

Edinburgh Research Explorer

Modelling and Control of a Hybrid Wheeled Jumping Robot
Citation for published version:
Dinev, T, Xin, S, Merkt, W, Ivan, V & Vijayakumar, S 2021, Modelling and Control of a Hybrid Wheeled
Jumping Robot. in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Institute of Electrical and Electronics Engineers (IEEE), pp. 2563 - 2570, 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Las Vegas, United States, 25/10/20.
https://doi.org/10.1109/IROS45743.2020.9341339

Digital Object Identifier (DOI):
10.1109/IROS45743.2020.9341339

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

https://doi.org/10.1109/IROS45743.2020.9341339
https://doi.org/10.1109/IROS45743.2020.9341339
https://www.research.ed.ac.uk/en/publications/f58aaa29-4ea8-4428-bf39-19a4ba572948

Modeling and Control of a Hybrid Wheeled Jumping Robot

Traiko Dinev1, Songyan Xin1,3, Wolfgang Merkt1,2, Vladimir Ivan1, and Sethu Vijayakumar1

Abstract— In this paper, we study a wheeled robot with a
prismatic extension joint. This allows the robot to build up
momentum to perform jumps over obstacles and to swing
up to the upright position after the loss of balance. We
propose a template model for the class of such two-wheeled
jumping robots. This model can be considered as the simplest
wheeled-legged system. We provide an analytical derivation of
the system dynamics which we use inside a model predictive
controller (MPC). We study the behavior of the model and
demonstrate highly dynamic motions such as swing-up and
jumping. Furthermore, these motions are discovered through
optimization from first principles. We evaluate the controller
on a variety of tasks and uneven terrains in a simulator.

I. INTRODUCTION

Wheels have been used by humanity since the Bronze age.
Wheeled vehicles have enabled fast and reliable transport
of goods across great distances due to their simplicity and
efficiency. However, they require structured terrain such as
roads or rails. Legged robots on the other hand are capable of
navigating unstructured, rough terrain, including jumping
over obstacles and across gaps. This comes at the cost
of a more complex mechanical structure. This complexity
makes the robot more expensive to control—both in terms
of computation as well as energy expenditure. Wheel-legged
robots can combine the best of both designs—the fast motion
of a wheeled system with the ability to navigate rugged terrain
via legged locomotion.

For model-based control, a model of the system is needed.
It should be able to handle the rolling contact of the wheels
as well as the discrete contact changes typical for stepping
and jumping motions of legged robots. However, instead of
adding complexity to a legged robot model by adding the
rolling contact, we choose to focus on developing a simplified
model with only one prismatic joint to ‘mimic’ the capability
of a leg. This provides us with a better tool for modeling the
robot behavior than some of the more complex models.

Most wheel-legged robots ([1]–[5]) are high degree of
freedom nonlinear systems which do not lend themselves
readily to online whole-body trajectory optimization (TO).

Previous work [5]–[7] explored kinematic motion planning
where the robot is controlled like a mobile vehicle and the
legs act as a suspension. By definition, these techniques do
not consider the dynamics of the system.

1Authors are with the School of Informatics, The University of Edinburgh,
Edinburgh, UK.

2Authors are with the Oxford Robotics Institute, University of Oxford,
UK.

3Authors are visiting researchers at the Shenzhen Institute for Artificial
Intelligence and Robotics for Society (AIRS), CUHK-SZ, China.

Email: traiko.dinev@ed.ac.uk.

Fig. 1: The wheeled jumping robot jumps across a gap.
Please find the accompanying video at
https://youtu.be/j2sIWL8m2pQ

The authors of [1] use a linear quadratic regulator (LQR)
for balancing the Ascento robot. They linearize the nonlinear
system dynamics around the fixed point at the upright
configuration. This provides an efficient approximation but
it limits the range of motion around the fixed point [8,
Chapter 3].

By contrast, ANYmal [2] uses a centroidal dynamics
model [9] in a two-stage controller: One for the center of
mass (CoM) and one for the wheels. This approach, therefore,
fails to exploit potential combined synergies of the wheel
and body dynamics.

