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RAPID MIXING FROM SPECTRAL INDEPENDENCE BEYOND THE BOOLEAN DOMAIN

WEIMING FENG, HENG GUO, YITONG YIN, AND CHIHAO ZHANG

Abstract. We extend the notion of spectral independence (introduced by Anari, Liu, and Oveis Gharan
[ALO20]) from the Boolean domain to general discrete domains. This property characterises distributions
with limited correlations, and implies that the corresponding Glauber dynamics is rapidly mixing.

As a concrete application, we show that Glauber dynamics for sampling proper 𝑞-colourings mixes in
polynomial-time for the family of triangle-free graphs with maximum degree Δ provided 𝑞 ≥ (𝛼∗ + 𝛿)Δ
where 𝛼∗ ≈ 1.763 is the unique solution to 𝛼∗ = exp (1/𝛼∗) and 𝛿 > 0 is any constant. This is the first
efficient algorithm for sampling proper 𝑞-colourings in this regime with possibly unbounded Δ. Our main tool
of establishing spectral independence is the recursive coupling by Goldberg, Martin, and Paterson [GMP05].

1. Introduction

Let 𝑉 be a set of variables, each of which takes values from a discrete domain of size 𝑞 ≥ 2. Sampling
from a complicated joint distribution 𝜇 over the state space [𝑞]𝑉 = {0, 1, . . . , 𝑞 − 1}𝑉 is an important yet
intricate computational task. The Markov chain Monte Carlo (MCMC) method is the most powerful and
flexible technique to design efficient samplers. We will focus on Glauber dynamics in this paper, which is
one of the simplest and most widely used Markov chains. In each step, it does the following:

(1) choose a variable uniformly at random;
(2) resample the value of the variable according to its marginal distribution conditioned on the values

of all other variables.
Denote by 𝜇𝑡 the distribution of the state after 𝑡 steps. It is usually straightforward to show that 𝜇𝑡 con-
verges to the desired distribution 𝜇 as 𝑡 tends to ∞. However, the more challenging task is to understand
how fast the distance between 𝜇𝑡 and 𝜇 converges to 0. This rate of convergence is known as the mixing
time. Many tools have been invented towards proving fast convergence, or the so-called rapid mixing
property of Glauber dynamics. We refer the reader to [LP17] for a recent monograph on this topic.

Distributions of interest often have rich and complicated landscapes, whichmakes analysing the conver-
gence rate of Glauber dynamics a long-standing challenge in theoretical computer science. To tackle this
challenge, various techniques were introduced, such as canonical paths [JS89] and path coupling [BD97].
In a more recent line of work [DK17, Opp18, KO20, AL20], an interesting new method of analysing the
mixing time emerged via the so-called “local-to-global” argument for high-dimensional expanders. This
technique has played a central role in a few recent breakthrough results, such as uniform sampling of ma-
troid bases [ALOV19, CGM19, ALOV20],1 and a tight analysis for the hardcore model [ALO20] and more
generally for anti-ferromagnetic 2-spin systems [CLV20].
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1The bases exchange walk for matroids can be viewed as Glauber dynamics as follows. Consider 𝑟 variables, where 𝑟 is the
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Of particular interest to us is the work of Anari, Liu, and Oveis Gharan [ALO20]. In order to apply
the result of Alev and Lau [AL20], they introduced spectral independence, which is the property that the
correlation matrix of 𝜇 and all of its conditional distributions have bounded maximum eigenvalues. They
focused on the 𝑞 = 2 case. Formally, for each feasible2 𝜎Λ ∈ {0, 1}Λ where Λ ⊆ 𝑉 , Anari, Liu and Oveis
Gharan defined a signed pairwise influence matrix 𝐼𝜎Λ𝜇 by 𝐼𝜎Λ𝜇 (𝑢, 𝑣) ≜ (𝜇𝜎Λ,𝑢←1

𝑣 (1) − 𝜇𝜎Λ,𝑢←0
𝑣 (1)) · 1 [𝑢 ≠ 𝑣]

for all 𝑢, 𝑣 ∈ 𝑉 \Λ, where 𝜇𝜎Λ,𝑢←𝑖
𝑣 (𝑖 = 0, 1) is the marginal distribution on 𝑣 induced from 𝜇 conditional on

the configuration on Λ fixed as 𝜎Λ and that𝑢 is fixed to 𝑖 . In [ALO20], a distribution 𝜇 over {0, 1}𝑉 is said to
be spectrally independent if for any Λ ⊆ 𝑉 , any feasible 𝜎Λ ∈ {0, 1}Λ, the maximum eigenvalue 𝜆max(𝐼𝜎Λ𝜇 )
can be upper bounded appropriately. They proved that the spectral independence property implies rapid
mixing of Glauber dynamics. Using this tool, they confirmed a long-standing conjecture: Glauber dynamics
for the Gibbs distribution of the hardcore model is rapidly mixing up to the uniqueness threshold. Later
on, Chen, Liu and Vigoda [CLV20] further extended the mixing results to general antiferromagnetic 2-spin
systems.

Despite the success in the Boolean domain, the machinery developed by Anari, Liu and Oveis Gharan
does not handle many important distributions, such as the Gibbs distribution of Potts models where 𝑞 > 2
can be any positive integer. Therefore a natural question is whether the approach developed in [ALO20,
CLV20], or more specifically the notion of spectral independence, can be generalised beyond the Boolean
domain. We note two interconnected difficulties for this task: (1) when 𝑞 > 2, there are many non-
equivalent choices for the definition of influence between two variables 𝑢, 𝑣 ∈ 𝑉 ; and (2) it is not clear
whether the elegant connection [ALO20, Theorem 3.1] between the “local” random walks of [AL20] and
the spectrum of the influence matrix still holds beyond the Boolean domain.

Our first contribution is to introduce the following generalised influence matrix. This definition allows
us to recover the part relevant to rapid mixing in the aforementioned result [ALO20, Theorem 3.1] for the
more general setting.

Definition 1.1 (Influence Matrix). Let 𝜇 be a distribution over [𝑞]𝑉 . Fix any Λ ⊆ 𝑉 and any feasible
𝜎Λ ∈ [𝑞]Λ. For any distinct 𝑢, 𝑣 ∈ 𝑉 \ Λ, we define the (pairwise) influence of 𝑢 on 𝑣 by

Ψ𝜎Λ
𝜇 (𝑢, 𝑣) ≜ max

𝑖, 𝑗 ∈Ω𝜎Λ
𝑢

𝑑TV
(
𝜇𝜎Λ,𝑢←𝑖
𝑣 , 𝜇𝜎Λ,𝑢←𝑗

𝑣

)
,(1)

where Ω𝜎Λ
𝑢 ≜

{
𝑖 ∈ [𝑞] | 𝜇𝜎Λ𝑢 (𝑖) > 0

}
denotes the set of possible values of 𝑢 given condition 𝜎Λ, 𝑑TV (·, ·)

denotes the total variation distance between two distributions, and for 𝑐 = 𝑖 or 𝑗 , 𝜇𝜎Λ,𝑢←𝑐
𝑣 is the marginal

distribution on 𝑣 induced from 𝜇 conditional on the configuration on Λ fixed as 𝜎Λ and that 𝑢 is fixed to 𝑐 .
Furthermore, let Ψ𝜎Λ

𝜇 (𝑢, 𝑣) ≜ 0 for 𝑢 = 𝑣 and write Ψ𝜎Λ
𝜇 for the (pairwise) influence matrix whose entries

are given by Ψ𝜎Λ
𝜇 (𝑢, 𝑣).

In our definition, Ψ𝜎Λ
𝜇 (𝑢, 𝑣) is the maximum influence on 𝑣 caused by a single disagreement on 𝑢 condi-

tional on 𝜎Λ. The entries of Ψ𝜎Λ
𝜇 are total variation distances and are therefore non-negative. We remark

that our definition is not identical to the original influence matrix 𝐼𝜎Λ𝜇 in [ALO20] even in the Boolean
domain since the latter is signed. Nevertheless, if 𝑞 = 2, it holds that Ψ𝜎Λ

𝜇 (𝑢, 𝑣) =
��𝐼𝜎Λ𝜇 (𝑢, 𝑣)��.

With the definition of the influencematrix, we define spectral independence for general𝑞 ≥ 1 as follows.

Definition 1.2 (Spectral Independence). We say a distribution 𝜇 over [𝑞]𝑉 , where 𝑛 = |𝑉 |, is (𝐶, 𝜂)-
spectrally independent, if every 0 ≤ 𝑘 ≤ 𝑛 − 2, Λ ⊆ 𝑉 of size 𝑘 and any feasible 𝜎Λ ∈ [𝑞]Λ, the spectral
radius 𝜌

(
Ψ𝜎Λ
𝜇

)
of the influence matrix Ψ𝜎Λ

𝜇 satisfies

𝜌
(
Ψ𝜎Λ
𝜇

)
≤ 𝐶 and

𝜌
(
Ψ𝜎Λ
𝜇

)
𝑛 − 𝑘 − 1 ≤ 𝜂.

2A configuration 𝜎 ∈ {0, 1}𝑉 is feasible if 𝜇 (𝜎) > 0. A partial configuration 𝜎Λ ⊆ {0, 1}Λ for Λ ⊆ 𝑉 is feasible if it can be
extended to a feasible configuration.
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Consider the Glauber dynamics for a general distribution 𝜇 and let 𝑃Glauber ∈ ℝΩ×Ω
≥0 be its transition

matrix. It is well-known that the Glauber dynamics converges to stationary distribution 𝜇 when 𝑃Glauber
is irreducible, see e.g. [LP17].

The rate of convergence of Glauber dynamics is captured by the mixing time, defined as:
∀ 0 < 𝜀 < 1, 𝑇mix(𝜀) = max

𝒙0∈Ω
min

{
𝑡 | 𝑑TV

(
𝑃𝑡Glauber(𝒙0, ·), 𝜇

)
≤ 𝜀

}
.

Ourmain theorem states that the Glauber dynamics for 𝜇 is rapidly mixing if 𝜇 is spectrally independent.

Theorem 1.3. Let 𝜇 be a distribution over [𝑞]𝑉 . If 𝜇 is (𝐶, 𝜂)-spectrally independent for𝐶 ≥ 0 and 0 ≤ 𝜂 < 1,
then the Glauber dynamics for 𝜇 has mixing time

𝑇mix(𝜀) ≤
𝑛1+2𝐶

(1 − 𝜂)2+2𝐶

(
log

1
𝜀𝜇min

)
,

where 𝑛 = |𝑉 | and 𝜇min ≜ min{𝜇 (𝜎) | 𝜎 ∈ [𝑞]𝑉 ∧ 𝜇 (𝜎) > 0}.
This generalises a similar result by Anari, Liu and Oveis Gharan [ALO20] for 𝑞 = 2. Their proof is

based on a linear algebra argument which completely characterises the spectrum of their influence matrix
in terms of the spectrum of the local random walks, so that the result of Alev and Lau [AL20] applies.
However, it is not clear whether a similar argument exists for general 𝑞. Instead our main contribution is
a new coupling based argument to connect spectral independence to rapid mixing of Glauber dynamics,
which holds for any 𝑞 ∈ ℕ. To be more specific, we also utilises the result of Alev and Lau [AL20]. We
show that the second largest eigenvalue of the local random walk can be bounded in terms of the spectral
radius of our influence matrix (see Lemma 3.6). In order to relate these two quantities, we employed a
coupling analysis reminiscent of the work of Hayes [Hay06]. See Section 3 for an overview of our proof.

To apply our result, one needs to verify the spectral independence property, which is equivalent to
bound the spectral radius of an influence matrix. This is not an easy task in general. A more tractable way
is to bound the induced 1-norm or the induced ∞-norm of the influence matrix, which are upper bounds
of its spectral radius.

Corollary 1.4. Let 𝜇 be a distribution over [𝑞]𝑉 , where 𝑛 = |𝑉 |. If there exist two constants 𝐶 ≥ 0 and
0 ≤ 𝜂 < 1 such that for every 0 ≤ 𝑘 ≤ 𝑛 − 2, Λ ⊆ 𝑉 of size 𝑘 and any feasible 𝜎Λ ∈ [𝑞]Λ, the influence matrix
Ψ𝜎Λ
𝜇 satisfies one of following two conditions:
• bounded all-to-one influence:Ψ𝜎Λ

𝜇


1
≜ max

𝑣∈𝑉 \Λ

∑
𝑢∈𝑉 \Λ

Ψ𝜎Λ
𝜇 (𝑢, 𝑣) ≤ min {𝐶, 𝜂 (𝑛 − 𝑘 − 1)}

• bounded one-to-all influence:Ψ𝜎Λ
𝜇


∞
≜ max

𝑢∈𝑉 \Λ

∑
𝑣∈𝑉 \Λ

Ψ𝜎Λ
𝜇 (𝑢, 𝑣) ≤ min {𝐶, 𝜂 (𝑛 − 𝑘 − 1)}

then the Glauber dynamics for 𝜇 has mixing time

𝑇mix(𝜀) ≤
𝑛1+2𝐶

(1 − 𝜂)2+2𝐶

(
log

1
𝜀𝜇min

)
,

where 𝜇min ≜ min{𝜇 (𝜎) | 𝜎 ∈ [𝑞]𝑉 ∧ 𝜇 (𝜎) > 0}.
The conditions in Corollary 1.4 have been previously established for the hardcoremodel [ALO20] (all-to-

one influence) and more generally for anti-ferromagnetic 2-spin systems [CLV20] (one-to-all influence).3
Such conditions are quite natural for Gibbs distributions induced by 𝑞-spin systems. Roughly speaking, a

3Although in [ALO20] and [CLV20], the corresponding conditions were established for the signed influence matrix 𝐼𝜎Λ𝜇 , they
are still applicable to our Corollary 1.4 since ‖Ψ𝜎Λ

𝜇 ‖1 = ‖𝐼𝜎Λ𝜇 ‖1 and ‖Ψ𝜎Λ
𝜇 ‖∞ = ‖𝐼𝜎Λ𝜇 ‖∞ when 𝑞 = 2.
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𝑞-spin system is defined on a graph𝐺 = (𝑉 , 𝐸), where vertices represent random variables that take values
in [𝑞], and edges model pairwise interactions. Both “bounded all-to-one influence” and “bounded one-to-
all influence” can be viewed as some forms of the spatial mixing or correlation decay property of the 𝑞-spin
systems. This property roughly says that the influence between two vertices decays rapidly with respect
to their distance in the graph 𝐺 and has been widely exploited to design efficient samplers for the Gibbs
distribution. For antiferromagnetic 2-spin systems, the rapid mixing regimes obtained by [ALO20, CLV20]
match the best known correlation decay results [Wei06, LLY13, GL18, SS20]. We show that our notion of
spectral independence can also be used to obtain efficient sampling algorithms up to known correlation
decay regime for multi-spin systems [GMP05, GKM15].

1.1. Application to spin systems. As a concrete application, we consider an important multi-spin system,
i.e. proper graph 𝑞-colourings, or equivalently the anti-ferromagnetic Potts model with the temperature
going to negative infinity. A graph𝑞-colouring instance is specified by (𝐺, [𝑞]), where [𝑞] = {0, 1, . . . , 𝑞−1}
is a set of colours and 𝐺 = (𝑉 , 𝐸) is a simple undirected graph. A proper colouring 𝑋 ∈ [𝑞]𝑉 assigns each
vertex 𝑣 ∈ 𝑉 a colour 𝑋𝑣 ∈ [𝑞] such that 𝑋𝑢 ≠ 𝑋𝑣 for all {𝑢, 𝑣} ∈ 𝐸. Let Ω denote the set of all proper
colourings and 𝜇 denote the uniform distribution over Ω. In this concrete setting, the Glauber dynamics
works as follows. The chain starts from an arbitrary proper colouring 𝑋 ∈ Ω, and in each step, it does:

(1) pick a vertex 𝑣 ∈ 𝑉 uniformly at random;
(2) update 𝑋𝑣 by choosing a colour from [𝑞] \ {𝑋𝑢 | {𝑣,𝑢} ∈ 𝐸} uniformly at random.
When 𝑞 ≥ Δ + 2, the chain converges to 𝜇 for any initial colouring 𝑋 . However, it is a notorious open

problem that whether the condition 𝑞 ≥ Δ + 2 also guarantees rapid mixing. We make some progress
towards this problem by proving the following result.

Let 𝛼∗ ≈ 1.763 . . . be the positive root of the equation 𝑥𝑥 = e. Using Theorem 1.3, we obtain the
following.

Theorem 1.5. Let 𝛿 > 0 be a constant. For any graph colouring instance (𝐺, [𝑞]) where𝐺 is triangle-free and
𝑞 ≥ (𝛼∗ + 𝛿)Δ, the Glauber dynamics on (𝐺, [𝑞]) has mixing time

𝑇mix(𝜀) ≤
(
9e5𝑛

)2+9/𝛿 log (𝑞
𝜀

)
,

where 𝑛 is the number of vertices in 𝐺 and Δ ≥ 3 is the maximum degree of 𝐺 .

While Theorem 1.5 is stated for graph 𝑞-colouring instances, the mixing time upper bound holds for the
more general list colouring problem (see Theorem 6.1). In fact, the same rapid mixing bound holds as
long as the marginal probabilities are always appropriately upper bounded. This is formally stated by
Condition 6.2 and Theorem 6.3.

It is instructive to compare Theorem 1.5 with the vast body of literature on this problem. The study was
initiated by the pioneering work of Jerrum [Jer95] and of Salas and Sokal [SS97], who showed 𝑂 (𝑛 log𝑛)
mixing time if 𝑞 ≥ (2 + 𝛿)Δ. So far, in general graphs, the best result is the 𝑂 (𝑛2) mixing time when 𝑞 ≥
( 116 −𝜀0)Δ for some absolute small constant 𝜀0 > 0 [Vig00, CDM+19]. For restricted families of graphs, there
is a long line of work that studied the mixing time of Glauber dynamics under various conditions [DF01,
Hay03, HV03, GMP05, HV06, Mol04, Hay13, DFHV13]. A few results most relevant to Theorem 1.5 are
listed in Table 1. The triangle-free condition, or more generally the requirement on the girth of the graph,
has played an important role to improve the dependency of 𝑞 and Δ. For a more complete picture, we refer
the reader to the survey [FV07].

In addition to algorithms based on Glauber dynamics mentioned above, using the reduction from sam-
pling to counting [JVV86], one can obtain sampling algorithms from approximate counting algorithms [GK12,
LY13, LSS19]. The current best FPTAS for counting 𝑞-colourings is given by Liu, Sinclair and Srivas-
tava [LSS19]. The algorithm has running time 𝑛𝑓 (Δ) where 𝑓 (Δ) = exp(poly(Δ)) in (1) general graphs
with 𝑞 ≥ 2Δ; (2) triangle-free graphs with 𝑞 ≥ (𝛼∗ + 𝛿)Δ + 𝛽 (𝛿). Therefore, their algorithm does not run
in polynomial-time if Δ = 𝜔 (1).
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Regime Girth Other requirement Mixing time 𝑇mix( 14e )

[GMP05] 𝑞 > 𝛼∗Δ ≥ 4
Δ = 𝑂 (1) and
neighbourhood

amenable
𝑂 (𝑛2)

[HV06] 𝑞 ≥ (𝛼∗ + 𝛿)Δ ≥ 4 Δ = Ω(log𝑛) 𝑂 (𝑛𝛿 log𝑛)

[DFHV13] 𝑞 ≥ (𝛼∗ + 𝛿)Δ ≥ 5 Δ ≥ Δ0(𝛿) 𝑂 ( 𝑛𝛿 log𝑛)

This work 𝑞 ≥ (𝛼∗ + 𝛿)Δ ≥ 4 – 𝑂 ((9e5𝑛)2+9/𝛿 log𝑞)
Table 1. Mixing time results for sampling proper graph 𝑞-colourings.

