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40 Abstract

41 Strong selection has resulted in substantial morphological and behavioural diversity across modern dog 

42 breeds, which makes dogs interesting model animals to study the underlying genetic architecture of 

43 these traits. However, results from between-breed analyses may confound selection signatures for 

44 behaviour and morphological features that were co-selected during breed development. In this study, 

45 we assess population genetic differences in a unique resource of dogs of the same breed but with 

46 systematic behavioural selection in only one population. We exploit these different breeding 

47 backgrounds to identify signatures of recent selection. Selection signatures within populations were 

48 found on chromosomes 4 and 19, with the strongest signals in behaviour-related genes.  Regions 

49 showing strong signals of divergent selection were located on chromosomes 1, 24 and 32, and include 

50 candidate genes for both physical features and behaviour. Some of the selection signatures appear to be 

51 driven by loci associated with coat colour (Chr 24; ASIP) and length (Chr 32; FGF5), while others 

52 showed evidence of association with behaviour. Our findings suggest that signatures of selection within 

53 dog breeds have been driven by selection for morphology and behaviour. Furthermore, we demonstrate 

54 that combining selection scans with association analyses is effective for dissecting the traits under 

55 selection.
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57 Introduction

58 The development of current dog breeds can be viewed as a unique long-term selection experiment to 

59 study the process of domestication1 as well as short-term evolutionary change as a consequence of 

60 intensive breeding2. While the domestication of the modern dog (Canis lupus familiaris) from wolves 

61 took place at least 15,000 years ago3, with some estimates considerably earlier (e.g. 20,000 to 40,000 

62 years ago4), the popularity of dogs has led to ongoing strict selection according to breeding schemes 

63 and standards imposed by breed associations and national kennel clubs. The establishment of 

64 genetically and phenotypically distinctive breeds by this intense artificial selection pressure has resulted 

65 in high intra-species variation for physical and physiological features, disease susceptibility and 

66 behaviour traits5–7, which makes dogs powerful models to investigate the underlying genetic 

67 architecture and signatures of selection for various traits.

68 Genetic manifestation of the development of dog breeds can be seen as selection signatures, genomic 

69 regions targeted by natural or artificial selection that exhibit various characteristics, including 

70 population differentiation, extreme linkage disequilibrium (LD) and patterns of the haplotype structure 

71 (e.g. long-range haplotypes) or mutations in coding region8. Accordingly, selection signatures between 

72 dog breeds have been reported for physical traits, domestication-related traits and some specific 

73 behaviours and have led to the identification of candidate genes, e.g. IGF1 for body size, FGF5 for coat 

74 length and HAS2 for skin wrinkling2, AMY2B, MGAM and SGLT1 for adaptation to a starch-rich diet9 

75 and TRPM3 and ROBO1 for athletic success in sport-hunting10. In a recent whole-genome sequence 

76 study of 144 modern dog breeds, positive human-imposed selection was implicated in the fixation or 

77 high prevalence within breeds of a range of morphological characteristics (e.g. ear shape, height, 

78 weight)11. These recent studies for selection signatures in dogs have focused on between-breed or dog-

79 wolf comparisons and while such studies have allowed detection of signatures related to notable 

80 physical features, signatures for more subtle traits like behaviour characteristics may be confounded 

81 with or masked by signals for the physical features, which might complicate the interpretation of these 

82 signatures as appears to be the case for association signals12.
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83 In this study, we analysed a single dog breed, the German Shepherd dog (GSD), to detect signals of 

84 selection.  The breed was established in the late 19th century by crossing multiple breeds, with the initial 

85 purpose of creating a sheep herding dog13 and later use as a general working dog within the military or 

86 police. GSDs used in this study originated from two populations, the UK and Sweden; while the UK 

87 population represented a random sample of pet, show and working dogs, the Swedish dogs were bred 

88 within a breeding program of the Swedish Armed Forces (SAF) and only dogs that pass a behaviour 

89 test can become working dogs or be used for breeding. Accordingly, in a previous study14 we showed 

90 that there were significant differences between the two GSD populations for various behaviour traits as 

91 measured in a questionnaire, e.g. aggression against strangers or dogs, chasing and playfulness. In 

92 contrast, morphological differences between populations were reduced compared to between-breed 

93 studies. We hypothesise that by comparing populations of the same breed but with different behaviour-

94 related selection strategies, we may be able to identify selection signatures for behaviour as well as 

95 those for physical traits. Furthermore, by applying multiple statistical tests for the detection of selection 

96 signatures, we have increased the power to detect true signals of selection. Nonetheless, despite the 

97 within-breed approach, one of the main difficulties that remains is the identification of the actual trait(s) 

98 under selection. We addressed this issue by characterising the relationship between selection signatures 

99 and statistical associations between genotype and phenotype (behaviour and morphological traits) from 

100 the same populations. We suggest that this approach, combining population genetics and quantitative 

101 genetics methods, may also be applicable in other contexts.
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102 Results and discussion

103 Genomic structure of populations

104 Characterising the genetic relationships between individual dogs is a valuable tool to evaluate the 

105 genetic structure of GSDs in this study. The underlying population structure in the two GSD populations 

106 (250 dogs in total) was explored by applying a principal component analysis (PCA) and ancestry 

107 estimation on a pruned SNP data set. The PCA indicated a separation between the UK and Swedish 

108 populations based on the first two principal components (PCs), which explained 2.8% and 1.9% of the 

109 genetic variance, respectively (Figure 1). With respect to PC1 and PC2, the UK dogs had a broader 

110 distribution than the Swedish GSDs, suggesting a stronger founder effect in the Swedish cohort. 

111 However, some of the UK GSDs clustered with the Swedish GSDs. The overall separation of the two 

112 populations is likely due to the geographical separation and thus primarily independent pedigrees but 

113 may also reflect the more recent origins of the Swedish population, with the SAF as the only breeder 

114 and the primary goal to breed good working dogs. The partial overlap between the two populations is 

115 likely due to the use of external dogs in the SAF breeding program, leading to some shared ancestry. A 

116 visual assessment of the ancestry estimation based on the ADMIXTURE program15 (Figure 2) also 

117 revealed a clear discrimination between the UK and Swedish populations. The lowest cross-validation 

118 error of 0.55 was identified for three clusters (K=3), with the blue cluster primarily associated with the 

119 Swedish population and the red and green clusters primarily associated with the UK population. 

120 The average inbreeding coefficient calculated based on runs of homozygosity (FROH) was 0.29 ± 0.02 

121 (standard deviation; SD) for Swedish GSDs and 0.31 ± 0.05 for UK GSDs. The significantly lower 

122 inbreeding estimate (P < 0.05) in the Swedish population might be a consequence of a strategic breeding 

123 scheme by the Swedish Armed Forces (SAF). The average nucleotide diversity (µ) was 0.30 ± 0.16 for 

124 both populations. 
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126 Selection signatures within populations 

127 Selection signatures can be detected within populations by identifying distinctive patterns of linkage 

128 disequilibrium (LD). In the event of selective sweeps, favourable genetic variants increase in frequency 

129 and form extended haplotypes with neighbouring genomic regions due to LD, as reviewed in Ref. 16. 

130 We computed the integrated haplotype score (iHS), which is a variation of the extended haplotype 

131 homozygosity (EHH) statistic that aims to detect recent and incomplete selective sweeps within 

132 populations17. In total, 197 and 142 regions with extreme EHH were detected within the UK and 

133 Swedish GSD population, respectively. A list of SNPs belonging to the top 0.5% of the iHS statistic in 

134 the UK and Swedish populations is given in Table A2. The iHS statistic identified similar selection 

135 signatures in both populations, but the most extreme values differed between populations, as shown by 

136 the ten regions with the highest iHS statistics (Figure 3, Table 1). Regions with the highest iHS for the 

137 UK population were located on Chr 19 at 36.0 – 36.5 Mb and 37.5 – 37.7 Mb. A single marker on Chr 

138 4 at 52.5 Mb showed the highest iHS in the Swedish population, followed by a region on Chr 18 at 54.9 

139 – 55.3 Mb. The SNPs identified by iHS were further tested for their association with different traits 

140 (coat colour, coat length and behaviour) separately for each population to identify the putative trait 

141 under selection.

142 The genes located within or closest to the ten most extreme values of iHS (positional candidate genes) 

143 identified within populations (Table 1) have been previously associated with behaviour. Regarding 

144 those on Chr 19, variants in TMEM163 (transmembrane protein 163) were associated with active 

145 behaviour in an open-field test involving cattle18. However, TMEM163 is also a functional candidate 

146 for physical features, e.g. for eye width and depth19 and hair colour20 in humans. NCKAP5 (NCK 

147 associated protein 5) was also identified as candidate gene for temperament in cattle21 and has been 

148 associated with numerous neurological conditions in humans22–24.

149 The iHS peak on Chr 4 in the Swedish population points to the CLINT1 (Clathrin Interactor 1) gene. 

150 This gene is reported to be among the top risk genes for the susceptibility to schizophrenia in humans25 

Page 7 of 110 Genetics & Genomics Next



8

151 and markers near CLINT1 were suggestive peaks associated with barking tendency in a genome-wide 

152 association study of behaviour traits in Labrador retrievers26.

153 We conducted a gene list enrichment analysis with Enrichr27,28 of the 256 and 338 genes that were 

154 located in and close to (within 40 kb of) the regions of the top 0.5% iHS in the UK and Swedish 

155 populations, respectively. No pathways were significantly enriched after accounting for multiple 

156 testing, however, Panther pathway analyses indicated nominally significant (P < 0.05) functional 

157 enrichment of several pathways for the UK population: “heterotrimeric G-protein signalling -Gi alpha 

158 and Gs alpha mediated” (P = 0.01; genes: GRK4, GRK7, RGS12, ADCY2, ADRA2C, DRD2), 

159 “Alzheimer disease-presenilin” (P = 0.02; TRPC6, MMP7, MMP27, RBPJ, MMP20), “heterotrimeric 

160 G-protein signalling -Gq alpha and Go alpha mediated” (P = 0.02; GRK4, GRK7, CACNA1A, RGS12, 

161 DRD2), “ionotropic glutamate receptor” (P = 0.03; CACNA1A, SLC17A8, GRIA4) and “axon guidance 

162 mediated by semaphorins” (P = 0.03; CRMP1, FYN). All of these functions have been shown to be 

163 relevant for behaviour among other functions, e.g. heterotrimeric G proteins in mood disorders, as 

164 reviewed in Ref. 29, ionotropic glutamate receptors for long term synaptic plasticity, as reviewed in 

165 Ref. 30, 31 and semaphorins in neuronal structure, as reviewed in Ref. 32. Nominally significant 

166 pathways for the Swedish population were “5-Hydroxytryptamine degradation” (P = 0.003; ALDH3A2, 

167 ALDH3A1), “apoptosis signaling” (P = 0.01; MAP2K3, CASP9, DAXX, BAK1, BIRC2, BIRC3) and 

168 “Thyrotropin-releasing hormone receptor signaling” (P = 0.03; PLCE1, STX3, TRHR). 5-

169 hydroxytryptamine (serotonin) is an important neurotransmitter and plays a key role in numerous 

170 behavioural disorders and characteristics, e.g. depression33 and aggressiveness34.

171

172

173
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175 Selection signatures between populations

176 Another approach to identify signatures of selection is the comparison of genetic variation (e.g. allele 

177 frequencies or haplotype structure) between different populations. Accordingly, signatures of 

178 differential selection between the two GSD populations were analysed employing three different tests: 

179 the fixation index (FST), the cross-population extended haplotype homozygosity (XP-EHH) and 

180 differences between ROH (ΔROHProp). FST was calculated to determine genetic differentiation between 

181 UK and Swedish GSD populations. Low genome-wide genetic differentiation was detected for the 

182 single SNP-based statistic (FST = 0.021 ± 0.029) and for the SNP window-based statistic (FST = 0.021 ± 

183 0.016), consistent with previous within-dog-breed estimates 35. 

184 We scanned the genome for regions of genetic differentiation within overlapping 1 Mb windows and 

185 found 17 distinctive peaks that comprise the top 1% window-based FST values on Chr 1, 9, 20, 22, 24, 

186 29, 30 and 32, with values ranging from 0.07 to 0.16 (Table A3). The highest FST value (0.16) was 

187 found for a region on Chr 24 (22.0 – 24.5 Mb), which contains 46 genes. Among these genes are several 

188 with functions in physical characteristics and behaviour, e.g. SPAG4 and SUN5 involved in cytoskeletal 

189 anchoring, NCOA6 involved in glucocorticoid and corticosteroid receptor signalling and ASIP and 

190 RALY associated with skin and fur pigmentation. Furthermore, seven members of the 

191 bactericidal/permeability-increasing (BPI) fold-containing (BPIF) superfamily of genes are located in 

192 this region (BPIFB2, BPIFB6, BPIFB3, BPIFB4, BPIFA2, BPIFA3, BPIFA1 and BPIFB1). It was 

193 shown that these genes play a role in the innate immune system and lipoprotein metabolism, but also in 

194 the brain’s response to oxidative stress (ageing), relevant for neuropsychiatric diseases36. Interestingly, 

195 high FST for Labrador retriever populations differentiated based on their coat colour and function 

196 (gundog and showdog) was also detected in the same region on Chr 24 (22.4 – 22.8 Mb) in a previous 

197 study37. 

198 While the FST statistic detects differences in allele frequencies between populations, the XP-EHH test, 

199 an approach based on linkage disequilibrium, is designed to detect regions that are fixed (or nearly 

200 fixed) in one population but remain segregating in the other population. Extreme high (positive) and 
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201 low (negative) scores are indicators of a region under strong positive selection in the UK and Swedish 

202 population, respectively. The region including the SNP with the highest score (3.4) for the UK 

203 population was located on Chr 35 (11.0 - 11.5 Mb) and contains three genes (NEDD9, ADTRP, and 

204 TMEM170B) (Table A3). The NEDD9 (Neural Precursor Cell Expressed, Developmentally Down-

205 Regulated 9) gene has been shown to be associated to cognitive impairment in mice38, ADTRP is 

206 important for vascular development and function in mouse and zebrafish39 and TMEM170B has been 

207 reported to be downregulated in TCGA human breast cancer data40. The region with the highest absolute 

208 score (3.8) for the Swedish population was located on Chr 12 (3.6-7.5 Mb). This region contains 59 

209 genes; RNF8 and TBC1D22B are closest to the SNP with the most extreme score. The ubiquitin gene 

210 RNF8 (ring finger protein 8) plays a role in the immune system and has also been linked to autism; a 

211 recent study in RNF8 knockout mice indicated a role of this gene in synapse formation and cerebellar-

212 dependent learning abilities41. The function of TBC1D22B is largely unknown but it may encode a 

213 GTPase-activating protein. 

214 As a third approach to identifying differential selection between the populations, we identified the 

215 regions showing differences in extended homozygosity. To identify these selection signatures, we 

216 calculated the between-population differences in runs of homozygosity (ΔROHProp), which describes 

217 the difference in the proportion of dogs with an ROH of a specified length at a given SNP. The average 

218 ΔROHProp value across the genome was low (0.07 ± 0.06), indicating considerable overlap of ROH 

219 between the UK and Swedish populations. However, some regions with ROH were predominantly 

220 present in only one population (Table A3). The highest absolute ΔROHProp indicating selection 

221 signatures in the UK population were found on Chr 17 and 32: the ROH mapped to Chr 17 (8.3 - 8.4 

222 Mb) and Chr 32 (13.3 - 13.4 Mb) were present in over 70% of the UK dogs but less than 40% of the 

223 Swedish dogs. The genes located in these regions are GREB1, NTSR2, and LPIN1 on Chr 17, with no 

224 characterised genes in the Chr 32 region. The neurotensin gene NTSR2 is involved in dopamine 

225 modulation and a SNP in this gene has been tested in a polygenic model of highly sensitive personality 

226 in humans42. LPIN1 plays a prominent role in lipid metabolism regulating adipocyte differentiation and 

227 co-regulating other genes involved in lipid metabolism. The highest absolute ΔROHProp indicating 
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228 selection signatures in the Swedish population was found on Chr 1: a ROH mapped to Chr 1 (24.7 to 

229 25.5 Mb) was present in 90% of the Swedish dogs but only in 42% of the UK dogs and contains the 

230 genes LDLRAD4, MOXD1 and CTGF (see below).

231 Target regions for divergent selection signatures between populations

232 In the detection of selection signatures, the application of multiple approaches is recommended to 

233 reduce the rate of false positive signals16. To identify target regions under differential selection in the 

234 two GSD populations, we selected regions from the 99th percentile (top 1%) of each score distribution 

235 (SNP window-based FST, ΔROHProp, and XP-EHH) and searched for intersecting signals between two 

236 or three of the approaches. Using this criterion, we identified 433 SNPs (Table A3), with the greatest 

237 overlap between the SNP window-based FST and ΔROHProp statistics (374 SNPs). No SNPs were 

238 detected by all three approaches. The 433 SNPs were located in 16 candidate selected regions on Chr 

239 1, 9, 12, 22, 24, 32 and 34, which harbour 114 genes in total (Table 2; Figure 4). One Panther pathway 

240 was nominally significantly (P < 0.05) enriched by these 114 genes: “p53 pathway feedback loops” (P 

241 = 0.03; CDKN1A, RBL1). The SNPs identified as under divergent selection by these analyses were 

242 further tested for their association with different traits (coat colour, coat length and behaviour) 

243 separately for each population to identify the putative trait under selection.

244 A visual inspection of the Circos plot (Figure 4), which illustrates the results for the three approaches, 

245 indicates regions on Chr 1, 24 and 32 where peaks can be seen based on all three methods, although not 

246 belonging to the top 1% for XP-EHH. Linear plots for these three regions illustrate the results from 

247 association analyses for traits with SNPs located in that region that have adjusted P < 0.1 (“Regional 

248 association”) and the selection signature test statistics (“Selection signatures”) (Figure A2). The specific 

249 population showing evidence of selection can be determined by the ΔROHProp or XP-EHH score. Three 

250 regions showing evidence of selection in the Swedish population are located on Chr 1 (24.0 – 24.1, 24.4 

251 – 25.1 and 25.3 – 25.9 Mb; 17 genes), each harbouring several interesting candidate genes. The 

252 LDLRAD4 (low density lipoprotein receptor class A domain containing 4) gene inhibits transforming 

253 growth factor-β signalling43 and is a putative schizophrenia-related gene44. Another growth factor-
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254 related gene in this region is CTGF (connective tissue growth factor). Other candidates for genes under 

255 selection in this region are the G-protein-associated melanocortin receptor genes MC2R and MC5R. 

256 MC2R (also known as the adrenocorticotropic hormone receptor gene, ACTHR) is a major modulator 

257 of glucocorticoid secretion regulation. MC5R has been associated with a range of phenotypes, including 

258 shedding and fur length in dogs45, fatness in pigs, reviewed by Ref. 46, and psychiatric disorders in 

259 humans47. It was also differentially expressed in the brains of aggressive and tame foxes48. These 

260 reported associations with different traits highlight one of the difficulties in identifying phenotypic 

261 targets of selection. In our analysis, we found no significant associations (FDR-adjusted P < 0.05) 

262 between any of the selection signatures on Chr 1 with behaviour traits, coat colour or coat length, but 

263 there was a suggestive association (FDR-adjusted P < 0.1) with chasing behaviour in the UK population 

264 (Table 2). Regarding fur shedding, GSDs as a breed are considered to be shedders, making it unlikely 

265 that there are large differences between the two populations for this trait.

