

Edinburgh Research Explorer

PTEMagnet: Fine-Grained Physical Memory Reservation for
Faster Page Walks in Public Clouds
Citation for published version:
Margaritov, A, Ustiugov, D, Shahab, A & Grot, B 2021, PTEMagnet: Fine-Grained Physical Memory
Reservation for Faster Page Walks in Public Clouds. in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2021).
ACM Association for Computing Machinery, pp. 211–223, 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Virtual, United States, 19/04/21.
https://doi.org/10.1145/3445814.3446704

Digital Object Identifier (DOI):
10.1145/3445814.3446704

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2021)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

https://doi.org/10.1145/3445814.3446704
https://doi.org/10.1145/3445814.3446704
https://www.research.ed.ac.uk/en/publications/ee19c3ca-15f5-4912-8b5f-b9ec0a9e6a60

PTEMagnet: Fine-Grained Physical Memory Reservation
for Faster Page Walks in Public Clouds

Artemiy Margaritov
University of Edinburgh

United Kingdom
artemiy.margaritov@ed.ac.uk

Dmitrii Ustiugov
University of Edinburgh

United Kingdom
dmitrii.ustiugov@ed.ac.uk

Amna Shahab
University of Edinburgh

United Kingdom
amna.shahab@ed.ac.uk

Boris Grot
University of Edinburgh

United Kingdom
boris.grot@ed.ac.uk

ABSTRACT
The last few years have seen a rapid adoption of cloud computing
for data-intensive tasks. In the cloud environment, it is common
for applications to run under virtualization and to share a virtual
machine with other applications (e.g., in a virtual private cloud
setup). In this setting, our work identifies a new address translation
bottleneck caused by memory fragmentation stemming from the
interaction of virtualization, colocation, and the Linux memory
allocator. The fragmentation results in the effective cache footprint
of the host PT being larger than that of the guest PT. The bloated
footprint of the host PT leads to frequent cachemisses during nested
page walks, increasing page walk latency.

In response to these observations, we propose PTEMagnet, a new
software-only approach for reducing address translation latency
in a public cloud. PTEMagnet prevents memory fragmentation
through a fine-grained reservation-based allocator in the guest OS.
Our evaluation shows that PTEMagnet is free of performance over-
heads and can improve performance by up to 9% (4% on average).
PTEMagnet is fully legacy-preserving, requiring no modifications
to either user code or mechanisms for address translation and vir-
tualization.

CCS CONCEPTS
• Computer systems organization → Serial architectures; •
Software and its engineering → Virtual memory; Allocation
/ deallocation strategies.

KEYWORDS
virtual memory, operating system, virtualization
ACM Reference Format:
Artemiy Margaritov, Dmitrii Ustiugov, Amna Shahab, and Boris Grot. 2021.
PTEMagnet: Fine-Grained Physical Memory Reservation for Faster Page
Walks in Public Clouds. In Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’21), April 19–23, 2021, Virtual, MI, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3445814.3446704

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA
© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings
of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’21), April 19–23, 2021, Virtual, MI, USA,
https://doi.org/10.1145/3445814.3446704.

1 INTRODUCTION
Cloud computing offers great flexibility through on-demand re-
source scaling, high resource utilization and low operating costs.
Businesses deploy their services in the public cloud in order to en-
joy these benefits as reflected in the global cloud computing market
growing from $350 billion in 2020 to an anticipated $800 billion
by 2025 [37]. To ensure safety, isolation and to hide the complex-
ity of managing physical machines, cloud resources operate under
virtualization and rent virtual machines (VMs) to cloud users.

The applications that commonly run in the cloud, such as data
analytics frameworks, key-value stores, and databases, operate on
massive – and continually expanding – in-memory datasets. The
large footprint of the datasets pushes beyond TLB reach and, to-
gether with irregular memory access patterns, reduces the efficacy
of the processor TLBs, resulting in frequent TLB misses. Each TLB
miss triggers a page walk – a long pointer chase through the page
table (PT). When operating under virtualization, a page walk re-
quires traversing both the guest and host PTs (i.e., a nested page
walk) thereby incurring a particularly high latency as noted by
prior works [36]. The nested page walk latency is further amplified
when multiple applications are colocated within a single VM. Prior
work uses software support and customized hardware to shorten
the latency of traversing both the guest and host PTs by leveraging
a more favorable layout of PTs [36] and application data in the
physical memory [2]. However, these works do not analyze which
of the accesses in the multiple levels of guest and host PTs con-
tribute most to the overall nested page walk latency and should be
prioritized for acceleration over the other accesses.

In this work, we investigate which accesses in a nested page walk
aremost significant for the overall latency by examining fromwhere
in the memory hierarchy these accesses are served. We observe
that while accesses to the guest PT are often served by higher levels
of the memory hierarchy (closer to the core), a significant fraction
of accesses to host PT levels are served by the main memory, which
results in long latencies in the nested page walk. We study the
discrepancy in behaviour of accesses to the guest and host PTs and
find that cache behaviour (hit or miss) of page walks is defined by
spatial locality of page table entries (PTEs) that reside in the leaf PT
level, which dominates the overall PT footprint. While guest PTEs
corresponding to nearby virtual addresses reside in the same cache
block, host PTEs corresponding to these guest virtual addresses are
often scattered among multiple cache blocks.

To understand why PTEs may reside in different cache blocks,
consider a simple case where applications are running natively. A
PT is indexed through virtual addresses, where the PTEs for two
adjacent virtual pages A and A+1 sit in neighbouring leaf nodes
and within the same cache block. While the A and A+1 are adjacent

https://doi.org/10.1145/3445814.3446704
https://doi.org/10.1145/3445814.3446704

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Artemiy Margaritov, Dmitrii Ustiugov, Amna Shahab, and Boris Grot

in virtual address space, their virtual-to-physical mappings are
determined by the memory allocator. If the memory allocator is
allocating memory for a single application, adjacent virtual pages
are likely to be mapped to adjacent physical pages, carrying over
their spatial locality to physical address space. However, if the
memory allocator is allocating memory for multiple applications,
the allocations for virtual pages A and A+1 may be interleaved by
memory allocation requests for co-running application(s). In this
case, A and A+1 are unlikely to be mapped to adjacent physical
pages and their spatial locality is lost in the physical address space.
In the worst case, a set of pages that are contiguous in the virtual
space may be allocated to physical pages that are entirely non-
contiguous. This results in application’s memory being fragmented
in the physical address space.

Under virtualization, when the memory allocator in a VM is
stressed by colocated applications, each individual application’s
memory is fragmented in the guest OS’s physical address space.
The host OS deals with the VM like another process and treats the
guest physical address space as the VM process’ virtual memory.
Problematically, the fragmentation in the guest physical memory
carries over to the host virtual memory. Guest virtual pages A and
A+1 which were mapped to non-adjacent guest physical pages will
now be non-adjacent in the host virtual address space. As a result,
they will not occupy neighbouring PTEs in the host page table, and
will not reside in the same cache block. This increases the footprint
of the host page table nodes corresponding to each application
running inside the VM.

In response to these observations, we introduce PTEMagnet, a
legacy-preserving software-only technique to reduce page walk
latency in cloud environments by improving locality of host PTEs.
Cache locality of host PTEs can be improved by limiting memory
fragmentation in the guest OS. We show that prohibiting memory
fragmentation within a small contiguous region greatly increases lo-
cality for host PTEs. PTEMagnet uses this observation and employs
a custom guest OS memory allocator which prohibits fragmenta-
tion within small virtual address regions mapped to guest physical
address space. PTEMagnet improves locality of the host PTEs and
thus accelerates nested page walks.

Based on this insight, we propose PTEMagnet – a reservation-
based approach to prevent fragmentation. To determine the optimal
reservation granularity, we note that a 64B cache block can fit a
maximum of 8 host PTEs, assuming an 8-bytes PTE, typical for x86.
The 8 adjacent host PTEs represent a contiguous 8 × 4KB = 32KB
memory region in the VM’s virtual memory and, in turn, the guest
OS’s physical memory. We find that by prohibiting fragmentation
in each 32KB guest physical memory region, host PTEs can en-
joy the benefits of maximum spatial locality from a cache block.
PTEMagnet deploys a custom OS memory allocator that, on the
first page fault to a given 32KB region, allocates the full 32KB (8
pages) but returns only 4KB (1 page) to an application, keeping
the rest reserved for later use. On subsequent page faults within a
reserved region, PTEMagnet’s custom allocator instantly returns
the already-reserved memory to the application.

Using a diverse set of cloud applications, including SPEC and big-
memory applications, executing in a virtualized environment under
aggressive colocation on real hardware, we make the following
contributions :

• We observe that under virtualization and colocation, page
walks within the host PT incur 4.4× more cache misses than
page walks within the guest PT.

