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IBMM, Université Libre de Bruxelles, Gosselies, Belgium

5James Clerk Maxwell Building, University of Edinburgh, Edinburgh EH9 3FD, Scotland
6Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

Suppressing SARS-CoV-2 will likely require the rapid identification and isolation of in-
fected individuals on an ongoing basis. Reverse transcription polymerase chain reaction
(RT-PCR) tests are accurate but costly, making regular testing of every individual expen-
sive. The costs are a challenge for all countries and particularly for developing countries.
Cost reductions can be achieved by pooling (or combining) subsamples and testing them
in groups [1–7]. A balance must be struck between increasing the group size and retaining
test sensitivity, since sample dilution increases the likelihood of false negatives for individuals
with low viral load in the sampled region at the time of the test [8]. Likewise, minimising the
number of tests to reduce costs must be balanced against minimising the time testing takes to
reduce the spread of infection. Here we propose an algorithm for pooling subsamples based
on the geometry of a hypercube that, at low prevalence, accurately identifies infected indi-
viduals in a small number of tests and rounds of testing. We discuss the optimal group size
and explain why, given the highly infectious nature of the disease, largely parallel searches
are preferred. We report proof of concept experiments in which a positive subsample was
detected even when diluted 100-fold with negative subsamples (cf. 30-fold to 48-fold dilution
in Refs. [9–11]). We quantify the loss of sensitivity due to dilution and discuss how it may
be mitigated by frequent re-testing of groups, for example. With the use of these methods,
the cost of mass testing could be reduced by a large factor which, furthermore, increases as
the prevalence falls. Field trials of our approach are under way in Rwanda and South Africa.
The use of group testing on a massive scale to closely and continually monitor infection in a
population, along with rapid and effective isolation of infected people, provides a promising
pathway to the longterm control of COVID-19.
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I. INTRODUCTION

COVID-19 represents a major threat to global health. Rapidly identifying and isolating infected
individuals is one of the most important available strategies for containing the virus. However,
each diagnostic test for the SARS-CoV-2 virus costs 30-50 US dollars [12]. Therefore, testing
every individual regularly, as may be required to eliminate the virus, is expensive. The costs
are unaffordable for most low-income countries, which have limited available resources for massive
SARS-CoV-2 testing. It is therefore important to ask: are there more efficient ways to find infected
people?

The first step in testing, swab collection, is labour intensive but does not require expensive
chemicals or equipment. It may therefore be feasible to collect swabs regularly from everyone. The
next step involves RT-PCR machines [13]. These require expensive chemical reagents, currently in
short supply, as well as skilled personnel. Reducing the cost requires that we minimise the total
number of tests. The speed of testing is also a key concern because SARS-CoV-2 is so infectious.
Each RT-PCR test takes several hours in the lab, time during which the virus can spread [14].

To find infected individuals, the naive approach is to test everyone, i.e., to perform one test
per person. However, at low prevalence it is far more efficient to pool (or combine) samples and
test them together. This idea of group testing was proposed by Dorfman in 1943 [1]. At low
viral prevalence p, Dorfman’s algorithm reduces the number of tests per person, required to find
all infected individuals, to ≈ 2

√
p (see Appendix A). The algorithm we present is more efficient,

requiring only ≈ ep ln(1/p) tests per person at low p, where e = 2.718 . . . is Euler’s number. As an
example, a survey of private residential households in England and Wales, released on 4 September,
2020 by the Office of National Statistics, estimated a prevalence of p = 0.05%(−.01% + .02% at
95%Cl) [15–17]. For p = 0.05%, Dorfman’s algorithm offers a 22-fold cost reduction while ours
offers a 100-fold cost reduction. The main obstacle to achieving these large cost savings is the
number of samples which can be pooled without compromising detection. In this paper, we present
proof of concept experiments demonstrating that one positive sample in a pool of a hundred can
still be reliably detected. We also discuss routes to increasing the pool size, as will be needed to
gain the full benefits of group testing at low prevalence. If larger pool sizes and the associated
cost reductions can be achieved, group testing may provide an affordable pathway to the longterm
control of SARS-CoV-2.

In this paper, our focus is on population screening and not on protocols for use with at risk
groups or in clinical settings. The prevalence is typically much higher among at risk groups
or among individuals who present themselves for testing. For example, in the week ending 2nd
September, 2020, 0.6% of the tests performed in hospitals in England were positive [18], suggesting a
prevalence an order of magnitude greater than that in the wider population, quoted above. Second,
in clinical settings the overriding concern should be to test the individual patient as quickly and
accurately as possible. In most situations, that means performing an individual test. We are not
suggesting group testing as a strategy for testing patients in clinics, specially those presenting with
symptoms.

