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The attention given to heteromorphism and genetic degeneration of “classical sex chromosomes” (Y chromosomes in XY systems,

and the W in ZW systems that were studied first and are best described) has perhaps created the impression that the absence of

recombination between sex chromosomes is inevitable. I here argue that continued recombination is often to be expected, that

absence of recombination is surprising and demands further study, and that the involvement of selection in reduced recombination

is not yet well understood. Despite a long history of investigations of sex chromosome pairs, there is a need for more quantitative

approaches to studying sex-linked regions. I describe a scheme to help understand the relationships between different properties

of sex-linked regions. Specifically, I focus on their sizes (differentiating between small regions and extensive fully sex-linked ones),

the times when they evolved, and their differentiation, and review studies using DNA sequencing in nonmodel organisms that are

providing information about the processes causing these properties.

KEY WORDS: Genetic degeneration, hemizygosity, partially sex-linked region, pseudoautosomal region (PAR), sexual

antagonism.

Despite great progress in understanding the evolution of nonre-

combining sex-linked genome regions, surprisingly many inter-

esting questions remain, including how often sex-determining re-

gions have evolved suppressed recombination, or why they did so

when this has occurred. The gaps in knowledge can create an ap-

parently confusing picture. I here argue that much of the diversity

reflects well-understood biological processes acting in a diversity

of organisms that evolved separate sexes independently, at differ-

ent times in the past, with sex-linked regions on different chromo-

somes, rather than “many exceptions to the rules” (Furman et al.

2020). Some striking similarities between sex-linked regions in

different organisms stem from their lack of recombination (and

subsequence genetic degeneration of Y and W chromosomes).

Such sex-linked regions have, however, been the focus of so much

attention that these features have sometimes been viewed as ubiq-

uitous (Ponnikas et al. 2018) and regarded as inevitable. I focus

on understanding that can be gained from younger systems and

sex-determining regions that are in the process of evolving.

Figure 1 shows changes if a sex-linked region appears in

a genome region, and Figure 2 summarizes different situations

that generate systems with different ages and properties, from

newly evolved sex-determining genes to XY or ZW sex chromo-

somes. This simplified framework focuses attention on the fol-

lowing well-established concepts:

1. An important general “rule” is that absence of recombination

is crucial for evolution of distinct sex chromosomes (or ex-

tensive sex-linked regions). Even low crossover rates prevent

differentiation (Pamilo et al. 1987; Blaser et al. 2014).

2. Absence of recombination can arise in different ways (Fig. 2).

Newly evolved (young) sex-determining regions will often be

small, although they can arise within physically large nonre-

combining regions. Sex-linked regions could potentially re-

main as small as the initial sex-determining gene, or could

subsequently evolve into large recombinationally suppressed

regions. As explained below, the role of selection in reducing

recombination is not yet fully understood.

3. If a sex-determining region does not recombine, Y-X

differentiation will become detectable, over time, contrasting

with adjacent recombining, or “pseudo-autosomal,” regions
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Figure 1. Schematic diagram to illustrate the stages of evolution

of a completely sex-linked region after recombination stops, in

cases where it does stop. The left-hand end is a pseudoautosomal

region (PAR) that continues to recombine. The absence of numbers

on the x-axis, and the y-axis for divergence, is deliberate, as the

diagrams are intended to show general concepts. Specific exam-

ples, and measures of divergence and degeneration, are described

in the text. Importantly, the timescales for different processes dif-

fer (as indicated by the lines connecting the short segment of time

corresponding to neutral divergence and the degeneration pro-

cess); specifically, as drawn, loss of selective constraints is shown

occurring in an evolutionary time corresponding to small, rather

than large, neutral divergence, and complete degeneration might

follow shortly after this stage, or might take much longer.

(PAR in Fig. 1). Importantly, increased sequence divergence,

accumulation of repetitive sequences (expanding the region’s

physical size), and genetic degeneration (potentially delet-

ing genes, shrinking the Y-linked region) occur on different

timescales. Sex chromosome heteromorphism mainly reflects

the net effects of accumulation of repeats and genetic degen-

eration (other changes that can contribute will be mentioned

below).

Many advances have occurred since molecular markers,

and especially genome sequencing, became available. Many

studies hope to discover sex-determining genes, and therefore

start with locating the species’ fully sex-linked genome region.

These studies also provide valuable information about differenti-

ation. We can now discover whether a species with genetic sex-

determination has a nonrecombining region, and, if so, how large

it is, and when recombination between sex chromosomes became

suppressed. Figure 1 shows the situation in very general terms,

based on studies of animal and plant sex chromosomes over many

years, and has no quantitative x-axis scale for either the time or

the level of genetic degeneration.

