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Abstract
Automated valuation models (AVMs) are widely used by financial institutions to
estimate the property value for a residential mortgage. The distribution of pricing
errors obtained from AVMs generally show fat tails (Pender 2016; Demiroglu and
James Management Science, 64(4), 1747–1760 2018). The extreme events on the
tails are usually known as “black swans” (Taleb 2010) in finance and their exis-
tence complicates financial risk management, assessment, and regulation. We show
via theory, Monte Carlo experiments, and an empirical example that a direct relation
exists between non-normality of the pricing errors and goodness-of-fit of the house
pricing models. Specifically, we provide an empirical example using US housing
prices where we demonstrate an almost perfect linear relation between the esti-
mated degrees-of-freedom for a Student’s t distribution and the goodness-of-fit of
sophisticated evaluation models with spatial and spatialtemporal dependence.
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Introduction

Financial distress, such as experienced during the Great Recession and now as a
result of the novel coronavirus, requires servicers and lenders to make decisions on
new lending (refinancing or new purchases), forbearance, loan extensions, and fore-
closure in the presence of a number of state laws and changing regulator guidelines.
Most of these decisions require some estimate of collateral value. Financial institu-
tions in the real estate market usually rely on experts, called appraisers, to estimate
the value of the collateral. Because appraisers have substantial freedom in creating
their estimate (Agarwal et al. 2015), the estimate is ultimately subjective. Automated
valuation models (AVMs) provide an alternative approach (Pender 2016; Demiroglu
and James 2018). An AVM1 is a computer program that can use property character-
istics, past house prices, and neighboring comparable sales in a statistical model to
value property.

The Great Recession raised questions about the accuracy of appraisals and AVMs.
Using a large sample of nonagency securitized loans originated between 2002 and
2007, Griffin and Maturana (2016) show that AVMs are more accurate than most
appraisers as 44.9% of residential properties show appraisal values that are 5% higher
than an AVM. Agarwal et al. (2015) examine the appraisal bias for residential refi-
nance transactions. Particularly, they compute the valuation bias as the difference
between the appraisal of the refinance transaction and the consecutive purchase price.
On a US national sample of conforming loans, the authors find that the appraisal bias
for residential refinance transactions is more than 5%.

Ding and Nakamura (2015) compare the appraised value of the property with the
agreed contract price between the buyer and the seller to analyse the impact of the
Home Valuation Code of Conduct (HVCC) in 2009 on the appraisal practice. They
find that appraisal valuations are on average higher than the contract price both before
and after the financial crisis, even if the HVCC has led to a decrease of the over-
estimate of the property value. For the accuracy of AVMs, Demiroglu and James
(2018) provide evidence that AVMs show high pricing errors of between 12% and
15% of the actual sale price for a median quality home. The variability is even higher
for properties below median quality. The authors also show that high pricing errors
can be the cause of an apparent appraisal bias even when the AVMs are unbiased.

Krugery and Maturanaz (2020) analyze appraisals and AVMs on a large sam-
ple of US non-agency securitized loans originated between 2001 and 2007. They
highlighted that the potential sources of the errors for AVMs and appraisals are differ-
ent. AVM errors are statistical errors or due to model miscalibration, whereas moral
hazard could potentially generate the appraisal errors. The authors obtain empirical
evidence of high appraisals relative to AVM valuations over time and across different
types of loans. Specifically, appraisals are almost 5% higher (on average) than AVM
valuations and appraisals exceed AVM valuations 60% of the time.

1Carbone and Longini (1977) examine some characteristics an AVM should exhibit to meet public
acceptability and efficacy criteria.



Ignoring Spatial and Spatiotemporal Dependence...

The main contribution of this paper is to explain why AVMs may yield accurate
predictions with highly non-normal errors. Specifically, this manuscript examines
the relation between increasing the goodness-of-fit of housing models and the need
to model the house price distribution of the disturbances. AVMs mainly rely on
house price models that often show highly non-normal errors (Young and Graff 1996;
Gu 2002; Pontines 2010; Schindler 2013) and high levels of spatial dependence
(Bourassa et al. 2007; Liu 2013; Pace 1997; Osland 2010). Using both Monte Carlo
simulations and empirical data, we show that addressing spatial or spatiotemporal
dependence could lead to an increased precision of the house price prediction which,
in turn, could unmask non-normal disturbances. Consequently, more sophisticated
approaches, such as spatial regression models (LeSage and Pace 2009), can lead to
non-normal disturbances with a lower magnitude.

Leading AVM companies are Zillow, Collateral Analytics and CoreLogic, among
others. For example, Griffin andMaturana (2016) analyse data provided by Collateral
Analytics. Although all of the providers of AVMs give some statistics on their accu-
racy, we will use Zillow as a motivational example as Zillow provides the most visible
automated valuation model available to the general public with over 100 million price
estimates (known as “Z-estimates”) provided on their website at no pecuniary charge.

We assume that Zillow has adequately modeled house prices using accurate
explanatory variables as well as handling various forms of temporal, spatial, and
spatiotemporal dependence known to affect house prices (Aquaro et al. 2021; Can
and Megbolugbe 1997; Pace 1997).2 Therefore, the Z-estimate residuals should con-
vey some information about the underlying distribution of the disturbances. Zillow
reports nationally that their models have a median absolute percentage error of 4.5%.
Moreover, 89.7% of the Z-estimates exhibit absolute percentage errors of 20% or
less.

Under the assumption that the percentage errors are symmetric, a Student t dis-
tribution would provide a common way of capturing the kurtosis that empirical
residuals often display (Pontines 2010). Fitting a Student t distribution to the Zillow
reported statistics results in an estimate of 1.37 degrees-of-freedom, which means
that the variance and kurtosis are infinite. Compare this to a Cauchy distribution (Stu-
dent t with 1 degree-of-freedom) which for a median absolute percentage error of
4.5% would have 86% of the absolute residuals within 20% (as opposed to the 89.7%
in Zillow). If the true innovations in house price models follow a Cauchy-like distri-
bution, this means that large errors are not particularly rare and this has implications
for financial risk management, assessment, and regulation. In the context of finance,
such rare events have been labeled “black swans” (Taleb 2010).