With this caveat, there are many potential applications. Sports teams where players and staff
must be tested regularly are an example. A prominent rugby team in South Africa is trialling
our method. Early results indicate cost savings of over an order of magnitude, with the successful
detection of positives in groups of 81. Care homes provide a similar application. Pre-flight group
tests can be used to clear passengers for commercial flights. Rwanda has adopted group testing as
a national strategy. All air passengers are now required to undergo a test locally which has helped
to revive tourism in the country. Group tests in University halls of residence, labs or depart-
ments could likewise enable safer in-person interaction. There is exciting potential for combining
group testing with cheaper multiplex RT-PCR tests (see, e.g., [19]) for the purposes of population
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Figure 1: Subsample pooling in the hypercube algorithm, shown here for D = L = 3 and
N = 27 = 33. Each vertex represents an individual. The hypercube is sliced into L slices, in each of the D

principal directions. Samples from N/L individuals are pooled into a sample for each slice. For this
example, the 3 sets of slices are shown in blue, red and green. If one infected individual is present, tests on
each set of slices identify their coordinate in that direction. Hence only 9 tests uniquely identify them. As
the viral prevalence falls, the optimal group size N and dimension D grow, and the efficiency gain rises.

screening. The combination may yield cost reductions of over two orders of magnitude.

Group testing algorithms generally require more than one round of testing. In Dorfman’s algo-
rithm, a first round of group tests is followed by a second round in which each member of every
positive group is tested. Our algorithm involves a similar first round of group tests, though with a
larger group size. Positive groups proceed to a second round of “slice tests,” which usually suffices
to identify all infected individuals without any need for individual tests. Occasionally one and,
very rarely, more than one additional round of slice tests may be required. We compare our ap-
proach with other approaches in some detail (see Supplementary Information). There are adaptive
algorithms requiring fewer tests but more rounds of testing, during which the viral prevalence can
grow. We argue below that such searches are disfavoured at low prevalence. There are also non-
adaptive algorithms requiring only one round of testing [4–7, 11]. While superficially attractive,
they have some disadvantages compared to ours, for example a higher failure rate (see Supplemen-
tary Information, sections III and IX). In our approach, the first round of tests, performed on the
groups, provides a valuable “sanity check” on the viral prevalence in the population being tested
before the second round of more numerous “slice tests.” More generally, group tests will provide a
highly efficient means of tracking the viral prevalence in a number of different populations in real
time (see Supplementary Information, section VIII).

Group testing is most obviously effective when there are no infected individuals in the group:
just one test suffices to show that no-one is infected. Our algorithm takes full advantage of this
powerful result. In the first round of tests, subsamples from all group members are pooled and
tested together. For our algorithm, the optimal group size is N ≈ 0.35/p. The expected number of
infected individuals in a group is 0.35 and a group will test negative over 70% of the time. Groups
that test positive are passed on to the first round of slice tests, which we now describe.



3

II. WHEN ONE MEMBER OF A GROUP IS INFECTED

Consider the case where only one member of the group is infected. The idea behind our
algorithm is geometrical: the group of individuals to be tested is represented by a set of N points
on a cubic lattice in D dimensions, organised in the form of a hypercube with L points on a side
(see Figure 1), so that

LD = N. (1)

Instead of directly testing the samples taken from every individual, we first divide each of them
into D equal subsamples. These DN subsamples are recombined as follows. Slice the hypercube
into L planar slices, perpendicular to one of the principal directions on the lattice. Form such a set
of slices in each of the D principal directions and pool the LD−1 subsamples corresponding to each
slice. Altogether, DL slices, each slice combining N/L = LD−1 subsamples, are tested in parallel,
in each round of slice tests. If there is one infected individual, then one slice out of the L slices,
in each of the D directions, will yield a positive result. That slice indicates the coordinate of the
infected individual, in the corresponding principal direction.

Therefore the number of tests required to uniquely identify the infected individual is

DL = DN1/D, (2)

where we used (1). Treating D as a continuous variable, the right hand side of (2) diverges at both
small and large D, possessing a minimum at

D = lnN, (3)

corresponding to L = e and a total of e lnN trials. In reality, D and L must be integers, but
using L = 3 achieves almost the same efficiency (in the total number of trials, e is replaced with
3/ ln 3 ≈ 2.73, less than half a per cent larger, whereas using L = 2 or 4 gives 2/ ln 2 = 4/ ln 4 ≈ 2.89,
more than 5 per cent larger). With no further constraint, finding one infected person in a population
of a million, using L = 3, requires only 39 tests, performed in one round of testing. (To see this,
note that 313 > 106, so a hypercube of side L = 3 in dimension D = 13 contains over a million
points. A round of slice tests on this hypercube consists of DL = 13× 3 = 39 slice tests.)

