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Droplet digital PCR quantification suggests that higher viral load correlates with improved survival 1 
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ABSTRACT 26 

 27 

BACKGROUND  28 

Although HPV-positive oropharyngeal cancer (OPC) patients have improved prognosis compared to 29 

HPV negative patients; there remains an HPV-positive group who have poor outcomes. Biomarkers 30 

to stratify discrete patient outcomes are thus desirable. Our objective was to analyse viral load (VL) 31 

by droplet digital PCR (ddPCR), in HPV-positive patients with OPC on whom clinical outcome data 32 

were available. 33 

METHODS  34 

In a cohort of patients that had previously tested HPV positive via conventional PCR, VL was 35 

determined using ddPCR assays for HPV16 L1 and E6 genes.  VL  was classed as “medium/high” if 36 

more than 5.57 copies or 8.68 copies of the HPV 16 L1 or E6 gene were detected respectively.  Effect 37 

of VL on overall survival and hazard of death & disease progression was performed with adjustments 38 

made for sex, age, deprivation, smoking, alcohol consumption and stage.  39 

RESULTS  40 

L1 VL ranged from 0.0014 to 304 gene copies per cell with a mean of 30.9; comparatively E6 VL 41 

ranged from 0.0012 to 356 copies per cell with a mean of 37.9.  Univariate analysis showed those 42 

with a medium/high VL had a lower hazard of death; this was significant for L1 (p=0.02) but not for 43 

E6 (p=0.67). The ratio of E6 to L1 deviated from n=1 in most samples but had no influence on clinical 44 

outcomes. 45 

CONCLUSIONS HPV viral load may be informative for the further stratification of clinical outcomes in 46 

HPV positive OPC patients 47 

 48 

 49 

 50 

 51 
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INTRODUCTION 52 

The incidence of oropharyngeal cancer (OPC) has increased dramatically over the last two decades 53 

including in the United Kingdom (1,2).  A component of OPC is associated with HPV although the 54 

amount varies.  For example, a recent global analysis indicated <10% of OPC cases in Brazil were 55 

positive for HPV compared to ~50% in the UK (3).   While the extent of HPV driven OPC varies, data 56 

converge on the fact that HPV positive (versus negative) status is independently associated with 57 

better clinical outcomes (4,5). This has led to a recent change in tumour classification which 58 

incorporates HPV status and also trials to determine the efficacy of de-escalated therapy in HPV 59 

positive OPC patients (6,7). 60 

 61 

Current approaches for determining HPV status of OPC are largely based on qualitative tests and 62 

include immunohistochemistry for p16INK4a or HPV PCR for DNA or mRNA (8). Unfortunately, some 63 

HPV-positive patients, so determined by these methods, still have very poor outcomes (9). Further, 64 

these approaches do not quantify levels of infection i.e. viral load (VL). Given the increased incidence 65 

of OPC, it is important to refine tools for improved risk stratification; one such candidate is the 66 

measurement of viral load. 67 

 68 

Current evidence indicates that VL in HPV-positive head and neck cancers varies widely within and 69 

between anatomical sites (10-14).   In addition, investigations into the physical status of HPV in OPC 70 

indicate a landscape of integrated and episomal forms within a single lesion (15,16). The implications 71 

of physical status on clinical outcome are not understood but given the fundamental influence of 72 

integration on viral gene expression, a simple measure of virus activity (such as VL in the lesion) may 73 

yield insight into clinical manifestations.  74 

 75 

 76 
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To date, small cohort studies have indicated VL measurement can delineate patient outcomes within 77 

HPV positive OPC (17). This reconciles with data that indicate VL may be prognostic for other HPV 78 

driven cancers, including cervix (18,19).  Previous studies on VL have generally focussed on the 79 

amplification of one target and have employed real-time PCR.   ddPCR allows absolute quantification 80 

of DNA targets and has been used for applied virology where knowledge of load can influence 81 

clinical management (20,21). Around 20,000 data points are generated per sample making it highly 82 

accurate and reproducible (20,21) and proof principle of this approach when applied to OPC for 83 

single HPV target-detection was reported recently (22). The present study builds on this work 84 

through the evaluation of a ddPCR approach to measure VL of two HPV gene targets:  E6 and L1, 85 

within a well characterised cohort of OPC cases diagnosed in Scotland on which clinical and survival 86 

outcomes are known.  Our overarching aim is to determine the utility of HPV viral load measurement 87 

for the risk-stratification of OPC 88 

 89 

METHODS 90 

Dimensions of original, parent OPC cohort  91 

We focussed on a subsample of an OPC cohort from Scotland (n=235). Full details of the original 92 

cohort are available in Wakeham et al 2019 (23). In brief, patients with OPC diagnosed in the West of 93 