266 Regions showing evidence of selection in the UK population are located on Chr 24 and 32. The Chr 24 

267 candidate region under selection (22.9 – 23.8 Mb; 18 genes) in the UK population comprises well-

268 known genes associated with black-and-tan and saddle-tan coat colour in dogs (ASIP, RALY)49,50. We 

269 found highly significant associations in between coat colour and SNPs in this region showing evidence 

270 of selection (Table 2, Figure A2). The saddle and tan/ black and tan coat colour was the dominant coat 

271 colour in the UK GSDs while sable was predominant in the Swedish population (Table A1). The region 

272 on Chr 32 (5.4 – 5.7 Mb; 3 genes) encompasses two behaviour- and growth-related candidate genes: 

273 PRKG2 and RASGEF1B. RASGEF1B (RasGEF domain family member 1B) has been identified as a 

274 positional candidate gene for dog rivalry in a genome-wide association study across multiple dog 

275 breeds51. Several case studies have been carried out in humans on chromosomal diseases related to a 

276 microdeletion of loci homologous to the region on Chr 4 comprising the PRKG2 and RASGEF1B 

277 genes52–54. The loss of these genes leads to growth restriction, aggression, self-injurious behaviours and 

278 mental retardation in affected individuals. The association analysis revealed a significant association 

279 between SNPs in this region and aggressive behaviour towards strangers in the Swedish GSD 

280 population and PRKG2 has previously been reported as a top candidate gene for anxiety in mice55. 
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281 However, the region on Chr 32 is in close proximity to the BMP3 gene associated with skull 

282 morphology56 and the FGF52 gene associated with coat length in dogs. Regarding BMP3, differences 

283 in skull morphology have not previously been identified in GSDs nor have they been shown to carry a 

284 derived allele in this gene previously associated with brachycephaly56, thus selection on skull 

285 morphology seems unlikely. However, we also found a highly significant association with coat length 

286 in both populations (Table 2, Figure A2), suggesting that this trait drives the selection signature on Chr 

287 32 (via FGF5). 

288 Which traits are under selection?

289 One of the main difficulties in interpreting genomic selection signatures is the identification of the 

290 actual trait(s) under selection. In dogs, the traits under selection are assumed to be primarily related to 

291 physical traits (e.g. skull shape, coat colour, body size) and/or behaviour57. While between-breed studies 

292 have greatly contributed to the understanding of the genetic control of physical traits11,58, addressing 

293 behaviour genetics by performing across-breed selection signature analyses is likely to be challenging 

294 because breeds differ in multiple characteristics, including both behaviour and these physical traits, 

295 many of which show Mendelian inheritance and thus tend to show very strong signals. 

296 We employed several approaches to characterise the relationship between the detected selection 

297 signatures and phenotypic traits that were recorded for these populations. First we repeated the 

298 ADMIXTURE analysis using only genotypes from SNPs identified as selection signatures (Figure A1) 

299 and fitted the ancestry assignment probabilities to the three individual clusters that were detected as 

300 factors in linear models for the phenotypes. We observed significant associations between UK 

301 (primarily associated with cluster 1) and Swedish (cluster 3) ancestries and some behaviour traits 

302 (Stranger-directed interest, Dog-directed fear) (Table A4). Furthermore, highly significant associations 

303 were identified between the ancestries and other dog characteristics, including the function of the dog 

304 (working, pet or show dog), coat length and coat colour (Table A4). These results demonstrate a 

305 statistical association between these phenotypes and the dog’s genotypes in the selection signature 

306 regions.
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307 We then performed association analyses for behaviour traits, coat length and coat colour within each 

308 population only for markers within selection signature regions. We identified 87 SNPs with FDR-

309 adjusted P < 0.05 associated with coat length, coat colour, human-directed playfulness, stranger-

310 directed aggression, stranger directed fear and dog-directed fear (Table A5) in at least one of the 

311 populations. The striking significant associations for coat colour (lowest FDR-adjusted P = 3.37x10-14) 

312 and coat length (lowest FDR-adjusted P =   1.13x10-25), comprising regions on Chr 24 and 32, 

313 respectively, have previously been identified for these traits49,59–61 (Table 2).

314 As discussed above, previous studies on selection signatures in dogs have generally focused on inter-

315 breed or dog-wolf comparisons and primarily detected selection signatures (and thus candidate genes) 

316 for physical features, e.g. body size, coat characteristics and skeletal morphology2,11,58. Some studies, 

317 however, also identified signatures for neural crest development1 or brain function and nervous system 

318 development9, which might be relevant for behaviour especially in regard to domestication. We 

319 compiled a list of candidate genes reported in previous genomic analyses of phenotype associations and 

320 selection signatures in canids (dogs, wolves, foxes) focused on morphology and behaviour and 

321 compared them to genes located in regions showing evidence of selection in our study (Table A6, note 

322 that the number of overlapping genes is not informative for identifying the trait under selection because 

323 the number of reported candidate genes differs substantially between studies). The biological functions 

324 of genes in common between the two lists are diverse and include a number of genes that have been 

325 associated with behaviour. Major candidate genes for physical features in dogs, e.g. IGF1, SMAD2, 

326 FGF5 and BMP3, as reviewed in Ref. 7, were not detected within selection signatures in our study. 

327 However, FGF5, which has previously been associated with coat length, is located in close proximity 

328 to the selection signature on Chr 32 and we detected a highly significant association with coat length 

329 for this region (BMP3, associated with skull morphology, is also located near this region, but as 

330 discussed above, our data does not support a signature of selection associated with this trait). We also 

331 detected well-described genes associated with coat colour (Chr 24:  ASIP, RALY). Together these results 

332 suggest that selection for morphological traits (coat length and coat colour) has driven differences 

333 between the two populations in the genomic regions on Chr 24 and 32. In contrast, the region we 
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334 detected on Chr 1 showed an association with Chasing in the UK population and comprises candidate 

335 genes with functions in behaviour, but was not associated with morphological traits that we measured. 

336 Moreover, some of the selection signature regions showed associations with both morphological and 

337 behaviour traits, e.g. the region on Chr 32 was associated with both Stranger-directed aggression and 

338 coat length in the Swedish population (Table 2). Furthermore, genes associated with physical 

339 appearance like ASIP have previously been associated with behaviour traits, e.g. social behaviour in 

340 mice62. Thus, it is possible that some of the selection signatures we detected are also associated with 

341 multiple traits.

342

343 Limitations of the study

344 By comparing UK and Swedish GSDs, we hypothesised that we would be able to detect selection 

345 signatures for behaviour because behaviour was the main selection target in the Swedish population. 

346 However, we found that the geographical origin of the dogs was confounded with other attributes, e.g. 

347 coat colour and length. We addressed the issue of which trait(s) were under selection by characterising 

348 the relationship between selection signatures and associations with phenotypic attributes (behaviour, 

349 coat length, coat colour), recognizing that the sample size for the association analyses within 

350 populations was small and therefore these results should be interpreted with caution. In addition, 

351 measurements on other morphological traits (e.g. body size and weight) were not available, but these 

352 might also be under selection and should be considered in future studies. We conclude that our study of 

353 German Shepherd dogs has identified selection signatures probably driven by selection for coat colour 

354 and length (e.g. at the ASIP and FGF5 genes) as well as other signatures that may be related to 

355 differential selection for behaviour between the Swedish and UK populations. Functional analyses are 

356 needed to test whether the identified candidate genes within regions showing evidence of selection do 

357 influence dog behaviour characteristics.
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358 Material and methods

359 SNP genotyping and quality control

360 DNA was extracted from saliva samples collected with Performagene PG-100 swabs (UK population) 

361 or blood samples (Swedish population). The genotyping was performed using the CanineHD Whole-

362 Genome Genotyping BeadChip63 featuring 172,115 SNPs. The data was filtered for sample call rate of 

363 > 90%,  SNP call rate > 98%, reproducibility (GTS) > 0.6 and low or confounded signal characterised 

364 by AB R mean (mean normalized intensity of the AB cluster) > 0.3 in GenomeStudio version 2.0.  

365 Minor allele frequency filtering of > 0.01 was used to include rare but informative variants, leaving a 

366 final dataset of 108,817 SNPs for analyses. Genotype information was available for 741 GSDs. 

367 Following further sample-based quality control, closely related dogs were removed following the 

368 procedure described in Chen et al.64. Briefly, a pruned genotype data set to remove closely related dogs 

369 was created for SNPs with MAF > 0.05 using PLINK version 1.965: based on the variance inflation 

370 factor, a function of the multiple correlation coefficient of a given SNP regressed on all other SNPs 

371 within a window (using default parameters: window size = 50 SNPs, overlapping SNPs for shifting 

372 windows = 5, the variance inflation factor threshold = 2). Then, GCTA version 1.24.766 was used to 

373 compute the genetic relationship matrix and to remove one dog per pair with a genetic relationship 

374 higher than 0.2 (equivalent to 2nd degree or closer relatives) leaving a final set of 182 UK and 68 

375 Swedish GSDs for subsequent analyses.

376 Samples and phenotypes

377 The GSDs used in this analysis originated from the UK and Sweden. For the UK population, GSDs that 

378 were at least two years old and registered with the UK Kennel Club were recruited via email to 

379 participate in a study on behaviour genetics14,67. GSDs from the UK population were bred by multiple 

380 breeders and primarily were pet dogs. All GSDs from the Swedish population were bred within the 

381 breeding program of the Swedish Armed Forces (SAF) starting in 2004 with the purpose of becoming 

382 working dogs. The strongest systematic selection pressure in the SAF breeding program is for behaviour 
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383 traits. Briefly, puppies were raised at the SAF, weaned at the age of 8 weeks and then fostered by 

384 members of the Swedish public68. After a behaviour test at the age of 15-18 months, some dogs started 

385 working with the SAF, Swedish Police or other authorities and companies, and/or were selected as 

386 breeding animals, whereas others were kept as pet dogs. For the Swedish population, owners, trainers 

387 or handlers of GSDs bred within the breeding program of the SAF were invited via email or letter to 

388 participate in the study. Several phenotypes were analysed. Data on GSD behaviour was assessed using 

389 the Canine Behaviour and Research Questionnaire (C-BARQ)69. The C-BARQ consists of questions 

390 related to training and obedience, aggression, fear and anxiety, separation-related behaviour, 

391 excitability, attachment and attention seeking, and miscellaneous behaviours. To calculate the 

392 behaviour traits, a principal component analysis (PCA) was applied to the data to condense the questions 

393 to a smaller number of 13 components, as described in Ref. 14. The dogs’ scores for the 13 components, 

394 adjusted for fixed effects (excluding cohort) as described in Ref. 67, were considered as adjusted 

395 behaviour traits in the subsequent analyses. Other dog characteristics (e.g. sex, coat colour, coat length, 

396 role) were assessed using a lifestyle survey14. Summary statistics for behaviour traits and other 

397 characteristics within the two GSD populations are given in supplementary material (Table A1).

398

399 Genomic structure of populations

400 To characterise the genomic structure of the GSD populations, a principal component analysis (PCA) 

401 and a cluster analysis were performed. PLINK version 1.965 with default parameters was used to create 

402 a pruned SNP dataset with reduced linkage disequilibrium (LD) between SNPs, leaving a pruned dataset 

403 of 9,180 SNPs. This dataset was employed only to characterise the genomic structure of populations, 

404 via PCA and ADMIXTURE analyses. The PCA was performed in PLINK version 1.9 65 and ancestry 

405 estimation was performed using ADMIXTURE version 1.3.015.  The best number of clusters (K) was 

406 determined by comparing 5-fold cross-validation (CV) errors.

407 Inbreeding, heterozygosity and nucleotide diversity were calculated within both GSD populations on 

408 the final dataset of 108,817 SNPs. To determine inbreeding coefficients based on runs of homozygosity 
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409 (FROH), runs of homozygosity (ROH) were computed in PLINK version 1.965 using the default settings 

410 of a ROH length of 1000 kb and a window size of 65 SNPs, as in Pfahler and Distl70. The inbreeding 

411 was then estimated as the individual’s total ROH length divided by the total genome length.  ROH-

412 based methods have been shown to perform best in relation to the true inbreeding71. Finally, nucleotide 

413 diversity (Nei’s µ) was calculated per SNP using the --pi specifier in VCFtools72.  

414 Identification of selection signatures

415 Within populations

416 Signatures of selection within the two GSD populations were identified using the integrated haplotype 

417 score (iHS) statistic, which measures the extended haplotype homozygosity (EHH) in the genome as an 

418 indicator of selective sweeps. The iHS statistic is based on the integrated EHH (iHHi), which is the 

419 integral of the observed decay of EHH away from a specified core allele i until the EHH reaches a 

420 specified cut-off. Phased genotypes of the final SNP dataset generated by Beagle version 4.173 (the 

421 phasing in Beagle was performed without specifying a reference population) were used to compute the 

422 SNP-wise iHS statistic using hapbin74, specifying that the iHH should be calculated up to the point at 

423 which EHH drops below 0.05 (--cutoff 0.05). As in Voight et al.17, the standardized iHS (iHS) for a 

424 SNP was calculated as

425 𝑖𝐻𝑆 =
𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑖𝐻𝑆 ―  𝜇𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑖𝐻𝑆

𝜎𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑖𝐻𝑆

426 where the  is ln(iHHi/iHHj) for alleles i and j, and  and  are the mean and the 𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑖𝐻𝑆 𝜇 𝜎

427 standard deviation of the unstandardized iHS estimated from the empirical distribution of SNPs for 

428 which the derived allele frequency matches the frequency at the core SNP.

429 Between populations
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430 To detect divergent signatures of selection between populations, three different approaches were used: 

431 the fixation index (FST), cross-population extended haplotype homozygosity (XP-EHH) and differences 

432 between runs of homozygosity (ROH). 

433 First, the FST analysis was performed using the script described in Talenti et al.75. The FST between UK 

434 and Swedish dogs was calculated for each SNP according to the formula reported by Karlsson et al.76, 

435 which is a comparison of the allele frequencies between populations:

436 𝐹𝑆𝑇 =  
𝑓𝑈𝐾

1 (𝑓𝑆
2 ― 𝑓𝑈𝐾

2 ) + 𝑓𝑆
1(𝑓𝑈𝐾

2 ― 𝑓𝑆
2)

(𝑓𝑈𝐾
1 ∗ 𝑓𝑆

2) +  (𝑓𝑈𝐾
2 ∗ 𝑓𝑆

1)

437 where  and  are frequencies in the UK population for the two alleles and  and  are allele 𝑓𝑈𝐾
1 𝑓𝑈𝐾

2 𝑓𝑆
1 𝑓𝑆

2

438 frequencies in the Swedish population. Next, the mean FST was calculated in 1 Mb sliding windows 

439 (window-based FST) with an overlap between windows of 500 kb, resulting in each SNP being located 

440 in exactly one or two windows. To derive a SNP-based value (to select the top 1% for calculating the 

441 intersection with other methods as described below), we averaged the window-based FST for the one or 

442 two windows in which the SNP was found. 

443 Second, the XP-EHH statistic77 was calculated to compare the EHH between populations, i.e. whether 

444 alleles are homozygous in one population and polymorphic in the other population. The XP-EHH 

445 statistic was calculated for the UK and Swedish populations using phased haplotypes generated by 

446 Beagle version 4.173 in hapbin74, as described above.

447 For the third approach, ROH were computed in PLINK version 1.965. We ran the analysis with the 

448 default settings of a ROH length of 1000 kb and a window size of 65 SNPs, as described above70. For 

449 every SNP, a homozygosity score (ROHProp) was calculated by dividing the number of dogs with a ROH 

450 at a specific SNP by the total number of dogs, such that ROHProp ranges from 0 to 1, as described in 

451 Bertolini et al.78. The absolute difference between ROHProp between populations (ΔROHProp) was used 

452 as statistic to determine which ROH are highly represented in one population but underrepresented in 
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453 the other population. Therefore, for every SNP, ΔROHProp values were calculated to identify ROH that 

454 are present in the majority of dogs in one population but not in the other. 

455 Gene identification and Gene ontology (GO) analysis

456 To detect putative genomic regions showing evidence of selection, the most extreme values from the 

457 test statistics were selected for both the within- and between-population analyses to define selection 

458 signatures. For iHS, SNPs belonging to the top 0.5% of the distribution were selected. For FST, XP-

459 EHH and ΔROHProp, the top 1% of each test distribution were selected and the overlap between these 

460 top SNPs was determined to identify SNPs that had most extreme values for at least two of the three 

461 methods, to reduce the chance of false positive signals. We chose a less stringent threshold for top SNPs 

462 for between-population statistics to allow for greater overlap since the three approaches differ in their 

463 methodologies and thus the ranking of top SNPs will vary. For a visual representation of target regions 

464 under selection between populations, the visualisation tool Circos79 was used. For every SNP, the 

465 ΔROHProp and XP-EHH scores were plotted. Since the FST was calculated as a window-based average 

466 and Circos required a SNP-based value, we averaged the window-based FST for the one or two window 

467 in which the SNP was found, as described above.

468 The pairwise distances between the top SNPs were calculated and SNPs located within 200 kb were 

469 merged into a region. The distance of 200 kb was determined based on the linkage disequilibrium in 

470 the genome. First, the squared correlation (r2) between all pairs of SNPs within 10Mb was calculated 

471 in PLINK version 1.965. The average r2 was then calculated for bins of increasing distance between 

472 SNPs to identify the distance around SNPs at which average r2 drops below 0.5. The longest bin for 

473 which average r2 ≥ 0.5 was 200 kb.

474 To characterise functional relevance of regions showing evidence of selection, the top SNPs or regions 

475 (if multiple SNPs were found within 200 kb) were annotated for genes based on the CanFam3.1 genome 

476 assembly80, using BEDtools 2.27 software81. SNPs were annotated considering a flanking region of ± 

477 40kb, chosen based on the average between-marker distance of the array (~20kb), which was doubled 

478 to account for non-evenly spaced SNPs and SNPs lost through quality-control filtering. The genes 
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479 detected for these selection signatures were then submitted to Enrichr27,28 to perform gene set 

480 enrichment analyses. Enrichr is an integrative web-based application that compares submitted gene lists 

481 to various gene-set libraries; the standard Fisher exact test option was used to calculate P-values for this 

482 study.

483 Characterising trait(s) under selection

484 We employed two approaches to gain insights into the trait(s) under selection, as detected as genomic 

485 selection signatures: (I) we modelled behaviour traits and other dog characteristics as a function of the 

486 dog’s ancestry based on selection signature regions and (II) we analysed the association within each 

487 population between these traits and SNP markers in these regions. For both approaches, we compiled a 

488 genotype data set of SNPs within the regions showing evidence of selection; this included SNPs 

489 belonging to the top 0.5% of the iHS distribution in UK and Swedish populations and SNPs belonging 

490 to the top 1% of FST, XP-EHH and ΔROHProp distributions that overlapped between at least two methods. 

491 For (I), we repeated the ADMIXTURE analysis as described above, but only used genotypes of SNPs 

492 from putatively selected regions to estimate the ancestry. Then, a linear regression was performed, as 

493 described in Ref. 82, to model the relationship between the traits and ancestry assignment probabilities.

