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Abstract 

 
The demand for liver transplantation far outstrips the supply of deceased donor organs, 
and so, listing and allocation decisions aim to maximize utility. Most existing methods 
for predicting transplant outcomes use basic methods, such as regression modelling, 
but newer artificial intelligence (AI) techniques have the potential to improve predictive 
accuracy. The aim was to perform a systematic review of studies predicting graft 
outcomes following deceased donor liver transplantation using AI techniques and to 
compare these findings to linear regression and standard predictive modeling: donor 
risk index (DRI), Model for End- Stage Liver Disease (MELD), and Survival Outcome 
Following Liver Transplantation (SOFT). After reviewing available article databases, a 
total of 52 articles were reviewed for inclusion. Of these articles, 9 met the inclusion 
criteria, which reported outcomes from 18,771 liver transplants. Artificial neural 
networks (ANNs) were the most commonly used methodology, being reported in 7 
studies. Only 2 studies directly compared machine learning (ML) techniques to liver 
scoring modalities (i.e., DRI, SOFT, and balance of risk [BAR]). Both studies showed 
better prediction of individual organ survival with the optimal ANN model, reporting an 
area under the receiver operating characteristic curve (AUROC) 0.82 compared with 
BAR (0.62) and SOFT (0.57), and the other ANN model gave an AUC ROC of 0.84 
compared with a DRI (0.68) and SOFT (0.64). AI techniques can provide high accuracy 
in predicting graft survival based on donors and recipient variables. When compared 
with the standard techniques, AI methods are dynamic and are able to be trained and 
validated within every population. However, the high accuracy of AI may come at a cost 
of losing explainability (to patients and clinicians) on how the technology works. 
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The number of patients awaiting liver transplantation currently outnumbers the number 
of donor livers available, which results in up to 20% of patients dying while on the 
waiting list [1,2] Because donor organs are a scarce resource, it is becoming 
increasingly import- ant to increase liver graft utilization and, at the same time, to ensure 
that the best possible outcomes can be achieved. This outcome paradigm is heavily 
reliant on a number of complex factors between donors, recipients, and health care 
providers [3,4]. Many different allocation systems have been used to find an appropriate 
solution to the delicate balance of factors needed to predict the best outcomes in liver 
organ allocation. 
 
The current gold standard in prioritizing patients waiting for a liver in much of the world 
remains the Model for End-Stage Liver Disease (MELD). However, this scoring system 
can have conflicting results.(5,6) Other liver scoring systems include the balance of risk 
(BAR) score and the survival outcome following liver transplantation (SOFT), which 
have been validated and are currently used to assist surgeons in the decision-making 
process.(7) Many current scoring systems focus on the survival prognosis for the 
recipient, which is believed to be an extremely complex relation- ship that is nonlinear in 
nature.(8) However, the majority of current liver allocation models apply globally used 
methodologies, such as multiple regression and other linear models [9]. Therefore, 
achieving the most reproducible model that takes into account all donor and recipient 
factors would undoubtedly improve both organ use and outcomes [10,11,12]. 
 
The key to optimal organ allocation in transplantation is accurate prediction of an 
individual trans- plant outcome for a given set of donor and recipient variables. Such a 
prediction can be used as part of a matching algorithm to maximize the overall benefit 
from the available organ pool. It can also be used in the patient-clinician decision-
making process when deciding whether to accept an organ offer. 
 
As clinicians search for better and more accurate models predicting transplant 
outcomes, newer technologies are being trialed in the matching of this scarce resource. 
Artificial intelligence (AI), an area of computer science that encompasses intelligent and 
learned behaviors in computing, has been applied to many fields to produce better and 
more meaningful data analysis (Fig. 1) [13]. In particular, machine learning (ML), a 
branch of AI that extrapolates patterns and information from provided data without 
necessarily being explicitly instructed to do so, is quickly emerging as a vital tool in the 
surgical sciences for outcome prediction [14,15]. 
 
ML itself can be further categorized into different subgroups that include knowledge-
based, supervised, unsupervised, and reinforcement learning methodologies [16]. For 
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the task of predicting outcomes following a liver transplant, supervised ML approaches 
are used that employ a combination of previously observed covariates (in this case, 
donor and recipient factors) and outcomes (in this case, observed survival times) to 
learn underlying relationships. 
The distinction between prediction using ML and traditional statistical inference is not 
entirely clear-cut, but for the purposes of this review, we differentiate as follows (Fig. 1). 
Statistical models are those that assume an underlying probability distribution for the 
data generating process. A relatively small number of parameters that define the 
distribution are then estimated from samples of data. In the field of survival analysis, for 
example, Cox proportional hazards regression is a commonly used statistical model 
[17]. In contrast, ML approaches are more algorithmic in nature and typically have much 
larger numbers of associated parameters. These approaches allow complex nonlinear 
interactions between factors to be learned directly from data samples with few, if any, 
assumptions being made about the underlying distribution of the data generating 
process itself. Some examples of ML techniques that are commonly used for predictive 
tasks are artificial neural networks (ANNs), random forests, and support vector 
machines (SVMs) [16]. ANNs are models that use principles of statistics to build 
complex modeling tools using data that are nonlinear in nature, and they imitate human 
thinking in the way they process several data types and create patterns that are 
ultimately used in decision making through these neural networks [18]. Random forests 
create multiple decision trees that are able to sort through data and identify important 
variables that influence predictions or outcomes [19]. Finally, the SVM methodology 
organizes data by the class of variables (in a nonlinear modality), known as 
hyperplanes, that are able to form complex multidimensional infinite planes in space 
using these data [19]. 
 