• We show that the guest OS memory allocator, when operat-
ing under colocation, fragments the guest physical memory
across the colocated applications. This results in host PTEs
corresponding to each application being scattered over mul-
tiple cache blocks. For pagerank colocated with memory-
intensive co-runners, the guest OS memory allocator frag-
ments over 63% of pagerank’s contiguous memory regions,
scattering their host PTEs over many cache blocks.

• We propose PTEMagnet, a legacy-preserving software-only
technique that prevents scattering host PTEs across multi-
ple cache blocks by prohibiting fragmentation within small
memory regions using a reservation-based allocation ap-
proach.

• We demonstrate that PTEMagnet achieves 4% performance
improvement on average (9% max) for big-memory applica-
tions sharing a VM with other workloads. Critically, applica-
tions that do not benefit from PTEMagnet are never slowed
down by it, making PTEMagnet broadly attractive for cloud
deployment.

2 BACKGROUND
2.1 Virtual Memory Basics
Virtual memory provides each process with the illusion of having
access to a full address space, thus mitigating the reality of limited
physical memory. The operating system (OS), using a combina-
tion of hardware and software, maps memory addresses used by a
program called (i.e., virtual addresses) into physical addresses in
memory. The OS assigns memory on a page granularity. Translation
of virtual-to-physical address happens on every memory access. In
this paper, we focus on Linux/x86, which is a common platform for
public cloud solutions. The remainder of this subsection describes
Linux memory allocation and translation mechanisms in detail.

2.2 Memory Allocation Mechanism
In Linux, a process can request memory from Linux, by execut-
ing mmap() or brk() system calls. After executing these calls, the
process immediately (eagerly) receives the requested virtual mem-
ory region. In contrast to the allocation of virtual space, physical
memory allocation is performed lazily: the OS assigns physical
memory to a process on-demand and on a page-by-page basis. The
OS allocates memory for the process with a page of physical mem-
ory upon the first access that triggers a page fault and inserts the
corresponding virtual-to-physical mapping, that is a PTE, into the
PT.

2.3 Memory Allocation Granularity
Linux/x86 supports several page sizes, namely 4KB (small), 2MB
(large), and 1GB pages. Pages of different sizes are managed at
different levels of the PT radix tree in a recursive fashion. For
example, translations of 4KB pages are stored at the fourth level
(leaf) of the PT. Translations also can be stored at the third level

PTEMagnet: Fine-Grained Physical Memory Reservation
for Faster Page Walks in Public Clouds ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

Figure 1: Difference in contiguity in virtual and physical ad-
dress spaces.

of the PT and correspond to a 2MB page that is equivalent to a
collection of 512 adjacent 4KB pages that are managed as a whole.

Large pages, being a big hammer solution, come at the cost of var-
ious problems. First, only a fraction of a large page may be in use by
an application that results in internal memory fragmentation. Sec-
ond, prior work shows that using large pages also increases external
memory fragmentation, may cause performance anomalies, and is
not always possible under high memory pressure [32, 40]. Finally,
many of the current kernel mechanisms (e.g., page cache [28]) still
do not fully support large pages and continue to rely on baseline
4KB pages.

Due to the combination of issues listed above, large pages are
often disabled in production systems, e.g. in AWS EC2 [8]. Some
cloud applications experience degraded performance with trans-
parent huge pages (THP) as reported by Netflix [17], Redis [29] and
MongoDB [38]. As a result, THP is set to madvise by default in
Amazon Linux. Hence, cloud customers need to manually analyze
their applications with regards to large pages and, then, customize
the EC2 instances according to the needs of the applications that
can be scheduled to run on these instances. Custom instance opti-
mizations make the server fleet heterogeneous and require more
complicated cluster scheduling policies. Instead, cloud services, like
Amazon Batch [7], aim to simplify the task of launching and sched-
uling a job in the cloud by removing the need to manually set up
cluster infrastructure [21]. Thus, cloud customers often resort to
using default EC2 instances with 4KB pages.

2.4 Memory Fragmentation
Eager allocation of virtual address space in conjunction with lazy
physical address space allocation can create a drastic difference in
the spatial locality of the two address spaces. In Linux, both mmap()
and brk() system calls are implemented to return contiguous vir-
tual memory regions whereas physical memory pages are allocated
ad hoc, as the Linux buddy allocator is optimized for fast physical
memory allocation instead of contiguity. In a multi-tenant system,
due to the fact that page faults from different applications are com-
ing asynchronously, the Linux memory allocator fragments the
physical memory space. As a result, addresses that are contiguous
in the virtual address space often correspond to pages arbitrar-
ily placed in physical memory [3, 36, 50]. Thus, under aggressive
colocation, which is typical in the public cloud, the Linux memory
allocator interspersedly allocates physical memory to different ap-
plications, destroying the contiguity present in the virtual space.

Figure 1 demonstrates the difference in contiguity between virtual
and physical address spaces.

2.5 Address Translation Mechanism
Linux keeps the mapping of the virtual address space of a running
process onto physical memory in a per-process structure, called a
Page Table (PT). The PT maintains the mappings at a page granu-
larity: for each page in the virtual space, there is a PT entry (PTE)
that contains a virtual-to-physical address translation for all virtual
addresses within a single page, as well as other important metadata
including page access permissions. Before accessing any memory
location in physical memory, the CPU must look up the address
translation of the virtual address and check its validity with respect
to access permissions.

In x86 architecture, a PT is commonly organized as a multi-level
radix tree, where the leaf level contains the actual PTEs. Upon a
memory access, the CPU needs to perform a page walk, i.e., traverse
the PT level-by-level from its root to the appropriate leaf with the
corresponding translation. As Linux uses four-level PTs – with a
planned migration to five-level PTs in the near future [25] – a page
walk, which is a sequence of serialized memory accesses to the
nodes of a radix-tree PT, can be a long-latency operation in an
application with a large memory footprint [11, 36, 46].

To reduce address translation overheads, modern CPUs deploy
a wide range of machinery that includes both address-translation-
specific and general-purpose caching. First, multi-level Translation-
Lookaside Buffers (TLBs) cache address translations to recently
accessed memory locations. Upon a TLB miss (if no TLBs have the
required translation), a hardware-based page walker performs a
PT look-up, bringing the corresponding translation from memory,
potentially raising a page fault if the translation does not exist,
and installing it in the TLB for future reuse. PTs are located in
conventional physical memory so that page walks can benefit from
the regular CPU cache hierarchy that accelerates accesses to the
recently used parts of the PT. Besides the conventional caches,
CPUs deploy Page-Walk Caches (PWCs) that hold recently accessed
intermediate nodes of the radix-tree PTs, allowing the page walker
to skip one or more PT levels in a page walk.

In a virtualized scenario, which is typical in a public cloud, guest
and host OS-es manage their own sets of page tables, together
comprising so-called nested page tables [18]. Upon a TLB miss, a
virtualized process has to perform a 2D (or nested) page walk. A
2D page walk is comprised of a conventional 1D page walk in the
guest PT where each access to the nodes of the guest PT triggers
a complete 1D page walk in the host PT. The latter is required to
find the location of the node in the next level of the guest PT in
host-physical memory. Thus, in order to translate a guest virtual
address to a guest physical address, in addition to the 4 memory
accesses to the guest PT, the page walker needs to perform up to
4 memory accesses to the host PT for each access to the guest PT.
Moreover, after getting a guest physical address, the page walker
needs to perform one more 1D page walk in the host PT to figure
out the location of the data in the host physical memory. Thus, up
to 24 accesses to the memory hierarchy may be required during a
2D page walk [14].

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Artemiy Margaritov, Dmitrii Ustiugov, Amna Shahab, and Boris Grot

Figure 2: Page walk trajectories in physical memory when accessing a – non-contiguous and b – contiguous virtual pages.

Figure 3: Packing of PTEs of neighbouring virtual pages in
one cache block.

2.6 Spatial Locality in the Page Table
Prior work has demonstrated that abundant spatial locality exists
in access patterns of many cloud applications [49]. Spatial local-
ity means that nearby virtual addresses are likely to be accessed
together In native execution, PT accesses also inherit the spatial
locality of accesses to data. Indeed, being indexed by virtual ad-
dresses, PTEs corresponding to adjacent pages are tightly packed in
page-sized chunks of memory. As a result, TLB misses to adjacent
pages in the virtual space result in page walks that traverse the PT
radix-tree to adjacent PTEs. Dense packing of such PTEs amplifies
the efficiency of CPU caches that manage memory at the granu-
larity of cache blocks: up to eight adjacent 8-byte PTEs (which are
likely to be accessed together due to applications’ spatial locality)
may reside in a single cache block. Figure 3 represents the layout
of the PT, highlighting the tight packing of PTEs of neighbouring
pages in a cache block.

