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To the Editor 

Preventive Veterinary Medicine

Currently, the prediction at a large scale of physiological status of cows is of great interest 
in order to perform genetic studies and for the management of cows. The use of milk 
biomarkers seems a good strategy as it is easily accessible and already routinely 
collected. Enclosed please find our manuscript entitled “Predicting physiological 
imbalance in Holstein dairy cows by three different sets of milk biomarkers” authored by 
Foldager et al. This manuscript was developed in the frame of the GplusE project granted 
by the European Union, which sampled blood and milk from 234 Holstein dairy cows from 
six experimental herds in different European countries. The objective was to compare the 
use of three different sets of milk biomarkers for identification of cows in physiological 
imbalance and thus at risk of developing a metabolic or infectious disease. Milk 
biomarkers used are metabolites and enzymes, Fourier transform mid-infrared (FT-MIR) 
spectra and immunoglobulin G (IgG) N-glycans. Based on the same data, two other 
papers from the GplusE project (De Koster et al., 2019; Grelet et al., 2019) have 
considered the prediction of metabolic status (balanced/unbalanced) using metabolic 
clusters based on k-means clustering of four blood biomarkers; glucose, non-esterified 
fatty acids (NEFA) and β-hydroxybutyrate (BHB) in plasma and insulin-like growth factor-1 
(IGF-1) in serum. A third paper from the GplusE project (Krogh et al., accepted 26 Sep 
2019) focused on herd variation in the biomarkers. The present paper brings new 
knowledge by comparing random forest predictions of body energy balance (EBAL), index 
for physiological imbalance (PI-index) and the metabolic clusters just described. The 
paper goes deeper in the evaluation of the potential of milk metabolites and enzymes but 
also investigate the potential of IgG N-glycans as biomarker and contributes to the 
understanding of the clustering approach. The main objective was to compare the use of 
milk metabolites and enzymes, FT-MIR spectra and IgG N-glycans for identification of 
cows in physiological imbalance and thus at risk of developing a metabolic or infectious 
disease.

We hope you will consider this paper for publication in Preventive Veterinary Medicine.

Yours sincerely,

Leslie Foldager, PhD, MSc
Senior Researcher
Department of Animal Science
Aarhus University, Tjele, Denmark



1 Highlights

2  Identifying physiological imbalance/disease risk in dairy cows for herd 

3 management

4  Blood biomarkers are relevant indicators but not generally applicable 

5 commercially

6  Milk biomarkers can be taken automatically as in Herd Navigator™

7  FT-MIR spectra and milk metabolites and enzymes appeared equally good as 

8 biomarkers

9  IgG N-glycans suffered from fewer samples and completeness and needs 

10 development
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31 Abstract

32 Blood biomarkers may be used to detect physiological imbalance and potential 

33 disease. However, blood sampling is difficult and expensive, and not applicable in 

34 commercial settings. Instead, individual milk samples are readily available at low 

35 cost, can be sampled easily and analysed instantly. The present study sampled 

36 blood and milk from 234 Holstein dairy cows from six experimental herds in different 

37 European countries. The objective was to compare the use of three different sets of 

38 milk biomarkers for identification of cows in physiological imbalance and thus at risk 

39 of developing a metabolic or infectious disease. Random forests was used to predict 

40 body energy balance (EBAL), index for physiological imbalance (PI-index) and three 

41 clusters differentiating the metabolic status of cows created on basis of 

42 concentrations of plasma glucose, plasma β-hydroxybutyrate (BHB), plasma non-

43 esterified fatty acids (NEFA) and serum IGF-1. These three metabolic clusters were 

44 interpreted as cows in balance, cows in physiological imbalance and “intermediate 

45 cows” with a physiological status in between. The three sets of milk biomarkers used 

46 for prediction were: milk Fourier transform mid-IR (FT-MIR) spectra, 19 

47 immunoglobulin G (IgG) N-glycans and 8 milk metabolites and enzymes (MME). 

48 Blood biomarkers were sampled twice; around 14 days after calving (days in milk 

49 (DIM)) and around 35 DIM. MME and FT-MIR were sampled twice weekly 1-50 DIM 

50 whereas IgG N-glycan were measured only four times. Performances of random 
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51 forests predictions for EBAL and PI-index were measured by the coefficient of 

52 determination (R2cv) and the root mean squared error (RMSEcv) from leave-one-cow-

53 out (internal) cross-validation (CV). For metabolic clusters, performance was 

54 measured by sensitivity, specificity and global accuracy from this cross-validation. 

55 Neither EBAL nor PI-index were sufficiently precise to be used as a management tool 

56 for identification of risk cows. The best prediction of PI-index was obtained by MME 

57 (R2CV = 0.40 at 14 DIM and 0.35 at 35 DIM) while FT-MIR showed a better 

58 performance than MME for prediction of EBAL (R2CV = 0.28 vs 0.21). Global 

59 accuracies of predicting metabolic clusters from MME and FT-MIR were at the same 

60 level and ranged from 0.54 to 0.65 for MME and 0.51 to 0.68 for FT-MIR. R2CV and 

61 accuracies were lower for IgG N-glycans. In conclusion, MME and FT-MIR can be 

62 used to predict the physiological status of the cows, while the use of IgG N-glycans 

63 for prediction still needs development.

64

65 Abbreviations

66 BHB, β-hydroxybutyrate; CV, cross-validation; DIM, days in milk; EBAL, body energy 

67 balance; FT-MIR, Fourier transform mid-IR; IgG, immunoglobulin G; LDH, 

68 dehydrogenase; MME, metabolites and enzymes; NAGase, N-acetyl-β-D-

69 glucosaminidase; NEFA, non-esterified fatty acids; PI-index, index for physiological 

70 imbalance; R2, coefficient of determination; RMSE, root mean squared error; VIM, 

71 variable importance measures

72

73 Keywords

74 Metabolites; enzymes; FT-MIR; IgG N-glycans; metabolic clusters; random forests

75
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76 Introduction

77 Diseases at calving and during early lactation account for the majority of health and 

78 welfare problems in dairy production (Ingvartsen et al., 2003). These include 

79 production diseases such as fatty liver, ketosis, rumen acidosis and lameness. Most 

80 of such diseases in periparturient cows are argued to be the result of physiological 

81 imbalance (Ingvartsen, 2006). Correspondingly, infectious diseases such as mastitis 

82 and metritis are included as the immune system is strongly interlinked with 

83 physiological imbalance via the endocrine system and metabolites that must 

84 accommodate to the demands for lactation facing the transition cow (Ingvartsen and 

85 Moyes, 2015). The consequences of subclinical and clinical diseases are suboptimal 

86 animal welfare and production and lower reproductive efficiency. Thus, physiological 

87 imbalance leading to these subclinical and clinical diseases should have high priority 

88 of being addressed with regard to development of management tools.

89

90 Cows in physiological imbalance have increased risk of developing diseases and 

91 reduced production (Ingvartsen et al., 2003; Bjerre-Harpoth et al., 2012). Subclinical 

92 stages of diseases can be detected by biomarkers while the cow may appear 

93 completely healthy. A number of biomarkers in blood are well described but are 

94 currently less well characterized in milk. In the review of Ingvartsen (2006), it is 

95 documented that plasma concentrations of glucose, non-esterified fatty acids (NEFA) 

96 and β-hydroxybutyrate (BHB) are relevant indicators to determine subclinical ketosis. 