To our knowledge, this is the first systematic review of AI computing techniques being 
used in liver transplantation to predict individual patient graft survival. The aim of this 
research is to provide a review of the collective evidence on AI computing techniques to 
predict individual patient liver graft survival when compared with the standard risk 
scoring tools (MELD, DRI, and SOFT). 
 
Methods 
 
Literature Search Strategy 
 
Original studies on AI used to predict individual patient liver graft survival were identified 
by search- ing the following databases: MEDLINE, Science Direct, Springer Link, 
Elsevier, PubMed Central, and Cochrane databases from inception to September 11, 
2019. Clinicaltrials.gov was also searched for relevant ongoing trials. No date limitations 
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were included within the search parameters. The following keywords were used in the 
search: Medical Subject Headings (MeSH) terms including “machine learning” OR 
“artificial intelligence” OR “neural networks (artificial)” OR “support vector machine” OR 
“stochastic processes” OR “Bayesian learning” OR “supervised machine learning” OR 
“machine learning” [title/abstract] OR “neural network” [title/abstract] OR “Bayesian 
learning” [title/ abstract] OR “support vector” [title/abstract] OR “machine learning” 
[title/abstract] OR “deep learning” [title/abstract] OR “stochastic processes” 
[title/abstract] AND MeSH terms “hepatic transplantation” OR “liver transplantation” OR 
“liver grafting” OR “hepatic transplant*” [title/abstract] OR “liver transplant*” 
[title/abstract] OR “liver graft*” [title/abstract] NOT editorial[publication type] or 
comment[publication type]. The literature search included studies published in any 
language. Additionally, a manual review of the reference lists of the studies obtained 
from the search strategy was used to identify additional relevant studies. The Preferred 
Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) checklist was 
used to include appropriate studies within this review. The study was registered on the 
PROSPERO database (CRD42019094865). 
 

Selection Criteria 

Studies were included if they looked at patients who received a deceased donor liver 
transplantation with the intervention of AI computing techniques with traditional 
statistical modeling to determine individual graft survival outcomes. Studies were limited 
to those including only liver transplantation, and those studies that involved AI and 
renal, cardiac, or lung transplants were excluded. Only adult transplant patients were 
included. Modalities of AI included within this review encompass mainly neural 
networks, random forests, and probabilistic graphical modeling. Overlapping study 
groups, although containing the same data sets, were included if they used distinctly 
different types of ML techniques to analyze the data or looked at different survival 
timescales. If studies looked at other disease areas around transplantation (i.e., hepatic 
carcinoma recurrence after transplantation), these studies were excluded. 
 
No limits or exclusions were made on the number of transplant recipients or the country 
location of the transplants. Study design types within the inclusion criteria for this review 
were meta-analysis (of randomized control trials), randomized control trials, and cohort 
studies. Data extraction to identify ML methods, ML methodology, and associated 
results were recovered via a data extraction sheet. This data extraction was conducted 
by 2 independent researchers (LW and CC), and any discrepancies were resolved by 
the senior author (SK). 
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Quality assessment Methods 
 
The studies within this review were assessed for quality using the Critical Appraisal 
Skills Programme (CASP) Checklist for cohort studies [20]. A table was constructed 
(Table 1) that details the 4 broad areas of quality assessment, including “validity of 
study,” “worth continuing work,” “results,” and “results helpful locally.” The table 
describes each corresponding item in the abovementioned categories with either a 
“yes,” “no,” or “unsure.” 
 
Results 

Literature review 

Of the initial 52 studies identified via the search terms, 21 articles were excluded 
because they did not specifically include liver transplantation. The remaining 31 articles 
were selected for a further full manuscript re- view. From this group of articles, 10 
examined trans- plant associated disease (no survival outcomes), 8 were excluded 
because upon further examination they did not include pure AI modeling, and a further 3 
articles that focused solely on testing the feasibility of computing models but did not 
provide outcome data were excluded. For example, the article by Tusch focused on a 
patient decision-making pathway before and after transplant, and 1 article focused on 
paediatric transplant and was therefore excluded [30]. A further 10 articles were 
excluded because although they examined AI modalities, they looked at AI in 
association to transplant-related disease (i.e., recurrence of hepatocellular carcinoma in 
posttransplant patients), not as a tool for prediction of individualized graft survival 
outcomes. One article examined pediatric liver transplant survival, and therefore, it was 
excluded. A final 9 articles [21,22,23,24,25,26,27,28,29] were selected for inclusion 
within this study. Figure 2 shows the PRISMA flow diagram for paper selection. 
 
