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Abstract 

Oxytocin neurones are involved in the regulation of energy balance through diverse central 

and peripheral actions, and in rats are potently activated by gavage of sweet substances. Here 

we tested the hypothesis that this activation is mediated by the central actions of insulin. We 

show that, in urethane-anesthetised rats, oxytocin cells in the supraoptic nucleus show 

prolonged activation after i.v. injections of insulin, and that this response is greater in fasted 

rats than in non-fasted rats. Vasopressin cells were also activated, but less consistently. We 

also show that this activation of oxytocin cells is independent of changes in plasma glucose 

concentration, and is completely blocked by central (i.c.v.) administration of an insulin 

receptor antagonist. Finally we replicated the previously published finding that oxytocin cells 

are activated by gavage of sweetened condensed milk, and show that this response too is 

completely blocked by central administration of an insulin receptor antagonist. We conclude 

that the response of oxytocin cells to gavage of sweetened condensed milk is mediated by the 

central actions of insulin. 
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INTRODUCTION 

Insulin is widely known for its role in glucose homeostasis on peripheral tissues, but its 

central effects are not yet fully elucidated. Once secreted into the circulation, insulin is 

transported into the brain by a saturable transport mechanism (1, 2). Both exogenous insulin 

administration and glucose-stimulated insulin secretion result in a progressive increase of 

insulin in the CSF in several species, including humans (3-6).Accordingly, insulin 

concentrations in the cerebrospinal fluid (CSF) correlate with levels in plasma, but they are 

approximately 15-fold lower than plasma concentrations in fasted rats (3).  

In the brain, regions sensitive to insulin include the hypothalamus (7, 8) which 

contains insulin-responsive neurones in several nuclei (9-11). Amongst these, the insulin 

receptor (InsR) is abundantly expressed in the supraoptic nucleus (SON) (12-14) which 

exclusively contains magnocellular oxytocin and vasopressin cells, and intraperitoneal 

administration of insulin induces the expression of Fos protein in parvo- and magnocellular 

oxytocin cells of the paraventricular nucleus in rats (15). Explants of the hypothalamo-

neurohypophysial system, including the SON and its projections to the posterior pituitary, 

release oxytocin and vasopressin in response to direct application of insulin (16), and central 

administration of insulin increases peripheral secretion of oxytocin in mice, by a direct action 

on oxytocin cells (17). 

In addition to their classical roles in reproduction (18, 19), stress (20) and water 

balance (21), oxytocin and vasopressin have roles in energy homeostasis(22). Both central 

and peripheral oxytocin administration exert anorexigenic effects, increase energy 

expenditure, and induce lipolysis (23-26). Peripheral administration of both oxytocin and 

vasopressin can induce the release of insulin from the pancreas (27-30), and systemically 

administered oxytocin in humans (administered intranasally) has been reported to curb the 

meal-related increase in plasma glucose (31), and to improve β-cell responsivity and glucose 

tolerance in healthy men (32). Studies using well-validated radioimmunoassays in extracted 

plasma samples (33) indicate that patients with metabolic syndrome exhibit higher circulating 

oxytocin concentrations than normal individuals (34), and patients with diabetes have higher 

concentrations of vasopressin, and of copeptin (which is co-secreted with vasopressin) (35, 

36). 

In this study, we examine whether peripheral (i.v.) administration of insulin affects 

the electrical activity of oxytocin and vasopressin cells in the SON of urethane-anaesthetised 

rats. The effect of different feeding states, and consequently different blood glucose 

concentrations on these responses was also investigated. We investigated the role of brain 



InsR in these responses by blocking these receptors using an InsR antagonist. Finally, we 

tested whether the previously reported enhanced electrical activity of oxytocin cells in 

response to sweet food gavage (37) was mediated by endogenous insulin release acting on 

brain InsRs. 

 

METHODS 

Animals 

We used adult male Sprague–Dawley rats weighing 300-350g. The rats had ad libitum 

access to food and water and were maintained under a 12:12h light/dark cycle (lights on 

07.00h) at a room temperature of 20-21°C. In most experiments we used fasted rats to reduce 

the variability of blood glucose and gastric signals (induced by prior food consumption) 

which could affect neural activity, so in these experiments the food was removed overnight 

(~15 h). All procedures were conducted on rats under deep terminal anaesthesia in 

accordance with the UK Home Office Animals Scientific Procedures Act 1986, and a project 

licence approved by the Ethical Committee of the University of Edinburgh. 

Drugs 

Human recombinant insulin solution (cat no. I9278; Sigma-Aldrich Company Ltd., 

Dorset, UK) was diluted in 0.9% saline (B. Braun, Melsungen, Germany) at 0.25 U/100 µl. 

Glucose solution was prepared by dissolving 5% glucose (cat no. G5767; Sigma-Aldrich 

Company Ltd., Dorset, UK) in sterile distilled water. The InsR antagonist S961 (cat no. 051-

86; Phoenix Europe GmbH, Karlsruhe, Germany) was dissolved at 0.33 nmol/µl in artificial 

CSF (NaCl 138 mM, KCl 3.36 mM, NaHCO3 9.52 mM, Na2HPO4 2H2O 0.49 mM, urea 2.16 

mM, CaCl2 1.26 mM, MgCl2 6H2O 1.18 mM; pH 7.5). 

The responses of SON neurones to systemic insulin were tested by giving an i.v. bolus 

of 0.75 U/kg. To determine the effect of restoring circulating glucose content in insulin-

responsive neurones, 400µl of 5% glucose solution was given i.v. at 200 µl/min. Glucose 

concentrations were then checked 5 and 20 min later and, if lower than basal values, were 

corrected by infusing an additional 300 µl and 100 µl of 5% glucose solution, respectively. 

To investigate the role of central InsRs on insulin responses, the InsR antagonist S961 (38) 

was given into the third ventricle using a 31-gauge needle (attached behind the bipolar 

stimulating electrode) inserted through the median eminence; 1 nmole (4.8 µg) of S961 was 

injected at 1 µl/min. We chose a dose expected to be sufficient to block insulin receptors 

throughout the brain when given icv, but lower than that needed to antagonise insulin actions 

if given peripherally.  The affinity of S961 for both isoforms of the insulin receptor is close to 



that of insulin itself (38). Previous studies have reported that bilateral injections of 100 ng 

S961 into the arcuate nucleus block the effects of insulin microinjected into the arcuate 

nucleus on lumbar sympathetic nerve activity in late pregnant rats (39). Studies using the 

closely related antagonist S661, which has properties indistinguishable from those of S961, 

indicated that peripheral doses of 30 nmole/kg or more are needed to block the effects of i.v. 

administration of 30 mmole/kg insulin on blood glucose levels (38). As detailed below, the 

icv application of S961 in our hands had no significant effect on plasma glucose 

concentrations. 