97 LeBlanc et al. (2005) also identified blood NEFA and BHB as relevant indicators of 

98 displaced abomasum in dairy cows. Piechotta et al. (2012) reported that 

99 concentrations of serum NEFA and plasma IGF-1 prepartum are associated with 

100 postpartum diseases, while IGF-1 postpartum was the best predictor of both left 
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101 displaced abomasum and risk of culling (Lyons et al., 2014). However, collecting and 

102 analysing blood samples for measuring biomarkers is difficult and expensive, and not 

103 applicable in commercial settings. Instead, individual milk samples are readily 

104 available and milking systems even provide automatic sampling and measurement of 

105 e.g. milk conductivity. Such automatic systems can be expanded to measure e.g. 

106 milk BHB (e.g. Herd Navigator™, http://www.herdnavigator.com). 

107

108 Enjalbert et al. (2001) showed that subclinical ketosis can be identified by measuring 

109 BHB in milk with enzymatic analysis or with Ketolac test strips. Other studies also 

110 reported milk BHB to be a relevant indicator of subclinical and clinical ketosis (e.g. 

111 Nielsen et al., 2005). Free glucose, glucose-6-phosphate (Larsen and Moyes, 2015), 

112 and isocitrate (Larsen, 2014) reflect the nutrient availability and metabolic turnover in 

113 the mammary gland that are linked to the blood levels and therefore potentially 

114 indicators of physiological imbalance and risk of disease. Larsen et al. (2010) and 

115 Kitchen et al. (1978), respectively, reported that the milk enzymes lactate 

116 dehydrogenase (LDH) and N-acetyl-β-D-glucosaminidase (NAGase) performed 

117 equally with somatic cell count and acute phase proteins as inflammatory indicators 

118 of mastitis. In addition, Fourier transform mid-IR (FT-MIR) spectra of milk can be 

119 calibrated to estimate e.g. milk metabolites, and measures of milk immunoglobulin G 

120 (IgG) N-glycans may be potential new biomarkers.

121

122 Based on the same data as here, two other papers (De Koster et al., 2019; Grelet et 

123 al., 2019) have considered the prediction of metabolic status (balanced/unbalanced) 

124 using metabolic clusters based on k-means clustering of four blood biomarkers; 

125 glucose, NEFA and BHB in plasma and IGF-1 in serum. The present paper 



6

126 supplements these papers by comparing random forests predictions from three 

127 different sets of milk biomarkers; metabolites and enzymes (MME), FT-MIR spectra 

128 and IgG N-glycans. In addition to metabolic clusters, predictions of body energy 

129 balance (EBAL) and index for physiological imbalance (PI-index) (Ingvartsen, 2006; 

130 Moyes et al., 2013a, 2013b) were considered.  Grelet et al. (2019) used a different 

131 prediction method and only considered FT-MIR, De Koster et al. (2019) only used 

132 multiparous cows and both studies only considered prediction of clusters.

133

134 The present paper focuses more on MME but also investigate the potential of IgG N-

135 glycans as a set of milk biomarkers and contributes to the understanding of the 

136 clustering approach. The main objective was to compare the use of MME, FT-MIR 

137 and IgG N-glycans for identification of cows in physiological imbalance and thus at 

138 risk of developing a metabolic or infectious disease.

139

140 Material and methods

141 Study design, sampling and analysis of milk as well as blood have been described in 

142 De Koster et al. (2019), Grelet et al. (2019) and Krogh et al. (2019). In brief, six 

143 experiments were conducted in Northern Ireland (UK), Denmark (DK), Belgium (BE), 

144 Italy (IT), Germany (DE) and Ireland (IE). These included a total of 234 Holstein dairy 

145 cows (55 first parity, 66 second parity, and 113 in third or higher parity (3+), see 

146 Supplementary Table S1). In four experiments, all cows were fed a standard diet 

147 typical for the particular country. In the UK and DK experiments, a standard diet and 

148 two different experimental diets were used. An overview of the diets is shown in table 

149 1 of Krogh et al. (2019).

150
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151 Derived measures

152 The calculation of EBAL was described in De Koster et al. (2019) and Krogh et al. 

153 (2019). EBAL was only calculated if both morning and evening yield was available for 

154 that day. Afterwards, three days (i.e. +/- 1 days in milk (DIM)) moving averages of 

155 EBAL were calculated and used for the analyses. The average live body weights 

156 within calendar week was used to smooth large day-to-day variation and 

157 measurement errors of scales. Summary statistics of EBAL are shown in 

158 supplementary tables of Krogh et al. (2019).

159

160 PI-index was calculated as [log10(NEFA)] + [log10(BHB)] − [glucose] (Moyes et al., 

161 2013a), where plasma concentrations of the individual metabolites were standardised 

162 to an overall mean of zero and variance of one (as indicated by square brackets). 

163 Moyes et al. (2013a) used the natural logarithm (ln) but since log10 and ln are 

164 proportional, ln(y) = ln(10)log10(y), the standardised values will be exactly equal, i.e. 

165 [ln(y)] = [log10(y)]. Thus, since the manuscripts of Grelet et al. (2019) and De Koster 

166 et al. (2019) applied log10-transformations of NEFA and BHB we decided to continue 

167 this approach.

168

169 Metabolic clusters

170 As an alternative phenotype to negative EBAL and PI-index, clusters were created by 

171 use of the k-means method of Hartigan and Wong (1979) from standardised 

172 measures of plasma glucose, plasma log10(BHB), plasma log10(NEFA), and serum 

173 log10(IGF-1). As mentioned in the Introduction, these four blood biomarkers mirror the 

174 physiological status of the animal. Three clusters (k=3) were constructed for each 

175 combination of three parities (1, 2 and 3+ lactations) and two periods in early 
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176 lactation (around 14 and 35 DIM) as visualised in Figure 1. Deciding on the number 

177 of clusters can be intricate but in the present sample k=3 was found to be a fair 

178 compromise between size and similarity (in terms of the within cluster sum of 

179 squares, results not shown). Based on a graphical interpretation using boxplots of the 

180 standardised concentrations of plasma glucose, NEFA and BHB and serum IGF-1 

181 (see Figure 1) three metabolic clusters were defined as representing balanced, 

182 intermediate and imbalanced cows. 

183

184 Criteria to define the imbalanced metabolic cluster are the most important. We 

185 defined the metabolic cluster as imbalanced if standardised plasma glucose and 

186 serum IGF-1 concentrations were both lower than those of plasma BHB and plasma 

187 NEFA, and in addition both median BHB and NEFA were above 0.5 SD (Figure 1). 

188 Intermediate and balanced metabolic clusters had less sharp definitions: The 

189 intermediate metabolic cluster generally had lower standardised glucose and IGF-1 

190 concentrations than BHB and NEFA, with NEFA and BHB boxes in the ±0.5 SD area 

191 and glucose and IGF-1 around or below -0.5 SD. The balanced metabolic cluster had 

192 standardised glucose and IGF-1 concentrations around 0.5 SD and standardised 

193 NEFA and BHB concentrations below or equal to those of glucose and IGF-1, or all 

194 four approximately equal and around -0.5 SD. The metabolic cluster was also 

195 considered balanced if all four boxes were inside the ±0.5 SD area.