Skaterbots [4] solve the full optimization. However, due
to the complexity of the resulting nonlinear program, the
constraints are expressed as cost terms and optimized using
Newton’s method. Compared to Skaterbots, we are able to
solve the nonlinear problem due to the simple template model.
Additionally, here, we use a Model Predictive Controller
scheme, compared to the PD control used in Skaterbots.

Finally, the authors in [10] propose a Quadratic Program-
ming (QP)-based approach to wheel-legged locomotion. In
order to make the problem tractable, the z-component of
the trajectory, as well as the CoM trajectory are taken as
inputs to the QP-solver. In contrast, we directly optimize the
z-component of the robot, thus allowing the optimizer to
discover jump-like motions.

The Handle and the Flea by Boston Dynamics show
remarkably dynamic motions. Flea is capable of jumping
to a height of 10 m using combustive propulsion [11]. Handle

https://youtu.be/j2sIWL8m2pQ

shows jumping motion while driving forward, as well as
traversing rugged terrain. However, methods used to control
these systems have not been published.

Indeed, there is a gap with respect to the control of wheel-
legged robots. Staged optimization and linearization schemes
inherently do not allow for the system to fully exploit its
dynamics. Motions such as jumping are hard to execute using
these schemes. Jumping in particular is often accomplished
using a hand-tuned controller (e.g. Ascento [1] and AirHopper
[12]).

Instead of considering the full rigid body dynamics, one
can model the system using simpler template models that
capture the essence of the robot dynamics.

A popular template model for legged robots is the Spring-
Loaded Inverted Pendulum (SLIP) [13]. SLIP has been used
for high speed running and jumping [14]. For wheeled
balancing systems, Wheeled Inverted Pendulum models (WIP)
have been extensively used as template models [15]. Template
models based on SLIP and WIP can be applied to wheel-
legged systems, however they will consider either only the
leg or only the wheel, respectively.

In this paper, we propose the simplest template model
of wheel-legged robots. Our system consists of two sets of
wheels connected by a prismatic joint (see Figure 1). Our
main contributions are:
• We propose the Variable-Length Wheeled Inverted

Pendulum (VL-WIP) template model for wheeled-legged
systems.

• We implement a motion planner using the VL-WIP
model and the direct transcription method which we
integrate into a Model Predictive Controller (MPC).

• We show that using the VL-WIP model, the robot can
execute motions such as jumping that are only achievable
using the combined action of wheels and base.

• We validate the controller in a closed loop in a physics
simulator, and we evaluate the robustness of the MPC
with sensor noise and on a rough terrain locomotion
task. We also compare these results to a Proportional
Derivative (PD) controller on a driving and balancing
task.

The ability to discover dynamic motion and to exploit the
predictive power of the controller stems from the dynamics
model we propose.

II. DYNAMICS MODEL

We begin by modeling the system behavior using a template
model we call a Variable-Length Wheeled Inverted Pendulum
(VL-WIP). Our model is based on the WIP model which
is used to control balancing robots [15]. WIP consists of a
wheel and a pole. The pole is modeled as a point mass a fixed
distance away from the wheel (see the derivation in [16]). We
extend this model to include a prismatic joint and a floating
base described by a z-coordinate as shown in Figure 2.

The dynamics model ẋ = f(x,u) describes the system
behavior in terms of its state x = [qT q̇T]T and controls u,
where q is the generalized position and q̇ is the generalized
velocity. The generalized position is q = [x z φ l θ]T , where

x

z

θ

φ
x, z

mb

l

Fig. 2: The proposed Variable-Length Wheeled Inverted
Pendulum (VL-WIP) model.

x, z are the coordinates of the center of the wheel, φ is the
wheel’s angle along its axis, l is the distance from the center
of the wheel to the body point mass and θ is the rotation of
the body from the inertia z-axis. Controls are u = [τ f]T ,
where τ is actuation torque of the wheel and f is the linear
force in the prismatic joint. The explicit Equations of Motion
(EoM) for the system under contact can be written as:

