
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Limitation and Practical Acceleration of Stochastic Gradient
Algorithms in Inverse Problems.
Citation for published version:
Tang, BJ, Egiazarian, K & Davies, M 2019, The Limitation and Practical Acceleration of Stochastic Gradient
Algorithms in Inverse Problems. in 2019 IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP 2019 - Proceedings., 18778660 , ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, vol. 2019-May, Institute of Electrical and
Electronics Engineers Inc., 44th IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP 2019, Brighton, United Kingdom, 12/05/19.
https://doi.org/10.1109/ICASSP.2019.8683368

Digital Object Identifier (DOI):
10.1109/ICASSP.2019.8683368

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

https://doi.org/10.1109/ICASSP.2019.8683368
https://doi.org/10.1109/ICASSP.2019.8683368
https://www.research.ed.ac.uk/en/publications/5b0fd9f6-6c4a-40b0-bfc2-d366ece233a6


THE LIMITATION AND PRACTICAL ACCELERATION OF STOCHASTIC
GRADIENT ALGORITHMS IN INVERSE PROBLEMS

Junqi Tang†, Karen Egiazarian?, Mike Davies†

† School of Engineering, University of Edinburgh, UK
?Noiseless Imaging Ltd, Finland.

ABSTRACT

In this work we investigate the practicability of stochastic gra-
dient descent and recently introduced variants with variance-
reduction techniques in imaging inverse problems, such as non-
uniform image deblurring. Such algorithms have been shown
in machine learning literature to have optimal complexities in
theory, and provide great improvement empirically over the full
gradient methods. Surprisingly, in some tasks such as image
deblurring, many of such methods fails to converge faster than
the accelerated full gradient method (FISTA), even in terms of
epoch counts. We investigate this phenomenon and propose a
theory-inspired mechanism to characterize whether a given in-
verse problem should be preferred to be solved by stochastic
optimization technique with a known sampling pattern. Fur-
thermore, to overcome another key bottleneck of stochastic op-
timization which is the heavy computation of proximal opera-
tors while maintaining fast convergence, we propose an accel-
erated primal-dual SGD algorithm and demonstrate the effec-
tiveness of our approach in image deblurring experiments.

Index Terms— Stochastic Optimization, Inverse Prob-
lems, Image Processing

1. INTRODUCTION

The stochastic gradient methods [1, 2] and recently introduced
variants with variance-reduction [3, 4, 5] have been widely used
to solve large-scale convex optimization problem in machine
learning applications. Such tasks can be formulated as the fol-
lowing:

x? ∈ arg min
x∈X

F (x) :=
1

n

n∑
i=1

fi(x) + λg(x)

 , (1)

where X ∈ Rd is a close convex set and we denote f(x) =
1
n

∑n
i=1 fi(x) the data fidelity term. Each fi(x) is assumed

to be convex and L-smooth, while the regularization term g(x)
is a simple convex function and is possibly non-smooth. With
Nesterov’s acceleration [6, 7], researchers [8, 9, 10] have devel-
oped several “optimal” algorithms which can provably achieve
the worse-case optimal convergence rate for (1).

While having been a proven success both in theory and
in machine learning applications, there is no convincing result

so far in the literature which reports the performance of the
stochastic gradient methods in image processing applications
(except for tomography reconstruction [11, 12, 13]), which also
involve large-scale optimization tasks in the same form of (1).
In this work we investigate the practical performance of such
methods, using non-uniform deblurring as a running example.

We make the following contributions:
(Evaluating the limitation of stochastic gradient algo-

rithms.) We investigate the fundamental limit of possible ac-
celeration of a stochastic gradient method over its full gradient
counterpart by measuring the Stochastic Acceleration (SA) fac-
tor which is based on the ratio of the Lipschitz constants of the
minibatched stochastic gradient and the full gradient. We dis-
cover that the SA factor is indeed able to characterize the po-
tential of a certain optimization task being speedily solved by
applying randomization techniques.

(Breaking the computational bottleneck of expen-
sive/multiple proximal operators for Nesterov-type mo-
mentum SGD.) Another factor in image processing practice
which significantly affects the SGD-type methods’ actual per-
formance is the frequent calculation of the costly proximal
operator for the regularization terms which have a linear op-
erator, such as the TV semi-norm – SGD methods needs to
calculate it much more frequently than full gradient methods.
Moreover most of the fast SGD methods can not cope with
more than one non-smooth regularization terms. To overcome
these we propose an accelerated primal-dual SGD algorithm
which can efficiently handle (1) regularization with a linear op-
erator, (2) multiple regularization terms, while (3) maintaining
Nesterov-type accelerated convergence speed in practice.

