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Abstract 

This paper presents an experimental study of the behavior of intumescent coatings exposed to 

localized fires. The main objective is to assess the extent to which thermal properties of intumescent 

coatings obtained under uniform heating can be applied for localized fire exposures. The 

experiments used two types of specimens representing protected steel beams and columns. 

Localized pool fires were placed underneath horizontal specimens or beside vertical specimens. 

Solvent-based and waterborne intumescent coatings were applied to the specimens. Measurements 

were made of temperatures of the steel specimens and the adjacent gas phase, as was coating 

expanded thicknesses at several locations. Depending on their location relative to fires, the 

intumescent coatings were variably unreacted, melted, partially expanded, or fully expanded 

(corresponding to steel temperatures of about less than 100℃, 100-300℃, 300-400℃, and above 

400℃, respectively). The appearances and expansion ratios for various regions of coatings under 

localized fires were consistent with those under uniform heating from previously obtained furnace 

test results. Steel temperatures of the specimens were calculated using thermal conductivities of 

coatings derived from furnace tests, and were found to agree reasonably with the experimental 

results, thus indicating that it may be feasible to apply thermal conductivities derived from furnace 

tests to predict steel temperatures under localized heating scenarios.  
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1. INTRODUCTION 

 In fire resistance design of building structures, the temperature-time relationship of the fire is 

typically assumed to be uniform and is intended to reflect a post-flashover condition within a fire 

compartment. This uniform temperature-time relationship is typically assumed to follow the ISO 

834 standard temperature-time curve [1], or similar idealized curves such as the parametric fire 

curves in EN 1991-1-2 Annex A [1]. However, real fire exposures are likely to result in non-uniform 

thermal exposures, particularly in larger spaces; assuming a uniform thermal exposure is therefore 

not always suitable [2]. Various research studies have investigated how to quantify non-uniform 

temperature distributions or heat fluxes experienced under localized fires (Wakamatsu [3,4], Ferraz 

[5], Bystrom [6], Hanus [7], NIST [8] and Tondini [9]). However, there is a paucity of experiments 

on the response of intumescent-protected steel structures subjected to localized fires.  

Intumescent coatings are widely used to protect steel structures against fire due to advantages 

such as lightweight, attractiveness, and suitability for on- and off-site application. Intumescent 

coatings expand under severe heating to form a protective char layer which can provide thermal 

insulation in a fire [10]. The chemical reactions within intumescent coatings are complex, with 

variable expansions and effective thermal conductivities displayed under different heating regimes.  

To date, most research studies on intumescent coatings have focused on their expansion and 

thermal properties under spatially uniform heating; this includes the ISO 834 standard furnace test 

condition as well as other, non-standard but uniform, fires. Li [11,12] proposed the constant effective 

thermal conductivity concept for ISO 834 fire conditions, as well as a three-stage effective thermal 

conductivity [13] model for non-standard uniform furnace test conditions as a simplification for the 

temperature-dependent effective thermal conductivity method suggested in EN 13381-8 [14]. In the 



three-stage model, the behavior of intumescent coatings is divided into three stages: (1) melting, (2) 

expanding, and (3) fully expanded, when the steel temperatures are in the ranges of about 100℃-

300℃, 300℃-400℃, and higher than 400ºC, respectively. The applicability of the three-stage 

thermal conductivity method for intumescent coatings under uniform, non-standard, large space 

fires has been demonstrated under some conditions [13]. Studies by Wang [15], Elliott [16], 

Lucherini [17], and de Silva [18, 19] have also been limited to intumescent coatings under spatially 

uniform fire conditions.  

However, since the behavior of intumescent coatings depends on the fire conditions, it is 

necessary to investigate whether the response of intumescent coatings under uniform heating can be 

reasonably applied to cases of non-uniform heating. 

This paper presents the results of a series of pool fire experiments on intumescent coating 

protected real-scale steel specimens. The experiments were carried out on horizontal and vertical 

steel members under different localized fire scenarios. The main objective of the study was to 

compare the behavior of intumescent coatings under localized fires against that under spatially 

uniform heating in furnace tests, as well as to assess whether the effective thermal properties of 

intumescent coatings derived on the basis of furnace testing can reasonably be used to predict the 

temperature of protected steelwork under localized fire exposures.  