To categorize species with genetic sex-determination into the

types in Figure 2, Figure 1 distinguishes between “sex-linked

regions,” which span a wide range of ages, sizes, and levels

of differentiation, and differentiated “sex chromosomes” (poten-

tially with cytologically detectable heteromorphism) to catego-

rize species with genetic sex-determination into the types in Fig-

ure 2. As has long been suspected, some organisms are in the

early stages of sex chromosome evolution. For example, the plant

Mercurialis annua shows minimal sequence divergence between

Y- and X-linked sequences, and little sign of genetic degenera-

tion (Veltsos et al. 2019). In some animals, new sex-determining

regions evolved recently through “turnover events” (reviewed in

Vicoso 2019). In contrast, other well-studied animals, including

mammals, Drosophila, and many birds, have very old-established

sex chromosomes where most of the XY or ZW pair is nonre-

combining, and the Y or W is highly degenerated, having lost

most of the genes carried on the X or Z counterpart. In plants,

separate sexes evolved more recently (see below), but the sex

chromosomes of several distantly related dioecious plants share

these properties, including Silene latifolia (Papadopulos et al.

2015), Rumex species (Grabowska-Joachimiak et al. 2015; Crow-

son et al. 2017), Cannabis sativa (Prentout et al. 2020), and Coc-

cinia grandis (Fruchard et al. 2020).

Detecting Completely Sex-Linked
Regions, and Estimating Their Sizes,
When They are Present
CYTOGENETIC STUDIES AND GENOME SEQUENCING

Cytogenetic studies were important in the discovery of many

of the old-established, highly degenerated, sex chromosomes

examples just mentioned (Swanson 1957; Westergaard 1958;

Zrzava et al. 2018). Loss of genes’ functions allowed deletions

of large parts of the Y or W chromosomes, creating detectable

YX heteromorphism, or even X0 systems, as in many grasshop-

pers and nematodes, where the sex-determining genes have been

lost (and maleness or femaleness no longer involves an active
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Figure 2. Scheme to show the different ways in which a small region carrying the sex determining gene or genes can arise, and the

different situations where these regions could expand in size to form extensive fully sex-linked regions that, given enough time, would be

predicted to evolve the complete set of sex chromosome properties (divergence of Y- or W-linked sequences, accumulation of repetitive

sequences, chromosome rearrangements, and genetic degeneration). In the two situations involving polymorphisms in two genes that

create selection for closer linkage (right-hand columns), an inversion could suppress recombination across a physically large region, or

“evolutionary stratum,” that includes many genes without sex-related functions.

male- or female-determining factor on the Y or W chromosome;

sex is then determined by an X-autosome balance system, as in

Drosophila; see Swanson 1957). Heteromorphism can also occur

by accumulation of repetitive sequences. In some birds, accumu-

lation appears to have restored homomorphism after ZW hetero-

morphism had evolved, and the W chromosome had lost most

genes (Rutkowska et al. 2012; Furo et al. 2017).

Several different approaches have been developed for de-

tecting such regions in genome sequences, and discovering their

sizes. Detailed information is now available about large com-

pletely sex-linked regions in species where cytogenetic stud-

ies had already established their existence: mammals (Skaletsky

et al. 2003; Cortez et al. 2014) birds (Pigozzi 2011; Zhou et al.

2014; Schmid et al. 2015), reptiles (Schield et al. 2019), fish,

including sticklebacks (Varadharajan et al. 2019; Peichel et al.

2020), Dipteran and Lepidopteran insects (Vicoso and Bachtrog

2015; Fraisse et al. 2017), and plants, including bryophytes

(Allen 1917, 1932; Okada et al. 2001; Ishizaki et al. 2002;

Marks et al. 2019). Physically smaller completely sex-linked re-

gions that also carry multiple genes have been found in a moss

(McDaniel et al. 2007; Carey et al. 2020), brown algae

(Ahmed et al. 2014), the flowering plant papaya (Wang

et al. 2012), and some cichlids (Gammerdinger and Kocher

2018).

With just a single individual of each sex, fully sex-linked re-

gions that have undergone genetic degeneration and lost genes

can be ascertained because the Y- or W-linked region is “hem-

izygous” and shows sex-specific haploid depth of coverage com-

pared with the other sex, or with genome regions that are not

completely sex linked. This approach can be used even in non-

model species such as Paleognathous birds (Zhou et al. 2014),

snakes (Schield et al. 2019) and Schistosomes (Vicoso and

Bachtrog 2011). However, it will only detect Y- and W-linked

regions that have been nonrecombining for long enough to have

lost many genes, or for sequences to have diverged sufficiently

that they do not map to a reference genome of the other sex

(“old” systems in Fig. 1). This approach may therefore fail

to detect nonrecombining regions in species with younger sex
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chromosomes, or whose sex-linked regions include only a few

genes.