Sweet condensed milk (SCM) gavage  

In fasted rats, a gavage tube was inserted orally into the stomach to deliver a total 

volume of 5 ml of SCM (Nestle, UK) diluted 50 % v/v in distilled water (40.8 kJ, 1.68g 

sugar, 0.24g fat) at 0.16 ml/min. 

In vivo electrophysiology 

Rats were briefly anaesthetised with isoflurane inhalation anaesthesia, and then 

urethane (ethyl carbamate 25% solution) was injected intraperitoneally (i.p.) at 1.25 g/kg. A 

femoral vein was cannulated for drug administration and an endotracheal tube was inserted to 

maintain the airway open, and the SON and the pituitary stalk were exposed by 

transpharyngeal surgery (40). A bipolar stimulating electrode (SNEX-200X; Clark 

Electromedical Instruments, Reading, UK) was placed on the pituitary stalk, and a glass 

microelectrode (~1 µm tip; filled with 0.9% NaCl) was lowered into the SON under visual 

control for extracellular recording. The signal was amplified using an Axonpatch 200B 

(Molecular Devices, Sunnyvale, CA, USA) connected to a HumBug 50 Hz noise eliminator 

(Quest Scientific Instruments Inc., North Vancouver, BC, Canada), and was digitalized with a 

CED-1401 laboratory interface (Cambridge Electronic Design, Cambridge, UK) connected to 

a PC running Spike2 software (version 7.20; Cambridge Electronic Design). Most recordings 

were made from single neurones; in some experiments the spike activity of two cells was 

recorded simultaneously; in these cases the spikes were discriminated and analysed offline 

using the waveform function of Spike2 software. Recordings were made between 12:00 and 

17:00 h (lights on 07.00-19.00h). Rats were tested only once with insulin. 

SON neurones were antidromically identified through stimulation of the pituitary 

stalk by matched biphasic pulses (1 ms, <1 mA peak to peak), which produce an antidromic 

spike at a constant latency (~10 ms; Fig.1A). Oxytocin cells were discriminated from 

continuous-firing vasopressin cells (Fig.1B) by the shape of the interspike interval (ISI) 

distribution (Fig.1C,D) and by their opposite response to i.v. cholecystokinin (CCK; CCK-8 



sulphated cat no. H-2080; Bachem AG, Bubendorf, Switzerland) given at 20 μg/kg, i.e. a 

transient excitation of oxytocin cells, and no effect or short inhibition of vasopressin cells 

(Fig.1E, F)(40, 41). CCK was given at the end of the experiments to identify continuously-

firing cells. 

Recording and blood sampling protocols  

Effect of i.v. insulin.  

The spontaneous spiking activity of SON neurones was recorded for 20 min (basal 

activity) and for at least 60 min after i.v. insulin. Blood samples (50 μl) were taken to 

measure glucose immediately before administration of insulin or vehicle, and 15, 30, 60, 90, 

and 120 min later. 

Effect of restoring circulating glucose content in insulin-responsive neurones. 

The basal activity of SON neurones was recorded for 20 min, and for another 30 min 

after i.v. insulin. Then, glucose was given i.v. and the spike activity recorded for further 

30min. Blood glucose concentrations were measured before insulin, 30 min later (i.e. before 

i.v. glucose), and 5 and 20 min after the first glucose injection. Only rats exhibiting in the last 

sample a blood glucose concentration within 15% of the value in the basal sample were used. 

Blockade of central InsRs 

The basal spike activity of SON neurones in fasted rats was recorded for 20 min. 

Then, S961 was given i.c.v. and spike activity recorded for 15 min. After this, insulin was 

given i.v. and the spike activity recorded for another 30 min. Blood glucose concentrations 

were measured using an Accu-Chek Aviva meter (Roche Diagnostics GmbH, Germany) 

immediately before S961 injection, 15 min later (i.e. before i.v. insulin), and 30 min after i.v. 

insulin. 

Effect of central InsR blockade on SCM-stimulated activity of oxytocin cells 

The basal spike activity of SON neurones was recorded for 20 min. Then, rats were 

injected i.c.v. with either vehicle or S961 and activity recorded for 10 min. After this, SCM 

was gavaged (over 30 min) and spike activity recorded for 1 h. Blood samples (300 μl) were 

taken immediately before the i.c.v. injection, 10 min later (i.e. before SCM gavage), and at 30 

and 60 min after the start of gavage. Blood glucose concentrations were measured 

immediately after sampling; then samples were centrifuged in EDTA-coated tubes, and 

plasma collected and stored at -80°C for insulin measurements using a rat/mouse insulin 

ELISA kit (cat. EZRMI-13K; EMD Millipore, Billerica, MA, USA). 

Hazard Functions 



Hazard function displays how the excitability of a neurone changes with the time 

subsequent to the last spike, indicating the probability of a neurone firing a spike in a given 

period. For responsive neurones in fasted rats, we constructed ISI histograms in 10-ms bins of 

the 20-min basal period and the last 30-min after insulin administration. From these, hazard 

functions (in 10-ms bins) were constructed using the formula: [hazard in bin (t, t + 10)] = 

[number of ISIs in bin (t, t + 10)]/(number of ISIs of length >t) as described by Sabatier et al. 

(42). Hazard functions plot the incidence of spikes as a proportion of the size of the residual 

tail of the ISI distribution. When plotted this way, a negative exponential distribution (the 

distribution characteristic of random events) becomes a constant ‘hazard’ proportional to the 

average firing rate. Deviation from this then becomes interpretable as periods of decreased or 

increased excitability. Consensus hazard functions were calculated from the means of hazard 

functions. 

Statistical analysis.  

Data were analysed using Graph Pad Prism 6 (GraphPad Software, CA, USA). 