M(q)q̈ + C(q, q̇)q̇ + G(q) = STu + JTCλλλ (1)

where M is the mass matrix, C is the Coriolis matrix,
G is the gravity vector, S is a selection matrix, JC is the
contact Jacobian and λλλ stands for the contact forces. Note
that, this dynamics equation also applies when the robot is in
flight and the contact forces vanish. We compute M, C and
G using Lagrangian dynamics. For the full derivation, see
the Appendix. The results of this derivation are the following
matrices:

M(q) =

mt 0 0 mbsθ mblcθ
0 mt 0 mbcθ −mblsθ
0 0 Iw 0 0

mbsθ mbcθ 0 mb 0
mblcθ −mblsθ 0 0 mbl

2

 (2)

C(q, q̇) =

0 0 0 2mbcθ θ̇ −mblsθ θ̇

0 0 0 −2mbsθ θ̇ −mblcθ θ̇
0 0 0 0 0

0 0 0 0 −mblθ̇

0 0 0 2mblθ̇ 0

 (3)

G(q) =
[
0 gmt 0 gmbcθ − gmblsθ

]T
(4)

where mt = mb +mw is the total mass which sums up the
body mass mb and the wheel mass mw, Iw is the inertia of
the wheel, sθ = sin(θ) and cθ = cos(θ).

The matrix S translates controls τ and f into the gen-
eralized coordinates of the system. f directly maps to the
prismatic joint. The torque τ applied on the wheel will lead
to a counter reaction torque −τ on the body of the robot. We
write this down as:

S =

[
0 0 1 0 −1
0 0 0 1 0

]
(5)

min
X,U,Λ

∑
i

WuTi ui (Minimum Energy Cost)

s.t. x0 = x∗0 (Start State)
xN = x∗N (Goal State)
xt+1 = f(xt,ut,λλλt), t ∈ [0, N] (Dynamics)

x− ≤ xt ≤ x+, t ∈ [0, N] (State Bounds)

u− ≤ ut ≤ u+, t ∈ [0, N − 1] (Control Bounds)
if t ∈ [Ttf, Ttd] (Flight Phase)
λt = 0 (No Ground Force)

if t /∈ [Ttf, Ttd] (Ground Phases)
|λxt | ≤ µλzt , (µ : friction coefficient) (Friction Cone)
λzt ≥ 0 (Unilateral Force)

ẋt = Rwφ̇t (No Slip on Ground)

Fig. 3: Problem formulation. On the top we illustrate the
three-phases involved in the planning problem. Below is the
mathematical formulation of the problem.

Finally, the contact Jacobian relates the velocity of the contact
point ṙC = [ẋc żc]

T to the generalized velocities of the robot:

ṙC = JC q̇ =

[
1 0 −Rw 0 0
0 1 0 0 0

]
q̇ (6)

where Rw is the radius of the wheel.
Because of our system’s simplicity, we have derived

an analytic dynamics model. Compared to the full-body
dynamics of complex systems, e.g. computed using recursive
algorithms, analytic dynamics and their derivatives are faster
to evaluate. Using the analytic dynamics allows us to plan
motions for both the body and the wheels in a unified way.
A unified planning approach allows the solver to plan for
motions for which the interaction between wheels and base
is key.

III. PROBLEM FORMULATION AND CONTROL

This section looks at how the derived system dynamics
can be incorporated into a planning and control pipeline. For
motion planning, we use an optimal control formulation,
namely direct transcription [17]. To account for model
mismatch and perturbations during execution, we use Model

Predictive Control [18], which calls the planner iteratively to
replan the motion from the current robot state.

A. Planning

The generic planning problem formulation is illustrated
in Figure 3. We formulate a nonlinear optimization prob-
lem (NLP) that finds trajectories X = {x0,x1, . . . ,xN},
U = {u0,u1, . . .uN−1}, and Λ = {λλλ0,λλλ1, . . .λλλN−1} that
satisfy the problem constraints and minimize the total energy,
weighted by a normalizing term W . Here, x, u, and λλλ refer
to the robot state, controls and contact forces respectively.

Firstly, we specify the duration T of the motion in seconds
and discretize it into N knot points. At each knot point the
optimizer finds states x, controls u, and contact forces λλλ that
satisfy the system dynamics xt+1 = f(xt,ut,λλλt) derived in
section II.