Compared with previous results, we achieved a 𝑞 ≥ (𝛼∗ + 𝛿)Δ bound in triangle-free graphs without
any additional requirements. The condition in Theorem 1.5 matches the best known strong spatial mixing
regime for graph proper 𝑞-colourings [GMP05, GKM15].

Theorem 1.5 is proved via verifying the sufficient condition in Corollary 1.4. In fact, we apply the
recursive coupling technique introduced by Goldberg, Martin and Paterson [GMP05] to bound the total
influence caused by one vertex (the “one-to-all infleunce”), namely to bound the induced ∞-norm of the
influence matrix Ψ𝜎Λ

𝜇 , while the original approach in [GMP05] only provides bounds for “one-to-one in-
fluence”. Comparing to the traditional path coupling analysis, the power of the spectral independence
approach lies in the fact that we can avoid considering the worst case scenario for the influence matrix in
Definition 1.1. For path coupling, to avoid the worst case analysis one needs to establish so-called local
uniformity [Hay13], which is difficult and causes various technical conditions in the results listed above.
In contrast, the method based on the spectral independence bypasses this obstacle.

The downside of our result, similar to those of [ALO20, CLV20], is that the running time has a high
exponent depending on how close the parameters are to the threshold. Nonetheless, unlike the algorithm
of [LSS19], our exponent remains a constant even if Δ = 𝜔 (1), as long as we are below the threshold.

Finally, we remark that our refinement of recursive coupling argument might find applications in other
problems. Armed with our notion of spectral independence, we essentially proved that the success of
recursive coupling implies rapid mixing of Glauber dynamics for any graph. This form of algorithmic
implication was only known for special families of graphs like amenable graphs [GMP05] and planar
graphs [YZ13] before.

2. Preliminaries

2.1. Linear algebra. Let 𝑣 ∈ ℂ𝑛 be an 𝑛-dimensional vector. For any integer 𝑝 ≥ 1, the ℓ𝑝-norm of 𝑣 is
defined by ‖𝑣 ‖𝑝 = (∑𝑛

𝑖=1 |𝑣𝑖 |𝑝)1/𝑝 . Let 𝐴 ∈ ℂ𝑛×𝑛 be a matrix. For any integer 𝑝 ≥ 1, the induced ℓ𝑝-norm
of 𝐴 is defined by ‖𝐴‖𝑝 = sup𝑣∈ℂ𝑛 :‖𝑣 ‖𝑝=1 ‖𝐴𝑣 ‖𝑝 . Let 𝜆1, 𝜆2, . . . 𝜆𝑛 ∈ ℂ be the eigenvalues of 𝐴. The spectral
radius of 𝐴 is defined by 𝜌 (𝐴) ≜ max1≤𝑖≤𝑛 |𝜆𝑖 |. The following relation is well-known.

Proposition 2.1 ([HJ12, Theorem 5.6.9. & Corollary 5.6.14]). Let 𝐴 ∈ ℂ𝑛×𝑛 be a matrix. For any integer
𝑝 ≥ 1, it holds that 𝜌 (𝐴) ≤ ‖𝐴‖𝑝 and lim𝑘→∞ ‖𝐴𝑘 ‖1/𝑘𝑝 = 𝜌 (𝐴).

2.2. Total variation distance and coupling. Let 𝜇 and 𝜈 be two distributions over state space Ω. The total
variation distance between 𝜇 and 𝜈 is defined by

𝑑TV (𝜇, 𝜈) ≜
1
2

∑
𝒙∈Ω
|𝜇 (𝒙) − 𝜈 (𝒙) | .

A coupling of 𝜇 and 𝜈 is a joint distribution (𝑋,𝑌 ) ∈ Ω × Ω such that the marginal distribution of 𝑋 is 𝜇
and the marginal distribution of 𝑌 is 𝜈 . The following result is the well-known coupling inequality.
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Proposition 2.2 ([LP17, Proposition 4.7]). Let 𝜇 and 𝜈 be two distributions over state space Ω. For any cou-
pling (𝑋,𝑌 ) of 𝜇 and 𝜈 , it holds that

𝑑TV (𝜇, 𝜈) ≤ Pr [𝑋 ≠ 𝑌 ] .

Furthermore, there exists an optimal coupling (𝑋,𝑌 ) such that 𝑑TV (𝜇, 𝜈) = Pr [𝑋 ≠ 𝑌 ].

2.3. Markov chain and mixing time. Let Ω be a finite set which is the state space. A Markov chain
(𝑋𝑡 )𝑡 ≥0 on Ω is specified by transition matrix 𝑃 ∈ ℝΩ×Ω

≥0 . We often identify the transition matrix with the
corresponding Markov chain. The Markov chain is irreducible if for any 𝑥,𝑦 ∈ Ω, there is a 𝑡 ≥ 0 such that
𝑃𝑡 (𝑥,𝑦) > 0. The Markov chain is aperiodic if for any 𝑥 ∈ Ω, gcd{𝑡 > 0 | 𝑃𝑡 (𝑥, 𝑥) > 0} = 1. A distribution
𝜋 (viewed as a row vector) on Ω is stationary with respect to a Markov chain 𝑃 if 𝜋𝑃 = 𝜋 . If a Markov chain
𝑃 is irreducible and aperiodic, then 𝑃 has a unique stationary distribution. A Markov chain is reversible
with respect to a distribution 𝜋 if the following detailed balance condition holds

∀𝑥,𝑦 ∈ Ω, 𝜋 (𝑥)𝑃 (𝑥,𝑦) = 𝜋 (𝑦)𝑃 (𝑦, 𝑥),(2)

which implies that 𝜋 is a stationary distribution of 𝑃 . All Markov chains considered in this paper are
reversible. In the following we state a few well-known spectral properties of reversible Markov chains.

Proposition 2.3 ([LP17, Lemma 12.2]). Let Ω be a finite set with |Ω | = 𝑛. Let 𝜋 be a distribution with support
Ω. Let 𝑃 ∈ ℝΩ×Ω

≥0 be the transition matrix of a Markov chain that is reversible with respect to 𝜋 . Then
• 𝑃 has 𝑛 real eigenvalues 1 = 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ . . . 𝜆𝑛 ≥ −1;
• there exist real eigenvectors 𝑓1, 𝑓2, . . . , 𝑓𝑛 ∈ ℝΩ such that 𝑃 𝑓𝑖 = 𝜆𝑖 𝑓𝑖 for all 1 ≤ 𝑖 ≤ 𝑛, 𝑓1 = ®1 is a
one-vector, and for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛,∑

𝑥 ∈Ω
𝑓𝑖 (𝑥) 𝑓𝑗 (𝑥)𝜋 (𝑥) = 1[𝑖 = 𝑗] .

We remark that Proposition 2.3 holds if 𝑃 is reversible to 𝜋 and the support of 𝜋 is Ω. It does not require
𝑃 to be irreducible. The following proposition bounds the mixing time of Markov chain.

Proposition 2.4 ([LP17, Theorem 12.4]). Let Ω be a state space with |Ω | = 𝑛 ≥ 2. Let 𝜋 be a distribution
with support Ω. Let 𝑃 ∈ ℝΩ×Ω

≥0 be the transition matrix of a Markov chain that is reversible with respect to 𝜋 .
Let 1 = 𝜆1 ≤ 𝜆2 ≤ . . . 𝜆𝑛 ≤ −1 be the real eigenvalues of 𝑃 . Define the the absolute spectral gap

𝛾★ ≜ 1 − 𝜆★ = 1 −max{|𝜆𝑖 | | 2 ≤ 𝑖 ≤ 𝑛}.

Let 𝜋min ≜ min𝑥 ∈Ω 𝜋 (𝑥). If 𝛾★ > 0, then it holds that

∀ 0 < 𝜀 < 1, 𝑇mix(𝜀) ≤
1
𝛾★

(
log

1
𝜀𝜋min

)
,

where 𝑇mix(𝜀) ≜ max𝑥 ∈Ω min{𝑡 | 𝑑TV
(
𝑃𝑡 (𝑥, ·), 𝜋

)
≤ 𝜀} denotes the mixing time of Markov chain.

Note that the reversible chain 𝑃 is irreducible and aperiodic if the absolute spectral gap 𝛾★ > 0. Proposi-
tion 2.4 says that 𝑃 converges to the unique stationary distribution 𝜋 rapidly if 𝛾★ is bounded away from 0.
See [LP17, Theorem 12.4] for a formal proof of Proposition 2.4.

We will use the following proposition to bound the absolute value of the second largest eigenvalue of
𝑃 . Similar results appeared in [LP17, Theorem 13.1] and [Che98].

Proposition 2.5. Let Ω be a state space with 𝑛 = |Ω | ≥ 2. Let 𝜋 be a distribution with support Ω. Let
𝑃 ∈ ℝΩ×Ω

≥0 be the transition matrix of a Markov chain that is reversible with respect to 𝜋 . Then the second
largest eigenvalue of 𝑃 satisfies

∀𝑡 ≥ 1, |𝜆2 |𝑡 ≤ 𝑑 (𝑡) ≜ max
𝑥,𝑦∈Ω

𝑑TV
(
𝑃𝑡 (𝑥, ·), 𝑃𝑡 (𝑦, ·)

)
.
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Proof. Define a distance function 𝛿 on Ω as:
∀𝑥,𝑦 ∈ Ω : 𝛿 (𝑥,𝑦) ≜ 1[𝑥 ≠ 𝑦] .

For every function 𝑓 : Ω → ℝ, define its Lipschitz constant with respect to 𝛿 as

Lip(𝑓 ) ≜ max
𝑥,𝑦∈Ω:𝑥≠𝑦

|𝑓 (𝑥) − 𝑓 (𝑦) |
𝛿 (𝑥,𝑦) .

Fix a pair 𝑥,𝑦 ∈ Ω, we use C(𝑥,𝑦) to denote the optimal coupling between 𝑃𝑡 (𝑥, ·) and 𝑃𝑡 (𝑦, ·). Note that
𝑃𝑡 𝑓 (𝑥) = E𝑋∼𝑃𝑡 (𝑥, ·) [𝑓 (𝑋 )] .

Then for any 𝑡 ≥ 1, any function 𝑓 : Ω → ℝ and any 𝑥,𝑦 ∈ Ω,��𝑃𝑡 𝑓 (𝑥) − 𝑃𝑡 𝑓 (𝑦)�� = ��E(𝑋,𝑌 )∼C(𝑥,𝑦) [𝑓 (𝑋 ) − 𝑓 (𝑌 )]
�� ≤ E(𝑋,𝑌 )∼C(𝑥,𝑦) [|𝑓 (𝑋 ) − 𝑓 (𝑌 ) |] ,

where the equality holds due to linearity of expectation. Then for any 𝑡 ≥ 1, any 𝑓 and any 𝑥,𝑦,��𝑃𝑡 𝑓 (𝑥) − 𝑃𝑡 𝑓 (𝑦)�� ≤ Lip(𝑓 )Pr(𝑋,𝑌 )∼C(𝑥,𝑦) [𝑋 ≠ 𝑌 ] = Lip(𝑓 )𝑑TV
(
𝑃𝑡 (𝑥, ·), 𝑃𝑡 (𝑦, ·)

)
≤ Lip(𝑓 )𝑑 (𝑡) .

Note that the inequality above holds for all 𝑥,𝑦 ∈ Ω. It implies that Lip(𝑃𝑡 𝑓 ) ≤ Lip(𝑓 )𝑑 (𝑡) .
Recall |Ω | = 𝑛. Let 𝑓1, 𝑓2, . . . , 𝑓𝑛 ∈ ℝΩ be the eigenvectors in Proposition 2.3, where 𝑓1 = ®1. Let 𝑓 = 𝑓2 be

the eigenvector of 𝜆2, we have
|𝜆2 |𝑡 · Lip(𝑓2) = Lip(𝜆𝑡2 𝑓2) = Lip(𝑃𝑡 𝑓2) ≤ Lip(𝑓2)𝑑 (𝑡).

Note that 𝑓2 ≠ ®0. Since 𝑓1 = ®1 is a constant vector and
∑

𝑥 ∈Ω 𝑓1(𝑥)𝜋 (𝑥) 𝑓2(𝑥) =
∑

𝑥 ∈Ω 𝜋 (𝑥) 𝑓2(𝑥) = 0, vector
𝑓2 can not be a constant vector. Thus, Lip(𝑓2) > 0, we have |𝜆2 |𝑡 ≤ 𝑑 (𝑡) for all 𝑡 ≥ 1. □

One powerful technique to bound 𝑑TV
(
𝑃𝑡 (𝑥, ·), 𝑃𝑡 (𝑦, ·)

)
is the coupling of Markov chain. A coupling of

𝑃 is a joint random process (𝑋𝑡 , 𝑌𝑡 )𝑡 ≥0 such that (𝑋𝑡 )𝑡 ≥0 and (𝑌𝑡 )𝑡 ≥0 individually follow the transition rule
of 𝑃 , and if 𝑋𝑘 = 𝑌𝑘 , then 𝑋𝑡 = 𝑌𝑡 for all 𝑡 ≥ 𝑘 . The following result follows from Proposition 2.2.

Proposition 2.6. Let 𝑃 be a Markov chain on state space Ω with a stationary distribution 𝜋 . Let 𝑋 ∈ Ω be a
state. Let (𝑋𝑡 , 𝑌𝑡 )𝑡 ≥0 be a coupling of Markov chain such that 𝑋0 = 𝑥0 and 𝑌0 = 𝑦0. Then

∀𝑡 ≥ 1, 𝑑TV
(
𝑃𝑡 (𝑥0, ·), 𝑃𝑡 (𝑦0, ·)

)
≤ Pr [𝑋𝑡 ≠ 𝑌𝑡 ] .

3. Proof overview

In this section, we overview our proof of the main theorem (Theorem 1.3). We actually prove a slightly
more general result. We first introduce the following definition of (𝜂0, 𝜂1, . . . , 𝜂𝑛−2)-spectral independence,
which is analogous to a similar notion in [ALO20].

Definition 3.1 ((𝜂0, 𝜂1, . . . , 𝜂𝑛−2)-Spectral Independence). We say a distribution 𝜇 over [𝑞]𝑉 with |𝑉 | = 𝑛
is (𝜂0, 𝜂1, . . . , 𝜂𝑛−2)-spectrally independent, if for every 0 ≤ 𝑘 ≤ 𝑛 − 2, Λ ⊆ 𝑉 of size 𝑘 and any feasible
𝜎Λ ∈ [𝑞]Λ, the spectral radius 𝜌

(
Ψ𝜎Λ
𝜇

)
of influence matrix Ψ𝜎Λ

𝜇 satisfies

𝜌
(
Ψ𝜎Λ
𝜇

)
≤ 𝜂𝑘 .

Since Glauber dynamics is reversible with respect to 𝜇, its transition matrix has real eigenvalues. The
following theorem gives a lower bound on its spectral gap when 𝜇 is spectrally independent.

Theorem 3.2. Let 𝜇 be a distribution over [𝑞]𝑉 , where 𝑛 = |𝑉 |. Let 𝜂0, 𝜂1, . . . , 𝜂𝑛−2 be a sequence where
0 ≤ 𝜂𝑘 < 𝑛 − 𝑘 − 1 for all 0 ≤ 𝑘 ≤ 𝑛 − 2. If 𝜇 is (𝜂0, 𝜂1, . . . , 𝜂𝑛−2)-spectrally independent, then the Glauber
dynamics for 𝜇 has spectral gap

1 − 𝜆2(𝑃Glauber) ≥
1
𝑛

𝑛−2∏
𝑘=0

(
1 − 𝜂𝑘

𝑛 − 𝑘 − 1
)
,

where 𝜆2(𝑃Glauber) is the second largest eigenvalue of transition matrix 𝑃Glauber.
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We prove this theorem on general domain of size 𝑞 ≥ 2. The main theorem (Theorem 1.3) is a corollary
of Theorem 3.2, because if 𝜇 is (𝐶, 𝜂)-spectrally independent, then 𝜇 is (𝜂0, 𝜂1, . . . , 𝜂𝑛−2)-spectrally inde-
pendent with 𝜂𝑘 = min {𝐶, 𝜂 (𝑛 − 𝑘 − 1)}. We first give a proof overview of Theorem 3.2, then prove main
theorem (Theorem 1.3) via Theorem 3.2 in Section 3.3.

3.1. Glauber dynamics and local random walks. To prove Theorem 3.2, we first interpret the Glauber
dynamics on [𝑞]𝑉 as a down-up random walk on simplicial complexes. Then we apply the local-to-global
theorem due to Alev and Lau [AL20] to reduce the task of analysing Glauber dynamics (a global random
walk) to the task of analysing local random walks. Similar routines have been applied in several previous
works [ALOV19, CGM19, ALO20, CLV20].

Definition 3.3 (Local Random Walk). For any subset Λ ⊆ 𝑉 , any feasible partial configuration 𝜎Λ ∈ [𝑞]Λ,
define local random walk 𝑃𝜎Λ on𝑈𝜎Λ = {(𝑢, 𝑐) ∈ Λ × [𝑞] | 𝜇𝜎Λ𝑢 (𝑐) > 0} as

∀(𝑢, 𝑖), (𝑣, 𝑗) ∈ 𝑈𝜎Λ, 𝑃𝜎Λ ((𝑢, 𝑖), (𝑣, 𝑗)) ≜
1 [𝑢 ≠ 𝑣]
|𝑉 | − |Λ| − 1𝜇

𝜎Λ,𝑢←𝑖
𝑣 ( 𝑗),(3)

where Λ = 𝑉 \ Λ, and 𝜇𝜎Λ,𝑢←𝑖
𝑣 is the marginal distribution on 𝑣 induced from 𝜇 conditional on the config-

uration on Λ fixed as 𝜎Λ and that 𝑢 is fixed to 𝑖 .

Lemma 3.5 below shows that the second largest eigenvalue 𝜆2(𝑃Glauber) of Glauber dynamics is small as
long as the second largest eigenvalues 𝜆2(𝑃𝜎Λ)4 of local random walks are all small.

Condition 3.4. Let 𝜇 be a distribution over [𝑞]𝑉 , where 𝑛 = |𝑉 |. There exists a sequence 𝛼0, 𝛼1, . . . , 𝛼𝑛−2 such
that for every 0 ≤ 𝑘 ≤ 𝑛 − 2, Λ ⊆ 𝑉 of size 𝑘 and any feasible 𝜎Λ ∈ [𝑞]Λ, the transition matrix 𝑃𝜎Λ satisfies

𝜆2(𝑃𝜎Λ) ≤ 𝛼𝑘 ,

where 𝜆2(𝑃𝜎Λ) is the second largest eigenvalue of the matrix 𝑃𝜎Λ .