Responses to insulin were analysed by comparing the mean firing rate in the 60-min after 

insulin with the (basal) firing rate over the 20-min control period. The changes were 

compared using a two-tailed Wilcoxon signed-rank test. The activity of phasic cells was 

analysed in Spike2; detection of a burst of activity was defined by spike activity lasting at 

least 5 s and containing >20 spikes followed by >5 s of spike silence between bursts. The 

mean burst duration, interburst interval and activity quotient (percentage of active time over 

the total time) over the 20-min basal and 60 min after insulin were compared using Wilcoxon 

matched-pairs signed-rank test. 

The effect of glucose on insulin-responsive cells was analysed by comparing the mean 

change in firing rate (spikes/s in 10-min bins) before and after glucose (i.e. 0–30 min vs 30–

60 min) using Wilcoxon matched-pairs signed-rank test. 

The effect of blockade of central InsRs was analysed by testing whether the mean 

change in firing rate in the 15-min after S961 injection was significantly different from 0 (i.e. 

from the basal rate), using a two-tailed Wilcoxon signed-rank test. Then the mean change in 

firing rate over 30-min after insulin was compared with the firing rate in the 15 min after 

S961 using a two-tailed Wilcoxon signed-rank test. One-way ANOVA followed by post hoc 

Bonferroni test was used to compare glucose profiles. 

The mean change in firing rate over 60-min, and glucose profiles between fasted and 

non-fasted rats were compared using two-tailed Mann Whitney test and two-way ANOVA 

followed by post hoc Bonferroni multiple comparison tests, respectively. We also compared 



the change in firing rate to determine whether different treatments affect the responses of 

SON neurones to insulin, using two-way ANOVA followed by post hoc Bonferroni test. 

The effect of prior blockade of central InsRs on SCM-induced activity was analysed 

using a two-tailed Mann Whitney test comparing the mean change in firing rate over 60 min 

between i.c.v. control- and S961-treated rats. The change in firing rate (in 10-min bins), 

blood glucose concentrations, and plasma insulin content between the two groups were 

compared using two-way ANOVA, followed by post hoc Bonferroni test. 

All data are presented as means ± S.E.M., and statistical significance was set at 

P<0.05 unless otherwise stated. 

 

RESULTS 

Oxytocin cells 

In both fasted and non-fasted rats, i.v. injections of insulin induced a prolonged 

increase in the firing rate of oxytocin cells, reaching a plateau between 30 and 60 min later. 

All cells in fasted rats and all but one in non-fasted rats increased their activity after i.v 

insulin. 

Recordings were made from 10 oxytocin cells in ten fasted rats and from 10 cells in 

nine non-fasted rats (including one double recording). In non-fasted rats, the mean (range) 

basal firing rate of 2.5(0.7-4.1)±0.4 spikes/s increased by 0.9(0.1-2.5)±0.3 spikes/s (averaged 

over the 60 min after i.v. insulin; P=0.002, Wilcoxon signed-rank test; Fig.2A,B). In fasted 

rats, oxytocin cells responded more strongly (Fig.2C): the basal firing rate of 2.4 (0.6-

4.8)±0.5 spikes/s increased by 1.6(0.4-2.7)±0.3 spikes/s (P=0.002, Wilcoxon signed-rank test; 

P=0.045 for comparison of fasted and non-fasted rats, Mann-Whitney U test). 

 

Vasopressin cells 

In six fasted rats, recordings were made from ten vasopressin cells (three phasic- and 

seven continuously firing) with a mean (range) basal firing rate of 5.0 (0.2-8.1)±0.8 spikes/s. 

After insulin, the rate increased by 1.0 (-0.2-3.5)±0.3 spikes/s over 60 min (P=0.006, 

Wilcoxon signed-rank test; Fig.2D). In the three phasic cells, insulin increased the burst 

duration from 32±11 s to 82±29 s, and decreased the interburst duration from 32±15 s to 

28±15 s; the resulting activity quotient increased from 0.5±0.2 to 0.7±0.2. The intraburst 

frequency was unchanged (basal: 3.6±0.7 spikes/s, insulin: 3.6±0.9 spikes/s). These changes 

were not statistically significant. 



In 14 non-fasted rats, recordings were made from 16 vasopressin cells (eight phasic, 

eight continuous) with a basal firing rate of 5.1(1.4-10.1)±0.7 spikes/s. After insulin, the rate 

increased by 0.7(-0.7-2.8)±0.3 spikes/s over 60 min (P=0.028, Wilcoxon signed-rank test; 

Fig. 2D). In the eight phasic cells, insulin increased the burst duration (from 73±17 s, to 

328±137 s). In these cells, the interburst period was reduced (from 64±26 to 61±18 s); the 

activity quotient was increased from 0.6±0.1 to 0.7±0.1, and the intraburst frequency was 

increased from 6.6±0.8 to 7.2±0.7 spikes/s. 

Eight of ten vasopressin cells in fasted rats and nine of sixteen vasopressin cells in 

non-fasted rats increased their activity by more than 10% after i.v. insulin, and the mean 

response of all vasopressin cells tested was greater in fasted rats than in non-fasted rats, but 

this did not reach statistical significance (Mann-Whitney U test, P=0.63). 

 

Hazard functions 

In oxytocin cells, the hazard functions conformed to the profile previously reported as 

typical of oxytocin cells, reflecting a prolonged post-spike refractoriness of 30-50 ms 

followed by a stable plateau of excitability(42). Insulin did not affect the duration of the post-

spike refractoriness but elevated the plateau level of excitability (Fig. 2E). 

In vasopressin cells, the hazard functions also conformed to the profile previously 

reported as typical of vasopressin cells, reflecting a post-spike refractoriness of 20-50 ms 

followed by a period of hyperexcitability (reflecting a depolarising afterpotential) before 

reaching a stable plateau of excitability(42). Insulin did not affect the duration of the post-

spike refractoriness or the plateau level of excitability but enhanced the post-spike 

hyperexcitability (Fig.2F). 

 

Effect of i.v. insulin on blood glucose and spike activity of SON neurones 

At the time of recording from SON neurones (~ 3h after i.p. anaesthesia), blood 

glucose concentrations were 12.7±0.8 mmol/l in fasted rats and 19.9±2.0 mmol/l in non-

fasted rats. In both groups, plasma glucose levels were unchanged after injections of vehicle 

(0.9% saline) but fell after i.v. insulin, reaching a nadir after 60 min (Fig.3A; Two-way 

ANOVA; interaction F (18, 162) = 6.69; time, F (6, 162) = 20.11; treatment, F (3, 27) = 10.8; 

subject, F (27, 162) = 12.9, all P<0.001). 