2. TEST SPECIMENS 

2.1 Steel members  

 Square hollow steel tubes with dimensions of 250×250×8mm were used for all experiments. 

The section factor of the sections used was 132.98m-1. Prior studies have shown that the shape of 

steel sections had little influence on intumescent coating behavior [18] except for possible cracking 

and stickability issues. The two horizontal experimental specimens were each 5m in length, and the 

four vertical specimens were 4m in height. The specimens were unloaded with welded end plates 

added for stability during testing.  

2.2 Thermocouples 

The steel temperatures and surrounding gas temperatures were measured by Type-K inconel 

sheathing thermocouples with a diameter of 2mm at selected locations. Figure 1 shows the locations 

of thermocouples installed at eleven cross-sections along the horizontal members, and Figure 2 

shows the eight cross-sections in the vertical members. These cross-sections of thermocouples 

allowed detailed measurement of temperatures under the experimental heating conditions. Due to 

large temperature gradients close to the fire source, the thermocouple locations near the specimen 

centers, where the fire source was located for horizontal specimens, were more closely spaced. 

At each cross-section eight thermocouples were installed. As shown in Figure 3, four of these 

were embedded (with an embedment depth of 4mm) in the steel cross-section to measure steel 

temperatures. This method of thermocouple installation was chosen to ensure that the thermocouples 

stayed in place and to avoid any disturbance to intumescent coatings. The other four thermocouples 

were located approximately 70mm from the steel surface to measure the surrounding gas phase 



temperatures. The thermocouples measuring steel temperatures were denoted “TS-section number-

surface name” and those measuring gas temperatures were “TG- section number- surface name”. 

The steel surfaces refer to the front surface facing the fire (F), the back surface (B) and the two side 

surfaces (S1, S2). 

 

(a) Thermocouples on a horizontal (beam) specimen 

 

(b) Thermocouple stations along horizontal specimens 

Figure 1   Thermocouple locations for horizontal specimens (Units: mm) 



 

Figure 2   Thermocouple stations for vertical specimens (Units: mm) 

 

   

(TG- Thermocouples for gas temperature; TS- Thermocouples for steel temperature (Units: 

mm)) 

Figure 3   Locations of thermocouples at each cross-section 



2.3 Fire protection 

 Two types of commercial intumescent coatings were applied to the specimens: a single 

component waterborne intumescent coating, and a single component solvent-based acrylic 

intumescent coating. The target dry film thickness (DFT) for both types of intumescent coatings 

was 0.6mm on all specimens. This DFT is typical of that required to achieve a standard fire 

resistance rating of 30min for the coatings used for a steel limiting temperature of 500oC. The 

duration of pool fire tests of this study was also approximately 30 minutes. The actual installed DFT 

of the intumescent coatings was measured at 150 locations for each specimen, and the average value 

was taken as the measured DFT for the specimen. The measured values of intumescent coating 

thickness were within ±10% of the average DFT value. Table 1 provides a summary of the test 

specimens. 

Table 1  Summary of test specimens 

Specimen 

No. 

Specimen 

type 

Length 

(m) 

Coating type Number of 

cross-sections 

for temperature 

measurement  

Average 

coating 

DFT/ (μm) 

Standard 

deviation 

of DFT/ 

(μm) 

BW Horizontal 5 Waterborne 11 613 65 

BS Horizontal 5 Solvent-

based 

11 660 54 

CW1/CW2 Vertical 4 Waterborne 8 691/677 64/61 

CS1/CS2 Vertical 4 Solvent-

based 

8 655/680 51/55 

3. FIRE EXPOSURE 

3.1 Fire source 

 Pool fires were used in the tests to simulate localized fires. The burner metal box was square 

measuring 1m by 1m in plan and 0.2m in depth, equivalent to a circular fire source with a diameter 



of 1.13m in terms of the surface area. N-heptane was used as fuel because of its high calorific value 

and low smoke density. The burning duration of a pool fire in the open can be estimated by Eqn. (1) 

[20]: 

b 2

4
=

V
t

D v
                                 (1) 

Where V is the volume of the fuel (m3); D is the diameter of the pool (m) and v is the rate of fuel 

consumption (m/s), which is defined in Eqn. (2): 

=
m

v



                                  (2) 

= (1 exp( ))m m k D
                            (3) 

 

where m  is the estimated burning rate;   is the fuel density (kg/m3); m
  is taken as 0.101 

kg/m2.s and k  is 1.1 m-1 for Heptane [20].  