Figure 2 shows trajectories of consecutive page walks for (a)
contiguous pages and (b) non-contiguous pages. One can see that
page walks for contiguous virtual pages experience spatial locality
as page walks for all pages access the same cache blocks. In contrast,
page walks for non-contiguous pages go through different cache
blocks, which necessarily increases the cache footprint of the PT
and increases the page walk latency. As a result, the locality in

access patterns and contiguity in the virtual space can make page
walks faster. Thus, in the absence of virtualization, by creating
contiguity in the virtual space, the memory allocation mechanism
naturally helps to make address translation faster1.

3 CHALLENGES FOR SHORT PAGEWALK
LATENCY UNDER VIRTUALIZATION AND
COLOCATION

In this section, we demonstrate that the combination of virtualiza-
tion and workload colocation causes fragmentation of the guest
physical address space, which diminishes the efficiency of caching
of host PTEs and leads to elevated page walk latencies.

3.1 Fragmentation in the Host Virtual Address
Space

Virtualization blurs the clear separation between virtual and phys-
ical address spaces. Modern virtualization solutions, e.g., Linux
KVM hypervisor, are integrated with the host OS kernel allowing
the host OS to reuse the bulk of existing kernel functionality, in-
cluding memory allocation, for virtual machines. Hence, a virtual
machine appears as a mere process for the host OS that treats the
virtual machine’s (guest) physical memory as a single contiguous
virtual memory region [18]. As a result, one can think of the guest
physical memory as the virtual memory for the host. Just like phys-
ical memory for any other virtual memory regions in the host OS,
the physical memory for the guest OS is allocated on-demand and
page-by-page when the guest actually accesses its physical pages.

As described in Section 2.2, while virtual address space features
high contiguity, physical address space is highly fragmented, es-
pecially when under aggressive workload colocation. As a result,
with virtualization and workload colocation, the host virtual ad-
dress space, being similar to the guest physical address space, is
1Note that fragmentation in the physical space has no effect on page walk latency
because the locality in the PT stems only from contiguity in the virtual space and not
physical.

PTEMagnet: Fine-Grained Physical Memory Reservation
for Faster Page Walks in Public Clouds ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

Figure 4: Contiguity (or lack of it) in virtual and physical
address spaces under virtualization.

highly fragmented too. Thus, the combination of virtualization and
workload colocation breaks contiguity in the host virtual address
space while keeping the guest virtual address space contiguous.
Figure 4 represents contiguity (or lack of it) in virtual and physical
address spaces under virtualization.

3.2 Consequences of Fragmentation in the
Host Virtual Address Space

Lack of contiguity in the host virtual address space impairs spatial
locality in the host PT. To understand this effect, consider a scenario
when several applications run in the same virtual machine. Further,
assume that each application allocates a region of guest-virtual
memory that spans eight or more pages. Although pages in each
of these regions are adjacent in guest-virtual memory, they are
scattered across guest-physical memory. This is attributable to the
fact that, after allocation of the regions, the applications start to
access them concurrently, resulting in the interleaving of page faults
to these regions. As a result, the Linuxmemory allocator in the guest
OS fails to preserve guest-physical memory contiguity, assigning
arbitrary guest-physical addresses to each of these pages so that
these pages are distant from each other in the guest physical address
space. As explained in Section 3.1, if the guest physical address space
is fragmented, the host virtual address space is fragmented too.

Let’s consider page walks performing address translation for a
memory region allocated by an application in the scenario described
in the previous paragraph. Page walks involve accessing guest and
host PTEs (termed gPTE and hPTE, respectively). As discussed in
Section 2.6, a single cache block with PTEs contains PTEs of eight
pages neighbouring in a virtual address space. Due to spatial lo-
cality of the application’s access patterns, the pages accessed by
the application are likely to be close to each other in the guest vir-
tual address space. Thanks to spatial locality, within a short period
of time, a cache block holding gPTEs is likely to be accessed by
multiple page walks that perform address translation for neigh-
boring pages. In contrast, due to fragmentation in the host virtual
address space, the hPTEs corresponding to pages neighbouring in
the guest virtual address space are not located close to each other
but scattered over different cache blocks. As a result, while accesses
to gPTEs can benefit from spatial locality of application’s access
patterns, accesses to hPTEs cannot since fragmentation in the host
virtual address space prohibits propagation of the spacial locality
from guest virtual to host virtual address space.

The difference in the ability of accesses to gPTEs and hPTEs
of exploiting spatial locality results in two consequences. Firstly,
during a page walk, hPTEs are more likely to be fetched from the
main memory than gPTEs. Secondly, such a difference makes the
footprint of hPTEs larger than the footprint of gPTEs. In the extreme
case, page walks of a group of eight pages would touch one cache
block with gPTEs and eight cache blocks with hPTEs. We find the
number of cache blocks with hPTEs that are touched by page walks
for a group of eight pages neighbouring in the guest virtual address
space to be a useful metric. Hereafter, we characterize the level of
fragmentation in the host PT by calculating the average number of
cache blocks with hPTEs that correspond to gPTEs that are packed
into a single cache block.

3.3 Quantifying Effects of Fragmentation in
the Host PT

Fragmentation of the host PT significantly increases its footprint
in the CPU cache hierarchy (i.e., the number of cache blocks con-
taining PTEs). A large PT cache footprint is obviously undesirable,
since it presents a capacity challenge that is further amplified by
cache contention (by application’s code and data, as well as by co-
running applications). Misses for PTEs in the CPU cache hierarchy
necessarily go to memory, thus increasing page walk latency and
hurting performance.

To showcase the effect of fragmentation in the host PT on perfor-
mance, we construct an experiment where we run a representative
pagerank benchmark from the GPOP graph workload suite [33] in-
side a virtual machine in isolation and in colocation with a memory-
intensive co-runner. As a co-runner, we use stress-ng [19], con-
figured to run 12 threads that continuously allocate and deallocate
physical memory. As a consequence of colocation, the host vir-
tual address space gets fragmented, which results in fragmentation
in the host PT, thus increasing page walk latency. As a metric of
performance, we measure execution time. Using perf, we also mea-
sure different hardware metrics to validate the fact that the change
in performance stems from fragmentation in the host PT (see §5
for details of the complete setup). We analyze the source code of
pagerank to identify a moment of execution by which pagerank
finishes allocation of physical memory (namely, when it completes
initializing all allocated data structures). Before collecting measure-
ments, we stop the co-runner after pagerank finishes allocation of
physical memory, because by that moment the co-runner already
caused fragmentation in the host PT, which is the intended effect.
As a result, when measuring pagerank’s performance, there is no
contention for shared resources, such as LLC capacity, between
pagerank and the co-runner.

Table 1 represents changes in values of the measured metrics
caused by fragmentation in the host PT. We observe that fragmenta-
tion in the host PT, caused by colocation with the memory-intensive
co-runner, increases execution time by 11%. We find that while not
affecting the number of cache and TLB misses, fragmentation in the
host PT increases the number of page walk cycles by 61%. Therefore,
we conclude that the performance degradation is attributed to the
change in the overhead of address translation.

We observe that colocation affects 63% of pagerank’s contiguous
memory regions, scattering their hPTEs to 8 distinct cache blocks.

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Artemiy Margaritov, Dmitrii Ustiugov, Amna Shahab, and Boris Grot

Table 1: Changes in metrics of pagerank in colocation with
stress-ng as compared to standalone execution.

Metric Change
Execution time +11%
Cache misses <1%
TLB misses <1%
Page walk cycles + 61%
Cycles spent traversing the host page table +117%
Guest page table accesses served by main memory +3%
Host page table accesses served by main memory +283%
Host page table fragmentation (defined in Sec 3.2) +242%

Overall, colocation raises the host PT fragmentation metric to 6.8,
a significant increase from 2.8 observed in isolation. We find that
fragmentation in the host PT has a nominal effect on the number of
guest PT accesses served from memory. In contrast, the number of
accesses to the host PT served frommemory increases by 283%. As a
result, in colocation, page walk incurs misses to host page table 4.4×
more frequently than to the guest PT. Since a main memory access
has higher latency than a cache access, with memory fragmentation,
traversing the host PT takes more time, which increases page walk
latency. Indeed, we observe a 117% increase in the number of cycles
spent while traversing the host PT.

Our experiment shows that memory fragmentation under vir-
tualization and colocation inside the same virtual machine can
significantly increase page walk latency and degrade application
performance.

3.4 Virtual Private Clouds: Virtualization +
Colocation

While it is common knowledge that virtualization is a foundational
technology in cloud computing, an astute reader might ask how
likely aremultiple applications to be colocated inside a single virtual
machine. This section addresses this question.

Colocation in the same virtual machine is common-place in pub-
lic clouds due to prevalence of services known as virtual private
cloud (VPC), inlcuding Amazon VPC [6] and Google VPC [23].
These services allow internal and external users to run their ap-
plications on a cluster of virtual machines using an orchestration
framework.