Scotland between April 2013 and December 2015 had PCR-based HPV typing, performed in a central 94 

reference laboratory in Scotland.  The original PCR-based assay targeted L1 DNA and incorporated 95 

genotyping using luminex technology for 24 HPV types including all established high-risk HPV types. 96 

HPV positivity using this technology is associated with improved clinical outcomes; as described in 97 

Wakeham et al (2019) and concordance of the assay with p16INK4a staining is between 80-90% (2).   98 

Of the technically valid cases (n=229), 136 were HPV positive and 130/136 were positive for HPV 16.   99 

 100 

Sample(s) used for VL analysis 101 
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An aliquot of the original nucleic acid extraction stored at -800C, was obtained.   Given the 102 

dominance of HPV 16 in OPC generally, including the present cohort, HPV 16-specific ddPCR 103 

protocols were generated.  113 HPV 16 positive samples were available for the ddPCR after 104 

exclusion for limiting volume or incomplete clinical data.  Of these, 93 and 82 tested positive for L1 105 

and E6 respectively and were the focus of subsequent analysis. Sex, age, deprivation (represented as 106 

quintiles; 1=most deprived, 5 least deprived), smoking (ever/never), alcohol consumption (heavy vs 107 

not), TMN stage, ICON-S stage and treatment-type were recorded as per Wakeham et al 2019 (23). 108 

Study permissions were through NHS Greater Glasgow and Clyde research office, the clinical 109 

effectiveness team and a data sharing agreement with the West of Scotland Cancer network.   110 

 111 

ddPCR methodology and optimisation 112 

ddPCR was carried out to conform to the MIQE guidelines for ddPCR (24,25). Copy number variant 113 

(CNV) analysis was used to determine average HPV16 VL/cell. ddPCR assays were set up as duplexes 114 

with the cellular RPP30 control probe primer set, supplied as standard for ddPCR (BioRad, UK), and 115 

either custom-designed HPV16 L1-specific primers and probe sets (HPV16 L1 Forward Primer 5’-116 

GCCTCCTGTCCCAGTATCTAA-3’, HPV16L1 Reverse Primer 5’-GGATGTCCAACTGCAAGTAGTC-3’, 117 

HPV16L1 Probe 5’-TGCGTGCAACATATTCATCCGTGC-3’) (26) or HPV16 E6-specific primers and probe 118 

sets (E6 Forward Primer 5’-CAATGTTTCAGGACCCACAG-3’, E6 Reverse Primer 5’-119 

CTGTTGCTTGCAGTACACACATTC-3’, E6 Probe 5’-CCACAGTTATGCACAGAGCTGC-3’) (27). For L1 and E6 120 

probes the reporter dye was FAM and the dark quencher was BHQ1 (IDT, Belgium). Primers and 121 

probes were designed using IDT’s Primer Quest Tool 122 

(https://eu.idtdna.com/PrimerQuest/Home/Index).  The probe/primer sets were optimised using a 123 

temperature gradient exactly as recommended in the Bio-Rad ddPCR manual. The endogenous 124 

control assay kit; Human RPP30 (reporter dye HEX) (Bio-Rad, UK) was included in every ddPCR 125 

reaction as a copy number reference, i.e. each ddPCR was a duplex reaction. All reaction runs 126 

contained negative control wells in triplicate. In-reaction digestion of the DNA with restriction 127 

https://eu.idtdna.com/PrimerQuest/Home/Index
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enzymes was performed to enhance the partitioning of DNA into droplets. We confirmed that the 128 

restriction enzymes selected for this (EcoRI and HindIII), would not cut within any of the viral or 129 

control target sequences. Primer and probe concentrations were optimised by titration. Reaction 130 

mixes were set up using ddPCR Supermix for Probes without dUTP (Bio-Rad), 0.7 µl of the RPP30 131 

endogenous control assay, HPV16 L1 or E6 specific primers and probes at 300 nM and 200 nM (final 132 

concentration) respectively, 10–100 ng of template DNA and 1 µl of restriction digest mix (consisting 133 

of 4 U of both EcoRI and HindIII in 1x NEB Cutsmart buffer (NEB, UK)). Reactions were mixed with 134 