 The fires were designed to achieve a heat release rate (HRR) of approximately 2MW and a 

steady burning duration of about 30 minutes. HRR can be related to the mass loss rate according to 

Eqn. (4): 

eff ct = (t)Q m H ( )                            (4) 

where 
c

H  is the heat of combustion and 
eff

  the combustion efficiency (assumed as 0.8 [21]). 

The heat of combustion of heptane is 44.6 MJ/kg [22]. Thus, to achieve an HRR of 2MW the 

estimated mass loss rate, (t)m , is approximately 0.072 kg/s; this can be provided by an N-heptane 

pool fire with a diameter of 1.13m (see Equation (4)). Finally, to achieve a burning time of 30 

minutes a fuel depth of 14cm was used (see Equation (1)).  

Table 2 provides details of the measured burning time, the estimated and the average measured 

heat release rates for all the tests. 



Table 2  Summary of fire exposure for different tests 

Test 

No. 

Specimen 

No. 

Specimen 

Type 

Fuel 

Volume (L) 

Duration 

(min) 

Estimated 

HRR (MW) 

Measured 

average HRR 

(MW) 

1 BW Horizontal  140 27.5 2.57 2.07 

2 BS Horizontal 140 27.5 2.57 2.07 

3 CS1, CW2 Vertical 130 24.2 2.57 2.18 

4 CW1, CS2 Vertical 135 25.5 2.57 2.15 

3.2 Fire locations 

 The fire tests were conducted in a seven-metre high testing hall. The horizontal specimen was 

simply-supported on two steel stubs, as shown in Figure 4. The pool fire was located beneath mid-

span of the specimen at one meter below its lower flange. For the vertical specimens, two specimens 

were fixed to the ground and placed adjacent to the fire pool, as shown in Figure 5.  

  

(a) Test setup (Units: mm) 

 

(b)  Test specimen before fire testing 

Figure 4   Test setup for horizontal specimens 



 

 

  

(a) Test setup (b) Specimens before test 

Figure 5   Test setup for vertical specimens (Unidentified units: mm) 

3.3 Flame observation 

 Figure 6 shows typical horizontal and vertical tests in progress. According to [22], the flame 

height Lf  can be calculated using the following equation: 

2/5= 1.02 0.235fL D Q                            (5) 

where Lf and D are in m and Q is in kW. Substituting a value of D=1.13 m and Q  =2.07 MW in 

the above equation gives a value of 3.82 m for the flame height, which agrees reasonably well with 

the observed flame heights between 3.5 and 4 m. 

It can be seen in Figure 6 that the flame slightly swayed to the north during the tests, which 

was due to the ventilation conditions in the laboratory. The north sway of the flame resulted in 

different thermal conditions for the north and south columns tested in the vertical orientation, with 



the north column effectively engulfed within the fire plume and the south column somewhat 

removed from the flames. 

  

(a) Horizontal test 

  

 (b) Vertical test 

Figure 6   Tests in progress 

3.4 Fire temperature distributions 

 The gas temperatures for the beam and column specimens were highly non-uniformly 

distributed and fluctuated considerably; this is shown in Figure 7 and Figure 8, which show a 

selection of measured gas temperature-time relations for the different horizontal and vertical 

specimens. Due to the ventilation conditions inside the test lab, the flame tilted to the north. As a 

result, the gas temperatures for south sections 5-8 of the horizontal specimens decreased at about 

500s, while those for the north sections (9-11) increased. Similarly, the flame surrounded the north 

vertical specimen on all surfaces, but not the south specimen, so the gas temperatures on the side 

and back surfaces of the north specimen (CW1, CS1) were more than one hundred degrees higher 

than those of the south specimen (CW2, CS2).  