In this paper we show both theoretically and through Monte Carlo simulations
that disturbances in house price models which ignore spatial-temporal dependence
can appear more normally distributed. Using US census data from 2000 we obtain a
strong linear relationship between the accuracy of a house price model and the tail
heaviness (indicated by the level of leptokurtosis) of the residuals. We can sum up

2Zillow uses their estimates as part of their process to buy houses for resale and so they have a direct
incentive to perform well (Duffy 2021).
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that assuming non-normal distribution for the disturbances could provide at least one
way to address the issue of “black swans.” In contrast, simple models that ignore
spatial or spatiotemporal dependence may lead to “normal” residuals that mask non-
normality. In other words, not modeling spatial and spatiotemporal dependence can
make “black swans” appear grey.

We begin with “The Zillow Example” where we analyze the kurtosis of the residu-
als in the Z-estimates. “The Kurtosis in RegressionModels with Spatial and Temporal
Dependence” documents the kurtosis present in the residuals from house price mod-
els and how this makes the risk assessment process more difficult. We motivate why
residuals from non-spatial models may mask non-normality and provide both theoret-
ical and Monte Carlo evidence to support this statement. In “An Empirical Example”
we set forth an example based on housing data, where we show a very strong empir-
ical relation between the house price accuracy and the leptokurtosis of the residuals.
We finish in “Conclusion” with a summary of the key findings and discuss the
implications of this research for housing models and other areas of application.

The Zillow Example

In this section we analyse the kurtosis of the residuals in the Zillow house price
model. We use the data published on Zillow’s website on September 30, 2016. We
assume that the error random variable u is a Student t with ν degrees-of-freedom
so that fat tails can be obtained (Pontines 2010). Practically, we generate a random
variable u with a given ν and examined different levels of scale s to match the median
absolute error med|e| and the proportion of errors under 20% #(|e| < 0.2) observed
in the Zillow data. We show the results in Table 2. The estimated degrees-of-freedom
ν̃ vary from a low of 1.06 (Philadelphia) to a high of 2.2 (Denver). For the Student
t , the first moment (mean) exists when the degrees-of-freedom exceed 1 and the
variance exists when the degrees-of-freedom exceed 2. All the cities have a mean
that exists, but only three cities have a finite variance (Denver, Portland, and Seattle).
None of the cities have a defined skewness or kurtosis. Further extending the results,
we calculate that Pittsburgh has 5.2% of the predictions that exceed 50% error while
Seattle has only 1.1% of the predictions that exceed 50% error.

Various studies have examined non-Gaussian error terms in house price models.
Chasco et al. (2018) analyze the impact of different non-normal error distributions on
a test for spatial groupwise heteroscedasticity through simulations. They also show a
clear non-normality in the error terms using the Jarque-Bera statistic on houses prices
in Madrid. As the distribution of house selling prices display heavy tails, De Oliveira
and Ecker (2019) propose a non-Gaussian hedonic spatial model for the log selling
prices of 1,502 houses in Cedar falls (Iowa). Aquaro et al. (2021) perform Monte
Carlo simulations to analyse the impact of non-Gaussian errors in a spatial house
price model with heterogeneous coefficients.

The lack of normality in the error terms has major implications for prediction
intervals. For prediction, a key distinction exists between the confidence interval
of the prediction and a prediction interval. A confidence interval for the prediction
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expresses the uncertainty associated with the prediction, mainly due to a low sam-
ple size. As the sample size increases n → ∞, the prediction becomes less and less
variable and, at some point, goes to a constant. If the model is correct, with enough
data, the model will yield ŷ = E(y) with no uncertainty. However, a prediction inter-
val takes into account the uncertainly associated with the prediction and, even more
importantly, the uncertainty associated with the disturbance. In the case of enough
data, the distribution of yi is just E(yi) plus the distribution of the disturbance which
could be highly non-normal. In this case, increasing the sample size reduces the
uncertainty of the forecast but does not have any effect on the uncertainty associated
with the disturbance. Typical prediction intervals often use the standard deviation σ

of the random variable yi and follow the form yi = ŷi ± g · σ̂ where g captures
the desired level of accuracy. However, the Student t distributed random variables do
not have a defined variance for less than two degrees-of-freedom, and so this would
not work for the Zillow data. Of course, one can always define a prediction interval
using the quantiles of a non-normal distribution, and it will assign substantially more
probability to extreme values than with the normal distribution Table 1.

Table 1 Estimated Student t for Zillow Errors in 2016

ν̃ s̃ av(|e| > 0.5) Med |e| av(|e| < 0.2)

National 1.3711 0.0503 0.0303 0.0450 0.8970
Atlanta 1.1987 0.0440 0.0362 0.0410 0.8940
Baltimore 1.2642 0.0369 0.0254 0.0340 0.9200
Boston 1.6032 0.0524 0.0211 0.0450 0.9130
Charlotte 1.5734 0.0590 0.0267 0.0510 0.8930
Chicago 1.2096 0.0505 0.0416 0.0470 0.8770
Cincinnati 1.1923 0.0503 0.0430 0.0470 0.8740
Cleveland 1.2175 0.0387 0.0297 0.0360 0.9100
DFW 1.6928 0.0401 0.0115 0.0340 0.9470
Denver 2.1893 0.0623 0.0116 0.0500 0.9250
Detroit 1.3656 0.0491 0.0297 0.0440 0.8990
Miami 1.7752 0.0680 0.0247 0.0570 0.8860
Minneapolis 1.8725 0.0495 0.0120 0.0410 0.9370
New York 1.3073 0.0550 0.0385 0.0500 0.8760
Orlando 1.4991 0.0434 0.0191 0.0380 0.9260
Philadelphia 1.0605 0.0428 0.0475 0.0420 0.8750
Phoenix 1.5218 0.0357 0.0136 0.0310 0.9460
Pittsburgh 1.0776 0.0482 0.0518 0.0470 0.8620
Portland 2.1256 0.0496 0.0079 0.0400 0.9490
Riverside 1.2738 0.0425 0.0296 0.0390 0.9060
Sacramento 1.6066 0.0536 0.0217 0.0460 0.9100
San Diego 1.4828 0.0571 0.0296 0.0500 0.8900
San Francisco 1.8053 0.0599 0.0189 0.0500 0.9090
Seattle 2.0109 0.0540 0.0112 0.0440 0.9350
Tampa 1.3153 0.0506 0.0340 0.0460 0.8890
D.C. 1.7042 0.0413 0.0119 0.0350 0.9450
Los Angeles 1.4670 0.0443 0.0211 0.0390 0.9210
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The time span for the observations that Zillow reported on September 30, 2016
was not clear. To see whether this was sensitive to the unknown time span we esti-
mated the statistics again using a new sample from data publicly provided by Zillow
and last updated on June 26, 2019. The results here differ somewhat from those
reported in Table 2 as we only focus on off-market properties that are more difficult
to evaluate as documented by the error statistics. However, the results in Table 2 still
show substantial kurtosis with the maximum degrees-of-freedom for Seattle at 2.22
(versus 2.19 for Denver in the 2016 data) and the minimum degrees-of-freedom of
1.37 for Baltimore (versus Philadelphia at 1.06 in the 2016 data).