In a VPC, colocation of different applications in the same virtual
machine occurs as a result of a combination of three factors. Firstly,
a VPC typically includes a virtual machine that has a large number
of virtual CPUs (vCPUs) and thus is capable of colocation. Such
large virtual machines are needed to run large-memory applications
as cloud providers tend to offer virtual machines with a fixed RAM-
to-CPU ratio [26]. However, that is not the only scenario when a
VPC includes a large virtual machine. Another case for including a
large virtual machine in a VPC is reducing the costs by constructing
a VPC from lower-cost available transient virtual machine instances.
Such a policy selects the cheapest configuration of a virtual machine
that can happen to be a large virtual machine [27]. Secondly, to
increase utilization and reduce costs, cloud customers tend to run
multiple different applications on a cluster at the same time [10].
Thirdly, cluster orchestration frameworks, such as Kubernetes [5,

22, 31], manage resources by a small unit of compute, typically one
vCPU [45]. As a result of these factors, a machine with many vCPUs
can receive a command to execute multiple different applications
at the same time.

Colocation in the sameVM iswidely employed in Amazon Elastic
Container Service (Amazon ECS) [4]. The bin packing task place-
ment strategy that aims to fit Kubernetes tasks in as few EC2 in-
stances as possible can easily cause a colocation of multiple appli-
cations in the same VM [48]. As a result, any applications can be
colocated together in the same VM. Amazon ECS powers a growing
number of popular AWS services including Amazon SageMaker,
Amazon Polly, Amazon Lex, and AWS Batch, and is used by hun-
dreds of thousands of customers including Samsung, GE, Expedia,
and Duolingo [21].

3.5 Summary
Public clouds ubiquitously employ both virtualization and coloca-
tion inside the same virtual machine. Our analysis of the virtual
memory subsystem in such an environment reveals that a lack of
coordination between different parts of the memory subsystem –
namely, the OS physical memory allocator and the address trans-
lation mechanism – leads to memory fragmentation in the host
PT. This fragmentation increases the cache footprint of host PTEs,
which results in elevated cache misses during page walks, thus
increasing page walk latency and hurting application performance.
Preventing fragmentation of the host PT in such an environment
can thus improve cache locality for PTEs and increase performance.

4 PTEMAGNET DESIGN
In this work, our goal is to prevent fragmentation of the host PT and
reduce the latency of pagewalks under virtualization and colocation.
We aim to achieve the latency reduction by leveraging existing CPU
capabilities and without disrupting the existing software stack.

4.1 Design Overview
As shown in Section 3, the page walk overhead comes from the
lengthy pointer chase through the fragmented host PT (hPT) due to
its poor utilization of caches. Our key insight is that it is possible to
reduce the page walk latency by increasing the efficiency of hPTE
caching, namely grouping hPTEs corresponding to neighbouring
application’s pages in one cache block. Such placement can be
achieved by propagating the contiguity that is naturally present in
the guest PT (gPT) to the hPT.

To exploit the contiguity potential presented inside the guest-
virtual address space for compacting hPTEs inside one cache block,
one needs to guarantee that adjacent guest-virtual addresses are
mapped contiguously onto adjacent host-virtual addresses or, equiv-
alently, onto guest-physical addresses. This mapping criterion re-
quires prohibiting fragmentation and introducing contiguity within
small regions in the guest physical space. Since a CPU cache block
contains eight 8-byte PTEs, to achieve the maximum locality for
hPTEs, the contiguity degree in the guest physical space should be
at least eight pages (see Figure 3). This means that, with 4KB pages,
the size of the region contiguously allocated in the guest physical
space should be 32KB. Meanwhile, the Linux/x86 page fault handler
requests a single page from the buddy allocator on each page fault.

PTEMagnet: Fine-Grained Physical Memory Reservation
for Faster Page Walks in Public Clouds ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

To eliminate fragmentation of the hPT, we introduce PTEMagnet
– a new Linux memory allocator. PTEMagnet increases the current
memory allocation granularity in the guest OS to the degree that
maximizes cache block utility in the existing CPU hierarchy – that
is, eight adjacent pages that correspond to eight adjacent hPTEs
packed into a single cache block.

To support a different memory allocation granularity, we draw
inspiration from the superpage (i.e., as in large page) promotion/de-
motion mechanism in FreeBSD [39] that relies on allocation-time
physical memory reservations. Upon the first page fault to an eight-
page virtual memory range, PTEMagnet reserves an eight-page
long contiguous physical memory range inside the kernel so that
future accesses to this page group get allocated to their correspond-
ing pages inside the reserved range. This approach guarantees zero
fragmentation for allocated hPTEs inside a cache block and mini-
mizes the hPTEs footprint in the CPU memory cache hierarchy.

The allocation-time reservation approach adopted by PTEMag-
net avoids costly memory fragmentation that is associated with
using large pages because the OS always keeps track of reserved
pages and can quickly reclaim them in case of high memory pres-
sure.

In the remainder of this section, we discuss the key aspects of
PTEMagnet design that includes the reservation mechanism and
its key data structures, and the pages reclamation mechanism.

4.2 Page Group Reservation
PTEMagnet attempts to reserve physical memory for adjacent vir-
tual page groups eagerly, upon the first page fault to any of the
pages within that group. Upon such a page fault, a contiguous eight-
page group is requested from the buddy allocator while only one
virtual page (corresponding to the faulting page) is mapped to a
physical memory page, creating a normal mapping in the guest and
host PTs. The other seven physical pages inside that reservation
are not mapped until the application accesses them. Although these
physical pages are taken from the buddy allocator’s lists, these
pages are still owned by the OS and can be quickly reclaimed in
case of high memory pressure.

To track the existing reservations, PTEMagnet relies on an aux-
iliary data structure, called Page Reservation Table (PaRT). PaRT is
queried on every page fault. A look-up to PaRT succeeds if there
already exists a reservation for a group of eight virtual pages that
includes the faulting page. If not found in PaRT, the page fault
handler takes a contiguous chunk of eight pages from the buddy
allocator and stores the pointer to the base of the chunk in a newly
created PaRT entry. In addition to the pointer, the entry includes
an 8-bit mask that defines which pages in the group are used by
the application.

Upon a page fault, the faulting virtual address is rounded to
32KB (i.e., eight 4KB pages) before performing a PaRT lookup. If
the reservation exists, then a page fault can be served immediately,
without a call into the buddy allocator, by creating a PTE that maps
to one of the reserved pages. Thus, the extra work upon the first
page fault to reserve eight pages can be largely amortized with
faster page faults to the rest of the pages in a reservation. Once
all the reserved pages inside a reservation are mapped, their PaRT
entry can be safely deleted.

PaRT is implemented as a per-process 4-level radix tree that
is indexed with a virtual address of the page fault. A leaf PaRT
node corresponds to one reservation and holds a pointer to the
base of a chunk of physical memory, an 8-bit mask for tracking
mapped pages, and a lock. To guarantee the safety and avoid a
scalability bottleneck that may appear when a large number of
threads spawned by one process concurrently allocate memory, the
radix tree must support fast concurrent access. Thus, to reduce lock
contention and maximize inter-thread concurrency, we implement
fine-grain locking with one lock per node of the PaRT radix tree.

4.3 Reserved Memory Reclamation
Reservations can be reclaimed in one of twoways: (1) by the applica-
tion, once it freed all eight pages in a reservation, by calling free();
or (2) by the OS, when the system is under memory pressure. To
avoid unnecessary complexity, the OS reclaims a reservation en-
tirely and returns all the physical pages in the group back to the
buddy allocator’s free list. If an application explicitly frees all pages
in the group, the last call results in the deletion of the reservation.
If a PaRT entry was removed because all reserved pages had been
mapped, freeing of the associated memory (if and when it happens)
is performed as in the default kernel, without involving PTEMagnet.

Under memory pressure, the OS must be able to reclaim the
reserved physical memory pages. Similar to the swappiness kernel
parameter [44], we introduce a configurable threshold that, when
reached, triggers a daemon process that walks through all reser-
vations in PaRT of a randomly selected application, returning all
reserved pages to the buddy allocator. The demon keeps releasing
reservations until the overall memory consumption goes below the
threshold. Note that when the OS has to free the reserved pages, the
affected application(s) still continue to benefit from the shorter page
walks to pages that have previously been allocated via PTEMagnet.

We expect no noticeable performance degradation from the PTE-
Magnet’s reclamation mechanism, as the reclamation is a mere
free() call to the buddy allocator. In contrast, other similar reclama-
tion mechanisms, such as in Transparent Huge Pages or in FreeBSD,
are associated with the demotion of large pages into collections of
small pages. Such a demotion requires PT updates and TLB flushes,
which can delay application’s access to its memory and lead to per-
formance anomalies [32, 39]. PTEMagnet’s reclamation mechanism
does not change the PT content and does not lock memory pages
used by the application.