 

(a) Gas temperatures for sections 3-8 

 

(b) Gas temperatures for sections 9-11 

Figure 7   Selected gas temperatures at the front surface for horizontal member with 

waterborne intumescent coatings (BW) 

 



 

(a) Side surface of north column CW1 

 

(b) Back surface of north column CS1 

 

(c) Front surface of south column CW2 



 

(d) Back surface of south column CW2 

Figure 8   Selected gas temperatures for different vertical specimens with waterborne 

intumescent coatings 

4. RESPONSE OF INTUMESCENT COATINGS  

4.1 Reactions of intumescent coatings 

Observations of intumescent coatings after the fire tests show four regions: 1 –fully expanded, 

2 – partially expanded, 3 – melted but not expanded, and 4 – virgin material. The intumescent 

coating is considered “fully expanded” if its surface appearance after expansion is white, which 

indicates oxidation of the char, and bubbles were fine sized and reasonably uniformly distributed. 

Region 1 was directly engulfed in the fire plume, because the temperatures of intumescent coatings 

not engulfed in the fire plume were not sufficiently high (surrounding gas temperature > 600oC) to 

allow the intumescent coatings to undergo the full chemical reactions for expansion. Region 2 

experienced expansion but did not fully expand, because the temperatures were insufficient for full 

chemical reactions, as in Region 1. Within this region, the recorded gas temperatures were between 

300-600℃. In this region, the char surfaces were black, suggesting the presence of carbon on the 



char surface and an absence of significant char oxidation, with bubbles of different sizes within the 

coating. Region 3 (melting region) displayed a few very small bubbles scattered on the coating 

surface, but no obvious coating expansion. The nearby fire temperature was higher than the melting 

temperature of intumescent coatings (i.e. about 150℃ [23]) but lower than the temperatures required 

for onset of expansion of about 300℃ [23]. In Region 4 (essentially virgin material), the surrounding 

gas temperatures were low (<100℃) and there was no indication of any melting or gasification 

processes. The transition between different regions was smooth, without any obvious particularities 

between the regions, and so these can be delineated only approximately. Different sizes of bubbles 

were observed at different expansion regions, where the coatings were at different stages of 

expansion. No holes were observed in the surface of the intumescent coating. 

Figure 9 and Figure 10 show typical surface appearances of these four regions for the 

waterborne and solvent-based intumescent coatings respectively. Figures 11, 12 and 13 show their 

distributions along the horizontal and vertical specimens. As shown in Figure 9, the effectively 

expanded intumescent coatings in Region 1 had a continuous, smooth char, with small and evenly 

distributed white bubbles on the surface. This is similar to observations of fully expanded 

intumescent coatings in ISO 834 standard furnace tests [12,13,24].  

  



 

 

  

  

(a) Full expansion region (Region 1) (b) Expanding region (Region 2) 

  

(c) Melting region (Region 3) (d) Virgin material (Region 4) 

Figure 9   Typical surface appearances of four notional regions of waterborne intumescent 

coatings  

  

(a) Full expansion region (Region 1) (b) Expanding region (Region 2) 

 

 

(c) Melting region (Region 3) (d) Virgin material (Region 4) 

Figure 10   Typical surface appearances of four notional regions of solvent-based intumescent 

coatings  



 

  

  

(a) Distribution of the four regions on horizontal specimen, side surface 1 

  

(b) Approximate gas temperature distribution during steady burning stage, side surface 1 

Figure 11   Distribution of four notional regions for waterborne coating and relation to 

average gas phase temperature distribution 



REGION1 

  

 

   

  

(a) CW1, side 

surface 1 

(b) Gas temperature 

distribution of CW1 

(c) CS1, side 

surface 1 

(d) Gas temperature 

distribution of CS1 

 

(a) Distribution of the four notional regions, side surface 1 

.  

(b)  Approximate gas temperature distribution during steady burning stage, side surface 1 

Figure 12   Distribution of four notional regions for solvent-based coating on horizontal 

specimen, and relation to average gas phase temperature distribution 

 



 

  

 

 

(e) CW2, side 

surface 1 

(f) Gas temperature 

distribution of CW2 

(g) CS2, side 

surface 1 

(h) Gas temperature 

distribution of CS2 

Figure13   Distribution of different notional regions of intumescent coatings along vertical 

members and relation to average gas phase temperature distribution 

Figure 13 shows that intumescent coatings on the two north columns (CS1 and CW1) reacted 

more fully (white char) than the two south columns (black char) due to higher gas temperatures as 

a result of the north shift of the flames. 