Lemma 3.5 ([AL20]). Let 𝜇 be a distribution over [𝑞]𝑉 , where 𝑛 = |𝑉 |. Let 𝛼0, 𝛼1, . . . , 𝛼𝑛−2 be a sequence
where 0 ≤ 𝛼𝑖 < 1 for all 0 ≤ 𝑖 ≤ 𝑛 − 2. If 𝜇 satisfies Condition 3.4 with 𝛼0, 𝛼1, . . . , 𝛼𝑛−2, then the Glauber
dynamics for 𝜇 has spectral gap

1 − 𝜆2(𝑃Glauber) ≥
1
𝑛

𝑛−2∏
𝑘=0

(1 − 𝛼𝑘 ),

where 𝜆2(𝑃Glauber) is the second largest eigenvalue of transition matrix 𝑃Glauber.

Lemma 3.5 relates Glauber dynamics to local random walks, which provides a powerful tool to analyse
Glauber dynamics, because the state space of local random walks are exponentially smaller compared to
that of Glauber dynamics. Lemma 3.5 (proved in Section 4) is an easy corollary of the main result in [AL20].

3.2. Analysis of local random walks. Our remaining task is to bound the second largest eigenvalues of
local random walks.

Our main technical contribution is the following lemma (proved in Section 5), which states that for
distribution 𝜇 over [𝑞]𝑉 with general domain size 𝑞 ≥ 2, these second largest eigenvalues of local random
walks are always small if 𝜇 is spectrally independent.

Lemma 3.6. Let 𝜇 be a distribution over [𝑞]𝑉 , where 𝑛 = |𝑉 |. If 𝜇 is (𝜂0, 𝜂1, . . . , 𝜂𝑛−2)-spectrally independent,
then 𝜇 satisfies Condition 3.4 with a sequence 𝛼0, 𝛼1, . . . , 𝛼𝑛−2 such that

∀0 ≤ 𝑘 ≤ 𝑛 − 2 : 𝛼𝑘 =
𝜂𝑘

𝑛 − 𝑘 − 1 .

4Local random walk 𝑃𝜎Λ has real eigenvalues because 𝑃𝜎Λ is reversible. See Section 4 for more details.
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For the special case 𝑞 = 2, Anari, Liu and Oveis Gharan [ALO20] proved a similar version of Lemma 3.6.
They used a linear algebra argument to identify the second largest eigenvalue of the local random walk
with the largest eigenvalue of the signed influence matrix. In such analysis, some key identities crucially
rely on that 𝑞 = 2, which makes it hard to extend it to general domains of size 𝑞 > 2.

Alternatively, we propose a new coupling based argument to show the rapid mixing of the local random
walk 𝑃𝜎Λ , assuming the spectral independence, which implies an upper bound of 𝜆2(𝑃𝜎Λ). Specifically,
we construct a coupling (𝑋𝑡 , 𝑌𝑡 )𝑡 ≥0 for each local random walk, and show that the two chains coalesce
(namely 𝑋𝑡 = 𝑌𝑡 ) quickly if 𝜇 is spectrally independent. Then we use Proposition 2.5 and Proposition 2.6
to bound the second largest eigenvalue. Our coupling argument is simple and combinatorial, reminiscent
of an analysis by Hayes [Hay06]. And it has the advantage of being applicable to joint distributions with
general domain sizes. Note that here we are only giving an upper bound for 𝜆2(𝑃𝜎Λ), which is sufficient for
our purpose, rather than establishing the equality as in [ALO20] for the case with 𝑞 = 2. Detailed analysis
is given in Section 5.

3.3. Proof of main theorem. It is straightforward to verify that Theorem 3.2 is a corollary of Lemma 3.5
and Lemma 3.6. We now use Theorem 3.2 to prove the main theorem (Theorem 1.3).

Proof of Theorem 1.3. Since 𝜇 is (𝐶, 𝜂)-spectrally independent (Definition 1.2) for 𝐶 ≥ 0 and 1 ≤ 𝜂 < 1, by
Definition 3.1, 𝜇 is (𝜂0, 𝜂1, . . . , 𝜂𝑛−2)-spectrally independent for

𝜂𝑘 = min {𝐶, 𝜂 (𝑛 − 𝑘 − 1)} .

By Theorem 3.2, we have

1 − 𝜆2(𝑃Glauber) ≥
1
𝑛

𝑛−2∏
𝑘=0

(
1 − 𝜂𝑘

𝑛 − 𝑘 − 1
)
≥ 1

𝑛

𝑛−2∏
𝑘=0

(
1 −min

{
𝐶

𝑛 − 𝑘 − 1 , 𝜂
})

=
1
𝑛

𝑛−1∏
𝑘=1

(
1 −min

{
𝐶

𝑘
, 𝜂

})
.

Thus, the spectral gap has the following lower bound

1 − 𝜆2(𝑃Glauber) ≥
1
𝑛

(
2+2𝐶−1∏
𝑘=1

(1 − 𝜂)
) (

𝑛−1∏
𝑘=2+2𝐶

(
1 − 𝐶

𝑘

))
≥ (1 − 𝜂)

2+2𝐶

𝑛

𝑛∏
𝑘=2+2𝐶

(
1 − 𝐶

𝑘

)
≥ (1 − 𝜂)

2+2𝐶

𝑛
exp

(
−

𝑛∑
𝑘=2+2𝐶

2𝐶
𝑘

)
≥ (1 − 𝜂)

2+2𝐶

𝑛
exp

(
−2𝐶

𝑛∑
𝑘=2

1
𝑘

)
(★) ≥ (1 − 𝜂)

2+2𝐶

𝑛
exp (−2𝐶 ln𝑛) = (1 − 𝜂)

2+2𝐶

𝑛1+2𝐶
,

where (★) holds because ∑𝑛
𝑘=2

1
𝑘 ≤ ln𝑛.

Since the transition matrix of Glauber dynamics is positive semi-definite, all of its eigenvalues are
real [DGU14, AL20]. Let the eigenvalues be 1 = 𝜆1(𝑃Glauber) ≥ 𝜆2(𝑃Glauber) ≥ . . . ≥ 𝜆 |Ω | (𝑃Glauber) ≥ 0,
where Ω ⊆ [𝑞]𝑉 is the support of 𝜇. The absolute spectral gap of Glauber dynamics has the following
lower bound

𝛾★ = 1 − 𝜆★ = 1 − max
2≤𝑖≤ |Ω |

|𝜆𝑖 (𝑃Glauber) | = 1 − 𝜆2(𝑃Glauber) ≥
(1 − 𝜂)2+2𝐶

𝑛1+2𝐶
.

By Proposition 2.4, we have

𝑇mix(𝜀) ≤
1
𝛾★

(
log

1
𝜀𝜇min

)
≤ 𝑛1+2𝐶

(1 − 𝜂)2+2𝐶

(
log

1
𝜀𝜇min

)
. □
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4. Simplicial complexes and Glauber dynamics

In this section, we relate the Glauber dynamics to the random walk on simplicial complexes. As ex-
plained in the proof overview, we reduce the task of giving an upper bound for the second largest eigen-
value of Glauber dynamics to the task of giving an upper bound for the second largest eigenvalues of local
random walks (Lemma 3.5).

4.1. Simplicial complexes and random walks. Let 𝑈 be a ground set. A simplicial complex 𝑋 ⊆ 2𝑈 is a
family of subset that is downward closed, i.e. if 𝛼 ∈ 𝑋 , then 𝛽 ∈ 𝑋 for all 𝛽 ⊆ 𝛼 . Each subset 𝛼 ∈ 𝑋 is called
a face. The dimension of a face 𝛼 is its size |𝛼 |.5 We use 𝑋 ( 𝑗) to denote the set of faces with dimension
𝑗 . The dimension of a simplicial complex 𝑋 is the maximum dimension of all its faces. We call 𝑋 a pure
𝑑-dimensional simplicial complex if every maximal face of 𝑋 is of dimension 𝑑 . We only consider pure
simplicial complexes in this paper.

We consider the weighted simplicial complexes. Let 𝑋 be a pure 𝑑-dimensional simplicial complex.
Given a weight function Π : 𝑋 (𝑑) → ℝ≥0, define the induced weights for all faces in 𝑋 by

∀𝛼 ∈ 𝑋, Π(𝛼) =
∑

𝛽∈𝑋 (𝑑) :𝛽⊇𝛼
Π(𝛽) .(4)

For each face 𝛼 ∈ 𝑋 , the link 𝑋𝛼 is simplicial complexes defined by

𝑋𝛼 ≜ {𝛽 \ 𝛼 | 𝛽 ∈ 𝑋 ∧ 𝛼 ⊆ 𝛽}.
Let Π𝛼 be the weight of 𝑋𝛼 induced from Π, i.e. for each face 𝛽 ∈ 𝑋𝛼 ,

Π𝛼 (𝛽) ≜ Π(𝛼 ] 𝛽) .
The one-skeleton of 𝑋𝛼 is a weighted graph𝐺𝛼 = (𝑉𝛼 , 𝐸𝛼 ,Φ𝛼 ), where𝑉𝛼 = 𝑋𝛼 (1) is the set of singletons,

𝐸𝛼 = 𝑋𝛼 (2) is the set of 2-dimensional faces, and Φ𝛼 (𝑢, 𝑣) = Π𝛼 ({𝑢, 𝑣}) for all {𝑢, 𝑣} ∈ 𝐸𝛼 . We use 𝑃𝛼 to
denote the simple (non-lazy) random walk on one-skeleton 𝐺𝛼 . The transition probability is defined by

∀𝑢, 𝑣 ∈ 𝑉𝛼 , 𝑃𝛼 (𝑢, 𝑣) ≜
{

Φ𝛼 (𝑢,𝑣)∑
𝑤:{𝑢,𝑤}∈𝐸𝛼 Φ𝛼 (𝑢,𝑤) if {𝑢, 𝑣} ∈ 𝐸𝛼 ;

0 if {𝑢, 𝑣} ∉ 𝐸𝛼 .
(5)

Given a pure 𝑑-dimensional weighted simplicial complexes (𝑋,Π), define the following down-up ran-
dom walk 𝑃∨

𝑑
on 𝑋 (𝑑). Suppose the current state is 𝜎𝑡 ∈ 𝑋 (𝑑), the next state 𝜎𝑡+1 ∈ 𝑋 (𝑑) is generated as

follows
• (down walk) pick 𝑥 ∈ 𝜎𝑡 uniformly at random, and drop 𝑥 to obtain 𝜎 ′ = 𝜎𝑡 \ {𝑥} ∈ 𝑋 (𝑑 − 1);
• (up walk) sample 𝜎𝑡+1 ∈ 𝑋 (𝑑) satisfying 𝜎 ′ ⊆ 𝜎𝑡+1 with probability proportional to Π(𝜎𝑡+1).

Therefore, the transition matrix of down-up random walk is defined by

∀𝛼, 𝛽 ∈ 𝑋 (𝑑), 𝑃∨𝑑 (𝛼, 𝛽) ≜

∑

𝜏 ∈𝑋 (𝑑−1) :𝜏⊂𝛼
Π (𝛼)
𝑑 ·Π (𝜏) if 𝛼 = 𝛽 ;

Π (𝛽)
𝑑 ·Π (𝛼∩𝛽) if 𝛼 ∩ 𝛽 ∈ 𝑋 (𝑑 − 1);
0 otherwise.

The relation between down-up random walk 𝑃∨
𝑑
and random walks one-skeletons 𝑃𝛼 was studied in

many works [Opp18, KO20, AL20]. Note that both random walks 𝑃∨
𝑑
and 𝑃𝛼 are reversible. By Proposi-

tion 2.3, both of them have real eigenvalues.

Definition 4.1 (local-spectral expander [Opp18, KO20, AL20]). Let (𝑋,Π) be a pure𝑑-dimensionalweighted
simplicial complexes. We say that (𝑋,Π) is a (𝛾0, 𝛾1, . . . , 𝛾𝑑−2)-local-spectral expander if for any 0 ≤ 𝑘 ≤
𝑑 − 2, it holds that

max{𝜆2(𝑃𝛼 ) | 𝛼 ∈ 𝑋 (𝑘)} ≤ 𝛾𝑘 ,

5In some papers, such as [KO20, AL20], the dimension is defined to be |𝛼 | − 1.
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where 𝜆2(𝑃𝛼 ) stands for the second largest eigenvalue of 𝑃𝛼 , and 𝑃𝛼 , as defined in (5), is the transition
matrix for the simple (non-lazy) random walk on one-skeleton of link 𝑋𝛼 .

Theorem 4.2 ([AL20]). Let (𝑋,Π) be a pure 𝑑-dimensional weighted simplicial complexes. If (𝑋,Π) is a
(𝛾0, 𝛾1, . . . , 𝛾𝑑−2)-local-spectral expander, then

𝜆2(𝑃∨𝑑 ) ≤ 1 − 1
𝑑

𝑑−2∏
𝑘=0

(1 − 𝛾𝑘 ),

where 𝜆2(𝑃∨𝑑 ) is the second largest eigenvalue of down-up random walk 𝑃∨
𝑑
.

We remark that the chain 𝑃∨
𝑑
is denoted as 𝑃▽

𝑑−1 in [AL20].

4.2. Connections to Glauber dynamics. Let 𝜇 be a distribution over [𝑞]𝑉 , where |𝑉 | = 𝑛. Let Ω ⊆ [𝑞]𝑉
be the support of 𝜇. We define a ground set of 𝑛𝑞 elements

𝑈 ≜ {(𝑢, 𝑐) | 𝑢 ∈ 𝑉 ∧ 𝑐 ∈ [𝑞]}.

For each (possibly partial) configuration 𝜎 ∈ [𝑞]Λ where Λ ⊆ 𝑉 , we associate with it a face 𝑓𝜎 ⊆ 𝑈 as

𝑓𝜎 ≜ {(𝑢, 𝜎𝑢) | 𝑢 ∈ Λ}.

Let 𝑋 be the downward closure of the family of faces {𝑓𝜎 | 𝜎 ∈ Ω}. Then 𝑋 is a pure 𝑛-dimensional
simplicial complex. For each maximal face 𝑓𝜎 ∈ 𝑋 where 𝜎 ∈ Ω, we assign a weight according to 𝜇

Π(𝑓𝜎 ) = 𝜇 (𝜎),

and each face in 𝑋 obtains an induced weight from (4). Hence, (𝑋,Π) is a weighted pure 𝑛-dimensional
simplicial complex. The following observation is straightforward to verify. One way to understand it is to
view the state space [𝑞]𝑉 as the set of bases of a partition matroid.

Observation 4.3. The Glauber dynamics on 𝜇 is precisely the down-up random walk on 𝑋 (𝑛).

Let Λ ⊆ 𝑉 be a subset of variables. For every feasible partial configuration 𝜎 = 𝜎Λ ∈ [𝑞]Λ, there exists
a face 𝑓𝜎 = {(𝑢, 𝜎𝑢) | 𝑢 ∈ Λ} in 𝑋 , and vice versa.

To simplify the notation, we use 𝑃𝜎 to denote the simple (non-lazy) random walk 𝑃𝑓𝜎 (defined in (5)) on
one-skeleton of link 𝑋𝑓𝜎 . By definition, 𝑃𝜎 is a random walk on𝑈𝜎 = {(𝑢, 𝑐) ∈ Λ× [𝑞] | 𝜇𝜎𝑢 (𝑐) > 0}, where
Λ = 𝑉 \Λ. Fix 𝒙 = (𝑢, 𝑖) ∈ 𝑈𝜎 and 𝒚 = (𝑣, 𝑗) ∈ 𝑈𝜎 . The weight of edge {𝒙,𝒚} in one-skeleton of link 𝑋𝑓𝜎 is
given by

Φ𝑓𝜎 (𝒙,𝒚) =
∑
𝜏 ∈Ω

𝜏Λ=𝜎,𝜏𝑢=𝑖,𝜏𝑣=𝑗

𝜇 (𝜏) = Pr𝑋∼𝜇 [𝑋Λ = 𝜎 ∧ 𝑋𝑢 = 𝑖 ∧ 𝑋𝑣 = 𝑗] .

Thus,

∀(𝑢, 𝑖), (𝑣, 𝑗) ∈ 𝑈𝜎 , 𝑃𝜎 ((𝑢, 𝑖), (𝑣, 𝑗)) =
1 [𝑢 ≠ 𝑣]
|𝑉 | − |Λ| − 1𝜇

𝜎,𝑢←𝑖
𝑣 ( 𝑗),

where 𝜇𝜎,𝑢←𝑖
𝑣 is the marginal distribution on 𝑣 induced from 𝜇 conditional on the configurations on Λ fixed

as 𝜎 and that 𝑢 is fixed to 𝑖 . This is precisely the local random walk in Definition 3.3. Note that 𝑃𝜎 is
reversible because the random walk on one-skeleton is reversible.

Note that if 𝜇 satisfies Condition 3.4 with 𝛼0, 𝛼1, . . . , 𝛼𝑛−2 , then the 𝑛-dimensional weighted simplicial
complex (𝑋,Π) defined above is a (𝛾0, 𝛾1, . . . , 𝛾𝑛−2)-local-spectral expander with 𝛾𝑘 = 𝛼𝑘 for all 0 ≤ 𝑘 ≤
𝑛 − 2. Hence, Lemma 3.5 is a corollary of Theorem 4.2.
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5. Analysis of local random walks

In this section, we prove Lemma 3.6, which states that the second largest eigenvalues of local random
walks are small if the distribution 𝜇 is spectrally independent. The new ingredient of this part is a coupling
based argument for the above implication for distributions with general domain size 𝑞.

5.1. Proof of Lemma 3.6. Fix a subset Λ ⊆ 𝑉 with 0 ≤ |Λ| ≤ 𝑛 − 2, and a feasible partial configuration
𝜎Λ ∈ [𝑞]Λ. To simplify the notation, we use 𝜎 to denote 𝜎Λ. Consider the random walk 𝑃𝜎 defined in (3).
Recall the state space of 𝑃𝜎 is defined by

𝑈𝜎 ≜
{
(𝑢, 𝑖) ∈ Λ × [𝑞] | 𝜇𝜎𝑢 (𝑖) > 0

}
.(6)

Thus |𝑈𝜎 | ≥ 2 because |Λ| = |𝑉 \ Λ| ≥ 2 and 𝜎 is feasible. Consider a random walk 𝑄𝜎 :

𝑄𝜎 ≜
𝑛 − |Λ| − 1
𝑛 − |Λ| 𝑃𝜎 +

1
𝑛 − |Λ| 𝐼𝜎 ,(7)

where 𝐼𝜎 ∈ ℝ𝑈𝜎×𝑈𝜎
≥0 is the identity matrix. In other words, in each step, with probability 1

𝑛−|Λ | , the random
walk 𝑄𝜎 stays at the current state; otherwise, 𝑄𝜎 evolves in the same way as 𝑃𝜎 .