Next we setup task specific constraints. The start state
x∗0 and the target state x∗N are specified for knots x0 and
xN . At each knot point, state limits [x−,x+], and control
limits [u−,u+] are enforced. These limits ensure the physical
feasibility of the motion generated. For different tasks the state
and control limits will differ. For instance, when jumping over
a gap, the state limits for the three phases will indicate where
the “flight“ phase begins and ends. In general, a jumping
motion involves three phases: a “pre-takeoff” phase, where
the robot is on the ground, a “flight” phase where the robot
is in the air, and a “post-touchdown” phase where the robot
lands and re-balances. We specify the duration of each phases
by setting the time of takeoff Ttf, and the time of touchdown
Ttd.

Finally, we specify ground contact constraints. Contact
forces must be zero (λt = 0) while the robot is in the
flight phase. For the ground phases, they should stay inside
the friction cone (|λxt | ≤ µλzt , where µ is the friction
coefficient) and have a positive vertical component (λzt ≥ 0).
For kinematics, we enforce a no-slip constraint while the robot
is on the ground: ẋt = Rwφ̇t, where Rw is the wheel radius.
For motions without jumping, we use a similar formulation
by removing the flight phase related constraints.

The planner finds an admissible trajectory for the control
task. However, for executing it on a real system or in
simulation, a controller is needed.

B. Control

With open-loop control, the planned trajectory cannot
be tracked precisely due to tracking error introduced by
model mismatch and external perturbations. Thus, we use
Model Predictive Control [18] to handle the errors. Figure 4
illustrates the scheme. At each timestep, the planner re-plans
the trajectory starting at the observed robot state xobs obtained
from the simulator. Then, the first action of the plan u0 is
executed. After that, it recedes the time horizon T by the
elapsed time.

A natural problem arises with the recession of T . Ideally
we would keep the number of knot points N constant—this
enables saving the optimizer’s state and avoids costly re-
initialization. The solution requires adjusting the limits of the

Fig. 4: MPC control pipeline. The controller re-plans a motion
every timestep by setting the start state x∗0 to the current state
in simulation xobs. It then executes the first control u0 and
updates the phases and limits of the planner.

problem so that each phase always has the same duration.
Thus, we maintain the ratio of pre / flight / post phases by
shifting the limits of the problem while keeping N the same.

To implement the optimal control problem, we used
CasADI [19]. As the underlying solver, we used KNITRO and
selected the Interior/Conjugate-Gradient algorithm that is well-
suited for large-scale sparse optimal control problems [20].

IV. SIMULATION RESULTS

In order to validate our approach, we investigated several
tasks, namely swing-up, balancing and jumping in the physics
simulator PyBullet [21]. Please find the accompanying video
at https://youtu.be/j2sIWL8m2pQ.

The simulated robot weighs 6 kg including the wheels and
the dimensions of the base are 0.3× 0.4× 0.1m. The radius
of the wheels is 0.17 m and wheels are 0.15 m wide.

A. Swing-up and Balance

Firstly, we demonstrate that the robot can switch from a
driving mode on four wheels to a balancing mode on two
wheels. This demonstrates that the robot can switch between
modes without intervention. We used a two-stage controller
for this task. Since controlling the robot in driving mode
is outside the scope of this paper, we drive forward with a
constant acceleration until we reach a velocity of ẋ = 3m s−1.
Then we switch to the proposed MPC scheme.

The trajectory duration (and MPC horizon) was T = 5s
with N = 20 knot points. We set control limits to ±10 N m

and ±200 N for τ and f , respectively. Figure 5 shows the
resulting motion. The controller planned a motion where the
robot coordinates its prismatic joint and wheel to swing-up.

Fig. 5: Swing-up motion.

B. Driving Upright
Next we demonstrate that, in the upright mode, the robot

can balance and drive forward using the proposed approach.
In this experiment, the goal is to drive the robot forward
1 m while balancing upright. We defined the same limits on
the states [x− x+], and the controls [u− u+] for the entire
trajectory. We set torque limits for the wheels to ±10 N m
and force limits for the prismatic joint to ±200 N. The total
time (MPC horizon) was T = 3s and N = 50 knot points.