GENETIC MAPPING

Genetic mapping within families can detect variants that

co-segregate with the sex of the progeny. Combined with genome

sequencing, very large numbers of variants in DNA (or RNA

transcripts) can be mapped to positions in chromosomes’ phys-

ical maps in a species’ reference genome assembly. With dense

markers, even small regions may be detectable. Genetic stud-

ies can also reveal that sex-determining genes are on different

chromosomes in related species (suggesting creation of new sex-

determining regions by turnover events or repeated evolution of

new sex-determining genes, as mentioned in Fig. 2). Turnovers

have been detected in many animals (Vicoso 2019), and are start-

ing to be discovered in plants (Tennessen et al. 2018; Xue et al.

2020; Yang et al. 2020). Finally, genetic maps are increasingly

being used to separate the two haplotypes of the sex-linked re-

gion, by genotyping progeny individuals and a parent of the het-

erozygous sex (Zhou et al. 2020). Such “phasing” of variants in

a fully sex-linked region is necessary for describing Y-X differ-

ences and estimating Y-linked regions’ ages (see below). How-

ever, the haplotypes in families refer only to variants in the phased

individual, which may not be consistently sex specific.

Genetic mapping has established that the plant Mercuri-

alis annua has a genetic sex-determination system, with co-

segregating Y-linked markers across a physically large region, at

least in families (Veltsos et al. 2019). Family analysis will, how-

ever, overestimate the physical size of fully sex-linked regions,

because, in a small family, some partially sex-linked markers will

co-segregate with fully sex-linked ones and be classified incor-

rectly. The true sizes are therefore often not accurately known,

but only upper size estimates.

GENOME-WIDE ASSOCIATION APPROACHES (GWAS)

USING SEX AS THE PHENOTYPE

To ascertain sex-specific variants, samples of multiple unrelated

individuals from natural populations are needed, to ensure many

past generations during which recombination can occur. Such

genome-wide analyses often employ FST estimates between the

sexes for sequences in nondegenerated fully sex-linked regions

(Natri et al. 2013; Schultheiß et al. 2015; Gammerdinger and

Kocher 2018), similarly to analyses aimed at discovering genes

affecting other phenotypes. The sex-determining region can po-

tentially be narrowed down to a physically small part of a chro-

mosome, as in many fish species (Kamiya et al. 2012; Myosho

et al. 2015; Gammerdinger and Kocher 2018; Conte et al. 2019).

Figure 3 shows the wide range of recent size estimates in flower-

ing plants.

Figure 3. Size estimates of sex-determining regions from

flowering plants. The estimates from different species are rough,

and are based on different approaches (see main text), and the

smallest estimates are shown, where possible (see the text for

an explanation of the problem of size over-estimates); in species

with large, heteromorphic XY pairs, and in C. papaya, which shows

micro-heteromorphism, this estimate refers to the X-linked haplo-

type. The numbers on the bars indicate rough estimated numbers

of genes in each species’ sex-determining region, when the num-

ber has been estimated.

When the Y- and X-linked regions can be distinguished,

this can reveal heteromorphism in species whose chromosomes

are too small for cytological detection. This approach can also

detect “micro-heteromorphism,” when the two haplotypes of a

physically small sex-linked region differ by rearrangements, such

as inversions, as in papaya (Wang et al. 2012), and/or show dele-

tion/duplication differences (Fig. 5 below shows one example).

Studies of the physical sizes of fully sex-linked regions also

provide information about the numbers of “ancestral” (X- or Z-

linked) genes. Genetic degeneration can then be quantified as the

proportion of genes that remaining on the Y or W chromosome,

and the proportion that still appear to be functional. These im-

portant data are currently available only in humans (Sayres and

Makova 2013) and Drosophila (e.g., Zhou and Bachtrog 2015),

and a few plants (Papadopulos et al. 2015; Wu and Moore 2015;

Fruchard et al. 2020; Prentout et al. 2020).

The Ages of Sex-Linked Regions,
Including Nonrecombining Regions,
When Present
As already explained, the different ways in which sex-

determining genes can appear, and different evolutionary times

572 EVOLUTION MARCH 2021



EVOLUTION OF SEX-LINKED REGIONS

since they originated (Fig. 2), can, in principle, explain much of

the otherwise puzzling differences in differentiation between Y-

and X-linked regions. It is therefore important to estimate ages of

such regions, when they are present, and to test whether some

sex-determining regions have simply not had enough time for

suppressed recombination to evolve.

The appearance of a sex-determining locus on a chromo-

some defines its oldest fully sex-linked region. A single sex-

determining gene is necessarily sex-linked, and, if the alleles

controlling the two sexes differ by a single mutation, this muta-

tion is completely sex-linked. Other sequence variants in the gene

might, however, recombine (albeit with a low recombination rate,

as they are physically close). Such variants will show incomplete

associations with the sexes, as in fugu; in this fish, recombina-

tion must occur often enough to separate variants in the 17.5-kb

region identified (Kamiya et al. 2012).