Define a distribution 𝜋 over𝑈𝜎 as

∀(𝑢, 𝑖) ∈ 𝑈𝜎 , 𝜋 (𝑢, 𝑖) ≜ 1
𝑛 − |Λ| 𝜇

𝜎
𝑢 (𝑖) .(8)

Note that
∑

𝑖∈Ω𝜎
𝑢
𝜇𝜎𝑢 (𝑖) = 1, where Ω𝜎

𝑢 ≜ {𝑖 ∈ [𝑞] | 𝜇𝜎𝑢 (𝑖) > 0}. Thus ∑
(𝑢,𝑖) ∈𝑈𝜎

𝜋 (𝑢, 𝑖) = 1 and 𝜋 is well-
defined. We claim that both 𝑃𝜎 and𝑄𝜎 are reversible with respect to 𝜋 . For any (𝑢, 𝑖), (𝑣, 𝑗) ∈ 𝑈𝜎 , we verify
the detailed balance equation. If 𝑢 = 𝑣 , then it is straightforward to verify

𝜋 (𝑢, 𝑖)𝑃𝜎 ((𝑢, 𝑖), (𝑣, 𝑗)) = 0 = 𝜋 (𝑣, 𝑗)𝑃𝜎 ((𝑣, 𝑗), (𝑢, 𝑖));
otherwise 𝑢 ≠ 𝑣 , then

𝜋 (𝑢, 𝑖)𝑃𝜎 ((𝑢, 𝑖), (𝑣, 𝑗)) =
𝜇𝜎𝑢 (𝑖) · 𝜇𝜎,𝑢←𝑖

𝑣 ( 𝑗)
(𝑛 − |Λ|) (𝑛 − |Λ| − 1) =

Pr𝑋∼𝜇 [𝑋𝑢 = 𝑖 ∧ 𝑋𝑣 = 𝑗 | 𝑋Λ = 𝜎]
(𝑛 − |Λ|) (𝑛 − |Λ| − 1)

=
𝜇𝜎𝑣 ( 𝑗) · 𝜇

𝜎,𝑣←𝑗
𝑢 (𝑖)

(𝑛 − |Λ|) (𝑛 − |Λ| − 1) = 𝜋 (𝑣, 𝑗)𝑃𝜎 ((𝑣, 𝑗), (𝑢, 𝑖)) .

Since 𝑄𝜎 is a lazy version of 𝑃𝜎 , 𝑄𝜎 is also reversible to 𝜋 . By (6) and (8), the support of 𝜋 is 𝑈𝜎 . By
Proposition 2.3, 𝑃𝜎 and 𝑄𝜎 both have |𝑈𝜎 | real eigenvalues. Let 𝜆2(𝑃𝜎 ) and 𝜆2(𝑄𝜎 ) denote the second
largest eigenvalues of 𝑃𝜎 and 𝑄𝜎 . By the definition of 𝑄𝜎 in (7), we have the following proposition.

Proposition 5.1. 𝜆2(𝑄𝜎 ) = 𝑛−|Λ |−1
𝑛−|Λ | 𝜆2(𝑃𝜎 ) +

1
𝑛−|Λ | .

Proposition 5.1 is a basic result in linear algebra. We claim the following result about 𝜆2(𝑄𝜎 ).

Lemma 5.2. 𝜆2(𝑄𝜎 ) ≤
𝜌 (Ψ𝜎

𝜇 )+1
𝑛−|Λ | .

The proof of Lemma 5.2 is deferred to the next subsection. We now use Proposition 5.1 and Lemma 5.2 to
prove Lemma 3.6. Suppose 𝜇 is (𝜂0, 𝜂1, . . . , 𝜂𝑛−2)-spectrally independent (Definition 3.1). By Proposition 5.1,
it holds that

𝜆2(𝑃𝜎 ) =
𝑛 − |Λ|

𝑛 − |Λ| − 1

(
𝜆2(𝑄𝜎 ) −

1
𝑛 − |Λ|

)
≤

𝜌 (Ψ𝜎
𝜇 )

𝑛 − |Λ| − 1 ≤
𝜂𝑘

𝑛 − 𝑘 − 1 , where 𝑘 = |Λ| .

The above inequality holds for any Λ ⊆ 𝑉 with 0 ≤ |Λ| ≤ 𝑛 − 2 and any feasible 𝜎 ∈ [𝑞]Λ. This implies 𝜇
satisfies Condition 3.4 with 𝛼0, 𝛼1, . . . , 𝛼𝑛−2 such that 𝛼𝑘 = 𝜂𝑘

𝑛−𝑘−1 .
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5.2. A coupling based analysis. We now prove Lemma 5.2. We will use coupling to give an upper bound
of 𝜆2(𝑄𝜎 ). First we define a matrix 𝐴:

𝐴 ≜
1

𝑛 − |Λ|

((
Ψ𝜎
𝜇

)𝑇
+ 𝐼

)
,(9)

where 𝐼 is the identity matrix. For any 𝑡 ≥ 1, define

𝑑 (𝑡) ≜ max
𝑥0,𝑦0∈𝑈𝜎

𝑑TV
(
𝑄𝑡
𝜎 (𝑥0, ·), 𝑄𝑡

𝜎 (𝑦0, ·)
)
.(10)

Lemma 5.3. For any 𝑡 ≥ 1, 𝑑 (𝑡) ≤
𝐴𝑡−1

1.

Proof. By the definitions of 𝑄𝜎 in (7) and 𝑃𝜎 in (3), we have

∀(𝑢, 𝑖), (𝑣, 𝑗) ∈ 𝑈𝜎 , 𝑄𝜎 ((𝑢, 𝑖), (𝑣, 𝑗)) =
𝜇𝜎,𝑢←𝑖
𝑣 ( 𝑗)
𝑛 − |Λ| ,

where if 𝑢 = 𝑣 , the distribution 𝜇𝜎,𝑢←𝑖
𝑢 ( 𝑗) = 1 [𝑖 = 𝑗] for all 𝑗 ∈ [𝑞]. Let 𝑋0, 𝑋1, 𝑋2, . . . ∈ 𝑈𝜎 be the sequence

of random states generated by 𝑄𝜎 , where 𝑋𝑡 = (𝑋 vtx
𝑡 , 𝑋 val

𝑡 ), 𝑋 vtx
𝑡 ∈ 𝑉 \ Λ and 𝑋 val

𝑡 ∈ [𝑞]. By definition of
𝑄𝜎 in (7), given 𝑋𝑡−1 = (𝑢, 𝑖), the random pair 𝑋𝑡 = (𝑣, 𝑗) can be generated by the following procedure

• sample 𝑣 ∈ 𝑉 \ Λ uniformly at random;
• sample 𝑗 ∈ [𝑞] from the distribution 𝜇𝜎,𝑢←𝑖

𝑣 (·).
Next, we define a coupling procedure C. Let (𝑋𝑡 )𝑡 ≥0 be the randomwalk𝑄𝜎 starting from𝑋0 = 𝒙0 ∈ 𝑈𝜎 ,

and (𝑌𝑡 )𝑡 ≥0 be the random walk 𝑄𝜎 starting from 𝑌0 = 𝒚0 ∈ 𝑈𝜎 , where 𝒙0 and 𝒚0 achieve the maximum
in (10). Consider each transition step (𝑋,𝑌 ) → (𝑋 ′, 𝑌 ′). Suppose 𝑋 = (𝑢𝑥 , 𝑖𝑥 ) and 𝑌 = (𝑢𝑦, 𝑖𝑦). Then
𝑋 ′ = (𝑢 ′𝑥 , 𝑖 ′𝑥 ) and 𝑌 ′ = (𝑢 ′𝑦, 𝑖 ′𝑦) are generated as follows:

• sample 𝑣 ∈ 𝑉 \ Λ uniformly at random, set 𝑢 ′𝑥 = 𝑢 ′𝑦 = 𝑣 ;
• sample (𝑖 ′𝑥 , 𝑖 ′𝑦) from the optimal coupling of 𝜇𝜎,𝑢𝑥←𝑖𝑥

𝑣 and 𝜇
𝜎,𝑢𝑦←𝑖𝑦
𝑣 , where 𝑣 = 𝑢 ′𝑥 = 𝑢 ′𝑦 .

It is easy to verify that C is a coupling of Markov chain 𝑄𝜎 . By Proposition 2.6, we have

∀𝑡 ≥ 1, 𝑑 (𝑡) = max
𝒙0,𝒚0∈𝑈𝜎

𝑑TV
(
𝑄𝑡
𝜎 (𝒙0, ·), 𝑄𝑡

𝜎 (𝒚0, ·)
)
≤ PrC [𝑋𝑡 ≠ 𝑌𝑡 ] .(11)

Hence, we only need to bound the right-hand-side of (11).
Denote 𝑋𝑡 = (𝑋 vtx

𝑡 , 𝑋 val
𝑡 ) and 𝑌𝑡 = (𝑌 vtx

𝑡 , 𝑌 val
𝑡 ). By the definition of the coupling procedure C, it holds

that 𝑋 vtx
𝑡 = 𝑌 vtx

𝑡 for all 𝑡 ≥ 1, and

∀𝑡 ≥ 1, 𝑢 ∈ 𝑉 \ Λ, PrC
[
𝑋 vtx
𝑡 = 𝑌 vtx

𝑡 = 𝑢
]
=

1
𝑛 − |Λ| .(12)

For any 𝑡 ≥ 1, we define a column vector 𝑒𝑡 ∈ ℝ𝑉 \Λ
≥0 such that

∀𝑢 ∈ 𝑉 \ Λ, 𝑒𝑡 (𝑢) ≜ PrC
[
𝑋 vtx
𝑡 = 𝑌 vtx

𝑡 = 𝑢 ∧ 𝑋 val
𝑡 ≠ 𝑌 val

𝑡

]
.

Then 𝑑 (𝑡) ≤ PrC [𝑋𝑡 ≠ 𝑌𝑡 ] =
∑

𝑢∈𝑉 \Λ 𝑒𝑡 (𝑢) = ‖𝑒𝑡 ‖1 for all 𝑡 ≥ 1. By (12), we have

∀𝑢 ∈ 𝑉 \ Λ, 𝑒1(𝑢) ≤ PrC
[
𝑋 vtx
𝑡 = 𝑌 vtx

𝑡 = 𝑢
]
=

1
𝑛 − |Λ| .(13)

13



Recall Ω𝜎
𝑢 ≜ {𝑖 ∈ [𝑞] | 𝜇𝜎𝑢 (𝑖) > 0} for each 𝑢 ∈ 𝑉 \ Λ, and the state space of the random walk 𝑄𝜎 is

𝑈𝜎 =
{
(𝑢, 𝑖) | 𝑢 ∈ Λ ∧ 𝑖 ∈ Ω𝜎

𝑢

}
. For any 𝑡 ≥ 2, we have for all 𝑢 ∈ 𝑉 \ Λ,

𝑒𝑡 (𝑢) = PrC
[
𝑋 vtx
𝑡 = 𝑌 vtx

𝑡 = 𝑢 ∧ 𝑋 val
𝑡 ≠ 𝑌 val

𝑡

]
=

∑
𝑣∈𝑉 \Λ

∑
𝑖, 𝑗 ∈Ω𝜎

𝑣
𝑖≠𝑗

(
PrC

[
𝑋 vtx
𝑡 = 𝑌 vtx

𝑡 = 𝑢 ∧ 𝑋 val
𝑡 ≠ 𝑌 val

𝑡 | 𝑋 vtx
𝑡−1 = 𝑌 vtx

𝑡−1 = 𝑣 ∧ 𝑋 val
𝑡−1 = 𝑖 ∧ 𝑌 val

𝑡−1 = 𝑗
]

× PrC [𝑋𝑡−1 = (𝑣, 𝑖) ∧ 𝑌𝑡−1 = (𝑣, 𝑗)]
)

=
∑

𝑣∈𝑉 \Λ

∑
𝑖, 𝑗 ∈Ω𝜎

𝑣
𝑖≠𝑗

1
𝑛 − |Λ|𝑑TV

(
𝜇𝜎,𝑣←𝑖
𝑢 , 𝜇𝜎,𝑣←𝑗

𝑢

)
PrC [𝑋𝑡−1 = (𝑣, 𝑖) ∧ 𝑌𝑡−1 = (𝑣, 𝑗)] .

The first equality is obtained from the chain rule, togetherwith the facts that for 𝑡 ≥ 2, (1) PrC
[
𝑋 vtx
𝑡−1 = 𝑌 vtx

𝑡−1
]
=

1; (2) 𝑋 val
𝑡 ≠ 𝑌 val

𝑡 only if 𝑋 val
𝑡−1 ≠ 𝑌 val

𝑡−1; (3) 𝑋
val
𝑡−1, 𝑌

val
𝑡−1 ∈ Ω𝜎

𝑣 if 𝑋 vtx
𝑡=1 = 𝑌 vtx

𝑡−1 = 𝑣 since 𝑄𝜎 is a random walk over
𝑈𝜎 . The last equality is obtained using the definition of the coupling C. It holds because 𝑋 vtx

𝑡 = 𝑌 vtx
𝑡 are

sampled from 𝑉 \ Λ uniformly at random and 𝑋 val
𝑡 , 𝑌 val

𝑡 are sampled from the optimal coupling between
𝜇𝜎,𝑣←𝑖
𝑢 and 𝜇𝜎,𝑣←𝑗

𝑢 . By the definition of the influence matrix Ψ𝜎
𝜇 in (1) and the definition of the matrix 𝐴

in (9), we have that for any 𝑢, 𝑣 ∈ 𝑉 \ Λ, any 𝑖, 𝑗 ∈ Ω𝜎
𝑢 such that 𝑖 ≠ 𝑗 , it holds that

1
𝑛 − |Λ|𝑑TV

(
𝜇𝜎,𝑣←𝑖
𝑢 , 𝜇𝜎,𝑣←𝑗

𝑢

)
≤ 𝐴(𝑢, 𝑣) .

Hence, for any 𝑡 ≥ 2, we have that for all 𝑢 ∈ 𝑉 \ Λ, 𝑒𝑡 (𝑢) can be bounded by

𝑒𝑡 (𝑢) ≤
∑

𝑣∈𝑉 \Λ

∑
𝑖, 𝑗 ∈Ω𝜎

𝑣
𝑖≠𝑗

𝐴(𝑢, 𝑣)PrC [𝑋𝑡−1 = (𝑣, 𝑖) ∧ 𝑌𝑡−1 = (𝑣, 𝑗)] =
∑

𝑣∈𝑉 \Λ
𝐴(𝑢, 𝑣)𝑒𝑡−1(𝑣) = (𝐴𝑒𝑡−1) (𝑢) .(14)

All 𝑒𝑡 are non-negative vectors and𝐴 is a non-negative matrix. Combining (11), (13) and (14), we have that
for any 𝑡 ≥ 1,

𝑑 (𝑡) ≤ ‖𝑒𝑡 ‖1 ≤
𝐴𝑡−1𝑒1


1 ≤

𝐴𝑡−1
1 ‖𝑒1‖1 ≤

𝐴𝑡−1
1 . □

Now, we are ready to prove Lemma 5.2.

Proof of Lemma 5.2. Recall 𝑄𝜎 is a random walk over 𝑈𝜎 , 𝜋 is defined in (8). Since 𝑄𝜎 is reversible with
respect to 𝜋 and the support of 𝜋 is𝑈𝜎 , by Proposition 2.5 and Lemma 5.3, for any 𝑡 ≥ 1,

|𝜆2(𝑄𝜎 ) |𝑡 ≤ 𝑑 (𝑡) ≤
𝐴𝑡−1

1 .

We may assume that 𝜆2(𝑄𝜎 ) > 0, as otherwise Lemma 5.2 holds trivially. We have

∀𝑡 ≥ 1, 𝜆2(𝑄𝜎 )
𝑡

𝑡−1 ≤
𝐴𝑡−1 1

𝑡−1
1 .

Let 𝑡 →∞ in both sides, we have

𝜆2(𝑄𝜎 ) = lim
𝑡→∞

𝜆2(𝑄𝜎 )
𝑡

𝑡−1 ≤ lim
𝑡→∞

𝐴𝑡−1 1
𝑡−1
1 = 𝜌 (𝐴),

where the last equality holds due to Proposition 2.1. Note that if 𝜆 ∈ ℂ is an eigenvalue of (Ψ𝜎
𝜇 )𝑇 , then

𝜆 + 1 is an eigenvalue of (Ψ𝜎
𝜇 )𝑇 + 𝐼 , and |𝜆 + 1| ≤ |𝜆 | + 1. By the definition of 𝐴, we have

𝜆2(𝑄𝜎 ) ≤ 𝜌 (𝐴) = 1
𝑛 − |Λ| 𝜌

((
Ψ𝜎
𝜇

)𝑇
+ 𝐼

)
≤

𝜌

((
Ψ𝜎
𝜇

)𝑇 )
+ 1

𝑛 − |Λ| =
𝜌 (Ψ𝜎

𝜇 ) + 1
𝑛 − |Λ| . □
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6. Rapid mixing for list colourings

An instance of the list colouring is a pair (𝐺, 𝑳) where 𝐺 = (𝑉 , 𝐸) is a simple undirected graph and
𝑳 = {𝐿(𝑣) | 𝑣 ∈ 𝑉 } is a collection of colour lists associated to each vertex 𝑣 ∈ 𝑉 . A proper list colouring 𝑋
assigns each vertex 𝑣 ∈ 𝑉 a colour 𝑋𝑣 ∈ 𝐿(𝑣) such that 𝑋𝑢 ≠ 𝑋𝑣 for all {𝑢, 𝑣} ∈ 𝐸. Let Ω𝐺,𝑳 denote the set
of proper list colourings and 𝜇𝐺,𝑳 denote the uniform distribution over Ω𝐺,𝑳 .

The Glauber dynamics on (𝐺, 𝑳) is defined as follows. The chain starts from an arbitrary proper list
colouring 𝑋 ∈ Ω𝐺,𝑳 . In each step, the chain does the following:

• pick a vertex 𝑣 ∈ 𝑉 uniformly at random;
• update 𝑋𝑣 by a uniformly at random colour from 𝐿(𝑣) \ {𝑋𝑢 | {𝑣,𝑢} ∈ 𝐸}.

We prove the following rapid mixing result for list colourings.

Theorem 6.1. Let (𝐺 = (𝑉 , 𝐸), 𝑳) be an instance of list colouring where 𝑳 = {𝐿(𝑣) | 𝑣 ∈ 𝑉 }. Let Δ ≥ 3 be the
maximum degree of 𝐺 and 𝛿 > 0 be a constant. If 𝐺 is triangle-free and for every 𝑣 ∈ 𝑉 , it holds that

|𝐿(𝑣) | − deg𝐺 (𝑣) ≥ (𝛼∗ + 𝛿 − 1)Δ,(15)
then the Glauber dynamics on (𝐺, 𝑳) satisfies

𝑇mix(𝜀) ≤
(
9e5𝑛

)1+9/𝛿 · log (
𝑀

𝜀

)
.

where𝑀 ≜
∏

𝑣∈𝑉 |𝐿(𝑣) |.
Note that Theorem 1.5 is a corollary of Theorem 6.1, in which𝑀 = 𝑞𝑛 .
In order to prove Theorem 6.1, we define a partial order � among list-colouring instances. Let (𝐺 ′ =

(𝑉 ′, 𝐸 ′), 𝑳′) and (𝐺 = (𝑉 , 𝐸), 𝑳) be two list colouring instances where 𝑳′ = {𝐿′(𝑣) | 𝑣 ∈ 𝑉 ′} and 𝑳 =
{𝐿(𝑣) | 𝑣 ∈ 𝑉 }. We say (𝐺 ′, 𝑳′) � (𝐺, 𝑳) if there exists a vertex 𝑣 ∈ 𝑉 satisfying

• 𝐺 ′ = 𝐺 [𝑉 \ {𝑣}];
• for every 𝑢 ∈ Γ𝐺 (𝑣), it holds that 𝐿′(𝑢) ⊆ 𝐿(𝑢) and |𝐿(𝑢) \ 𝐿′(𝑢) | ≤ 1;
• for every 𝑢 ∈ 𝑉 ′ \ Γ𝐺 (𝑣), it holds that 𝐿′(𝑢) = 𝐿(𝑢).