The Kurtosis in RegressionModels with Spatial and Temporal
Dependence

In this section we examine the kurtosis in regression models with spatial and temporal
dependence. “The Kurtosis of Linear Combinations” provides a theorem to compute

Table 2 Estimated Student t for Zillow Errors in 2019

D.F. Scale av(|e| > 0.5) Med |e| av(|e| < 0.2)

Atlanta 1.4133 0.0811 0.0544 0.0720 0.8170

Baltimore 1.3674 0.0748 0.0523 0.0670 0.8290

Boston 2.1096 0.0915 0.0284 0.0740 0.8460

Charlotte 1.4165 0.0756 0.0492 0.0670 0.8330

Chicago 1.8832 0.0979 0.0410 0.0810 0.8140

Cincinnati 1.5955 0.1015 0.0600 0.0870 0.7810

Cleveland 2.0133 0.0282 0.0031 0.0230 0.9810

Denver 2.1956 0.0685 0.0140 0.0550 0.9100

Detroit 1.6072 0.1025 0.0599 0.0880 0.7790

Los Angeles 1.6662 0.0718 0.0315 0.0610 0.8680

Miami 1.5942 0.0850 0.0456 0.0730 0.8260

Minneapolis 1.6900 0.0755 0.0332 0.0640 0.8600

New York 1.6607 0.1118 0.0648 0.0950 0.7600

Orlando 1.6302 0.0689 0.0312 0.0590 0.8720

Philadelphia 1.3926 0.0974 0.0717 0.0870 0.7700

Phoenix 1.7671 0.0703 0.0265 0.0590 0.8800

Pittsburgh 1.3717 0.1341 0.1122 0.1200 0.6750

Portland 1.7336 0.0688 0.0267 0.0580 0.8810

Riverside 1.4154 0.0619 0.0374 0.0550 0.8700

Sacramento 1.5618 0.0670 0.0331 0.0580 0.8710

San Diego 1.7491 0.0666 0.0247 0.0560 0.8880

San Francisco 1.9333 0.0876 0.0317 0.0720 0.8460

Seattle 2.2244 0.0799 0.0189 0.0640 0.8830

Tampa 1.6940 0.0955 0.0486 0.0810 0.8060

Washington 1.7545 0.0585 0.0197 0.0490 0.9090
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the kurtosis for linear combinations that will be used for spatial and temporal autore-
gressive and moving average processes and examines the attenuation of kurtosis that
arises from models that ignore temporal, spatial, and spatiotemporal dependence.
“Monte Carlo study” shows these points with specific distributions and dependence
data generating processes. “The relationship between goodness-of-fit and kurtosis”
describes the relationship between the goodness-of-fit of a regression model and the
kurtosis of the disturbances. We also show how introducing many explanatory vari-
ables in a regression model may have the effect of raising the level of non-normality
in the residuals.

The Kurtosis of Linear Combinations

The following theorem is helpful to analyse the kurtosis of a spatial and temporal
autoregressive and moving average processes.

Theorem 3.1 Let r be a vector of k unit symmetric and mutually independent
random variables (rvs) with level of kurtosis κ . We consider a linear combination of r

v = r ′p (3.1)

where the vector p = [
p1 p2 . . . pk

]′
represents the weights of the linear

combination Eq. 3.1. The excess kurtosis of v is

κv − 3 = (κ − 3)′p(4)

σ 4
v

(3.2)

where

• κ = [
κ1 κ2 . . . κk

]′
contains the kurtosis of the rvs rj with j = 1, 2, ..., k

• p(q) = [
p

q

1 p
q

2 . . . p
q
k

]′
contains the qth powers of the weights pj with j =

1, 2, ..., k
• σ 4

v = [σ 2
v ]2 is the square of the variance of v.

Proof The moments of the rvs rj with j = 1, 2, ..., k are

E(r
q
j ) = 0, for q = 1, 3, j = 1, . . . , k (3.3)

E(r
q
j ) = 1, for q = 2, j = 1, . . . , k (3.4)

E(r
q
j ) = κj , for q = 4, j = 1, . . . , k. (3.5)

Given that r contains mutually independent unit rvs rj , the variance of v equals
the sum of squared weights

σ 2
v = ι′kp(2) (3.6)

where ιk is a vector composed of ones and p(2) contains the squares of the weights
pj with j = 1, 2, ..., k.

The kurtosis of v defined in Eq. 3.1 is

κv = E(v4)

σ 4
v

where v4 = (p1r1 + p2r2 + . . . + pkrk)
4 (3.7)
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We can compute the fourth power of v in Eq. 3.7 using the multinomial theorem as
stated in Eq. 3.8.

(p1r1 + p2r2 + . . . + pkrk)
4 =

∑

s1+s2+...+sk=4

(
4

s1, s2, . . . , sk

) k∏

t=1

(pt rt )
st (3.8)

Because the odd moments equal 0, as Eq. 3.3 shows, E(v4) involves only even
powers. For the fourth power, this does not involve cross-products and therefore the
contribution to E(v4) from the fourth powers equals κ ′p(4). The only other non-
zero terms are associated with the products of p

(2)
i p

(2)
j since E(r2i r2j ) = 1 with

i, j = 1, 2, . . . k. Thus, there will be 4!/(2!2!) = 6 quadratic terms. In summary,
there will be 0 first order terms, 6 quadratic terms, 0 cubic terms, and 1 quartic term
in the overall polynomial in Eq. 3.8.