The 9 articles relevant to the topic of AI and liver transplant outcomes included a total of 
18,771 study participants (Table 2). Within these articles, the majority examined graft 
survival at 3 months and/or graft survival at 1 year with 8 articles examining these 
endpoints each. One article examined survival between 2 and 5 years. At the other end 
of the spectrum, some articles looked at graft survival in the very short term with 2 
articles reviewing survival predictions at 30 days or fewer. 
 
Participants 

There was a mean of 2086 (range, 180-12,239) participants from all studies included in 
the review, and there was a tendency to analyze larger cohorts of data. For example, 
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Hoot et al. reviewed a cohort of 12,239 patients from American United Network for 
Organ Sharing (UNOS) registry data [26]. Additionally, groups were analyzed from a 
number of countries and transplant data sources including Spain, UNOS data from the 
United States, several UK centers, an Australian Liver Database, and China (Table 2). 
Notably, 5 of the study groups used the same data set in their research, which 
comprised Spanish transplantation centers with an externally validated data set from 
King’s College London [21,22,23,24,28]. 
 
Quality Assessment of studies included in the review 

The articles included were good quality overall (Table 1), with all articles reviewed 
including a clear research aim. A total of 77% of the articles reviewed contained results 
that could be used in clinical practice (n = 7). Despite these strong quality points, there 
were other areas that the articles could have improved upon. For instance, in almost all 
of the articles reviewed (n = 8), it was difficult to determine whether the results could be 
applied to local populations. Further areas of improvement were centered around bias 
reporting. Although the authors within the studies may have specifically measured 
outcomes to minimize bias, this was not explicitly mentioned in 3 articles [21,23,30]. 
 
Artificial Intelligence Approaches and Input Features  

There is currently no gold standard in AI modeling for clinical outcomes, and a number 
of different approaches were trialed within our study groups. Approaches used within 
the articles reviewed for this article include the following: ANNs, SVM, random forests, 
gradient-boosted trees (GBT), and Bayesian networks. More than half of the included 
studies (n = 5) trialed more than 1 type of ML approach to predict the same outcome 
(i.e., graft survival) [21,22,25,26,30]. Despite the survival analysis setting and the 
existence of right-censored data, most studies approached the task as a binary 
classification problem at a specific time (e.g., graft survival at 1 year after transplant). As 
such, observations censored prior to the time of interest were excluded from the 
modeling process. A number of articles approached the task as one of ordinal 
classification (ie, the simultaneous predictions of 2 or more intrinsically ordered classes) 
where the classes represented failure at successive times of interest. The most 
commonly used type of classifier was ANNs, with 7 articles adopting this approach 
(Table 3) [20,21,22,25,26,27,30]. 
 
It is well established that the process of organ allocation is extremely challenging and 
can be influenced by many potentially interacting factors. In the 9 articles included, 
there was a range of donor and recipient characteristics that were examined. The 
number of donor, recipient, and surgery-related variables ranged from 10 to 276. Lau et 
al. measured the largest number of overall variables: 173 recipient variables and 103 
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donor recipient variables initially. They reviewed these variables and selected a top 15 
inputs following feature selection [27]. 
 
Comparisons between AI modeling and standard organ risk stratification systems were 
made within almost all of the articles. Standard liver risk stratification scores used for 
comparison included MELD, SOFT, Predicting Survival Following Liver Transplantation 
(P-SOFT), BAR, and DRI, with MELD being the most commonly used (n = 8). Where 
comparisons were quantitative, a number of performance metrics were used. The most 
commonly used was the area under the receiver operating characteristic curve 
(AUROC) [20,21,24,25,30] with a C index [27] with accuracy, sensitivity, and the 
geometric mean of sensitivities (GMS) [26] also being reported in some cases. When 
reviewing the included articles, it is important to con- textualize the results in reference 
to the area under the curve (AUC), or C statistic, which ranged from 0.5 (showing no 
discrimination) to a perfect model showing a maximum value of 1. Therefore, an AUC 
score of 0.5 would be equivalent to a coin flip of chance. In a clinical context, models 
with an AUC score of 0.7 are considered a good fit, and an AUC score of 0.9 is 
considered an almost perfect model [31]. Ultimately, clinical judgment was used in 
combination with standard organ risk stratification systems including MELD scoring and 
previous UNOS allocation systems. 
 