494 For (II), we analysed the association between the traits and SNP markers within the regions showing 

495 evidence of selection, separately for each population. Behaviour traits were adjusted based on other 

496 fixed effects as defined in the previous study67 and treated as quantitative traits, while coat colour 

497 (“saddle tan”, ”sable”, ”black”, ”other”) and coat length (“long”, ”short”) were treated as categorical 

498 traits and not corrected for environmental factors. The association analysis was performed using 

499 GEMMA83, fitting the genomic relationship matrix (based on 108,817 genome-wide SNPs) as a random 

500 effect to account for population stratification. To correct for multiple testing, P-values were adjusted 

501 using the false discovery rate (FDR). 
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502 Data availability

503 Genotype and phenotype data for the UK dogs is available under CC-BY license from the Dryad Digital 

504 Repository84. The data for the Swedish dogs is restricted by the Swedish Armed Forces for reasons of 

505 national security.

506
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753 Tables

754 Table 1. Top selection signatures within the UK and Swedish GSD populations, showing the ten highest 

755 integrated haplotype score (iHS) statistics. SNPs within 200 kb were summarised into selection 

756 signature regions.

Chr Start 
(Mb)

Stop 

(Mb)
Distance 

(Mb)
NSNPs

† iHS 
peak‡

iHS 
mean§

Gene(s)⁋ Phenotypic 
association††

UK population
5 29.2 29.8 0.62 16 3.18 2.84 ENSCAFG00000015899; 

MMP20; MMP27; 
MMP7; 
ENSCAFG00000030873; 
BIRC2; BIRC3; YAP1; 
C11orf70; CEP126; 
ANGPTL5

-

12 68.1 68.2 0.06 2 3.22 2.96 TRAF3IP2 -
19 33.0 33.1 0.04 4 3.26 2.84 n.a. -
19 36.0 36.5 0.51 10 3.46 2.93 NCKAP5 -
19 36.8 37.0 0.19 5 3.18 2.90 n.a. -
19 37.5 37.7 0.20 6 3.48 3.19 TMEM163 -
19 38.3 38.6 0.31 9 3.19 2.79 ZRANB3; 

ENSCAFG00000005064; 
R3HDM1; UBXN4

-

19 39.5 39.5 0.03 2 3.23 2.91 n.a. -
20 57.6 57.7 0.07 3 3.18 3.10 ENSCAFG00000031730; 

ENSCAFG00000023991; 
ARHGAP45; ATP5F1D; 
CIRBP; MIDN; STK11; 
SBNO2; POLR2E

-

35 7.9 8.1 0.14 4 3.26 3.09 BMP6; TXNDC5; 
BLOC1S5; 
ENSCAFG00000009583; 
ENSCAFG00000024482

-

Swedish population
4 44.3 n.a. n.a. 1 3.09 n.a. ENSCAFG00000017171 -
4 46.9 n.a. n.a. 1 3.27 n.a. ENSCAFG00000028841 -
4 50.0 50.2 0.15 4 3.09 2.90 ATP10B -
4 52.5 n.a. n.a. 1 3.47 n.a. CLINT1 -
12 66.7 67.2 0.47 10 3.36 3.13 GPR6; WASF1; CDC40; 

METTL24; DDO; 
SLC22A16; CDK19

-

12 67.7 n.a. n.a. 1 3.13 n.a. SLC16A10 -
18 54.9 55.3 0.36 7 3.45 2.99 LRRC10B; PPP1R32; 

SYT7; PGA; DDB1; 
VWCE; 
ENSCAFG00000016314; 
SLC15A3; CD5; 
VPS37C; CD6

-
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19 50.6 n.a. n.a. 1 3.12 n.a. KIF5C -
24 42.4 42.5 0.05 3 3.33 3.05 RBM38; CTCFL -
36 30.1 30.6 0.05 6 3.11 2.82 GULP1; COL3A1; 

COL5A2
-

757 †Number of top SNPs in region
758 ‡Standardised absolute iHS of the peak SNP (in that region)
759 §Average standardised absolute iHS across the SNPs of a region
760 ⁋Genes located within and +/- 40 kb around selection signatures. Genes highlighted in bold include a 
761 SNP that belongs to the top 0.5% of the test statistic; all others are located within the region or +/- 40 
762 kb around selection signatures
763 ††There were no phenotypic associations (behaviour, coat colour or coat length) with FDR-adjusted P-
764 value<0.1 for markers located within the top ten selection signatures within populations.
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Table 2. Selection signatures that belonged to the top 1% of the distribution of at least two methods used to detect signatures of different selection between the 

GSD populations. SNPs within 200 kb were summarised into selection signature regions.

Chr Start Stop NSNPs
† Population FST

‡ ΔROHProp
§ XP-EHH⁋ Gene(s) Phenotypic 

association††

1 24024856 25483783 61 Sweden 0.12 0.46 NA ME2; MRO; MC2R; MC5R; ENSCAFG00000000172; 
ENSCAFG00000029562; ENSCAFG00000029833; 
FAM210A; LDLRAD4; ENSCAFG00000023012; 
MOXD1; ENSCAFG00000031561; CTGF

Chasing*(UK)

9 16472361 16493753 4 UK 0.09 NA 2.81 KCNJ16; KCNJ2 -
12 5349354 6130868 44 Sweden NA 0.27 3.44 BRPF3; PNPLA1; C12H6orf222; ETV7; PXT1; 

ENSCAFG00000001396; KCTD20; STK38; SRSF3; 
CDKN1A; ENSCAFG00000001418; 
ENSCAFG00000001419; CPNE5; PPIL1; C12H6orf89; 
MTCH1; PI16; FGD2

Stranger-directed 
fear**(UK)

12 6466863 6554339 7 Sweden NA 0.27 3.46 FGD2; CMTR1; ENSCAFG00000030835 Separation 
anxiety* 
(Sweden)

22 1027334 1140100 6 UK 0.08 0.26 NA RNASEH2B -
22 1683950 2496568 46 UK 0.12 0.26 NA KCNRG; TRIM13; SPRYD7; KPNA3; 

ENSCAFG00000031710; EBPL; 
ENSCAFG00000010362; RCBTB1; PHF11; SETDB2; 
CAB39L; CDADC1; ENSCAFG00000028525; MLNR; 
FNDC3A

-

24 22002778 22463326 24 UK 0.07 0.29 NA COMMD7; DNMT3B; MAPRE1; EFCAB8; SUN5; 
BPIFB2; BPIFB6; BPIFB3; BPIFB4; 
ENSCAFG00000032553; BPIFA2; 
ENSCAFG00000007369; BPIFA3; BPIFA1

Coat 
colour**(UK)

24 22908179 23816844 37 UK 0.14 0.28 NA ENSCAFG00000029918; ENSCAFG00000007430; 
ENSCAFG00000007435; ENSCAFG00000029879; 
NECAB3; PXMP4; ZNF341; CHMP4B; EIF2S2; RALY; 
ASIP; ENSCAFG00000007508; AHCY; ITCH; 
DYNLRB1; PIGU; MAP1LC3A; NCOA6; TP53INP2

Coat 
colour**(UK)
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24 24867975 25952679 64 UK 0.13 0.28 NA CNBD2; EPB41L1; AAR2; DLGAP4; MYL9; TGIF2; 
SLA2; TGIF2-C20orf24; NDRG3; DSN1; SOGA1; 
TLDC2; SAMHD1; RBL1; MROH8; RPN2; GHRH; 
MANBAL; SRC

Coat 
colour**(UK)

32 4172082 4455360 7 UK 0.09 0.27 NA ANTXR2; PRDM8 Coat 
length**(UK)

32 5350389 5399877 4 UK 0.13 0.26 NA PRKG2 Coat 
length**(UK) and 
* (Sweden)
Stranger-directed 
aggression** 
(Sweden)

32 5609507 5667788 4 UK 0.12 0.26 NA ENSCAFG00000008928; RASGEF1B Coat length** 
(UK and Sweden)

32 13000437 14125551 44 UK 0.11 0.37 NA SNCA; MMRN1; CCSER1 Coat colour* 
(UK)
Separation 
anxiety*(UK)
Stranger-directed 
aggression* 
(Sweden)

32 14527559 14597957 4 UK 0.11 0.38 NA ENSCAFG00000009954 -
32 14952127 15194499 4 UK 0.10 0.28 NA ENSCAFG00000009965 -
34 33480270 1 UK NA 0.27 2.80 -

†Number of top SNPs in region
‡Fixation index
§Differences between runs of homozygosity
⁋Cross-population extended haplotype homozygosity. 
NA indicates that this selection signature was not present in the top 1% of the test distribution
Genes highlighted in bold include a SNP that belongs to the top 1% of the test distribution; all others are located within the region or +/- 40 kb around selection 
signatures
††Significant phenotypic associations (behaviour, coat colour, coat length) for the UK and Swedish population within selection signature region. P-values were 
adjusted using False Discovery Rate (FDR), with significant associations determined as adjusted P-values <0.05 (**) and suggestive associations as adjusted 
P-values <0.1 (*). The population for which the phenotypic association was identified is specified in parentheses.
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Figure legends

Figure 1. Principal Component Analysis of the pruned genomic data. Eigenvectors for the first two 

principal components are plotted and individuals are coloured according to the population of origin. 

The variances explained by the principal components are given in parentheses.

Figure 2. Ancestry proportions of studied GSDs based on the pruned genomic data assuming three 

underlying ancestries (K = 3 clusters) as revealed by ADMIXTURE. Each cluster is represented by a 

colour and the length of the specific coloured segment indicates the dog’s proportion of membership in 

that cluster.

Figure 3. Distribution of integrated haplotype score (iHS) in the UK (upper plot) and Swedish 

population (lower plot). The red line indicates the threshold for the top 0.5% iHS.

Figure 4. Circos plot for signatures of selection between GSD populations. The plot shows the three 

statistics used to identify regions under differential selection: differences between runs of homozygosity 

(ΔROHProp, outer circle, blue track), cross-population extended haplotype homozygosity (XP-EHH, 

middle circle, green track) and the fixation index (FST, inner circle, purple track). The plot indicates 

concordant evidence in regions on Chr 1, 24 and 32, where peaks can be seen based on all three methods 

(although not within the top 1% of SNPs for XP-EHH, shown in red for the three methods).
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Appendices

Table A1. Description of German Shepherd dog populations. Summary statistics for behaviour traits 

and other dog attributes within the UK and the Swedish GSD populations.

Table A2. List of SNPs belonging to the top 0.5% of the iHS statistic in the UK and Swedish 

populations. 

Table A3. Lists of SNPs belonging to the top 1% of the FST, XP-EHH and ΔROHProp statistics and the 

SNPs that belonged to the top 1% for at least two methods.

Table A4. Significance of associations between population attributes and genetic ancestries. The 

proportion of ancestries estimated by ADMIXTURE (cluster 1, cluster 2, cluster 3) based on markers 

located within selection signature regions were fitted as fixed effects in separate linear models to test 

their association with different response variables (population attributes: behaviour traits, role of the 

dog, coat colour and coat length). The P-values for the respective models are shown in the table.

Table A5. Markers located in selection signature regions and showing significant associations (FDR-

adjusted P<0.1) with phenotypic traits (behaviour, coat colour, coat length). 

Table A6. Overlaps between genes located in selection signature regions and candidate genes for 

morphological traits and behaviour reported in other studies. A list of candidate genes in canids was 

compiled using the following references1, 2, 9, 10, 11, 26, 37, 45, 50, 51, 58, 61, 67, 76, 85-89 and was compared to genes 

located in regions detected as selection signatures in this study.

Figure A1. Ancestry proportions of GSDs based on genotypes of SNPs from putatively selected regions 

assuming three underlying ancestries (K = 3 clusters) as revealed by ADMIXTURE. Each cluster is 

represented by a colour and the length of the specific coloured segment indicates the dog’s proportion 

of membership in that cluster. The labels indicate the origin of the dog (Sweden or UK) and the coat 

colour (1 = saddle tan, 0 = sable, black or others).

Figure A2. Fine-mapping of target regions under divergent selection between German Shepherd dog 

populations. Particularly compelling regions that showed evidence of divergent selection in all three 

selection signature test statistics (SNP window-based FST, ΔROHProp, and XP-EHH) are located on Chr 

1, 24 and 32. The plots illustrate the FDR-adjusted P-values from association analyses for phenotypic 

traits (behaviour, coat colour, coat length) (above, “Regional association”) and the selection signature 

test statistics (below, “Selection signatures”) for all SNPs in these regions. The plots were created using 

a modified R code from that of Saxena et al. 2007 90.
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40 Abstract

41 Strong selection has resulted in substantial morphological and behavioural diversity across modern dog 

42 breeds, which makes dogs interesting model animals to study the underlying genetic architecture of 

43 these traits. However, results from between-breed analyses may confound selection signatures for 

44 behaviour and morphological features that were co-selected during breed development. In this study, 

45 we assess population genetic differences in a unique resource of dogs of the same breed but with 

46 systematic behavioural selection in only one population. We exploit these different breeding 

47 backgrounds to identify signatures of recent selection. Selection signatures within populations were 

48 found on chromosomes 4 and 19, with the strongest signals in behaviour-related genes.  Regions 

49 showing strong signals of divergent selection were located on chromosomes 1, 24 and 32, and include 

50 candidate genes for both physical features and behaviour. Some of the selection signatures appear to be 

51 driven by loci associated with coat colour (Chr 24; ASIP) and length (Chr 32; FGF5), while others 

52 showed evidence of association with behaviour. Our findings suggest that signatures of selection within 

53 dog breeds have been driven by selection for morphology and behaviour. Furthermore, we demonstrate 

54 that combining selection scans with association analyses is effective for dissecting the traits under 

55 selection.

Page 38 of 110Genetics & Genomics Next



4

57 Introduction

58 The development of current dog breeds can be viewed as a unique long-term selection experiment to 

59 study the process of domestication1 as well as short-term evolutionary change as a consequence of 

60 intensive breeding2. While the domestication of the modern dog (Canis lupus familiaris) from wolves 

61 took place at least 15,000 years ago3, with some estimates considerably earlier (e.g. 20,000 to 40,000 

62 years ago4), the popularity of dogs has led to ongoing strict selection according to breeding schemes 

63 and standards imposed by breed associations and national kennel clubs. The establishment of 

64 genetically and phenotypically distinctive breeds by this intense artificial selection pressure has resulted 

65 in high intra-species variation for physical and physiological features, disease susceptibility and 

66 behaviour traits5–7, which makes dogs powerful models to investigate the underlying genetic 

67 architecture and signatures of selection for various traits.

68 Genetic manifestation of the development of dog breeds can be seen as selection signatures, genomic 

69 regions targeted by natural or artificial selection that exhibit various characteristics, including 

70 population differentiation, extreme linkage disequilibrium (LD) and patterns of the haplotype structure 

71 (e.g. long-range haplotypes) or mutations in coding region8. Accordingly, selection signatures between 

72 dog breeds have been reported for physical traits, domestication-related traits and some specific 

73 behaviours and have led to the identification of candidate genes, e.g. IGF1 for body size, FGF5 for coat 

74 length and HAS2 for skin wrinkling2, AMY2B, MGAM and SGLT1 for adaptation to a starch-rich diet9 

75 and TRPM3 and ROBO1 for athletic success in sport-hunting10. In a recent whole-genome sequence 

76 study of 144 modern dog breeds, positive human-imposed selection was implicated in the fixation or 

77 high prevalence within breeds of a range of morphological characteristics (e.g. ear shape, height, 

78 weight)11. These recent studies for selection signatures in dogs have focused on between-breed or dog-

79 wolf comparisons and while such studies have allowed detection of signatures related to notable 

80 physical features, signatures for more subtle traits like behaviour characteristics may be confounded 

81 with or masked by signals for the physical features, which might complicate the interpretation of these 

82 signatures as appears to be the case for association signals12.
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83 In this study, we analysed a single dog breed, the German Shepherd dog (GSD), to detect signals of 

84 selection.  The breed was established in the late 19th century by crossing multiple breeds, with the initial 

85 purpose of creating a sheep herding dog13 and later use as a general working dog within the military or 

86 police. GSDs used in this study originated from two populations, the UK and Sweden; while the UK 

87 population represented a random sample of pet, show and working dogs, the Swedish dogs were bred 

88 within a breeding program of the Swedish Armed Forces (SAF) and only dogs that pass a behaviour 

89 test can become working dogs or be used for breeding. Accordingly, in a previous study14 we showed 

90 that there were significant differences between the two GSD populations for various behaviour traits as 

91 measured in a questionnaire, e.g. aggression against strangers or dogs, chasing and playfulness. In 

92 contrast, morphological differences between populations were reduced compared to between-breed 

93 studies. We hypothesise that by comparing populations of the same breed but with different behaviour-

94 related selection strategies, we may be able to identify selection signatures for behaviour as well as 

95 those for physical traits. Furthermore, by applying multiple statistical tests for the detection of selection 

96 signatures, we have increased the power to detect true signals of selection. Nonetheless, despite the 

97 within-breed approach, one of the main difficulties that remains is the identification of the actual trait(s) 

98 under selection. We addressed this issue by characterising the relationship between selection signatures 

99 and statistical associations between genotype and phenotype (behaviour and morphological traits) from 

100 the same populations. We suggest that this approach, combining population genetics and quantitative 

101 genetics methods, may also be applicable in other contexts.
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102 Results and discussion

103 Genomic structure of populations

104 Characterising the genetic relationships between individual dogs is a valuable tool to evaluate the 

105 genetic structure of GSDs in this study. The underlying population structure in the two GSD populations 

106 (250 dogs in total) was explored by applying a principal component analysis (PCA) and ancestry 

107 estimation on a pruned SNP data set. The PCA indicated a separation between the UK and Swedish 

108 populations based on the first two principal components (PCs), which explained 2.8% and 1.9% of the 

109 genetic variance, respectively (Figure 1). With respect to PC1 and PC2, the UK dogs had a broader 

110 distribution than the Swedish GSDs, suggesting a stronger founder effect in the Swedish cohort. 

111 However, some of the UK GSDs clustered with the Swedish GSDs. The overall separation of the two 

112 populations is likely due to the geographical separation and thus primarily independent pedigrees but 

113 may also reflect the more recent origins of the Swedish population, with the SAF as the only breeder 

114 and the primary goal to breed good working dogs. The partial overlap between the two populations is 

115 likely due to the use of external dogs in the SAF breeding program, leading to some shared ancestry. A 

116 visual assessment of the ancestry estimation based on the ADMIXTURE program15 (Figure 2) also 

117 revealed a clear discrimination between the UK and Swedish populations. The lowest cross-validation 

118 error of 0.55 was identified for three clusters (K=3), with the blue cluster primarily associated with the 

119 Swedish population and the red and green clusters primarily associated with the UK population. 

120 The average inbreeding coefficient calculated based on runs of homozygosity (FROH) was 0.29 ± 0.02 

121 (standard deviation; SD) for Swedish GSDs and 0.31 ± 0.05 for UK GSDs. The significantly lower 

122 inbreeding estimate (P < 0.05) in the Swedish population might be a consequence of a strategic breeding 

123 scheme by the Swedish Armed Forces (SAF). The average nucleotide diversity (µ) was 0.30 ± 0.16 for 

124 both populations. 

Page 41 of 110 Genetics & Genomics Next



7

126 Selection signatures within populations 

127 Selection signatures can be detected within populations by identifying distinctive patterns of linkage 

128 disequilibrium (LD). In the event of selective sweeps, favourable genetic variants increase in frequency 

129 and form extended haplotypes with neighbouring genomic regions due to LD, as reviewed in Ref. 16. 