2. FAILURES OF STOCHASTIC OPTIMIZATION

We start by a simple non-uniform deblurring [14] example
where the central part (sized 128 by 128) of the “Kodim05”
image from Kodak Lossless True Color Image Suite [15] is
blurred with an non-uniform blur kernel which imposes less
blurring at the center but increasingly severe blurring towards
the edge. We also add a small amount of noise to the blurred
image.

We test the effectiveness of several algorithms by solving
the same TV-regularized least-squares problem, to get an esti-
mation of the ground truth image. The algorithms we test in
the experiments include the accelerated full gradient method
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FISTA [16], SGD with momentum [17], the proximal SVRG
[18] and its accelerated variant, Katyusha [9].

Perhaps surprisingly, on this experiment we report a neg-
ative result for the randomized algorithms. The most efficient
solver in this task is the full gradient method FISTA both in
terms of wall clock time and number of datapasses. The state-
of-the-art stochastic gradient method Katyusha even cannot
beat FISTA in terms of epoch counts. For all the randomized
algorithms we use a minibatch size which is 10 percent of the
total data size. For stochastic gradient methods, smaller mini-
batch size in this case does not provide better performance in
datapasses and will significantly slow down running time due
to the multiple calls of proximal operator.
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Fig. 1: The estimation error plot for the deblurring experiment.
The plots correspond to the estimation error of the central part
(100 by 100) of the image.

3. LIMITATIONS OF STOCHASTIC OPTIMIZATION

These results appear to be contrary to the popular belief among
the stochastic optimization community, that stochastic gradi-
ent methods are much faster in terms of iteration complexity
than deterministic gradient methods in solving large scale prob-
lems: to be specific – to achieve an objective gap suboptimal-
ity of F (x) − F (x?) ≤ ε, optimal stochastic gradient meth-

ods needs only Θ
(
n+

√
nL/ε

)
evaluations of Ofi, while

Θ
(
n
√
L/ε

)
for optimal full gradient methods. Where is the

loophole?
It is often easily ignored that the complexity results above

are derived under different smoothness assumption. For the
convergence bound of full gradient, the full smooth part of the
cost function f(.) is assumed to be L-smooth, while for the
case of stochastic gradient, every individual function fi(.) is
assumed to be L-smooth. Now we can clearly see the subtility:
to compare these complexity results and make meaningful con-
clusions, one has to assume that these two Lipschitz constants
are rougly the same. While this is true for many problems but
there are exceptions – image deblurring is one of them.

Given a minibatch index [S0, S1, S2, ..., SK ] such that:

f(x) =
1

K

K∑
k=1

fSk (x), fSk (x) :=
K

n

∑
i∈Sk

fi(x), (2)

In order to identify the potential of a certain optimization prob-
lem to be more efficiently solved by using stochastic gradient
methods, we start by comparing the single iteration conver-
gence of one instant of the proximal stochastic gradient descent
with momentum named Katyusha [9] with the proximal accel-
erated full gradient descent (AFG), which read:

AFG(x0,K, L):

For s = 0, 1, 2, ..., S
xs = Tf (ys, L) := prox

1
L
λg(y

s − 1
L
Of(ys));

→ Proximal gradient descent
as+1 = (1 +

√
1 + 4a2s)/2;

ys+1 = xs + as−1
as+1

(xs − xs−1);→ Momentum

Katyusha(x0, S,m,L):

For s = 0, 1, 2, ..., S⌊
θ = 2

s+4
;

(x̂s+1, ys+1, zs+1) = A(xs, ys, zs, L,m, θ,Of(x̂s));

A(xs, ys, zs, L,m, θ,Of(x̂s)):

For k = 0, 1, 2, ...,m

xk+1 = θzk + 1
2
x̂s + ( 1

2
− θ)yk; → Momentum

Pick i ∈ [1, 2, ...K] uniformly at random
Ok+1 = Of(x̂s) + OfSi(xk+1)− OfSi(x̂

s);
→ Compute a variance reduced stochastic gradient

zk+1 = prox
1

3θL
λg (zk − 1

3θL
Ok+1);
→ Proximal mirror descent

yk+1 = prox
1
3L
λg (xk+1 − 1

3L
Ok+1);

→ Proximal gradient descent

where we define the proximal operator as:

proxηλg(·) = arg min
x∈X

1

2η
‖x− ·‖22 + λg(x). (3)

3.1. Analysis

We start with the standard smoothness assumption [19]:

A. 1 (Smoothness of the Full-Batch and the Mini-Batches.)
f(.) is Lf -smooth and each fSk is Lm-smooth, that is:

f(x)− f(y)−Of(y)T (x− y) ≤ Lf
2
‖x− y‖22, ∀a, b ∈ X ,

(4)
and

fSk (x)− fSk (y)− OfSk (y)T (x− y) ≤ Lb
2
‖x− y‖22, (5)

∀x, y ∈ X .