196

197 Milk biomarkers 

198 Three different sets of milk biomarkers (MME, FT-MIR spectra and IgG N-glycans) 

199 were considered as predictors. Metabolites and enzymes consisted of six milk 

200 metabolites (glycose-6-phosphate, free glucose, BHB, isocitrate, urea and uric acid) 
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201 and two enzymes (NAGase and LDH). Fourier transform mid-IR spectra from the 6 

202 farms were standardised into a common format. FT-MIR data consisted of 

203 absorbance values at 212 wavenumbers selected from a total of 1060 by removal of 

204 areas known to be non-reproducible between instruments or non-informative due to 

205 the water component in milk (Grelet et al., 2016). Finally, 19 peaks of IgG N-glycans 

206 were manually identified and integrated. Each peak's percentage of the total area 

207 under the 19 peaks was used as the measure for the statistical analyses. Further 

208 details on the laboratory analysis are given in De Koster et al. (2019).

209

210 Random forests predictions

211 Each of the three sets of milk biomarkers were used to predict the responses (EBAL, 

212 PI-index and metabolic clusters) separately for each parity and period by use of the 

213 random forests algorithm (see below), i.e. in total 54 predictions. In addition, each of 

214 the six plasma metabolites and serum IGF-1 were predicted. To make a more fair 

215 comparison with IgG N-glycans, we also made a comparison using only data that 

216 were complete across all three sets of milk biomarkers in relation to the two periods; 

217 around DIM 14 and DIM 35. Random forests belongs to the field of machine learning 

218 and is an ensemble of classification or regression trees (Breiman, 2001) with each 

219 tree being a set of decision rules. A short description of the algorithm is given below, 

220 whereas we refer to Breiman (2001) for a technical presentation and introduction to 

221 random forests. We generally used default settings of the implementation except that 

222 we used 2500 trees (instead of the default 500) to stabilise estimates of accuracy.

223

224 Random forests algorithm
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225 In summary, for each of a pre-specified number of trees (default: 500) a sample is 

226 drawn from the original data by sampling with replacement (bootstrap sample). 

227 These samples have the same size as the original data but contain on average 

228 approximately two thirds of the individual records, since some are selected more than 

229 once and some not at all. Each bootstrap sample is used for training an unpruned 

230 tree. At each node of the tree, a set of predictors (default for binary classification: 

231 square root number of predictors) are chosen at random as candidates for splitting 

232 the data present at the current (parent) node into two chunks. The algorithm then 

233 choose the candidate (categorical) or cut–point (continuous) that give the largest 

234 reduction of the Gini index (Breiman et al., 1984), i.e. the most homogeneous child 

235 nodes. Each tree is grown as large as possible. The random selection of candidate 

236 predictors at each node protects from overfitting (Breiman, 2001) and pruning is not 

237 necessary. When the random forest of trees have been developed, new records are 

238 passed through each tree and majority voting or averaging predicts their classes or 

239 values.

240

241 Statistical analysis

242 The statistical analyses were carried out using R version 3.6.1 (R Core Team, 2019). 

243 For k-means clustering the kmeans function of R was used. Random forests 

244 modelling was carried out by use of the randomForest package (Liaw and Wiener, 

245 2002). We evaluated performance of random forests predictions for metabolic 

246 clusters by a leave-one-cow-out (internal) cross-validation strategy, i.e. in turn 

247 preserving data from one cow as test set and using data from the other cows for 

248 training of a random forests model. By use of the confusionMatrix function of the 

249 caret package (Kuhn, 2008) we calculated global accuracy (proportion of correctly 
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250 classified samples, i.e. the diagonal of the 3 by 3 contingency table of predicted 

251 versus true cluster also known as the confusion matrix), sensitivity for each cluster 

252 (proportion correctly predicted to that cluster) and specificity (proportion correctly 

253 predicted not to be in that cluster). In addition, the precision of predictions for the 

254 individual blood biomarkers, EBAL and PI-index was measured by the coefficient of 

255 determination of cross-validation (R2cv) and the root mean squared error (RMSEcv).

256

257 To explore the ranking of the individual MME biomarkers within parity and period, the 

258 variable importance measure (VIM) was calculated (Breiman, 2001) and plotted 

259 using randomForests. This measure is based on the internal out-of-bag samples, i.e. 

260 the third not picked to be included in each bootstrap sample, see Breiman (2001). 

261

262 Characteristics and differences among metabolic clusters in milk metabolite 

263 concentrations, enzyme activities and daily milk yield were examined separately for 

264 parity 2 and 3+ at DIM 14 by ANOVA with F-tests. Since most health events and 

265 imbalances are expected to happen in the first and middle part of the early lactation 

266 period, we only focused on DIM 14 for this part. First parity cows were not given 

267 further attention since none of these were classified to the imbalanced cluster at DIM 

268 14 and all were in clusters classified as balanced at DIM 35.

269

270 Results

271 Summary statistics for production, blood biomarkers and MME can be found in tables 

272 and supplementary tables of Krogh et al. (2019). 

273

274
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275 Predictions of EBAL and PI-index by sets of milk biomarkers

276 The precisions (R2CV and RMSECV) of predicting measures of EBAL and PI-index by 

277 the three sets of milk biomarkers as determined by leave-one-cow-out cross-

278 validation are shown in Table 1. The best precision was obtained when predicting PI-

279 index by MME with an R2CV of 0.40 at 14 DIM and 0.34 at 35 DIM. For FT-MIR, the 

280 corresponding R2CV was 0.26 and 0.19. For EBAL, however, FT-MIR showed a better 

281 performance than MME with an R2CV of 0.28 vs 0.21. The RMSEs from MME and FT-

282 MIR predictions were respectively 23.7 and 23.4 for EBAL and between 1.62 and 

283 1.96 for PI-index. Predictions by IgG N-glycans had the lowest precisions, with R2CV 

284 ranging between 0.01 and 0.06 and with RMSECV being 26.3 for EBAL and 2.04 for 

285 PI-index. 

286

287 Predictions of individual blood biomarkers by sets of milk biomarkers

288 Predictions of individual blood biomarkers are shown in Table 2. The best precisions 

289 were obtained with MMEs for plasma urea (R2CV = 0.62 for 14 DIM and 0.59 for 35 

290 DIM) and for plasma BHB (R2CV = 0.46 and 0.40). Interestingly, plasma cholesterol 

291 was not predicted that well (R2CV = 0.09 and 0.12) whereas precisions of serum IGF-

292 1 were at the same level as plasma BHB for DIM 35 (R2CV = 0.40) and a bit lower for 

293 DIM 14 (R2CV = 0.32). The precisions by IgG N-glycans were always the lowest 

294 whereas generally, FT-MIR were at the same level as MME but in some cases much 

295 lower.