Droplet Generation Oil on DG8 cartridges in the QX200 droplet generator (Bio-Rad) to generate 135 

droplets.  Thermal cycling conditions were: 95°C for 10 minutes followed by 40 x 94°C for 30 s and 136 

60°C for 1 minute prior to final extension at 98°C for 10 minutes. Post amplification, droplets were 137 

analysed on a QX200 Droplet Reader (Bio-Rad) and output data files were analysed using QuantaSoft 138 

analysis software v1.7.4 (Bio-Rad).  139 

 140 

Definition of low and high VL 141 

The individual viral loads were ranked from smallest to largest and separated using tertiles. A priori, 142 

the analysis planned to compare viral load in tertiles (low, medium and high) but low numbers of 143 

deaths in the medium and high viral load groups meant that analysis was performed for low VL(viral 144 

load in the lowest third) vs a combined medium/high VL category (viral load in the upper two-thirds);  145 

this was performed for both L1 and E6.  The VL threshold(s) for “medium/high” E6 VL and L1 VL were  146 

>8.68 and >5.57 viral gene copies per cell respectively. Samples with VL lower than this were classed 147 

as having a low VL. 148 

 149 

E6 and L1 VL and clinical outcome 150 

Analysis was performed on the cases which had ddPCR results (n=93 for L1 and n = 82 for E6).  151 

Kaplan Meier plots were constructed for overall and progression free survival, stratified according to 152 

the OPC cases having a low or medium/high VL. In addition, hazard to death and hazard to death or 153 
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recurrence were assessed and related to low or medium/high VL status using Cox’s regression with 154 

Firth's penalised likelihood given the small denominators. Follow up data were censored as of 155 

November 2016. Univariate and adjusted results are presented with adjustments made for sex, age, 156 

deprivation, smoking, alcohol intake, TMN stage, ICON stage.  Type of treatment was not included in 157 

the model given its high association with stage.  158 

 159 

Ratios of E6 and L1 VL and clinical outcome 160 

The association(s) between E6/L1 ratio and the demographic and clinical variables were assessed 161 

with significance determined using the Fishers exact test.  Further, we modelled the association 162 

between the distance of the E6/L1 ratio to 1 and the variables using a regression model (to avoid 163 

imposing an “arbitrary” cut off). As the effect may have been different for E6/L1 >1 vs <1, tests for 164 

interaction were performed to determine whether they could be included with the same model.  All 165 

statistical analyses were performed in R version 3.6.1. 166 

 167 

 168 

Results 169 

Characteristics of cohort assessed for VL 170 

Demographic and clinical variables of the cohort are presented in Table 1 in addition to VL status 171 

separated as “low”, “medium” or “high”.  The cohort contained 75 males and 18 females with an 172 

average age of 57 (interquartile range of 52-66).  All were squamous cell carcinomas and most cases 173 

were from more deprived areas; 50/93 patients were SIMD 1 and 2. In relation to smoking and 174 

alcohol, 53 had “ever” smoked and 19 were heavy drinkers. A total of 84 cases were TMN 3 or above 175 

and most, (56/93), received chemo-radiotherapy as treatment.   176 

 177 

VL and impact on clinical outcomes (L1) 178 
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All original data files for this study have been uploaded to the University of Glasgow’s open 179 

access data sharing platform “Enlighten” (http://researchdata.gla.ac.uk/) The DOI for accession 180 

to this data is http://dx.doi.org/10.5525/gla.researchdata.1023 181 

Samples were analysed singly and any assay generating less than 10,000 droplets was 182 

discounted from analysis.  Raw data for the average HPV16 VL per cell as deduced from ddPCR 183 

experiments are presented in Supplementary Table 3. This shows the VL (based on either the L1 or 184 