To test whether the activation of SON neurones by i.v insulin reflected the reduction 

in plasma glucose concentrations, we injected insulin to activate SON neurones in ten fasted 



rats and then gave i.v. glucose to restore basal glucose concentrations (Fig.3B; one-way 

ANOVA,  F (1.936, 17.42) = 9.275 P=0.002). 

We tested five oxytocin cells in four of these rats. The mean basal firing rate (1.9(0.3-

4.4)±0.7 spikes/s) increased by 1.1(0.4-1.7)±0.2 spikes/s after insulin. After i.v. glucose, the 

firing rate continued to increase reaching a final mean change of 1.6(1.0-3.0)±0.4 spikes/s 

(Fig.3C; Wilcoxon matched-pairs signed rank test, P=0.06). 

We tested six vasopressin cells (of which one fired phasically) in six of the rats (one 

of the vasopressin cells was recorded simultaneously with an oxytocin cell). The mean basal 

firing rate (5.2(3.4-6.9)±0.6 spikes/s) increased by 1.2(0.6-2.4)±0.3 spikes/s after insulin. 

After glucose, the rate did not change significantly (final mean change 1.3(0.6-2.3)±0.3 

spikes/s; Fig.3D; Wilcoxon matched-pairs signed rank test, P=0.8). 

Thus, in the case of both oxytocin cells and vasopressin cells, responses to insulin 

were unaffected by i.v injections of glucose. 

 

Blockade of central InsRs before i.v. insulin 

To test whether the activation of SON neurones by insulin involves brain InsRs, we studied 

the effect of central administration of S961 on the responses (Fig.4). At 30-min after insulin 

injection, the blood glucose concentration in rats pretreated with i.c.v. S961 had fallen by 

7.4±1.0 mmol/l, similar to the fall in fasted rats injected with insulin alone (7.4±0.9 mmol/l), 

indicating that the central injection of S961had no peripheral effect within this time (Fig.4C; 

repeated measures ANOVA, F(2, 28) = 49.8; P<0.0001). 

The firing rate of eight oxytocin cells (2.8(1.3-5.3)±0.5 spikes/s; from 8 rats) was not 

significantly affected by S961 (change 0.2(-0.7-1.3)±0.2 spikes/s; Wilcoxon signed rank test, 

P=0.54). However, i.v. insulin had no effect in rats pretreated with S961 (change: -0.01(-0.4-

0.3)±0.1 spikes/s after i.v. insulin; Wilcoxon signed rank test, P=1.0, Fig.4A). 

Similarly the firing rate of eleven vasopressin cells (5.7(3.7-7.7)±0.3 spikes/s; 6 continuous- 

and 5 phasic cells in 10 rats) was not significantly affected by S961 (change 0.16 (-2.3-

1.7)±0.3 spikes/s; Wilcoxon signed rank test, P=0.37). After i.v. insulin, their firing rate 

increased by 0.5(-1.5-3.3)±0.4 spikes/s, but this was not significant (Wilcoxon signed rank 

test, P=0.24; Fig.4B). 



Thus central administration of S961 blocked the responsiveness of oxytocin cells to 

systemic administration of insulin but had no significant effect on vasopressin cells. 

 

Effect of blockade of central InsRs on oxytocin spike activity induced by SCM gavage 

Gavage of food rich in sugars, but not fat, results in a rise of blood glucose and insulin 

plasma concentration and a progressive increase in the electrical activity of oxytocin cells 

(37). Here, we tested whether this involves brain InsRs. 

Both vehicle- and S961-injected rats exhibited a significant increase in both blood 

glucose concentration and plasma insulin concentration following SCM gavage (Fig.5A) with 

no significant differences between groups (glucose: two way-ANOVA for repeated measures: 

interaction, F(3, 24) = 0.7769, P=0.52; time, F(3, 24) = 44.41, P < 0.0001; treatment, F(1, 8) 

= 0.4899, P = 0.5038; subjects, F(8, 24) = 29.9, P < 0.0001; insulin: interaction, F(3, 18) = 

0.083, P=0.97; interaction, F(3, 18) = 10.17, P=0.0004; treatment, F(1, 6) = 0.18, P=0.7; 

subjects, F(6, 18) = 2.1, P=0.1). 

In vehicle-injected rats, as expected (37), SON oxytocin cells were progressively 

activated during SCM gavage. The firing rate of five oxytocin cells (from four rats) increased 

from 2.5 (1.3-3.1)±0.3 spikes/s.by 1.1(0.7-1.5)±0.1 spikes/s over during 60 min of gavage 

(Fig.5B). By contrast, in rats injected with S961, oxytocin cells did not respond to SCM 

gavage (Fig. 5C). The firing rate of five oxytocin cells (from five rats) increased from 

3.2(1.4-5.4)±0.8 spikes/s by -0.1 (-1.0-0.7)±0.3 spikes/s during 60 min of gavage. This 

response was significantly different to the control group (*P=0.016 Mann Whitney test; 

Fig.5D,E). 

 

DISCUSSION 

Recently, the role of oxytocin cells in metabolic regulation has attracted increasing 

attention. Most attention has been given to the oxytocin cells of the PVN, as these include a 

small population of parvocellular neurones that project to the dorsal vagal complex and to the 

spinal cord, where their actions include effects on gastric reflexes, energy intake and 

thermogenesis (23, 43, 44). Until relatively recently, the magnocellular oxytocin cells, which 

comprise most of the oxytocin cells in the PVN and all those in the SON, were thought to 

have few central projections. However, these neurones, which all project axons to the 

posterior pituitary, also release large amounts of oxytocin within the brain from their 

dendrites. This dendritic release is likely to have important effects at relatively local sites, 



including the amygdala and the ventromedial nucleus of the hypothalamus where abundant 

oxytocin receptors are expressed but which contain only sparse oxytocin fibres (23, 45). In 

addition, it has recently become apparent that many magnocellular neurones have extensive 

axonal projections to diverse brain regions, including notably to the nucleus accumbens.(46) 

In the present study, systemic administration of insulin increased the electrical activity 

of both oxytocin and vasopressin SON cells, consistent with previous reports in humans and 

rats that insulin increases secretion of oxytocin and vasopressin (47-49). 