296

297 Metabolic cluster changes

298 The number of cows in each of the three metabolic clusters at DIM 14 and DIM 35 is 

299 reported in Table 3 with indication of changes between the two periods. All the 52 
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300 primiparous cows were interpreted balanced at DIM 35. Among the 28 parity 2 cows 

301 in the intermediate cluster at DIM 14, 17 (61%) did not shift to a cluster deemed to be 

302 more "balanced" at DIM35, staying in an intermediate cluster, while the rest changed 

303 to a balanced cluster (N=11). Most of the 23 parity 2 cows in the balanced cluster at 

304 DIM 14 stayed in a balanced cluster at DIM 35 (N=21) with only two cows shifting; 

305 one to an imbalanced and one to an intermediate cluster at DIM 35. For 15 (4+11) 

306 out of 18 (7+11) (83%) parity 2 and 3+ cows in the imbalanced cluster DIM 14, extra 

307 attention may be relevant as they were also in an imbalanced cluster DIM 35. 

308 Concerning parity 3+ cows in the balanced cluster DIM 14, 31 out of 38 (82%) were 

309 still in a balanced cluster at DIM 35 while the rest changed to an imbalanced cluster. 

310 Of the 54 parity 3+ cows in the intermediate cluster DIM 14, 39 (72%) changed to a 

311 balanced cluster at DIM 35, while the rest changed to an imbalanced cluster.

312

313 Prediction of metabolic clusters

314 Accuracies to predict the clusters from sets of milk biomarkers with random forests 

315 models are presented in Table 4 for each combination of parity (1, 2 and 3+) and 

316 period (DIM 14 and 35). As in Grelet et al. (2019) and De Koster et al. (2019), 

317 including milk yield as a factor in the aim to help distinguishing between classes did 

318 not improve the accuracy (results not shown). Global accuracies from MME and FT-

319 MIR were at the same level and ranged from 0.54 to 0.65 for MME and 0.51 to 0.68 

320 for FT-MIR. Accuracies were lower for IgG N-glycans; ranging from 0.32 to 0.53. The 

321 sensitivity for prediction of the imbalanced cluster was better with MME than with FT-

322 MIR and IgG N-glycans. Unfortunately, examples of zero sensitivity (none predicted 

323 correctly) were seen, likely due to a relatively low number of cows in the imbalanced 

324 clusters, see Table 3. 
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325

326 Results from predictions using only data that were complete across all three sets of 

327 milk biomarkers in each period are shown in Supplementary Table S2 and are less 

328 stable with confidence intervals that are bit wider due to the smaller number of 

329 observations. Nevertheless, predictions by IgG N-glycans tend to be less 

330 unfavourable compared to MME and FT-MIR when judged on this reduced data set, 

331 potentially giving a more fair comparison. Global accuracies tended to be lower with 

332 the reduced data set and ranged from 0.39 to 0.59 for MME, 0.34 to 0.67 for FT-MIR 

333 and 0.19 to 0.57 for IgG N-glycans. Using this reduced data set, we also examined 

334 the pairwise agreement of predictions among the three sets of milk biomarkers, see 

335 Supplementary Table S3. The best agreement with a global accuracy of 0.76 (95% 

336 CI: 0.62-0.87) was found between MME and FT-MIR for parity 3+ cows around DIM 

337 14 but it should be noted that for these, none of the cows in the imbalanced cluster 

338 were correctly determined by FT-MIR. The lowest agreement was seen between FT-

339 MIR and IgG N-glycans  for parity 3+ cows around DIM 35 with a global accuracy of 

340 0.27 (0.16-0.41). Generally, the agreements were at the same level among all three 

341 sets of milk biomarkers.

342

343 To ease comparison with table 6 in Grelet et al. (2019) and figure 5 in De Koster et 

344 al. (2019), we calculated the global accuracy for predicting the imbalanced cluster vs 

345 intermediate and balanced combined. For MME in parity 3+ this accuracy was 0.97 

346 (0.92-0.99) and 0.82 (0.73-0.89) for DIM 14 and 35, respectively. For FT-MIR the 

347 corresponding accuracies were 0.89 (0.81-0.95) and 0.69 (0.59-0.78) and for IgG N-

348 glycans 0.92 (0.82-0.97) and 0.53 (0.40-0.66). These accuracies tend to be higher 

349 DIM 14 and at the same level or lower DIM 35 than those found in Grelet el al. (2019) 
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350 and De Koster et al. (2019). For parity 2, number of cows in the imbalance clusters 

351 were quite low (see Table 3) and almost all sensitivity estimates were 0 and 

352 specificities at or close to 1 (see Table 4). Thus, parity 2 accuracies are high (e.g. 

353 0.93 (0.83-0.98) for MME at 14 DIM) but driven by specificity.

354

355 Differences in milk metabolite contents among metabolic clusters

356 Considering further the characteristics of parity 2 and 3+ cows at DIM 14, Table 5 

357 presents quartiles for milk yield, metabolites and enzymes for each of the three 

358 metabolic clusters. These results indicate that some of the milk metabolites and 

359 enzymes were significantly different between the three metabolic clusters. The 

360 concentration of free glucose was significantly lower in the imbalanced cluster while, 

361 generally, those of BHB and isocitrate were higher. For the parity 2 cows, glucose-6-

362 phosphate, and free glucose concentrations were higher for the balanced cluster 

363 than for the imbalanced, while for BHB, isocitrate and NAGase the concentrations or 

364 activities were lower or tended (P = 0.07) to be lower for the balanced compared to 

365 the imbalanced cluster. For parity 3+ cows, glucose-6-phosphate did not differ 

366 between the metabolic clusters but otherwise the results were similar to those of 

367 second parity cows. For parity 3+ cows, the urea concentration also tended (P=0.07) 

368 to be higher for the imbalanced cluster compared with the balanced cluster. To 

369 explore the ranking of importance within parity and period for the eight milk 

370 metabolites and enzymes in the MME set of milk biomarkers, VIM plots are shown in 

371 Supplementary Figures S1 to S4. BHB is among the most important for both the 14 

372 and 35 DIM periods whereas isocitrate is important for both parity in the period 

373 around DIM 14 but only for the oldest (3+) cows around DIM 35. For second lactation 

374 cows around DIM 35, free glucose and LDH are marginally more important than BHB 
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375 which ranks third. For the oldest cows (3+) free glucose is more important than 

376 isocitrate around DIM 14 whereas around DIM 35, uric acid and urea are also 

377 important for the prediction of the metabolic clusters. 

378

379 Discussion

380 The objective was to compare the use of three different sets of milk biomarkers for 

381 identification of cows in physiological imbalance and thus at risk of developing a 

382 metabolic or infectious disease. We defined a metabolic imbalanced cluster of cows 

383 based on k-means clustering of four blood biomarkers; glucose, NEFA and BHB in 

384 plasma and IGF-1 in serum. Random forests was used to predict individual blood 

385 biomarkers, body energy balance (EBAL), index for physiological imbalance (PI-

386 index) and the clusters differentiating the metabolic status of cows. Ideally, the 

387 prediction algorithms should be validated using an external data set but this was not 

388 possible in the present study. Therefore, internal cross-validation was used to 

389 examine performance.

390

391 IgG N-glycans performed really poor compared to the other two sets of milk 

392 biomarkers for predictions of individual blood biomarkers, EBAL, PI-index and 

393 metabolic clusters. This may partly be due to a less dense sampling of this milk 

394 biomarker. Nevertheless, even when accounting for the difference in sampling 

395 density IgG N-glycans had lower prediction accuracies than MME, FT-MIR or both. In 

396 addition, the analytical procedure is very complicated, expensive and with large 

397 problems of getting reliable results. Thus, also in that respect more work is needed to 

398 make this milk biomarker useful in herd health management.