The resulting motion is shown in Figure 6. We noticed
that the optimizer first chooses to extend the prismatic joint
before moving forward. This behavior can, for instance, be
explained by noticing that it is easier to balance a body with
a higher center of mass, which is achieved through extending
the prismatic joint. Note that we did not in any way encode
this behavior—the planner discovered it from first principles
of optimization.

Fig. 6: Moving forward while balancing.

C. Jumping Over a Gap
Finally, we consider jumping over a gap, which uses the

full multi-phase optimization described in section III. This
task is more complex since different phases are involved in
the motion.

We can entirely describe the jumping motion via state and
control limits. In addition to torque limits ±10 N m and force
limits ±200 N, we set the state limits qlim for each of the
phases. Letting g−, g+ specify the bounds of the gap in the
x direction, we obtain:

qpre-tf
lim =

[
−∞ Rw −∞ l− −π/2
g− Rw ∞ l+ π/2

]
(7)

qflightlim =

[
−∞ Rw −∞ l− −π/2
∞ z+ ∞ l+ π/2

]
(8)

qpost-td
lim =

[
g+ Rw −∞ l− −π/2
∞ Rw ∞ l+ π/2

]
(9)

https://youtu.be/j2sIWL8m2pQ

Fig. 7: Jumping over a gap.

Fig. 8: State evolution for the jumping motion in Figure 7. Phases are—“pre-takeoff” in blue, “flight” in orange, and
“post-touchdown”—in green.

where l− and l+ are the limits of the prismatic joint, Rw
is the wheel radius, and z+ limits the jumping height. In
order to set up the length of the trajectory , we ran time
optimization within bounds T− = 0.3, T+ = 5 and knot
points Npre-tf = 40, Nflight = 20, Npost-td = 40. This ensures
that the optimizer chooses the appropriate flight duration that
is physically feasible within the set time limits. In this sense,
T = 2.3s was the optimal time and MPC horizon.

The resulting motion is shown in Figure 7 and its state
and control history is plotted in Figure 8. The optimizer first
“contracts” the body of the robot by retracting the prismatic
joint before takeoff and extends it just before landing to
absorb impact. We can see the preparatory movement in the
optimized motion in Figure 7 for x, φ and θ.

V. ROBUSTNESS

In the following experiments, we evaluate the robustness of
the MPC approach as compared to a Proportional-Derivative
(PD) controller with feed-forward torque.

The PD controller has the following control equation:

τ = τdes −Kθ
pe(θ)−Kθ

de(θ̇)−Kx
p e(x)−Kx

d e(ẋ) (10)

f = fdes +Kf
p e(f) +Kf

d e(ḟ) (11)

where e(·) is the error between desired and measured state
variables, Kθ

p = 15, Kθ
d = 2, Kf

p = 1, 000, Kf
d = 1, 00,

Kx
p = 1.25, Kx

d = 2 are the PD gains we tuned by hand.
We add a term dependent on x in the first equation so that
position error is taken into account. Note, the larger PD gains

for the prismatic joint—this is due to the scale difference
in the length and force needed. We tuned the PD controller
so that it achieves similar performance when driving on flat
terrain as the MPC controller.

A. Robustness to Sensor Noise

This experiment has the same setup as subsection IV-B.
We compare the effects of sensor noise on both the MPC
and the PD controllers. We added Gaussian noise to sensor
readings at each timestep of the simulation:

x′obs = xobs +N (0, σI) (12)

where σ is the noise standard deviation, which was varied in
the 0− 0.4 range and I is the identity matrix. We computed
the L2-distance from the observed state xobs to the goal state
x∗ at the end of the simulation. For this experiment we ran
20 trials for each value of σ, computing the means as well
as the standard deviations of the L2-distance. The results are
in Figure 9.

We notice similar performance for the PD controller at
lower noise strengths. However, at σ ≥ 0.2 the PD controller
has a significant drop in performance. Additionally, as the
noise strength increases, the variability in performance for the
PD controller becomes larger. In contrast, the MPC controller
shows better mean performance and lower performance
variability across σ values.