E6 DNA targets) calculated relative to the endogenous RRP30 cellular gene internal control, which is 185 

known to have two copies per cell.  A threshold is set on the QuantaSoft analysis software (either 186 

automatically or manually as required http://www.bio-187 

rad.com/webroot/web/pdf/lsr/literature/Bulletin_6407.pdf) and from this, the number of positive 188 

and negative droplets for both gene targets in each patient sample is measured. The software then 189 

fits the positive droplets to a Poisson algorithm to determine the target DNA concentrations. L1 VL 190 

ranged from 0.0011 to 304 copies of HPV L1 gene per cell with a mean of 30.9 L1 copies. Those who 191 

died from OPC had a median L1 VL of 5.21 (IQR 0.23-18.15); while those still alive had a median L1 192 

VL of 16.3 (IQR 4.13-33.65). Table 2 shows overall survival stratified by the clinical and demographic 193 

variables described in Table 1 in addition to viral load defined as medium/high (treated as a 194 

composite) or low. Medium/high viral load was associated with improved overall survival in the 195 

univariate analysis with a hazard ratio of 0.3 (95% CI 0.11-0.84), p=0.02.  Variables associated with a 196 

worse overall survival were high alcohol consumption; HR 4.94 (95% CI 1.7-14.39) p<0.01, more 197 

advanced stage and treatment modality. Similar observations were noted when progression free 198 

survival was used as an outcome (Supplementary data 1). Figure 1 shows overall survival and 199 

progression free survival according to the binary VL categories. 200 

In the adjusted analysis no individual variable, including viral load, influenced overall survival other 201 

than high alcohol consumption; HR 3.6 (95% CI 0.98-15.22) – although the confidence interval 202 

http://researchdata.gla.ac.uk/
http://dx.doi.org/10.5525/gla.researchdata.1023
http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6407.pdf
http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6407.pdf
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spanned 1. Alcohol consumption was also associated with a significantly worse progression free 203 

survival; HR 5.48 (95% CI 1.56-19.22) in the adjusted analysis (supplementary Table 1).   204 

 205 

 206 

VL and impact on clinical outcomes (E6) 207 

E6 VL ranged from 0.0012 to 356 copies of HPV E6 gene per cell. Mean viral load was 37.9 E6 gene 208 

copies per cell and those who died from OPC had a E6 VL of  12.19 (IQR 6.65-39.25), while those still 209 

alive had a median E6 VL of 15.69 (IQR 6.04-41.81). 210 

Medium/high viral load was weakly associated with longer overall survival and progression free 211 

survival although the relationship was not as strong as that observed for L1 (Figure 2).  In the 212 

univariate analyses, medium/high E6 VL was associated with a slightly higher overall survival 213 

although this was not significant; HR 0.76 (95%CI 0.21-2.68) p=0.67 (Table 3, Figure 2). High alcohol 214 

intake was associated with worse overall survival;  HR 4.31 (95%CI 1.18-15.67) p=0.03, as was 215 

treatment type.  These observations were unchanged when progression free survival was assessed 216 

(Supplementary table 2).  217 

 218 

L1 v s E6 ratio 219 

All viral genes in an HPV genome have an expected copy number of one.  Comparison of VL 220 

measured by L1 versus E6 gene copy number revealed a small deviance from “copy=one” in almost 221 

all cases. However, in 19 cases out of 82 positive for E6, there was almost a one log range of values 222 

(0.262 to 2.27 copies of E6/L1) (Figure 3).  We modelled the distance of E6/L1 to 1 against 223 

demographic and clinical variables; none of the demographic or clinical variables were significantly 224 

associated with the distance of E6/L1 to 1. 225 

  226 
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Discussion 227 

We have demonstrated that ddPCR is an accurate and rapid method for determining HPV VL in OPC 228 

patients, consistent with previous studies in smaller cohorts (28,29). The  VL detected with both E6 229 

and L1 genes displayed a wide range but was much more restricted than the 103  to 107 range 230 

reported for 48 OPC patients (12) or 1- >900 copies in 45 clinical samples, (29), which both detected 231 