Here, Γ𝐺 (𝑣) denotes the neighbourhood of 𝑣 in graph 𝐺 . We remark that in the definition above, for
each 𝑢 ∈ Γ𝐺 (𝑣), we can rewrite the requirement as 𝐿′(𝑢) = 𝐿(𝑢) \ {𝑐} for some colour 𝑐 . This colour 𝑐 is
not necessarily in 𝐿(𝑢) (in which case 𝐿′(𝑢) = 𝐿(𝑢) and can be distinct for different 𝑢 ∈ Γ𝐺 (𝑣)).

Intuitively, (𝐺 ′, 𝑳′) � (𝐺, 𝑳) means that one can obtain (𝐺 ′, 𝑳′) from (𝐺, 𝑳) by removing one vertex
𝑣 and change the colour lists of the neighbours of 𝑣 by removing at most one color. We call a family of
list-colouring instances L downward closed if for every (𝐺, 𝑳) ∈ L and every (𝐺 ′, 𝑳′) such that (𝐺 ′, 𝑳′) �
(𝐺, 𝑳), we have (𝐺 ′, 𝑳′) ∈ L .

The downward closure of an instance (𝐺, 𝑳) is the minimum downward closed family of instances con-
taining (𝐺, 𝑳).

Consider the following condition for a family of list colouring instances L .

Condition 6.2. Let 𝜒 > 0, 0 < 𝜀1 < 1 and 𝜀2 > 0. It holds that
• the maximum degree of instances in L is at most 𝜒 ;
• for any (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L , a proper list colouring exists, and for any vertex 𝑣 ∈ 𝑉 satisfying
deg𝐺 (𝑣) ≤ 𝜒 − 1, it holds that

∀𝑐 ∈ 𝐿(𝑣) : 𝜇𝑣,(𝐺,𝑳) (𝑐) ≤
𝜀1

deg𝐺 (𝑣)
;(16)

for any vertex 𝑣 ∈ 𝑉 , it holds that

∀𝑐 ∈ 𝐿(𝑣) : 𝜇𝑣,(𝐺,𝑳) (𝑐) ≤
1

𝜀2𝜒 + 1
.(17)

We have the following theorem.
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Theorem 6.3. Let 0 < 𝜀1 < 1 and 𝜀2 > 0 be two constants. The following result holds for any 𝜒 > 0. Let L
be a downward closed family of list-colouring instances satisfying Condition 6.2 with parameters 𝜒 , 𝜀1 and 𝜀2.
For any (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L , the mixing time of Glauber dynamics satisfies

𝑇mix(𝜀) ≤
(
9e

2
𝜀2

) (
1+ 1
(1−𝜀1 )𝜀2

)
𝑛
1+ 2
(1−𝜀1 )𝜀2 · log

(
𝑀

𝜀

)
,

where𝑀 =
∏

𝑣∈𝑉 |𝐿(𝑣) |.

Theorem 6.1 is actually a corollary of Theorem 6.3 via verifying Condition 6.2. We will prove Theo-
rem 6.3 first. The proof of Theorem 6.1 is deferred to Section 6.4.

6.1. Analysis of mixing time. In the following, we assume L is downward closed and satisfies Condi-
tion 6.2. Let 𝜒 > 0, 0 < 𝜀1 < 1 and 𝜀2 > 0 be the parameters promised by Condition 6.2.

For any list colouring instance (𝐺, 𝑳) where 𝐺 = (𝑉 , 𝐸), recall 𝜇𝐺,𝑳 is the uniform distribution over all
proper list colourings. Define the matrix 𝑅𝐺,𝑳 ∈ ℝ𝑉×𝑉

≥0 by

∀𝑢, 𝑣 ∈ 𝑉 , 𝑅𝐺,𝑳 (𝑢, 𝑣) = max
𝑐1,𝑐2∈𝐿 (𝑢)

𝑑TV
(
𝜇𝑢←𝑐1
𝑣,(𝐺,𝑳) , 𝜇

𝑢←𝑐2
𝑣,(𝐺,𝑳)

)
,(18)

where for 𝑐 = 𝑐1 or 𝑐2, 𝜇𝑢←𝑐
𝑣,(𝐺,𝑳) denotes the marginal distribution on 𝑣 projected from 𝜇𝐺,𝑳 conditional on

the colour of 𝑢 is fixed as 𝑐 . The matrix 𝑅 is essentially the same as the influence matrix Ψ𝜎Λ
𝜇 in (1), except

that in the case of 𝑢 = 𝑣 , 𝑅𝐺,𝑳 (𝑣, 𝑣) = 0 if and only if |𝐿(𝑣) | = 1 (thus 𝑐1 = 𝑐2). Namely,

𝑅𝐺,𝑳 (𝑣, 𝑣) = max
𝑐1,𝑐2∈𝐿 (𝑣)

𝑑TV
(
𝜇𝑣←𝑐1
𝑣,(𝐺,𝑳) , 𝜇

𝑣←𝑐2
𝑣,(𝐺,𝑳)

)
= 1 [|𝐿(𝑣) | > 1] .

Roughly speaking, each entry 𝑅𝐺,𝑳 (𝑢, 𝑣) is the influence of 𝑢 on 𝑣 given two different colours of 𝑢. The
key to apply Theorem 1.3 is to bound the total influence of 𝑢 on all other vertices.

Lemma 6.4. For any instance (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L ,

∀𝑢 ∈ 𝑉 ,
∑

𝑣∈𝑉 :𝑣≠𝑢
𝑅𝐺,𝑳 (𝑢, 𝑣) ≤ min

{(
1 − 1

3e1/𝜀2

)
( |𝑉 | − 1), 1

(1 − 𝜀1)𝜀2

}
.

We first use Lemma 6.4 to prove the main theorem for list colouring (Theorem 6.3). Then we prove
Lemma 6.4 in Section 6.2 and Section 6.3.

To prove Theorem 6.3, we will also need the following notion of pinning.

Definition 6.5 (instance induced by pinning). Let (𝐺 = (𝑉 , 𝐸), 𝑳) be a list colouring instance. Let Λ ⊆ 𝑉
be a subset of vertices and 𝜎 ∈ ⊗𝑣∈Λ𝐿(𝑣) a partial colouring on Λ. Define Pin𝐺,𝑳 (Λ, 𝜎) = (𝐺, �̃�) as the
induced list colouring instance after the pinning 𝜎 , where 𝐺 = 𝐺 [𝑉 \ Λ] is the subgraph of 𝐺 induced by
𝑉 \ Λ, and �̃� = {�̃�(𝑣) | 𝑣 ∈ 𝑉 \ Λ} is defined by for all 𝑣 ∈ 𝑉 \ Λ,

�̃�(𝑣) = 𝐿(𝑣) \ {𝜎𝑢 | 𝑢 ∈ Λ ∧ {𝑢, 𝑣} ∈ 𝐸} .

It is clear that for any Λ and 𝜎 , Pin𝐺,𝑳 (Λ, 𝜎) is in the downward closure of (𝐺, 𝑳).
Now, we are ready to prove Theorem 6.3.

Proof of Theorem 6.3. It suffices to verify that every (𝐺, 𝑳) ∈ L is (𝐶, 𝜂)-spectrally independent, which
implies the theorem by Theorem 1.3. Fix a list colouring instance (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L . Fix a subset
Λ ⊆ 𝑉 with |Λ| ≤ 𝑛 − 2 and a feasible partial colouring 𝜎Λ ∈ ⊗𝑣∈Λ𝐿(𝑣). Let (𝐺, �̃�) = Pin𝐺,𝑳 (Λ, 𝜎Λ), where
𝐺 = 𝐺 [𝑉 \Λ] and �̃� = {�̃�(𝑣) | 𝑣 ∈ 𝑉 \Λ}. Note that for any 𝑢 ∈ 𝑉 \Λ, �̃�(𝑢) contains precisely the feasible
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colours for 𝑢 conditional on 𝜎Λ. Then, by the definition of Ψ𝜎Λ
𝜇 in (1),

∀𝑢, 𝑣 ∈ 𝑉 \ Λ with 𝑢 ≠ 𝑣, Ψ𝜎Λ
𝜇 (𝑢, 𝑣) = max

𝑐1,𝑐2∈𝐿 (𝑢)
𝑑TV

(
𝜇𝜎Λ,𝑢←𝑐1
𝑣,(𝐺,𝑳) , 𝜇

𝜎Λ,𝑢←𝑐2
𝑣,(𝐺,𝑳)

)
= max

𝑐1,𝑐2∈𝐿 (𝑢)
𝑑TV

(
𝜇𝑢←𝑐1
𝑣,(𝐺,𝑳)

, 𝜇𝑢←𝑐2
𝑣,(𝐺,𝑳)

)
(by Definition 6.5)

= 𝑅𝐺,𝑳 (𝑢, 𝑣) .

Also by the definition of Ψ𝜎Λ
𝜇 , for any 𝑣 ∈ 𝑉 \ Λ, it holds that Ψ𝜎Λ

𝜇 (𝑣, 𝑣) = 0. Since L is downward closed,
(𝐺, �̃�) ∈ L . By Lemma 6.4,Ψ𝜎Λ

𝜇


∞
= max

𝑢∈𝑉 \Λ

∑
𝑣∈𝑉 \Λ

Ψ𝜎Λ
𝜇 (𝑢, 𝑣) = max

𝑢∈𝑉 \Λ

∑
𝑣∈𝑉 \Λ:𝑣≠𝑢

𝑅𝐺,𝑳 (𝑢, 𝑣)

≤ min
{(
1 − 1

3e1/𝜀2

)
(𝑛 − |Λ| − 1), 1

(1 − 𝜀1)𝜀2

}
.

Hence, the list colouring instance (𝐺, 𝑳) ∈ L satisfies bound one-to-all influence condition in Corollary 1.4
with 𝐶 = 1

(1−𝜀1)𝜀2 and 𝜂 = 1 − 1
3e1/𝜀2 . By Corollary 1.4, Glauber dynamics on (𝐺, 𝑳) has mixing time

𝑇mix(𝜀) ≤
𝑛
1+ 2
(1−𝜀1 )𝜀2(

1
3e1/𝜀2

)2+ 2
(1−𝜀1 )𝜀2

· log
(

1
𝜀𝜇min

)
≤

(
9e

2
𝜀2

) (
1+ 1
(1−𝜀1 )𝜀2

)
𝑛
1+ 2
(1−𝜀1 )𝜀2 · log

(
𝑀

𝜀

)
,

where the last inequality holds because 1
𝜇min
≤ 𝑀 =

∏
𝑣∈𝑉 |𝐿(𝑣) |. □

The two upper bounds in Lemma 6.4 are proved in Section 6.2 and Section 6.3 respectively.

6.2. An easy coupling analysis. We now prove the first part of Lemma 6.4, namely,

Lemma 6.6. Let L be a downward closed family of list colouring instances satisfying Condition 6.2 with
parameters 𝜒 > 0, 0 < 𝜀1 < 1 and 𝜀2 > 0. For any instance (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L , it holds that

∀𝑢 ∈ 𝑉 ,
∑

𝑣∈𝑉 :𝑣≠𝑢
𝑅𝐺,𝑳 (𝑢, 𝑣) ≤

(
1 − 1

3e1/𝜀2

)
( |𝑉 | − 1) .

To prove Lemma 6.6, we need the following well-known recursion of list colouring.

Proposition 6.7 ([GK12, LY13, GKM15]). Let (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L be a list colouring instance. Let 𝑣1, 𝑣2, . . . , 𝑣𝑚
denote the neighbours of 𝑣 in𝐺 . Let 𝑐 ∈ 𝐿(𝑣) be a colour. Let𝐺𝑣 be the subgraph of𝐺 induced by𝑉 \ {𝑣}. For
each 1 ≤ 𝑖 ≤ 𝑚, define a colour list 𝑳𝑖,𝑐 = {𝐿𝑖,𝑐 (𝑢) | 𝑢 ∈ 𝑉 \ {𝑣}}, where 𝐿𝑖,𝑐 (𝑢) = 𝐿(𝑢) \ {𝑐} for all 𝑢 = 𝑣 𝑗
and 𝑗 < 𝑖 , and 𝐿𝑖,𝑐 (𝑢) = 𝐿(𝑢) for other vertices. It holds that for any 𝑐 ∈ 𝐿(𝑣),

𝜇𝑣,(𝐺,𝑳) (𝑐) =
∏𝑚

𝑖=1
(
1 − 𝜇𝑣𝑖 ,(𝐺𝑣,𝑳𝑖,𝑐 ) (𝑐)

)∑
𝑐′∈𝐿 (𝑣)

∏𝑚
𝑖=1

(
1 − 𝜇𝑣𝑖 ,(𝐺𝑣,𝑳𝑖,𝑐′ ) (𝑐 ′)

) .
We first derive upper and lower bounds for marginal probabilities from Condition 6.2.

Lemma 6.8. Let L be a downward closed family of list colouring instances satisfying Condition 6.2 with
parameters 𝜒 > 0 and 0 < 𝜀1 < 1 and 𝜀2 > 0. For any instance (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L , it holds that

∀𝑐 ∈ 𝐿(𝑣), 1
e1/𝜀2 |𝐿(𝑣) |

≤ 𝜇𝑣,(𝐺,𝑳) (𝑐) ≤
1

𝜀2𝜒 + 1
.
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Proof. The upper bound is directly from Condition 6.2. So we only need to prove the lower bound.
Fix an instance (𝐺, 𝑳) ∈ L . SinceL is downward closed, each instance (𝐺𝑣, 𝑳𝑖,𝑐) ∈ L , where (𝐺𝑣, 𝑳𝑖,𝑐)

is defined in Proposition 6.7. By the recursion in Proposition 6.7, we have

𝜇𝑣,(𝐺,𝑳) (𝑐) =
∏𝑚

𝑖=1
(
1 − 𝜇𝑣𝑖 ,(𝐺𝑣,𝑳𝑖,𝑐 ) (𝑐)

)∑
𝑐′∈𝐿 (𝑣)

∏𝑚
𝑖=1

(
1 − 𝜇𝑣𝑖 ,(𝐺𝑣,𝑳𝑖,𝑐′ ) (𝑐 ′)

) ≥
(
1 − 1

𝜀2𝜒+1

) 𝜒
|𝐿(𝑣) | ≥ 1

e1/𝜀2 |𝐿(𝑣) |
.

This proves the lower bound. □

Now, we are ready to prove Lemma 6.6.

Proof of Lemma 6.6. Consider the list colouring instance (𝐺 = (𝑉 , 𝐸), 𝑳). Fix a vertex 𝑢 and two colours
𝑐1, 𝑐2 ∈ 𝐿(𝑢). Define a list colouring instance L1 = (𝐺𝑢, 𝑳1) = Pin𝐺,𝑳 ({𝑢}, 𝑐1), where𝐺𝑢 is the subgraph of
𝐺 induced by 𝑉 \ {𝑢} and 𝑳1 = {𝐿1(𝑤) | 𝑤 ∈ 𝑉 \ {𝑢}}. Define a list colouring instance L2 = (𝐺𝑢, 𝑳2) =
Pin𝐺,𝑳 ({𝑢}, 𝑐2), where 𝑳2 = {𝐿2(𝑤) | 𝑤 ∈ 𝑉 \ {𝑢}}. Then

∀𝑣 ≠ 𝑢, 𝜇𝑢←𝑐1
𝑣,(𝐺,𝑳) (·) = 𝜇𝑣,L1 (·), 𝜇𝑢←𝑐2

𝑣,(𝐺,𝑳) (·) = 𝜇𝑣,L2 (·) .

Since (𝐺, 𝑳) ∈ L and L is downward closed, it holds that both L1,L2 ∈ L . By Lemma 6.8, for any 𝑣 ≠ 𝑢,

∀𝑐 ∈ 𝐿1(𝑣) : 𝜇𝑣,L1 (𝑐) ≥
1

e1/𝜀2 |𝐿1(𝑣) |

∀𝑐 ∈ 𝐿2(𝑣) : 𝜇𝑣,L2 (𝑐) ≥
1

e1/𝜀2 |𝐿2(𝑣) |
.

On the other hand, since L1,L2 ∈ L , for any 𝑣 ∈ 𝑉 , it holds that |𝐿1(𝑣) | ≥ 2 and |𝐿2(𝑣) | ≥ 2 (otherwise,
the upper bound for the marginals in Condition 6.2 cannot hold). By the definitions of L1 and L2, it holds
that |𝐿1(𝑣) ∩ 𝐿2(𝑣) | ≥ min{|𝐿1(𝑣), 𝐿2(𝑣) |} − 1 and

�� |𝐿1(𝑣) | − |𝐿2(𝑣) | �� ≤ 1. Thus, we can couple 𝜇𝑣,L1 (·) and
𝜇𝑣,L2 (·) with success probability at least∑

𝑐∈𝐿1 (𝑣)∩𝐿2 (𝑣)
min

{
1

e1/𝜀2 |𝐿1(𝑣) |
,

1
e1/𝜀2 |𝐿2(𝑣) |

}
≥ min{|𝐿1(𝑣), 𝐿2(𝑣) |} − 1

e1/𝜀2 max{|𝐿1(𝑣) | , |𝐿2(𝑣) |}

≥ 1
𝑒1/𝜀2

· min{|𝐿1(𝑣) | , |𝐿2(𝑣) |} − 1
min{|𝐿1(𝑣) | , |𝐿2(𝑣) |} + 1

≥ 1
3e1/𝜀2

.

By the coupling inequality (Proposition 2.2), we have for any 𝑐1, 𝑐2 ∈ 𝐿(𝑢) and any 𝑣 ≠ 𝑢,

𝑑TV
(
𝜇𝑢←𝑐1
𝑣,(𝐺,𝑳) , 𝜇

𝑢←𝑐2
𝑣,(𝐺,𝑳)

)
= 𝑑TV

(
𝜇𝑣,L1, 𝜇𝑣,L2

)
≤ 1 − 1

3e1/𝜀2
.

By the definition of 𝑅𝐺,𝑳 , we have that∑
𝑣∈𝑉 :𝑣≠𝑢

𝑅𝐺,𝑳 (𝑢, 𝑣) ≤
(
1 − 1

3e1/𝜀2

)
( |𝑉 | − 1) . □

6.3. Recursive coupling. We then prove the second part of Lemma 6.4.

Lemma 6.9. Let L be a downward closed family of list colouring instances satisfying Condition 6.2 with
parameters 𝜒 > 0, 0 < 𝜀1 < 1 and 𝜀2 > 0. For any instance (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L , it holds that

∀𝑢 ∈ 𝑉 ,
∑

𝑣∈𝑉 :𝑣≠𝑢
𝑅𝐺,𝑳 (𝑢, 𝑣) ≤

1
(1 − 𝜀1)𝜀2

.

We use the following lemma to prove Lemma 6.9.