Validation of AI models used 

Within the articles selected for this review, there were a variety of approaches 
undertaken to validate the data. However, all 9 studies validated their data sets. The 
most common methodology was cross-validation (n = 5) with researchers using either a 
3-fold or 5-fold stratified cross-validation or a 10-fold stratified cross-validation (Table 4) 
[21,22,24,26,28]. Another approach taken was a training and test data set from Zhang 
et al., which included an 80%/20% train-test split with an additional 20% validation set 
created from the training set [29]. Cruz-Ramírez et al. included a 75%/25% train-test 
split, with multiple bootstrap samples created from each set [23,27,30]. Lau et al. used 
1000 bootstrap samples with out-of-bag samples for validation and was the only group 
to take this approach, which is most likely due to their small sample size [27]. 
Interestingly Haydon et al. did not explicitly mention within their work the parameters 
used in evaluating the efficacy of their model, only mentioning that a separate database 
of 2622 patients was used for validation. They were the only group not to mention these 
[25]. 
 
AI compared with other predictive methods 

Five of the studies directly compared the performance of ML models to some form of 
linear regression modelling (Table 3) 19,22,24-26,30]. Almost half of the studies within 
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this review did not mention specific regression methodology used (n = 4) [21,23,26,27]. 
Of the studies that directly compared ML models with standard regression modeling (n = 
5), only 2 out of this total reported higher accuracy in ML. For instance, Briceño et al. 
reported their best ML model as ANNs with an accuracy of 0.91 and an AUROC of 0.82 
compared with their most successful logistic regression model with an accuracy of 0.89 
[21]. Although statistically speaking this is an improvement, the difference of 0.02 
between traditional logistic and ML models cannot be considered a clinically significant 
improvement. Cruz-Ramírez et al. also compared ML techniques to logistic regression 
and showed similar accuracy between the 2 modalities [23]. However, they also showed 
an overall improved AUROC with ML. The logistic model tree ML technique had an 
accuracy of 0.88, whereas the best logistic regression model was 0.88. The ANN model 
showed a minimum sensitivity of 0.50 compared with the logistic regression of 0.03 and 
an AUROC of 0.57 compared with the logistic regression AUROC of 0.51 [21]. 
 
Finally, only 2 studies directly compared ML techniques to liver scoring modalities (i.e., 
DRI, SOFT, and BAR). Briceño et al. showed an ML AUROC of 0.82 compared with a 
BAR of 0.62 and a SOFT of 0.57.(21) The 0.20 difference in AUC between traditional 
and ML models can be considered clinically significant. Following these results, Briceño 
et al. [21]. suggested that their ML scoring system using ANN could be used to predict 
3-month outcomes in conjunction with clinical judgment [21]. They also stated that they 
believed that ANNs may be the best method to combine the myriad variables involved in 
transplantation (i.e., donor, recipient, and others) to obtain optimal survival. They do not 
directly state that this methodology should replace current liver indices or linear 
regression models. However, they do explain that many of the current scoring 
modalities (DRI, MELD, SOFT, and BAR) use logistic regression analysis, which 
assumes a linearity among the liver transplant variables and survival. The authors point 
out that in reality, liver transplantation follows a nonlinear pattern, and therefore, this 
approach is too simplistic. 
 
The other research to directly compare ML modalities to traditional liver scoring was 
from Lau et al. The ANN model from Lau et al. showed an AUROC of 0.84 compared 
with a DRI of 0.68 and SOFT of 0.64 [27]. These results show a difference of 0.16 in 
AUC values between the best ML model and the DRI, which can be considered high 
enough to practically warrant clinical use of one model over another. Despite the 
results, Lau et al. note that this initial research was a proof of concept that could 
potentially be used to support clinical decision making in liver transplant organ 
allocation. They did not outwardly suggest that this methodology should be used instead 
of current liver indices or linear regression modeling. However, Lau et al. suggested that 
their ML algorithm could be used as a tool to improve clinician confidence in using 
marginal organs [27]. 



 

9 
 

Discussion 

To our knowledge, this systematic review is the first of its kind that reviews ML 
methodology to predict individual graft outcome following liver transplantation. Other 
systematic reviews have examined ML and renal graft outcomes as reported by 
Senanayake et al. [33] Nursetyo et al. [34] and Sousa et al. [32] reviewed ML ap- 
plications in heart, heart-lung, and kidney transplanted organs published between the 
years of 2009 and 2010. These limited systematic reviews in AI/ML and organ 
transplantation highlight a gap in the literature [33,34]. As well as limited reviews on the 
topic, the results have highlighted the heterogeneity in the AI techniques used within the 
study results. Unfortunately, only a few articles directly compared ML modeling with 
logistic regression and/or liver scoring systems. It would be especially useful to examine 
this parameter because re- searchers would be using the same data sets to compare 
ML performance with what is currently being used in liver scoring systems clinically. 
 