As originally conceived in the design of the present experiments, the dose and route 

of insulin administration followed the conventional design of insulin tolerance tests (50), to 

produce an acute maintained hypoglycaemia. This bolus injection raises peripheral insulin 

concentrations above the normal physiological range, which are then rapidly cleared. The 

evolution of oxytocin cell activity after insulin injections thus mirrored neither the changes in 

plasma glucose nor the expected changes in peripheral insulin concentration. Insulin crosses 

the blood-brain barrier by an active transport mechanism that is saturated: at least 50% of 

maximal transport capacity is reached at euglycemic levels of plasma insulin, thus 

supraphysiological levels of insulin in the plasma have little additional effect on insulin 

penetration into the brain beyond that seen at high physiological levels (1, 51). Thus the 

expected evolution of CNS insulin following i.v. bolus injection is a progressive rise while 

peripheral levels are elevated above normal levels – possibly explaining the progressive rise 

in oxytocin cell activity. 

Brain InsRs play an important role in the control of energy balance as shown by 

selective genetically-induced decreased expression of brain InsRs which is linked to a 

peripheral metabolic alterations, including increased food intake, fat, and body weight, as 

well as increased glucose and insulin resistance in rodents (52, 53). Moreover, injection of 

the InsR antagonist S961 into the ventromedial nucleus increases blood glucose concentration 

in rats (54). In the present study, central administration of S916 prevented the insulin-induced 

responses in all oxytocin cells, indicating that systemic insulin penetrates into the brain to 

activate SON neurones by actions on central InsRs. The central administration of S916 

produced a non-significant increase in plasma glucose concentrations consistent with its 

reported effects in the ventromedial nucleus (54), and did not affect the effect of systemically 

applied insulin on plasma glucose levels, indicating that, at this dose and by this route, it did 

not block systemic effects of exogenous insulin. 

In humans, glucose, but not fructose, infusion has been shown to prevent oxytocin and 

vasopressin release by insulin-induced hypoglycaemia (55).In this study, we infused bolus 



injections of glucose solution to approximately clamp circulating glucose concentrations after 

i.v. insulin. Once the firing response was triggered, neither oxytocin nor vasopressin cells 

reduced their spike activity after glucose injections. 

In non-fasted rats, which exhibited a more pronounced hyperglycaemia than fasted 

rats, the responses of oxytocin cells were less prominent than in fasted rats. This may reflect 

InsR desensitisation in oxytocin cells, similarly to that shown in skeletal muscle in vivo (56) 

and fibroblasts in vitro (57), where acute exposition to high glucose concentration reduced 

insulin-stimulated glucose uptake and impaired InsR intracellular signalling, respectively. 

Alternatively, as in fasted animals blood glucose concentrations fell following insulin 

administration to concentrations lower than immediately after anaesthesia, this might 

stimulate the hypothalamo-pituitary-adrenal (HPA) as occurs in the insulin tolerance test 

(55), potentiating the release of oxytocin (and vasopressin). 

A recent study (17) raised the question about the capacity of SON neurones to 

respond to insulin administration since insulin given i.c.v. induced an increase in Fos 

expression after 90-min in 13 % of the PVN, but not SON, oxytocin cells compared to control 

mice. Nevertheless, SON neurones appear to be intrinsically sensitive to insulin and glucose 

as they express InsR (12-14) and also the enzyme glucokinase (58), a marker for glucose 

sensing. Moreover, vasopressin and oxytocin are released from SON explants in the presence 

of medium containing glucose and insulin (16). Although Fos protein has been widely used 

as a marker for neuronal activation, its lack of expression does not necessarily exclude 

changes in neural activity as observed in some conditions, and increased spike activity is not 

invariably linked to Fos expression (59, 60). It seems that insulin might not induce the 

expected rapid expression of Fos (i.e. 60-90 min) as Griffond et al. reported that at 1 h after 

insulin i.p. (20 mg/kg), there was little expression of Fos in PVN oxytocin cells(15). 

A limitation of this study is that it involved urethane-anesthetised rats. Urethane has 

long been the anaesthetic of choice for SON electrophysiological recordings, as it provides a 

deep long-lasting stable anaesthesia compatible with transpharyngeal surgery without 

affecting the physiological responses of SON neurones (40). However, urethane raises blood 

glucose concentrations (61, 62) by increasing sympathetic tone (63) and consequently 

increasing gluconeogenesis. Thus, blood glucose concentrations in both non-fasted and fasted 

anaesthetised rats were higher than in conscious Sprague-Dawley rats (64). However they 

were lower in fasted rats than in non-fasted rats, and changed in the expected manner in 

response to i.v. insulin. 
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Figure 1. Identification of SON neurons. (A) Voltage trace showing the electrical 

stimulation (red stimulus artefact; 0 ms) of the pituitary stalk which evokes an antidromic 

spike travelling to the soma of SON neurones at a constant latency (~10 ms) in each of two 

neurons (red spikes), and spike collision occurring when an spontaneous orthodromically 

traveling spike (black spike) encounters an antidromic spike (centre and right panels) 

extinguishing it. (B) Raw voltage trace of a double recording showing the spike activity of a 

continuous- (black large spikes) and a phasic-firing (red short spikes exhibiting intermittent 

periods of activity) vasopressin cell. (C, D) Typical ISI histogram (frequency of time 

distributions between (two) occurring spikes) over 10-min and corresponding hazard function 

of the basal spontaneous activity of an (C) oxytocin cell, and (D) vasopressin cell. (E,F) 

Pharmacological identification of SON neurones. Raw voltage trace (upper panel) and firing 

rate (spikes in 10s bins; lower panel) of an (E) oxytocin, and (F) vasopressin cell exhibiting 

transient excitation and inhibition respectively in response to i.v. CCK (20 µg/kg). 

 

Figure 2. Effect of i.v. insulin on SON neurones in fasted rats.  