130 We computed the integrated haplotype score (iHS), which is a variation of the extended haplotype 

131 homozygosity (EHH) statistic that aims to detect recent and incomplete selective sweeps within 

132 populations17. In total, 197 and 142 regions with extreme EHH were detected within the UK and 

133 Swedish GSD population, respectively. A list of SNPs belonging to the top 0.5% of the iHS statistic in 

134 the UK and Swedish populations is given in Table A2. The iHS statistic identified similar selection 

135 signatures in both populations, but the most extreme values differed between populations, as shown by 

136 the ten regions with the highest iHS statistics (Figure 3, Table 1). Regions with the highest iHS for the 

137 UK population were located on Chr 19 at 36.0 – 36.5 Mb and 37.5 – 37.7 Mb. A single marker on Chr 

138 4 at 52.5 Mb showed the highest iHS in the Swedish population, followed by a region on Chr 18 at 54.9 

139 – 55.3 Mb. The SNPs identified by iHS were further tested for their association with different traits 

140 (coat colour, coat length and behaviour) separately for each population to identify the putative trait 

141 under selection.

142 The genes located within or closest to the ten most extreme values of iHS (positional candidate genes) 

143 identified within populations (Table 1) have been previously associated with behaviour. Regarding 

144 those on Chr 19, variants in TMEM163 (transmembrane protein 163) were associated with active 

145 behaviour in an open-field test involving cattle18. However, TMEM163 is also a functional candidate 

146 for physical features, e.g. for eye width and depth19 and hair colour20 in humans. NCKAP5 (NCK 

147 associated protein 5) was also identified as candidate gene for temperament in cattle21 and has been 

148 associated with numerous neurological conditions in humans22–24.

149 The iHS peak on Chr 4 in the Swedish population points to the CLINT1 (Clathrin Interactor 1) gene. 

150 This gene is reported to be among the top risk genes for the susceptibility to schizophrenia in humans25 
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151 and markers near CLINT1 were suggestive peaks associated with barking tendency in a genome-wide 

152 association study of behaviour traits in Labrador retrievers26.

153 We conducted a gene list enrichment analysis with Enrichr27,28 of the 256 and 338 genes that were 

154 located in and close to (within 40 kb of) the regions of the top 0.5% iHS in the UK and Swedish 

155 populations, respectively. No pathways were significantly enriched after accounting for multiple 

156 testing, however, Panther pathway analyses indicated nominally significant (P < 0.05) functional 

157 enrichment of several pathways for the UK population: “heterotrimeric G-protein signalling -Gi alpha 

158 and Gs alpha mediated” (P = 0.01; genes: GRK4, GRK7, RGS12, ADCY2, ADRA2C, DRD2), 

159 “Alzheimer disease-presenilin” (P = 0.02; TRPC6, MMP7, MMP27, RBPJ, MMP20), “heterotrimeric 

160 G-protein signalling -Gq alpha and Go alpha mediated” (P = 0.02; GRK4, GRK7, CACNA1A, RGS12, 

161 DRD2), “ionotropic glutamate receptor” (P = 0.03; CACNA1A, SLC17A8, GRIA4) and “axon guidance 

162 mediated by semaphorins” (P = 0.03; CRMP1, FYN). All of these functions have been shown to be 

163 relevant for behaviour among other functions, e.g. heterotrimeric G proteins in mood disorders, as 

164 reviewed in Ref. 29, ionotropic glutamate receptors for long term synaptic plasticity, as reviewed in 

165 Ref. 30, 31 and semaphorins in neuronal structure, as reviewed in Ref. 32. Nominally significant 

166 pathways for the Swedish population were “5-Hydroxytryptamine degradation” (P = 0.003; ALDH3A2, 

167 ALDH3A1), “apoptosis signaling” (P = 0.01; MAP2K3, CASP9, DAXX, BAK1, BIRC2, BIRC3) and 

168 “Thyrotropin-releasing hormone receptor signaling” (P = 0.03; PLCE1, STX3, TRHR). 5-

169 hydroxytryptamine (serotonin) is an important neurotransmitter and plays a key role in numerous 

170 behavioural disorders and characteristics, e.g. depression33 and aggressiveness34.

171

172

173
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175 Selection signatures between populations

176 Another approach to identify signatures of selection is the comparison of genetic variation (e.g. allele 

177 frequencies or haplotype structure) between different populations. Accordingly, signatures of 

178 differential selection between the two GSD populations were analysed employing three different tests: 

179 the fixation index (FST), the cross-population extended haplotype homozygosity (XP-EHH) and 

180 differences between ROH (ΔROHProp). FST was calculated to determine genetic differentiation between 

181 UK and Swedish GSD populations. Low genome-wide genetic differentiation was detected for the 

182 single SNP-based statistic (FST = 0.021 ± 0.029) and for the SNP window-based statistic (FST = 0.021 ± 

183 0.016), consistent with previous within-dog-breed estimates 35. 

184 We scanned the genome for regions of genetic differentiation within overlapping 1 Mb windows and 

185 found 17 distinctive peaks that comprise the top 1% window-based FST values on Chr 1, 9, 20, 22, 24, 

186 29, 30 and 32, with values ranging from 0.07 to 0.16 (Table A3). The highest FST value (0.16) was 

187 found for a region on Chr 24 (22.0 – 24.5 Mb), which contains 46 genes. Among these genes are several 

188 with functions in physical characteristics and behaviour, e.g. SPAG4 and SUN5 involved in cytoskeletal 

189 anchoring, NCOA6 involved in glucocorticoid and corticosteroid receptor signalling and ASIP and 

190 RALY associated with skin and fur pigmentation. Furthermore, seven members of the 

191 bactericidal/permeability-increasing (BPI) fold-containing (BPIF) superfamily of genes are located in 

192 this region (BPIFB2, BPIFB6, BPIFB3, BPIFB4, BPIFA2, BPIFA3, BPIFA1 and BPIFB1). It was 

193 shown that these genes play a role in the innate immune system and lipoprotein metabolism, but also in 

194 the brain’s response to oxidative stress (ageing), relevant for neuropsychiatric diseases36. Interestingly, 

195 high FST for Labrador retriever populations differentiated based on their coat colour and function 

196 (gundog and showdog) was also detected in the same region on Chr 24 (22.4 – 22.8 Mb) in a previous 

197 study37. 

198 While the FST statistic detects differences in allele frequencies between populations, the XP-EHH test, 

199 an approach based on linkage disequilibrium, is designed to detect regions that are fixed (or nearly 

200 fixed) in one population but remain segregating in the other population. Extreme high (positive) and 
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201 low (negative) scores are indicators of a region under strong positive selection in the UK and Swedish 

202 population, respectively. The region including the SNP with the highest score (3.4) for the UK 

203 population was located on Chr 35 (11.0 - 11.5 Mb) and contains three genes (NEDD9, ADTRP, and 

204 TMEM170B) (Table A3). The NEDD9 (Neural Precursor Cell Expressed, Developmentally Down-

205 Regulated 9) gene has been shown to be associated to cognitive impairment in mice38, ADTRP is 

206 important for vascular development and function in mouse and zebrafish39 and TMEM170B has been 

207 reported to be downregulated in TCGA human breast cancer data40. The region with the highest absolute 

208 score (3.8) for the Swedish population was located on Chr 12 (3.6-7.5 Mb). This region contains 59 

209 genes; RNF8 and TBC1D22B are closest to the SNP with the most extreme score. The ubiquitin gene 

210 RNF8 (ring finger protein 8) plays a role in the immune system and has also been linked to autism; a 

211 recent study in RNF8 knockout mice indicated a role of this gene in synapse formation and cerebellar-

212 dependent learning abilities41. The function of TBC1D22B is largely unknown but it may encode a 

213 GTPase-activating protein. 

214 As a third approach to identifying differential selection between the populations, we identified the 

215 regions showing differences in extended homozygosity. To identify these selection signatures, we 

216 calculated the between-population differences in runs of homozygosity (ΔROHProp), which describes 

217 the difference in the proportion of dogs with an ROH of a specified length at a given SNP. The average 

218 ΔROHProp value across the genome was low (0.07 ± 0.06), indicating considerable overlap of ROH 

219 between the UK and Swedish populations. However, some regions with ROH were predominantly 

220 present in only one population (Table A3). The highest absolute ΔROHProp indicating selection 

221 signatures in the UK population were found on Chr 17 and 32: the ROH mapped to Chr 17 (8.3 - 8.4 

222 Mb) and Chr 32 (13.3 - 13.4 Mb) were present in over 70% of the UK dogs but less than 40% of the 

223 Swedish dogs. The genes located in these regions are GREB1, NTSR2, and LPIN1 on Chr 17, with no 

224 characterised genes in the Chr 32 region. The neurotensin gene NTSR2 is involved in dopamine 

225 modulation and a SNP in this gene has been tested in a polygenic model of highly sensitive personality 

226 in humans42. LPIN1 plays a prominent role in lipid metabolism regulating adipocyte differentiation and 

227 co-regulating other genes involved in lipid metabolism. The highest absolute ΔROHProp indicating 

Page 45 of 110 Genetics & Genomics Next



11

228 selection signatures in the Swedish population was found on Chr 1: a ROH mapped to Chr 1 (24.7 to 

229 25.5 Mb) was present in 90% of the Swedish dogs but only in 42% of the UK dogs and contains the 

230 genes LDLRAD4, MOXD1 and CTGF (see below).

231 Target regions for divergent selection signatures between populations

232 In the detection of selection signatures, the application of multiple approaches is recommended to 

233 reduce the rate of false positive signals16. To identify target regions under differential selection in the 

234 two GSD populations, we selected regions from the 99th percentile (top 1%) of each score distribution 

235 (SNP window-based FST, ΔROHProp, and XP-EHH) and searched for intersecting signals between two 

236 or three of the approaches. Using this criterion, we identified 433 SNPs (Table A3), with the greatest 

237 overlap between the SNP window-based FST and ΔROHProp statistics (374 SNPs). No SNPs were 

238 detected by all three approaches. The 433 SNPs were located in 16 candidate selected regions on Chr 

239 1, 9, 12, 22, 24, 32 and 34, which harbour 114 genes in total (Table 2; Figure 4). One Panther pathway 

240 was nominally significantly (P < 0.05) enriched by these 114 genes: “p53 pathway feedback loops” (P 

241 = 0.03; CDKN1A, RBL1). The SNPs identified as under divergent selection by these analyses were 

242 further tested for their association with different traits (coat colour, coat length and behaviour) 

243 separately for each population to identify the putative trait under selection.

244 A visual inspection of the Circos plot (Figure 4), which illustrates the results for the three approaches, 

245 indicates regions on Chr 1, 24 and 32 where peaks can be seen based on all three methods, although not 

246 belonging to the top 1% for XP-EHH. Linear plots for these three regions illustrate the results from 

247 association analyses for traits with SNPs located in that region that have adjusted P < 0.1 (“Regional 

248 association”) and the selection signature test statistics (“Selection signatures”) (Figure A2). The specific 

249 population showing evidence of selection can be determined by the ΔROHProp or XP-EHH score. Three 

250 regions showing evidence of selection in the Swedish population are located on Chr 1 (24.0 – 24.1, 24.4 

251 – 25.1 and 25.3 – 25.9 Mb; 17 genes), each harbouring several interesting candidate genes. The 

252 LDLRAD4 (low density lipoprotein receptor class A domain containing 4) gene inhibits transforming 

253 growth factor-β signalling43 and is a putative schizophrenia-related gene44. Another growth factor-
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254 related gene in this region is CTGF (connective tissue growth factor). Other candidates for genes under 

255 selection in this region are the G-protein-associated melanocortin receptor genes MC2R and MC5R. 

256 MC2R (also known as the adrenocorticotropic hormone receptor gene, ACTHR) is a major modulator 

257 of glucocorticoid secretion regulation. MC5R has been associated with a range of phenotypes, including 

258 shedding and fur length in dogs45, fatness in pigs, reviewed by Ref. 46, and psychiatric disorders in 

259 humans47. It was also differentially expressed in the brains of aggressive and tame foxes48. These 

260 reported associations with different traits highlight one of the difficulties in identifying phenotypic 

261 targets of selection. In our analysis, we found no significant associations (FDR-adjusted P < 0.05) 

262 between any of the selection signatures on Chr 1 with behaviour traits, coat colour or coat length, but 

263 there was a suggestive association (FDR-adjusted P < 0.1) with chasing behaviour in the UK population 

264 (Table 2). Regarding fur shedding, GSDs as a breed are considered to be shedders, making it unlikely 

265 that there are large differences between the two populations for this trait.

266 Regions showing evidence of selection in the UK population are located on Chr 24 and 32. The Chr 24 

267 candidate region under selection (22.9 – 23.8 Mb; 18 genes) in the UK population comprises well-

268 known genes associated with black-and-tan and saddle-tan coat colour in dogs (ASIP, RALY)49,50. We 

269 found highly significant associations in between coat colour and SNPs in this region showing evidence 

270 of selection (Table 2, Figure A2). The saddle and tan/ black and tan coat colour was the dominant coat 

271 colour in the UK GSDs while sable was predominant in the Swedish population (Table A1). The region 

272 on Chr 32 (5.4 – 5.7 Mb; 3 genes) encompasses two behaviour- and growth-related candidate genes: 

273 PRKG2 and RASGEF1B. RASGEF1B (RasGEF domain family member 1B) has been identified as a 

274 positional candidate gene for dog rivalry in a genome-wide association study across multiple dog 

275 breeds51. Several case studies have been carried out in humans on chromosomal diseases related to a 

276 microdeletion of loci homologous to the region on Chr 4 comprising the PRKG2 and RASGEF1B 

277 genes52–54. The loss of these genes leads to growth restriction, aggression, self-injurious behaviours and 

278 mental retardation in affected individuals. The association analysis revealed a significant association 

279 between SNPs in this region and aggressive behaviour towards strangers in the Swedish GSD 

280 population and PRKG2 has previously been reported as a top candidate gene for anxiety in mice55. 
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281 However, the region on Chr 32 is in close proximity to the BMP3 gene associated with skull 

282 morphology56 and the FGF52 gene associated with coat length in dogs. Regarding BMP3, differences 

283 in skull morphology have not previously been identified in GSDs nor have they been shown to carry a 

284 derived allele in this gene previously associated with brachycephaly56, thus selection on skull 

285 morphology seems unlikely. However, we also found a highly significant association with coat length 

286 in both populations (Table 2, Figure A2), suggesting that this trait drives the selection signature on Chr 

287 32 (via FGF5). 

288 Which traits are under selection?

289 One of the main difficulties in interpreting genomic selection signatures is the identification of the 

290 actual trait(s) under selection. In dogs, the traits under selection are assumed to be primarily related to 

291 physical traits (e.g. skull shape, coat colour, body size) and/or behaviour57. While between-breed studies 

292 have greatly contributed to the understanding of the genetic control of physical traits11,58, addressing 

293 behaviour genetics by performing across-breed selection signature analyses is likely to be challenging 

294 because breeds differ in multiple characteristics, including both behaviour and these physical traits, 

295 many of which show Mendelian inheritance and thus tend to show very strong signals. 

296 We employed several approaches to characterise the relationship between the detected selection 

297 signatures and phenotypic traits that were recorded for these populations. First we repeated the 

298 ADMIXTURE analysis using only genotypes from SNPs identified as selection signatures (Figure A1) 

299 and fitted the ancestry assignment probabilities to the three individual clusters that were detected as 

300 factors in linear models for the phenotypes. We observed significant associations between UK 

301 (primarily associated with cluster 1) and Swedish (cluster 3) ancestries and some behaviour traits 

302 (Stranger-directed interest, Dog-directed fear) (Table A4). Furthermore, highly significant associations 

303 were identified between the ancestries and other dog characteristics, including the function of the dog 

304 (working, pet or show dog), coat length and coat colour (Table A4). These results demonstrate a 

305 statistical association between these phenotypes and the dog’s genotypes in the selection signature 

306 regions.
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307 We then performed association analyses for behaviour traits, coat length and coat colour within each 

308 population only for markers within selection signature regions. We identified 87 SNPs with FDR-

309 adjusted P < 0.05 associated with coat length, coat colour, human-directed playfulness, stranger-

310 directed aggression, stranger directed fear and dog-directed fear (Table A5) in at least one of the 

311 populations. The striking significant associations for coat colour (lowest FDR-adjusted P = 3.37x10-14) 

312 and coat length (lowest FDR-adjusted P =   1.13x10-25), comprising regions on Chr 24 and 32, 

313 respectively, have previously been identified for these traits49,59–61 (Table 2).

314 As discussed above, previous studies on selection signatures in dogs have generally focused on inter-

315 breed or dog-wolf comparisons and primarily detected selection signatures (and thus candidate genes) 

316 for physical features, e.g. body size, coat characteristics and skeletal morphology2,11,58. Some studies, 

317 however, also identified signatures for neural crest development1 or brain function and nervous system 

318 development9, which might be relevant for behaviour especially in regard to domestication. We 

319 compiled a list of candidate genes reported in previous genomic analyses of phenotype associations and 

320 selection signatures in canids (dogs, wolves, foxes) focused on morphology and behaviour and 

321 compared them to genes located in regions showing evidence of selection in our study (Table A6, note 

322 that the number of overlapping genes is not informative for identifying the trait under selection because 

323 the number of reported candidate genes differs substantially between studies). The biological functions 

324 of genes in common between the two lists are diverse and include a number of genes that have been 

325 associated with behaviour. Major candidate genes for physical features in dogs, e.g. IGF1, SMAD2, 

326 FGF5 and BMP3, as reviewed in Ref. 7, were not detected within selection signatures in our study. 

327 However, FGF5, which has previously been associated with coat length, is located in close proximity 

328 to the selection signature on Chr 32 and we detected a highly significant association with coat length 

329 for this region (BMP3, associated with skull morphology, is also located near this region, but as 

330 discussed above, our data does not support a signature of selection associated with this trait). We also 

331 detected well-described genes associated with coat colour (Chr 24:  ASIP, RALY). Together these results 

332 suggest that selection for morphological traits (coat length and coat colour) has driven differences 

333 between the two populations in the genomic regions on Chr 24 and 32. In contrast, the region we 
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334 detected on Chr 1 showed an association with Chasing in the UK population and comprises candidate 

335 genes with functions in behaviour, but was not associated with morphological traits that we measured. 

336 Moreover, some of the selection signature regions showed associations with both morphological and 

337 behaviour traits, e.g. the region on Chr 32 was associated with both Stranger-directed aggression and 

338 coat length in the Swedish population (Table 2). Furthermore, genes associated with physical 

339 appearance like ASIP have previously been associated with behaviour traits, e.g. social behaviour in 

340 mice62. Thus, it is possible that some of the selection signatures we detected are also associated with 

341 multiple traits.

342

343 Limitations of the study

344 By comparing UK and Swedish GSDs, we hypothesised that we would be able to detect selection 

345 signatures for behaviour because behaviour was the main selection target in the Swedish population. 