Studies within this review by Briceño et al., Cruz-Ramírez et al., and Lau et al. 
demonstrated that ML modeling provided more accurate results when compared with 
standard regression and liver scoring modality [21,23,27]. Recently, in the United 
Kingdom, the liver allocation system has changed, whereby a “transplant benefit score” 
is generated. This system aims to provide a more in-depth score than the previous 
United Kingdom Model for End-Stage Liver Disease classification and comprises 7 
donor and 21 recipient characteristics and is calculated using linear regression 
modeling measuring the difference between the AUC for the waiting list survival curve 
and the AUC under post-transplantation 5-year survival [35]. In time, it will be important 
to establish whether this new approach results in an increase in the number of life- 
years gained from transplanted livers and a decrease in the number of wait-list deaths. 
Further studies are certainly needed to select a universal AI methodology, and support 
from national bodies needs to be garnered. This review study highlights the growing 
evidence to support AI technology as a predictive tool that can be used to form an organ 
allocation system when com- pared with standard methods of allocation currently in use. 
Although AI technology is being used in other fields of medicine, it has yet to have 
widespread, nationally implemented programs at the time of this publication [36]. 
 
Advantages to ML Systems 

In addition to the need for a nationally adopted standard AI system, the advantages of 
AI need to be further stressed with education of governmental and health organizations 
taking place. For instance, one advantage of AI methodology, especially neural net- 
works, when compared with standard techniques is that they are dynamic and able to 
be trained and validated within every population. Furthermore, the more variables that 
are examined in terms of donor characteristics, the more precise a neural network can 
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be, provided enough data are available. A more accurate neural network allows for 
better organ allocation decisions that take into account a large number of variables, 
which standard programs currently may not include, or that may need a clinician’s 
detailed review of donor and recipient parameters. To achieve this precision, however, 
there is a need for a standardized curation of liver transplantation data to allow widely 
usable, standardized models to be built to be used across different counties. Ultimately, 
for the individual patient, this information will help clinicians to make more informative, 
personalized decisions around organ acceptance and to adapt the informed consent 
process to the organ on offer at any one time. Finally, there are significant financial 
costs and regulatory constraints related to liver transplant, and as these constraints 
increase, it is important to have a quantitative tool to help transplant clinicians make 
these critical organ allocation decisions. 
 
Challenges with Implementing ML Systems 

Despite potential benefits to using ML in liver transplantation, there are also potential 
limitations to using this emerging technology. Ultimately, researchers using ML-based 
algorithms aim to present the most accurate prediction output as the data will allow. In 
some cases, the algorithms may include variables that, based on clinical experience 
and previous research, are not biologically plausible. This creates a conundrum for 
researchers, clinicians, and the patients, who will ultimately receive the liver transplant: 
if a variable is known to have no survival benefit in clinical practice, but it shows a 
survival benefit anyway, should it be included? This leads to the ethical issue around 
explainability in AI, which is described in detail later. Another limitation is that these 
algorithms may not have global applicability, and instead, they are often best suited to 
predicting outcomes based on data sets from which they were originally derived. Further 
challenges with ML algorithms may stem from shifting patient populations. Because 
algorithms are designed based on relatively static data sets in a particular point in time, 
there may be a new distribution in the data compared with the original data set used to 
train the ML algorithm, and mechanisms need to be in place to update models over 
time. Finally, there are logistical challenges around translating ML algorithms directly 
into a clinical set- ting. For instance, different health care computer systems may not 
easily host the programs required to run the algorithms. Final hurdles to implementation 
may center around clinician acceptability and implementation of algorithms when there 
can be considerable opacity around the algorithms themselves. 
 
Study Strengths and Limitations 

The strengths of this review include that it is the first study to systematically review all of 
the available literature of AI/ML techniques in liver transplant. Thus far, there has been 
extremely limited work in this field, and this review aims to amalgamate the current work 
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in this area to date. This review also discusses a timely subject, namely, ML in health 
care, and as this methodology is being rapidly integrated into health care systems, it is 
vital that the research in this area is disseminated for the transplant community. Finally, 
this review covers a wide breadth and depth of study participants including transplant 
recipients from Australia, Spain, United Kingdom, United States, and China. A total of 
18,771 liver transplantation patients comprised the data sets used by researchers also 
making this article the largest, systematic review of its kind. 
 
There are some limitations to this study. Many of the articles included within this review 
were observational studies, i.e., data being retrieved from databases. They were 
retrospective in nature, and to truly test the predictive power of AI, it would be ideal to 
have further large, externally validated prospective cohort studies. These studies could 
review prospective outcomes, such as 30-day graft survival as well as longer-term graft 
survival rates (i.e., 1 year or more). An additional limitation to this study is the high rate 
of heterogeneity in AI techniques used among the articles included within this review as 
previously mentioned. The size, heterogeneity, and quality of data sets among the 
studies included make direct comparisons between the studies challenging, including 
evaluations between regions/countries, early verses late prediction abilities of the ML 
algorithms, and prediction comparisons by MELD strata groups. Finally, none of the 
studies took a time-to-event (i.e., graft failure) approach. In clinical practice, it may be 
useful to have such a quantitative measure of the likelihood survival gain by accepting/ 
rejecting a specific organ, which would further help clinicians and patients make more 
informed decisions on grafts. 
 