399
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400 The precision of predictions for the individual blood biomarkers, EBAL and PI-index 

401 was measured by the coefficient of determination of cross-validation (R2cv) and by the 

402 root mean squared error (RMSEcv). These two measures of precision were 

403 interpreted with the recommendations from Alexander et al. (2015) in mind that as a 

404 rule of thumb the R2 should higher than 0.6 and the RMSE within 10% of the 

405 outcome’s range.

406

407 To predict individual blood biomarkers, the best models were obtained by MME with 

408 R2CV of 0.62 and 0.59 for plasma urea at 14 and 35 DIM, respectively. These were 

409 the only predictions reaching the 0.6 threshold mentioned above. Moreover, RMSECV 

410 for MME predictions (0.72 and 0.78) were below 10% of the plasma urea range at 

411 8.45 mM (supplementary tables of Krogh et al., 2019). The R2CV for FT-MIR models 

412 were generally lower than for MME and in some cases much lower, e.g. 0.06 (DIM 

413 14) and 0.13 (DIM 35) for plasma urea. Correspondingly, the RMSECV were higher, 

414 e.g. 1.08 and 1.13 for plasma urea at 14 and 35 DIM. Lower performances of the FT-

415 MIR models, compared to Grelet et al. (2019), may possibly be explained by different 

416 methodologies. In that study all DIM were combined into one global model, 

417 distribution of data were artificially modified and partial least squares regression was 

418 used instead of random forests. These differences were one of the reasons for 

419 redoing the FT-MIR predictions in the present paper.

420

421 For EBAL, FT-MIR showed a better performance than MME with an R2CV of 0.28 vs 

422 0.21 whereas the opposite was the case when predicting PI-index with R2CV of 0.26 

423 vs 0.40 at 14 DIM and 0.19 vs 0.34 at 35 DIM. Clearly these are below the 0.6 rule of 

424 thumb. The RMSEs from EBAL predictions (23.4 and 26.3) were lower than 10% of 
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425 the absolute range, whereas for PI-index only RMSEs from MME predictions (1.62 

426 and 1.71) were around 10% of the absolute range. 

427

428 Metabolic clusters were created as alternative phenotypes. The global accuracy of 

429 predicting the metabolic clusters varied from 0.54 to 0.65 and 0.51 to 0.68 for MME 

430 and FT-MIR predictions, respectively. Thus, the performance of MME and FT-MIR 

431 was at an equal level. It should be noted that examples of sensitivity at zero and 

432 specificity close to one were seen and may have biased the accuracy upwards. 

433 There was no improvement of including daily milk yield in the prediction models, as 

434 also concluded by Ingvartsen et al. (2003). It is not milk yield per se that increases 

435 the risk of diseases but rather physiological imbalance reflecting difficulties for some 

436 animals to adapt to the major physiological changes that occur particularly in the 

437 transition cow. Moreover, this is in accordance with results in Grelet et al. (2019) and 

438 De Koster et al. (2019) though comparison with these two studies is complicated by 

439 differences in examined periods and parities. The present study did notice 

440 differences in blood biomarker profiles among parities but more data would be 

441 desirable for such differentiation. In this study, work has focused on the first 7 weeks 

442 after calving and does not apply to cows at later stages. Since no clusters of 

443 primiparous cows were considered imbalanced, it generally seems from the present 

444 study that first parity cows do not require extra care and the attention should be on 

445 the multiparous cows. Relatively few cows in the imbalance clusters were also 

446 observed for parity 2 accompanied by sensitivity estimates at zero and specificities 

447 close to one. Thus, neither first nor second parity cows were really informative for the 

448 ability to predict the imbalanced cluster.

449
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450 The purpose of the presented random forests algorithms were to identify cows in 

451 physiological imbalance at risk of developing subclinical or more severe stages of 

452 diseases. Such cows may need extra attention and potentially altered feeding or 

453 other management actions to avoid that the physiological imbalance develop into 

454 subclinical or more severe disease states. The required accuracy of detection is 

455 obviously lower for this purpose since there is no risk of harm to the animal or of 

456 needless use of medicine. The accuracies mentioned in this paper are likely too low 

457 for diagnosing diseases that require medical treatment with e.g. antibiotics. 

458 Generally, the required accuracy depends on the specific purpose and of e.g. 

459 disease prevalence, costs associated with treatment and possible side-effects. The 

460 required accuracy could be established by simulation methods. Possibly, a larger 

461 data set for training prediction algorithms would improve the accuracies and the 

462 results presented here may be used to guide sample size decisions for future 

463 studies.

464

465 Presently, no sensors are available to measure e.g. free glucose, isocitrate and 

466 glucose-6-phosphate, but since FT-MIR algorithms tended to give as accurate 

467 predictions as MME, FT-MIR may give the same opportunities to make relevant 

468 classification of cows as balanced or in physiological imbalance (see also Grelet et 

469 al., 2019 and De Koster et al., 2019).  Moreover, it would also be interesting to 

470 investigate direct prediction of udder inflammation from FT-MIR as opposed to the 

471 use of e.g. LDH and NAGase enzymes that constitute an alternative for somatic cell 

472 counts, helping in the detection of subclinical diseases (Kitchen et al., 1978; Larsen 

473 et al., 2010; Hovinen et al., 2016).

474
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475 Conclusion

476 Neither EBAL nor PI-index were sufficiently precise to be used as a management tool 

477 for identification of risk cows. As an alternative, cows were divided into clusters 

478 based on measures of glucose, BHB and NEFA in plasma and IGF-1 in serum. 

479 These can be interpreted into metabolic clusters and the cluster of imbalanced cows 

480 can be predicted equally well by MME and FT-MIR. Nevertheless, accuracies still 

481 need to be improved and a larger data set for training the prediction algorithms would 

482 probably be needed. Free glucose, isocitrate, glycose-6-phosphate, BHB and 

483 NAGase measured in milk were significantly different among the three metabolic 

484 clusters (balanced, intermediate and physiological imbalanced). Thus, if MME is the 

485 preferred set of milk biomarkers to predict cows in physiological imbalance and at 

486 risk of developing a production or infectious disease, the above mentioned 

487 metabolites and enzyme should have high priority for inclusion. The use of IgG N-

488 glycans for prediction still needs development. 
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622 Figure captions

623

624 Figure 1 Box-and-whiskers plots for graphical interpretation (note that bars are 

625 medians) of k-means clusters into metabolic clusters as indicated by colours: 

626 balanced cluster (magenta), intermediate cluster (orange) and physiological 

627 imbalanced cluster (yellow). Distribution of standardised blood metabolites and IGF-1 

628 in each cluster (1, 2 and 3), at 14 DIM (first row), at 35 DIM (second row), for 

629 primiparous Holstein dairy cows (first column), second parity cows and for parity 3+ 

630 cows (last column). The horizontal lines indicate +/-0.5 SD.