Many fully sex-linked regions include multiple genes. This

could be because the sex-determining locus evolved in a non-

recombining genome region carrying other genes (Fig. 2). In

species where the region was ancestrally nonrecombining, the

time when the sex-determining locus appeared defines the age.

However, recombination may have become suppressed subse-

quently (see the next section).

AGE ESTIMATES USING PHYLOGENETIC DATA

The ages of a sex-linked region in a set of related dioecious

species can be estimated from a phylogeny based on divergence

of sequences from those of their closest nondioecious relatives.

However, this relies on assuming that the dioecious species share

the same oldest fully sex-linked region. When turnovers have oc-

curred, replacing one sex-determining region with a new one, this

approach could overestimate ages. This creates problems for es-

timating the ages of single-gene sex-determining systems, where

approaches using a nonrecombining genome region (see the next

section) are unavailable. To exclude turnover events, evidence is

needed that all the species share the same sex-determining gene,

in the same genomic location. In fish taxa, small sex-determining

regions are often found in different physical locations, or dif-

ferent chromosomes (e.g., Kamiya et al. 2012; Myosho et al.

2015; Ieda et al. 2018), and in Diptera (Post 1985; Mahajan and

Bachtrog 2017; Meisel et al. 2020). Among flowering plants, it

is currently unclear which species have old-established yet small

sex-determining regions, and consequently it is not known how

often small regions fail to evolve into large recombinationally

suppressed regions.

Y-X DIVERGENCE ESTIMATES

Once Y-linkage is established, by whatever process, Y sequences

will start diverging from their X counterparts, providing direct

information about the time since Y-X recombination stopped

(Fig. 1). If sex-linked genes have been ascertained in a dioecious

species, one can use Y-X sequence divergence to test whether the

Y became isolated before the split from the most closely related

nondioecious species (Lawson-Handley et al. 2004; Dixon et al.

2018). Even within a single dioecious species, Y-X and W-Z di-

vergence estimates reflect the times when recombination stopped.

However, some points should be noted. First, times should ideally

be estimated in terms of synonymous site divergence (Ks) val-

ues, as such sites are often weakly selected (although their diver-

gence is not completely neutral, because selection opposes sub-

stitutions in some synonymous sites, e.g., Chamary et al. 2006;

Parmley et al. 2006; Walsh et al. 2020). Ks is nevertheless roughly

proportional to the natural evolutionary time unit, the number

of generations (at least until many sites may have undergone

multiple substitutions, an effect termed “saturation,” illustrated

in Fig. 1). Second, the common practice of translating syn-

onymous site divergence values into estimated numbers of

years should be avoided, as it precludes comparisons between

species with different generation times (which are often poorly

known).

There are also difficulties. In functional genes, selective con-

straints acting on many nonsynonymous sites make divergence

initially slower than for synonymous sites. Although this ob-

viates the need to correct for saturation, this advantage is out-

weighed because these estimates are confounded with degen-

eration, as nonsynonymous substitutions increase as genes lose

functions (Fig. 1). Estimating divergence using all sites, without

distinguishing between synonymous and nonsynonymous sites,

is therefore problematic. It is preferable to separate genome se-

quences into coding regions, and to estimate synonymous site di-

vergence.

Furthermore, highly degenerated sex-linked regions often

contain few genes, making Y-X or W-Z divergence estimates un-

reliable or impossible, for example, in Drosophila species (ex-

cept when fusions with autosomes in species without recombina-

tion in males have created neo-Y regions carrying many newly

Y-linked genes; see Bachtrog et al. 2008). Old sex-linked regions

with low gene density and high repeat density may even remain

undetected unless the complete genome can be assembled and

sex differences in coverage assessed (see above). A further prob-

lem arises when an XY male genome sequence is assembled us-

ing a female reference assembly (XX, avoiding assembly prob-

lems with diverged Y-linked sequences). If the Y-linked region

includes genes not present on the X chromosome, such reference-

based assembly will either leave these sequences unmapped or

incorrectly map them to the most similar autosomal sequences.

Reference-quality genome sequences of both sexes are therefore

needed (Wei and Bachtrog 2019; Xue et al. 2020).
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EVOLUTIONARY STRATA

Y-X divergence estimates have revealed that, even in species with

long-established sex-linked regions, parts of these chromosomes

sometimes also subsequently stopped recombining, forming so

called “evolutionary strata,” first detected in humans (Lahn and

Page 1999; Skaletsky et al. 2003). This observation is important,

because it shows that recombination has undergone an evolution-

ary change, rather than being the ancestral state for the region.

The oldest human strata (Y.]X synonymous site divergence, Ks,

much higher than 20%) are shared with other mammals (Sandst-

edt and Tucker 2004; Cortez et al. 2014), and include large num-

bers of ancestrally X.]linked genes (369, 84, and 128; see Sayres

and Makova 2013). Smaller nonrecombining strata adjacent to

the PAR boundary are younger, with Ks around 20%, and some

are specific to only some mammal lineages. Strata with multiple

genes are also found in birds (Zhou et al. 2014), snakes (Schield

et al. 2019), and plants (Bergero et al. 2007; Wang et al. 2012;

Zhang et al. 2020). However, Y-X and W-Z divergence estimates

remain scarce.