III. PROOF OF CONCEPT

In real time PCR tests, the target RNA molecules are reverse transcribed into DNA which is
replicated exponentially until it can be detected through flourescence. In a perfectly efficient test,
the number of DNA molecules doubles in every PCR cycle. The test is extremely sensitive: fewer
than 10 molecules of viral RNA are sufficient [13]. A nasopharyngeal swab taken in the first 5
days of symptoms yields, on average, ∼ 2× 105 viral RNA molecules per mL [20]. Asymptomatic
patients appear to exhibit similar viral loads [21]. In the normal testing protocol, just 5µL of the
solution, containing around 1000 RNA molecules, is included in the mix fed into the PCR machine.
Samples taken earlier or later, or in younger patients whose antibodies have suppressed the virus,
have less virus present. In practice, this is expected to be the most significant cause of testing error,
taking the form of false negatives [17, 22, 23]. In pooled testing, positive subsamples are diluted
with negative subsamples. Dilution by 100-fold, for example, means that only around 10 RNA
molecules are likely to be present in the RT-PCR test. In principle, this should still be sufficient
to yield a positive result.
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Figure 2: Positive specimens are detected after a 100-fold dilution. Each of six typical
SARS-CoV-2-positive specimens was diluted through pooling with 19, 49, or 99 negative specimens. A Ct
value (i.e., the PCR cycle at which the fluorescence signal generated by a specimen exceeds the baseline

signal) was determined for each pool through RT-PCR amplification of the N and Orflab genes of
SARS-CoV-2. For each gene, the Ct values are plotted against the dilution factor. The red horizontal lines
indicate the Ct value (40) at or below which a specimen is considered positive. All Ct curves stay below

the red lines even as the positive specimens are diluted 100-fold. (See Methods, Table 6)

As a proof of concept, using oropharyngeal swab specimens collected during COVID-19 surveil-
lance in Rwanda, we investigated whether known positive specimens still test positive after they
are diluted 20-, 50-, or 100-fold through pooling with negative specimens (see Methods). We used a
RT-PCR test targetting the N and Orf1ab genes of SARS-CoV-2, a combination used routinely for
diagnostic screening for COVID-19 in Rwanda. The standard protocol is to consider a test positive
if PCR amplification produces an above-background fluorescence signal for both target genes at a
PCR cycle number, i.e., a Ct value, ≤ 40. Our key finding is that typical positive specimens can
still be detected even after dilution by up to a 100-fold (see Figure 2). (For experiments demon-
strating detection after 30-, 32-fold and 48-dilution, see Refs. [9–11]). As a consistency check, we
determined the change in the Ct value (∆Ct) in going from a 50- to a 100-fold dilution. As noted
above, a positive sample diluted 100-fold in principle requires one more cycle of PCR amplification
than when diluted 50-fold, to achieve the same flourescence signal, implying ∆Ct ≈ 1.0. Consistent
with this expectation, we find ∆Ct ≈ 1.0 ± 0.15 (1σ error) for the N gene and ∆Ct ≈ 1.1 ± 0.14
for the Orf1ab gene. The changes in Ct values for other dilutions are also consistent with this
interpretation.

We estimated post-dilution sensitivities by combining (technically, convolving) the probability
distribution for pre-dilution Ct values for positive samples (see Methods, Table 7) with the proba-
bility distribution for the increase ∆Ct as inferred above. Treating both distributions as Gaussian,
the distribution of post-dilution Ct values is also Gaussian, with mean given by the sum of the
means and variance given by the sum of the variances. In this way, we estimated that a 40-cycle
PCR test targeting the N-gene (resp. Orf1ab gene) has post 20-, 50-, and 100-fold dilution sensitiv-
ities of 91% (resp. 85%), 88% (resp. 81%), and 85% (resp. 77%), respectively. We have confirmed
these estimates using (i) an independent sample of Ct values for 107 positive specimens collected
in Rwanda, in tests targeting the same two genes, and (ii) the published data set of 26 positive
specimens identified in a recent study of pooled testing for SARS-CoV-2 in Israel [10], targetting
a single gene (the E gene). All three data sets gave broadly consistent results.