(A) Representative example of the firing rate of an identified oxytocin cell (in 30-s bins; 

upper panel and instantaneous frequency plot below) in response to an i.v. injection of 

insulin. The dashed line indicates the mean basal firing rate. (B) ISI distribution and average 

waveform (lower panels) over 10-min period during baseline (left, corresponding to the solid 

line in A) and maximal neuronal response (right, corresponding to the dotted line in A) of the 

neurone shown in A. (C). Average responses (mean changes from baseline ± SEM) of ten 



oxytocin cells in fasted rats (black) and ten in non-fasted rats (white) to i.v. insulin. (D) 

Average responses of 16 vasopressin cells in fasted rats (black) and 16 in non-fasted rats 

(white) to i.v. insulin. (E) Mean (SEM) Hazard functions of the ten oxytocin cells in fasted 

rats before (closed symbols) and after insulin (open symbols). (F). Mean (SEM) Hazard 

functions of eight vasopressin cells in fasted rats before (closed symbols) and after insulin 

(open symbols; two cells excluded as the basal firing rates were too low to construct hazard 

functions). 

 

Figure 3. Effect of i.v. glucose infusion in insulin-responsive neurones in fasted rats.  

(A) Blood glucose concentrations were lowered after i.v. insulin, but not i.v. vehicle, in fasted 

and non-fasted rats (*P < 0.05, Two-way ANOVA followed by Bonferroni post hoc test). (B) 

Blood glucose concentrations after i.v. insulin and after i.v. insulin, and 5% glucose solution 

injections (arrows: as required) of all 10 rats where neuronal activity was recorded. After 30-

min of i.v. insulin, the glucose concentration was significantly lower compared to all other 

blood samples (one-way ANOVA for repeated measures; ***P<0.001, Bonferroni post hoc) 

with no significant differences between other samples. (B) Blood glucose concentrations after 

i.v. insulin, and 5% glucose solution injections (arrows: 400 µl, *300 µl, *100 µl; * if 

required) of all animals (n=10) where neural activity was recorded. (C,D) After insulin, no 

significant differences in firing rate of (C) oxytocin, and (D) vasopressin cells in glucose-

treated rats were detected when compared to non-glucose treated fasted rats. Data are means 

± SEM. 

 

Figure 4. Effect of central InsR blockade on neuronal responses following i.v. insulin in 

fasted rats.  

(A,B) Administration of S961 (1 nmole i.c.v. ) blocked the increase in firing rate (in 10-min 

bins) induced by i.v. insulin in (A) oxytocin, but not (B) vasopressin cells when compared to 

fasted rats injected with i.v. insulin alone (Figure 3). (C) Blood glucose concentration tended 

(P = 0.13) to increase 15 min after of i.c.v. InsR antagonist administration, insulin i.v. 

significantly lowered the blood glucose concentration after 30-min compared to basal, and 

InsR antagonist blood samples (***P<0.001, One-way ANOVA for repeated measurements, 

followed by Bonferroni post hoc test; n=15), in brackets, times since basal. Data are means ± 

SEM. 

 



Figure 5. Effect of central InsR blockade on SCM-induced increase in firing rate in 

oxytocin cells.  

(A) Gavage of 5 ml of SCM significantly increased blood glucose concentrations (left panel; 

P<0.05, Two-way ANOVA followed by Bonferroni post hoc compared to baseline) and 

plasma insulin (right panel) in both i.c.v. vehicle- and S961-treated rats with no significant 

differences between groups. (B) Representative examples showing the increase in firing rate 

(in 30-s bins) induced by SCM gavage (5 ml) in a vehicle-injected rat (upper panel), and 

blockade of SCM-induced response in an. S961-injected rat. (C) Mean change (± S.E.M.) in 

firing rate over 60 min from all oxytocin cells recorded in i.c.v. vehicle- and S961-injected 

rats gavaged with SCM (*P<0.05 Mann-Whitney test). (D) The change in firing rate (in 10-

min bins) was significantly different between groups after 30-min since the beginning of 

SCM gavage. Data are means  ± SEM. 

 

References 

1. Banks WA, Jaspan JB, Huang W, Kastin AJ. Transport of insulin across the blood-brain barrier: 
saturability at euglycemic doses of insulin. Peptides. 1997; 18(9): 1423-9. 
2. Baura GD, Foster DM, Porte D, Jr., Kahn SE, Bergman RN, Cobelli C, Schwartz MW. Saturable 
transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for 
regulated insulin delivery to the brain. The Journal of clinical investigation. 1993; 92(4): 1824-30. 
3. Strubbe JH, Porte D, Jr., Woods SC. Insulin responses and glucose levels in plasma and 
cerebrospinal fluid during fasting and refeeding in the rat. Physiology & behavior. 1988; 44(2): 205-8. 
4. Wallum BJ, Taborsky GJ, Jr., Porte D, Jr., Figlewicz DP, Jacobson L, Beard JC, Ward WK, Dorsa 
D. Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. The Journal 
of clinical endocrinology and metabolism. 1987; 64(1): 190-4. 
5. Woods SC, Porte D, Jr. Relationship between plasma and cerebrospinal fluid insulin levels of 
dogs. The American journal of physiology. 1977; 233(4): E331-4. 
6. Steffens AB, Scheurink AJ, Porte D, Jr., Woods SC. Penetration of peripheral glucose and 
insulin into cerebrospinal fluid in rats. The American journal of physiology. 1988; 255(2 Pt 2): R200-4. 
7. Kullmann S, Heni M, Fritsche A, Preissl H. Insulin action in the human brain: evidence from 
neuroimaging studies. Journal of neuroendocrinology. 2015; 27(6): 419-23. 
8. Gray SM, Meijer RI, Barrett EJ. Insulin regulates brain function, but how does it get there? 
Diabetes. 2014; 63(12): 3992-7. 
9. Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG, Jr., Seeley RJ, 
Schwartz MW. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate 
nucleus: a key mediator of insulin-induced anorexia. Diabetes. 2003; 52(2): 227-31. 
10. Sohn JW, Oh Y, Kim KW, Lee S, Williams KW, Elmquist JK. Leptin and insulin engage specific 
PI3K subunits in hypothalamic SF1 neurons. Molecular metabolism. 2016; 5(8): 669-79. 
11. Qiu J, Wagner EJ, Ronnekleiv OK, Kelly MJ. Insulin and leptin excite anorexigenic pro-
opiomelanocortin neurones via activation of TRPC5 channels. Journal of neuroendocrinology. 2018; 
30(2). 
12. Unger J, McNeill TH, Moxley RT, 3rd, White M, Moss A, Livingston JN. Distribution of insulin 
receptor-like immunoreactivity in the rat forebrain. Neuroscience. 1989; 31(1): 143-57. 
13. Hill JM, Lesniak MA, Pert CB, Roth J. Autoradiographic localization of insulin receptors in rat 
brain: prominence in olfactory and limbic areas. Neuroscience. 1986; 17(4): 1127-38. 