 In all the tests, the expansion ratios of the fully expanded regions (Region 1) were about 30 

and 25 for the waterborne and solvent-based intumescent coatings respectively, which are the same 

as those in the uniform ISO standard furnace tests [12, 24]. The expansion ratios of the expanding 

regions (Region 2) were approximately 20 and 15, respectively.  

4.2 Cracking of intumescent coatings 

 Numerous cracks appeared on the surface of the coatings in all test specimens, which accords 

with prior observations of intumescent coatings applied on steel specimens [13, 24]. There were two 



types of cracks, scattered narrow cracks perpendicular to the edges, and long cracks along the 

specimens at the corners of the cross-sections, as shown schematically in Figure 14. The crack 

locations tended to coincide with thermocouple locations, suggesting that the thermocouples may 

have acted as crack initiators, however this observation requires confirmation. The crack widths 

were typically between 2 and 6mm, with only a few cracks at the corners exceeding 10mm; these 

may be attributed to the intumescent coatings at the corners experiencing greater strains due to sharp 

changes in geometry in these regions. 

Since most of the cracks were narrow and did not expose the steel surface, their influence on 

heat transfer and steel temperature is considered to be low [25]. To confirm this assertion, Figure 15 

compares the measured steel temperatures at a crack location (i.e. Thermocouple TS-9-F, crack 

width 6mm) and at the nearby location without a local crack (i.e. Thermocouple TS-9-S1), both with 

similar adjacent gas phase temperatures, for the horizontal specimen with waterborne intumescent 

coatings. The steel temperatures are seen to be similar. The influence of any cracks on intumescent 

coating behaviour can be considered to be implicitly considered in the discussions that follow, which 

are based on measured steel temperatures.  

 

 

(a) BW 

 



  

(b) CS1 (c) CW2 

Figure 14   Typical distribution of cracks (numbers indicate crack width in mm) 

 



 
Figure 15   Comparison of measured steel temperatures with and without a local crack, BW 

4.3 Expansion of intumescent coatings  

Figures 16-21 show contours of the intumescent coating expansion ratio for the different 

specimens and relates them to average gas temperature distributions along the members during the 

steady burning periods of the experiments (i.e. 600-1400s). It can be seen that the full expansion 

regions (Region 1) coincide with the flame area. For the horizontal specimens, Region 2 (partially 

expanded region) were relatively small. In Region 3 (melted region), the expansion was very low. 

Therefore, when conducting heat transfer to the steel member, it may be possible to divide 

intumescent coatings approximately into two zones: the flame zone where the intumescent coatings 

achieve full expansion and the other zone where any expansion is negligible.  

The average expansion ratios of the full expansion regions for the waterborne and solvent-

based coatings were 29 and 21 respectively, and these were similar for the horizontal and vertical 

specimens. These expansion ratios agree with those for the same intumescent coatings in the authors’ 

previous fire tests under the ISO 834 standard furnace testing conditions [12, 24]. This indicates 

that the same intumescent coatings have similar behaviour for the fully expanded regions under both 

uniform and spatially non-uniform (localised) heating conditions. This suggests that it may be 



possible to assume the same thermal characteristics of intumescent coatings obtained from standard 

furnace test conditions, which are likely to be available from product development, to calculate steel 

temperatures to be expected under localised severe heating scenarios.   