The positive samples most likely to be missed due to dilution are those with the highest Ct
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values before dilution, i.e., those with the lowest viral load. The individuals concerned are likely
to be the least infectious [24, 25]. Conversely the individuals producing samples with the lowest
Ct values, least affected by sample dilution, whether symptomatic or asymptomatic, are the most
important to detect since they are likely to be the most infectious. Nevertheless, it is important to
consider ways in which the loss in sensitivity due to dilution might be mitigated. The most obvious
is to re-test sufficiently often (say, every 3 days) to ensure a test occurs in the period of highest
viral abundance, for any infected individual. Group tests involve the greatest degree of dilution
in our method, but they are also the cheapest testing stage to repeat frequently and thereby to
mitigate sensitivity loss. Second, the number of PCR cycles could be raised to 44, the maximum
used in Ref. [10]. According to our analysis, this would raise the sensitivity after 100-fold dilution
to 95% (resp. 90%) for the N (resp. Orf1ab) genes. Third, the volume of the sample used in the
RT-PCR test can be increased from 5µL to 10µL (this is done in the lab we are working with in
South Africa). Fourth, the viral concentration in the pooled sample might be raised by physical
or chemical means such as ultra-centrifugation or precipitation. Finally, PCR machines might be
re-engineered to allow larger sample volumes to be tested. All of these possibilities are worth
exploring.

IV. WHEN MORE THAN ONE MEMBER OF A GROUP IS INFECTED

So far, we have assumed only one member of the group is infected. But what if 2, 3 or more
members are infected? In normal circumstances, all we will have is an estimate of the prevalence
p of the virus in the population from which the group has been drawn, i.e., the probability that
a person chosen at random is infected. A feature of group testing is that the first round of group
tests, relatively few in number, allows us to conveniently update our knowledge of p, before any
infected individuals have been identified (see Supplementary Information, section VIII).

Given p, the probability that k members of a group of size N are infected is described by a
Poisson distribution with mean λ = pN . For λ well below unity, the probability falls rapidly with
increasing k. At very low p, the optimal N is very large, so D = logLN � 1. The advantages of
the hypercube algorithm are particularly clear in this limit. Therefore, we describe this limit first
before discussing realistic values of D.

The first round of slice tests, as described in Section II, yield, for L = 3, a set of triples of
zeros and ones, i.e., {1, 0, 0}, {1, 1, 0} or {1, 1, 1} and permutations thereof, for every principal
direction of the lattice. Let σ be the sum of the three values (so σ = 1, 2 or 3) and dσ the number
of directions in which the value σ occurs, so d1 + d2 + d3 = D. For D � 1, the number of
infected individuals k may be accurately inferred from the observed values of dσ, even before any
infected individuals are identified. Knowing k, we then find all infected individuals as follows: (i)
if k = 1, then d1 = D. Each positive slice indicates the coordinate of the infected individual in
that direction. Hence, the infected individual is identified in one round of slice tests; (ii) if k = 2,
d2 > 0 but d3 = 0. If d2 = 1, the two infected individuals are immediately identified. If d2 > 1,
choose one of the directions with σ = 2, and treat the two positive slices as smaller hypercubes,
each containing one infected individual. A further round of slice tests identifies one and the other
is found by elimination; (iii) if k = 3 then, at large D, at least one direction has σ = 3. Choose
one such direction and treat two of the positive slices as smaller hypercubes, each containing one
infected individual. A slice test on each identifies two infected individuals and the third is found by
elimination; if k > 3, the number of rounds of slice tests required to identify all infected individuals
is slightly larger than k. However, for the optimal value of group size, the probability to have k > 3
infected members is negligibly small.

Hence, in the large D limit, to a good approximation k rounds of slice tests are required to
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Figure 3: Expected number of tests per person to find all infected individuals using the
hypercube algorithm (log-log plot). The dashed grey curve shows ep ln(0.734/p), the result obtained in

the large D approximation, where the optimal group size N ≈ 0.35/p. The coloured curves show the
results obtained from a detailed analysis when the group size N = 3D with D an integer. Where 0.35/p is

an exact power of 3, as at the left end of each coloured curve, optimal performance is attained. As p is
increased, a growing fraction of sites in the 3D hypercube are left empty, until the next exact power of 3

(see Supplementary Information)

identify k infected individuals. In the Supplementary Information, we show that, at low prevalence
p, assuming Poisson statistics, the expected number of tests per person 〈T 〉/N required to identify
all infected individuals is minimised for N ≈ 0.350/p. At this optimal group size, 〈T 〉/N ≈
ep ln(0.734/p), shown as the dashed grey line in Figure 3. The reciprocal of this number is the
efficiency gain relative to naive testing.