Explainability in ML 

ML methodologies are being used to analyze data in completely new ways. This 
evolution in science is creating a great potential to develop clinical decision support 
tools that can help doctors and patients make critical decisions about health. However, 
the use of ML in critical health care decisions brings up several challenges. The high 
accuracy of ML may come at a cost of losing explainability (to patients and clinicians) on 
how the technology works. Some ML-based algorithms work in ways that are unknown 
to the creator and, therefore, cannot be explained to patients or doctors using them 
(which is known as a black box issue) [18]. This raises questions about accountability 
for such algorithms in the event that an incorrect result (i.e., incorrect liver graft survival 
prediction) is made. Furthermore, incomplete data sets used to train ML algorithms may 
cause potential biased outcomes. Finally, the use of ML poses questions around the 
acceptability of patients and their carer when decisions are delegated (partially) away 
from humans and more so to computer algorithms. On the basis of these challenges 
around ML algorithms, it is essential to have research into how both clinicians and 
patients would interpret ML-generated algorithms. 
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Despite challenges around the black box issue, if AI techniques were widely accepted 
within liver trans- plant, this could be an invaluable tool in providing clinicians with 
critical decision making. It would allow surgeons to make more evidence-based decision 
making as well as provide patients with a tool to under- stand the risk/benefit ratio of 
accepting a specific liver transplant. Finally, an AI model could make the liver donation 
system more efficient and would cause fewer organs to be discarded. 
 
 

 
 
Fig 1. Key definitions of AI terminology 
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Table 1: Modified Critical Appraisal Skills Programme (CASP) Checklist for cohort studies 
 
 
                          
 
 
 

Validity of Results Worth Continuing work Results Results help locally

Clearly focused 
question?

Cohort recruited 
in acceptable 
way?

Exposure 
measured 
to minimise 
bias

Outcome 
accurately 
measured 
to minimise 
bias

Identified 
confounding 
factors

Follow up 
of subjects 
complete

Are results 
precise?

Believable 
results

Can results be 
applied to local 
population

Results fit 
with other 
evidence 

Results 
may be 
used in 
practice?

Study Author Year
Briceno J. 2014 Yes Yes Yes Yes Yes Yes Yes Yes Unsure Yes Yes

Cruz-Ramírez M 2013 Yes Yes Yes Yes Yes Yes Yes Yes Unsure Yes Yes

Cruz-Ramírez M 2012 Yes Yes Yes Yes Yes Yes Yes Yes Unsure Yes Yes

Dorado-Moreno M 2017 Yes Yes Unsure Yes Yes Yes Yes Yes Unsure Yes Yes

Haydon GH 2005 Yes Yes Unsure Unsure Yes Yes Yes Yes

No - very small 

population, only 

in Birmingham Yes Unsure

Hoot N. 2005 Yes Yes No Unsure Yes Yes Yes Yes Yes Yes Yes

Lau L 2017 Yes Yes Unsure No Yes Yes Yes Yes Unsure Yes Yes

Perez-Ortiz M 2017 Yes

Unsure - not 

mentioned Yes Yes Yes Yes Yes Yes Unsure Yes Yes

Zhang M 2012 Yes Yes Unsure Unsure Unsure Yes Yes Unsure No Yes Unsure
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Fig 2. PRISMA flow diagram of systematic identification, screening, eligibility, and inclusion 
criteria.  
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Author Year Specific 
patient 
demographic 
group 

Patient 
number 

Average 
Patient 
Age 
(median) 

Sex 
(male, 
number 
and 
percent) 

BMI 
(mean +/- 
standard 
deviation) 

MELD 
(mean +/- 
standard 
deviation) 

Reason for 
Transplant: 
Alcoholic 
cirrhotic liver 
(number and 
percent) 

Reason for 
Transplant: 
Hepatitis C 
Virus 
(number 
and 
percent) 

Briceno 
J. 

2014 11 Spanish 
centres 

1,003 52.98 ± 
9.86 
(Mean 
+/- SD) 
18-73 
(range) 

724 
(72.2%) 

26.76 ± 
4.44  
 
Range: 
10.0-60.3 

MELD 
(inclusion) 
16.51 ± 
6.567 
(range: 1-
48) 
 
MELD (at 
transplant) 
17.35 ± 
7.01  
(range: 2-
57) 

298 
(29.7%) 

329 
(32.8%) 

Cruz-
Ramírez 
M. 

2013 11 Spanish 
centres 

1,003 N/A N/A N/A N/A N/A N/A 

Cruz-
Ramírez 
M. 