B. Rough Terrain Locomotion

For this experiment we consider the task of driving forward
on two wheels, as outlined in subsection IV-B. For the MPC
controller we set a target velocity ẋ∗ = 1m s−1 and horizon
T = 1s. The PD controller has no feed-forward torque
reference; it has the same desired velocity target as well as a
balance target θ∗ = 0. Neither have knowledge of the terrain
and the overall duration of each experiment was T = 5s.

We ran 20 experiments for varied terrain heights in the
range 0 m to 0.4 m. We generated random terrain using Perlin
noise for every experiment while keeping the same random
number generator seed between the PD and MPC. Example
generated terrain for heights 0.1 m and 0.4 m are shown in
Figure 11a and Figure 11b, respectively. We computed the
mean absolute angle velocity θ̇ for the entire trajectory for
each of the terrain heights and its standard deviation. We also
show the episode duration as well as one standard deviation.
The episode is terminated when the angle of the robot is more
than 85 degrees. The results are in Figure 10a and Figure 10b,
respectively.

For flat terrain and for terrain height up to 0.1 m, MPC
and PD show similar results. As the terrain height increases,
however, MPC is better at stabilizing the robot with much
less variability in performance.

VI. DISCUSSION AND FUTURE WORK

The results demonstrated in this paper show that the
VL-WIP model, regardless of its simplicity, is sufficient
for generating complex dynamic motions. We consider the
combined motion planning pipeline developed here as a first
step towards more dynamic locomotion of hybrid wheel-
legged systems. Future work will apply several connected
VL-WIP models, one for each limb, to wheel-legged bipeds
and quadrupeds, using the standard motion planning and
control pipeline outlined here. This approach is similar to
using a SLIP model for each limb of a biped [22]–[24].
Compared to single rigid-body models, like the one in [25],
the stacked VL-WIP model will model leg mass and inertia
properties, allowing for more complex in-air maneuvers as
well as not requiring inertia compensation.

Furthermore, for all the motions the planner exploited the
dynamics of the system without being guided to do so explic-
itly. Most notably for jumping it discovered the preparatory
motion from optimization alone—including contracting and
extending the robot before take off, absorbing the impact
upon landing, and extending the prismatic joint for easier
balancing.

Currently for swing up and jumping we have predefined
the switching times. In the future these will be automatically
discovered, for instance via phase-based parametrization [25],
[26].

When transferring to a real system, we note that work
needs to be done to increase the speed of the computation,
for instance by warm-starting the solver using trajectory
libraries [27] or using policy learning. Our MPC controller
ran at 109± 64 Hz for balancing, 18± 37 Hz for jumping,
and 36± 13 Hz for swing-up on a Intel Core i9-9980HK at

Fig. 9: Driving with sensor noise. L2-distance to x∗ and one
standard deviation.

2.4 GHz with 16 GB of DDR4 RAM at 2667 MHz. We have
indeed noticed that the solver did not take an equal number
of iterations for all initial conditions and it sometimes did not
converge. For this reason the speed was significantly lower on
the more complex three-phase optimization for the jumping
task. The convergence of the motion planner and the impact
of warm starts is outside of the scope of this paper but it
presents an exciting direction for future research.

ACKNOWLEDGEMENTS

This research is supported by the EPSRC Centre for
Doctoral Training in Robotics and Autonomous Systems
(EP/L016834/1), the EPSRC UK RAI Hub in Future AI
and Robotics for Space (FAIR-SPACE, ID:EP/R026092/1)
and the EU H2020 project Memory of Motion (MEMMO,
ID: 780684). We would like to thank Henrique Ferollho
and Matthew Timmons-Brown for their valuable help and
feedback,

REFERENCES

[1] V. Klemm, A. Morra, C. Salzmann, F. Tschopp, K. Bodie, L. Gulich,
N. Kung, D. Mannhart, C. Pfister, M. Vierneisel, F. Weber, R. Deuber,
and R. Siegwart, “Ascento: A Two-Wheeled Jumping Robot,” in
2019 International Conference on Robotics and Automation (ICRA).
Montreal, QC, Canada: IEEE, May 2019, pp. 7515–7521.