14. Corp ES, Woods SC, Porte D, Jr., Dorsa DM, Figlewicz DP, Baskin DG. Localization of 125I-
insulin binding sites in the rat hypothalamus by quantitative autoradiography. Neuroscience letters. 
1986; 70(1): 17-22. 
15. Griffond B, Deray A, Bahjaoui-Bouhaddi M, Colard C, Bugnon C, Fellmann D. Induction of Fos-
like immunoreactivity in rat oxytocin neurons following insulin injections. Neuroscience letters. 1994; 
178(1): 119-23. 
16. Song Z, Levin BE, Stevens W, Sladek CD. Supraoptic oxytocin and vasopressin neurons 
function as glucose and metabolic sensors. American journal of physiology Regulatory, integrative 
and comparative physiology. 2014; 306(7): R447-56. 
17. Zhang B, Nakata M, Nakae J, Ogawa W, Yada T. Central insulin action induces activation of 
paraventricular oxytocin neurons to release oxytocin into circulation. Scientific reports. 2018; 8(1): 
10415. 
18. Augustine RA, Seymour AJ, Campbell RE, Grattan DR, Brown CH. Integrative neuro-humoral 
regulation of oxytocin neuron activity in pregnancy and lactation. Journal of neuroendocrinology. 
2018. 
19. Olazabal DE. Role of oxytocin in parental behaviour. Journal of neuroendocrinology. 2018; 
30(7): e12594. 
20. Neumann ID, Landgraf R. Tracking oxytocin functions in the rodent brain during the last 30 
years: From push-pull perfusion to chemogenetic silencing. Journal of neuroendocrinology. 2019; 
31(3): e12695. 
21. Leng G, Russell JA. The osmoresponsiveness of oxytocin and vasopressin neurones: 
Mechanisms, allostasis and evolution. Journal of neuroendocrinology. 2019; 31(3): e12662. 
22. Onaka T, Takayanagi Y. Role of oxytocin in the control of stress and food intake. Journal of 
neuroendocrinology. 2019; 31(3): e12700. 
23. Leng G, Sabatier N. Oxytocin - The Sweet Hormone? Trends in endocrinology and 
metabolism: TEM. 2017; 28(5): 365-76. 
24. Ho JM, Blevins JE. Coming full circle: contributions of central and peripheral oxytocin actions 
to energy balance. Endocrinology. 2013; 154(2): 589-96. 
25. Blevins JE, Graham JL, Morton GJ, Bales KL, Schwartz MW, Baskin DG, Havel PJ. Chronic 
oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss 
in fructose-fed obese rhesus monkeys. American journal of physiology Regulatory, integrative and 
comparative physiology. 2015; 308(5): R431-8. 
26. Leslie M, Leppanen J, Paloyelis Y, Treasure J. The influence of oxytocin on eating behaviours 
and stress in women with bulimia nervosa and binge eating disorder. Mol Cell Endocrinol. 
2018110354. 
27. Kaneto A, Kosaka K, Nakao K. Effects of the neurohypophysial hormones on insulin secretion. 
Endocrinology. 1967; 81(4): 783-90. 
28. Oshikawa S, Tanoue A, Koshimizu TA, Kitagawa Y, Tsujimoto G. Vasopressin stimulates 
insulin release from islet cells through V1b receptors: a combined pharmacological/knockout 
approach. Molecular pharmacology. 2004; 65(3): 623-9. 
29. Mineo H, Ito M, Muto H, Kamita H, Hyun HS, Onaga T, Yanaihara N. Effects of oxytocin, 
arginine-vasopressin and lysine-vasopressin on insulin and glucagon secretion in sheep. Research in 
veterinary science. 1997; 62(2): 105-10. 
30. Stock S, Fastbom J, Bjorkstrand E, Ungerstedt U, Uvnas-Moberg K. Effects of oxytocin on in 
vivo release of insulin and glucagon studied by microdialysis in the rat pancreas and 
autoradiographic evidence for [3H]oxytocin binding sites within the islets of Langerhans. Regulatory 
peptides. 1990; 30(1): 1-13. 
31. Ott V, Finlayson G, Lehnert H, Heitmann B, Heinrichs M, Born J, Hallschmid M. Oxytocin 
reduces reward-driven food intake in humans. Diabetes. 2013; 62(10): 3418-25. 