346 However, we found that the geographical origin of the dogs was confounded with other attributes, e.g. 

347 coat colour and length. We addressed the issue of which trait(s) were under selection by characterising 

348 the relationship between selection signatures and associations with phenotypic attributes (behaviour, 

349 coat length, coat colour), recognizing that the sample size for the association analyses within 

350 populations was small and therefore these results should be interpreted with caution. In addition, 

351 measurements on other morphological traits (e.g. body size and weight) were not available, but these 

352 might also be under selection and should be considered in future studies. We conclude that our study of 

353 German Shepherd dogs has identified selection signatures probably driven by selection for coat colour 

354 and length (e.g. at the ASIP and FGF5 genes) as well as other signatures that may be related to 

355 differential selection for behaviour between the Swedish and UK populations. Functional analyses are 

356 needed to test whether the identified candidate genes within regions showing evidence of selection do 

357 influence dog behaviour characteristics.
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358 Material and methods

359 SNP genotyping and quality control

360 DNA was extracted from saliva samples collected with Performagene PG-100 swabs (UK population) 

361 or blood samples (Swedish population). The genotyping was performed using the CanineHD Whole-

362 Genome Genotyping BeadChip63 featuring 172,115 SNPs. The data was filtered for sample call rate of 

363 > 90%,  SNP call rate > 98%, reproducibility (GTS) > 0.6 and low or confounded signal characterised 

364 by AB R mean (mean normalized intensity of the AB cluster) > 0.3 in GenomeStudio version 2.0.  

365 Minor allele frequency filtering of > 0.01 was used to include rare but informative variants, leaving a 

366 final dataset of 108,817 SNPs for analyses. Genotype information was available for 741 GSDs. 

367 Following further sample-based quality control, closely related dogs were removed following the 

368 procedure described in Chen et al.64. Briefly, a pruned genotype data set to remove closely related dogs 

369 was created for SNPs with MAF > 0.05 using PLINK version 1.965: based on the variance inflation 

370 factor, a function of the multiple correlation coefficient of a given SNP regressed on all other SNPs 

371 within a window (using default parameters: window size = 50 SNPs, overlapping SNPs for shifting 

372 windows = 5, the variance inflation factor threshold = 2). Then, GCTA version 1.24.766 was used to 

373 compute the genetic relationship matrix and to remove one dog per pair with a genetic relationship 

374 higher than 0.2 (equivalent to 2nd degree or closer relatives) leaving a final set of 182 UK and 68 

375 Swedish GSDs for subsequent analyses.

376 Samples and phenotypes

377 The GSDs used in this analysis originated from the UK and Sweden. For the UK population, GSDs that 

378 were at least two years old and registered with the UK Kennel Club were recruited via email to 

379 participate in a study on behaviour genetics14,67. GSDs from the UK population were bred by multiple 

380 breeders and primarily were pet dogs. All GSDs from the Swedish population were bred within the 

381 breeding program of the Swedish Armed Forces (SAF) starting in 2004 with the purpose of becoming 

382 working dogs. The strongest systematic selection pressure in the SAF breeding program is for behaviour 
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383 traits. Briefly, puppies were raised at the SAF, weaned at the age of 8 weeks and then fostered by 

384 members of the Swedish public68. After a behaviour test at the age of 15-18 months, some dogs started 

385 working with the SAF, Swedish Police or other authorities and companies, and/or were selected as 

386 breeding animals, whereas others were kept as pet dogs. For the Swedish population, owners, trainers 

387 or handlers of GSDs bred within the breeding program of the SAF were invited via email or letter to 

388 participate in the study. Several phenotypes were analysed. Data on GSD behaviour was assessed using 

389 the Canine Behaviour and Research Questionnaire (C-BARQ)69. The C-BARQ consists of questions 

390 related to training and obedience, aggression, fear and anxiety, separation-related behaviour, 

391 excitability, attachment and attention seeking, and miscellaneous behaviours. To calculate the 

392 behaviour traits, a principal component analysis (PCA) was applied to the data to condense the questions 

393 to a smaller number of 13 components, as described in Ref. 14. The dogs’ scores for the 13 components, 

394 adjusted for fixed effects (excluding cohort) as described in Ref. 67, were considered as adjusted 

395 behaviour traits in the subsequent analyses. Other dog characteristics (e.g. sex, coat colour, coat length, 

396 role) were assessed using a lifestyle survey14. Summary statistics for behaviour traits and other 

397 characteristics within the two GSD populations are given in supplementary material (Table A1).

398

399 Genomic structure of populations

400 To characterise the genomic structure of the GSD populations, a principal component analysis (PCA) 

401 and a cluster analysis were performed. PLINK version 1.965 with default parameters was used to create 

402 a pruned SNP dataset with reduced linkage disequilibrium (LD) between SNPs, leaving a pruned dataset 

403 of 9,180 SNPs. This dataset was employed only to characterise the genomic structure of populations, 

404 via PCA and ADMIXTURE analyses. The PCA was performed in PLINK version 1.9 65 and ancestry 

405 estimation was performed using ADMIXTURE version 1.3.015.  The best number of clusters (K) was 

406 determined by comparing 5-fold cross-validation (CV) errors.

407 Inbreeding, heterozygosity and nucleotide diversity were calculated within both GSD populations on 

408 the final dataset of 108,817 SNPs. To determine inbreeding coefficients based on runs of homozygosity 
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409 (FROH), runs of homozygosity (ROH) were computed in PLINK version 1.965 using the default settings 

410 of a ROH length of 1000 kb and a window size of 65 SNPs, as in Pfahler and Distl70. The inbreeding 

411 was then estimated as the individual’s total ROH length divided by the total genome length.  ROH-

412 based methods have been shown to perform best in relation to the true inbreeding71. Finally, nucleotide 

413 diversity (Nei’s µ) was calculated per SNP using the --pi specifier in VCFtools72.  

414 Identification of selection signatures

415 Within populations

416 Signatures of selection within the two GSD populations were identified using the integrated haplotype 

417 score (iHS) statistic, which measures the extended haplotype homozygosity (EHH) in the genome as an 

418 indicator of selective sweeps. The iHS statistic is based on the integrated EHH (iHHi), which is the 

419 integral of the observed decay of EHH away from a specified core allele i until the EHH reaches a 

420 specified cut-off. Phased genotypes of the final SNP dataset generated by Beagle version 4.173 (the 

421 phasing in Beagle was performed without specifying a reference population) were used to compute the 

422 SNP-wise iHS statistic using hapbin74, specifying that the iHH should be calculated up to the point at 

423 which EHH drops below 0.05 (--cutoff 0.05). As in Voight et al.17, the standardized iHS (iHS) for a 

424 SNP was calculated as

425 𝑖𝐻𝑆 =
𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑖𝐻𝑆 ―  𝜇𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑖𝐻𝑆

𝜎𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑖𝐻𝑆

426 where the  is ln(iHHi/iHHj) for alleles i and j, and  and  are the mean and the 𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑖𝐻𝑆 𝜇 𝜎

427 standard deviation of the unstandardized iHS estimated from the empirical distribution of SNPs for 

428 which the derived allele frequency matches the frequency at the core SNP.

429 Between populations
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430 To detect divergent signatures of selection between populations, three different approaches were used: 

431 the fixation index (FST), cross-population extended haplotype homozygosity (XP-EHH) and differences 

432 between runs of homozygosity (ROH). 

433 First, the FST analysis was performed using the script described in Talenti et al.75. The FST between UK 

434 and Swedish dogs was calculated for each SNP according to the formula reported by Karlsson et al.76, 

435 which is a comparison of the allele frequencies between populations:

436 𝐹𝑆𝑇 =  
𝑓𝑈𝐾

1 (𝑓𝑆
2 ― 𝑓𝑈𝐾

2 ) + 𝑓𝑆
1(𝑓𝑈𝐾

2 ― 𝑓𝑆
2)

(𝑓𝑈𝐾
1 ∗ 𝑓𝑆

2) +  (𝑓𝑈𝐾
2 ∗ 𝑓𝑆

1)

437 where  and  are frequencies in the UK population for the two alleles and  and  are allele 𝑓𝑈𝐾
1 𝑓𝑈𝐾

2 𝑓𝑆
1 𝑓𝑆

2

438 frequencies in the Swedish population. Next, the mean FST was calculated in 1 Mb sliding windows 

439 (window-based FST) with an overlap between windows of 500 kb, resulting in each SNP being located 

440 in exactly one or two windows. To derive a SNP-based value (to select the top 1% for calculating the 

441 intersection with other methods as described below), we averaged the window-based FST for the one or 

442 two windows in which the SNP was found. 

443 Second, the XP-EHH statistic77 was calculated to compare the EHH between populations, i.e. whether 

444 alleles are homozygous in one population and polymorphic in the other population. The XP-EHH 

445 statistic was calculated for the UK and Swedish populations using phased haplotypes generated by 

446 Beagle version 4.173 in hapbin74, as described above.

447 For the third approach, ROH were computed in PLINK version 1.965. We ran the analysis with the 

448 default settings of a ROH length of 1000 kb and a window size of 65 SNPs, as described above70. For 

449 every SNP, a homozygosity score (ROHProp) was calculated by dividing the number of dogs with a ROH 

450 at a specific SNP by the total number of dogs, such that ROHProp ranges from 0 to 1, as described in 

451 Bertolini et al.78. The absolute difference between ROHProp between populations (ΔROHProp) was used 

452 as statistic to determine which ROH are highly represented in one population but underrepresented in 
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453 the other population. Therefore, for every SNP, ΔROHProp values were calculated to identify ROH that 

454 are present in the majority of dogs in one population but not in the other. 

455 Gene identification and Gene ontology (GO) analysis

456 To detect putative genomic regions showing evidence of selection, the most extreme values from the 

457 test statistics were selected for both the within- and between-population analyses to define selection 

458 signatures. For iHS, SNPs belonging to the top 0.5% of the distribution were selected. For FST, XP-

459 EHH and ΔROHProp, the top 1% of each test distribution were selected and the overlap between these 

460 top SNPs was determined to identify SNPs that had most extreme values for at least two of the three 

461 methods, to reduce the chance of false positive signals. We chose a less stringent threshold for top SNPs 

462 for between-population statistics to allow for greater overlap since the three approaches differ in their 

463 methodologies and thus the ranking of top SNPs will vary. For a visual representation of target regions 

464 under selection between populations, the visualisation tool Circos79 was used. For every SNP, the 

465 ΔROHProp and XP-EHH scores were plotted. Since the FST was calculated as a window-based average 

466 and Circos required a SNP-based value, we averaged the window-based FST for the one or two window 

467 in which the SNP was found, as described above.

468 The pairwise distances between the top SNPs were calculated and SNPs located within 200 kb were 

469 merged into a region. The distance of 200 kb was determined based on the linkage disequilibrium in 

470 the genome. First, the squared correlation (r2) between all pairs of SNPs within 10Mb was calculated 

471 in PLINK version 1.965. The average r2 was then calculated for bins of increasing distance between 

472 SNPs to identify the distance around SNPs at which average r2 drops below 0.5. The longest bin for 

473 which average r2 ≥ 0.5 was 200 kb.

474 To characterise functional relevance of regions showing evidence of selection, the top SNPs or regions 

475 (if multiple SNPs were found within 200 kb) were annotated for genes based on the CanFam3.1 genome 

476 assembly80, using BEDtools 2.27 software81. SNPs were annotated considering a flanking region of ± 

477 40kb, chosen based on the average between-marker distance of the array (~20kb), which was doubled 

478 to account for non-evenly spaced SNPs and SNPs lost through quality-control filtering. The genes 
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479 detected for these selection signatures were then submitted to Enrichr27,28 to perform gene set 

480 enrichment analyses. Enrichr is an integrative web-based application that compares submitted gene lists 

481 to various gene-set libraries; the standard Fisher exact test option was used to calculate P-values for this 

482 study.

483 Characterising trait(s) under selection

484 We employed two approaches to gain insights into the trait(s) under selection, as detected as genomic 

485 selection signatures: (I) we modelled behaviour traits and other dog characteristics as a function of the 

486 dog’s ancestry based on selection signature regions and (II) we analysed the association within each 

487 population between these traits and SNP markers in these regions. For both approaches, we compiled a 

488 genotype data set of SNPs within the regions showing evidence of selection; this included SNPs 

489 belonging to the top 0.5% of the iHS distribution in UK and Swedish populations and SNPs belonging 

490 to the top 1% of FST, XP-EHH and ΔROHProp distributions that overlapped between at least two methods. 

491 For (I), we repeated the ADMIXTURE analysis as described above, but only used genotypes of SNPs 

492 from putatively selected regions to estimate the ancestry. Then, a linear regression was performed, as 

493 described in Ref. 82, to model the relationship between the traits and ancestry assignment probabilities.

494 For (II), we analysed the association between the traits and SNP markers within the regions showing 

495 evidence of selection, separately for each population. Behaviour traits were adjusted based on other 

496 fixed effects as defined in the previous study67 and treated as quantitative traits, while coat colour 

497 (“saddle tan”, ”sable”, ”black”, ”other”) and coat length (“long”, ”short”) were treated as categorical 

498 traits and not corrected for environmental factors. The association analysis was performed using 

499 GEMMA83, fitting the genomic relationship matrix (based on 108,817 genome-wide SNPs) as a random 

500 effect to account for population stratification. To correct for multiple testing, P-values were adjusted 

501 using the false discovery rate (FDR). 
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502 Data availability

503 Genotype and phenotype data for the UK dogs is available under CC-BY license from the Dryad Digital 

504 Repository84. The data for the Swedish dogs is restricted by the Swedish Armed Forces for reasons of 

505 national security.

506
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753 Tables

754 Table 1. Top selection signatures within the UK and Swedish GSD populations, showing the ten highest 

755 integrated haplotype score (iHS) statistics. SNPs within 200 kb were summarised into selection 

756 signature regions.

Chr Start 
(Mb)

Stop 

(Mb)
Distance 

(Mb)
NSNPs

† iHS 
peak‡

iHS 
mean§

Gene(s)⁋ Phenotypic 
association††

UK population
5 29.2 29.8 0.62 16 3.18 2.84 ENSCAFG00000015899; 

MMP20; MMP27; 
MMP7; 
ENSCAFG00000030873; 
BIRC2; BIRC3; YAP1; 
C11orf70; CEP126; 
ANGPTL5

-

12 68.1 68.2 0.06 2 3.22 2.96 TRAF3IP2 -
19 33.0 33.1 0.04 4 3.26 2.84 n.a. -
19 36.0 36.5 0.51 10 3.46 2.93 NCKAP5 -
19 36.8 37.0 0.19 5 3.18 2.90 n.a. -
19 37.5 37.7 0.20 6 3.48 3.19 TMEM163 -
19 38.3 38.6 0.31 9 3.19 2.79 ZRANB3; 

ENSCAFG00000005064; 
R3HDM1; UBXN4

-

19 39.5 39.5 0.03 2 3.23 2.91 n.a. -
20 57.6 57.7 0.07 3 3.18 3.10 ENSCAFG00000031730; 

ENSCAFG00000023991; 
ARHGAP45; ATP5F1D; 
CIRBP; MIDN; STK11; 
SBNO2; POLR2E

-

35 7.9 8.1 0.14 4 3.26 3.09 BMP6; TXNDC5; 
BLOC1S5; 
ENSCAFG00000009583; 
ENSCAFG00000024482

-

Swedish population
4 44.3 n.a. n.a. 1 3.09 n.a. ENSCAFG00000017171 -
4 46.9 n.a. n.a. 1 3.27 n.a. ENSCAFG00000028841 -
4 50.0 50.2 0.15 4 3.09 2.90 ATP10B -
4 52.5 n.a. n.a. 1 3.47 n.a. CLINT1 -
12 66.7 67.2 0.47 10 3.36 3.13 GPR6; WASF1; CDC40; 

METTL24; DDO; 
SLC22A16; CDK19

-

12 67.7 n.a. n.a. 1 3.13 n.a. SLC16A10 -
18 54.9 55.3 0.36 7 3.45 2.99 LRRC10B; PPP1R32; 

SYT7; PGA; DDB1; 
VWCE; 
ENSCAFG00000016314; 
SLC15A3; CD5; 
VPS37C; CD6

-
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19 50.6 n.a. n.a. 1 3.12 n.a. KIF5C -
24 42.4 42.5 0.05 3 3.33 3.05 RBM38; CTCFL -
36 30.1 30.6 0.05 6 3.11 2.82 GULP1; COL3A1; 

COL5A2
-

757 †Number of top SNPs in region
758 ‡Standardised absolute iHS of the peak SNP (in that region)
759 §Average standardised absolute iHS across the SNPs of a region
760 ⁋Genes located within and +/- 40 kb around selection signatures. Genes highlighted in bold include a 
761 SNP that belongs to the top 0.5% of the test statistic; all others are located within the region or +/- 40 
762 kb around selection signatures
763 ††There were no phenotypic associations (behaviour, coat colour or coat length) with FDR-adjusted P-
764 value<0.1 for markers located within the top ten selection signatures within populations.
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Table 2. Selection signatures that belonged to the top 1% of the distribution of at least two methods used to detect signatures of different selection between the 

GSD populations. SNPs within 200 kb were summarised into selection signature regions.

Chr Start Stop NSNPs
† Population FST

‡ ΔROHProp
§ XP-EHH⁋ Gene(s) Phenotypic 

association††

1 24024856 25483783 61 Sweden 0.12 0.46 NA ME2; MRO; MC2R; MC5R; ENSCAFG00000000172; 
ENSCAFG00000029562; ENSCAFG00000029833; 
FAM210A; LDLRAD4; ENSCAFG00000023012; 
MOXD1; ENSCAFG00000031561; CTGF

Chasing*(UK)

9 16472361 16493753 4 UK 0.09 NA 2.81 KCNJ16; KCNJ2 -
12 5349354 6130868 44 Sweden NA 0.27 3.44 BRPF3; PNPLA1; C12H6orf222; ETV7; PXT1; 

ENSCAFG00000001396; KCTD20; STK38; SRSF3; 
CDKN1A; ENSCAFG00000001418; 
ENSCAFG00000001419; CPNE5; PPIL1; C12H6orf89; 
MTCH1; PI16; FGD2

Stranger-directed 
fear**(UK)

12 6466863 6554339 7 Sweden NA 0.27 3.46 FGD2; CMTR1; ENSCAFG00000030835 Separation 
anxiety* 
(Sweden)

22 1027334 1140100 6 UK 0.08 0.26 NA RNASEH2B -
22 1683950 2496568 46 UK 0.12 0.26 NA KCNRG; TRIM13; SPRYD7; KPNA3; 

ENSCAFG00000031710; EBPL; 
ENSCAFG00000010362; RCBTB1; PHF11; SETDB2; 
CAB39L; CDADC1; ENSCAFG00000028525; MLNR; 
FNDC3A

-

24 22002778 22463326 24 UK 0.07 0.29 NA COMMD7; DNMT3B; MAPRE1; EFCAB8; SUN5; 
BPIFB2; BPIFB6; BPIFB3; BPIFB4; 
ENSCAFG00000032553; BPIFA2; 
ENSCAFG00000007369; BPIFA3; BPIFA1

Coat 
colour**(UK)

24 22908179 23816844 37 UK 0.14 0.28 NA ENSCAFG00000029918; ENSCAFG00000007430; 
ENSCAFG00000007435; ENSCAFG00000029879; 
NECAB3; PXMP4; ZNF341; CHMP4B; EIF2S2; RALY; 
ASIP; ENSCAFG00000007508; AHCY; ITCH; 
DYNLRB1; PIGU; MAP1LC3A; NCOA6; TP53INP2

Coat 
colour**(UK)
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24 24867975 25952679 64 UK 0.13 0.28 NA CNBD2; EPB41L1; AAR2; DLGAP4; MYL9; TGIF2; 
SLA2; TGIF2-C20orf24; NDRG3; DSN1; SOGA1; 
TLDC2; SAMHD1; RBL1; MROH8; RPN2; GHRH; 
MANBAL; SRC

Coat 
colour**(UK)

32 4172082 4455360 7 UK 0.09 0.27 NA ANTXR2; PRDM8 Coat 
length**(UK)

32 5350389 5399877 4 UK 0.13 0.26 NA PRKG2 Coat 
length**(UK) and 
* (Sweden)
Stranger-directed 
aggression** 
(Sweden)

32 5609507 5667788 4 UK 0.12 0.26 NA ENSCAFG00000008928; RASGEF1B Coat length** 
(UK and Sweden)

32 13000437 14125551 44 UK 0.11 0.37 NA SNCA; MMRN1; CCSER1 Coat colour* 
(UK)
Separation 
anxiety*(UK)
Stranger-directed 
aggression* 
(Sweden)

32 14527559 14597957 4 UK 0.11 0.38 NA ENSCAFG00000009954 -
32 14952127 15194499 4 UK 0.10 0.28 NA ENSCAFG00000009965 -
34 33480270 1 UK NA 0.27 2.80 -

†Number of top SNPs in region
‡Fixation index
§Differences between runs of homozygosity
⁋Cross-population extended haplotype homozygosity. 
NA indicates that this selection signature was not present in the top 1% of the test distribution
Genes highlighted in bold include a SNP that belongs to the top 1% of the test distribution; all others are located within the region or +/- 40 kb around selection 
signatures
††Significant phenotypic associations (behaviour, coat colour, coat length) for the UK and Swedish population within selection signature region. P-values were 
adjusted using False Discovery Rate (FDR), with significant associations determined as adjusted P-values <0.05 (**) and suggestive associations as adjusted 
P-values <0.1 (*). The population for which the phenotypic association was identified is specified in parentheses.
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Figure legends

Figure 1. Principal Component Analysis of the pruned genomic data. Eigenvectors for the first two 

principal components are plotted and individuals are coloured according to the population of origin. 