[2] M. Bjelonic, P. K. Sankar, C. D. Bellicoso, H. Vallery, and M. Hutter,
“Rolling in the Deep – Hybrid Locomotion for Wheeled-Legged Robots
using Online Trajectory Optimization,” arXiv:1909.07193 [cs, eess],
Jan. 2020.

[3] M. Bjelonic, C. D. Bellicoso, Y. de Viragh, D. Sako, F. D. Tresoldi,
F. Jenelten, and M. Hutter, “Keep Rollin’ - Whole-Body Motion Control
and Planning for Wheeled Quadrupedal Robots,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2116–2123, Apr. 2019.

[4] M. Geilinger, R. Poranne, R. Desai, B. Thomaszewski, and S. Coros,
“Skaterbots: optimization-based design and motion synthesis for robotic
creatures with legs and wheels,” ACM Transactions on Graphics, vol. 37,
no. 4, pp. 1–12, July 2018.

[5] M. Giftthaler, F. Farshidian, T. Sandy, L. Stadelmann, and J. Buchli,
“Efficient kinematic planning for mobile manipulators with non-
holonomic constraints using optimal control,” in 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), May 2017,
pp. 3411–3417.

(a) Mean absolute angle velocity θ̇ and one standard deviation.

(b) Episode duration and one standard deviation.

Fig. 10: Rough Terrain Locomotion Results

[6] P. R. Giordano, M. Fuchs, A. Albu-Schaffer, and G. Hirzinger, “On
the kinematic modeling and control of a mobile platform equipped
with steering wheels and movable legs,” in 2009 IEEE International
Conference on Robotics and Automation, May 2009, pp. 4080–4087.

[7] K. Nagano and Y. Fujimoto, “The stable wheeled locomotion in
low speed region for a wheel-legged mobile robot,” in 2015 IEEE
International Conference on Mechatronics (ICM), Mar. 2015, pp. 404–
409.

[8] R. Tedrake, “Underactuated Robotics,” Feb. 2018. [Online]. Available:
http://underactuated.mit.edu/

[9] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous Robots, vol. 35, no. 2, pp. 161–176,
Oct. 2013.

[10] Y. de Viragh, M. Bjelonic, C. D. Bellicoso, F. Jenelten, and M. Hutter,
“Trajectory Optimization for Wheeled-Legged Quadrupedal Robots
Using Linearized ZMP Constraints,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 1633–1640, Apr. 2019, conference Name:
IEEE Robotics and Automation Letters.

[11] A. Saunders, C. E. Thorne, and A. A. Rizzi, “Environmentally sealed
combustion powered linear actuator,” US Patent US9 238 967B2, 2012.

[12] T. Tanaka and S. Hirose, “Development of leg-wheel hybrid quadruped
“AirHopper” design of powerful light-weight leg with wheel,” in 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sept. 2008, pp. 3890–3895.

[13] I. Poulakakis and J. W. Grizzle, “The Spring Loaded Inverted Pendulum
as the Hybrid Zero Dynamics of an Asymmetric Hopper,” IEEE
Transactions on Automatic Control, vol. 54, no. 8, pp. 1779–1793,

(a) Rough terrain—height 0.1m. (b) Rough terrain—height 0.4m.

Fig. 11: Examples of rough terrain used.

Aug. 2009.
[14] P. M. Wensing and D. E. Orin, “Development of high-span running

long jumps for humanoids,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), May 2014, pp. 222–227.

[15] R. P. M. Chan, K. A. Stol, and C. R. Halkyard, “Review of modelling
and control of two-wheeled robots,” Annual Reviews in Control, vol. 37,
no. 1, pp. 89–103, Apr. 2013.

[16] Y. Ding, J. Gafford, and M. Kunio, “Modeling, Simulation and
Fabrication of a Balancing Robot,” p. 22, 2012.

[17] M. Kelly, “An Introduction to Trajectory Optimization: How to Do Your
Own Direct Collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904,
Jan. 2017.

[18] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:
theory, computation, and design. Nob Hill Publishing Madison, WI,
2017, vol. 2.