631

632 Tables

633



27

635 Table 1 Precision of random forests predictions of EBAL and PI-index with three sets 

636 of milk biomarkers (milk metabolites and enzymes (MME), Fourier transform mid-IR 

637 spectra (FT-MIR) and immunoglobulin G (IgG) N-glycans)1 in Holstein dairy cows in 

638 six herds. The performance was measured by the coefficient of determination of leave-

639 one-cow-out cross-validation (R2
CV) and by root mean squared error (RMSEcv). 

640 Individual milk biomarkers were standardised using all available data before matching. 

641 In addition to sets of milk biomarkers, parity (1, 2 and 3+) as a factor and DIM (days in 

642 milk) as continuous covariate were included as predictors for EBAL, whereas only 

643 parity was added as predictor for PI-index. Number of cows (samples) are after 

644 removal of records excluded due to missing values

Response Period (DIM)
Sets of milk 

biomarkers
Ncows (Nsamples) R2

cv RMSEcv

MME 132 (1608) 0.21 23.7
FT-MIR 132 (1230) 0.28 23.4EBAL (only using DK, IE 

and UK herds) 1-50
IgG 122 (328) 0.06 26.3

MME 216 0.40 1.62
FT-MIR 201 0.26 1.8614

IgG 133 0.01 2.04

MME 218 0.34 1.71
FT-MIR 195 0.19 1.93

PI-index

35
IgG 134 0.05 2.04

645 1 Milk biomarkers were matched with the EBAL closest in sampling date (+/- 3 days). For FT-MIR this matching 
646 strategy was also applied to PI-index for the period noted in the column denoted “Period (DIM)”. If no perfect match 
647 (same day) was found, we proceeded as follows: Step 1 day backward first (day before milk biomarker sampling 
648 date), then 2 days forward (i.e. 1 day after the sampling data), then 3 days back (corresponding to 2 days before 
649 sampling), then 4 days forward, 5 days backward and 6 days forward. That is, closest match within 7 days (a week) 
650 centred in the milk biomarker's sampling date. For IgG N-glycans, the measure from the period noted was used for 
651 these two measurements. Averages of measures of milk metabolites and enzymes within the same week (Monday-
652 Sunday) as blood sampling were used for PI-index.
653
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654 Table 2 Precision (R2 and RMSE by leave-one-cow-out cross-validation) of random 
655 forests predictions of plasma metabolites and serum IGF-1 with three sets of milk 
656 biomarkers (milk metabolites and enzymes (MME), Fourier transform mid-IR spectra 
657 (FT-MIR) and immunoglobulin G (IgG) N-glycans) in Holstein dairy cows. Individual 
658 milk biomarkers were standardised and the sample matching the blood sample date 
659 (+/- 3 days) was used. In addition, parity (1, 2 and 3+) was included as a predictor. 
660 Number of cows are after removal of those excluded due to missing values

Blood biomarker Period (DIM) Sets of milk biomarkers Ncows R²cv RMSEcv

MME 213 0.12 16.9
FT-MIR 198 0.11 17.214

IgG 131 0.03 17.6
MME 214 0.18 16.4

FT-MIR 191 0.02 18.5

Plasma fructosamine

35
IgG 132 0.11 17.2

MME 216 0.62 0.72
FT-MIR 201 0.06 1.0814

IgG 133 0.01 1.07
MME 218 0.59 0.78

FT-MIR 195 0.13 1.13

Plasma urea

35
IgG 134 0.01 1.16

MME 216 0.09 0.68
FT-MIR 201 0.01 0.7214

IgG 133 0.01 0.72
MME 218 0.12 0.98

FT-MIR 195 0.03 1.02

Plasma cholesterol

35
IgG 134 0.04 1.02

MME 216 0.13 0.25
FT-MIR 201 0.10 0.2614

IgG 133 <0.01 0.26
MME 218 0.09 0.30

FT-MIR 195 0.03 0.31

Plasma log10(NEFA)

35
IgG 134 0.01 0.32

MME 216 0.29 0.41
FT-MIR 201 0.23 0.4314

IgG 133 0.11 0.49
MME 218 0.32 0.43

FT-MIR 195 0.19 0.48

Plasma glucose

35
IgG 134 0.17 0.49

MME 216 0.46 0.16
FT-MIR 201 0.27 0.2014

IgG 133 0.04 0.24
MME 218 0.40 0.17

FT-MIR 195 0.25 0.19

Plasma log10(BHB)

35
IgG 134 <0.01 0.22

MME 216 0.32 0.27
FT-MIR 204 0.36 0.2614

IgG 136 0.24 0.29
MME 216 0.40 0.21

FT-MIR 197 0.35 0.22

Serum log10(IGF-1)

35
IgG 138 0.14 0.25



662 Table 3 Number of Holstein dairy cows per metabolic cluster (balanced, 

663 intermediate, imbalanced) at DIM 14 and 35. Furthermore, the last column shows 

664 which clusters the DIM 35 cows belonged to at DIM 14

Number of cows
Cluster and parity

DIM 14 DIM 35
Cluster affiliation at DIM 14 for DIM 35 cows

Parity 1

   Balanced 38 52 38 Balanced + 14 Intermediate

   Intermediate 14 0

   Imbalanced 0 0

Parity 2

   Balanced 23 32 21 Balanced + 11 Intermediate

   Intermediate 28 21 1 Balanced +17 Intermediate + 3 Imbalanced

   Imbalanced 7 5 1 Balanced + 4 Imbalanced

Parity 3+

   Balanced 38 70 31 Balanced + 39 Intermediate

   Intermediate 54 0

   Imbalanced 11 33 7 Balanced +15 Intermediate + 11 Imbalanced

Total 213 213

665



666 Table 4 Leave-one-cow-out cross-validation of performance for random forests predictions of metabolic clusters by milk metabolites 

667 and enzymes (MME), Fourier transform mid-IR (FT-MIR) spectra and immunoglobulin G (IgG) N-glycans. Clusters based on k-means 

668 clustering (k=3) of standardised values of plasma glucose, log10(BHB) and log10(NEFA) and serum log10(IGF-1) in Holstein dairy cows

Sensitivity Specificity Global accuracy3 (95% CI)Period 

and parity

Cluster 

number1

Metabolic 

cluster2 MME FT-MIR IgG MME FT-MIR IgG MME FT-MIR IgG

Parity 1
   DIM 14 1 Balanced 0.74 0.70 0.38 0.52 0.61 0.48
 2 Balanced 0.14 0.40 0.10 0.89 0.75 0.79
 3 Intermediate 0.60 0.31 0.45 0.84 0.87 0.70

0.54
(0.39-0.68)

0.51
(0.37-0.65)

0.32
(0.17-0.51)

   DIM 35 1 Balanced 0.63 0.25 0.00 0.98 0.90 1.00
 2 Balanced 0.68 0.83 0.69 0.63 0.71 0.21
 3 Balanced 0.53 0.69 0.18 0.73 0.87 0.68

0.62
(0.47-0.75)

0.68
(0.53-0.81)

0.43
(0.25-0.63)

Parity 2
   DIM 14 1 Imbalanced 0.50 0.00 0.00 0.98 0.98 1.00
 2 Balanced 0.50 0.70 0.42 0.68 0.65 0.70
 3 Intermediate 0.61 0.70 0.61 0.53 0.68 0.29