4.4 Discussion
Fork and copy-on-write. Reservations are not copied, only indi-

vidual pages. On a page fault in a child process, the reservation map
of a parent can be checked to see if this page was allocated or not.
If the requested page is not allocated by a parent (or other children),
a page from a parent’s reservation is returned to the child. This
works well as the majority of pages shared between a parent and a
child processes are read-only pages. Shared read-only pages don’t
invoke copy-on-write (COW), stay contiguous and benefit from
faster page walks, accelerated by PTEMagnet. Children processes
cannot create new reservations in the parent’s reservation map.

PTEMagnet cannot enhance contiguity among COWs. However,
we observed that less than 0.1% of all pages are COW’ed for the

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Artemiy Margaritov, Dmitrii Ustiugov, Amna Shahab, and Boris Grot

Table 2: Parameters of the platform used for the evaluation.

Parameter Value/Description

Processor Dual Intel® Xeon® E5-2630v4
(BDW) 2.40GHz, 20 cores, 2 threads/core

Memory size 128GB/socket
Hypervisor QEMU 2.11.1
Host OS Ubuntu 18.04.3, Linux Kernel v4.15
Guest OS Ubuntu 16.04.6, Linux Kernel v4.19
Guest configuration 20 vCPUs and 64GB RAM

Table 3: Evaluated benchmarks and co-runners.

Name Description
Benchmarks

mcf, gcc, xz,
omnetpp SPEC’17 benchmarks (ref input)

cc, bfs,
nibble,
pagerank

GPOP graph analytics benchmarks [33], 16GB
dataset (scaled from Twitter)

Co-runners

objdet MLPerf [43] object detection benchmark, SSD-
MobileNet [24], COCO dataset [34]

chameleon HTML table rendering
pyaes Text encryption with an AES block-cipher
json_serdes JSON serialization and de-serialization
rnn_serving Names sequence generation (RNN, PyTorch)
gcc, xz SPEC’17 benchmarks (ref input)

applications we have studied. Our evaluation in Section 6.1 includes
the effect of COWs.

Swap and THP. If the OS chooses a reserved page for swapping
or THP compaction, it triggers a reclamation of the reservation.

Security implications. PTEMagnet does not violate existing se-
curity barriers. Similarly to accesses to the guest PT, accesses to
the data structure holding reservations are performed within the
kernel code on behalf of the memory owner process only.

System interface for enabling PTEMagnet. It is possible to limit
the set of applications for which PTEMagnet is used. By design,
PTEMagnet improves the performance of big-memory applications
– applications experiencing a large number of TLB misses. To con-
ditionally enable PTEMagnet, a mechanism can be implemented
through cgroups as follows. In a public cloud, the orchestrator
(e.g., Kubernetes) usually specifies the maximum memory usage
for each deployed container, by setting memory.limit_in_bytes.
If this parameter is set, and it is above a predefined threshold, the
OS can enable PTEMagnet for the target process. While evaluating
PTEMagnet, we find that PTEMagnet does not cause a slow down
even for applications that exhibit infrequent TLB misses and hence
limited benefits of faster page walks (see Section 6.1). Consecutively,
limiting the set of applications for which PTEMagnet is optional.

Fragmentation of the memory reclaimed from reservations. Un-
der low memory pressure, the non-allocated physical pages within
reservations do not adversely affect the system. Under high mem-
ory pressure, PTEMagnet’s reclamation mechanism will release
non-allocated pages within a reservation. Since a reservation is an
aligned contiguous eight-page group with at least one allocated
physical page, the set of reclaimed pages does not comprise a group
of pages that can be used to form a new reservation. This results
in a particular type of memory fragmentation whose consequence
is that PTEMagnet cannot allocate reservations and preserve con-
tiguity within the reclaimed memory. Moreover, the pages of the
reclaimed memory can be allocated to different applications, which,
in turn, may release pages at different times. As a result, fragmen-
tation of the reclaimed memory can persist in the system for a long
time, limiting PTEMagnet’s ability to create new reservations.

To summarize, under high memory pressure, a release of non-
allocated physical pages within reservations can result in frag-
mentation of reclaimed memory. The more unused reservations
are reclaimed, the more memory can be fragmented. The effect of
fragmentation by reclamation is identical to the effect of fragmenta-
tion that occurs due to application colocation without PTEMagnet.
However, while PTEMagnet prevents fragmentation stemming from
colocation, it cannot prevent or remove fragmentation originating
from memory reclamation. We evaluate the incidence of unused
pages within reservations in Section 6.2.

5 METHODOLOGY
System setup. We prototype PTEMagnet in Linux kernel v4.19.

We assume public cloud deployment (as with Amazon VPC [6]
or Google VPC [23]) where multiple jobs are scheduled on top
of a fleet of virtual machines. We model the cloud environment
by using QEMU/KVM for virtualized execution and by running
multiple applications inside one virtual machine at the same time.
As a metric of performance, we evaluate the execution time of an
application in the presence of co-runners. Table 2 summarizes the
configuration details of our experimentation system.

Our evaluation primarily focuses on small (4KB) pages, since
fine-grain memory management delivers greater flexibility, better
memory utilization, and better performance predictability (Sec-
tion 2.3).

Benchmarks. We select a set of diverse applications that are
representative of those run in the cloud and that exhibit significant
TLB pressure. Our set of applications includes benchmarks from
SPEC’17 and GPOP graph analytics framework [33]). Table 3 lists
the benchmarks.

Co-runners. We select a set of diverse applications from domains
that are typically run in a public cloud such as data compression, ma-
chine learning, compilation, and others. The full list of co-runners
is shown in Table 3. The list includes benchmarks from SPEC’17,
graph analytics, MLPerf and other benchmarks.

6 EVALUATION
6.1 PTEMagnet’s Performance Improvement
We evaluate PTEMagnet in two colocation scenarios. In the first sce-
nario, we study a colocation with a co-runner which has the highest

PTEMagnet: Fine-Grained Physical Memory Reservation
for Faster Page Walks in Public Clouds ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

0%

2%

4%

6%

8%

10%

cc bfs nibble pagerank gcc mcf omnetpp xz Geomean

Pe
rf

o
rm

an
ce

 im
p

ro
ve

m
en

t

Figure 6: Performance under colocation with objdet.

0%

2%

4%

6%

cc bfs nibble pagerank gcc mcf omnetpp xz Geomean

Pe
rf

o
rm

an
ce

 im
p

ro
ve

m
en

t

Figure 7: Performance under colocation with a combination
of co-runners.

Figure 5: Host PT fragmentation in colocation with objdet
(lower is better).

page fault rate among all the co-runners listed in Table 3, which
is the 8-threaded objdet from MLPerf. In the second scenario, we
colocate an application with a combination of all co-runners listed
in Table 3. In both scenarios, we evaluate 8-threaded applications.
To minimize performance variability in the system stemming from
contention for hardware resources, in both scenarios, we pin ap-
plications’ and co-runners’ threads to different CPU cores. The
standard deviation of the execution time calculated over 40 runs
for each application does not exceed 2% for all applications.

PTEMagnet in colocation with objdet. Figure 5 represents frag-
mentation in the host PT measured in colocation with objdet with
and without PTEMagnet. We observe that PTEMagnet reduces frag-
mentation in the host PT to almost 1 for all evaluated benchmarks.
The host fragmentation metric shows how many cache blocks on
average hold hPTEs corresponding to gPTEs stored in one cache
block. The results show that PTEMagnet prevents fragmentation

in the host PT, reducing the footprint of the host PT, and enhances
spatial locality across page walks, reducing their latency.

We evaluate performance improvement stemming from accel-
erated page walks. To calculate performance improvement, we
measure the execution time averaged over 40 runs. Figure 6 shows
performance improvement delivered by PTEMagnet in comparison
to the default Linux kernel. The baseline corresponds to execu-
tion in colocation with objdet without PTEMagnet. PTEMagnet
increases performance by 4% on average and by up to 9% in the
best case (on xz).

To highlight the fact that PTEMagnet is an overhead-free tech-
nique, we measure how PTEMagnet affects the performance of
applications that do not experience high TLB pressure. We evaluate
PTEMagnet on all SPEC’17 Integer benchmarks. We find that on
these benchmarks PTEMagnet delivers performance improvement
in the range of 0-1% (not shown in Figure 6).

Crucially, we find that none of the applications experience any
performance degradation, underscoring that PTEMagnet can be
widely deployed without concern for specifics of the application or
the colocation setup.

PTEMagnet in colocationwith a combination of different co-runners.
Figure 7 represents improvement delivered by PTEMagnet in com-
parison to the default Linux kernel. On average, PTEMagnet im-
proves performance by 3%, with a maximum gain of 5% achieved
with mcf. A large number of co-runners increases contention for
the capacity of shared caches. Due to increased contention, the
application’s cache blocks with hPTEs have higher chances to be
evicted and reduced opportunity to experience locality. Our results
show that even under high cache contention, PTEMagnet is capable
to speed up execution, losing just 1% of performance improvement
on average, in comparison to colocation with lower cache pressure
– with objdet only.