[19] J. Andersson, J. Åkesson, and M. Diehl, “CasADi: A Symbolic Package
for Automatic Differentiation andOptimal Control,” in Recent Advances
in Algorithmic Differentiation, ser. Lecture Notes in Computational
Science and Engineering, S. Forth, P. Hovland, E. Phipps, J. Utke, and
A. Walther, Eds. Berlin, Heidelberg: Springer, 2012, pp. 297–307.

[20] R. H. Byrd, J. Nocedal, and R. A. Waltz, “Knitro: An Integrated Package
for Nonlinear Optimization,” in Large-Scale Nonlinear Optimization,
P. Pardalos, G. Di Pillo, and M. Roma, Eds. Boston, MA: Springer
US, 2006, vol. 83, pp. 35–59.

[21] E. Coumans and Y. Bai, “Pybullet, a python module for physics simu-
lation for games, robotics and machine learning,” GitHub repository,
2016.

[22] P. M. Wensing and D. E. Orin, “High-speed humanoid running through
control with a 3D-SLIP model,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Nov. 2013, pp. 5134–
5140.

[23] ——, “3D-SLIP steering for high-speed humanoid turns,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sept. 2014, pp. 4008–4013.

[24] Y. Liu, P. M. Wensing, D. E. Orin, and Y. F. Zheng, “Dynamic walking
in a humanoid robot based on a 3D Actuated Dual-SLIP model,” in
2015 IEEE International Conference on Robotics and Automation
(ICRA), May 2015, pp. 5710–5717.

[25] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
Trajectory Optimization for Legged Systems Through Phase-Based
End-Effector Parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560–1567, July 2018.

[26] T. Stouraitis, I. Chatzinikolaidis, M. Gienger, and S. Vijayakumar,
“Dyadic collaborative manipulation through hybrid trajectory optimiza-
tion.” in CoRL, 2018, pp. 869–878.

[27] W. Merkt, V. Ivan, and S. Vijayakumar, “Leveraging Precomputation
with Problem Encoding for Warm-Starting Trajectory Optimization in
Complex Environments,” in IEEE/RSJ IROS, Oct 2018, pp. 5877–5884.

[28] D. Morin, Introduction to classical mechanics: with problems and
solutions. Cambridge University Press, 2008.

APPENDIX

We use the Lagrangian method to derive the dynamics of
the system [28, Chapter 6]. First, we define the position

http://underactuated.mit.edu/
https://doi.org/10.1109/IROS.2018.8593977
https://doi.org/10.1109/IROS.2018.8593977
https://doi.org/10.1109/IROS.2018.8593977

xb, zb of the mass mb and its velocity ẋb, żb:

xb = x+ l sin(θ) (13)
zb = z + l cos(θ)

ẋb = ẋ+ l̇ sin(θ) + l cos(θ) θ̇

żb = ż + l̇ cos(θ)− l sin(θ) θ̇

Lagrange’s method states that for a system with total kinetic
energy T and potential energy U :

d

dt

∂L
∂q̇i
− ∂L
∂qi

= fext, (14)

where L = T − U is the system’s Lagrangian and fext
are external forces applied to the system. We now need to
compute the system’s kinetic and potential energy.

In general, every link will have a rotational and translational
kinetic energy component. For the wheel we include a
rotational kinetic energy term Iwφ̇

2 where Iw = mwR
2
w

is the moment of inertia of the wheel. Since the point mass
has a zero moment of inertia, it only has a translational kinetic
energy mbv

T
b vb, where vb is the velocity of the point mass.

The only potential energy component is due to gravity g
acting on the wheel and the point mass. This leads to:

T =
1

2
(Iw φ̇2 +mwẋ

2 +mwż
2 +mbẋ

2
b +mbż

2
b) (15)

U = mwgz +mbgzb (16)
L = T − U (17)

Inputting Equations (15), (16), and (17) into Equation (14)
leads to a system of five equations, the solution of which is
the equations of motion (2)-(4) in section II.

	Introduction
	Dynamics Model
	Problem Formulation and Control
	Planning
	Control

	Simulation Results
	Swing-up and Balance
	Driving Upright
	Jumping Over a Gap

	Robustness
	Robustness to Sensor Noise
	Rough Terrain Locomotion

	Discussion and Future Work
	References
	Appendix