0.55
(0.42-0.68)

0.59
(0.45-0.72)

0.46
(0.29-0.63)

   DIM 35 1 Imbalanced 0.00 0.00 0.00 0.98 0.96 1.00
 2 Balanced 0.79 0.69 0.71 0.50 0.52 0.53
 3 Intermediate 0.36 0.50 0.44 0.70 0.71 0.60

0.58
(0.44-0.70)

0.55
(0.40-0.69)

0.53
(0.35-0.70)

Parity 3+
   DIM 14 1 Imbalanced 0.70 0.00 0.00 1.00 0.99 1.00
 2 Intermediate 0.74 0.76 0.74 0.51 0.63 0.17
 3 Balanced 0.46 0.70 0.17 0.78 0.76 0.74

0.63
(0.53-0.73)

0.66
(0.56-0.76)

0.51
(0.38-0.64)

   DIM 35 1 Imbalanced 0.71 0.59 0.10 0.87 0.74 0.73
 2 Balanced 0.71 0.63 0.71 0.68 0.82 0.70
 3 Balanced 0.50 0.56 0.45 0.90 0.83 0.73

0.65
(0.55-0.75)

0.59
(0.49-0.70)

0.44
(0.31-0.57)

669 1 The cluster numbers are arbitrary and cannot be compared among period/parity combinations.
670 2 As interpreted from Figure 1. The metabolic clusters are comparable among period/parity combinations.
671 3 Proportion of correctly classified observations by the prediction, i.e. the diagonal of the confusion matrix.



672 Table 5 Characteristics1 of milk yield, metabolites and enzymes and comparisons among the 

673 three metabolic clusters (balanced, intermediate and physiological imbalanced) of Holstein dairy 

674 cows at DIM 14 in parity 2 and 3+, respectively. Results of ANOVA F-tests for differences among 

675 metabolic clusters are indicated2

Balanced (n=24)4 Intermediate (n=28) Imbalanced (n=9)4Milk measure and 

parity Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Parity 2

  Glucose-6-P (mM) 0.17 0.22 0.28 0.14 0.18 0.20 0.16 0.18 0.23 *

  Free glucose (mM) 0.18 0.25 0.28 0.17 0.22 0.26 0.07 0.12 0.15 **

  log10(BHB)3 1.56 1.63 1.72 1.66 1.76 1.85 1.98 2.06 2.40 ***

  Isocitrate (mM) 0.15 0.17 0.19 0.17 0.19 0.20 0.19 0.28 0.29 **

  Urea (mM) 2.47 3.15 3.83 2.16 3.18 3.79 2.66 2.82 4.90 ns

  Uric acid (µM) 161 176 204 154 164 203 139 173 181 ns

  log10(NAGase)3 0.24 0.35 0.46 0.18 0.26 0.41 0.41 0.42 0.46 ns

  log10(LDH)3 0.37 0.46 0.63 0.42 0.56 0.68 0.46 0.57 0.72 ns

  Milk yield (kg/day) 30.5 32.4 36.8 26.3 31.6 35.9 28.2 30.5 34.4 ns

Balanced (n=39)4 Intermediate (n=54) Imbalanced (n=11)

Parity 3+

  Glucose-6-P (mM) 0.15 0.19 0.24 0.15 0.17 0.22 0.16 0.18 0.20 ns

  Free glucose (mM) 0.17 0.21 0.24 0.13 0.16 0.18 0.09 0.10 0.11 ***

  log10BHB3 1.55 1.66 1.74 1.66 1.74 1.92 2.05 2.12 2.23 ***

  Isocitrate (mM) 0.14 0.16 0.19 0.15 0.18 0.21 0.22 0.26 0.28 ***

  Urea (mM) 2.26 3.12 3.63 1.87 2.76 3.57 2.96 3.17 4.62 ns

  Uric acid (µM) 126 166 200 114 155 187 144 174 203 ns

  log10(NAGase)3 0.17 0.27 0.36 0.24 0.35 0.47 0.48 0.55 0.62 **

  log10(LDH)3 0.28 0.41 0.61 0.38 0.48 0.67 0.55 0.64 0.73 ns

  Milk yield (kg/day) 34.3 36.4 40.6 32.1 34.6 38.6 29.9 33.0 36.7 ns

676 1 Q1: first quartile, Q2: second quartile (median), Q3: third quartile, M: molar (mol/L).
677 2 ns P≥0.05; * P<0.05; ** P<0.01; *** P<0.001
678 3 BHB (µM), NAGase (units/L), LDH (units/L).
679 4 The difference in totals compared to Table 3 is due to cows only having measures DIM 14.
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Supplementary Table S1. Number of Holstein dairy cows (row proportion) and 
summary statistics of parity (mean, SD, median and maximum) for each combination 
of parity, herd and diet, and pooled

Parity

Herd1 Diet2 1 2 3+ Total
Mean (SD);

median; max

Low C 6 (0.30) 4 (0.20) 10 (0.50) 20 2.6 (1.5); 2.5; 7
Standard C 6 (0.30) 2 (0.10) 12 (0.60) 20 2.9 (1.6); 3; 6

High C 6 (0.29) 3 (0.14) 12 (0.57) 21 2.8 (1.6); 3; 7UK

Pooled 18 (0.30) 9 (0.15) 34 (0.56) 61 2.7 (1.6); 3; 7

High starch 5 (0.45) 2 (0.18) 4 (0.36) 11 2.5 (1.8); 2; 5
High sugar 4 (0.40) 3 (0.30) 3 (0.30) 10 2.5 (1.8); 2; 6
Standard 2 (0.14) 9 (0.64) 3 (0.21) 14 2.1 (0.6); 2; 3DK

Pooled 11 (0.31) 14 (0.40) 10 (0.29) 35 2.3 (1.4); 2; 6

IE Standard 2 (0.06) 11 (0.31) 23 (0.64) 36 3.3 (1.5); 3; 7
BE Standard 13 (0.42) 9 (0.29) 9 (0.29) 31 2.3 (1.6); 2; 6
DE Standard 3 (0.12) 8 (0.31) 15 (0.58) 26 2.5 (0.7); 3; 3
IT Standard 8 (0.18) 15 (0.33) 22 (0.49) 45 2.6 (1.2); 2; 6

All Pooled 55 (0.24) 66 (0.28) 113 (0.48) 234 2.6 (1.4); 2; 7
1 UK (Agri-Food and Biosciences Institute, Northern Ireland, UK); DK (Aarhus University, Denmark); 

IE (UCD Lyons Research Farm, University College Dublin, Ireland); BE (Walloon Agricultural 
Research Centre, Belgium); DE (Leibniz Institute for Farm Animal Biology, Germany) and IT 
(Consiglio per la Ricerca in Agricoltura, Italy).