Definition 6.10 (self-avoiding walk (SAW)). A path 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣ℓ ) in a graph𝐺 is called a self-avoiding
walk (SAW) if each 𝑣𝑖 and 𝑣𝑖+1 are adjacent and 𝑣𝑖 ≠ 𝑣 𝑗 for all 𝑖 ≠ 𝑗 .
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Lemma 6.11. Let L be a downward closed family of list colouring instances satisfying Condition 6.2 with
parameters 𝜒 > 0, 0 < 𝜀1 < 1 and 𝜀2 > 0. For any instance (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L and any two vertices𝑢, 𝑣 ∈ 𝑉
with 𝑢 ≠ 𝑣 , it holds that

𝑅𝐺,𝑳 (𝑢, 𝑣) ≤
1

𝜀1𝜀2

∑
SAW 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣ℓ )

𝑢 = 𝑣1 and 𝑣 = 𝑣ℓ

ℓ−1∏
𝑘=1

𝜀1
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}| ,(19)

where Γ𝐺 (𝑣𝑘 ) is the neighbourhood of 𝑣𝑘 in 𝐺 .

We remark that the denominator of each ratio in the RHS of (19) is positive because 𝑣𝑘+1 ∈ Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 |
𝑖 < 𝑘} for all 1 ≤ 𝑘 ≤ ℓ − 1. Lemma 6.11 is proved in Section 6.3.1 via a recursive coupling argument.

Now, we are ready to prove Lemma 6.9.

Proof of Lemma 6.9. Fix (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L . For any vertex 𝑢 ∈ 𝑉 and any integer ℓ ≥ 1, we use
𝑃𝑢ℓ to denote the set of all SAWs from 𝑢 that contains ℓ vertices. Formally, 𝑃𝑢ℓ ≜ {𝑃 = (𝑣1, 𝑣2, . . . , 𝑣ℓ ) |
𝑃 is a SAW, 𝑣1 = 𝑢}. We claim that

∀𝑢 ∈ 𝑉 , ℓ ≥ 1,
∑

SAW 𝑃=(𝑣1,𝑣2,...,𝑣ℓ ) ∈𝑃𝑢ℓ

ℓ−1∏
𝑘=1

𝜀1
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}| ≤ 𝜀ℓ−11 .(20)

We now use (20) to prove Lemma 6.9. By Lemma 6.11, for any 𝑢 ∈ 𝑉 ,

∑
𝑣∈𝑉 :𝑣≠𝑢

𝑅𝐺,𝑳 (𝑢, 𝑣) ≤
1

𝜀1𝜀2
·

∑
𝑣∈𝑉 :𝑣≠𝑢

∑
SAW 𝑃=(𝑣1,𝑣2,...,𝑣ℓ )
𝑢 = 𝑣1 and 𝑣 = 𝑣ℓ

ℓ−1∏
𝑘=1

𝜀1
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}|

≤ 1
𝜀1𝜀2
·
∞∑
ℓ=2

∑
SAW 𝑃=(𝑣1,𝑣2,...,𝑣ℓ ) ∈𝑃𝑢ℓ

ℓ−1∏
𝑘=1

𝜀1
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}|(★)

≤ 1
𝜀1𝜀2
·
∞∑
ℓ=2

𝜀ℓ−11 =
1

(1 − 𝜀1)𝜀2
,(by (20))

where (★) is due to the fact that 𝑣 ≠ 𝑢 implies all SAWs in consideration are of length at least 2. This
proves Lemma 6.9.

We then prove (20) by an induction on ℓ . If ℓ = 1, the LHS of (20) is 1, thus (20) holds trivially. Sup-
pose (20) holds for all ℓ ≤ 𝑡 , we prove it for ℓ = 𝑡 + 1. Let 𝑃𝑢→𝑣

𝑡 denote the set of all SAWs from 𝑢 to 𝑣 that
contains 𝑡 vertices. Formally,

𝑃𝑢→𝑣
𝑡 ≜ {𝑃 = 𝑣1, 𝑣2, . . . , 𝑣𝑡 | 𝑃 is a SAW, 𝑣1 = 𝑢, 𝑣𝑡 = 𝑣}.

Hence, 𝑃𝑢𝑡 =
⋃

𝑣∈𝑉 𝑃𝑢→𝑣
𝑡 . If 𝑃 ∈ 𝑃𝑢𝑡+1 is a SAW such that 𝑃 = 𝑣1, 𝑣2, . . . , 𝑣𝑡 , 𝑣𝑡+1, then the prefix 𝑃 ′ =

𝑣1, 𝑣2, . . . , 𝑣𝑡 is in the set 𝑃𝑢→𝑣𝑡
𝑡 and 𝑣𝑡+1 ∈ Γ𝐺 (𝑣𝑡 ) \ {𝑣𝑖 | 𝑖 < 𝑡}, and vice versa. This implies that

𝑃𝑢𝑡+1 =
⋃
𝑣∈𝑉

{
(𝑃,𝑤) | 𝑃 = (𝑣1 = 𝑢, 𝑣2, . . . , 𝑣𝑡 = 𝑣) ∈ 𝑃𝑢→𝑣

𝑡 ,𝑤 ∈ Γ𝐺 (𝑣) \ {𝑣𝑖 | 𝑖 < 𝑡}
}
,(21)
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where (𝑃,𝑤) is the path obtained by appending𝑤 at the end of the path 𝑃 . We have

∀𝑢 ∈ 𝑉 ,
∑

SAW 𝑃=(𝑣1,𝑣2,...,𝑣𝑡+1) ∈𝑃𝑢𝑡+1

𝑡∏
𝑘=1

𝜀1
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}|

=
∑
𝑣∈𝑉

∑
SAW 𝑃=(𝑣1,𝑣2,...,𝑣𝑡 ) ∈𝑃𝑢→𝑣

𝑡

∑
𝑤∈Γ𝐺 (𝑣)\{𝑣𝑖 |𝑖<𝑡 }

𝑡∏
𝑘=1

𝜀1
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}|(by (21))

≤ 𝜀1 ·
∑
𝑣∈𝑉

∑
SAW 𝑃=(𝑣1,𝑣2,...,𝑣𝑡 ) ∈𝑃𝑢→𝑣

𝑡

𝑡−1∏
𝑘=1

𝜀1
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}|(★)

= 𝜀1 ·
∑

SAW 𝑃=(𝑣1,𝑣2,...,𝑣𝑡 ) ∈𝑃𝑢𝑡

𝑡−1∏
𝑘=1

𝜀1
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}|

≤ 𝜀𝑡1.(by I.H.)

The inequality (★) holds because Γ𝐺 (𝑣) \ {𝑣𝑖 | 𝑖 < 𝑡} = Γ𝐺 (𝑣𝑡 ) \ {𝑣𝑖 | 𝑖 < 𝑡} (due to 𝑣𝑡 = 𝑣). We remark the
(★) is an inequality rather than an equality because Γ𝐺 (𝑣) \ {𝑣𝑖 | 𝑖 < 𝑡} can be empty. This proves (20). □

6.3.1. Influence bounds via recursion. Now we prove Lemma 6.11. The proof technique is based on the
“recursive coupling” introduced by Goldberg, Martin and Paterson [GMP05].

We introduce some definitions. Let (𝐺, 𝑳) be a list colouring instance, where 𝐺 = (𝑉 , 𝐸). Fix a vertex
𝑢 ∈ 𝑉 and two colours 𝑐1, 𝑐2 ∈ 𝐿(𝑢). Let 𝑤1,𝑤2, . . . ,𝑤𝑚 denote the neighbours of 𝑢 in graph 𝐺 , where
𝑚 = deg𝐺 (𝑢). For any 0 ≤ 𝑘 ≤ 𝑚, we define a list colouring instance (𝐺𝑢, 𝑳

𝑐1,𝑐2
𝑢,𝑘
): The graph𝐺𝑢 = 𝐺 [𝑉 \{𝑢}]

is obtained by removing vertex 𝑢 from𝐺 . The colour list 𝑳𝑐1,𝑐2
𝑢,𝑘

is obtained by removing the colour 𝑐1 from
the lists 𝐿(𝑤ℓ ) for ℓ < 𝑘 , and removing the colour 𝑐2 for the lists 𝐿(𝑤ℓ ) for ℓ > 𝑘 . Formally,

∀𝑣 ∈ 𝑉 \ {𝑢} : 𝐿𝑐1,𝑐2
𝑢,𝑘
(𝑣) =


𝐿(𝑣) \ {𝑐1} if 𝑣 ∈ {𝑤1,𝑤2, . . . ,𝑤𝑘−1}
𝐿(𝑣) \ {𝑐2} if 𝑣 ∈ {𝑤𝑘+1,𝑤𝑘+2, . . . ,𝑤𝑚}
𝐿(𝑣) if 𝑣 ∉ Γ𝐺 (𝑢) or 𝑣 = 𝑤𝑘 .

(22)

Lemma 6.12. Let L be a downward closed family of list colouring instances satisfying Condition 6.2 with
parameters 𝜒 > 0, 0 < 𝜀1 < 1 and 𝜀2 > 0. For any (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L , the following result holds. Fix a pair
of vertices 𝑢, 𝑣 ∈ 𝑉 . Let 𝑤1,𝑤2, . . . ,𝑤deg𝐺 (𝑢) denote the neighbours of 𝑢 in 𝐺 . Let 𝑐1, 𝑐2 ∈ 𝐿(𝑢) be the colours
achieving the maximum in (18) (breaking ties arbitrarily). Then,

𝑅𝐺,𝑳 (𝑢, 𝑣) ≤

1 if 𝑢 = 𝑣 ;
0 if 𝑢 and 𝑣 are disconnected in 𝐺 ;∑deg𝐺 (𝑢)

𝑘=1 𝛼𝑘 · 𝑅𝐺𝑢 ,𝑳
𝑐1,𝑐2
𝑢,𝑘
(𝑤𝑘 , 𝑣) otherwise.

,

where for all 1 ≤ 𝑘 ≤ deg𝐺 (𝑢),

𝛼𝑘 = min
(

𝜀1
deg𝐺𝑢

(𝑤𝑘 )
,

1
𝜀2𝜒 + 1

)
.

We remark that if deg𝐺𝑢
(𝑤𝑘 ) = 0, then by convention we have 𝜀1

deg𝐺𝑢
(𝑤𝑘 ) = ∞ and thus 𝛼𝑘 = 1

𝜀2𝜒+1 .
Now we use Lemma 6.12 to derive Lemma 6.11 and defer the proof of Lemma 6.12 to Section 6.3.2.

Proof of Lemma 6.11. Suppose (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L . It is clear that the instance (𝐺𝑢, 𝑳
𝑐1,𝑐2
𝑢,𝑘
) obtained from

(𝐺, 𝑳) is also in L . Hence, we can use Lemma 6.12 recursively. This implies that for any (𝐺, 𝑳) ∈ L , any
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𝑢, 𝑣 ∈ 𝑉 ,

𝑅𝐺,𝑳 (𝑢, 𝑣) ≤
∑

SAW 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣ℓ )
𝑢 = 𝑣1 and 𝑣 = 𝑣ℓ

ℓ∏
𝑘=2

min
(

𝜀1
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}| ,

1
𝜀2𝜒 + 1

)
.(23)

If 𝑢 and 𝑣 are disconnected, then 𝑅𝐺,𝑳 (𝑢, 𝑣) = 0, and in this case, the RHS of (19) is 0 because there is no
SAW from 𝑢 to 𝑣 , thus (19) holds. So in the following we assume that 𝑢 and 𝑣 are connected.

Our goal is to prove (19). Comparing (23) with (19), the main difference is the range of 𝑘 in the product.
We will trade the last factor of 1

𝜀2𝜒+1 for 𝑘 = ℓ by a factor of 𝜀1
𝜒 for 𝑘 = 1, with a loss of 1

𝜀1𝜀2
.

More precisely, by (23), we have

𝑅𝐺,𝑳 (𝑢, 𝑣)
(★)
≤ 1

𝜀2𝜒 + 1
∑

SAW 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣ℓ )
𝑢 = 𝑣1 and 𝑣 = 𝑣ℓ

(
ℓ−1∏
𝑘=2

𝜀1
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}|

)

≤ 𝜒

𝜀1(𝜀2𝜒 + 1)
∑

SAW 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣ℓ )
𝑢 = 𝑣1 and 𝑣 = 𝑣ℓ

(
ℓ−1∏
𝑘=1

𝜀1
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}|

)
(as 0 < deg𝐺 (𝑣1) ≤ 𝜒)

≤ 1
𝜀1𝜀2

∑
SAW 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣ℓ )

𝑢 = 𝑣1 and 𝑣 = 𝑣ℓ

(
ℓ−1∏
𝑘=1

𝜀1
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}|

)
,

where inequality (★) holds due to (23) and ℓ ≥ 2 (since𝑢 ≠ 𝑣). Note that in the formula above, it holds that
|Γ𝐺 (𝑣𝑘 ) \ {𝑣𝑖 | 𝑖 < 𝑘}| > 0 for all 1 ≤ 𝑘 ≤ ℓ−1 because 𝑣𝑘+1 ∈ Γ𝐺 (𝑣𝑘 ) \{𝑣𝑖 | 𝑖 < 𝑘}. This proves Lemma 6.11.

□

6.3.2. Establish recursion via coupling. Next, we prove Lemma 6.12. Fix an instance (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L .
Fix a vertex𝑢 ∈ 𝑉 . Let 𝑐1, 𝑐2 ∈ 𝐿(𝑢) be the colours achieving themaximum in (18) (breaking ties arbitrarily).
Our goal is to bound

𝑅𝐺,𝑳 (𝑢, 𝑣) = max
𝑐1,𝑐2∈𝐿 (𝑢)

𝑑TV
(
𝜇𝑢←𝑐1
𝑣,(𝐺,𝑳) , 𝜇

𝑢←𝑐2
𝑣,(𝐺,𝑳)

)
.

If𝑢 = 𝑣 , then 𝑅𝐺,𝑳 (𝑢, 𝑣) ≤ 1. If𝑢 and 𝑣 are disconnected in𝐺 , then 𝑅𝐺,𝑳 (𝑢, 𝑣) = 0. In the rest of this section,
we assume 𝑢 ≠ 𝑣 and 𝑢, 𝑣 are connected in graph 𝐺 .

Let𝑤1,𝑤2, . . . ,𝑤𝑚 denote the neighbours of 𝑢 in𝐺 , where𝑚 = deg𝐺 (𝑢). We construct a graph𝐺 ′ from
𝐺 as follows. We remove the vertex 𝑢 from the graph𝐺 , add𝑚 new vertices 𝑢1, 𝑢2, . . . , 𝑢𝑚 , and then add𝑚
new edges {𝑢𝑖 ,𝑤𝑖}. Finally, we define a set of colour lists 𝑳′ = {𝐿′(𝑣) | 𝑣 ∈ 𝑉 \ {𝑢} ∪ {𝑢1, 𝑢2, . . . , 𝑢𝑚}} as

𝐿′(𝑣) ≜
{
𝐿(𝑢) if 𝑣 ∈ {𝑢1, 𝑢2, . . . , 𝑢𝑚}
𝐿(𝑣) if 𝑣 ∈ 𝑉 \ {𝑢}.

This defines a new list colouring instance (𝐺 ′, 𝑳′). Figure 1 gives a small example.
For each 0 ≤ 𝑘 ≤ 𝑚, we define a set of partial colourings 𝜎𝑘 on {𝑢1, 𝑢2, . . . , 𝑢𝑚} by

𝜎𝑘 (𝑢 𝑗 ) ≜
{
𝑐1 if 1 ≤ 𝑗 ≤ 𝑘

𝑐2 if 𝑘 + 1 ≤ 𝑗 ≤ 𝑚.

Then, it holds that 𝜇𝑢←𝑐1
𝑣,(𝐺,𝑳) = 𝜇𝜎𝑚

𝑣,(𝐺′,𝑳′) and 𝜇𝑢←𝑐2
𝑣,(𝐺,𝑳) = 𝜇𝜎0

𝑣,(𝐺′,𝑳′) . By the triangle inequality, we have

𝑑TV
(
𝜇𝑢←𝑐1
𝑣,(𝐺,𝑳) , 𝜇

𝑢←𝑐2
𝑣,(𝐺,𝑳)

)
= 𝑑TV

(
𝜇𝜎0
𝑣,(𝐺′,𝑳′) , 𝜇

𝜎𝑚
𝑣,(𝐺′,𝑳′)

)
≤

𝑚∑
𝑘=1

𝑑TV
(
𝜇𝜎𝑘−1
𝑣,(𝐺′,𝑳′) , 𝜇

𝜎𝑘
𝑣,(𝐺′,𝑳′)

)
.(24)
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Figure 1. Split vertex 𝑢 to modify the graph 𝐺 to 𝐺 ′

We now bound 𝑑TV
(
𝜇𝜎𝑘−1
𝑣,(𝐺′,𝑳′) , 𝜇

𝜎𝑘
𝑣,(𝐺′,𝑳′)

)
for each 1 ≤ 𝑘 ≤ 𝑚. Consider the following coupling procedure C.

• sample 𝑐, 𝑐 ′ ∈ 𝐿′(𝑤𝑘 ) = 𝐿(𝑤𝑘 ) from the optimal coupling of 𝜇𝜎𝑘−1
𝑤𝑘 ,(𝐺′,𝑳′) and 𝜇𝜎𝑘

𝑤𝑘 ,(𝐺′,𝑳′) .

• sample 𝑐𝑣, 𝑐 ′𝑣 from the optimal coupling of 𝜇𝜎𝑘−1,𝑤𝑘←𝑐
𝑣,(𝐺′,𝑳′) and 𝜇𝜎𝑘 ,𝑤𝑘←𝑐′

𝑣,(𝐺′,𝑳′) .

By the definition of 𝜎𝑘 and 𝜎𝑘−1, they differ only at one vertex 𝑢𝑘 . By the construction of the graph 𝐺 ′,
𝑢𝑘 is only adjacent to 𝑤𝑘 . Then conditional on the colour of 𝑤𝑘 , the colour of 𝑢𝑘 is independent from the
colour of 𝑣 . Hence, in this coupling, we know that 𝑐𝑣 ≠ 𝑐 ′𝑣 can happen only if 𝑐 ≠ 𝑐 ′. Since 𝑐, 𝑐 ′ are sampled
from the optimal coupling, we have PrC [𝑐 ≠ 𝑐 ′] = 𝑑TV

(
𝜇𝜎𝑘−1
𝑤𝑘 ,(𝐺′,𝑳′) , 𝜇

𝜎𝑘
𝑤𝑘 ,(𝐺′,𝑳′)

)
. Therefore,

𝑑TV
(
𝜇𝜎𝑘−1
𝑣,(𝐺′,𝑳′) , 𝜇

𝜎𝑘
𝑣,(𝐺′,𝑳′)

)
≤ PrC

[
𝑐𝑣 ≠ 𝑐 ′𝑣

]
≤ 𝑑TV

(
𝜇𝜎𝑘−1
𝑤𝑘 ,(𝐺′,𝑳′) , 𝜇

𝜎𝑘
𝑤𝑘 ,(𝐺′,𝑳′)

)
· max
𝑐,𝑐′∈𝐿′ (𝑤𝑘 )

𝑑TV
(
𝜇𝜎𝑘−1,𝑤𝑘←𝑐
𝑣,(𝐺′,𝑳′) , 𝜇𝜎𝑘 ,𝑤𝑘←𝑐′

𝑣,(𝐺′,𝑳′)

)
.

