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27 Summary 

28 

29  Heterodera  glycines,  the  soybean  cyst  nematode,  delivers  effector  proteins  into 

30 soybean roots to initiate and maintain an obligate parasitic relationship. HgGLAND18 

31 encodes a candidate H. glycines effector and is expressed throughout the infection 

32 process. 

33  We  used  a  combination  of  molecular,  genetic,  bioinformatic  and  phylogenetic 

34 analyses to determine the role of HgGLAND18 during H. glycines infection. 

35  HgGLAND18 is necessary for pathogenicity in compatible interactions with soybean. 

36 The encoded effector strongly suppresses both basal and hypersensitive cell death 

37 innate  immune  responses,  and  immunosuppression  requires  the  presence  and 

38 coordination   between   multiple   protein   domains.   The   N-terminal   domain   in 

39 HgGLAND18 contains unique sequence similarity to domains of an 

40 immunosuppressive   effector   of   Plasmodium   spp.,   the   malaria   parasites.   The 

41 Plasmodium effector domains functionally complement the loss of the N-terminal 

42 domain from HgGLAND18. 

43  In-depth  sequence  searches  and  phylogenetic  analyses  demonstrate  convergent 

44 evolution between effectors from divergent parasites of plants and animals as the 

45 cause of sequence and functional similarity. 

46 

47 

48 Key words 

49 

50 Circumsporozoite protein, convergent evolution, GLAND18, immunity, malaria, 

51 pathogenicity, Plasmodium, soybean cyst nematode 

52 

53 

54 Introduction 

55 



Noon et al. – New Phytol – 3 
 

 

56 Heterodera glycines, the soybean cyst nematode, is an economically important, obligate 

57 biotroph of soybean that feeds only during its sedentary life stage. These sedentary 

58 nematodes  are  completely reliant  on  the  reprogramming  and  survival  of  specialized 

59 feeding cells whose formation they induce in soybean roots. 

60 H. glycines produces effector proteins with N-terminal secretion signal peptides 

61 that are released into the plant via a mouthspear (Mitchum et al., 2013). More than eighty 

62 distinct H. glycines effectors have been documented (Gao et al., 2001; Wang et al., 2001; 

63 Gao et al., 2003; Noon et al., 2015). Heterodera cyst nematode effector characterizations 

64 implicate these proteins in cell wall modifications (Hewezi et al., 2008), auxin transport 

65 and signaling (Lee et al., 2011; Hewezi et al., 2015), polyamine metabolism (Hewezi et 

66 al., 2010), ubiquitination (Tytgat et al., 2004) and mimicry of regulatory peptides (Wang 

67 et al., 2010; 2011). Furthermore, cyst nematode effectors have been implicated in the 

68 suppression or activation of plant innate immunity [reviewed in (Hewezi & Baum, 2013; 

69 Mitchum et al., 2013; Goverse & Smant, 2014; Hewezi, 2015)]. 

70 The plant innate immune system consists of basal surveillance systems and a wide 

71 spectrum of defense mechanisms including a hypersensitive cell death response (HR). 

72 Microbe-associated molecular patterns (MAMPs) are recognized by plant extracellular 

73 pattern-recognition  receptors  (PRRs).  MAMP-recognition  by  PRRs  induces  basal 

74 immune responses. As an evolutionary consequence, many pathogen effectors suppress 

75 basal immunity, which in turn drove the evolution of plant resistance (R) genes that 

76 detect the presence of effectors and trigger HR. In general, basal immunity and HR 

77 involve similar salicylic acid (SA)-responsive signaling, with the latter having a much 

78 stronger output that results in HR (Jones & Dangl, 2006; Spoel & Dong, 2012; Newman 

79 et  al.,  2013).  Plant-parasitic  nematodes   contain  MAMPs,  such  as   a  family  of 

80 evolutionarily  conserved  nematode  pheromones  called  ascarosides  that  induce  basal 

81 immunity (Manosalva et al., 2015), and effectors, such as the cyst nematode SPRYSEC 

82 RBP-1, that trigger HR (Goverse & Smant, 2014). 

83 HgGLAND18 is expressed specifically in the dorsal gland cell during parasitism, 

84 and the encoded candidate effector sequence has no detectable homologs in the non- 

85 redundant database (nr) at E-value < 0.001 (Noon et al., 2015). Here, we describe the 

86 functional characterization of HgGLAND18 using a combination of molecular, genetic, 
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bioinformatic and phylogenetic analyses. We determine that HgGLAND18 is necessary 

for H. glycines pathogenicity and that the encoded effector suppresses both basal 

immunity and HR. Additionally, we determine that HgGLAND18 immunosuppression is 

not conditioned by a single discrete protein domain but requires the presence and 

coordination of different protein regions. Bioinformatic and phylogenetic analyses 

revealed significant sequence similarity between an N-terminal region of HgGLAND18 

and specific protein domains (RI, RR and RII+) of the immunosuppressive 

circumsporozoite protein (CSP) effector of Plasmodium spp., the malaria parasites. 

