

tion, they are constantly attacked by the host immune

system. What is really fascinating is that bacteria have

developed very sophisticated approaches to evade the

host immune system and even thrive within host cells.

The most obvious way to adapt to such an environ-

ment would be to employ a combination of transcrip-

tion factors, RBPs and other regulatory molecules to

remodel your own transcriptome and proteome to

make the cell’s physiology more compatible. Alterna-

tively, you could use RBPs to manipulate the host

environment. A number of pathogenic bacteria secrete

effector molecules that act as virulence factors and

generally target host proteins to interfere with the host

cellular functions [135]. So how is this relevant to reg-

ulation of gene expression?

One possible way to manipulate the host’s response

to the invasion is to use bacterial RNAs and RBPs.

Much of the material that is secreted by bacteria is

contained within vesicles that are packed with proteins

and RNA. Evidence that sRNAs play a role in host–
pathogen communication in Gram-negative bacteria

was recently provided [136–138]. sRNA-mediated regu-

lation is usually controlled by RBPs; therefore, one

might expect to find these in secreted vesicles as well.

However, a recent large-scale study showed that

secreted effectors in Gram-negative bacteria generally

do not contain conserved RNA-binding domains, sug-

gesting that if effector proteins target RNA to manipu-

late host gene expression post-transcriptionally, they

probably use novel RNA-binding domains [139]. The

first bacterial secreted RBP was recently identified in

the Gram-positive pathogen L. monocytogenes, and,

indeed, it does not contain a canonical RNA-binding

domain [140].

Protein Lmo2686, which has been named after an

ancient Greek goddess (Zea), is a small RBP that is

associated with a subset of the pathogen’s RNAs

and triggers the host cell immune response. Zea

forms a homohexamer, like Hfq, and binds a dis-

tinct set of L. monocytogenes RNAs in the extracel-

lular environment. When L. monocytogenes infects

mammalian cells, Zea is secreted into the host’s

cytoplasm where it interacts with RIG-I (retinoic

acid-inducible gene-I), a cytoplasmic sensor of viral

RNA [141] that can induce the type I interferon

(IFN) response [140]. Zea modulates the RIG-I-de-

pendent signalling, and this strongly depends on the

Zea-bound L. monocytogenes RNA molecules. Thus,

the current model is that this RBP helps bacterial

RNAs to act as effector molecules to induce the

host innate response by delivering them to the RIG-

I receptor [140].

Since the pathogen must escape the host’s immune

system in order to survive, it may seem that activat-

ing the host response does not offer any benefit. The

activation of macrophages by IFN-c, during type II

IFN response, renders them capable of battling intra-

cellular pathogens, like L. monocytogenes. However,

during type I IFN response, induced by L. monocyto-

genes, IFN-ab production inhibits the macrophage

activation by IFN-c, and in this way, it increases the

host susceptibility [142]. Therefore, by interacting

with RIG-I receptor and activating the type I IFN

response, Zea may play a critical role for creating a

more favourable environment for the survival of L.

monocytogenes inside the host. It is tempting to
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speculate that similar mechanisms may be employed

by other Gram-positive pathogens to manipulate the

host response for their own benefit. For example,

induction of the host’s type I IFN response by S.

aureus has been shown to promote its virulence [143].

During lung infection, S. aureus induces the type I

IFN response in dendritic cells, by activating the

receptor TLR9 (Toll-like receptor 9). The signal

molecule recognized by TLR9 is staphylococcal DNA

[144]. Thus, it is logical to assume that other sig-

nalling pathways also may exist, involving bacterial

RNA as the signalling molecule that triggers the host

immune response and RBPs are likely to assist the

function of these ‘signalling’ RNA.

Zea is absent from nonpathogenic Listeria species,

which supports a role in virulence. However, Zea

orthologs were identified in other nonpathogenic bac-

teria, mainly of the genus Bacillus, that are rarely asso-

ciated with disease [140]. The exact role of Zea in

host–pathogen communication remains to be eluci-

dated. Nevertheless, this first report of a secreted bac-

terial RBP transferring RNA that modulates the host

immune response can pave the road for the discovery

of a potentially conserved bacterial pathway for extra-

cellular RNA that contributes to adaptation in hostile

environments.

Alarmone synthetases as RNA-binding proteins:

connecting post-transcriptional regulation with

stress metabolism

Small alarmone synthetases (SASs) belong to an

important group of stress-related bacterial proteins

and recently came into the spotlight as RBPs [145].

Many interesting questions about SAS function have

been raised [146], and therefore, we would like to

briefly refer to this group of proteins, as we believe

these factors could provide a direct link between sens-

ing stress and regulation of gene expression.