Recall that the graph 𝐺𝑢 is obtained by removing 𝑢 from 𝐺 , and the colour lists 𝑳𝑐1,𝑐2
𝑢,𝑘

is defined in (22).
We can further derive

𝑑TV
(
𝜇𝜎𝑘−1
𝑣,(𝐺′,𝑳′) , 𝜇

𝜎𝑘
𝑣,(𝐺′,𝑳′)

)
≤ 𝑑TV

(
𝜇𝜎𝑘−1
𝑤𝑘 ,(𝐺′,𝑳′) , 𝜇

𝜎𝑘
𝑤𝑘 ,(𝐺′,𝑳′)

)
· max
𝑐,𝑐′∈𝐿′ (𝑤𝑘 )

𝑑TV
(
𝜇𝜎𝑘−1,𝑤𝑘←𝑐
𝑣,(𝐺′,𝑳′) , 𝜇𝜎𝑘 ,𝑤𝑘←𝑐′

𝑣,(𝐺′,𝑳′)

)
= 𝑑TV

(
𝜇𝜎𝑘−1
𝑤𝑘 ,(𝐺′,𝑳′) , 𝜇

𝜎𝑘
𝑤𝑘 ,(𝐺′,𝑳′)

)
· max
𝑐,𝑐′∈𝐿𝑐1,𝑐2

𝑢,𝑘
(𝑤𝑘 )

𝑑TV

(
𝜇𝑤𝑘←𝑐

𝑣,(𝐺𝑢 ,𝑳
𝑐1,𝑐2
𝑢,𝑘
) , 𝜇

𝑤𝑘←𝑐′

𝑣,(𝐺𝑢 ,𝑳
𝑐1,𝑐2
𝑢,𝑘
)

)
(★)

= 𝑑TV
(
𝜇𝜎𝑘−1
𝑤𝑘 ,(𝐺′,𝑳′) , 𝜇

𝜎𝑘
𝑤𝑘 ,(𝐺′,𝑳′)

)
· 𝑅𝐺𝑢 ,𝑳

𝑐1,𝑐2
𝑢,𝑘
(𝑤𝑘 , 𝑣) .(25)

Equation (★) holds due to 𝐿′(𝑤𝑘 ) = 𝐿(𝑤𝑘 ) = 𝐿𝑐1,𝑐2
𝑢,𝑘
(𝑤𝑘 ) and the definitions of instances (𝐺 ′, 𝑳′) and

(𝐺𝑢, 𝑳
𝑐1,𝑐2
𝑢,𝑘
).

Now, our task is reduced to bound 𝑑TV
(
𝜇𝜎𝑘−1
𝑤𝑘 ,(𝐺′,𝑳′) , 𝜇

𝜎𝑘
𝑤𝑘 ,(𝐺′,𝑳′)

)
. Let 𝑆 denote {𝑢1, . . . , 𝑢𝑚}. We define

two list colouring instances (𝐺∗1, 𝑳∗1) = Pin𝐺′,𝑳′ (𝑆, 𝜎𝑘−1) and (𝐺∗2, 𝑳∗2) = Pin𝐺′,𝑳′ (𝑆, 𝜎𝑘 ). Then we have
𝜇𝜎𝑘−1
𝑤𝑘 ,(𝐺′,𝑳′) = 𝜇𝑤𝑘 ,(𝐺∗1 ,𝑳∗1) and 𝜇𝜎𝑘

𝑤𝑘 ,(𝐺′,𝑳′) = 𝜇𝑤𝑘 ,(𝐺∗2 ,𝑳∗2) . Thus

𝑑TV
(
𝜇𝜎𝑘−1
𝑤𝑘 ,(𝐺′,𝑳′) , 𝜇

𝜎𝑘
𝑤𝑘 ,(𝐺′,𝑳′)

)
= 𝑑TV

(
𝜇𝑤𝑘 ,(𝐺∗1 ,𝑳∗1) , 𝜇𝑤𝑘 ,(𝐺∗2 ,𝑳∗2)

)
.(26)

Besides, 𝐺∗1 = 𝐺∗2 = 𝐺𝑢 and both (𝐺∗1, 𝑳∗1), (𝐺∗2, 𝑳∗2) can be obtained from (𝐺, 𝑳) by removing 𝑢 and re-
moving certain colours from 𝐿(𝑢𝑘 ) for 𝑘 = 1, . . . ,𝑚. So we have that (𝐺∗1, 𝑳∗1), (𝐺∗2, 𝑳∗2) ∈ L since
L is downward closed. Moreover, the two collections of colour lists 𝑳∗1 =

{
𝐿∗1 (𝑣) | 𝑣 ∈ 𝑉 \ {𝑢}

}
and

𝑳∗2 =
{
𝐿∗2 (𝑣) | 𝑣 ∈ 𝑉 \ {𝑢}

}
can only differ at𝑤𝑘 where 𝐿∗1 (𝑤𝑘 ) = 𝐿(𝑤𝑘 ) \ {𝑐2} and 𝐿∗2 (𝑤𝑘 ) = 𝐿(𝑤𝑘 ) \ {𝑐1}.

We prove an auxiliary lemma.
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Lemma 6.13. Let deg𝐺 (𝑤𝑘 ) denote the degree of𝑤𝑘 in 𝐺 .

𝑑TV
(
𝜇𝑤𝑘 ,(𝐺∗1 ,𝑳∗1) , 𝜇𝑤𝑘 ,(𝐺∗2 ,𝑳∗2)

)
≤ min

(
𝜀1

deg𝐺 (𝑤𝑘 ) − 1
,

1
𝜀2𝜒 + 1

)
.

Proof. It suffices to prove that

𝑑TV
(
𝜇𝑤𝑘 ,(𝐺∗1 ,𝑳∗1) , 𝜇𝑤𝑘 ,(𝐺∗2 ,𝑳∗2)

)
= max

{
𝜇𝑤𝑘 ,(𝐺∗1 ,𝑳∗1) (𝑐1), 𝜇𝑤𝑘 ,(𝐺∗2 ,𝑳∗2) (𝑐2)

}
.(27)

To see that (27) implies the lemma, note that (𝐺, 𝑳) ∈ L , thus deg𝐺𝑢
(𝑤𝑘 ) = deg𝐺 (𝑤𝑘 ) − 1 ≤ 𝜒 − 1. Since

(𝐺∗1, 𝑳∗1), (𝐺∗2, 𝑳∗2) ∈ L , Condition 6.2 gives

max
{
𝜇𝑤𝑘 ,(𝐺∗1 ,𝑳∗1) (𝑐1), 𝜇𝑤𝑘 ,(𝐺∗2 ,𝑳∗2) (𝑐2)

}
≤ min

(
𝜀1

deg𝐺𝑢
(𝑤𝑘 )

,
1

𝜀2𝜒 + 1

)
= min

(
𝜀1

deg𝐺 (𝑤𝑘 ) − 1
,

1
𝜀2𝜒 + 1

)
.

It remains to verify (27). Note that assuming Condition 6.2, the distributions in (27) are well-defined.
Let (𝐺𝑢, �̃�) be a list colouring instance where �̃� =

{
�̃�(𝑣) | 𝑣 ∈ 𝑉 \ {𝑢}

}
differs from 𝑳∗1 and 𝑳

∗
2 only on𝑤𝑘 ,

and �̃�(𝑤𝑘 ) = 𝐿(𝑤𝑘 ). For each colour 𝑐 , define 𝑛(𝑐) as the number of proper list colourings of (𝐺𝑢, �̃�) such
that the colour of𝑤𝑘 is 𝑐 . Note that 𝑛(𝑐) = 0 if 𝑐 ∉ �̃�(𝑤𝑘 ). Define

𝑁 ≜
∑

𝑐∈𝐿 (𝑤𝑘 )\{𝑐1,𝑐2 }

𝑛(𝑐) .

We claim that

𝑑TV
(
𝜇𝑤𝑘 ,(𝐺∗1 ,𝑳∗1) , 𝜇𝑤𝑘 ,(𝐺∗2 ,𝑳∗2)

)
=

max{𝑛(𝑐1), 𝑛(𝑐2)}
𝑁 +max{𝑛(𝑐1), 𝑛(𝑐2)}

.(28)

This implies (27) as the RHS of (28) equals max
{
𝜇𝑤𝑘 ,(𝐺∗1 ,𝑳∗1) (𝑐1), 𝜇𝑤𝑘 ,(𝐺∗2 ,𝑳∗2) (𝑐2)

}
. To show (28), we may

assume 𝑛(𝑐1) ≥ 𝑛(𝑐2) first. Then,

𝑑TV
(
𝜇𝑤𝑘 ,(𝐺∗1 ,𝑳∗1) , 𝜇𝑤𝑘 ,(𝐺∗2 ,𝑳∗2)

)
=
1
2
©«

∑
𝑐∈𝐿 (𝑤𝑘 )\{𝑐1,𝑐2 }

���� 𝑛(𝑐)
𝑁 + 𝑛(𝑐1)

− 𝑛(𝑐)
𝑁 + 𝑛(𝑐2)

���� + 𝑛(𝑐1)
𝑁 + 𝑛(𝑐1)

+ 𝑛(𝑐2)
𝑁 + 𝑛(𝑐2)

ª®¬
=
1
2

(
𝑁 (𝑛(𝑐1) − 𝑛(𝑐2))

(𝑁 + 𝑛(𝑐1)) (𝑁 + 𝑛(𝑐2))
+ 𝑛(𝑐1)𝑁 + 𝑛(𝑐2)𝑁 + 2𝑛(𝑐1)𝑛(𝑐2)(𝑁 + 𝑛(𝑐1)) (𝑁 + 𝑛(𝑐2))

)
(as 𝑛(𝑐1) ≥ 𝑛(𝑐2))

=
𝑛(𝑐1)

𝑁 + 𝑛(𝑐1)
.

Similarly, 𝑑TV
(
𝜇𝑤𝑘 ,(𝐺∗1 ,𝑳∗1) , 𝜇𝑤𝑘 ,(𝐺∗2 ,𝑳∗2)

)
= 𝑛 (𝑐2)

𝑁+𝑛 (𝑐2) if 𝑛(𝑐2) > 𝑛(𝑐1). This shows (28). □

Combining (26) and Lemma 6.13, we have

𝑑TV
(
𝜇𝜎𝑘−1
𝑢𝑘 ,(𝐺′,𝑳′) , 𝜇

𝜎𝑘
𝑢𝑘 ,(𝐺′,𝑳′)

)
= 𝑑TV

(
𝜇𝑤𝑘 ,(𝐺∗1 ,𝑳∗1) , 𝜇𝑤𝑘 ,(𝐺∗2 ,𝑳∗2)

)
≤ min

(
𝜀1

deg𝐺 (𝑤𝑘 ) − 1
,

1
𝜀2𝜒 + 1

)
(by Lemma 6.13)

= min
(

𝜀1
deg𝐺𝑢

(𝑤𝑘 )
,

1
𝜀2𝜒 + 1

)
,(29)

where 𝐺𝑢 is the subgraph of 𝐺 induced by 𝑉 \ {𝑢}. By (24), (25) and (29), we have

𝑅𝐺,𝑳 (𝑢, 𝑣) ≤
deg𝐺 (𝑢)∑
𝑘=1

min
(

𝜀1
deg𝐺𝑢

(𝑤𝑘 )
,

1
𝜀2𝜒 + 1

)
· 𝑅𝐺𝑢 ,𝑳

𝑐1,𝑐2
𝑢,𝑘
(𝑤𝑘 , 𝑣) .

This proves Lemma 6.12.
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6.4. Verify Condition 6.2 (Proof of Theorem 6.1). We first introduce the following lemma.

Lemma 6.14. Let (𝐺 = (𝑉 , 𝐸), 𝑳) be an instance of list colouringwhere𝐺 is triangle-free and 𝑳 = {𝐿(𝑣) | 𝑣 ∈ 𝑉 }.
Let Δ ≥ 3 be the maximum degree of 𝐺 and 𝛿 > 0 be a constant. Assume for every 𝑣 ∈ 𝑉 , it holds that

|𝐿(𝑣) | − deg𝐺 (𝑣) ≥ (𝛼∗ + 𝛿 − 1)Δ.
LetL be the downward closure of (𝐺, 𝑳). ThenL satisfies Condition 6.2 with parameters 𝜒 = Δ, 𝜀1 = 1− 𝛿

𝛼∗+𝛿
and 𝜀2 = 0.4 + 𝛿 .

It is clear that Theorem 6.1 is a consequence of Lemma 6.14 and Theorem 6.3.

Proof of Theorem 6.1. Suppose the instance (𝐺, 𝑳) satisfies the condition in (15). By Lemma 6.14, the down-
ward closure L of (𝐺, 𝑳) satisfies Condition 6.2 with parameters 𝜒 = Δ, 𝜀1 = 1 − 𝛿

𝛼∗+𝛿 and 𝜀2 = 0.4 + 𝛿 . By
Theorem 6.3, we have

𝑇mix(𝜀) ≤
(
9e

2
𝜀2

) (
1+ 1
(1−𝜀1 )𝜀2

)
𝑛
1+ 2
(1−𝜀1 )𝜀2 · log

(
𝑀

𝜀

)
.

Note that 2
𝜀2

= 2
0.4+𝛿 ≤ 5 and 1

(1−𝜀1)𝜀2 =
𝛼∗+𝛿

𝛿 (0.4+𝛿) ≤
1
𝛿 ·

𝛼∗

0.4 ≤
9
2𝛿 . Thus, we have

𝑇mix(𝜀) ≤
(
9e5

) (1+ 9
2𝛿 ) 𝑛1+ 9

𝛿 · log
(
𝑀

𝜀

)
≤

(
9e5𝑛

)1+9/𝛿 · log (
𝑀

𝜀

)
. □

6.4.1. Proof of Lemma 6.14. We first remark that 𝜒 ≥ 3. We then claim that every instance (𝐺 = (𝑉 , 𝐸), 𝑳 =
{𝐿(𝑣) | 𝑣 ∈ 𝑉 }) ∈ L satisfies

(30) ∀𝑣 ∈ 𝑉 : |𝐿(𝑣) | − deg𝐺 (𝑣) ≥ (𝛼∗ + 𝛿 − 1)𝜒
and 𝐺 is triangle-free. To see this, we only need to notice that (30) is preserved by the � relation, namely
if (𝐺 ′, 𝑳′) satisfies (30) and (𝐺, 𝑳) � (𝐺 ′, 𝑳′), then (𝐺, 𝑳) satisfies (30) as well. This holds since by the
definition of �, (𝐺, 𝑳) can be obtained from (𝐺 ′, 𝑳′) by removing some vertex 𝑣 and removing at most one
colour from the colour lists of 𝑣 ’s neighbours. Therefore, once the size of the colour list of certain vertex
𝑢 decreases by one, its degree must decrease by one as well. So the LHS of (30) never decreases. Besides,
it is easy to see all graphs in L are triangle-free.

By (30) and 𝜒 ≥ 3, for any (𝐺, 𝑳) ∈ L , |𝐿(𝑣) | ≥ deg𝐺 (𝑣) + 3(𝛼∗ + 𝛿 − 1) ≥ deg𝐺 (𝑣) + 2 for any vertex 𝑣 .
One can construct a proper list colouring using a simple greedy procedure. Hence, a proper list colouring
exists for any instance in L .

We fix a list colouring instance (𝐺 = (𝑉 , 𝐸), 𝑳) ∈ L . We first prove

𝜇𝑣,(𝐺,𝑳) (𝑐) ≤
1

(𝛼∗ + 𝛿 − 1)𝜒
(★)
≤ 1
(0.4 + 𝛿)𝜒 + 1 ,(31)

where (★) holds due to 𝜒 ≥ 3, so we can pick 𝜀2 = 0.4 + 𝛿 . Conditional on any colouring of Γ𝐺 (𝑣),
vertex 𝑣 has at least (𝛼∗ + 𝛿 − 1)𝜒 available colours and therefore the marginal probability is at most

1
(𝛼∗+𝛿−1)𝜒 ≤

1
(0.4+𝛿)𝜒+1 . Since 𝜇𝑣,(𝐺,𝑳) (𝑐) is a convex combination of these conditional probabilities, the

upper bound follows.
Next, fix a vertex 𝑣 ∈ 𝑉 with deg𝐺 (𝑣) ≤ 𝜒 − 1. We prove 𝜇𝑣,(𝐺,𝑳) (𝑐) ≤ 1−𝛿/(𝛼∗+𝛿)

deg𝐺 (𝑣)
, so we can pick

𝜀1 = 1 − 𝛿
𝛼∗+𝛿 . Let Γ

+
𝐺 (𝑣) = Γ𝐺 (𝑣) ∪ {𝑣} denote inclusive neighbourhood of 𝑣 . We show that, conditional

on any colouring 𝜎 of 𝑉 \ Γ+𝐺 (𝑣), the marginal probability 𝜇𝜎
𝑣,(𝐺,𝑳) (𝑐) ≤

1−𝛿/(𝛼∗+𝛿)
deg𝐺 (𝑣)

. Define a new instance
(𝐺, �̃�) = Pin𝐺,𝑳 (𝑉 \ Γ+𝐺 (𝑣), 𝜎), where Pin· (·) is in Definition 6.5. Since L is downward closed, (𝐺, �̃�) ∈ L .
Let𝑚 = deg𝐺 (𝑣) = deg𝐺 (𝑣). It suffices to prove that

∀𝑐 ∈ 𝐿(𝑣) = �̃�(𝑣), 𝜇𝑣,(𝐺,𝑳) (𝑐) ≤
1 − 𝛿/(𝛼∗ + 𝛿)

𝑚
.(32)
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Note that if𝑚 = 0, (32) holds trivially. If𝑚 = 1 or𝑚 = 2, by (𝐺, �̃�) ∈ L , 𝜒 ≥ 3 and (31), we have

𝜇𝑣,(𝐺,𝑳) (𝑐) ≤
1

(𝛼∗ + 𝛿 − 1)𝜒 ≤
1

3(𝛼∗ + 𝛿 − 1)
(★)
≤ 1 − 𝛿/(𝛼∗ + 𝛿)

2
≤ 1 − 𝛿/(𝛼∗ + 𝛿)

𝑚
,

where (★) holds because 1
3(𝛼∗+𝛿−1) ≤

𝛼∗

2(𝛼∗+𝛿) for all 𝛿 > 0.
Now, we assume𝑚 ≥ 3. Let 𝑣1, 𝑣2, . . . , 𝑣𝑚 denote the neighbours of 𝑣 in 𝐺 . For each 1 ≤ 𝑖 ≤ 𝑚, define

𝑠𝑖 = |�̃�(𝑣𝑖) |, and for any colour 𝑏, let 𝛿𝑖,𝑏 = 1 if 𝑏 ∈ �̃�(𝑣𝑖); and 𝛿𝑖,𝑏 = 0 if 𝑏 ∉ �̃�(𝑣𝑖). Since𝐺 is a triangle-free
graph, we have for any ∀𝑐 ∈ 𝐿(𝑣) = �̃�(𝑣),

𝜇𝑣,(𝐺,𝑳) (𝑐) =
∏𝑚

𝑖=1(𝑠𝑖 − 𝛿𝑖,𝑐)∑
𝑏∈𝐿 (𝑣)

∏𝑚
𝑖=1(𝑠𝑖 − 𝛿𝑖,𝑏)

=

∏𝑚
𝑖=1

(
1 − 𝛿𝑖,𝑐

𝑠𝑖

)
∑

𝑏∈𝐿 (𝑣)
∏𝑚

𝑖=1

(
1 − 𝛿𝑖,𝑏

𝑠𝑖

) ≤ 1∑
𝑏∈𝐿 (𝑣)

∏𝑚
𝑖=1

(
1 − 𝛿𝑖,𝑏

𝑠𝑖

) .(33)

We give a lower bound for denominator. Let 𝑠𝑣 = |𝐿(𝑣) |. By the AM-GM inequality, we have∑
𝑏∈𝐿 (𝑣)

𝑚∏
𝑖=1

(
1 − 𝛿𝑖,𝑏

𝑠𝑖

)
≥ 𝑠𝑣

©«
∏

𝑏∈𝐿 (𝑣)

𝑚∏
𝑖=1

(
1 − 𝛿𝑖,𝑏

𝑠𝑖

)ª®¬
1/𝑠𝑣

= 𝑠𝑣
©«

𝑚∏
𝑖=1

∏
𝑏∈𝐿 (𝑣)∩𝐿 (𝑣𝑖 )

(
1 − 1

𝑠𝑖

)ª®¬
1/𝑠𝑣

,(34)

where the last equality holds because 𝛿𝑖,𝑏 = 1 if and only if 𝑏 ∈ �̃�(𝑣𝑖). Note that (𝐿(𝑣) ∩ �̃�(𝑣𝑖)) ⊆ �̃�(𝑣𝑖) and
𝑠𝑖 = |�̃�(𝑣𝑖) |, which implies |𝐿(𝑣) ∩ �̃�(𝑣𝑖) | ≤ 𝑠𝑖 . We have that

𝑚∏
𝑖=1

∏
𝑏∈𝐿 (𝑣)∩𝐿 (𝑣𝑖 )

(
1 − 1

𝑠𝑖

)
≥

𝑚∏
𝑖=1

(
1 − 1

𝑠𝑖

)𝑠𝑖
.