OTHER CHANGES AFTER RECOMBINATION BETWEEN

THE SEX CHROMOSOME PAIR BECOMES

SUPPRESSED

Regions of suppressed recombination carrying new sex-

determining genes also start accumulating Y-linked mutations

causing genetic degeneration, repetitive sequences (reviewed by

Bachtrog 2008), and adaptive changes, including the evolution

of dosage compensation in response to degeneration (e.g., Mank

et al. 2011; Disteche 2016; Gu and Walters 2017). Gene move-

ments into the sex-linked region may also occur, or from the sex-

linked region to an autosome (Bellott et al. 2010). These changes

also accumulate over evolutionary times (Fig. 1), but probably do

not greatly affect the sizes of nonrecombining regions (although

more detailed future studies are needed). Their rates depend on

many factors other than evolutionary times, and do not estimate

such times. These changes can, however, be used to infer changes

in recombination in nonmodel species where sex linkage can-

not be tested genetically, or in old, highly degenerated systems,

where divergence time estimates are not possible (see Fig. 1). For

example, similarly to the phylogenetic approach described above,

analysis of sex differences in coverage revealed degeneration in

Schistosome lineages, initially in an old fully sex-linked region,

and later independently in adjacent, but different, regions in two

derived lineages (Picard et al. 2018). Clearly, recombination be-

came suppressed in several distinct events.

Similarly, accumulation of repetitive sequences compared

with a suitable “outgroup” suggests that a species has evolved a

new nonrecombining region. Such changes may be very fast once

recombination stops (Charlesworth et al. 1994). Prominent accu-

mulation of repetitive sequences is detected in recently evolved

Drosophila neo-Y chromosomes (Bachtrog 2003), grasshopper

neo-Y-linked regions (Palacios-Gimenez et al. 2020), and before

loss of genes in plants including papaya (Wang et al. 2012), and

in lizards (Matsubara et al. 2014).

Genetic Degeneration
Although the extent of genetic degeneration increases with the

time a region has been evolving under full sex linkage, theoreti-

cal modeling has identified other important factors (reviewed by

Bachtrog 2008). Degeneration rates may therefore differ greatly

between different organisms. Together with the scarcity of quan-

titative degeneration data and divergence time estimates, this con-

tributes to the seemingly confusing picture mentioned above.

Many studies describe depth of coverage ratios in the two sexes,

which merely detects regions with degenerated sequences. Few

indicate the proportion that are hemizygous in males, and the

number of XY gene pairs whose Y copy is a pseudogene, and

species with partially degenerated sex-linked regions or strata

have been little studied.

Testable predictions are nevertheless available. First, most

models predict that degeneration will be faster in sex-linked re-

gions with many genes (although a recent model predicts degen-

erate of regions with few genes; Lenormand et al. 2020). Esti-

mates of numbers of “ancestral” genes should allow tests of these

ideas. Single-gene systems, and small chromosomes that acquire

a sex-determining gene, such as microchromosomes of lizards

(Matsubara et al. 2014), might be expected to degenerate slowly,

and data from such nonmodel species should become available.

Second, degeneration has a nonlinear time-course. Genes are

predicted to initially lose functions rapidly by major effect muta-

tions, followed by slower changes, and eventually deletion of sets

of genes (Fig. 1). Data from sex-linked regions at all degeneration

stages are therefore needed. Plants, which include many species

with small or young sex-linked regions, may be less suitable than

animals, because selection in the haploid phase, including the

pollen of flowering plants, may oppose degeneration (Bergero

and Charlesworth 2011; Chibalina and Filatov 2011; Hough et al.

2014). However, considerable degeneration has been documented

in several plants (see above), so data from plants are still needed.

At all stages of degeneration of a nonrecombining region, the

rates also depend on the specific properties of the genes present

(e.g., Kramer et al. 2016; Rifkin et al. 2020; Bellott and Page

2021). A striking example is the neo-Y of D. busckii, which is

more degenerated (with 58% nonfunctional genes) than the larger

and older one in D. miranda (only 34% nonfunctional genes),

probably because the latter evolved from a “dot” chromosome,

whose genes show low selective constraints (Zhou and Bachtrog

2015).
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Figure 4. Situations where selection favors recombination suppression. (A) When the ancestral population is cosexual, females can

arise by mutations in a male-function gene (M → m), and males by a femaleness-suppressing mutation (F → SuF) in the same genome

region; the Y haplotype will then carry M and SuF. This is a “supergene” model for sex determination. (B) In a situation after a turnover

event that creates a new maleness (M) factor in an ancestral population of males and females, the M factor defines a Y haplotype,

and a sexually antagonistic maleness-enhancing factor, A, establishes a polymorphism in the same genome region. (C) In either case,

recombinants between the two haplotypes will have disfavored combinations of alleles at the two loci, and a nonrecombining region

(possibly extensive) could evolve.