6.2 Incidence of Non-Allocated Pages Within
Reservations

As discussed in Section 4.4, if reclaimed under high memory pres-
sure, non-allocated pages within reservations can result in frag-
mentation of memory that PTEMagnet can not prevent or remove.
To understand the memory overhead of non-allocated pages within
reservations, we study how many pages within reservations are
not used by the evaluated benchmarks. For each of the evaluated
benchmarks, we measure the number of non-allocated pages within
reservations every second throughout the entire benchmark execu-
tion.

We find that during the execution of each evaluated benchmark,
the non-allocated pages within reservations never exceed 0.2% of
the benchmark’s physical memory footprint size. Such a low level
of non-allocated pages within reservations indicates that 1) invoca-
tion of the reclamation mechanism due to PTEMagnet’s memory
overhead is highly unlikely as the total benchmark’s physical mem-
ory usage is on par with the baseline; and 2) applications tend to
quickly allocate pages within newly created reservations, thus re-
ducing the likelihood that the reclamation mechanism will destroy
contiguity under high memory pressure.

While our evaluation shows that in practice the incidence of non-
allocated pages within reservations is low, in theory, it is possible

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Artemiy Margaritov, Dmitrii Ustiugov, Amna Shahab, and Boris Grot

Table 4: Changes in metrics of pagerank in colocation with
objdet with PTEMagnet compared to the default kernel.

Metric Change
Host page table fragmentation (defined in Sec 3.2) -66%
Execution time -7%
Page walk cycles -17%
Cycles spent traversing the host page table -26%
Guest page table accesses served by main memory -1%
Host page table accesses served by main memory -13%

to design an application that has a large fraction of non-allocated
pages within reservations. For example, an application that uses
only every eighth page it allocated with malloc() can have 7× more
non-allocated pages within reservations than its actual physical
memory footprint. If the memory reclamation mechanism releases
memory reserved by such an application, PTEMagnet can not use
the reclaimed memory for reservations of other applications run-
ning on the system as this memory would be highly fragmented.
As a result, such an application can prevent other applications from
benefiting from PTEMagnet.

6.3 Page Walk Cycles with PTEMagnet
In this section, we evaluate a reduction in page walk cycles caused
by PTEMagnet by collecting hardware performance counters data
with perf. We also measure other hardware metrics previously stud-
ied in Section 3.3. We measure the metrics for pagerank application
running in colocation with objdet with and without PTEMagnet2.
Table 4 lists the evaluated metrics and changes in their value deliv-
ered by PTEMagnet.

We find that PTEMagnet reduces the host page table fragmenta-
tion from 3.4 to 1.2, shortening execution time by 7%. Performance
counters report that with PTEMagnet the CPU spends by 26% fewer
cycles traversing the host page table, resulting in by 17% fewer
cycles in page walks in total. This result is confirmed by a 13%
reduction in the number of host page table accesses served by the
main memory.

6.4 PTEMagnet’s Effect on Memory Allocation
Latency

In this section, we show that the reservation mechanism itself em-
ployed by PTEMagnet is overhead-free. As explained in Section 4,
on a first page fault to a 32KB region, PTEMagnet requests 32KB
from the buddy allocator, replacing subsequent page faults to the
reservation group by quick accesses to PaRT. To show that the
reservation-based mechanism does not cause performance degra-
dation, we study if PTEMagnet slows down physical memory allo-
cation.

We construct a microbenchmark that allocates a 60GB array and
accesses each of its pages once to invoke the physical memory allo-
cator. We measure the execution time of the microbenchmark with
and without PTEMagnet. We observe that PTEMagnet negligibly –
2Note that in contrast to the study in Section 3.3, in this study, the co-runner was
present during the entire execution of pagerank in both scenarios: with and without
PTEMagnet.

by 0.5% – reduces the execution time of the microbenchmark. This
result can be explained by the fact that PTEMagnet makes fewer
calls to the buddy allocator, replacing 7 out of 8 calls to it with quick
accesses to PaRT. As a result, we conclude that PTEMagnet does
not increase memory allocation latency.

7 RELATEDWORK
Disruptive vs incremental proposals on accelerating address trans-

lation. Prior attempts at accelerating address translation take one
of two directions. One calls for a disruptive overhaul of the ex-
isting radix-tree based mechanisms in both hardware and soft-
ware [1, 13, 47, 51]. The other direction focuses on incremental
changes to existing mechanisms [9, 20, 42]. While disruptive pro-
posals are potentially more attractive from a performance perspec-
tive than incremental ones, disruptive approaches entail a radical
re-engineering of the whole virtual memory subsystem, which
presents an onerous path to adoption. In contrast, incremental
techniques, requiring fewer efforts to be incorporated into existing
systems, are favoured by practitioners from OS and hardware com-
munities. Requiring only small modifications in the Linux kernel
of the guest OS, PTEMagnet falls within the incremental technique
category as it can be easily added to the existing systems. Moreover,
in the cloud computing platforms, e.g. at AWS or Google Cloud Plat-
form, PTEMagnet can be enabled just by cloud customers, without
the involvement of cloud providers.

Incremental techniques inducing contiguity by software means.
Other researches have studied incremental techniques on enforc-
ing contiguous mappings for reducing the overhead of address
translation [2, 36, 50]. Contiguity-aware (CA) paging [2] introduces
a change to the OS memory allocator to promote contiguity in
the physical address space. CA paging leverages contiguity to im-
prove the performance of any hardware technique that relies on
contiguous mappings, including a speculative address translation
mechanism introduced by themselves. PTEMagnet is different from
CA paging in two important dimensions. Firstly, CA paging, being a
no pre-allocation technique, is a best-effort approach to achieve con-
tiguity: it does not guarantee contiguity since contiguous mapping
can be impossible due to allocations of other applications running
on the machine. As a result, improvements of CA paging can be
significantly reduced under aggressive colocation – when there are
multiple memory consumers running on the same system. In con-
trast, PTEMagnet guarantees contiguity by eager reservation and
it is insensitive to colocation. Secondly, to deliver performance im-
provement, CA paging requires an advanced TLB design currently
not employed by modern processors, whereas PTEMagnet reduces
the overhead of address translation without a need to change hard-
ware.

Translation Ranger [50] is another incremental technique enforc-
ing translation contiguity by software means. Translation Ranger
is designed as a software helper to increase the benefits of emerg-
ing TLB designs coalescing multiple TLB entries into a single TLB
entry [41, 42]. Translation Ranger creates contiguity by employ-
ing a THP-like daemon which places pages together by copying
them to a contiguous region. As a consequence, Translation Ranger
has disadvantages, such as high tail latency and various perfor-
mance anomalies, inherent to THP-based large-page construction

PTEMagnet: Fine-Grained Physical Memory Reservation
for Faster Page Walks in Public Clouds ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

methods (see Section 2.3 for more details). In contrast to Trans-
lation Ranger, PTEMagnet creates contiguity at the moment of
memory allocation and doesn’t involve page copying, harmful for
performance predictability. Moreover, in comparison to Translation
Ranger, PTEMagnet can be straightforwardly incorporated into
existing systems: Translation Ranger relies on hardware which is
non-existed in the current systems, whereas PTEMagnet does not
have such a requirement.

ASAP [36] is another incremental proposal aiming at reducing
the overhead of address translation by enforcing contiguity through
software. ASAP is different from CA paging and Translation Ranger
in that it calls only for contiguity in the page table rather than con-
tiguity in the whole memory. With ASAP, contiguity in the page
table enables page table node prefetching which reduces page walk
latency, accelerating address translation. Compared to PTEMag-
net, ASAP has the disadvantage of requiring a change in hardware,
namely the addition of the prefetching mechanism, whereas PTE-
Magnet can be straightforwardly used on existing machines.

Other prior incremental techniques. There is a large amount of
work addressing the overhead of address translation by reducing
the number of TLB misses, including such techniques as increas-
ing TLB reach [16, 35, 42, 46], TLB prefetch [15], and speculative
translation [12]. PTEMagnet is complimentary to these techniques
and can be used to reduce page walk latency on a TLB miss under
virtualization.

8 CONCLUSION
This work identifies a new address translation bottleneck specific
to cloud environments, where the combination of virtualization
and workload colocation results in heavy memory fragmentation
in the guest OS. This fragmentation increases the effective cache
footprint of the host PT relative to that of the guest PT. The bloated
footprint of the host PT leads to frequent cache misses during
nested page walks, increasing page walk latency. We introduced
PTEMagnet, which addresses this problemwith a legacy-preserving
software-only technique to reduce page walk latency in the cloud
environments. PTEMagnet is powered by an insight that group-
ing hPTEs of nearby application’s pages in one cache block can
reduce the footprint of the host PT. Such grouping can be achieved
by enhancing contiguity in guest physical memory space via a
light-weight memory reservation approach. PTEMagnet requires
minimal changes in the Linux memory allocator and no modifica-
tions to either user code or virtual address translation mechanisms.
PTEMagnet enables a significant reduction in page walk latency,
improving application performance by up to 9%.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers and the paper’s shep-
herd, Professor Dan Tsafrir, as well as Priyank Faldu and Professor
Edouard Bugnion for the fruitful discussions and for their valuable
feedback on this work. This work was supported by the Google
Faculty Research Award, the EPSRC Centre for Doctoral Training
in Pervasive Parallelism at the University of Edinburgh, and the
industrial CASE studentship from Arm Ltd.