Let 𝑝 = (𝛼∗ + 𝛿 − 1)𝑚 + 0.5. Since (𝐺, �̃�) ∈ L and𝑚 = deg𝐺 (𝑣) ≤ 𝜒 − 1, for all 1 ≤ 𝑖 ≤ 𝑚,

𝑠𝑖 ≥ (𝛼∗ + 𝛿 − 1)𝜒 ≥ (𝛼∗ + 𝛿 − 1)(𝑚 + 1) ≥ (𝛼∗ + 𝛿 − 1)𝑚 + 0.5 = 𝑝.

Note that 𝑝 > 1 because𝑚 ≥ 3. Also note that 𝑓 (𝑥) = (1 − 1/𝑥)𝑥 is increasing when 𝑥 ≥ 1. Then we have∏𝑚
𝑖=1

(
1 − 1

𝑠𝑖

)𝑠𝑖
≥

(
1 − 1

𝑝

)𝑚𝑝
. By (34), we have∑

𝑏∈𝐿 (𝑣)

𝑚∏
𝑖=1

(
1 − 𝛿𝑖,𝑏

𝑠𝑖

)
≥ 𝑠𝑣

(
1 − 1

𝑝

)𝑚𝑝
𝑠𝑣

.

Since (𝐺, �̃�) ∈ L and𝑚 = deg𝐺 (𝑣) ≤ 𝜒 − 1, 𝑠𝑣 ≥ 𝑚 + (𝛼∗ + 𝛿 − 1)𝜒 ≥ 𝑚 + (𝛼∗ + 𝛿 − 1)(𝑚 + 1) ≥ 𝑚 + 𝑝 .

By the fact that 𝑝 > 1, we have 1
𝑠𝑣
≤ 1

𝑚+𝑝 and
(
1 − 1

𝑝

)−𝑚𝑝
𝑠𝑣 ≤

(
1 − 1

𝑝

)− 𝑚𝑝
𝑚+𝑝 . By (33), we have

𝜇𝑣,(𝐺,𝑳) (𝑐) ≤
1
𝑠𝑣

(
1 − 1

𝑝

)−𝑚𝑝
𝑠𝑣

≤ 1
𝑚 + 𝑝

(
1 − 1

𝑝

)− 𝑚𝑝
𝑚+𝑝

.(35)

To proof (32), we define the following function

𝑓 (𝑚) ≜ 𝑚 + 𝑝
𝑚

(
1 − 1

𝑝

) 𝑚𝑝
𝑚+𝑝

=
(𝛼∗ + 𝛿)𝑚 + 0.5

𝑚

(
1 − 1
(𝛼∗ + 𝛿 − 1)𝑚 + 0.5

)𝑚 ( (𝛼∗+𝛿−1)𝑚+0.5)
(𝛼∗+𝛿 )𝑚+0.5

By definition, 𝜇𝑣,(𝐺,𝑳) (𝑐) ≤
1

𝑚𝑓 (𝑚) . In Lemma A.1, we show that 𝑓 (𝑚) is a decreasing function for𝑚 ≥ 3.
Thus, we have

𝑓 (𝑚) ≥ lim
𝑥→∞

𝑓 (𝑥) = (𝛼∗ + 𝛿) exp
(
− 1
𝛼∗ + 𝛿

)
.
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Thus, we have

𝜇𝑣,(𝐺,𝑳) (𝑐) ≤
1

𝑚𝑓 (𝑚) ≤
1
𝑚
· 1
𝛼∗ + 𝛿 exp

(
1

𝛼∗ + 𝛿

)
(★)
≤ 1

𝑚
· 𝛼∗

𝛼∗ + 𝛿 =
1 − 𝛿/(𝛼∗ + 𝛿)

𝑚
.

where (★) is due to the fact that exp
( 1
𝛼∗

)
= 𝛼∗. This proves (32) for all𝑚 ≥ 3.

6.5. Tightness of the marginal upper bound. Our whole analysis relies on the upper bound of the mar-
ginal probabilities, which states that the marginal probability of 𝑣 taking a specific colour is less than
the reciprocal value of 𝑣 ’s degree. Similar properties were also used in analysing strong spatial mix-
ing [GMP05, GKM15] or zero-free regions [LSS19] for graph colourings. A natural question is whether
the upper bound can be further improved.

In this section, we show that the bound |𝐿(𝑣) | > 𝛼∗Δ ± 𝑂 (1) is tight for our technique based on the
upper bound of the marginal probabilities. This means that the bound in Theorem 6.1 is the best we can
achieve using current techniques. However, we also remark that the construction below only applies to
list colouring instances.

We show that there exists a list colouring instance (𝐺, 𝑳)with triangle-free𝐺 such that if |𝐿(𝑣) | < 𝛼∗Δ−3
for some vertex 𝑣 , then (𝐺, 𝑳) does not have the desired marginal upper bound. Consider a star𝐺 = (𝑉 , 𝐸)
with (Δ + 1) vertices, where 𝑉 = {𝑣, 𝑣1, 𝑣2, . . . , 𝑣Δ} and 𝐸 = {{𝑣, 𝑣𝑖} | 1 ≤ 𝑖 ≤ Δ}. Define colour lists 𝑳 by
𝐿(𝑣) = [𝑞] = {0, 1, . . . , 𝑞 − 1} and 𝐿(𝑣𝑖) = [𝑞 − 1] = {0, 1, . . . , 𝑞 − 2} for all 1 ≤ 𝑖 ≤ Δ.

Proposition 6.15. If 𝑞 < 𝛼∗Δ − 3, then 𝜇𝑣,(𝐺,𝑳) (𝑐) > 1
deg𝐺 (𝑣)

= 1
Δ , where 𝑐 is the colour 𝑞 − 1.

Proof. We can calculate the probability that 𝑣 takes the colour 𝑐 = 𝑞 − 1 as follows

𝜇𝑣,(𝐺1,𝑳1) (𝑐) =
(𝑞 − 1)Δ

(𝑞 − 1) (𝑞 − 2)Δ + (𝑞 − 1)Δ =
1

(𝑞 − 2)
(
1 − 1

𝑞−1

) (Δ−1)
+ 1
≥ 1

(𝑞 − 2) exp
(
−Δ−1

𝑞−1

)
+ 1

.

If 𝑞 < 𝛼∗Δ − 3, we can verify that (𝑞 − 2) exp
(
−Δ−1

𝑞−1

)
+ 1 < Δ. This proves the proposition. □

Note that the graph𝐺 is a tree, which means that no matter how large we assume the girth of the graph
to be, such barrier of marginal upper bounds still exists.

Indeed, the upper bound (16) in Condition 6.2 is only required for vertices 𝑣 with deg𝐺 (𝑣) ≤ 𝜒 − 1, but a
simple modification of the instance above can provide a counter example to Condition 6.2. Similar barriers
of the marginal upper bound also appear in [GMP05, GKM15, LSS19]. Finally, we remark that the barrier
discussed in this section only applies for our current technique, which is solely based on marginal upper
bounds. It may still be possible to improve the dependence between the number of colours and the degree
of the graph by exploiting spectral independence (Definition 1.2) through other means.

References

[AL20] Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and appli-
cations. In STOC, pages 1198–1211, 2020.

[ALO20] NimaAnari, Kuikui Liu, and ShayanOveis Gharan. Spectral independence in high-dimensional
expanders and applications to the hardcore model. arXiv preprint arXiv:2001.00303, 2020. FOCS
2020, to appear.

[ALOV19] NimaAnari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials
II: high-dimensional walks and an FPRAS for counting bases of a matroid. In STOC, pages 1–12,
2019.

[ALOV20] NimaAnari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials
IV: Exchange properties, tight mixing times, and faster sampling of spanning trees. CoRR,
abs/2004.07220, 2020.

26



[BD97] Russ Bubley and Martin Dyer. Path coupling: A technique for proving rapid mixing in Markov
chains. In Proceedings of the 38th IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 223–231, 1997.

[CDM+19] Sitan Chen, Michelle Delcourt, Ankur Moitra, Guillem Perarnau, and Luke Postle. Improved
bounds for randomly sampling colorings via linear programming. In SODA, pages 2216–2234,
2019.

[CGM19] Mary Cryan, Heng Guo, and Giorgos Mousa. Modified log-sobolev inequalities for strongly
log-concave distributions. In FOCS, pages 1358–1370, 2019.

[Che98] Mu-Fa Chen. Trilogy of couplings and general formulas for lower bound of spectral gap.
In Probability towards 2000 (New York, 1995), volume 128 of Lect. Notes Stat., pages 123–136.
Springer, New York, 1998.

[CLV20] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Rapid mixing of glauber dynamics up to unique-
ness via contraction. arXiv preprint arXiv:2004.09083, 2020. FOCS 2020, to appear.

[DF01] Martin E. Dyer and Alan M. Frieze. Randomly colouring graphs with lower bounds on girth
and maximum degree. In FOCS, pages 579–587, 2001.

[DFHV13] Martin E. Dyer, AlanM. Frieze, Thomas P. Hayes, and Eric Vigoda. Randomly coloring constant
degree graphs. Random Struct. Algorithms, 43(2):181–200, 2013.

[DGU14] Martin E. Dyer, Catherine Greenhill, and Mario Ullrich. Structure and eigenvalues of heat-bath
Markov chains. Linear Algebra Appl., 454:57–71, 2014.

[DK17] Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement expanders. In
FOCS, pages 974–985. IEEE Computer Society, 2017.

[FV07] Alan M. Frieze and Eric Vigoda. A survey on the use of markov chains to randomly sample
colourings. Oxford Lecture Series in Mathematics and its Applications, 34:53, 2007.

[GK12] David Gamarnik and Dmitriy Katz. Correlation decay and deterministic FPTAS for counting
colorings of a graph. J. Discrete Algorithms, 12:29–47, 2012.

[GKM15] David Gamarnik, Dmitriy Katz, and Sidhant Misra. Strong spatial mixing of list coloring of
graphs. Random Struct. Algorithms, 46(4):599–613, 2015.

[GL18] Heng Guo and Pinyan Lu. Uniqueness, spatial mixing, and approximation for ferromagnetic
2-spin systems. ACM Trans. Comput. Theory, 10(4):Art. 17, 25, 2018.

[GMP05] Leslie Ann Goldberg, Russell A. Martin, and Mike Paterson. Strong spatial mixing with fewer
colors for lattice graphs. SIAM J. Comput., 35(2):486–517, 2005.

[Hay03] Thomas P. Hayes. Randomly coloring graphs of girth at least five. In STOC, pages 269–278,
2003.

[Hay06] Thomas P. Hayes. A simple condition implying rapid mixing of single-site dynamics on spin
systems. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 39–46, 2006.

[Hay13] Thomas P. Hayes. Local uniformity properties for glauber dynamics on graph colorings. Ran-
dom Struct. Algorithms, 43(2):139–180, 2013.

[HJ12] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge university press, 2012.
[HV03] Thomas P. Hayes and Eric Vigoda. A non-markovian coupling for randomly sampling color-

ings. In FOCS, pages 618–627, 2003.
[HV06] Thomas P. Hayes and Eric Vigoda. Coupling with the stationary distribution and improved

sampling for colorings and independent sets. Ann. Appl. Probab., 16, 2006.
[Jer95] Mark Jerrum. A very simple algorithm for estimating the number of𝑘-colorings of a low-degree

graph. Random Struct. Algorithms, 7(2):157–165, 1995.
[JS89] Mark Jerrum andAlistair Sinclair. Approximating the permanent. SIAM J. Comput., 18(6):1149–

1178, 1989.
[JVV86] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial

structures from a uniform distribution. Theoret. Comput. Sci., 43:169–188, 1986.
27



[KO20] Tali Kaufman and Izhar Oppenheim. High order random walks: Beyond spectral gap. Combi-
natorica, 40(1):245–281, 2020.

[LLY13] Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin systems. In
SODA, pages 67–84. SIAM, 2013.

[LP17] David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American
Mathematical Soc., 2017.

[LSS19] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. A deterministic algorithm for counting
colorings with 2Δ colors. In FOCS, pages 1380–1404, 2019.

[LY13] Pinyan Lu and Yitong Yin. Improved FPTAS for multi-spin systems. In RANDOM, pages 639–
654, 2013.

[Mol04] Michael Molloy. The glauber dynamics on colorings of a graph with high girth and maximum
degree. SIAM J. Comput., 33(3):721–737, 2004.

[Opp18] Izhar Oppenheim. Local spectral expansion approach to high dimensional expanders part I:
Descent of spectral gaps. Discret. Comput. Geom., 59(2):293–330, 2018.

[SS97] Jesús Salas and Alan D Sokal. Absence of phase transition for antiferromagnetic Potts models
via the Dobrushin uniqueness theorem. J. Stat. Phys., 86(3):551–579, 1997.

[SS20] Shuai Shao and Yuxin Sun. Contraction: A unified perspective of correlation decay and zero-
freeness of 2-spin systems. In ICALP, volume 168 of LIPIcs, pages 96:1–96:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

[Str06] AdamW. Strzebonski. Cylindrical algebraic decomposition using validated numerics. J. Symb.
Comput., 41(9):1021–1038, 2006.

[Vig00] Eric Vigoda. Improved bounds for sampling colorings. J. Math. Phys., 41(3):1555–1569, 2000.
[Wei06] DrorWeitz. Counting independent sets up to the tree threshold. In STOC, pages 140–149, 2006.
[YZ13] Yitong Yin and Chihao Zhang. Approximate counting via correlation decay on planar graphs.

In SODA, pages 47–66. SIAM, 2013.

Appendix A. Computer assisted proof

We give a computer-assisted proof for the following technical lemma used in the analysis for colouring.

Lemma A.1. Let 𝛼∗ ≈ 1.763 . . . be the solution of 𝛼∗ = exp
( 1
𝛼∗

)
and 𝛿 > 0 a real number. Define

𝑓 (𝑥) = (𝛼
∗ + 𝛿)𝑥 + 0.5

𝑥

(
1 − 1
(𝛼∗ + 𝛿 − 1)𝑥 + 0.5

) 𝑥 ( (𝛼∗+𝛿−1)𝑥+0.5)
(𝛼∗+𝛿 )𝑥+0.5

.

The function 𝑓 is decreasing for 𝑥 ∈ [3,∞).

Proof. Let 𝑎 = 𝛼∗ + 𝛿 − 1 > 0.763. Direct calculation yields 𝑓 ′(𝑥) = 𝐴 · 𝐵 with

𝐴 =
(
2𝑥2(2𝑎𝑥 − 1) (2(𝑎 + 1)𝑥 + 1)

)−1 (
1 − 2

1 + 2𝑎𝑥

) 𝑥 (1+2𝑎𝑥 )
1+2(𝑎+1)𝑥

;

𝐵 = 1 + 2𝑥 − 4𝑎2𝑥2 + 8𝑎(1 + 𝑎)𝑥3 + 𝑥
(
−1 + 8𝑎3𝑥3 − 2𝑎𝑥 (1 + 2𝑥) + 4𝑎2𝑥2(1 + 2𝑥)

)
ln

(
1 − 2

1 + 2𝑎𝑥

)
.

It is easy to see that 𝐴 > 0, so we only need to verify that 𝐵 < 0. To see this, note that the term

−1 + 8𝑎3𝑥3 − 2𝑎𝑥 (1 + 2𝑥) + 4𝑎2𝑥2(1 + 2𝑥) = 2𝑎𝑥 (1 + 2𝑥) (2𝑎𝑥 − 1) +
(
8𝑎3𝑥3 − 1

)
> 0

for any 𝑥 ≥ 3 and 𝑎 ≥ 𝛼∗ − 1. It follows from the Taylor series of ln(1 − 𝑧) that

ln
(
1 − 2

1 + 2𝑎𝑥

)
≤ − 2

1 + 2𝑎𝑥 −
2

(1 + 2𝑎𝑥)2 −
8/3

(1 + 2𝑎𝑥)3 −
4

(1 + 2𝑎𝑥)4 .
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Therefore we have
𝐵 ≤ 1 + 2𝑥 − 4𝑎2𝑥2 + 8𝑎(1 + 𝑎)𝑥3

+ 𝑥
(
−1 + 8𝑎3𝑥3 − 2𝑎𝑥 (1 + 2𝑥) + 4𝑎2𝑥2(1 + 2𝑥)

)
·
(
− 2
1 + 2𝑎𝑥 −

2
(1 + 2𝑎𝑥)2 −

8/3
(1 + 2𝑎𝑥)3 −

4
(1 + 2𝑎𝑥)4

)
(★)
< 0,

where (★) is verified by the following Mathematica code:
1 Resolve[Exists[x,1+2x-4a^2x^2+8a(1+a)x^3+x(-1+8a^3x^3-2a x(1+2x)+4

a^2x^2(1+2x))*(-(2/(1+2a*x))-2/(1+2a*x)^2-(8/3)/(1+2a*x)^3-4/(1+2a*x)^4)>=0 && a>763/1000 && x>=3]]

□

Here we used the Resolve command in Mathematica. This is a rigorous implementation of a quantifier
elimination algorithm, which determines the feasibility of a collection of polynomial inequalities. For more
details, see [Str06].
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