The data currently available suggest that most animal strata

with Y-X or W-Z Ks values above 20% show essentially com-

plete degeneration of most ancestral genes. With Ks below this

value, 50% or more of the ancestral genes present on the X are

generally also present as likely functional copies on the Y, con-

sistent with theoretical predictions (Bachtrog 2008). However,

the Ks level and evolutionary time needed for strata to reach the

stage of major gene loss, and for de novo evolution of dosage

compensation, remain unclear. Deletions within fully sex-linked

regions, contributing to heteromorphism, probably occur only in

the late stages of degeneration, as large deletions are generally

highly deleterious (Bull 1983; Manna et al. 2012; Bazrgar et al.

2013), unless the genes are all under weak selection, or the region

has already degenerated and become a “gene desert” (Nóbrega

et al. 2004).

Why are Sex-Determining Regions
Often Nonrecombining?
I next outline different situations that can account for lack of

recombination in sex-determining regions. First, I describe two

situations that involve selection for reduced recombination in

systems with polymorphisms for a sex-determining gene and

a second gene. Collectively they can be termed “the sexually

antagonistic polymorphism hypothesis.”

APPEARANCE OF NEW SEX-DETERMINING REGIONS:

TWO-GENE SYSTEMS

A major hypothesis to explain why XY and ZW chromosome

pairs do not recombine involves selection for closer linkage be-

tween two polymorphic loci. One such situation (Fig. 4A) arises

when separate sexes evolve de novo in an ancestrally cosexual

species (for instance dioecious flowering plants that evolved from

ancestors with hermaphrodite flowers, or in monoecious species,

with each individual producing both male and female flowers).

The evolution of females and males requires two mutations. In

one model (Charlesworth and Charlesworth 1978), the two muta-

tions are in separate genes, and each mutation causes sterility of

one sex, and therefore acts antagonistically in the other sex. As

reviewed by Westergaard (1958), dioecy in plants often involves

a recessive loss-of-function male-sterility mutation that produces

the females, and a femaleness-suppressing mutation that pro-

duces males (Fig. 2A); hypothetically both mutations could oc-

cur in a single gene, although no example has yet been re-

ported. Sex-determination then resembles supergenes controlling

other polymorphisms that probably involve separate polymor-

phic mutations affecting different traits (Schwander et al. 2014;

Charlesworth 2016). Unless the second mutation acts specifically

only in one genotype of the first gene, loose linkage prevents

establishment of a polymorphism. However, if a closely linked

mutation does establish a polymorphism, tighter linkage may

evolve.
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SEXUALLY ANTAGONISTIC POLYMORPHISM NEAR A

SEX-DETERMINING GENE

Figure 2B illustrates the other plausible biological situation in-

volving a two-gene polymorphism: when a sexually antagonis-

tic (SA) polymorphism establishes in a gene closely linked to

a sex-determining gene (Kirkpatrick and Guerrero 2014), or a

turnover event involves a sex-determining gene appearing near a

SA polymorphism (Bull 1983; van Doorn and Kirkpatrick 2007).

As mentioned above, turnovers are well documented in animals

and plants. The first of these situations can also arise after de

novo evolution of separate sexes has generated a single sex-

determining gene. Figure 5 illustrates a naturally evolved case

in the persimmon, Diospyros lotus; in this plant, an active (ge-

netically dominant) maleness factor has evolved; females are the

“default” sex, developing only when the maleness gene is absent

(Akagi et al. 2014; Akagi and Charlesworth 2019).

When the heterogametic sex is achiasmate (or genome re-

gions that undergo crossovers are strongly localized in one sex),

a new sex-determining gene can define a new fully sex-linked

region. Such male-specific crossover patterns are observed in

distantly related fish, including the guppy (Bergero et al. 2019)

and the stickleback (Sardell and Kirkpatrick 2019), and in frogs

(Rodrigues et al. 2018). As reviewed recently (Charlesworth

2019), they may be commoner than is currently realized, as ge-

netic maps are rarely estimated separately for the two sexes, and

physical maps, to locate the genome regions where crossovers

occur, are available from only a few species.

CAVEATS CONCERNING THE SA POLYMORPHISM

HYPOTHESIS

Although both situations in Figure 4 generate selection for closer

linkage with the sex-determining gene, a response to this se-

lection will not happen unless heritable variation exists for re-

combination rates in the region. Second, the selection and domi-

nance coefficients under which SA polymorphisms can be main-

tained are restrictive (Fry 2010). In theoretical studies with

given selection and dominance coefficients, maintenance is most

likely in regions very closely linked to sex-determining loci (Jor-

dan and Charlesworth 2012; Kirkpatrick and Guerrero 2014).