For practical applications, we are interested in the efficiency of the algorithm at modest values
of D such as 3, 4 or 5. This requires a more intricate analysis, the details of which we relegate
to the Supplementary Information. However, some simple and general statements may be made.
First, when all directions yield σ = 1, only one individual is infected and they are immediately and
uniquely identified. This is the most probable outcome of the first round of slice tests. Second,
when σ > 1 in only one direction then two (or three) infected individuals are uniquely identified
without further tests. If σ > 1 in more than one direction, a second round of slice tests is needed.
We can eliminate any slice which tested negative in the first round and thus work with a smaller
hypercube. We make only one approximation, namely we assume the infected samples are rare in
the hypercube. They may then be treated as independent, randomly chosen points. Within this
approximation, we compute the probabilities through to the second round of slice tests. Strikingly,
we find that the hypercube algorithm remains highly efficient at modest values of D. For example,
for λ = 0.35 and D = 4, in 93.3% of cases one round of slice tests suffices to identify all infected
individuals. For the remaining 6.7% of cases, one more round suffices in all but 0.01% of cases, a
very low theoretical failure rate (which does not include experimental errors). The expected total
number of tests per person, for D = 3, 4 and 5, are plotted in Figure 3. Where 0.35/p is an exact
power of 3, as at the left end of each coloured curve, optimal performance is attained. As p is
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increased, an increasing fraction of sites in the 3D hypercube are left empty until the next exact
power is reached. Nevertheless, pooling still results in a high efficiency gain. As Figure 3 shows,
the large D approximation provides a surprisingly good (and very convenient) fit to the low D
results. (See Supplementary Information, sections IV-VII for further details).

V. LARGELY PARALLEL SEARCHES ARE PREFERRED

Some search methods require fewer tests but more rounds of testing. A binary search [2, 3],
for example, finds one infected individual among N in ∼ log2N tests, a factor of e ln 2 ≈ 1.88 less
tests than needed by our hypercube algorithm at large D. However, the tests must be performed
serially, requiring ∼ log2(1/p) rounds of testing. For p = 0.4% (or 0.15%) a binary search takes 8
(or over 9) rounds of testing whereas a hypercube search takes typically 2 and occasionally 3 (in
both cases). For a highly infectious disease like COVID-19, saving time is crucial because infected
individuals who are still at large can infect others. The doubling time for SARS-CoV-2 has been
estimated at τ2 ≈ 2 days [14, 26]. If each testing round takes τ days, the prevalence grows by
∼ (1/p)τ/τ2 during a binary search. If this growth factor exceeds e ln 2, a binary search will do
worse than a hypercube search. Assuming τ ≈ 1/3 day, we find that for p < 1%, the hypercube
search is preferred. Another advantage of the hypercube search is that it includes many consistency
checks. For example, finding σ = 1 in one direction and σ = 0 in the others indicates a testing
error. In contrast, a binary search relies on repeated testing of the positive sample, so that a single
false negative can prematurely terminate the search.

VI. CONCLUSIONS

The hypercube algorithm offers an attractive compromise between minimising the total number
of tests to reduce costs and maximising the speed of testing to reduce the spread of the virus. We
have demonstrated its viability for group sizes up to 100, showing that cost savings of a factor
of nearly 20 can, in principle, already be achieved. We have quantified the loss of sensitivity due
to dilution and discussed how it may be mitigated, for example through repeated group testing.
These strategies could open the way to the use of larger pool sizes, bringing even greater cost
savings at low prevalence. The most striking aspect of our approach is how rapidly the cost of
testing a population can fall, pooled test sensitivity permitting, with decreasing prevalence. This
should incentivise decision-makers to act firmly to drive the prevalence down through mass testing,
contact tracing and isolation. Although mass testing is initially costly, it provides a clear route to
reducing the prevalence. As the viral prevalence is reduced, keeping it low will, with the use of
pooled testing, become progressively more affordable.
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METHODS

Observational study design: We conducted an experiment to evaluate the hypothesis that
known SARS-CoV-2 positive oropharyngeal swab specimens collected during COVID-19 surveil-
lance in Rwanda will test positive after they are combined with as many as 99 known SARS-CoV-2
negative specimens. This was followed by an observational study that aimed to apply our hyper-
cube algorithm to increase the efficiency of community testing for COVID-19 in Rwanda. In the
experiment, two different sets of sample pools were tested for SARS-CoV-2 using RT-PCR. Each
set consisted of three sample pools containing one known SARS-CoV-2 positive sample diluted in
ratios of 1:20, 1:50, and 1:100 by combining it with equivalent amounts of 19, 49, and 99 known
SARS-CoV-2 negative samples, respectively (see Figure 2 in the paper and Table 6 here). In the
observational study, 1280 individuals selected from the community were tested for SARS-CoV-2
using RT-PCR. One third of the individuals were participants in a screening for Severe Acute Res-
piratory Infections (SARI) and Influenza Like Illness (ILI) conducted in 30 per cent of the health
facilities found across the 30 districts of Rwanda. The remaining two thirds were from COVID-19
screening of at-risk groups in the capital city of Kigali. The latter group is comprised mainly of
people (market vendors, bank agents, and supermarket agents) who remained active during the
lockdown imposed by the Government of Rwanda to contain COVID-19. Table 5 summarises the
characteristics of the study participants.