REFERENCES
[1] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. 2017. Do-It-Yourself

virtual memory translation. In Proceedings of the 44th International Symposium
on Computer Architecture (ISCA). 457–468.

[2] Chloe Alverti, Stratos Psomadakis, Vasileios Karakostas, Jayneel Gandhi, Kon-
stantinos Nikas, Georgios Goumas, and Nectarios Koziris. 2020. Enhancing and
exploiting contiguity for fast memory virtualization. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). 515–528.

[3] Chloe Alverti, Stratos Psomadakis, Vasileios Karakostas, Jayneel Gandhi, Kon-
stantinos Nikas, Georgios Goumas, and Nectarios Koziris. 2020. Enhancing and
Exploiting Contiguity for Fast Memory Virtualization. In Proceedings of the 47th
International Symposium on Computer Architecture (ISCA). 515–528.

[4] Amazon. 2020. Amazon Elastic Container Service features. Available at https:
//aws.amazon.com/ecs/features/.

[5] Amazon. 2020. Amazon Elastic Kubernetes Service. Available at https://aws.
amazon.com/eks.

[6] Amazon. 2020. Amazon Virtual Private Cloud. Available at https://aws.amazon.
com/vpc.

[7] Amazon. 2020. AWS Batch FAQs. Available at https://aws.amazon.com/batch/
faqs/.

[8] Amazon. 2020. How do I configure hugepages on my Amazon EC2 Linux in-
stance? Available at https://aws.amazon.com/premiumsupport/knowledge-
center/configure-hugepages-ec2-linux-instance/.

[9] A. Arcangeli. 2010. Transparent hugepage support. KVMForum (2010).
[10] AWS Admin. 2020. Multi-tenant design considerations for Amazon EKS clus-

ters. Available at https://aws.amazon.com/blogs/containers/multi-tenant-design-
considerations-for-amazon-eks-clusters.

[11] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation caching: Skip,
don’t walk (the page table).. In Proceedings of the 37th International Symposium
on Computer Architecture (ISCA). 48–59.

[12] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2011. SpecTLB: A mechanism for
speculative address translation. In Proceedings of the 38th International Symposium
on Computer Architecture (ISCA). 307–318.

[13] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. 2013. Efficient virtual memory for big memory servers. In Proceedings of
the 40th International Symposium on Computer Architecture (ISCA). 237–248.

[14] Ravi Bhargava, Ben Serebrin, Francesco Spadini, and Srilatha Manne. 2008. Ac-
celerating two-dimensional page walks for virtualized systems.. In Proceedings
of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XIII). 26–35.

[15] Abhishek Bhattacharjee. 2017. Translation-Triggered Prefetching. In Proceedings
of the 22nd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 63–76. https://doi.org/10.1145/
3037697.3037705

[16] Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. 2011. Shared
last-level TLBs for chip multiprocessors. In Proceedings of the 17th International
Conference on High-Performance Computer Architecture (HPCA). 62–63.

[17] Brendan Gregg. 2017. How Netflix tunes EC2 instances for performance. Ava-
ialble at http://www.brendangregg.com/Slides/AWSreInvent2017_performance_
tuning_EC2.pdf.

[18] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. 2017. Hardware and Software
Support for Virtualization. Morgan & Claypool Publishers.

[19] Colin Ian King. 2020. Stress-ng. Available at https://kernel.ubuntu.com/~cking/
stress-ng.

[20] Guilherme Cox and Abhishek Bhattacharjee. 2017. Efficient address translation
for architectures with multiple page sizes. In Proceedings of the 22nd International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 435–448.

[21] Deepak Singh. 2020. Amazon ECS vs Amazon EKS: making sense of AWS
container services. Available at https://aws.amazon.com/blogs/containers/
amazon-ecs-vs-amazon-eks-making-sense-of-aws-container-services/.

[22] Google Cloud. 2020. Google Kubernetes Engine. Available at https://cloud.
google.com/kubernetes-engine.

[23] Google Cloud. 2020. Google Virtual Private Cloud. Available at https://cloud.
google.com/vpc.

[24] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[25] Intel. 2017. 5-level paging and 5-level EPT. White Paper 335252-002. Intel.
[26] Jeff Barr. 2013. Choosing the right EC2 instance type for your applica-

tion. Available at https://aws.amazon.com/blogs/aws/choosing-the-right-ec2-
instance-type-for-your-application.

[27] Jeff Barr. 2020. Capacity-optimized spot instance allocation in action at Mobileye
and Skyscanner. Available at https://aws.amazon.com/blogs/aws/capacity-
optimized-spot-instance-allocation-in-action-at-mobileye-and-skyscanner.

[28] Jonathan Corbet. 2017. Huge pages in the ext4 filesystem. Available at https:
//lwn.net/Articles/718102.

https://aws.amazon.com/ecs/features/
https://aws.amazon.com/ecs/features/
https://aws.amazon.com/eks
https://aws.amazon.com/eks
https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://aws.amazon.com/batch/faqs/
https://aws.amazon.com/batch/faqs/
https://aws.amazon.com/premiumsupport/knowledge-center/configure-hugepages-ec2-linux-instance/
https://aws.amazon.com/premiumsupport/knowledge-center/configure-hugepages-ec2-linux-instance/
https://aws.amazon.com/blogs/containers/multi-tenant-design-considerations-for-amazon-eks-clusters
https://aws.amazon.com/blogs/containers/multi-tenant-design-considerations-for-amazon-eks-clusters
https://doi.org/10.1145/3037697.3037705
https://doi.org/10.1145/3037697.3037705
http://www.brendangregg.com/Slides/AWSreInvent2017_performance_tuning_EC2.pdf
http://www.brendangregg.com/Slides/AWSreInvent2017_performance_tuning_EC2.pdf
https://kernel.ubuntu.com/~cking/stress-ng
https://kernel.ubuntu.com/~cking/stress-ng
https://aws.amazon.com/blogs/containers/amazon-ecs-vs-amazon-eks-making-sense-of-aws-container-services/
https://aws.amazon.com/blogs/containers/amazon-ecs-vs-amazon-eks-making-sense-of-aws-container-services/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/vpc
https://cloud.google.com/vpc
https://aws.amazon.com/blogs/aws/choosing-the-right-ec2-instance-type-for-your-application
https://aws.amazon.com/blogs/aws/choosing-the-right-ec2-instance-type-for-your-application
https://aws.amazon.com/blogs/aws/capacity-optimized-spot-instance-allocation-in-action-at-mobileye-and-skyscanner
https://aws.amazon.com/blogs/aws/capacity-optimized-spot-instance-allocation-in-action-at-mobileye-and-skyscanner
https://lwn.net/Articles/718102
https://lwn.net/Articles/718102

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Artemiy Margaritov, Dmitrii Ustiugov, Amna Shahab, and Boris Grot

[29] Kirk Kirkconnell. 2014. Often overlooked Linux OS tweaks. Available at
https://blog.couchbase.com/often-overlooked-linux-os-tweaks.

[30] Marios Kogias. 2018. distbenchr. https://github.com/marioskogias/distbenchr.
[31] Kubernetes. 2020. Turnkey cloud solutions. Available at https://kubernetes.io/

docs/setup/production-environment/turnkey-solutions.
[32] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett

Witchel. 2016. Coordinated and efficient huge page management with Ingens.. In
Proceedings of the 12th Symposium onOperating SystemDesign and Implementation
(OSDI). 705–721.

[33] Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, and Viktor Prasanna. 2019. GPOP:
A cache and memory-efficient framework for graph processing over partitions.
In Proceedings of the 24th Symposium on Principles and Practice of Parallel Pro-
gramming. 393–394.

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft COCO: Common
objects in context. In European conference on computer vision. 740–755.

[35] Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. 2013. TLB
improvements for chip multiprocessors: Inter-core cooperative prefetchers and
shared last-level TLBs. ACM Transactions on Architecture and Code Optimization
(TACO) 10, 1 (2013), 1–38.

[36] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. 2019.
Prefetched address translation. In Proceedings of the 52nd International Symposium
on Microarchitecture (MICRO). 1023–1036.

[37] MarketsandMarkets. 2020. Cloud computing market report. Avail-
able at https://www.marketsandmarkets.com/Market-Reports/cloud-computing-
market-234.html.

[38] MongoDB. 2020. MongoDB administration documentation. Available at https:
//docs.mongodb.com/manual/tutorial/transparent-huge-pages.