Therefore, even though mutations with SA effects can probably

occur in many genes across the genomes of dioecious animals

and plants (Connallon and Clark 2014), the numbers of genes

in which SA polymorphisms could potentially be established are

probably small (unless a sex-determining locus evolves within a

large ancestrally nonrecombining region). The waiting time un-

til a suitable SA polymorphism becomes established will there-

fore often be long. The same applies to the model in Figure 4A

(Charlesworth and Charlesworth 1978). However, if linkage is

already close, closer linkage will evolve slowly (although an in-

Figure 5. Scenario in which mutations in two genes produce a

single gene sex-determining system, based on the situation in the

persimmon (Akagi et al. 2014). In the ancestral population, a gene

(shown as pink outlined symbols) promotes maleness by permit-

ting expression of another gene necessary for some male func-

tion, such as an anther function. A first mutation in the first gene

(pink filled symbols) causes femaleness by inhibiting this gene’s

expression. A duplication of the first gene then occurs (blue ar-

row), causing suppression of expression of either allele of the first

gene (symbolized by lines connected to the femaleness gene and

the standard symbol for inhibition of gene expression). The male

function is therefore not inhibited and these carriers develop as

males. Selection for a 1:1 sex ratio will lead to the pink allele re-

placing the ancestral allele, as shown at the bottom right of the

figure, leaving a population in which sex is controlled solely by

the presence or absence of the duplicate gene, which can thus be

termed Y-linked. The duplication could be on a different chromo-

some from the first gene (as in the persimmon), or at a different lo-

cation on the same chromosome (as shown in the figure). In either

case, it could prevent recombination in the region (as symbolized

by the blue unpaired Y-linked region in the diagram).

version preventing crossovers could nevertheless establish an ex-

tensive new Y-linked region; see Fig. 2C).

On the other hand, SA conflicts can be resolved by evolv-

ing sex differences in gene expression, and need not lead to

suppressed recombination. Vicoso et al. (2013) suggested that

this might account for the persistence of large partially sex-

linked regions in the Paleognathous birds (whereas recombina-

tion has become suppressed in the homologous regions of the ZW

pair of Neognathous birds). Sex-biased expression has not been

confirmed for emu partially sex-linked genes (Xu et al. 2019).
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Nevertheless, the idea is plausible, as conditions for expression

level changes are less stringent than for changes in linkage, be-

cause there is no requirement for a SA polymorphism to be main-

tained. Indeed, after fixation of an allele that benefits one sex, but

reduces fitness in the other, sex-specific control of its expression

is favored. Overall, therefore, chromosome regions carrying sex-

determining genes are not always expected to evolve suppressed

recombination.

Surprisingly few studies have examined the evolution of sex

limitation of expression, although expression differences are de-

tected at many loci. Genes encoding testis or egg proteins, or

anther-specific proteins in plants, inevitably have sex-specific ex-

pression, but many genes expressed in other tissues might change

from being expressed in both sexes, to having sex-biased expres-

sion if conflicts have evolved. Changes producing over- or un-

derrepresentation of genes with sex-biased expression (termed

“masculinization” and “demasculinization“ of sex chromosomes)

have been documented, and may reflect the different balance of

selection on mutations with sexually antagonistic effects (as re-

viewed, e.g., by Vicoso and Charlesworth 2006; Bachtrog et al.

2010; Mank and Wright 2012).

ALTERNATIVES TO THE SA POLYMORPHISM

HYPOTHESIS

As Figure 2 shows, the SA polymorphism hypothesis is only

one possible explanation for suppressed recombination in sex-

determining regions. I have already mentioned that a large fully

sex-linked region could evolve without any selection favoring

close linkage if a sex-determining gene arises within a region

that already had a low recombination rate. Large “recombination

deserts” are known in many plant genomes (Charlesworth 2019),

and the sex-determining locus is within such a region in a species

of the plant Rumex (Rifkin et al. 2020). Such a situation would

also facilitate the establishment of SA polymorphisms because

many genes within such a region will be closely linked to the

sex-determining locus.

SMALL NONRECOMBINING REGIONS

At least two other possibilities can create small nonrecombining

regions, again without selection for loss of recombination. An

insertion causing “micro-heteromorphism” (such as the duplica-

tion creating the nonpaired maleness factor in Fig. 5) might di-

rectly prevent pairing in the regions flanking the insertion, caus-

ing a few neighboring genes to also become fully Y- or X-linked

(pink). Single-gene systems in poplar species appear to involve a

male-determining gene that, like that in the persimmon, arose as

a duplication that silenced a female-promoting gene (Müller et al.

2020; Xue et al. 2020). Small genome regions carrying multiple

male-specific genes have been detected in two other plants, As-

paragus officinalis (Harkess et al. 2020) and the date palm (Tor-

res et al. 2018). A duplication also created a new sex-determining

gene in the fish, medaka, Oryzias latipes (Kondo et al. 2006).