In actually computing the polynomial, we can easily do this via some linear alge-
bra. We begin by defining the matrix P in Eq. 3.9 as the outer product of the squared
weights p2

j ,

P = (
p(2)

) · (
p(2)

)′
(3.9)

We also consider the k by k matrix D whose elements on the main diagonal are
given by the fourth powers of the weights pj with j = 1, 2, · · · , k and all other
elements are zeros

D = diag(p(4)).

The upper and lower triangles of the matrix P contains all the cross-products
of p

(2)
i p

(2)
j for i, j = 1, 2 . . . k. The matrix (P − D) eliminates the fourth order

products on the diagonal, and therefore ι′k(P − D)ιk contains 2 times p
(2)
i p

(2)
j for

i, j = 1, 2, . . . k. From the multinomial coefficient in Eq. 3.8, the multiplicity of the
products of the quadratic terms p

(2)
i p

(2)
j in a fourth order expansion equal 4!/(2!2!) =

6 . Hence, the quantity 3ι′k(P − D)ιk contains all the second order cross-products

p
(2)
i p

(2)
j with the desired multiplicity. Therefore, this allows to simply the expression

of E(v4) as follows

E(v4) = κ ′p(4) + 3ι′k(P − D)ιk (3.10)

Given the definition of kurtosis in Eq. 3.7 and the expression of E(v4) from
Eq. 3.10 as well as σ 2

v from Eq. 3.6, this leads to the kurtosis of v in Eq. 3.11.

κv = κ ′p(4)+3ι′k(P−D)ιk

σ 4
v

(3.11)
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Some manipulations of Eq. 3.11 leads to a simpler expression in Eq. 3.12.

κv = κ ′p(4) + 3ιk ′P ιk − 3ι′
k
Dιk

σ 4
v

= κ ′p(4) + 3ιk ′ (p(2)
) · (

p(2)
)′

ιk − 3ι′
k
p(4)

σ 4
v

= (κ − 3ιk)′p(4) + 3ιk ′ (p(2)
) · (

p(2)
)′

ιk

σ 4
v

= (κ − 3)′p(4) + 3σ 4
v

σ 4
v

= (κ − 3)′p(4)

σ 4
v

+ 3

κv − 3 = (κ − 3)′p(4)

σ 4
v

(3.12)

where the excess kurtosis of v is a function of the weighted excess kurtosis of the
component random variables r .

We can obtain a further simplification by examining a combination of random
variables veq where each random variable rj with j = 1, 2, . . . , k shows the same
level of kurtosis κj = κ and each random variable has equal weights pj = 1/k

with j = 1, 2, . . . , k. In other words, let veq = ∑k
j=1 rj /k. In this case, the kur-

tosis approaches 3 as the number of random variables k becomes large as shown in
Eq. 3.13

κeq = 3 + κ − 3

k
. (3.13)

We now turn to examining cases where each random variable has the same level of
kurtosis κ , but the linear combination has different weights so that v = κ ′p = κιk

′p.
Again, in the spirit of seeking simple expressions for kurtosis, we examine the ratio φ

between the kurtosis of the weighted random variable v = r ′p relative to the excess
kurtosis κ − 3 for each random variable. From Eq. 3.2 we obtain Eqs. 3.14 and 3.15

φ = (κ − 3)−1(κ − 3)′p(4)

σ 4
v

= (κ − 3)−1(κ − 3)ιk ′p(4)

σ 4
v

(3.14)

= ιk
′p(4)

(
ι′kp(2)

)2 . (3.15)

To make this more concrete, we illustrate the relative levels of kurtosis φ for two
temporal processes, a Moving Average MA(1) and an Autoregressive AR(1). For
a temporal MA(1) process, the weight vector is p = [

1 τ
]′, the variance of v is
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σ 2
v = 1 + τ 2 and the sum of the fourth moments is ι′kp(4) = 1 + τ 4. We assume

τ ∈ (−1, 1). We obtain an expression for the relative excess kurtosis in Eq. 3.16

φMA(1),t = κv − 3

κ − 3
= 1 + τ 4

(1 + τ 2)2
. (3.16)

For any level of τ , φMA(1),t ≤ 1 and, therefore, the level of kurtosis in the random
variable v decreases from independent r to a temporal moving average dependence
process. For example, τ = 0.5 leads to a φMA(1),t = 0.68.

If we consider a temporal MA(2) process, the weight vector becomes p =[
1 τ1 τ2

]′. The variance of v is σ 2
v = 1+τ 21 +τ 22 and the sum of the fourth moments

is ι′kp(4) = 1+τ 41 +τ 42 . If the MA(2) process is invertible, the relative excess kurtosis
in Eq. 3.15 is

φMA(2),t = κv − 3

κ − 3
= 1 + τ 41 + τ 42

(1 + τ 21 + τ 22 )2
. (3.17)

If we consider a MA(q) process that is invertible, the Eq. 3.17 can be generalised
for a temporal MA(q) process as in Eq. 3.18

φMA(q),t = κv − 3

κ − 3
= 1 + τ 41 + τ 42 + ... + τ 4q

(1 + τ 21 + τ 22 + ... + τ 2q )2
. (3.18)

For a temporal AR(1) process, the weight vector is p = [
1 τ τ 2 τ 3 . . .

]′
while

p(4) = [
1 τ 4 τ 8 τ 12 . . .

]′
. Therefore, the sum of the fourth moments is ι′kp(4) =

(1 − τ 4)−1. Turning to the variance, p(2) = [
1 τ 2 τ 4 τ 6 . . .

]′
which means σ 2

v =
ι′kp(2) = (1− τ 2)−1. Therefore, we obtain a simple expression for the relative excess
kurtosis in Eq. 3.19

φAR(1),t = (1 − τ 4)−1

(1 − τ 2)−2
= 1 − 2τ 2 + τ 4

1 − τ 4
. (3.19)

For τ ∈ (−1, 1), φAR(1),t < 1 which means the autoregressive process reduces the
level of kurtosis in the random variable v relative to an independent r . For example,
τ = 0.5 leads to a φAR,t = 0.6.