The positive fraction of RT-PCR tests for SARS-CoV-2 conducted in Rwanda in March 2020
suggests an upper-bound of 2 per cent for the virus prevalence in the country. Using p =2 per cent
in the hypercube algorithm indicated an optimal sample group size of 17.5. For convenience, the
1280 individual samples were combined in 64 groups of 20 samples before testing for SARS-CoV-2
(see Figure 4).

We used two established experimental protocols for SARS-CoV-2 testing, namely 1) a protocol
by DAAN Gene Co., Ltd., Sun Yat-sen University, which is available online [27], and is also under
review by the WHO [28], and 2) another by Corman et al., [13] which is widely used by the
scientific community. The first protocol is used for routine screening for SARS-CoV-2, while the
second protocol is used only if the first one produces a positive result and confirmation is thus
required.

Sample collection and pool design: Oropharyngeal swabs were collected by wiping the tonsils
and posterior pharynx wall with two swabs, and the swab heads were immersed in 3 mL Viral
Transport Medium (VTM). Samples were transported in VTM to the Rwanda National Reference
Laboratory (NRL) immediately after collection. Samples that had to be transported over a long
distance were stored in dry ice. Each sample had a volume of 3 mL, of which 200 µL were used
for pool testing, and the remainder was temporarily stored at -20°C until the result of the pool
testing was known. 200 µL of each sample were mixed with the same volume of other samples of
the same pool in a FalconTM 15 mL conical tube and, after vortexing for 5 seconds, 200 µL of the
mixture were pipetted for downstream RNA extraction. 5 µL of the extracted RNA were added to
20 µL of master mix to make 25 µL of total solution to be amplified by RT-PCR. If a pool tested
positive, stored samples from that pool were processed to identify the positive ones. Individual
samples were bar coded, making it easy to trace individuals that tested positive and minimising
the risk of confusion of samples. Pool design and subsequent experimental analysis (see RT-PCR
for SARS-CoV-2 below) were implemented with the aid of a robot to reduce human error.

RT-PCR for SARS-CoV-2: Total viral RNA was extracted from swab specimens using the
QIAamp Viral RNA 91 Mini Kit (Qiagen, Hilden, Germany), according to the manufacturer’s
instructions. RNA samples were screened for SARS-CoV-2 using a 2019-nCoV RNA RT-PCR
test targeting two genes respectively encoding an open reading frame (denoted Orf1ab) and
nucleocapsid protein (denoted N) (DAAN Gene Co., Ltd. Of Sun Yat-sen University, 19, Xi-
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Figure 4: Amplification plot for sample pools. Each of 64 the sample pools described in the text tests
negative for SARS-CoV-2: the RT-PCR fluorescence curves show below-threshold net fluorescence values.
In contrast, for both target genes of the positive control, the fluorescence curves cross the threshold after
32 PCR cycles. ∆Rn denotes the difference between the fluorescence signal generated by a sample and a

baseline signal. The yellow curves reaching ∆Rn ∼ 2, 000, 000) and 1, 750, 000 represent the positive control
for the N and Orf genes, respectively. The other yellow and orange curves represent internal controls.

angshan Road, Guangzhou Hi-Tech Industrial Development Zone, China). For Orf1ab, CCCT-
GTGGGTTTTACACTTAA and ACGATTGTGCATCAGCTGA were used as forward and reverse
primers, respectively, together with a 5’-VIC CCGTCTGCGGTATGTGGAAAGGTTATGG-
BHQ1-3’ probe. For N, GGGGAACTTCTCCTGCTAGAAT and CAGACATTTTGCTCT-
CAAGCTG were used as forward and reverse primers, respectively, together with a 5’-FAM-
TTGCTGCTGCTTGACAGATT-TAMRA-3’ probe. The RT-PCR reaction was set up according
to the manufacturer’s protocol, with a total volume of 25 µL. The reaction was run on the ABI
Prism 7500 SDS Instrument (Applied Biosystems) at 50°C for 15 min for reverse transcription,
denatured at 95°C for 15 min, followed by 45 PCR cycles of 94°C for 15 sec and 55°C for 45 sec. A
threshold cycle (Ct value) <40 indicated a positive test, while Ct value >40 indicated a negative
test. Positive controls for the reaction showed amplification as determined by curves for FAM
and VIC detection channels, and a Ct value ≤ 32. Positive tests were confirmed using LightMix
SarbecoV E-gene and LightMix Modular SARS-CoV-2 RdRp RT-PCRs targeting the envelope (E)
and RNA directed RNA Polymerase (RdRp) genes, respectively, as described by the manufacturer
(TIB MOLBIOL Syntheselabor GmbH, Eresburgstr. 22-23, D-12103 Berlin, Germany). Both the
primers used and the RT-PCR reaction conditions were previously described [13].

