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ABSTRACT 

This paper develops an optimal planning method for local 

energy system (LES) based on energy hub model, 

considering uncertainty quantification with global 

sensitivity analysis (GSA) towards robust design. First, a 

deterministic planning optimization is conducted to 

acquire the basic case of installation decisions for LES. 

Second, uncertainty analysis was carried out based on 

deterministic results, with proper distribution of variation 

for uncertainty parameters introduced and large size 

sample collected with Monte Carlo method. Finally, GSA 

is conducted by calculating Sobol Index for each 

uncertainty sources to carry out quantitative investigation 

in terms of uncertainty impact on planning results. A case 

study for the optimal planning of a practical village in 

Northern Scotland is provided to illustrate the application 

of the proposed framework. 

INTRODUCTION 

Traditionally, most energy services are supplied via 

independent infrastructures to consumers. However, 

interdependencies of various energy systems have 

significantly increased in recent years [1-3]. Gas 

consumption by large balancing power plants has become 

more volatile with the rapid development of renewables. 

At the distribution level, a growing number of combined 

heat and power units (CHP) have been installed [4]. 

Promising technologies, such as power-to-gas and fuel 

cells, enables further options for converting energy 

supplies from one vector to another [5, 6]. Interactions 

between different energy systems not only imposes 

complexity but also represents a potential opportunity for 

system technical, economic and environmental 

improvements using the flexibilities across vectors. 

Evaluation for integrated energy systems shows that local 

energy systems incorporating with multiple distributed 

generation and storage technologies are expected to be a 

core form of future energy supply [7]. 

Conventional planning approaches that study energy 

systems separately may not be sufficient to coordinate 

interdependencies. A ‘whole system’ planning approach is 

essential to capture the synergies and to reduce the risks 

associated with securing an integrated system. A few 

recent studies have addressed the challenges of integrating 

different energy systems. Most of them focused on large 

scale systems at the transmission level incorporating gas 

and electricity network with bulk demand in consideration 

[8-10]. The energy systems at local level, which will see 

increasingly complex interactions with micro CHP, heat 

pumps, electric vehicles, smart meters, etc., are not fully 

studied yet. 

As efforts towards low-carbon energy supply are made, 

intermittent renewable generation are developing in 

unprecedented scale since they can significantly improve 

system environmental performance [11]. In the meantime, 

with the development of smart devices and advanced 

communication and control technology, the customer-side 

is becoming more variable and is bringing uncertainty as 

well [12-14]. With interactions between different energy 

sectors in the system, these uncertainties may have 

accumulated adverse effects for whole system optimal 

design, where they could bring in the risk of suboptimal 

planning decisions for the system, resulting in power 

shortage or energy curtailment and waste in future 

operation. 

To address these problems above, this paper proposes an 

optimal planning model for local communities considering 

multiple energy vectors, including electricity, natural gas, 

and heat. A wide range of energy conversion technologies 

are modelled, which allows more choices for energy 

source in planning process. Different forms of storage are 

also considered to improve flexibility and unlock 

synergies. The planning model minimizes the total system 

cost by determining investments on infrastructure options, 

with constraints including satisfaction of the electricity 

and heating demand at each time step over the planning 

horizon. The objective takes into account both capital and 

operational cost, and carbon emissions budget are 

considered as well. 

The effective design of integrated energy system is subject 

to uncertainties arising from aspects such as the 

availability of renewable energy, energy demand, and 

prices of different fuels. The deterministic planning 

models overlook these and can lead to suboptimal system 

configurations that are not robust against future 

uncertainty. Measuring the impact of uncertainty in system 

planning is necessary to obtain a robust design against 

uncertainty. Therefore, the second goal of this paper is to 

present a novel framework for investigating uncertainty in 

the context of LES design, which combines planning 

models and techniques of GSA together. 
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MODEL FORMULATION 

Planning model for LES 

This section introduces the long-term planning model for 

local energy system. A typical LES includes electric, 

heating, gas systems and the coupling between them, 

which can be depicted by an energy hub model shown in 

Fig. 1.  