SASs are widely distributed bacterial enzymes that

belong to the RelA/SpoT homolog (RSH) protein

family and synthesize the alarmone nucleotides guano-

sine tetraphosphate and pentaphosphate ((p)ppGpp)

[147,148]. These signalling nucleotides regulate bacte-

rial growth, pathogenicity and adaptation to stress,

such as osmotic and antibiotic stress. Under stressful

conditions that affect the cell wall, like exposure to

cell wall-targeting antibiotics, SASs are overexpressed

and (p)ppGpp is overproduced, helping the bacteria to

overcome the stress [149,150]. As mentioned in the

introduction, a lot of enzymes have been found to

exhibit RNA-binding activity. Recently, a SAS enzyme

was also shown to bind RNA.

In B. subtilis and E. faecalis, (p)ppGpp binds to the

tetrameric SAS RelQ and allosterically activates its

catalytic function [151,152]. Recently, it was discovered

that RelQ of E. faecalis also binds single-stranded

RNA in a sequence-specific manner [145]. The binding

of RNA inhibits the enzymatic function, with the inhi-

bitory effect being stronger when the RNA contains

GG elements of the Shine–Dalgarno sequence [145].

RNA binding is not compatible with binding of (p)

ppGpp on RelQ, something that could be due to bind-

ing on the same site. Under stress conditions, when (p)

ppGpp levels are high, the synthetase activity of RelQ

is allosterically activated and more (p)ppGpp is pro-

duced, while the RNA targets are released. In the

absence of (p)ppGpp, RelQ binds RNA and possibly

regulates its function, while the enzymatic activity is

inhibited. The tetrameric structure of the enzyme is

essential for this regulatory mechanism [145].

Although the RNA binding on RelQ has a negative

effect on the enzymatic activity, the specific interac-

tions need to be identified in vivo and their biological

significance remains to be further studied. As sug-

gested by Hauryliuk and Atkinson [146], the RNA

binding may control the transformation of the enzyme

from an active form, in which (p)ppGpp can allosteri-

cally induce the enzymatic function, to an inactive

state, in which the RNA blocks (p)ppGpp binding and

inhibits the enzymatic activity [146]. We can also spec-

ulate that at the same time, the enzyme, acting as an

RBP, may have a regulatory effect on the bound

RNAs. For example, in a hypothetical model in which

the bound RNAs have a role in stress response –
either by producing or regulating the production of

stress response factors – when (p)ppGpp levels are

low, RelQ will bind and block the RNAs, inhibiting

the overproduction of stress response factors. Under

stressful conditions, though, (p)ppGpp will bind on

RelQ, inducing its own synthesis and releasing the

RNAs that will be free to contribute to the stress

response. In this way, the RNA–enzyme interactions

could have a double regulatory effect.

Since SAS enzymes are broadly distributed, this

RNA-binding regulatory mechanism could be widely

distributed among bacteria [146]. However, it is clear

not all the SAS enzymes are regulated in the same

manner and there is strong species-specific variation.

Surprisingly, while S. aureus RelQ is also allosterically

activated by (p)ppGpp, its catalytic function remains

unaffected by the same RNA oligomers that inhibit

RelQ activity in E. faecalis [153]. Moreover, S. aureus

SAS RelP is strongly inhibited, and not activated, by

(p)ppGpp, while its enzymatic activity is not affected

by RNA [154]. It was observed that the allosteric
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binding site of (p)ppGpp is absent in RelP, which

explains why (p)ppGpp does not have the same stimu-

lating effect on the enzymatic activity and suggests

that the catalytic inhibition is caused by orthosteric

binding [154]. To conclude, it appears that even

though SASs from different Firmicute species have

similar regulatory mechanisms, there are small struc-

tural and functional differences that also lead to differ-

ent regulation of their activity.

Conclusions and future perspectives

It is clear that RBPs play an essential role in regulat-

ing bacterial gene expression and allowing rapid adap-

tation to changing environments. As described above,

despite impressive progress over the past few years in

studying post-transcriptional regulation in Gram-posi-

tive bacteria, there is still a lot of catching-up to do.

The discrepancy of the roles that well-studied RBPs

play in Gram-negative and Gram-positive bacteria

reveals that Gram-positives may use different and per-

haps even more diverse mechanisms for post-transcrip-

tional gene regulation and these may involve atypical

RBPs. Since many Gram-positive species are impor-

tant pathogens, studying how these organisms manage

to rapidly adjust their gene expression in response to

environmental changes and what molecular mecha-

nisms they use to adapt to the host environment and

battle the immune system can help us develop strate-

gies to block these adaptive responses and combat the

infections.

As mentioned in the introduction, a number of

very powerful high-throughput technologies have

recently been developed that allow global identifica-

tion of protein–RNA and RNA–RNA interactions in

diverse organisms and environmental conditions.

Therefore, we anticipate that in the next few years,

many studies will be published describing new regula-

tors and novel interactions. It would be interesting to

learn whether these applications can also be applied

under infection conditions as this would allow us to

further dissect the communication between pathogens

and their hosts.
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