Statistical analysis: Ct values were tested for normality by using the Shapiro-Wilk test. A
confidence bound for a sample of n Ct values was calculated as C̄t ± t∗df × s, where C̄t is the
sample mean, s is the sample standard error, and t∗df is an appropriate quantile of the Student’s t
distribution with n − 1 degrees of freedom, df . A confidence bound for the sum of the means of
two samples of Ct values of sizes n1 and n2, respectively, was calculated using the same formula,
with C̄t set to the sum of the individual sample means, s set to the sum of the individual sample
standard errors, and df set to the smaller of n1− 1 and n2− 1. Statistical analysis was done using
the R statistical computing environment (https://www.r-project.org/).

Loss of sensitivity due to dilution: To estimate the post-dilution sensitivities of PCR tests with
different maximum numbers of PCR cycles, we combined two data sets. First, we used the mean
and standard deviations of the number of additional PCR cycles required for a positive detection,
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after a k-fold dilution of a positive specimen (Figure 2 in the paper, showing the data in Figure
6). Second, we used the mean and standard deviation of Ct values for positive specimens sampled
from a target population. We combined (or, more accurately, convolved) the two probability
distributions, represented as Gaussians to calculate the sensitivity of a ≤ x cycle PCR test as
the probability that the Ct value of a k-fold diluted positive specimen sampled from the same
population will be ≤ x. Using a representative sample of 33 positive specimens identified during
clinical screening for SARS-CoV-2 in Rwanda (see Table 7), we estimate that a ≤ 40-cycle PCR
test targeting the SARS-CoV-2 Ngene (resp. Orf1ab) has post 20-, 50-, and 100-fold dilution
sensitivities of 95% (resp. 86%), 92% (resp. 82%), and 89% (resp. 77%), respectively. For a
≤ 44-cycle PCR test targeting the N gene (resp. Orf1ab), we obtain post 20-, 50-, and 100-fold
dilution sensitivities of 99% (resp. 96%), 98% (resp. 94%), and 98% (resp. 92%), respectively.
(As mentioned in the article, a maximum of 44 PCR cycles was used in the recent study of pooled
testing for SARS-CoV-2 in Israel [10].)

As further checks, we applied the same analysis to (1) an independent sample of 107 positive
specimens collected in Rwanda, and (2) the previously published data set consisting of the 26
positive specimens identified in Ref. [10]. From the Rwandan data set, we estimated that a 40-cycle
PCR test targeting the N-gene (resp. Orf1ab) has post 20-, 50-, and 100-fold dilution sensitivities
of 91% (resp. 85%), 88% (resp. 81%), and 85% (resp. 77%), respectively. For a 44-cycle PCR test
targeting the N-gene (resp. Orf1ab), the predicted sensitivities are 97% (resp. 94%), 96% (resp.
92%), and 95% (resp. 90%). The data set of Ref. [10] contains Ct values for only one gene - the
E gene of SARS-CoV-2. Based on the arguments above, we assume for simplicity that diluting
a positive specimen by 20-, 50- and 100-fold adds approximately 5, 6, and 7, respectively, to the
original Ct value. Applying these assumptions to the data in Ref. [10], we infer post 20-, 50-, and
100-fold dilution sensitivities of 94%, 92% and 89% respectively for a ≤ 40-cycle PCR test, and
99%, 98% and 97%, for a ≤ 44-cycle PCR test. These results are comparable to those reported
from our experiments. Together, they confirm that diluting positive samples does result in a loss
of sensitivity, but that much of the loss can be offset by increasing the number of PCR cycles. In
particular, sensitivities above 90% can be achieved for 100-fold dilution by using 44 PCR cycles,
only 10% more than the number routinely employed.
Ethics approval: Ethics approval was obtained from the Rwanda National Ethics Committee
(Ref: FWA Assurance No. 00001973 IRB 00001497 of IORG0001100/20March2020) and written
informed consents were obtained from the patients.
Data and code availability: All data and codes (both in R and in Mathematica) mentioned in
the paper are available from the corresponding authors upon reasonable request.
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Characteristics Female         Male 
Cluster n % n % n 
At-risk 327 38.3 526 61.7 853 
SARI/ILI* 190 44.5 237 55.5 427 
Total 517 40.4 763 59.6 1,280 
Age group 
0-14 62 55.9 49 44.1 111 
15-34 263 40.2 392 59.8 655 
35-49 147 38.7 233 61.3 380 
50-64 30 28.0 77 72.0 107 
65+ 15 55.6 12 44.4 27 
Total 517 40.4 763 59.6 1,280 
Mean age of participants (sd)   31.97  (14.27) 

Figure 5: Characteristics of participants in field trial of hypercube algorithm in Rwanda. For
more information, see Observational study design. *SARI=Severe acute respiratory infections,