These male-specific regions have no homologous counterpart

with which to pair (formally they are hemizygous fully Y-linked

regions, but distinct from the hemizygosity caused by genetic de-

generation, where genes were lost from a Y-linked region).

Finally, the observation of slight changes in the location of

the boundary between the completely and partially sex-linked

(pseudoautosomal or PAR) regions suggests that small new sex-

linked regions may arise in another manner. Two sets of genes (to-

taling only 17 X-linked genes; Sayres and Makova 2013) have be-

come completely sex-linked genes in humans, but are PAR genes

in other mammals, and the PAR boundaries in different mammals

also differ slightly (Van Laere et al. 2008; Skinner et al. 2013),

including among mouse species (White et al. 2012; Morgan et al.

2019). In plants, similar variation has been found between strains

in the plant Carica papaya (Lappin et al. 2015), and in Silene

latifolia, the boundary is not sharply defined, also suggesting a

recent change (Krasovec et al. 2020). The reasons for such shifts

are unknown, but heterochromatic regions enriched for repeti-

tive sequences that evolved after a recombination-suppressed re-

gion evolved might create micro-heteromorphism or actively in-

hibit crossing over in large fully sex-linked regions (Phillips and

Ihssen 1985; Charlesworth et al. 1994). I am not aware of any

explicit model or empirical evidence supporting such an idea, but

detailed studies of PAR boundary changes may help understand

such changes.

Conclusions: Why Do Some Sex
Chromosome Pairs Remain
Homomorphic?
I have argued that sex-determining regions need not necessarily

evolve into large, multigene nonrecombining regions, although

young sex-linked regions with small Y-X divergence values can

sometimes be extensive. Large suppressed recombination regions

that still retain many Y-or W- linked genes, particularly those

with more than a single stratum of divergence time, support the

long-accepted view that the appearance of sex-determining genes

has repeatedly triggered such changes in a remarkable diversity of

different types of organisms, leading to differentiation. However,

very recently evolved systems will initially be homomorphic (un-

less recombination is suppressed and there has been enough time

for repetitive sequence accumulation), and some such chromo-

some pairs may continue to undergo crossovers.

The evolution of heteromorphism is not expected to be

clock-like, or even a monotonic change. Systems old enough

to have undergone genetic degeneration may sometimes remain

homomorphic, as in the recently discovered case of skinks

(Kostmann et al. 2021). The frequency of such cases is not yet
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clear, nor why heteromorphism is lacking. Some such situations

may reflect technical difficulties in detecting differences in

physically small chromosomes, and others could be taxa that

(for unknown reasons) rarely undergo chromosome rearrange-

ments, or where major repetitive sequence accumulation has not

happened, or secondary loss of heteromorphism (see above).

In contrast, genetic degeneration is an inevitable decline,

starting when recombination stopped (although different degen-

eration levels cannot yet be explained in precise quantitative

terms). Although neither the proportion of species where exten-

sive reduced recombination regions evolved in response to the

presence of a sex-determining locus nor the role of selection in

such changes (the SA polymorphism hypothesis) is yet fully un-

derstood, it is already clear that the times when sex-determining

regions stopped recombining explain much of the variation in de-

generation levels.

Chromosome rearrangements such as inversions may of-

ten be involved in recombination suppression. However, their

presence does not demonstrate that suppressed recombination

has evolved, as this need not involve rearrangements, and,

rearrangements readily spread after recombination is suppressed.

Moreover, a Y- or W-linked region’s lack of recombination

in might reflect rearrangements that spread by genetic drift

in a small population (reviewed by Ironside 2010; Ponnikas

et al. 2018). This cannot explain an overrepresentation on sex

chromosomes unless some further mechanism creates a higher

rearrangement input rate on these chromosomes (such as the

remarkable apparent difference in the Dipteran blackflies; see

Adler et al. 2016). Unfortunately, comparative tests of whether

chromosomes carrying sex-determining loci have a special

tendency to subsequently evolve nonrecombining regions are

hampered by a reporting bias: sex chromosome differences are

readily detectable cytologically, without laborious surveys of all

chromosomes in multiple individuals of a species. Even work to

test whether sex chromosome rearrangement polymorphisms are

commoner than autosomal ones is only just beginning (Anderson

et al. 2020). Genome sequencing can potentially give unbiased

information for such tests. However, such data are not yet

easily obtainable in nonmodel species, as multiple individuals

of both sexes are still required to discover sex-specific variants.

Cytogenetic information can help choose suitable species for

genome sequencing targeted at testing ideas such as the neutral-

ity hypothesis, and classifying sex-determining regions into the

types suggested here. In turn, results from the different types

should lead to a better understanding of evolutionary changes in

sex-determining loci and regions, and their timings.
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