In a typical local community, electrical energy 

consumption includes lightning, appliances and so on, 

could be provided by grid power (GP), photovoltaic (PV) 

generation, wind generation (WG), biomass generation 

(BG), combined heating and power unit (CHP) or electric 

energy storage system (EESS). Thermal energy 

consumption includes space heating, cooling and hot 

water, and could be met by CHP, gas boiler (GB), solar-

thermal (ST) unit, heat pump (HP), electric boiler (EB) or 

thermal energy storage system (TESS). Energy conversion 

units, such as HP which plays roles as electrical energy 

consumption unit and thermal energy provider at the same 

time, interlink different energy sectors together as a whole 

system. 
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Fig. 1 LES topology based on energy hub model 

As is shown, to design a LES for a community, various 

energy conversion and storage technologies can be chosen 

to meet the thermal and electrical energy requirements on 

demand side. The optimization model in this work is to 

select the proper technologies and to decide their capacity 

for the specific community, while optimizing for a 

minimal equivalent annual cost (EAC) of the system 

composed of investment cost and operation cost. The 

optimization variables, including both capacity and 

dispatch decisions, are decided in light of meeting 

electrical and thermal demand at each simulation step 

along the entire planning horizon, considering technical, 

economical, and environmental constraints of the whole 

system. 

The mathematical formulation framework of the planning 

optimization model for LES is shown in Fig. 2. 

The optimization of LES planning is a mixed-integer linear 

programming (MILP) problem, as the energy hub model 

linearizes the energy flow relations running throughout the 

system. The objective function is comprised of operating 

cost due to electricity and gas purchase from utility and 

amortized technology investment cost due to newly 

instalments. The optimization problem is subject to several 

constraints, including energy balance constraints for 

electrical, gas and heating system, operational constraints 

for all the technologies, which cover power output upper- 

and lower- limits, storage charging/discharging rate limits, 

storage energy balance due to charge/discharge flows, and 

carbon emission constraint of the whole system. The 

optimization variables include equipment capacities, 

hourly external energy exchange with utility, and hourly 

technology utilization within the system. Input parameters 

include technical parameters such as energy conversion 

efficiencies and storage charging/discharging efficiencies, 

economical parameters such as investment cost per 

capacity unit for each technology and operating 

expenditure per unit energy consumed, demand profile 

including electric and heating load, and renewable profile 

including solar radiation and wind energy throughout the 

entire planning horizon. 

MILP

LES Planning Model

Optimization Variables

• Technologies decisions 

and capacities

• Hourly operating results

Constraints

• Energy balance

• Operational

• Carbon emission

Objective Function

min EAC (Operation & Investment)

Under the framework of Energy Hub

Solving Strategy

IBM ILOG CPLEX for MILP
 

Fig. 2 Mathematical formulation framework of the 

planning optimization model for LES 

Uncertainty measurement with GSA 

In order to obtain a robust design against multiple  

uncertainties of the system, a novel framework for 

measuring various uncertainty sources in the context of 

LES planning is presented in this section. 

In a LES planning model, uncertainties, which have effects 

on the planning results, can arise from demand-side in light 

of electric and heating load profiles, supply-side with 

respect to renewable energy profiles, and economical 

parameters such as capital prices and feed-in tariff of 

energy. These parameters are time series values with the 

same resolution as simulation step, and the variation 

distribution is introduced as each value of their yearly 

schedules is randomly varied by ±10% around its nominal 
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value. A Monte Carlo method is adopted to generate a 

sample of size N from each parameter distribution. Then 

the model can be evaluated N times using the sample to 

investigate the uncertainty propagation of each parameter 

according to model outputs. 

The GSA technique used in this work is based on the 

decomposition of the output variance of the model. There 

are two quantitative sensitivity measures, the first-order 

Sobol Index S1 and the total-order Sobol Index ST, to 

evaluate the contribution of each input parameter to the 

output variance [15]. Index S1 indicates the contribution to 

the output variance that can be attributed to a given input, 

while ST measures the contribution to the output variance 

of the given input including all variance caused by its 

interactions with other inputs. 

This method allows us to distinguish the most influential 

input parameters from others, and according to which the 

robust design for LES can be generated in response to 

future uncertainty. 

CASE STUDY 

Case study is carried out on a village in Scotland to 

evaluate the effectiveness of the proposed method. An 

illustration of the neighbourhood is shown in Fig. 3. The 

village consists of around 100 residential houses and 20 

commercial buildings. The energy demands of the district 

are obtained based on historical data collected from local 

operator.  

Fig. 3 Illustration of a Scotland neighbourhood 

The candidate technologies considered in this planning 

problem include wind, PV, battery storage, heat pump, gas 

boiler, CHP, P2G unit, and gas storage. The financial 

characteristics of each technology are shown in Table I. 

 

 

Table I. Financial characteristics of technology 

Technology 
NPV of 

investment 

(£/kw) 

Economic 

lifetime 

(year) 

Weighted 

average 

cost of 

capital 

Wind            1749 15 0.05 

PV              1000 15 0.05 

Gas boiler      154 15 0.05 

CHP 1310 15 0.05 

Heat Pump       650 15 0.05 

Battery storage 1600 10 0.05 

P2G             1000 15 0.05 

Gas  storage  300 15 0.05 

Planning results 

The deterministic optimization results are adopted first to 

serve as the basic case for GSA. Simulation is conducted 

on an hourly basis for one-year horizon. As shown in Fig. 