ILI=Influenza-like illness.
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Figure 6: Positive specimens are detected after massive dilution. Six SARS-CoV-2 positive
specimens detected during COVID-19 screening in Rwanda were analysed. The positive specimens were
detected by using a screening RT-PCR test targeting the N and Orf1ab genes of SARS-CoV-2 (Ct values
from this test are reported in columns 3 and 4), and confirmed by using another RT-PCR test targeting

the E and RdRp genes (Ct values reported in columns 5 and 6). We determined whether the screening test
would have detected the positive specimens if they had been combined with 19, 49 or 99 known

SARS-CoV-2 negative specimens. Three pools were thus formed per sample, with dilution factors given in
column 2. For all 18 pools, fluorescence exceeded background levels at Ct values ≤ 40 (columns 3 and 4),

implying the positive samples would have been detected even if diluted 100-fold.
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ID N-gene CT ORF ab1 CT E-gene CT RdRp CT Diagnosis

1 D15943 Positive 17.2 Positive 18.5 Positive 18.1 Positive 19.2 Positive

2 B17418 Positive 19.33 Positive 22.26 Positive 16.87 Positive 18.38 Positive

3 B46255 Positive 20 Positive 21.1 Positive 20.1 Positive 20.8 Positive

4 B46255 Positive 20.1 Positive 21.1 Positive 20.1 Positive 20.8 Positive

5 16121 Positive 21.7 Positive 22.9 Positive 24.5 Positive 28 Positive

6 C45273 Positive 22.78 Positive 24.38 Positive 22.85 Positive 23.55 Positive

7 D18543 Positive 23.1 Positive 24.2 Positive 23.1 Positive 24.2 Positive

8 B79243 Positive 23.2 Positive 24.1 Positive 23.3 Positive 23.3 Positive

9 B79243 Positive 23.2 Positive 24.1 Positive 23.3 Positive 23.3 Positive

10 D40438 Positive 23.29 Positive 26.68 Positive 24.47 Positive 25.73 Positive

11 B86037 Positive 24.64 Positive 27.14 Positive 21.3 Positive 23.25 Positive

12 D04800 Positive 25.2 Positive 26.9 Positive 24.8 Positive 27.1 Positive

13 D04800 Positive 25.2 Positive 26.9 Positive 24.8 Positive 27.1 Positive

14 D15947 Positive 25.3 Positive 26.4 Positive 25.6 Positive 27.1 Positive

15 16122 Positive 25.3 Positive 26.7 Positive 28.3 Positive 32 Positive

16 D48370 Positive 25.9 Positive 27.2 Positive 26 Positive 26.4 Positive

17 B90541 Positive 26.3 Positive 29.6 Positive 27.2 Positive 27.8 Positive

18 CV000054088 Positive 26.6 Positive 27.6 Positive 24.9 Positive 27.8 Positive

19 D34141 Positive 26.9 Positive 29.1 Positive 24 Positive 25.6 Positive

20 CV000019058 Positive 27.7 Positive 28.7 Positive 26.2 Positive 28.8 Positive

21 B87522 Positive 27.82 Positive 30.64 Positive 25.75 Positive 26.63 Positive

22 B09495 Positive 28.2 Positive 31.2 Positive 27 Positive 29.7 Positive

23 D17033 Positive 28.8 Positive 31.8 Positive 28.9 Positive 29.7 Positive

24 D36394 Positive 29.7 Positive 31.1 Positive 30.5 Positive 31.9 Positive

25 B46304 Positive 31.6 Positive 36.2 Positive 36.3 Positive 36.7 Positive

26 D15317 Positive 31.7 Positive 34.6 Positive 33.1 Positive 33.7 Positive

27 B86032 Positive 32.57 Positive 35.12 Positive 30.79 Positive 31.57 Positive

28 B65096 Positive 33.3 Positive 35.5 Positive 32.1 Positive 34.9 Positive

29 D11510 Positive 33.5 Positive 36.3 Positive 33.7 Positive 34.7 Positive

30 B64423 Positive 33.54 Positive 36.69 Positive 34.15 Positive 36.19 Positive

31 B46275 Positive 34.1 Positive 35.9 Positive 34.1 Positive 35.4 Positive

32 B86031 Positive 35.03 Positive 37.47 Positive 33.5 Positive 34.29 Positive

33 B43708 Positive 38.12 Positive 39.7 Positive 34.94 Positive 35.81 Positive

Figure 7: Representative sample of confirmed positive specimens detected during COVID-19
screening in Rwanda. The specimens were detected by using a screening RT-PCR test targeting the N
and Orf1ab genes of SARS-CoV-2 (Ct values from this test are reported in columns 3 and 5). They were
subsequently confirmed as positive by using another RT-PCR test targeting the E and RdRp genes (Ct

values are reported in columns 7 and 9).