The variances explained by the principal components are given in parentheses.

Figure 2. Ancestry proportions of studied GSDs based on the pruned genomic data assuming three 

underlying ancestries (K = 3 clusters) as revealed by ADMIXTURE. Each cluster is represented by a 

colour and the length of the specific coloured segment indicates the dog’s proportion of membership in 

that cluster.

Figure 3. Distribution of integrated haplotype score (iHS) in the UK (upper plot) and Swedish 

population (lower plot). The red line indicates the threshold for the top 0.5% iHS.

Figure 4. Circos plot for signatures of selection between GSD populations. The plot shows the three 

statistics used to identify regions under differential selection: differences between runs of homozygosity 

(ΔROHProp, outer circle, blue track), cross-population extended haplotype homozygosity (XP-EHH, 

middle circle, green track) and the fixation index (FST, inner circle, purple track). The plot indicates 

concordant evidence in regions on Chr 1, 24 and 32, where peaks can be seen based on all three methods 

(although not within the top 1% of SNPs for XP-EHH, shown in red for the three methods).
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Appendices

Table A1. Description of German Shepherd dog populations. Summary statistics for behaviour traits 

and other dog attributes within the UK and the Swedish GSD populations.

Table A2. List of SNPs belonging to the top 0.5% of the iHS statistic in the UK and Swedish 

populations. 

Table A3. Lists of SNPs belonging to the top 1% of the FST, XP-EHH and ΔROHProp statistics and the 

SNPs that belonged to the top 1% for at least two methods.

Table A4. Significance of associations between population attributes and genetic ancestries. The 

proportion of ancestries estimated by ADMIXTURE (cluster 1, cluster 2, cluster 3) based on markers 

located within selection signature regions were fitted as fixed effects in separate linear models to test 

their association with different response variables (population attributes: behaviour traits, role of the 

dog, coat colour and coat length). The P-values for the respective models are shown in the table.

Table A5. Markers located in selection signature regions and showing significant associations (FDR-

adjusted P<0.1) with phenotypic traits (behaviour, coat colour, coat length). 

Table A6. Overlaps between genes located in selection signature regions and candidate genes for 

morphological traits and behaviour reported in other studies. A list of candidate genes in canids was 

compiled using the following references1, 2, 9, 10, 11, 26, 37, 45, 50, 51, 58, 61, 67, 76, 85-89 and was compared to genes 

located in regions detected as selection signatures in this study.

Figure A1. Ancestry proportions of GSDs based on genotypes of SNPs from putatively selected regions 

assuming three underlying ancestries (K = 3 clusters) as revealed by ADMIXTURE. Each cluster is 

represented by a colour and the length of the specific coloured segment indicates the dog’s proportion 

of membership in that cluster. The labels indicate the origin of the dog (Sweden or UK) and the coat 

colour (1 = saddle tan, 0 = sable, black or others).

Figure A2. Fine-mapping of target regions under divergent selection between German Shepherd dog 

populations. Particularly compelling regions that showed evidence of divergent selection in all three 

selection signature test statistics (SNP window-based FST, ΔROHProp, and XP-EHH) are located on Chr 

1, 24 and 32. The plots illustrate the FDR-adjusted P-values from association analyses for phenotypic 

traits (behaviour, coat colour, coat length) (above, “Regional association”) and the selection signature 

test statistics (below, “Selection signatures”) for all SNPs in these regions. The plots were created using 

a modified R code from that of Saxena et al. 2007 90.
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53 Abstract

54 Strong selection has resulted in substantial morphological and behavioural diversity across modern dog 

55 breeds, which makes dogs interesting model animals to study the underlying genetic architecture of 

56 these traits. However, results from between-breed analyses may confound selection signatures for 

57 behaviour and morphological features that were co-selected during breed development. In this study, 

58 we assess population genetic differences in a unique resource of dogs of the same breed but with 

59 systematic behavioural selection in only one population. We exploit these different breeding 

60 backgrounds to identify signatures of recent selection. Selection signatures within populations were 

61 found on chromosomes 4 and 19, with the strongest signals in behaviour-related genes.  Regions 

62 showing strong signals of divergent selection were located on chromosomes 1, 24 and 32, and include 

63 candidate genes for both physical features and behaviour. Some of the selection signatures appear to be 

64 driven by loci associated with coat colour (Chr 24; ASIP) and length (Chr 32; FGF5), while others 

65 showed evidence of association with behaviour. Our findings suggest that signatures of selection within 

66 dog breeds have been driven by selection for morphology and behaviour. Furthermore, we demonstrate 

67 that combining selection scans with association analyses is effective for dissecting the traits under 

68 selection.
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70 Introduction

71 The development of current dog breeds can be viewed as a unique long-term selection experiment to 

72 study the process of domestication1 as well as short-term evolutionary change as a consequence of 

73 intensive breeding2. While the domestication of the modern dog (Canis lupus familiaris) from wolves 

74 took place at least 15,000 years ago3, with some estimates considerably earlier (e.g. 20,000 to 40,000 

75 years ago4), the popularity of dogs has led to ongoing strict selection according to breeding schemes 

76 and standards imposed by breed associations and national kennel clubs. The establishment of 

77 genetically and phenotypically distinctive breeds by this intense artificial selection pressure has resulted 

78 in high intra-species variation for physical and physiological features, disease susceptibility and 

79 behaviour traits5–7, which makes dogs powerful models to investigate the underlying genetic 

80 architecture and signatures of selection for various traits.

81 Genetic manifestation of the development of dog breeds can be seen as selection signatures, genomic 

82 regions targeted by natural or artificial selection that exhibit various characteristics, including 

83 population differentiation, extreme linkage disequilibrium (LD) and patterns of the haplotype structure 

84 (e.g. long-range haplotypes) or mutations in coding region8. Accordingly, selection signatures between 

85 dog breeds have been reported for physical traits, domestication-related traits and some specific 

86 behaviours and have led to the identification of candidate genes, e.g. IGF1 for body size, FGF5 for coat 

87 length and HAS2 for skin wrinkling2, AMY2B, MGAM and SGLT1 for adaptation to a starch-rich diet9 

88 and TRPM3 and ROBO1 for athletic success in sport-hunting10. In a recent whole-genome sequence 

89 study of 144 modern dog breeds, positive human-imposed selection was implicated in the fixation or 

90 high prevalence within breeds of a range of morphological characteristics (e.g. ear shape, height, 

91 weight)11. These recent studies for selection signatures in dogs have focused on between-breed or dog-

92 wolf comparisons and while such studies have allowed detection of signatures related to notable 

93 physical features, signatures for more subtle traits like behaviour characteristics may be confounded 

94 with or masked by signals for the physical features, which might complicate the interpretation of these 

95 signatures as appears to be the case for association signals12.
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96 In this study, we analysed a single dog breed, the German Shepherd dog (GSD), to detect signals of 

97 selection.  The breed was established in the late 19th century by crossing multiple breeds, with the initial 

98 purpose of creating a sheep herding dog13 and later use as a general working dog within the military or 

99 police. GSDs used in this study originated from two populations, the UK and Sweden; while the UK 

100 population represented a random sample of pet, show and working dogs, the Swedish dogs were bred 

101 within a breeding program of the Swedish Armed Forces (SAF) and only dogs that pass a behaviour 

102 test can become working dogs or be used for breeding. Accordingly, in a previous study14 we showed 

103 that there were significant differences between the two GSD populations for various behaviour traits as 

104 measured in a questionnaire, e.g. aggression against strangers or dogs, chasing and playfulness. In 

105 contrast, morphological differences between populations were reduced compared to between-breed 

106 studies. We hypothesise that by comparing populations of the same breed but with different behaviour-

107 related selection strategies, we may be able to identify selection signatures for behaviour as well as 

108 those for physical traits. Furthermore, by applying multiple statistical tests for the detection of selection 

109 signatures, we have increased the power to detect true signals of selection. Nonetheless, despite the 

110 within-breed approach, one of the main difficulties that remains is the identification of the actual trait(s) 

111 under selection. We addressed this issue by characterising the relationship between selection signatures 

112 and statistical associations between genotype and phenotype (behaviour and morphological traits) from 

113 the same populations. We suggest that this approach, combining population genetics and quantitative 

114 genetics methods, may also be applicable in other contexts.
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115 Results and discussion

116 Genomic structure of populations

117 Characterising the genetic relationships between individual dogs is a valuable tool to evaluate the 

118 genetic structure of GSDs in this study. The underlying population structure in the two GSD populations 

119 (250 dogs in total) was explored by applying a principal component analysis (PCA) and ancestry 

120 estimation on a pruned SNP data set. The PCA indicated a separation between the UK and Swedish 

121 populations based on the first two principal components (PCs), which explained 2.8% and 1.9% of the 

122 genetic variance, respectively (Figure 1). With respect to PC1 and PC2, the UK dogs had a broader 

123 distribution than the Swedish GSDs, suggesting a stronger founder effect in the Swedish cohort. 

124 However, some of the UK GSDs clustered with the Swedish GSDs. The overall separation of the two 

125 populations is likely due to the geographical separation and thus primarily independent pedigrees but 

126 may also reflect the more recent origins of the Swedish population, with the SAF as the only breeder 

127 and the primary goal to breed good working dogs. The partial overlap between the two populations is 

128 likely due to the use of external dogs in the SAF breeding program, leading to some shared ancestry. A 

129 visual assessment of the ancestry estimation based on the ADMIXTURE program15 (Figure 2) also 

130 revealed a clear discrimination between the UK and Swedish populations. The lowest cross-validation 

131 error of 0.55 was identified for three clusters (K=3), with the blue cluster primarily associated with the 

132 Swedish population and the red and green clusters primarily associated with the UK population. 

133 The average inbreeding coefficient calculated based on runs of homozygosity (FROH) was 0.29 ± 0.02 

134 (standard deviation; SD) for Swedish GSDs and 0.31 ± 0.05 for UK GSDs. The significantly lower 

135 inbreeding estimate (P < 0.05) in the Swedish population might be a consequence of a strategic breeding 

136 scheme by the Swedish Armed Forces (SAF). The average nucleotide diversity (µ) was 0.30 ± 0.16 for 

137 both populations. 
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139 Selection signatures within populations 

140 Selection signatures can be detected within populations by identifying distinctive patterns of linkage 

141 disequilibrium (LD). In the event of selective sweeps, favourable genetic variants increase in frequency 

142 and form extended haplotypes with neighbouring genomic regions due to LD, as reviewed in Ref. 16. 

143 We computed the integrated haplotype score (iHS), which is a variation of the extended haplotype 

144 homozygosity (EHH) statistic that aims to detect recent and incomplete selective sweeps within 

145 populations17. In total, 197 and 142 regions with extreme EHH were detected within the UK and 

146 Swedish GSD population, respectively. A list of SNPs belonging to the top 0.5% of the iHS statistic in 

147 the UK and Swedish populations is given in Table A2. The iHS statistic identified similar selection 

148 signatures in both populations, but the most extreme values differed between populations, as shown by 

149 the ten regions with the highest iHS statistics (Figure 3, Table 1). Regions with the highest iHS for the 

150 UK population were located on Chr 19 at 36.0 – 36.5 Mb and 37.5 – 37.7 Mb. A single marker on Chr 

151 4 at 52.5 Mb showed the highest iHS in the Swedish population, followed by a region on Chr 18 at 54.9 

152 – 55.3 Mb. The SNPs identified by iHS were further tested for their association with different traits 

153 (coat colour, coat length and behaviour) separately for each population to identify the putative trait 

154 under selection.

155 The genes located within or closest to the ten most extreme values of iHS (positional candidate genes) 

156 identified within populations (Table 1) have been previously associated with behaviour. Regarding 

157 those on Chr 19, variants in TMEM163 (transmembrane protein 163) were associated with active 

158 behaviour in an open-field test involving cattle18. However, TMEM163 is also a functional candidate 

159 for physical features, e.g. for eye width and depth19 and hair colour20 in humans. NCKAP5 (NCK 

160 associated protein 5) was also identified as candidate gene for temperament in cattle21 and has been 

161 associated with numerous neurological conditions in humans22–24.

162 The iHS peak on Chr 4 in the Swedish population points to the CLINT1 (Clathrin Interactor 1) gene. 

163 This gene is reported to be among the top risk genes for the susceptibility to schizophrenia in humans25 
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164 and markers near CLINT1 were suggestive peaks associated with barking tendency in a genome-wide 

165 association study of behaviour traits in Labrador retrievers26.

166 We conducted a gene list enrichment analysis with Enrichr27,28 of the 256 and 338 genes that were 

167 located in and close to (within 40 kb of) the regions of the top 0.5% iHS in the UK and Swedish 

168 populations, respectively. No pathways were significantly enriched after accounting for multiple 

169 testing, however, Panther pathway analyses indicated nominally significant (P < 0.05) functional 

170 enrichment of several pathways for the UK population: “heterotrimeric G-protein signalling -Gi alpha 

171 and Gs alpha mediated” (P = 0.01; genes: GRK4, GRK7, RGS12, ADCY2, ADRA2C, DRD2), 

172 “Alzheimer disease-presenilin” (P = 0.02; TRPC6, MMP7, MMP27, RBPJ, MMP20), “heterotrimeric 

173 G-protein signalling -Gq alpha and Go alpha mediated” (P = 0.02; GRK4, GRK7, CACNA1A, RGS12, 

174 DRD2), “ionotropic glutamate receptor” (P = 0.03; CACNA1A, SLC17A8, GRIA4) and “axon guidance 

175 mediated by semaphorins” (P = 0.03; CRMP1, FYN). All of these functions have been shown to be 

176 relevant for behaviour among other functions, e.g. heterotrimeric G proteins in mood disorders, as 

177 reviewed in Ref. 29, ionotropic glutamate receptors for long term synaptic plasticity, as reviewed in 

178 Ref. 30, 31 and semaphorins in neuronal structure, as reviewed in Ref. 32. Nominally significant 

179 pathways for the Swedish population were “5-Hydroxytryptamine degradation” (P = 0.003; ALDH3A2, 

180 ALDH3A1), “apoptosis signaling” (P = 0.01; MAP2K3, CASP9, DAXX, BAK1, BIRC2, BIRC3) and 

181 “Thyrotropin-releasing hormone receptor signaling” (P = 0.03; PLCE1, STX3, TRHR). 5-

182 hydroxytryptamine (serotonin) is an important neurotransmitter and plays a key role in numerous 

183 behavioural disorders and characteristics, e.g. depression33 and aggressiveness34.

184

185

186
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188 Selection signatures between populations

189 Another approach to identify signatures of selection is the comparison of genetic variation (e.g. allele 

190 frequencies or haplotype structure) between different populations. Accordingly, signatures of 

191 differential selection between the two GSD populations were analysed employing three different tests: 

192 the fixation index (FST), the cross-population extended haplotype homozygosity (XP-EHH) and 

193 differences between ROH (ΔROHProp). FST was calculated to determine genetic differentiation between 

194 UK and Swedish GSD populations. Low genome-wide genetic differentiation was detected for the 

195 single SNP-based statistic (FST = 0.021 ± 0.029) and for the SNP window-based statistic (FST = 0.021 ± 

196 0.016), consistent with previous within-dog-breed estimates 35. 

197 We scanned the genome for regions of genetic differentiation within overlapping 1 Mb windows and 

198 found 17 distinctive peaks that comprise the top 1% window-based FST values on Chr 1, 9, 20, 22, 24, 

199 29, 30 and 32, with values ranging from 0.07 to 0.16 (Table A3). The highest FST value (0.16) was 

200 found for a region on Chr 24 (22.0 – 24.5 Mb), which contains 46 genes. Among these genes are several 

201 with functions in physical characteristics and behaviour, e.g. SPAG4 and SUN5 involved in cytoskeletal 

202 anchoring, NCOA6 involved in glucocorticoid and corticosteroid receptor signalling and ASIP and 

203 RALY associated with skin and fur pigmentation. Furthermore, seven members of the 

204 bactericidal/permeability-increasing (BPI) fold-containing (BPIF) superfamily of genes are located in 

205 this region (BPIFB2, BPIFB6, BPIFB3, BPIFB4, BPIFA2, BPIFA3, BPIFA1 and BPIFB1). It was 

206 shown that these genes play a role in the innate immune system and lipoprotein metabolism, but also in 

207 the brain’s response to oxidative stress (ageing), relevant for neuropsychiatric diseases36. Interestingly, 

208 high FST for Labrador retriever populations differentiated based on their coat colour and function 

209 (gundog and showdog) was also detected in the same region on Chr 24 (22.4 – 22.8 Mb) in a previous 

210 study37. 