(a) Average gas temperature distribution   

(b) Distribution of expansion ratios after fire 

(c) Steel temperature distribution at 1500s 

Figure 16   Horizontal specimen with waterborne intumescent coatings (BW) 



 

(a) Average gas temperature distribution 

 

(b) Distribution of expansion ratios after fire 

 

(c) Steel temperature distribution at 1500s 

Figure 17   Horizontal specimen with solvent-based intumescent coatings (BS) 

  



    

(a) Average gas temperature 

distribution 

(b) Distribution of expansion 

ratio after fire 

(c) Steel temperature 

distribution at 1500s 

Figure 18   Vertical specimen with waterborne intumescent coatings, CW1 

    

(a) Average gas temperature 

distribution 

(b) Distribution of expansion 

ratio after fire 

(c) Steel temperature 

distribution at 1500s 

Figure 19   Vertical specimen with solvent-based intumescent coatings, CS1 



(a) Average gas temperature 

distribution  

(b) Distribution of expansion 

ratio after fire 

(c) Steel temperature 

distribution at 1500s 

Figure 20   Vertical specimen with waterbone intumescent coatings, CW2 

(a) Average gas temperature 

distribution 

 (b) Distribution of expansion 

ratio after fire 

(c) Steel temperature 

distribution at 1500s 

Figure 21   Vertical specimen with solvent-based intumescent coatings, CS2 



5 STEEL TEMPERATURE DISTRIBUTIONS 

 Figures 16-21 present the maximum steel temperature contours for the horizontal and vertical 

specimens. Included in these figures are also intumescent coating expansion ratios and gas 

temperatures of the four regions of intumescent coatings described earlier. There are clear non-

uniform steel temperature gradients in the cross-sections and along their length. The highest steel 

temperatures were in the expanded region (Region 1). However, due to longitudinal heat conduction, 

there were also moderate steel temperature rises (70℃-150℃) in regions where the intumescent 

coatings did not react. In general, the waterborne intumescent coating performed slightly better, 

with lower steel temperatures than solvent-based coating. 

For the fully expanded regions (Region 1), the effective thermal conductivity of the 

intumescent coatings was calculated using the method in EN 13381-8 [14] – assuming that the 

intumescent coating’s surface temperature was the same as the gas phase temperature and there was 

no heat conduction along the test specimens. This is given by: 

s
s p s s

p g s

( )
( )

V T
T d c

A T T t
 




 
                       (6) 

where Ap/V is the section factor of the steel member insulated by intumescent coatings; cs is the 

temperature dependent specific heat of steel [J/kg K]; dp is the initial dry film thickness of the 

intumescent coatings [m]; Δt is the time interval [s]; Ts is the steel temperature[K]; Tg is the fire 

temperature [K]; ΔTs is the increase of fire temperature during the time interval Δt [K]; ρs is the 

density of steel [kg/m3]; 

Figure 22 shows the temperature-dependent effective thermal conductivity curves, calculated 

by using Eqn. (6), for the fully expanded region for waterborne coating (BW-9-F) and solvent-based 



coating (BS-9-F), together with the results of the previous ISO furnace tests [24] for the two types 

of intumescent coatings with same DFT. The comparison shows that the thermal conductivities of 

the expanding and full expansion stages for the fully expanded region under localized fires were 

close to that determined under the ISO standard temperature-time curve in a fire resistance testing 

furnace. The thermal conductivities of the melting stage under localized fires were different from 

those under the ISO standard fire. However, it is not important to achieve high accuracy in obtaining 

thermal conductivity for the first phase (100-300 oC) because the steel temperature is too low to 

affect the mechanical properties of steel. After the first phase, the steel temperature is higher, 

however, calculation of the steel temperature is mainly dependent on the thermal conductivities for 

the expanding and fully-expanded stages. 

 

 

(a) Waterborne intumescent coatings 



 

(b) Solvent-based intumescent coatings 

Figure 22   Comparison of effective thermal conductivity-steel temperature curves for the full 

expanded region under localized fires and ISO fire 

To validate the assertion that steel temperatures under localized heating can be calculated using 

the same thermal properties of intumescent coatings obtained from the ISO 834 standard furnace 

test condition, steel temperatures in the different regions of the test members were calculated using 

the three-stage effective thermal conductivity model obtained by the authors for the same 

intumescent coatings under standard ISO 834 furnace test conditions [13]. Figures 23 and 24 

compare the calculated steel temperatures with those measured during the experiments presented 

herein. 

The measured steel temperatures refer to those at the front surfaces of sections 11, 6, and 9 for 

waterborne intumescent coatings horizontal specimen (BW) and sections 4, 10, and 8 for solvent-

based intumescent coating specimen (BS), which are in the center of the melting, expanding and 

full expansion regions, respectively. For these locations, it was assumed that the lumped mass 

method in Eurocode 3 Part 1.2 [26] can be used assuming limited heat transfer along the specimens. 