The relative excess kurtosis in Eq. 3.15 for a AR(p) process is

φAR(p),t = 1 − τ 21 − τ 22 + ... − τ 2p

1 − τ 41 − τ 42 + ... − τ 4p
.

Analogously, we consider spatial MA(1) and AR(1) processes. To define them,
we assume an exogenous square spatial weight matrix W and the associated scalar
parameter ρ. To keep this simple, we assume In − ρW is invertible for all ρ in the
open interval (−1, 1). This condition is sufficient for row-stochastic W (which has
a principal eigenvalue of 1) and symmetric W scaled to have a principal eigenvalue
of 1. In the spatial weight matrix W the generic element wij is equal to a positive
number when observation j is a neighbor to observation i and 0 otherwise. To prevent
each observation from predicting itself, wii = 0 for all i.3 For simplicity, we assume

3See LeSage and Pace (2009) for more details on the construction of W .
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Table 3 The Kurtosis for Autoregressive Spatiotemporal models with 6 nearest neighbors and Laplace
disturbances

Case ρ τ κ̂v − 3 φ φ̂ φ̂cor tφ

1 0.0 0.0 2.9920 1.0000 0.9973 1.0000 0.0000

2 0.0 0.4 2.1666 0.7241 0.7222 0.7241 −0.0741

3 0.0 0.8 0.6567 0.2195 0.2189 0.2195 −0.2500

4 0.4 0.0 2.7364 0.9146 0.9121 0.9146 −0.1089

5 0.4 0.4 1.9815 0.6623 0.6605 0.6623 −0.1693

6 0.4 0.8 0.6006 0.2008 0.2002 0.2007 −0.5322

7 0.8 0.0 1.4499 0.4846 0.4833 0.4846 −0.0687

8 0.8 0.4 1.0498 0.3509 0.3499 0.3509 −0.3402

9 0.8 0.8 0.3180 0.1064 0.1060 0.1063 −1.7036

that each row ofW has am entries of 1/m and zeros otherwise (m nearest neighbors).
The disturbance vector for a spatial MA(1) process is given by u = (In+ρW)ε where
ε represents a vector of iid rvs with kurtosis κ . In this case the vector of weights p

is p = [1 . . . ρ/m . . . ρ/m . . .]′, the variance of v is σ 2
v = 1 + ∑m

i=1(p/m)2 =
1 + m−1ρ2 and the sum of the fourth moments is ι′kp(4) = 1 + ∑m

i=1(p/m)4 =
1 + m−3ρ4. Hence, we obtain

φMA(1),s = 1 + m−3ρ4

(1 + m−1ρ2)2
. (3.20)

For first-order spatial autoregressive model, the residual is given by u = (In −
ρW)−1ε where ε represents a vector of iid rvs with kurtosis κ . To obtain a single
row of (In −ρW)−1, we need to solve the following equation (In −ρW ′)x = 0/i for
x where 0/i is a vector of zeros but with a one on the ith row.4 After computing x,
its transpose x′ represents the ith row of (In − ρW)−1. Given this row, we can easily
compute the variance of v, the sum of the fourth moments ι′kp(4) and φAR(1),s .

Analogously to the temporal processes, we can extend the results in Eq. 3.20 and
for the AR(1) process to MA(q) and AR(q) spatial processes.

Monte Carlo study

We perform aMonte Carlo study to better understand the reduction of excess kurtosis
for a spatiotemporal process. We use a contiguity W matrix with 100 observations
and generate a product separable spatialtemporal process where L represents a n × n

matrix that lags a n × 1 vector vt so that Lvt = vt−1,

u = ((In − τL)(In − ρW))−1 ε

where ε is a vector of iid random variables. Because the time series expansion
uses 75 terms and the spatial part uses 100 terms, each trial involves 7,500 ε vectors.

4If W is a sparse matrix, finding the solution for x of this problem is typically very fast.
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Table 4 The Kurtosis for Autoregressive Spatiotemporal models with 6 nearest neighbors and Logistic
disturbances

ρ τ κ̂v − 3 φ φ̂ φ̂cor tφ

1 0.0000 0.0000 1.1970 1.0000 0.9975 1.0000 0.0000

2 0.0000 0.4000 0.8668 0.7241 0.7223 0.7241 −0.3354

3 0.0000 0.8000 0.2624 0.2195 0.2187 0.2192 −3.8955

4 0.4000 0.0000 1.0949 0.9147 0.9124 0.9146 −0.1298

5 0.4000 0.4000 0.7928 0.6623 0.6606 0.6623 −0.5227

6 0.4000 0.8000 0.2399 0.2008 0.1999 0.2004 −4.9980

7 0.8000 0.0000 0.5834 0.4877 0.4862 0.4874 −2.3209

8 0.8000 0.4000 0.4223 0.3531 0.3520 0.3528 −2.9672

9 0.8000 0.8000 0.1275 0.1070 0.1063 0.1065 −7.3347

We repeat this for 1,000 iterations and compute the empirical excess kurtosis κ̂v − 3
and φ̂ defined in Eq. 3.14. We also derive a correction φ̂cor obtained by dividing φ̂ by
the value of the same parameter φ̂ in the case of temporal and spatial independence
(i.e. ρ, τ = 0). We report the t-stats for the difference between φ̂cor and φ in the
following tables.

Table 3 displays the results for Laplace distributed disturbances with κ = 6,
Table 4 contains the results for logistic disturbances with κ = 4.2, and Table 5 shows
the results for Pearson disturbances with κ = 4. By and large, the empirical measure-
ments of φ̂ agree with the theoretical calculations. The Laplace distribution shows
close agreement between the measured and theoretical values of φ, with none of the
t statistics showing significant differences.