2 C=concentrate.



Supplementary Table S2 Leave-one-cow-out cross-validation of prediction performance for milk metabolites and enzymes (MME), 
Fourier transform mid-IR spectra (FT-MIR) and immunoglobulin G (IgG) N-glycans predictions of metabolic clusters based on k-
means clustering (k=3) of standardised values of plasma glucose, plasma log10(BHB), plasma log10(NEFA), and serum log10(IGF-1) 
in Holstein dairy cows. Data with the restriction that all three milk biomarkers were successfully measured in the period

Sensitivity Specificity Global accuracy3 (95% CI)Period 

and parity

Cluster 

number1

Metabolic 

cluster2 MME FT-MIR IgG MME FT-MIR IgG MME FT-MIR IgG

Parity 1
   DIM 14 1 Balanced 0.62 0.69 0.38 0.39 0.53 0.16
 2 Balanced 0.00 0.10 0.00 0.82 0.73 0.64
 3 Intermediate 0.44 0.11 0.11 0.82 0.74 0.91

0.39
(0.22-0.58)

0.34
(0.19-0.53)

0.19
(0.07-0.36)

   DIM 35 1 Balanced 0.00 0.00 0.00 1.00 0.92 1.00
 2 Balanced 0.79 0.86 0.57 0.46 0.77 0.31
 3 Balanced 0.40 0.60 0.30 0.71 0.76 0.59

0.56
(0.35-0.75)

0.67
(0.46-0.83)

0.41
(0.22-0.61)

Parity 2
   DIM 14 1 Imbalanced 0.00 0.00 0.00 0.96 0.96 1.00
 2 Balanced 0.33 0.75 0.42 0.63 0.71 0.76
 3 Intermediate 0.50 0.81 0.69 0.27 0.76 0.29

0.39
(0.22-0.58)

0.67
(0.48-0.82)

0.48
(0.31-0.66)

   DIM 35 1 Imbalanced 0.00 0.33 0.00 1.00 0.96 1.00
 2 Balanced 0.64 0.64 0.45 0.59 0.71 0.82
 3 Intermediate 0.50 0.64 0.79 0.50 0.64 0.36

0.50
(0.31-0.69)

0.61
(0.41-0.79)

0.57
(0.37-0.76)

Parity 3+
   DIM 14 1 Imbalanced 0.00 0.00 0.00 1.00 1.00 1.00
 2 Intermediate 0.85 0.76 0.70 0.19 0.50 0.32
 3 Balanced 0.24 0.61 0.33 0.86 0.78 0.70

0.59
(0.45-0.72

0.65
(0.51-0.78)

0.53
(0.39-0.66)

   DIM 35 1 Imbalanced 0.50 0.00 0.12 0.79 0.71 0.87
 2 Balanced 0.47 0.58 0.63 0.66 0.64 0.78
 3 Balanced 0.68 0.42 0.58 0.89 0.67 0.53

0.56
(0.41-0.69)

0.35
(0.22-0.49)

0.45
(0.32-0.59)

1 The cluster numbers are arbitrary and cannot be compared among period/parity combinations.
2 As interpreted from Figure 1. The metabolic clusters are comparable among period/parity combinations.
3 Proportion of correctly classified observations by the prediction, i.e. diagonal of the confusion matrix.



Supplementary Table S3 Pairwise comparisons of agreement by leave-one-cow-out cross-validation among milk metabolites and 
enzymes (MME), Fourier transform mid-IR spectra (FT-MIR) and immunoglobulin G (IgG) N-glycans for prediction of metabolic clusters 
based on k-means clustering (k=3) of standardised values of plasma glucose, plasma log10(BHB), plasma log10(NEFA), and serum 
log10(IGF-1) in Holstein dairy cows. Data with the restriction that all three milk biomarkers were successfully measured in the period

Sensitivity Specificity Global accuracy3 (95% CI)Period 

and parity

Cluster 

number1

Metabolic
cluster2 MME /

FT-MIR
MME /

IgG
FT-MIR

/ IgG
MME /
FT-MIR

MME /
IgG

FT-MIR
/ IgG

MME /
FT-MIR

MME /
IgG

FT-MIR /
IgG

Parity 1
   DIM 14 1 Balanced 0.76 0.65 0.52 0.57 0.45 0.36
 2 Balanced 0.14 0.25 0.13 0.88 0.91 0.75
 3 Intermediate 0.43 0.33 0.00 0.79 0.75 0.76

0.55
(0.36-0.73)

0.52
(0.33-0.70)

0.38
(0.21-0.56)

   DIM 35 1 Balanced 0.00 -4 -4 1.00 1.00 0.93
 2 Balanced 0.73 0.53 0.53 0.42 0.10 0.40
 3 Balanced 0.40 0.10 0.40 0.71 0.53 0.65

0.56
(0.35-0.75)

0.37
(0.19-0.58)

0.48
(0.29-0.68)

Parity 2
   DIM 14 1 Imbalanced 0.00 -4 -4 0.97 0.97 0.97
 2 Balanced 0.31 0.30 0.50 0.61 0.62 0.57
 3 Intermediate 0.53 0.57 0.52 0.29 0.30 0.50

0.42
(0.25-0.61)

0.48
(0.30-0.67)

0.52
(0.34-0.69)

   DIM 35 1 Imbalanced 0.00 -4 -4 1.00 1.00 0.93
 2 Balanced 0.58 0.63 0.75 0.56 0.55 0.70
 3 Intermediate 0.57 0.55 0.60 0.57 0.63 0.75

0.54
(0.34-0.72)

0.57
(0.37-0.76)

0.64
(0.44-0.81)

Parity 3+
   DIM 14 1 Imbalanced -4 -4 -4 1.00 1.00 1.00
 2 Intermediate 0.94 0.81 0.63 0.39 0.12 0.29
 3 Balanced 0.39 0.12 0.29 0.94 0.81 0.63

0.76
(0.62-0.87

0.59
(0.45-0.72)

0.53
(0.39-0.66)

   DIM 35 1 Imbalanced 0.27 0.29 0.14 0.70 0.70 0.79
 2 Balanced 0.29 0.47 0.25 0.53 0.66 0.46
 3 Balanced 0.32 0.36 0.32 0.69 0.73 0.59

0.30
(0.18-0.44)

0.39
(0.26-0.53)

0.27
(0.16-0.41)

1 The cluster numbers are arbitrary and cannot be compared among period/parity combinations.
2 As interpreted from Figure 1. The metabolic clusters are comparable among period/parity combinations.
3 Proportion of predictions that are the same between methods, i.e. diagonal of the confusion matrix.
4 None predicted in the cluster by the “reference” milk biomarker (last mentioned, e.g. IgG).



Supplementary Figure S1 Plot of the variable importance measure (VIM) from the 
random forests algorithm predicting metabolic clusters by a milk biomarker set of eight 
milk metabolites and enzymes measured around 14 days after calving (DIM14) in 
second parity cows.



Supplementary Figure S2 Plot of the variable importance measure (VIM) from the 
random forests algorithm predicting metabolic clusters by a milk biomarker set of eight 
milk metabolites and enzymes measured around 14 days after calving (DIM14) in cows 
with three or more lactations (parity 3+).



Supplementary Figure S3 Plot of the variable importance measure (VIM) from the 
random forests algorithm predicting metabolic clusters by a milk biomarker set of eight 
milk metabolites and enzymes measured around 35 days after calving (DIM35) in 
second parity cows.



Supplementary Figure S4 Plot of the variable importance measure (VIM) from the 
random forests algorithm predicting metabolic clusters by a milk biomarker set of eight 
milk metabolites and enzymes measured around 35 days after calving (DIM35) in cows 
with three or more lactations (parity 3+).