2012 11 Spanish 
centres 

1,001 N/A N/A N/A N/A N/A N/A 

Dorado-
Moreno 
M. 

2017 7 Spanish 
centres and 
King's 
College 
Hospital, UK 

1,406 N/A N/A N/A N/A N/A N/A 

Haydon 
G.H. 

2005 1 centre (The 
Queen 
Elizabeth 
Hospital 
Birmingham, 
UK) 

827 median 
age was 
52 years 
(range 
16.5–
73.5 
years 

479 
(58%) 

N/A N/A N/A N/A 

Hoot N. 2005 American 
UNOS data 
set from 
2000-2002 

12,239 Years 
2000-
2001; 
50.8 ± 
10.0 
Years 
2002: 
51.1 ± 
9.7 

Years 
2000-
2001: 
65.3% 
Year 
2002: 
68.8% 

N/A N/A N/A N/A 

Lau L. 2017 Liver 
Transplant 
Database 
from 
Austin 
Health, 
Melbourne, 
Australia, 
from January 
1988 
to October 
2013. 

180 45.8 ± 
16.8 (14-
78) 

52.8% 26.3 ± 4.5 
(Range: 
17.6-40.4) 

18.2 ± 7.5 
(range: 6-
43) 

8.9% 22.8% 
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Perez-
Ortiz M. 

2017 1 centre 
(King’s 
College 
Hospital, UK) 

822 N/A N/A N/A N/A N/A N/A 

Zhang 
M.  

2012 1 centre 
(West China 
Hospital). 
Hepatic 
cancer 
patients only.  

290 46.1 ± 
10.8 

169 
(58.3%) 

21.1 ± 4.4 <14: n=109 
(37.6%) 
 
14–23: 
n=95 
(32.8%) 
 
 ≥24: n=86 
(29.7%) 

27 (9.3%) 
 

25 (8.6%) 
 

 
Table 2: Study demographics - Recipient  
 
 
 

Author Year Description of 
ML models used 

Supervised 
or 
Unsupervised 
Learning 

Description 
of 
Regression 
methods 
used (e.g. 
Logistic or 
Cox PH) 

Best 
Performing 
Regression 
method:  
Reported 
Metrics 
(e.g. 
Accuracy, 
Min. 
Sensitivity, 
AUC ROC) 

Best Performing 
Liver Risk Index 
Score:  
Reported 
Metrics (e.g. 
Accuracy, Min. 
Sensitivity, AUC 
ROC) 

Best 
Performing ML 
type: Reported 
Metrics (e.g. 
Accuracy, Min. 
Sensitivity, 
AUC ROC) 

Briceno 
J. 

2014 2 x ANN Models 
fitted using 
evolutionary 
algorithms 
(NNEP) 

Supervised 
Learning 

Logistic 
Regression 
variants 

Best Log. 
Reg.: 
Accuracy: 
0.89 

AUC ROC 
- BAR: 0.61 
- SOFT: 0.57 

Best ANN 
- Accuracy: 0.91 
- AUC ROC: 
0.82 

Cruz-
Ramírez 
M 

2013 Multiple RBF-
based ANNs fitted 
using evolutionary 
algorithms 
(MPENGSA2) 
Decision Tree 
Logistic Model 
Tree (LMT) 
SVM 

Supervised 
Learning 

Logistic 
Regression 
variants 

Best Log. 
Reg.  
- Accuracy: 
0.88 
- Minimum 
Sensitivity: 
0.03 
- AUC 
ROC: 0.51 

Not mentioned Best ML 
- Accuracy 
(LMT): 0.88 
- Minimum 
Sensitivity 
(ANN): 0.50 
- AUC ROC 
(ANN): 0.57 

Cruz-
Ramírez 
M 

2012 Multiple RBF-
based ANNs fitted 
using  
evolutionary 
algorithms 
(MPENGSA2) 

Supervised 
Learning 

Not 
mentioned 

Not 
mentioned 

Not mentioned Best ANN 
- Accuracy: 0.84 
- Minimum 
Sensitivity: 0.52 
- AUC ROC: 
0.57 

Dorado-
Moreno 
M 

2017 Cost-sensitive 
ordinal ANN fitted 
using evolutionary 
algorithms. 
Random forests, 
Gradient-boosted 
trees (GBTs), 
SVMs, Extreme 
learning machine 
for ordinal 
regression 
(ELMOR), Kernel 
discriminant 
leaning for ordinal 
regression 
(KDLOR) 

Supervised 
Learning 

Proportional 
Odds Model 
(POM) 

GMS: 0.00 Not mentioned Best ML 
- Accuracy 
(ELMOR): 0.85 
- Geometric 
mean of 
sensitivities 
(GMS) (Ord. 
ANN 
model): 0.15 
- Average Mean 
Absolute Error 
(AMAE) 
(KDLOR): 1.21 
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Haydon 
GH 