We now turn to examining other spatial structures, specifically those with 15 and
30 nearest neighbors. Both of these weight matrices W were symmetricized and then
made doubly stochastic so that the row and column sums equal 1. This is common
procedure in spatial econometrics (LeSage and Pace 2009, p. 88). Table 6 contains the

Table 5 The Kurtosis for Autoregressive Spatiotemporal models with 6 nearest neighbors and Pearson
disturbances

ρ τ κ̂v − 3 φ φ̂ φ̂cor tφ

1 0.0 0.0 2.9406 1.0000 0.9802 1.0000 0.0000

2 0.0 0.4 2.1345 0.7241 0.7115 0.7259 0.6983

3 0.0 0.8 0.6520 0.2195 0.2173 0.2217 3.4776

4 0.4 0.0 2.6928 0.9153 0.8976 0.9157 0.1465

5 0.4 0.4 1.9546 0.6628 0.6515 0.6647 0.8379

6 0.4 0.8 0.5970 0.2009 0.1990 0.2030 3.6005

7 0.8 0.0 1.4443 0.4892 0.4814 0.4912 1.0837

8 0.8 0.4 1.0479 0.3543 0.3493 0.3563 1.5774

9 0.8 0.8 0.3193 0.1074 0.1064 0.1086 3.5689
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Table 6 The Kurtosis for Autoregressive Spatiotemporal models with 15 nearest neighbors and Laplace
disturbances

ρ τ κ̂v − 3 φ φ̂ φ̂cor tφ

1 0.0 0.0 2.9910 1.0000 0.9970 1.0000 0.0000

2 0.0 0.4 2.1656 0.7241 0.7219 0.7240 −0.3159

3 0.0 0.8 0.6559 0.2195 0.2186 0.2193 −1.8767

4 0.4 0.0 2.8787 0.9625 0.9596 0.9625 −0.1802

5 0.4 0.4 2.0844 0.6970 0.6948 0.6969 −0.4533

6 0.4 0.8 0.6313 0.2113 0.2104 0.2111 −1.9137

7 0.8 0.0 1.7478 0.5846 0.5826 0.5844 −0.9353

8 0.8 0.4 1.2654 0.4233 0.4218 0.4231 −1.3037

9 0.8 0.8 0.3832 0.1283 0.1277 0.1281 −2.2095

15 nearest neighbor results with Laplace disturbances. The empirical and theoretical
results agree closely.

If we consider τ = ρ = 0.8, Table 3 shows a lower value of φ (0.1064) for
15 nearest neighbors compared to the value of φ (0.1281) for 30 nearest neighbors
reported in Table 7. We interpret these results considering that the larger number
of neighbors uses more random variables, but this also reduces the variance of the
average which weakens the reduction of kurtosis.

The relationship between goodness-of-fit and kurtosis

The purpose of this section is to show how goodness-of-fit can amplify (or attenuate)
the kurtosis in the residuals of spatiotemporal processes. We consider y = r ′p a
linear combination of r = [

ŷ ê
]′ with weights p = [

σŷ σê

]′. We begin with a
simple setting whereE(y) = 0 with σ 2

y = 1, so we obtain σ 2
ŷ

= R2, σ 2
ê

= 1−R2 and

Table 7 The Kurtosis for Autoregressive Spatiotemporal models with 30 nearest neighbors and Laplace
disturbances

ρ τ κ̂v − 3 φ φ̂ φ̂cor tφ

1 0.0 0.0 2.9894 1.0000 0.9965 1.0000 0.0000

2 0.0 0.4 2.1649 0.7241 0.7216 0.7242 0.0685

3 0.0 0.8 0.6563 0.2195 0.2188 0.2195 0.1070

4 0.4 0.0 2.9274 0.9793 0.9758 0.9792 −0.0567

5 0.4 0.4 2.1202 0.7092 0.7067 0.7092 0.1074

6 0.4 0.8 0.6428 0.2150 0.2143 0.2150 0.1915

7 0.8 0.0 2.0543 0.6877 0.6848 0.6872 −0.6327

8 0.8 0.4 1.4884 0.4980 0.4961 0.4979 −0.1037

9 0.8 0.8 0.4519 0.1509 0.1506 0.1512 0.8087
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p = [
R (1 − R2)1/2

]′
. Let ŷ display a level of kurtosis equal to κŷ and ê display a

level of kurtosis equal to κê.
Given the weights p and the levels of kurtosis κŷ and κê, we substitute these values

in the Eq. 3.2 and we obtain Eq. 3.21

κy − 3 = R4(κŷ − 3) +
(
1 − R2

)2
(κê − 3) . (3.21)

If we solve for the kurtosis of the residuals κê in Eq. 3.21, we obtain Eqs. 3.22
and 3.23

κê − 3 = (κy − 3) − R4(κŷ − 3)
(
1 − R2

)2 (3.22)

= κy − κŷ + (
1 − R4

)
(κŷ − 3)

(
1 − R2

)2 (3.23)

We can give further structure to Eq. 3.23 by modeling the κŷ . Intuitively, elabo-
rate regression models may contain a large number of explanatory variables and the
excess kurtosis of a linear combination of a large number of explanatory variables
could go to 0. This is also the situation that often produces a high coefficient of deter-
mination R2. If ŷ is normal distributed, therefore its kurtosis is 3 and the Eq. 3.23
reduces to Eqs. 3.24 and 3.25

κê − 3 = α · (κy − 3) (3.24)

α = 1
(
1 − R2

)2 . (3.25)

Equation 3.25 shows that any excess kurtosis in y is amplified by α in terms of
excess kurtosis in the residuals. For example, if R2 = 0.9, the residuals will excess
kurtosis augmented by 100 times higher than the excess kurtosis of y. This declines
rapidly with fit, so that a coefficient of determination R2 = 0.5 results in a factor of
four amplification of the excess kurtosis of ê relative to the excess kurtosis of y.