4, the installation decision for the demonstration consists 

of wind turbine, PV, heat pump and battery storage. The 

total cost is 3.8 million pounds in basic case. 

 

Fig. 4 Installation decision in deterministic case 

 

Fig. 5 Typical operational scenarios in winter (top) and 

summer (bottom) 

Two operational scenarios based on this case, the first 
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week of December and June for winter and summer case 

respectively, are revealed in Fig. 5. The first five variables 

in each figure, which are plotted as area graph, indicate 

source of energy supply; while the rest four, which are 

plotted as line graph, depict different energy demands. 

Both the areas and lines are plotted in stacked manner to 

illustrate that in both scenarios the energy supply matches 

the demand requirements perfectly. 

The electrical and thermal energy consumption and 

sources over the entire year are depicted in Fig. 6 and Fig. 

7. 

Fig. 6 Electricity consumption (left) and sources (right) in 

one year 

Fig. 7 Heat consumption (left) and sources (right) in one 

year 

From the one-year operational results, we can see that with 

input parameters fixed in their nominal value, the 

deterministic model can obtained an optimal design with 

which the system will have no energy shortage or excess 

energy produced. 

As was mentioned in the second section, four uncertainty 

sources, including variable demand profiles and renewable 

energy profiles, are calculated by adding random variances 

within ±10% around their nominal value throughout the 

time series. A test sample is obtained by a Monte Carlo 

method, according to which 2000 runs of LES planning 

optimization are executed.  

Uncertainty analysis 

Fig. 8 shows the variation of the planning objective, the 

equivalent annual cost (EAC) value, in terms of 

probability density function (PDF) and cumulative 

distribution function (CDF). 

 

Fig. 8 PDF and CDF of the ECA value 

It is evident that due to uncertainties in the system, the total 

cost can vary between 2.5 to 28 million pounds around 

nominal value of  3.8 million pounds in basic case. It can 

be deducted from the CDF curve that there is over 88% 

probability that the total cost will be larger than the 

deterministic result. 

Fig. 9 shows the variation of the optimal design of 

technologies for each of the Monte Carlo runs. CHP, P2G 

unit, and gas storage are not shown in the figure because 

none of them is chosen during the 2000 runs. 

 

Fig. 9 Results of 2000 Monte Carlo runs for Energy hub 

model 

As can be seen, gas boiler is seldom chosen in the optimal 

design, and the capacity of it is extremely small. Heat 

pump is always chosen and the capacity is mostly fixed 

around 1MW as what is installed in the basic case. 

Although the chosen capacity of heat pump is relatively 

small, it has a very high energy conversion efficiency so 

that almost all of the heat load in the whole system can be 

supported by heat pump. Battery storage is always chosen 

in planning decisions as it can flexibly shift energy 

consumption to adapt to energy prices variation in the real 

time, but the capacity of which varies considerably, which 

means the installation of storage capacity will be highly 

influenced by uncertainty. 

To evaluate the influence of the four important time-series 

uncertainty sources, Sobol Indexes are obtained to 

interpret quantitatively (Fig. 10). As is obvious, the most 
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important uncertainty parameter to influence the planning 

model is wind, as can be seen below. We can also tell that 

the model is mainly dominated by first-order Sobol Index 

and higher order effects only have a little influence on 

model output. 

 

Fig. 10 S1 and ST of the four important uncertainty sources 

CONCLUSION 

In this paper, a planning method for LES is proposed to 

minimize the total system cost by determining investments 

on infrastructure options and to guarantee robustness of 

planning decisions by measuring the impact of uncertainty 

in terms of local community optimal design. 

Initially, a deterministic planning model for local 

community based on energy hub model is developed, 

according to which a yearly operational planning decision 

is obtained. Subsequently, random variation is introduced 

to some important uncertainty parameters in the model, 

and samples are adopted with Monte Carlo method to 

perform uncertainty analysis. Finally, GSA is used to 

evaluate the impact of different uncertainty sources 

quantitatively to acquire a robust design for LES. 

In the future, the planning framework will be extended to 

multi-scale energy system robust planning, which will 

address uncertainties in systems at different levels that are 

operated independently but interact with each other, to 

better simulate the realisation. In addition, this work’s 

contribution will be applied in stochastic programming for 

multi-objective system operational planning, to seek for an 

optimal and robust design under several goals. 
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