In the steel temperature calculations, the thermal conductivities of intumescent coatings were 



assumed to be constant for the melting, expanding and full expansion stages (corresponding to the 

steel temperature ranges of 100℃-300℃, 300℃-400℃ and above 400ºC, respectively), according 

to [13]. The effective thermal conductivities of the intumescent coatings for the fully expanded stage 

were the same as those obtained by the authors under the standard ISO 834 furnace test condition 

[24], being 0.012W/(m.K) and 0.014W/(m.K) respectively for the same type of waterborne and 

solvent-based intumescent coatings with the same DFT of 0.6mm. The ratio of effective thermal 

conductivity of the melting stage to that of the full expansion stage was taken as 4, and that for the 

expanding stage was taken as 0.5, according to [13]. 

Figure 23 and Figure 24 show that the calculated steel temperature results and the recorded 

steel temperatures are in reasonable agreement for different regions of the horizontal member (beam 

tests) for both types (waterborne and solvent-based) intumescent coatings. The relatively small 

differences, being less than 50 ºC for most locations, between the calculated and predicted steel 

temperatures may be attributed to ignoring heat conduction within the steel members in the 

simplified calculation method. This suggests that the same effective thermal conductivities for 

intumescent coatings obtained from testing under uniform heating conditions can be used to 

calculate steel temperatures in steel members under exposure to localized fires.  

  

(a) Fully expanded region (b) Expanding region 



 

(c) Melting region 

Figure 23   Comparison between predicted and measured steel temperatures, BW 

 

  

(a) Fully expanded region (b) Expanding region 

 

(c) Melting region 

Figure 24   Comparison between predicted and measured steel temperatures, BS 

  



6. CONCLUSIONS 

This paper has presented the experimental results from a programme of fire tests to investigate 

the behaviour of intumescent coatings applied to steel hollow structural sections under localized fire 

exposures. This study has examined two types of intumescent coatings (waterborne and solvent-

based) on horizontal and vertical specimens. Comparisons were made between the experimental 

results of this research, which deals specifically with localized fire exposure, and those under the 

ISO 834 standard furnace tests and non-standard furnace tests, as regards intumescent coating 

appearance after fire tests, expansion ratios, and steel temperatures. The main findings of this paper 

can be summarised as follows: 

(1) Intumescent coatings at different locations of the horizontal and vertical specimens behaved 

differently because of the highly non-uniform thermal exposures experienced under exposure 

to localized fires. The behaviour of intumescent coatings can be approximately classified into 

four notional categories: (1) full expansion, (2) partially expanded, (3) melted but not expanded, 

and (4) essentially unreacted. The steel temperature ranges for these regions were 

approximately > 400℃, 300-400℃, 100-300℃, and less than 100℃, respectively; this is in 

agreement with observations under furnace test exposures for the specific coatings considered 

herein. 

(2) The expansion ratios and constant thermal conductivities of the full expansion regions in the 

localised fire tests of this paper agree reasonably well with the results from furnace tests with 

uniform heating, once full expansion has been achieved (however the path to this condition 



differed).  

(3) Steel temperatures calculated using the three stage effective thermal conductivity model 

presented based on previous fire tests on the same intumescent coatings under uniform non-

standard and standard ISO 834 furnace test conditions [13] were in reasonable agreement with 

the measured pool fire test results of steel temperatures from this research; the maximum 

difference being less than 50 ºC for most thermocouple locations. 

(4) The thermal conductivity of the same intumescent coatings obtained under ISO 834 furnace test 

conditions can be reasonably applied to localised heating scenarios via the three stage thermal 

conductivity model proposed previously for uniform heating [13]. 

(5) Cracks, with widths in the range of 2-6mm, appeared on the surfaces of the intumescent coatings 

in the flame-exposed zone. These did not penetrate through the entire coating thickness to 

directly expose the steel surface. Therefore, their effects on steel temperature are not considered 

significant in the current context (as verified using data from the tests presented herein). 
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