[39] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan L. Cox. 2002. Practical,
transparent operating system support for superpages. In Proceedings of the 5th
Symposium on Operating System Design and Implementation (OSDI).

[40] Ashish Panwar, Aravinda Prasad, and K Gopinath. 2018. Making huge pages
actually useful. In Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). 679–692.

[41] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H Loh. 2014.
Increasing TLB reach by exploiting clustering in page translations. In 2014 IEEE
20th International Symposium on High Performance Computer Architecture (HPCA).

558–567.
[42] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattachar-

jee. 2012. CoLT: Coalesced large-reach TLBs. In Proceedings of the 45th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 258–269.

[43] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. 2020. MLPerf inference benchmark. In Pro-
ceedings of the 47th Annual International Symposium on Computer Architecture
(ISCA). 446–459.

[44] Rik van Riel, Peter Morreale. 2018. Linux Kernel documentation for the sysctl
files. Available at https://www.kernel.org/doc/Documentation/sysctl/vm.txt.

[45] Roshni Pary. 2018. Run your Kubernetes workloads on Amazon EC2 spot
instances with Amazon EKS. Available at https://aws.amazon.com/blogs/
compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-
with-amazon-eks.

[46] Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K. John. 2017. Rethinking
TLB designs in virtualized environments: A very large part-of-memory TLB. In
Proceedings of the 44th International Symposium on Computer Architecture (ISCA).
469–480.

[47] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas. 2020.
Elastic cuckoo page tables: Rethinking virtual memory translation for parallelism.
In Proceedings of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 1093–1108.

[48] Tiffany Jernigan. 2019. Amazon ECS Task Placement. Available at https:
//aws.amazon.com/blogs/compute/amazon-ecs-task-placement/.

[49] Dmitrii Ustiugov, Alexandros Daglis, Javier Picorel, Mark Sutherland, Edouard
Bugnion, Babak Falsafi, and Dionisios N. Pnevmatikatos. 2018. Design guidelines
for high-performance SCM hierarchies. In Proceedings of the 4th International
Symposium on Memory Systems (MEMSYS). 3–16.

[50] Zi Yan, Daniel Lustig, David W. Nellans, and Abhishek Bhattacharjee. 2019.
Translation ranger: Operating system support for contiguity-aware TLBs. In
Proceedings of the 46th International Symposium on Computer Architecture (ISCA).
698–710.

[51] Idan Yaniv and Dan Tsafrir. 2016. Hash, don’t cache (the page table). In Proceedings
of the 2016 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems. 337–350.

https://blog.couchbase.com/often-overlooked-linux-os-tweaks
https://github.com/marioskogias/distbenchr
https://kubernetes.io/docs/setup/production-environment/turnkey-solutions
https://kubernetes.io/docs/setup/production-environment/turnkey-solutions
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://aws.amazon.com/blogs/compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-with-amazon-eks
https://aws.amazon.com/blogs/compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-with-amazon-eks
https://aws.amazon.com/blogs/compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-with-amazon-eks
https://aws.amazon.com/blogs/compute/amazon-ecs-task-placement/
https://aws.amazon.com/blogs/compute/amazon-ecs-task-placement/

PTEMagnet: Fine-Grained Physical Memory Reservation
for Faster Page Walks in Public Clouds ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

A ARTIFACT APPENDIX
A.1 Abstract
The artifact contains a Linux kernel patch for enabling PTEMag-
net, shell scripts for Linux kernel compilation, a VM disk image
with precompiled benchmarks, and Python/shell scripts that are ex-
pected to reproduce the results presented in Figure 6 for non-SPEC
benchmarks (SPEC benchmarks cannot be distributed due to the
terms of the SPEC licensing agreement).

A.2 Artifact check-list (meta-information)
• Program: Shell, Python, and C/C++ code
• Compilation: GCC 7.5.0
• Benchmarks: We provide binaries for GPOP [33] benchmarks and
MLPerf objdet [43]

• Hardware: Dual-socket server-grade x86 machine with 20+ physi-
cal cores and more than 128GB of RAM

• Metrics: Execution time of benchmarks
• Disk space required: 150GB
• How much time is needed to prepare infrastructure for ex-
periments?: 2 hours

• Howmuch time is needed to complete experiments?: 24 hours
• Publicly available?: Yes
• Evaluation workflow: Clone a GitHub repository, run scripts to
set up the environment and compile Linux kernels and measure
execution time with different Linux kernels, inspect the results

• Code licenses (if publicly available)?: GNU GPL v2 (Linux),
Apache 2.0 (MLPerf), MIT (GPOP)

• Archived (provide DOI)?: 10.5281/zenodo.4321196

A.3 Description
A.3.1 How to access the PTEMagnet’s source code. The source code of our
work is hosted on GitHub3 and Zenodo4. The GitHub repository has the
most updated version.

A.3.2 Hardware dependencies. We developed and tested the artifact on a
server with a 20-core dual Intel® Xeon® E5-2630v4 (Broadwell). We expect
that PTEMagnet can work on all machines running under a Linux-based OS.
This artifact can run on an x86 server that runs Ubuntu 18.04 LTS and has
two processors with more than 20 physical cores in total. The performance
improvement of PTEMagnet on other processors can be different from one
presented in Figure 6. For example, a larger improvement can be achieved
on a processor with a larger LLC than one evaluated in the paper. More
LLC capacity increases the chances of a cache line with a page table staying
in LLC, and hence boosts the speedup delivered by PTEMagnet. In contrast,
more hardware page walkers than in the processor evaluated in the paper
can reduce PTEMagnet’s performance improvement.

A.3.3 Software dependencies. Our work uses Linux kernel sources (ver-
sion 4.19) and tools to build the kernel. We use Python 2 for our Python
scripts. Our Python scripts require numpy, pandas, fabric, scipy and

distbenchr [30]. For evaluation, we provide open-source GPOP bench-
marks [33].

A.3.4 Datasets. This artifact includes a dataset for GPOP benchmarks. We
provide a 16GB graph with 4 billion nodes scaled from the Twitter dataset.

A.4 Installation
The installation involves cloning the GitHub repository, running the installa-
tion script, and setting ssh keys for passwordless ssh. The detailed workflow
is explained in the installation section of the repository’s README file5.

git clone --recurse -submodules \
https :// github.com/amargaritov/PTEMagnet_AE.git

cd PTEMagnet_AE

./ install/install_all.sh <PATH > # takes 2 hours

source source.sh

The installation script installs relevant packages and tools, downloads
and builds clean and modified Linux kernels, downloads a disk image with
benchmarks and their datasets, and sets the environment for the evaluation.

A.5 Experiment workflow
To reproduce the results of Figure 6, one needs tomeasure the execution time
of benchmarks in colocationwithMLPerf objdet in a virtual machine on the
clean version of the Linux kernel and with PTEMagnet. We provide scripts
for automating the launch of the experiments. The detailed instructions on
how to launch the experiments can be found in the evaluation section of the
README file5. The scripts would run each benchmark in each configuration
5 times to average execution time across the runs, reducing the effects of
jitter in a system.

cd PTEMagnet_AE/evaluation

. launch_all_exps_short.sh # takes about 24 hours

A.6 Evaluation and expected result
We provide a script that outputs average execution time among multiple
runs and performance improvement delivered by PTEMagnet in comparison
to the clean Linux kernel.

cd PTEMagnet_AE/evaluation

. show_results.sh

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

3https://github.com/amargaritov/PTEMagnet_AE
4https://doi.org/10.5281/zenodo.4321196
5https://github.com/amargaritov/PTEMagnet_AE/blob/main/README.md

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://github.com/amargaritov/PTEMagnet_AE
https://doi.org/10.5281/zenodo.4321196
https://github.com/amargaritov/PTEMagnet_AE/blob/main/README.md

	Abstract
	1 Introduction
	2 Background
	2.1 Virtual Memory Basics
	2.2 Memory Allocation Mechanism
	2.3 Memory Allocation Granularity
	2.4 Memory Fragmentation
	2.5 Address Translation Mechanism
	2.6 Spatial Locality in the Page Table

	3 Challenges for Short Page Walk Latency under Virtualization and Colocation
	3.1 Fragmentation in the Host Virtual Address Space
	3.2 Consequences of Fragmentation in the Host Virtual Address Space
	3.3 Quantifying Effects of Fragmentation in the Host PT
	3.4 Virtual Private Clouds: Virtualization + Colocation
	3.5 Summary

	4 PTEMagnet Design
	4.1 Design Overview
	4.2 Page Group Reservation
	4.3 Reserved Memory Reclamation
	4.4 Discussion

	5 Methodology
	6 Evaluation
	6.1 PTEMagnet's Performance Improvement
	6.2 Incidence of Non-Allocated Pages Within Reservations
	6.3 Page Walk Cycles with PTEMagnet
	6.4 PTEMagnet's Effect on Memory Allocation Latency

	7 Related work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Methodology