211 While the FST statistic detects differences in allele frequencies between populations, the XP-EHH test, 

212 an approach based on linkage disequilibrium, is designed to detect regions that are fixed (or nearly 

213 fixed) in one population but remain segregating in the other population. Extreme high (positive) and 
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214 low (negative) scores are indicators of a region under strong positive selection in the UK and Swedish 

215 population, respectively. The region including the SNP with the highest score (3.4) for the UK 

216 population was located on Chr 35 (11.0 - 11.5 Mb) and contains three genes (NEDD9, ADTRP, and 

217 TMEM170B) (Table A3). The NEDD9 (Neural Precursor Cell Expressed, Developmentally Down-

218 Regulated 9) gene has been shown to be associated to cognitive impairment in mice38, ADTRP is 

219 important for vascular development and function in mouse and zebrafish39 and TMEM170B has been 

220 reported to be downregulated in TCGA human breast cancer data40. The region with the highest absolute 

221 score (3.8) for the Swedish population was located on Chr 12 (3.6-7.5 Mb). This region contains 59 

222 genes; RNF8 and TBC1D22B are closest to the SNP with the most extreme score. The ubiquitin gene 

223 RNF8 (ring finger protein 8) plays a role in the immune system and has also been linked to autism; a 

224 recent study in RNF8 knockout mice indicated a role of this gene in synapse formation and cerebellar-

225 dependent learning abilities41. The function of TBC1D22B is largely unknown but it may encode a 

226 GTPase-activating protein. 

227 As a third approach to identifying differential selection between the populations, we identified the 

228 regions showing differences in extended homozygosity. To identify these selection signatures, [EA: 

229 added a comma] we calculated the between-population differences in runs of homozygosity 

230 (ΔROHProp), which describes the difference in the proportion of dogs with an ROH of a specified length 

231 at a given SNP. The average ΔROHProp value across the genome was low (0.07 ± 0.06), indicating 

232 considerable overlap of ROH between the UK and Swedish populations. However, some regions with 

233 ROH were predominantly present in only one population (Table A3). The highest absolute ΔROHProp 

234 indicating selection signatures in the UK population were found on Chr 17 and 32: the ROH mapped to 

235 Chr 17 (8.3 - 8.4 Mb) and Chr 32 (13.3 - 13.4 Mb) were present in over 70% of the UK dogs but less 

236 than 40% of the Swedish dogs. The genes located in these regions are GREB1, NTSR2, and LPIN1 on 

237 Chr 17, with no characterised genes in the Chr 32 region. The neurotensin gene NTSR2 is involved in 

238 dopamine modulation and a SNP in this gene has been tested in a polygenic model of highly sensitive 

239 personality in humans42. LPIN1 plays a prominent role in lipid metabolism regulating adipocyte 

240 differentiation and co-regulating other genes involved in lipid metabolism. The highest absolute 

Page 81 of 110 Genetics & Genomics Next



12

241 ΔROHProp indicating selection signatures in the Swedish population was found on Chr 1: a ROH mapped 

242 to Chr 1 (24.7 to 25.5 Mb) was present in 90% of the Swedish dogs but only in 42% of the UK dogs 

243 and contains the genes LDLRAD4, MOXD1 and CTGF (see below).

244 Target regions for divergent selection signatures between populations

245 In the detection of selection signatures, the application of multiple approaches is recommended to 

246 reduce the rate of false positive signals16. To identify target regions under differential selection in the 

247 two GSD populations, we selected regions from the 99th percentile (top 1%) of each score distribution 

248 (SNP window-based FST, ΔROHProp, and XP-EHH) and searched for intersecting signals between two 

249 or three of the approaches. Using this criterion, we identified 433 SNPs (Table A3), with the greatest 

250 overlap between the SNP window-based FST and ΔROHProp statistics (374 SNPs). No SNPs were 

251 detected by all three approaches. The 433 SNPs were located in 16 candidate selected regions on Chr 

252 1, 9, 12, 22, 24, 32 and 34, which harbour 114 genes in total (Table 2; Figure 4). One Panther pathway 

253 was nominally significantly (P < 0.05) enriched by these 114 genes: “p53 pathway feedback loops” (P 

254 = 0.03; CDKN1A, RBL1). The SNPs identified as under divergent selection by these analyses were 

255 further tested for their association with different traits (coat colour, coat length and behaviour) 

256 separately for each population to identify the putative trait under selection.

257 A visual inspection of the Circos plot (Figure 4), which illustrates the results for the three approaches, 

258 indicates regions on Chr 1, 24 and 32 where peaks can be seen based on all three methods, although not 

259 belonging to the top 1% for XP-EHH. Linear plots for these three regions illustrate the results from 

260 association analyses for traits with SNPs located in that region that have adjusted P < 0.1 (“Regional 

261 association”) and the selection signature test statistics (“Selection signatures”) (Figure A2). The specific 

262 population showing evidence of selection can be determined by the ΔROHProp or XP-EHH score. Three 

263 regions showing evidence of selection in the Swedish population are located on Chr 1 (24.0 – 24.1, 24.4 

264 – 25.1 and 25.3 – 25.9 Mb; 17 genes), each harbouring several interesting candidate genes. The 

265 LDLRAD4 (low density lipoprotein receptor class A domain containing 4) gene inhibits transforming 

266 growth factor-β signalling43 and is a putative schizophrenia-related gene44. Another growth factor-
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267 related gene in this region is CTGF (connective tissue growth factor). Other candidates for genes under 

268 selection in this region are the G-protein-associated melanocortin receptor genes MC2R and MC5R. 

269 MC2R (also known as the adrenocorticotropic hormone receptor gene, ACTHR) is a major modulator 

270 of glucocorticoid secretion regulation. MC5R has been associated with a range of phenotypes, including 

271 shedding and fur length in dogs45, fatness in pigs, reviewed by Ref. 46, and psychiatric disorders in 

272 humans47. It was also differentially expressed in the brains of aggressive and tame foxes48. These 

273 reported associations with different traits highlight one of the difficulties in identifying phenotypic 

274 targets of selection. In our analysis, we found no significant associations (FDR-adjusted P < 0.05) 

275 between any of the selection signatures on Chr 1 with behaviour traits, coat colour or coat length, but 

276 there was a suggestive association (FDR-adjusted P < 0.1) with chasing behaviour in the UK population 

277 (Table 2). Regarding fur shedding, GSDs as a breed are considered to be shedders, making it unlikely 

278 that there are large differences between the two populations for this trait.

279 Regions showing evidence of selection in the UK population are located on Chr 24 and 32. The Chr 24 

280 candidate region under selection (22.9 – 23.8 Mb; 18 genes) in the UK population comprises well-

281 known genes associated with black-and-tan and saddle-tan coat colour in dogs (ASIP, RALY)49,50. We 

282 found highly significant associations in between coat colour and SNPs in this region showing evidence 

283 of selection (Table 2, Figure A2). The saddle and tan/ black and tan coat colour was the dominant coat 

284 colour in the UK GSDs while sable was predominant in the Swedish population (Table A1). The region 

285 on Chr 32 (5.4 – 5.7 Mb; 3 genes) encompasses two behaviour- and growth-related candidate genes: 

286 PRKG2 and RASGEF1B. RASGEF1B (RasGEF domain family member 1B) has been identified as a 

287 positional candidate gene for dog rivalry in a genome-wide association study across multiple dog 

288 breeds51. Several case studies have been carried out in humans on chromosomal diseases related to a 

289 microdeletion of loci homologous to the region on Chr 4 comprising the PRKG2 and RASGEF1B 

290 genes52–54. The loss of these genes leads to growth restriction, aggression, self-injurious behaviours and 

291 mental retardation in affected individuals. The association analysis revealed a significant association 

292 between SNPs in this region and aggressive behaviour towards strangers in the Swedish GSD 

293 population and PRKG2 has previously been reported as a top candidate gene for anxiety in mice55. 
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294 However, the region on Chr 32 is in close proximity to the BMP3 gene associated with skull 

295 morphology56 and the FGF52 gene associated with coat length in dogs. Regarding BMP3, differences 

296 in skull morphology have not previously been identified in GSDs nor have they been shown to carry a 

297 derived allele in this gene previously associated with brachycephaly56, thus selection on skull 

298 morphology seems unlikely. However, we also found a highly significant association with coat length 

299 in both populations (Table 2, Figure A2), suggesting that this trait drives the selection signature on Chr 

300 32 (via FGF5). 

301 Which traits are under selection?

302 One of the main difficulties in interpreting genomic selection signatures is the identification of the 

303 actual trait(s) under selection. In dogs, the traits under selection are assumed to be primarily related to 

304 physical traits (e.g. skull shape, coat colour, body size) and/or behaviour57. While between-breed studies 

305 have greatly contributed to the understanding of the genetic control of physical traits11,58, addressing 

306 behaviour genetics by performing across-breed selection signature analyses is likely to be challenging 

307 because breeds differ in multiple characteristics, including both behaviour and these physical traits, 

308 many of which show Mendelian inheritance and thus tend to show very strong signals. 

309 We employed several approaches to characterise the relationship between the detected selection 

310 signatures and phenotypic traits that were recorded for these populations. First, we repeated the 

311 ADMIXTURE analysis using only genotypes from SNPs identified as selection signatures (Figure A1) 

312 and fitted the ancestry assignment probabilities to the three individual clusters that were detected as 

313 factors in linear models for the phenotypes. We observed significant associations between UK 

314 (primarily associated with cluster 1) and Swedish (cluster 3) ancestries and some behaviour traits 

315 (Stranger-directed interest, Dog-directed fear) (Table A4). Furthermore, highly significant associations 

316 were identified between the ancestries and other dog characteristics, including the function of the dog 

317 (working, pet or show dog), coat length and coat colour (Table A4). These results demonstrate a 

318 statistical association between these phenotypes and the dog’s genotypes in the selection signature 

319 regions.
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320 We then performed association analyses for behaviour traits, coat length and coat colour within each 

321 population only for markers within selection signature regions. We identified 87 SNPs with FDR-

322 adjusted P < 0.05 associated with coat length, coat colour, human-directed playfulness, stranger-

323 directed aggression, stranger directed fear and dog-directed fear (Table A5) in at least one of the 

324 populations. The striking significant associations for coat colour (lowest FDR-adjusted P = 3.37x10-14) 

325 and coat length (lowest FDR-adjusted P =   1.13x10-25), comprising regions on Chr 24 and 32, 

326 respectively, have previously been identified for these traits49,59–61 (Table 2).

327 As discussed above, previous studies on selection signatures in dogs have generally focused on inter-

328 breed or dog-wolf comparisons and primarily detected selection signatures (and thus candidate genes) 

329 for physical features, e.g. body size, coat characteristics and skeletal morphology2,11,58. Some studies, 

330 however, also identified signatures for neural crest development1 or brain function and nervous system 

331 development9, which might be relevant for behaviour especially in regard to domestication. We 

332 compiled a list of candidate genes reported in previous genomic analyses of phenotype associations and 

333 selection signatures in canids (dogs, wolves, foxes) focused on morphology and behaviour and 

334 compared them to genes located in regions showing evidence of selection in our study (Table A6, note 

335 that the number of overlapping genes is not informative for identifying the trait under selection because 

336 the number of reported candidate genes differs substantially between studies). The biological functions 

337 of genes in common between the two lists are diverse and include a number of genes that have been 

338 associated with behaviour. Major candidate genes for physical features in dogs, e.g. IGF1, SMAD2, 

339 FGF5 and BMP3, as reviewed in Ref. 7, were not detected within selection signatures in our study. 

340 However, FGF5, which has previously been associated with coat length, is located in close proximity 

341 to the selection signature on Chr 32 and we detected a highly significant association with coat length 

342 for this region (BMP3, associated with skull morphology, is also located near this region, but as 

343 discussed above, our data does not support a signature of selection associated with this trait). We also 

344 detected well-described genes associated with coat colour (Chr 24:  ASIP, RALY). Together these results 

345 suggest that selection for morphological traits (coat length and coat colour) has driven differences 

346 between the two populations in the genomic regions on Chr 24 and 32. In contrast, the region we 
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347 detected on Chr 1 showed an association with Chasing in the UK population and comprises candidate 

348 genes with functions in behaviour, but was not associated with morphological traits that we measured. 

349 Moreover, some of the selection signature regions showed associations with both morphological and 

350 behaviour traits, e.g. the region on Chr 32 was associated with both Stranger-directed aggression and 

351 coat length in the Swedish population (Table 2). Furthermore, genes associated with physical 

352 appearance like ASIP have previously been associated with behaviour traits, e.g. social behaviour in 

353 mice62. Thus, [EA: added a comma] it is possible that some of the selection signatures we detected are 

354 also associated with multiple traits.

355

356 Limitations of the study

357 By comparing UK and Swedish GSDs, we hypothesised that we would be able to detect selection 

358 signatures for behaviour because behaviour was the main selection target in the Swedish population. 

359 However, we found that the geographical origin of the dogs was confounded with other attributes, e.g. 

360 coat colour and length. We addressed the issue of which trait(s) were under selection by characterising 

361 the relationship between selection signatures and associations with phenotypic attributes (behaviour, 

362 coat length, coat colour), recognizing that the sample size for the association analyses within 

363 populations was small and therefore these results should be interpreted with caution. In addition, 

364 measurements on other morphological traits (e.g. body size and weight) were not available, but these 

365 might also be under selection and should be considered in future studies. We conclude that our study of 

366 German Shepherd dogs has identified selection signatures probably driven by selection for coat colour 

367 and length (e.g. at the ASIP and FGF5 genes) as well as other signatures that may be related to 

368 differential selection for behaviour between the Swedish and UK populations. Functional analyses are 

369 needed to test whether the identified candidate genes within regions showing evidence of selection do 

370 influence dog behaviour characteristics.
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371 Material and methods

372 SNP genotyping and quality control

373 DNA was extracted from saliva samples collected with Performagene PG-100 swabs (UK population) 

374 or blood samples (Swedish population). The genotyping was performed using the CanineHD Whole-

375 Genome Genotyping BeadChip63 featuring 172,115 SNPs. The data was filtered for sample call rate of 

376 > 90%, SNP [EA: removed an extra space] call rate > 98%, reproducibility (GTS) > 0.6 and low or 

377 confounded signal characterised by AB R mean (mean normalized intensity of the AB cluster) > 0.3 in 

378 GenomeStudio version 2.0.  Minor allele frequency filtering of > 0.01 was used to include rare but 

379 informative variants, leaving a final dataset of 108,817 SNPs for analyses. Genotype information was 

380 available for 741 GSDs. Following further sample-based quality control, closely related dogs were 

381 removed following the procedure described in Chen et al.64. Briefly, a pruned genotype data set to 

382 remove closely related dogs was created for SNPs with MAF > 0.05 using PLINK version 1.965: based 

383 on the variance inflation factor, a function of the multiple correlation coefficient of a given SNP 

384 regressed on all other SNPs within a window (using default parameters: window size = 50 SNPs, 

385 overlapping SNPs for shifting windows = 5, the variance inflation factor threshold = 2). Then, GCTA 

386 version 1.24.766 was used to compute the genetic relationship matrix and to remove one dog per pair 

387 with a genetic relationship higher than 0.2 (equivalent to 2nd degree or closer relatives) leaving a final 

388 set of 182 UK and 68 Swedish GSDs for subsequent analyses.

389 Samples and phenotypes

390 The GSDs used in this analysis originated from the UK and Sweden. For the UK population, GSDs that 

391 were at least two years old and registered with the UK Kennel Club were recruited via email to 

392 participate in a study on behaviour genetics14,67. GSDs from the UK population were bred by multiple 

393 breeders and primarily were pet dogs. All GSDs from the Swedish population were bred within the 

394 breeding program of the Swedish Armed Forces (SAF) starting in 2004 with the purpose of becoming 

395 working dogs. The strongest systematic selection pressure in the SAF breeding program is for behavior 
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396 traits. Briefly, puppies were raised at the SAF, weaned at the age of 8 weeks and then fostered by 

397 members of the Swedish public68. After a behaviour test at the age of 15-18 months, some dogs started 

398 working with the SAF, Swedish Police or other authorities and companies, and/or were selected as 

399 breeding animals, whereas others were kept as pet dogs. For the Swedish population, owners, trainers 

400 or handlers of GSDs bred within the breeding program of the SAF were invited via email or letter to 

401 participate in the study. Several phenotypes were analysed. Data on GSD behaviour was assessed using 

402 the Canine Behaviour and Research Questionnaire (C-BARQ)69. The C-BARQ consists of questions 

403 related to training and obedience, aggression, fear and anxiety, separation-related behaviour, 

404 excitability, attachment and attention seeking, and miscellaneous behaviours. To calculate the 

405 behaviour traits, a principal component analysis (PCA) was applied to the data to condense the questions 

406 to a smaller number of 13 components, as described in Ref. 14. The dogs’ scores for the 13 components, 

407 adjusted for fixed effects (excluding cohort) as described in Ref. 67, were considered as adjusted 

408 behaviour traits in the subsequent analyses. Other dog characteristics (e.g. sex, coat colour, coat length, 

409 role) were assessed using a lifestyle survey14. Summary statistics for behaviour traits and other 

410 characteristics within the two GSD populations are given in supplementary material (Table A1).

411

412 Genomic structure of populations

413 To characterise the genomic structure of the GSD populations, a principal component analysis (PCA) 

414 and a cluster analysis were performed. PLINK version 1.965 with default parameters was used to create 

415 a pruned SNP dataset with reduced linkage disequilibrium (LD) between SNPs, leaving a pruned dataset 

416 of 9,180 SNPs. This dataset was employed only to characterise the genomic structure of populations, 

417 via PCA and ADMIXTURE analyses. The PCA was performed in PLINK version 1.9 65 and ancestry 

418 estimation was performed using ADMIXTURE version 1.3.015.  The best number of clusters (K) was 

419 determined by comparing 5-fold cross-validation (CV) errors.

420 Inbreeding, heterozygosity and nucleotide diversity were calculated within both GSD populations on 

421 the final dataset of 108,817 SNPs. To determine inbreeding coefficients based on runs of homozygosity 
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422 (FROH), runs of homozygosity (ROH) were computed in PLINK version 1.965 using the default settings 

423 of a ROH length of 1000 kb and a window size of 65 SNPs, as in Pfahler and Distl70. The inbreeding 

424 was then estimated as the individual’s total ROH length divided by the total genome length.  ROH-

425 based methods have been shown to perform best in relation to the true inbreeding71. Finally, nucleotide 

426 diversity (Nei’s µ) was calculated per SNP using the --pi specifier in VCFtools72.  

427 Identification of selection signatures

428 Within populations

429 Signatures of selection within the two GSD populations were identified using the integrated haplotype 

430 score (iHS) statistic, which measures the extended haplotype homozygosity (EHH) in the genome as an 

431 indicator of selective sweeps. The iHS statistic is based on the integrated EHH (iHHi), which is the 

432 integral of the observed decay of EHH away from a specified core allele i until the EHH reaches a 

433 specified cut-off. Phased genotypes of the final SNP dataset generated by Beagle version 4.173 (the 

434 phasing in Beagle was performed without specifying a reference population) were used to compute the 

435 SNP-wise iHS statistic using hapbin74, specifying that the iHH should be calculated up to the point at 

436 which EHH drops below 0.05 (--cutoff 0.05). As in Voight et al.17, the standardized iHS (iHS) for a 

437 SNP was calculated as

438 𝑖𝐻𝑆 =
𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑖𝐻𝑆 ―  𝜇𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑖𝐻𝑆

𝜎𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑖𝐻𝑆

439 where the  is ln(iHHi/iHHj) for alleles i and j, and  and  are the mean and the 𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑖𝐻𝑆 𝜇 𝜎

440 standard deviation of the unstandardized iHS estimated from the empirical distribution of SNPs for 

441 which the derived allele frequency matches the frequency at the core SNP.

442 Between populations
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443 To detect divergent signatures of selection between populations, three different approaches were used: 

444 the fixation index (FST), cross-population extended haplotype homozygosity (XP-EHH) and differences 

445 between runs of homozygosity (ROH). 