32. Klement J, Ott V, Rapp K, Brede S, Piccinini F, Cobelli C, Lehnert H, Hallschmid M. Oxytocin 
Improves beta-Cell Responsivity and Glucose Tolerance in Healthy Men. Diabetes. 2017; 66(2): 264-
71. 
33. Leng G, Sabatier N. Measuring Oxytocin and Vasopressin: Bioassays, Immunoassays and 
Random Numbers. Journal of neuroendocrinology. 2016; 28(10). 
34. Szulc P, Amri EZ, Varennes A, Panaia-Ferrari P, Fontas E, Goudable J, Chapurlat R, Breuil V. 
High serum oxytocin is associated with metabolic syndrome in older men - The MINOS study. 
Diabetes Res Clin Pract. 2016; 12217-27. 
35. Enhorning S, Wang TJ, Nilsson PM, Almgren P, Hedblad B, Berglund G, Struck J, Morgenthaler 
NG, Bergmann A, Lindholm E, Groop L, Lyssenko V, Orho-Melander M, Newton-Cheh C, Melander O. 
Plasma copeptin and the risk of diabetes mellitus. Circulation. 2010; 121(19): 2102-8. 
36. Zerbe RL, Vinicor F, Robertson GL. Plasma vasopressin in uncontrolled diabetes mellitus. 
Diabetes. 1979; 28(5): 503-8. 
37. Hume C, Sabatier N, Menzies J. High-Sugar, but Not High-Fat, Food Activates Supraoptic 
Nucleus Neurons in the Male Rat. Endocrinology. 2017; 158(7): 2200-11. 
38. Schaffer L, Brand CL, Hansen BF, Ribel U, Shaw AC, Slaaby R, Sturis J. A novel high-affinity 
peptide antagonist to the insulin receptor. Biochemical and biophysical research communications. 
2008; 376(2): 380-3. 
39. Shi Z, Hansen KM, Bullock KM, Morofuji Y, Banks WA, Brooks VL. Resistance to the 
sympathoexcitatory effects of insulin and leptin in late pregnant rats. The Journal of physiology. 
2019; 597(15): 4087-100. 
40. Leng G, Sabatier N. Electrophysiology of Magnocellular Neurons in Vivo. In: Armstrong WE, 
Tasker JG, eds. Neurophysiology of Neuroendocrine Neurons. Chichester, UK: John Wiley & Sons, Ltd. 
2014: 1-28. 
41. Brown CH, Bains JS, Ludwig M, Stern JE. Physiological regulation of magnocellular 
neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. Journal of 
neuroendocrinology. 2013; 25(8): 678-710. 
42. Sabatier N, Brown CH, Ludwig M, Leng G. Phasic spike patterning in rat supraoptic neurones 
in vivo and in vitro. The Journal of physiology. 2004; 558(Pt 1): 161-80. 
43. Ong ZY, Bongiorno DM, Hernando MA, Grill HJ. Effects of Endogenous Oxytocin Receptor 
Signaling in Nucleus Tractus Solitarius on Satiation-Mediated Feeding and Thermogenic Control in 
Male Rats. Endocrinology. 2017; 158(9): 2826-36. 
44. Roberts ZS, Wolden-Hanson T, Matsen ME, Ryu V, Vaughan CH, Graham JL, Havel PJ, Chukri 
DW, Schwartz MW, Morton GJ, Blevins JE. Chronic hindbrain administration of oxytocin is sufficient 
to elicit weight loss in diet-induced obese rats. American journal of physiology Regulatory, 
integrative and comparative physiology. 2017; 313(4): R357-R71. 
45. Chini B, Verhage M, Grinevich V. The Action Radius of Oxytocin Release in the Mammalian 
CNS: From Single Vesicles to Behavior. Trends Pharmacol Sci. 2017; 38(11): 982-91. 
46. Althammer F, Grinevich V. Diversity of oxytocin neurons: beyond magno- and parvocellular 
cell types? Journal of neuroendocrinology. 2017. 
47. Fisher BM, Baylis PH, Frier BM. Plasma oxytocin, arginine vasopressin and atrial natriuretic 
peptide responses to insulin-induced hypoglycaemia in man. Clinical endocrinology. 1987; 26(2): 
179-85. 
48. Baylis PH, Robertson GL. Rat vasopressin response to insulin-induced hypoglycemia. 
Endocrinology. 1980; 107(6): 1975-9. 
49. Bjorkstrand E, Eriksson M, Uvnas-Moberg K. Plasma levels of oxytocin after food deprivation 
and hypoglycaemia, and effects of 1-deamino-2-D-Tyr-(OEt)-4-Thr-8-Orn-oxytocin on blood glucose 
in rats. Acta physiologica Scandinavica. 1992; 144(3): 355-9. 
50. Kinzig KP, Honors MA, Hargrave SL. Insulin sensitivity and glucose tolerance are altered by 
maintenance on a ketogenic diet. Endocrinology. 2010; 151(7): 3105-14. 



51. Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and back again. Pharmacol Ther. 
2012; 136(1): 82-93. 
52. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin 
receptors causes hyperphagia and insulin resistance in rats. Nature neuroscience. 2002; 5(6): 566-72. 
53. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-
Wieland D, Kahn CR. Role of brain insulin receptor in control of body weight and reproduction. 
Science. 2000; 289(5487): 2122-5. 
54. Paranjape SA, Chan O, Zhu W, Horblitt AM, McNay EC, Cresswell JA, Bogan JS, McCrimmon 
RJ, Sherwin RS. Influence of insulin in the ventromedial hypothalamus on pancreatic glucagon 
secretion in vivo. Diabetes. 2010; 59(6): 1521-7. 
55. Chiodera P, Volpi R, Capretti L, Speroni G, Marcato A, Rossi G, Coiro V. Hypoglycemia-
induced arginine vasopressin and oxytocin release is mediated by glucoreceptors located inside the 
blood-brain barrier. Neuroendocrinology. 1992; 55(6): 655-9. 
56. Hoy AJ, Bruce CR, Cederberg A, Turner N, James DE, Cooney GJ, Kraegen EW. Glucose 
infusion causes insulin resistance in skeletal muscle of rats without changes in Akt and AS160 
phosphorylation. American journal of physiology Endocrinology and metabolism. 2007; 293(5): 
E1358-64. 
57. Pillay TS, Xiao S, Olefsky JM. Glucose-induced phosphorylation of the insulin receptor. 
Functional effects and characterization of phosphorylation sites. The Journal of clinical investigation. 
1996; 97(3): 613-20. 
58. Navarro M, Rodriquez de Fonseca F, Alvarez E, Chowen JA, Zueco JA, Gomez R, Eng J, 
Blazquez E. Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT-2, 
and glucokinase mRNAs in rat hypothalamic cells: evidence for a role of GLP-1 receptor agonists as 
an inhibitory signal for food and water intake. Journal of neurochemistry. 1996; 67(5): 1982-91. 
59. Luckman SM, Dyball RE, Leng G. Induction of c-fos expression in hypothalamic magnocellular 
neurons requires synaptic activation and not simply increased spike activity. J Neurosci. 1994; 14(8): 
4825-30. 
60. Sabatier N, Caquineau C, Dayanithi G, Bull P, Douglas AJ, Guan XM, Jiang M, Van der Ploeg L, 
Leng G. Alpha-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of 
hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis. 
J Neurosci. 2003; 23(32): 10351-8. 
61. Reinert H. Urethane Hyperglycaemia and Hypothalamic Activation. Nature. 1964; 204889-
91. 
62. Wang MY, Ren LM, Du ZJ, Fu SX. Urethane-induced hyperglycemia. Acta pharmacologica 
Sinica. 2000; 21(3): 271-5. 
63. Maggi CA, Meli A. Suitability of urethane anesthesia for physiopharmacological 
investigations in various systems. Part 1: General considerations. Experientia. 1986; 42(2): 109-14. 
64. Archer ZA, Rayner DV, Rozman J, Klingenspor M, Mercer JG. Normal distribution of body 
weight gain in male Sprague-Dawley rats fed a high-energy diet. Obesity research. 2003; 11(11): 
1376-83. 

 

 