Now we are ready to present the main theorem, which fol-
lows from simply combining the existing convergence results of
Katyusha and AFG, as well as the lower bounds for the stochas-
tic and deterministic first-order optimization [19, 20].
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Theorem 3.1 Under A.1, when X =
{
x ∈ Rd : ‖x‖22 ≤ 1

}
,

g(.) = 0, let xsf = Tf (ys−1
f , Lf ), xsA = A(xs−1

A , Lb,m),
m = 2K, we have:

EF (xsA)− F ?

F (x3sf )− F ? ≤ 192 · Lb
KLf

+
512(F (x0)− F ?)
Lf‖x0 − x?‖22

(6)

and moreover,

EF (xsA)− F ?

F (x3sf )− F ? ≥
1

51840
· Lb
KLf

. (7)

for a sufficiently large dimension d = O(L
2

ε2
log L

ε
+K logK)

where EF (xsA)− F ? ≤ ε.

From this theorem we can see that with the same epoch
count (the iteration complexity of Katyusha’s 1 epoch is
equivalent to 3 iterations of AFG), the ratio of objective gap
achieved by each algorithm can be upper and lower bounded by
Θ( Lb

KLf
). Although the constants seem pessimistic, it is within

our expectation since the lower bounds on the convergence
speed of both algorithms are derived on the worst possible
function which satisfies A.1. Motivated by the theory, we pro-
pose to evaluate the potential of stochastic acceleration simply
by the ratio Lb

KLf
which dominates our upper and lower bounds

in Theorem 3.1.

3.2. Evaluating the Limitation of SGD-type Algorithms

We introduced a metric called Stochastic Acceleration (SA)
factor. The curve of SA factor as a function of the minibatch
number K (for a given minibatch pattern) is able to provide
a way of evaluating and characterizing inherently whether
for a given inverse problem and a certain minibatch sampling
scheme, randomized gradient methods should be preferred over
the deterministic full gradient methods or not.

Definition 3.2 For a given data-partitioning index S̄ =
[S1, ...SK ], the Stochastic Acceleration (SA) factor is defined
as:

Υ(S̄) =
KLf
Lb

(8)

We test several least-squares loss f(x) = ‖Ax− b‖22 with
different types of forward operator. In this case we have

f(x) = ‖Ax− b‖22 =
1

K

K∑
k=1

fSk (x), (9)

fSk (x) := K‖ASkx− bSk‖
2
2, (10)

The examples of forward operator A we consider include
the non-uniform deblurring (262144 by 262144), a random
compressed sensing matrix with i.i.d Guassian random en-
tries (500 by 2000), a fan beam X-ray CT operator (91240
by 65536), and two machine learning datasets: RCV1 dataset
(20242 by 47236), and Magic04 (19000 by 50, with random
features). The data-partition we choose is the interleaving sam-
pling. From the result show by the Fig 2 we find that indeed
the stochastic methods have a limitation on some optimization
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Fig. 2: Left: Stochastic Acceleration (SA) factor of inverse
problems with different forward operators, Right: Empiri-
cal observation comparing the objective gap convergence of
Katyusha and FISTA algorithm in 15 epochs.

problems like deblurring and inverse problems with random
matrices, where we see that the curve of SA factor of such
problems stays low and flat even when we increase the number
of minibatches. For the machine learning datasets and X-ray
CT imaging, the SA factor increases rapidly and almost linearly
as we increase the number of minibatches, which is in line with
observations in machine learning on the superiority of SGD and
also the observation in CT image reconstruction of the benefits
of the use of the ordered-subset methods [21]. The curve of
SA factor on the left figure qualitatively predict the empirical
comparison result of Katyusha and FISTA algorithm shown
on the right, where we observe that Katyusha offers no accel-
eration over the FISTA on deblurring and Gaussian random
inverse problem, but significantly outperforms FISTA on the
other cases. Indeed, positive results for applying SGD-type al-
gorithms on these problems are well-known already [2, 18, 21],
hence we have shown that the SA factor we propose is useful
in characterizing whether an inverse problem is inherently a
suitable application for stochastic gradient methods.

4. PRACTICAL ACCELERATION FOR SGD

The previous section suggests that stochastic gradient methods
do not always offer an intrinsic advantage for some problems.
There are also several other causes for this failure. The most
obvious one is that stochastic gradient methods in the primal
need to calculate the proximal operator many more times than
full gradient methods and hence slow down dramatically the
run time. Moreover, in image processing practice often more
than one non-smooth regularization term is used, where most
of the existing fast stochastic methods such as Katyusha are
inapplicable.