2005 Self Organizing 
Maps (SOM - a 
type of ANN)  

Unsupervised 
Learning 

Not 
mentioned 

Not 
mentioned 

Not mentioned Not mentioned 

Hoot N. 2005 Bayesian Network Supervised 
Learning 

Several 
models based 
on Cox PH 

AUC ROC 
between 0.6 
and 0.7 

Not mentioned 3-fold cross-
validation on 
training set - 
AUC ROC: 0.67 
 
Test set 
- AUC 
ROC: 0.68 

Lau L 2017 Random forests 
ANNs 

Supervised 
Learning 

Logistic 
Regression 

Not 
mentioned 

AUC ROC 
- DRI: 0.68 
- SOFT: 0.64 

Best ML 
- AUC ROC 
(ANN): 0.84  

Perez-
Ortiz M 

2017 Semi-supervised 
(Combined 
labelled and 
unlabelled data) 
- SVM variants 
 
Supervised 
- SVM variants 
- ANNs fitted 
using evolutionary 
algorithms 
(MPENGSA2) 

Combination 
of supervised 
and 
unsupervised 
learning (semi-
supervised)  

Not 
mentioned 

Not 
mentioned 

Not mentioned Best ML (3 
month) 
- Accuracy 
(SVC): 0.90  
- Geometric 
mean of 
sensitivities 
(GMS): (SVC-
LP) 50.35  
 
Best ML (12 
month) 
- Accuracy (CS-
SVC): 0.90   
- Geometric 
mean of 
sensitivities 
(GMS) (CS-
SVC): 55.09  

Zhang 
M  

2012 ANN Supervised 
Learning 

Not 
mentioned 

Not 
mentioned 

Not mentioned C-Index 
- 1 year: 0.91 
- 2 year: 0.89 
- 5 year: 0.84 

 
Table 3 - Results of Machine Learning methodology compared to regression and liver risk index 
scoring 
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Author Year Patient 
number 

Standard LT 
score  model 
used 

Follow up 
duration (i.e. 
graft 
survival) 

Number/fraction of 
graft failures 

Number of input 
variables used (i.e. 
donor and 
recipient 
characteristics) 

Validation data 
split and methods 

Briceno 
J. 

2014 1,003 Current 
validated scores 
(MELD, D-MELD 
[16], DRI, P-
SOFT, SOFT, 
and BAR) - for 
transplant.  

3 months Not mentioned 26 recipients, 19 
donor, 6 
transplants 

10-fold stratified 
cross-validation  

Cruz-
Ramírez 
M 

2013 1,003 MELD (not 
quantitatively 
compared) 

3 months ~100 (10%) 16 recipients, 20 
donor, 3 
transplants 

75%/25% train-test 
split, with multiple 
bootstrap samples 
created from each 
set 

Cruz-
Ramírez 
M 

2012 1,001 MELD (not 
quantitatively 
compared) 

1 year 161 (16%) 16 recipients, 16 
donor, 3 
transplants 

5-fold stratified 
cross-validation 

Dorado-
Moreno 
M 

2017 1,406 MELD Ordinal 
failure time 
categories: 
0 - 15 days 
15 days - 3 
months 
3 months - 1 
year 
1 year + 

15% within 1 year 16 recipients, 17 
donors, 5 
transplants 

10-fold stratified 
cross-validation 
 
Over-sampling of 
synthetic D-R pairs 
also used to 
increase the 
frequency of 
minority classes 

Haydon 
GH 

2005 827 MELD (not 
quantitatively 
compared) 

3 months 
1 year 

Not mentioned 37 recipients, 18 
donors 

Separate dataset of 
2,622 patients used 
for validation 

Hoot N. 2005 12,239 MELD 3 months 13.4% (training set), 
10.8% (validation 
set) 

29 variables 2000-2001 data 
used for training. 
2002 data used for 
validation. 3-fold 
cross validation also 
performed on 
training set. 

Lau L 2017 180 DRI 
SOFT 

1 month 11 (6.1%) 173 recipients, 103 
donor initially then 
top 15 following 
feature selection 

1,000 bootstrap 
samples with out-
of-bag samples 
used for validation 

Perez-
Ortiz M 

2017 822 MELD 3 months 
1 year 

Not mentioned 16 recipients, 17 
donor, 4 
transplants 

Stratified 10-fold 
cross-validation. 
Unlabelled data 
from recent 
transplants and 
virtual DR-pairs also 
incorporated in 
varying quantities 

Zhang 
M  

2012 290 MELD and 
MELD-Na 

1 year 
2 year 
5 year 

119 (41%) patients 
died within 5 years 

12 recipients, 2 
donors (following 
forward stepwise 
feature selection) 

80%/20% train-test 
split with additional 
20% validation set 
created from 
training set. 

 
Table 4: Study input variable and validation methodology 
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