We can go further in modeling the κŷ introducing assumptions on the kurtosis of
individual explanatory variables and on the regression parameters. To illustrate this,
we assume that ŷ uses a large number of independent explanatory variables xa where
E(xa) = E(y) = 0, xa ⊥ xb for a, b = 1, . . . k. We can think of this as coming
out of a principal components analysis where each regressor is orthogonal to the
others. Furthermore, we can assume that the magnitude of the estimated regression
coefficients follows a geometric decline where the most important component has a
parameter of 1, the second most important component has a contribution of g, and so
forth. These assumptions are represented by Eq. 3.26

ŷ = x1 + x2 · g + x3 · g2 + x4 · g3 + . . . , 0 ≤ g < 1, (3.26)

where g is a scalar constant giving the rate of the geometric decline in the con-
tribution of xi . If the number of explanatory variables xi is high enough, the sum in
Eq. 3.26 converges. We also assume a constant level of kurtosis and variance for each
xi as well as that all the odd moments equal 0.
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To compute the excess kurtosis of ŷ given in Eq. 3.27, we can employ the same
development of the convergence of an autoregressive sequence AR(1) shown in
Eq. 3.20. Even if in this case there is no temporal dependence, we can use the
same geometrically declining weights that occurs in an AR(1) process to obtain the
following result

κŷ − 3 =
(
1 − g2

)2

1 − g4
· (κx − 3) . (3.27)

The slower the weights decline, the less excess kurtosis will be shown by ŷ. Equa-
tion 3.27 also shows that if the weight g = 0, the excess kurtosis of the prediction
κŷ − 3 equal the excess kurtosis of the explanatory variable κx − 3. On the contrary,
for a weight g close to 1, the excess kurtosis of the prediction will be close to 0,
just as with a normal random variable. From the excess kurtosis of the residuals in
Eq. 3.22 and the excess kurtosis of the prediction κŷ , we derive the Eq. 3.28

κê − 3 = α ·
(

(κy − 3) − R4 ·
(
1 − g2

)2

1 − g4
· (κx − 3)

)

(3.28)

As a specific example, we assume g = 0.9, R2 = 0.9, κx = 6, and κy = 4. These
parameters would lead to κŷ = 3.315 and κê = 82.3. Changing g = 0.8 and R2 to
0.8 would yield κê = 41.5.

The Eq. 3.28 provides an explanation for why high fit regressions can have lep-
tokurtic residuals. First, high fit (high R2) directly amplifies any excess kurtosis in
y by large factors as R2 approaches 1. Second, if the high fit comes from including
many explanatory variables, the excess kurtosis of the explanatory variables, which
can reduce the excess kurtosis of the residuals, may tend to go away. In that sense,
adding an additional explanatory variable increases R2 as well as decreases κŷ and,
thus, increases the kurtosis of the residuals.

To illustrate this further, we conduct a small Monte Carlo experiment where
g = 0.75, 0.85, 0.95, R2 = 0.5, 0.75, 0.95 and each entry represents the average of
25,000 trials with n = 100, 000. We consider 100 explanatory variable xi with dif-
ferent weights given by the powers of g. The results appear in Table 8. The third

Table 8 Kurtosis Regression Statistics

Case g R2 κe κ̂ê κŷ κ̂ŷ κy κ̂y

1 0.7500 0.5000 5.9992 5.9986 3.8402 3.8400 3.9597 3.9598

2 0.7500 0.7500 5.9999 5.9962 3.8400 3.8400 3.6598 3.6600

3 0.7500 0.9500 6.0001 5.9886 3.8399 3.8400 3.7656 3.7656

4 0.8500 0.5000 6.0009 6.0003 3.4831 3.4833 3.8709 3.8710

5 0.8500 0.7500 5.9982 5.9929 3.4827 3.4833 3.4589 3.4592

6 0.8500 0.9500 5.9990 5.9492 3.4831 3.4833 3.4436 3.4437

7 0.9500 0.5000 6.0001 5.9996 3.1535 3.1537 3.7883 3.7885

8 0.9500 0.7500 5.9991 5.9969 3.1534 3.1537 3.2738 3.2739

9 0.9500 0.9500 5.9992 6.0379 3.1538 3.1537 3.1463 3.1463
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column κe in Table 8 represents the actual average kurtosis of the error term, gen-
erated using Laplace random variables with a theoretical kurtosis of 6. The fourth
column represents its theoretical prediction according to the values of ŷ and y, the
fifth column contains the empirical value for the kurtosis of the predictions while the
sixth column contains the predicted kurtosis of the predictions. Finally, the seventh
column reports the measured kurtosis of y while the last column contains the pre-
dicted kurtosis of y. The empirical and theoretical values are in close agreement with
each other and there are no statistically significant violations based on t tests on the
differences. From Table 8 we note that a small amount of excess kurtosis in y with
an almost identical amount of excess kurtosis in the predictions can lead to a kurtosis
of 6 in the disturbances.

An Empirical Example

In this section we provide an empirical example of the positive relation between bet-
ter fitting models and leptokurtic residuals. For example, the residuals of a model
with only the intercept include the true disturbances as well as the omitted vari-
ables. Both the true disturbances and omitted variables may exhibit spatial, temporal,
and spatiotemporal dependence across observations. The combination of these vari-
ous disturbances can produce residuals that follow a more normal distribution than
the underlying innovations and thus mask the underlying innovations. Consequently,
modeling these aspects of the data can uncover or unmask the distribution, normal or
non-normal, of the underlying innovations.

To show this, we use 62,266 census-tract level observations from the 2000 Census.
The same sample has been used by LeSage and Pace (2009, p. 272). We consider a
regression model where the dependent variable y2000 is the logarithm of the median

Table 9 Percentiles of logged explanatory variables

1 10 25 50 75 90 99

P2K 10.292 10.882 11.212 11.573 11.995 12.400 13.321

P90 9.770 10.431 10.758 11.170 11.713 12.183 12.982

House Age 1.386 2.639 2.639 3.178 3.526 4.078 4.078

Employment 5.441 66659 7.068 7.437 7.757 8.012 8.361

Years Education 2.398 2.485 2.485 2.485 2.565 2.565 2.833

Population Age 3.091 3.296 3.466 3.466 3.676 3.676 3.902

HouseHolds 5.308 66524 66893 7.220 7.504 7.735 8.087

White HHs 3.296 66129 66829 7.282 7.627 7.896 8.275

HH Income 9.039 9.712 9.987 10.275 10.561 10.818 11.278

Population 7.102 8.306 8.681 9.013 9.297 9.529 9.875

Owner Occupied 4.007 5.790 66365 66796 7.124 7.373 7.717

Renter Occupied 3.219 4.718 5.328 5.935 66491 66935 7.659

Area of Tract 12.010 13.693 14.465 15.504 17.696 19.377 21.418
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housing price for census tracts in 2000. The regressor set X1990 is given by the loga-
rithm of the following variables evaluated in 1990: house age, employment, median
years of education, median age of the population, total households, white households,
median household income, population, owner occupied housing units, renter occu-
pied housing units, and census tract area. We show percentiles (1 through 99) of the
variables in Table 9.