446 First, the FST analysis was performed using the script described in Talenti et al.75. The FST between UK 

447 and Swedish dogs was calculated for each SNP according to the formula reported by Karlsson et al.76, 

448 which is a comparison of the allele frequencies between populations:

449 𝐹𝑆𝑇 =  
𝑓𝑈𝐾

1 (𝑓𝑆
2 ― 𝑓𝑈𝐾

2 ) + 𝑓𝑆
1(𝑓𝑈𝐾

2 ― 𝑓𝑆
2)

(𝑓𝑈𝐾
1 ∗ 𝑓𝑆

2) +  (𝑓𝑈𝐾
2 ∗ 𝑓𝑆

1)

450 where  and  are frequencies in the UK population for the two alleles and  and  are allele 𝑓𝑈𝐾
1 𝑓𝑈𝐾

2 𝑓𝑆
1 𝑓𝑆

2

451 frequencies in the Swedish population. Next, the mean FST was calculated in 1 Mb sliding windows 

452 (window-based FST) with an overlap between windows of 500 kb, resulting in each SNP being located 

453 in exactly one or two windows. To derive a SNP-based value (to select the top 1% for calculating the 

454 intersection with other methods as described below), we averaged the window-based FST for the one or 

455 two windows in which the SNP was found. 

456 Second, the XP-EHH statistic77 was calculated to compare the EHH between populations, i.e. whether 

457 alleles are homozygous in one population and polymorphic in the other population. The XP-EHH 

458 statistic was calculated for the UK and Swedish populations using phased haplotypes generated by 

459 Beagle version 4.173 in hapbin74, as described above.

460 For the third approach, ROH were computed in PLINK version 1.965. We ran the analysis with the 

461 default settings of a ROH length of 1000 kb and a window size of 65 SNPs, as described above70. For 

462 every SNP, a homozygosity score (ROHProp) was calculated by dividing the number of dogs with a ROH 

463 at a specific SNP by the total number of dogs, such that ROHProp ranges from 0 to 1, as described in 

464 Bertolini et al.78. The absolute difference between ROHProp between populations (ΔROHProp) was used 

465 as statistic to determine which ROH are highly represented in one population but underrepresented in 
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466 the other population. Therefore, for every SNP, ΔROHProp values were calculated to identify ROH that 

467 are present in the majority of dogs in one population but not in the other. 

468 Gene identification and Gene ontology (GO) analysis

469 To detect putative genomic regions showing evidence of selection, the most extreme values from the 

470 test statistics were selected for both the within- and between-population analyses to define selection 

471 signatures. For iHS, SNPs belonging to the top 0.5% of the distribution were selected. For FST, XP-

472 EHH and ΔROHProp, the top 1% of each test distribution were selected and the overlap between these 

473 top SNPs was determined to identify SNPs that had most extreme values for at least two of the three 

474 methods, to reduce the chance of false positive signals. We chose a less stringent threshold for top SNPs 

475 for between-population statistics to allow for greater overlap since the three approaches differ in their 

476 methodologies and thus the ranking of top SNPs will vary. For a visual representation of target regions 

477 under selection between populations, the visualisation tool Circos79 was used. For every SNP, the 

478 ΔROHProp and XP-EHH scores were plotted. Since the FST was calculated as a window-based average 

479 and Circos required a SNP-based value, we averaged the window-based FST for the one or two windows 

480 [EA: added an s] in which the SNP was found, as described above.

481 The pairwise distances between the top SNPs were calculated and SNPs located within 200 kb were 

482 merged into a region. The distance of 200 kb was determined based on the linkage disequilibrium in 

483 the genome. First, the squared correlation (r2) between all pairs of SNPs within 10Mb was calculated 

484 in PLINK version 1.965. The average r2 was then calculated for bins of increasing distance between 

485 SNPs to identify the distance around SNPs at which average r2 drops below 0.5. The longest bin for 

486 which average r2 ≥ 0.5 was 200 kb.

487 To characterise functional relevance of regions showing evidence of selection, the top SNPs or regions 

488 (if multiple SNPs were found within 200 kb) were annotated for genes based on the CanFam3.1 genome 

489 assembly80, using BEDtools 2.27 software81. SNPs were annotated considering a flanking region of ± 

490 40kb, chosen based on the average between-marker distance of the array (~20kb), which was doubled 

491 to account for non-evenly spaced SNPs and SNPs lost through quality-control filtering. The genes 

Page 91 of 110 Genetics & Genomics Next



22

492 detected for these selection signatures were then submitted to Enrichr27,28 to perform gene set 

493 enrichment analyses. Enrichr is an integrative web-based application that compares submitted gene lists 

494 to various gene-set libraries; the standard Fisher exact test option was used to calculate P-values for this 

495 study.

496 Characterising trait(s) under selection

497 We employed two approaches to gain insights into the trait(s) under selection, as detected as genomic 

498 selection signatures: (I) we modelled behaviour traits and other dog characteristics as a function of the 

499 dog’s ancestry based on selection signature regions and (II) we analysed the association within each 

500 population between these traits and SNP markers in these regions. For both approaches, we compiled a 

501 genotype data set of SNPs within the regions showing evidence of selection; this included SNPs 

502 belonging to the top 0.5% of the iHS distribution in UK and Swedish populations and SNPs belonging 

503 to the top 1% of FST, XP-EHH and ΔROHProp distributions that overlapped between at least two methods. 

504 For (I), we repeated the ADMIXTURE analysis as described above, but only used genotypes of SNPs 

505 from putatively selected regions to estimate the ancestry. Then, a linear regression was performed, as 

506 described in Ref. 82, to model the relationship between the traits and ancestry assignment probabilities.

507 For (II), we analysed the association between the traits and SNP markers within the regions showing 

508 evidence of selection, separately for each population. Behaviour traits were adjusted based on other 

509 fixed effects as defined in the previous study67 and treated as quantitative traits, while coat colour 

510 (“saddle tan”, ”sable”, ”black”, ”other”) and coat length (“long”, ”short”) were treated as categorical 

511 traits and not corrected for environmental factors. The association analysis was performed using 

512 GEMMA83, fitting the genomic relationship matrix (based on 108,817 genome-wide SNPs) as a random 

513 effect to account for population stratification. To correct for multiple testing, P-values were adjusted 

514 using the false discovery rate (FDR). 
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515 Data availability

516 Genotype and phenotype data for the UK dogs is available under CC-BY license from the Dryad Digital 

517 Repository84 [AU: please ensure this link is live prior to production – ED] . 

518 The data for the Swedish dogs is restricted by the Swedish Armed Forces for reasons of national 

519 security.

520
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789 Tables

790 Table 1. Top selection signatures within the UK and Swedish GSD populations, showing the ten highest 

791 integrated haplotype score (iHS) statistics. SNPs within 200 kb were summarised into selection 

792 signature regions.

Chr Start 
(Mb)

Stop 

(Mb)
Distance 

(Mb)
NSNPs

† iHS 
peak‡

iHS 
mean§

Gene(s)⁋ Phenotypic 
association††

UK population
5 29.2 29.8 0.62 16 3.18 2.84 ENSCAFG00000015899; 

MMP20; MMP27; 
MMP7; 
ENSCAFG00000030873; 
BIRC2; BIRC3; YAP1; 
C11orf70; CEP126; 
ANGPTL5

-

12 68.1 68.2 0.06 2 3.22 2.96 TRAF3IP2 -
19 33.0 33.1 0.04 4 3.26 2.84 n.a. -
19 36.0 36.5 0.51 10 3.46 2.93 NCKAP5 -
19 36.8 37.0 0.19 5 3.18 2.90 n.a. -
19 37.5 37.7 0.20 6 3.48 3.19 TMEM163 -
19 38.3 38.6 0.31 9 3.19 2.79 ZRANB3; 

ENSCAFG00000005064; 
R3HDM1; UBXN4

-

19 39.5 39.5 0.03 2 3.23 2.91 n.a. -
20 57.6 57.7 0.07 3 3.18 3.10 ENSCAFG00000031730; 

ENSCAFG00000023991; 
ARHGAP45; ATP5F1D; 
CIRBP; MIDN; STK11; 
SBNO2; POLR2E

-

35 7.9 8.1 0.14 4 3.26 3.09 BMP6; TXNDC5; 
BLOC1S5; 
ENSCAFG00000009583; 
ENSCAFG00000024482

-

Swedish population
4 44.3 n.a. n.a. 1 3.09 n.a. ENSCAFG00000017171 -
4 46.9 n.a. n.a. 1 3.27 n.a. ENSCAFG00000028841 -
4 50.0 50.2 0.15 4 3.09 2.90 ATP10B -
4 52.5 n.a. n.a. 1 3.47 n.a. CLINT1 -
12 66.7 67.2 0.47 10 3.36 3.13 GPR6; WASF1; CDC40; 

METTL24; DDO; 
SLC22A16; CDK19

-

12 67.7 n.a. n.a. 1 3.13 n.a. SLC16A10 -
18 54.9 55.3 0.36 7 3.45 2.99 LRRC10B; PPP1R32; 

SYT7; PGA; DDB1; 
VWCE; 
ENSCAFG00000016314; 
SLC15A3; CD5; 
VPS37C; CD6

-
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19 50.6 n.a. n.a. 1 3.12 n.a. KIF5C -
24 42.4 42.5 0.05 3 3.33 3.05 RBM38; CTCFL -
36 30.1 30.6 0.05 6 3.11 2.82 GULP1; COL3A1; 

COL5A2
-

793 †Number of top SNPs in region
794 ‡Standardised absolute iHS of the peak SNP (in that region)
795 §Average standardised absolute iHS across the SNPs of a region
796 ⁋Genes located within and +/- 40 kb around selection signatures. Genes highlighted in bold include a 
797 SNP that belongs to the top 0.5% of the test statistic; all others are located within the region or +/- 40 
798 kb around selection signatures
799 ††There were no phenotypic associations (behaviour, coat colour or coat length) with FDR-adjusted P-
800 value<0.1 for markers located within the top ten selection signatures within populations.
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Table 2. Selection signatures that belonged to the top 1% of the distribution of at least two methods used to detect signatures of different selection between the 

GSD populations. SNPs within 200 kb were summarised into selection signature regions.

Chr Start Stop NSNPs
† Population FST

‡ ΔROHProp
§ XP-EHH⁋ Gene(s) Phenotypic 

association††

1 24024856 25483783 61 Sweden 0.12 0.46 NA ME2; MRO; MC2R; MC5R; ENSCAFG00000000172; 
ENSCAFG00000029562; ENSCAFG00000029833; 
FAM210A; LDLRAD4; ENSCAFG00000023012; 
MOXD1; ENSCAFG00000031561; CTGF

Chasing*(UK)

9 16472361 16493753 4 UK 0.09 NA 2.81 KCNJ16; KCNJ2 -
12 5349354 6130868 44 Sweden NA 0.27 3.44 BRPF3; PNPLA1; C12H6orf222; ETV7; PXT1; 

ENSCAFG00000001396; KCTD20; STK38; SRSF3; 
CDKN1A; ENSCAFG00000001418; 
ENSCAFG00000001419; CPNE5; PPIL1; C12H6orf89; 
MTCH1; PI16; FGD2

Stranger-directed 
fear**(UK)

12 6466863 6554339 7 Sweden NA 0.27 3.46 FGD2; CMTR1; ENSCAFG00000030835 Separation 
anxiety* 
(Sweden)

22 1027334 1140100 6 UK 0.08 0.26 NA RNASEH2B -
22 1683950 2496568 46 UK 0.12 0.26 NA KCNRG; TRIM13; SPRYD7; KPNA3; 

ENSCAFG00000031710; EBPL; 
ENSCAFG00000010362; RCBTB1; PHF11; SETDB2; 
CAB39L; CDADC1; ENSCAFG00000028525; MLNR; 
FNDC3A

-

24 22002778 22463326 24 UK 0.07 0.29 NA COMMD7; DNMT3B; MAPRE1; EFCAB8; SUN5; 
BPIFB2; BPIFB6; BPIFB3; BPIFB4; 
ENSCAFG00000032553; BPIFA2; 
ENSCAFG00000007369; BPIFA3; BPIFA1

Coat 
colour**(UK)

24 22908179 23816844 37 UK 0.14 0.28 NA ENSCAFG00000029918; ENSCAFG00000007430; 
ENSCAFG00000007435; ENSCAFG00000029879; 
NECAB3; PXMP4; ZNF341; CHMP4B; EIF2S2; RALY; 
ASIP; ENSCAFG00000007508; AHCY; ITCH; 
DYNLRB1; PIGU; MAP1LC3A; NCOA6; TP53INP2

Coat 
colour**(UK)
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24 24867975 25952679 64 UK 0.13 0.28 NA CNBD2; EPB41L1; AAR2; DLGAP4; MYL9; TGIF2; 
SLA2; TGIF2-C20orf24; NDRG3; DSN1; SOGA1; 
TLDC2; SAMHD1; RBL1; MROH8; RPN2; GHRH; 
MANBAL; SRC

Coat 
colour**(UK)

32 4172082 4455360 7 UK 0.09 0.27 NA ANTXR2; PRDM8 Coat 
length**(UK)

32 5350389 5399877 4 UK 0.13 0.26 NA PRKG2 Coat 
length**(UK) and 
* (Sweden)
Stranger-directed 
aggression** 
(Sweden)

32 5609507 5667788 4 UK 0.12 0.26 NA ENSCAFG00000008928; RASGEF1B Coat length** 
(UK and Sweden)

32 13000437 14125551 44 UK 0.11 0.37 NA SNCA; MMRN1; CCSER1 Coat colour* 
(UK)
Separation 
anxiety*(UK)
Stranger-directed 
aggression* 
(Sweden)

32 14527559 14597957 4 UK 0.11 0.38 NA ENSCAFG00000009954 -
32 14952127 15194499 4 UK 0.10 0.28 NA ENSCAFG00000009965 -
34 33480270 1 UK NA 0.27 2.80 -

†Number of top SNPs in region
‡Fixation index
§Differences between runs of homozygosity
⁋Cross-population extended haplotype homozygosity. 
NA indicates that this selection signature was not present in the top 1% of the test distribution
Genes highlighted in bold include a SNP that belongs to the top 1% of the test distribution; all others are located within the region or +/- 40 kb around selection 
signatures
††Significant phenotypic associations (behaviour, coat colour, coat length) for the UK and Swedish population within selection signature region. P-values were 
adjusted using False Discovery Rate (FDR), with significant associations determined as adjusted P-values <0.05 (**) and suggestive associations as adjusted 
P-values <0.1 (*). The population for which the phenotypic association was identified is specified in parentheses.
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Figure legends

Figure 1. Principal Component Analysis of the pruned genomic data. Eigenvectors for the first two 

principal components are plotted and individuals are coloured according to the population of origin. 

The variances explained by the principal components are given in parentheses.

Figure 2. Ancestry proportions of studied GSDs based on the pruned genomic data assuming three 

underlying ancestries (K = 3 clusters) as revealed by ADMIXTURE. Each cluster is represented by a 

colour and the length of the specific coloured segment indicates the dog’s proportion of membership in 

that cluster.

Figure 3. Distribution of integrated haplotype score (iHS) in the UK (upper plot) and Swedish 

population (lower plot). The red line indicates the threshold for the top 0.5% iHS.

Figure 4. Circos plot for signatures of selection between GSD populations. The plot shows the three 

statistics used to identify regions under differential selection: differences between runs of homozygosity 

(ΔROHProp, outer circle, blue track), cross-population extended haplotype homozygosity (XP-EHH, 

middle circle, green track) and the fixation index (FST, inner circle, purple track). The plot indicates 

concordant evidence in regions on Chr 1, 24 and 32, where peaks can be seen based on all three methods 

(although not within the top 1% of SNPs for XP-EHH, shown in red for the three methods).
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Appendices

Table A1. Description of German Shepherd dog populations. Summary statistics for behaviour traits 

and other dog attributes within the UK and the Swedish GSD populations.

Table A2. List of SNPs belonging to the top 0.5% of the iHS statistic in the UK and Swedish 

populations. 

Table A3. Lists of SNPs belonging to the top 1% of the FST, XP-EHH and ΔROHProp statistics and the 

SNPs that belonged to the top 1% for at least two methods.

Table A4. Significance of associations between population attributes and genetic ancestries. The 

proportion of ancestries estimated by ADMIXTURE (cluster 1, cluster 2, cluster 3) based on markers 

located within selection signature regions were fitted as fixed effects in separate linear models to test 

their association with different response variables (population attributes: behaviour traits, role of the 

dog, coat colour and coat length). The P-values for the respective models are shown in the table.

Table A5. Markers located in selection signature regions and showing significant associations (FDR-

adjusted P<0.1) with phenotypic traits (behaviour, coat colour, coat length). 

Table A6. Overlaps between genes located in selection signature regions and candidate genes for 

morphological traits and behaviour reported in other studies. A list of candidate genes in canids was 

compiled using the following references1, 2, 9, 10, 11, 26, 37, 45, 50, 51, 58, 61, 67, 76, 85-89 and was compared to genes 

located in regions detected as selection signatures in this study.

Figure A1. Ancestry proportions of GSDs based on genotypes of SNPs from putatively selected regions 

assuming three underlying ancestries (K = 3 clusters) as revealed by ADMIXTURE. Each cluster is 

represented by a colour and the length of the specific coloured segment indicates the dog’s proportion 

of membership in that cluster. The labels indicate the origin of the dog (Sweden or UK) and the coat 

colour (1 = saddle tan, 0 = sable, black or others).

Figure A2. Fine-mapping of target regions under divergent selection between German Shepherd dog 

populations. Particularly compelling regions that showed evidence of divergent selection in all three 

selection signature test statistics (SNP window-based FST, ΔROHProp, and XP-EHH) are located on Chr 

1, 24 and 32. The plots illustrate the FDR-adjusted P-values from association analyses for phenotypic 

traits (behaviour, coat colour, coat length) (above, “Regional association”) and the selection signature 

test statistics (below, “Selection signatures”) for all SNPs in these regions. The plots were created using 

a modified R code from that of Saxena et al. 2007 90.
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Figure 1. Principal Component Analysis of the pruned genomic data. Eigenvectors for the first two principal 
components are plotted and individuals are coloured according to the population of origin. The variances 

explained by the principal components are given in parentheses. 
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Figure 2. Ancestry proportions of studied GSDs based on the pruned genomic data assuming three 
underlying ancestries (K = 3 clusters) as revealed by ADMIXTURE. Each cluster is represented by a colour 

and the length of the specific coloured segment indicates the dog’s proportion of membership in that cluster. 
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Figure 3. Distribution of integrated haplotype score (iHS) in the UK (upper plot) and Swedish population 
(lower plot). The red line indicates the threshold for the top 0.5% iHS. 
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Figure 4. Circos plot for signatures of selection between GSD populations. The plot shows the three statistics 
used to identify regions under differential selection: differences between runs of homozygosity (ΔROHProp, 
outer circle, blue track), cross-population extended haplotype homozygosity (XP-EHH, middle circle, green 

track) and the fixation index (FST, inner circle, purple track). The plot indicates particularly compelling 
regions on Chr 1, 24 and 32, where peaks can be seen based on all three methods (although not within the 

top 1% of SNPs for XP-EHH, shown in red for the three methods). 
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