L1 gene copy numbers. 232 

 233 

The ddPCR analysis indicated that a higher L1 VL was associated with better clinical outcomes. One 234 

explanation is that cancers with a higher VL are virus “driven” - whereas those with lower VLs may 235 

represent cancers where other drivers are responsible for the cancer due to impairment of viral 236 

function through integration and/or epigenetic mechanisms.  Notably, we detected very low levels 237 

indeed of L1 with some as low as 0.001 copies per cell. Although such samples tested positive for 238 

HPV16 in the original HPV PCR/genotyping test, we accept that the presence of the virus might not 239 

drive tumorigenesis in these cases and that some tumours in the “low VL” group could be treated as 240 

functionally HPV-negative. We did not test cancers for p16INK4a or E6 RT-PCR or perform in-situ 241 

hybridisation for E6/E7 sequences, which can indicate transcriptional activity of virus.  This would be 242 

of interest for future work and could better clarify the relevance and activity of the virus of the “low 243 

VL” group (30).   244 

 245 

It is known that the mutational burden of HPV-positive OPC is lower than HPV negative cancer; 246 

making it amenable to non-surgical treatment options (7).  This may be because the majority of OPCs 247 

retain viral episomes and there is a lack of insertional mutagenesis of cellular genes due to 248 

integration (31). Therefore, the association of a higher VL with better outcome could be that 249 

multiple viral episomes might allow full virus gene expression, particularly of the highly 250 

immunogenic L1 protein. Theoretically, this would allow for greater antigen presentation and 251 

immune checks, particularly in the tonsils, which are lymphoid tissue.  252 
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 253 

HPV genome status in OPC tumours can be episomal or integrated or exist as virus-human episomes 254 

or integrants (32). While the relationship between integration status and clinical outcome is not fully 255 

understood, only low copy numbers have been detected in cases with integrated HPV genomes (32). 256 

Our samples had a mean viral load of 30.9 (L1) or 37.9 (E6), and VL with L1 detection was similar to 257 

VL with E6 detection, suggesting the majority of samples had mostly episomal genomes, but this 258 

requires confirmation. A surprising finding was that in the majority of samples, the ratio of E6 to L1 259 

was not equal to one and some had greater numbers of E6 vs  L1 copies; this may be explained by 260 

amplification of E6/E7 genes either in episomal or integrated viral genomes due to recombination 261 

events. Conversely, the samples which had more L1 than E6 copies may reflect the presence of full-262 

length genomes alongside partially deleted viral genomes missing the E6 gene. We could not 263 

demonstrate a relationship between L1:E6 ratios and clinical/demographic variables or outcomes, 264 

but this may be an artefact of the small number of cases. Viral activity in OPCs, including level of HPV 265 

gene expression is likely to provide further insight on clinical outcomes.  While sequencing is 266 

required to address this question, our data provide further proof of the instability of the HPV 267 

genome in OPC.  268 

 269 

In the adjusted analysis, VL was not independently associated with improved outcomes.  This is 270 

consistent with the fact that OPC is influenced by various behavioural, demographic and clinical 271 

factors and their complex interplay. Consequently, L1 VL may be a proxy of one or a combination of 272 

these but nevertheless represents a tool which can be applied objectively to ascertain risk-groups 273 

within the HPV positive category. It is also feasible that VL may be used to indicate/inform treatment 274 

options. Trials of therapy in OPC based on HPV status have generally relied on qualitative tests; it 275 

would be of value to include VL in such studies to determine if it serves as a complimentary 276 

biomarker of disease outcomes (33). 277 

 278 
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There are limitations to the study – although the sample set was well annotated it was still relatively 279 

small. In addition, we did not impose additional tools to determine viral activity & physical state 280 

which may have helped explain the findings, including the relationship between L1 and E6 ratios.  281 

Nevertheless, given the increasing burden of OPC globally and the desire for optimal management 282 

strategies - we would argue that assessment of viral load is worthy of further investigation. To this 283 

end we aim to confirm our findings in a larger patient cohort where complimentary biomarkers of 284 

viral activity including p16INK4a and E6/E7 mRNA detection (34)  are imposed and where increased 285 

power would allow further categorisation of load beyond binary groups. 286 

 287 
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