Given the dependent and explanatory variables, we examined different specifica-
tions to obtain some variation in goodness-of-fit as measured by σ̃ or median absolute
residuals to examine whether this led to a corresponding variation in the distribution
of the residuals as measured by the skewness, kurtosis, and the degrees-of-freedom
from a fitted t distribution. Panel A in Table 10 shows the 12 different estimated
specifications which involve various combinations of X, WX, temporal lags, spatial

Table 10 Estimated Non-normality by Specification

Panel A: Specification

Case k

1 1 0 0 0 0

2 2 1 0 0 0

3 2 0 0 1 0

4 3 1 0 1 0

5 12 0 1 0 0

6 13 1 1 0 0

7 13 0 1 1 0

8 14 1 1 1 0

9 23 0 1 0 1

10 24 1 1 0 1

11 25 0 1 1 1

12 26 1 1 1 1

Panel B: Statistical Performance

Case σ̃ Kurt Skew Med|e| ν̃

1 0.6138 3.5522 0.3830 0.3921 12.3744

2 0.2589 8.1560 0.0962 0.1357 3.9402

3 0.2810 18.6137 1.4036 0.1563 4.5736

4 0.2041 30.8543 1.4414 0.0870 2.6419

5 0.3873 7.5701 0.6404 0.2225 5.1410

6 0.2161 12.0014 0.0485 0.1074 3.3901

7 0.2675 17.6475 1.1653 0.1456 4.3290

8 0.1922 27.7541 0.8847 0.0824 2.6758

9 0.3521 5.2921 0.3037 0.2053 5.9317

10 0.2160 12.1630 0.0244 0.1081 3.5001

11 0.2569 11.2379 0.5773 0.1471 5.1637

12 0.1886 25.2275 0.5691 0.0870 3.0455

Corr(ν̃,.) 0.9662 −0.6486 −0.1934 0.9755 1.0000

p-value 0.0000 0.0225 0.5469 0.0000 1.0000
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lags, and a spatial autoregressive error term as selected by the respective indicators
as shown in Eq. 4.1

(4.1)

We use an intercept C in all the specifications. The first column in Panel A repre-
sents the number of cases and the second one the maximum number of parameters p

in the regression model. When both WX and a time lag are included in the model, this
means that Wy1990 is also added. This represents the last row in Panel A where 12
cases are created with a number of estimated parameters p varying between one and
26. Because the log-price in 2000 P2K is regressed on variables from 1990, it indi-
rectly includes various macro factors such as inflation. However, any adjustment for
inflation made over the entire sample would proportionately affect all the estimated
β coefficients and variance. It would not affect the kurtosis of the residuals, the focus
of this exercise, since multiplicative transformations do not affect the kurtosis of a
random variable.

Panel B in Table 10 shows the standard deviation of the residuals, estimated kur-
tosis, skewness, median absolute errors and the estimated degrees-of-freedom ν̃ from
a Student t distribution fitted to the residuals. The intercept only model (Case=1)
shows mild levels of kurtosis (3.55) and skewness with a high amount of error in
the residuals (median absolute error of 39.2%). The estimated degrees-of-freedom
ν̃ is 12.37. The addition of spatial, temporal and explanatory variables (Case=12)
reduce the median absolute error to 8.7% but raise the estimated kurtosis to 25.23,
and decrease the estimated degrees-of-freedom ν̃ to 3.05. The correlation between
the median absolute error and the estimated degrees of freedom ν̃ is 0.976.

We plot in Figure 1 the relation between the estimated median absolute residuals
|e| and the estimated degrees-of-freedom ν̃.

In addition to the results reported in Table 10, we consider the following additional
specifications that might affect the fit:

• squares of the explanatory variables
• both WX and W 2X
• contiguity as well as 15 and 30 nearest neighbor W
• matrix exponential spatial specification for autoregressive y as well as spa-

tial fractional differencing for autoregressive y (LeSage and Pace 2007; 2009;
Debarsy et al. 2015). The matrix exponential spatial specification falls between
MA and AR specifications for lower-order spatial lags while the fractional dif-
ferencing assigns more importance to higher-order spatial lags than AR. Higher
order ARMA models can approximate, albeit with more parameters, fractional
differencing models (Haubrich 1993, p. 767).

In total, this led to 88 different specifications attempting to capture temporal depen-
dence, non-linearities in the response, and many forms of spatial dependence in the
dependent and independent variables. For all these specifications, we still obtain that
the residuals demonstrate a striking relation between goodness-of-fit and measured



Ignoring Spatial and Spatiotemporal Dependence...

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

2

4

6

8

10

12

14

Fig. 1 Relation between estimated degrees-of-freedom ν̃ and median absolute errors med |e|

levels of leptokurtosis (ν̃). This is confirmed by the high correlation (0.9630) between
the median absolute error and the estimated degrees of freedom ν̃.

Conclusion

In a spatial regression model, non-normality of the underlying independent distur-
bances has little effect on the accuracy of the parameter estimates and on the point
prediction of the dependent variable for large samples (Pace and LeSage 2008). How-
ever, it does matter greatly for prediction intervals as they depend on the distribution
of the underlying disturbances as well as the distribution of the prediction which will
exhibit a low variance for large n. The coverage of the prediction interval is important
for many applications such as a house price stress test (Follain and Giertz 2011). An
important goal for many of these applications is to accurately model extreme (rare)
values, also known as black swans.

Dependence in a spatial error model means that observed residuals come from
weighted sums of underlying independent innovations. If the underlying innovations
are normally distributed, the observed residuals should be normal as well. However,
if the underlying innovations are non-normal, the resulting weighted sums can appear
more normal than the underlying innovations. In such cases, in this paper we show
theoretically, on Monte Carlo simulations and empirical data that ignoring spatial or
spatiotemporal dependence in the disturbances can make the distribution of residuals
appear more normal than the underlying innovations. As this can lead to inaccurate
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estimates for the extreme (rare) values, the fog of spatial and temporal dependence
can make black swans appear grey.
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