To avoid the frequent oracle call on the TV proximal op-
erator, we can first reformulate the original optimization prob-
lem as a convex-concave saddle-point form. To be specific, the
given problem:

x? ∈ min
x∈Rd

{
f(x) + λg(Dx) + γh(x)

}
, (11)

where f(x) = 1
n

∑n
i=1 fi(ai, x) is the data-fidelity term,

g(Dx) is a regularization term with a linear operator – for
example the TV regularization (g(.) = ‖.‖1, D ∈ Rr×d is the
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Algorithm 1 Accelerated Primal-Dual SGD (Acc-PD-SGD)

Initialization: x0 = v0 = v−1 ∈ dom(g), the step size
sequences [α], [η], [θ], l = 0.
for t = 1 to N do

xt ← (3t−2)vt−1+txt−1−(2t−4)vt−2

2t+2
, x0 ← xt,

z0 ← xt, y0 ← Dx0 → Katyusha-X Momentum
for k = 0 to K − 1 do

l← l + 1
yk+1 = prox

αl
λg∗(yk + αlDzk) → Dual Ascent

Pick i ∈ [1, 2, ...K] uniformly at random
Ok = OfSi(xk) ;

xk+1 = prox
ηl
γh

(
xk − ηl(DT yk+1 + Ok)

)
→ Primal Descent

zk+1 = xk+1 + θl(xk+1 − xk)
→ Innerloop Momentum

end for
vt ← xK

end for
Output: xt

differential operator), and h(x) is a second convex regularizer.
The saddle-point formulation can be written as:

[x?, y?] = min
x∈Rd

max
y∈Rr

f(x) + h(x) + yTDx− λg∗(y) (12)

The most famous algorithm for solving this saddle-point
problem is the Chambolle-Pock algorithm (also known as
PDHG) [22, 23], which interleaves the update of the primal
variable x and the dual variable y throughout the iterates. With
this reformulation the linear operator D and the function g(.)
are decoupled and hence one can divide-and-conquer the ex-
pensive TV-proximal operator with the primal-dual gradient
methods. The stochastic variant of the PDHG for the saddle-
point problem (12) has been very recently proposed by Zhao
& Cevher [24, Alg.1, “SPDTCM”] and shown to have state-
of-the-art performance when compared to PDHG, stochastic
ADMM [25] and stochastic proximal averaging [26].

Additionally, since the effect of acceleration given by Nes-
terov’s momentum appears to be very important (for instance,
in the experiment from last section, the non-accelerated meth-
ods like SVRG perform badly compared to all the accelerated
methods), we also need to consider a way to ensure that our
method is accelerated. Since the SPDTCM method does not
have Nesterov-type acceleration, we propose a variant of it
which adopts the outerloop acceleration scheme given by the
Katyusha-X algorithm [27]. We observe that such a momen-
tum step is important for the stochastic primal-dual methods in
this application. We present our method as Algorithm 1. One
can directly choose the same step-size sequences [α], [η], [θ] as
suggested in [24, Section 2.3].

We test our algorithm and compare with FISTA [16] and
the SPDTCM [24] on a non-uniform deblurring task for images
sized 512 by 512, with a space-varying out-of-focus blur ker-
nel, and TV-regularization. All algorithm are initialized with
a backprojection. We use a machine with 1.6 GB RAM, 2.60
GHz Intel Core i7-5600U CPU and MATLAB R2015b.
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Fig. 3: The estimation error plot for the deblurring experiment
with TV-regularization. Image: Kodim05 [15], with a small
amount of additive Guassian noise (variance 1).

For the low noise regime the accelerated primal-dual SGD
is able to reach the statistical accuracy with a fixed step-size η
(for high noise-regime we need to shrink the step-size). We ob-
serve improvement in run time comparing to FISTA since our
algorithm can avoid the heavy cost of the TV proximal operator
while maintaining the fast convergence provided by Nesterov-
type momentum and randomization. We also report a signif-
icant convergence improvement over the SPDTCM algorithm
both in time and iteration complexity.

5. CONCLUSION

In this work we investigated the value of the state-of-the-art
stochastic gradient methods in imaging inverse problems where
we chose image deblurring as a running example. We firstly re-
veal a surprisingly negative result on existing SGD-type meth-
ods, and propose a metric (SA) to explain such failures and
evaluate the possible computational advantage of using stochas-
tic techniques for a given task; finally we combine several prac-
tical ideas and propose the Accelerated Primal-Dual SGD to
cope with multiple regularizers (potentially) with a linear op-
erator while maintaining the fast convergence, and demonstrate
its effectiveness via deblurring experiments.
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