Animal innate immune systems are likewise targeted by pathogen effectors 

(Espinosa & Alfano, 2004) and Plasmodium CSP is one such example. All CSPs contain 

seven distinct protein domains [signal peptide, PEXEL/VTS motifs, region I (RI), a 

species-specific and immunodominant tandem repeat region (RR), region III (RIII), 

region II+ (RII+) and a glycosylphosphatidylinositol (GPI)-anchor for attachment of CSP 

to the sporozoite surface] that delineate different functions (Fig. S1) (Coppi et al., 2011). 

CSP assists in both the migration to and entry into liver cells (Coppi et al., 2011), and this 

entry involves coordinated-binding of RIII and RII+ domains to an extracellular surface 

ligand (Coppi et al., 2011). After sporozoite entry into liver cells the parasite is 

encapsulated by the parasitophorous vacuole membrane (PVM) (Graewe et al., 2012). 

PEXEL/VTS motifs are required for effector translocation through the PVM (Singh et al., 

2007). In rodent malarias, CSP enters liver cells and binds to importin-α3 via the RII+ 

domain (Singh et al., 2007). This interaction outcompetes NFκB for nuclear uptake, 

thereby inhibiting the innate immune response (Singh et al., 2007). Furthermore, in older 

reports, Plasmodium falciparum CSP was shown to enter and kill immune cells by 

inhibiting protein synthesis most likely from the RNA-binding properties of domains RI, 

RR and RII+ (Hugel et al., 1996; Frevert et al., 1998). Thus, Plasmodium CSPs are 

potent immunosuppressors in animal cells when delivered into the cytoplasm, and the 

effector function heavily relies on domains RI, RR and RII+. 

Extensive database searches determined that the similarity between HgGLAND18 

and the Plasmodium CSPs is unlikely to be found in proteins from other organisms, and 

thus, in combination with additional data, cannot be explained by homology and 

divergent evolution. Furthermore, we show that deletion of the N-terminal region from 
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HgGLAND18 abolishes immunosuppression, but remarkably, Plasmodium CSP domains 

are able to fully complement the function of the HgGLAND18 deletion mutants. We 

conclude that the observed sequence similarities between HgGLAND18 and the requisite 

Plasmodium CSP domains is best explained by convergence due to similar 

immunosuppressive functions in their respective host cells. 

 

 

 

Materials and Methods 

 
 

Nematodes and plants 

H. glycines were propagated on soybean according to (Niblack et al., 1994), Heterodera 

schachtii on sugar beet, and Meloidogyne incognita on tomato at Iowa State University. 

Soybean cultivars were obtained from the USDA Soybean Germplasm Collection. 

Nicotiana benthamiana were grown at 25˚C with 16:8-hr light/dark cycles. 

 

RNA and cDNA 

Nematodes were isolated from roots by macerating in a blender followed by sieving and 

separation on a sucrose gradient, were frozen, and homogenized with sterile 1.0-mm 

diameter Zirconia Beads (BioSpec) in a Mini-BeadBeater (BioSpec). Frozen plant tissues 

were homogenized with sterile 3.5-mm diameter Glass Beads (BioSpec). Total RNA was 

isolated with the NucleoSpin Kit (Clontech). Yields and integrity were assessed using a 

NanoDrop and agarose gel electrophoresis, respectively. cDNA synthesis was performed 

with qScript (Quanta). 

 

RT-PCR 

Reverse transcription (RT)-PCR was performed with Taq Polymerase (NEB). For RT- 

PCR on soybean cDNA, GmPolyubiquitin3 (GenBank: D28123.1) was used as reference. 

For RT-PCR on H. glycines cDNA, HgActin1 (GenBank: AF318603.2) was used as 

reference. TrackIt 10-bp DNA Ladder (Invitrogen) was used for RT-PCR of 

HgGLAND18 isoforms/variants. HgGLAND18 cDNAs were isolated with Platinum Taq 
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(Invitrogen) for PCR, and purified products were ligated into pGEM-T Easy (Promega) 

and sequenced at Iowa State University. 

 

Genomic cloning 

Genomic DNA was isolated from both homogenized nematode egg and soybean leaf 

tissues according to (Blin & Stafford, 1976). Yields and integrity were assessed as 

described above. PCR was performed on H. glycines genomic DNA with Platinum Taq, 

and purified DNA was ligated into pCR-XL-TOPO using the TOPO XL Kit (Invitrogen). 

Sequencing by primer walking was performed at Iowa State University. 

 

Hairy root RNAi 

Nucleotides 84-546 were PCR-amplified with Platinum Taq from an HgGLAND18 

(variant 3-2) CDS plasmid clone. PCR products were restriction-digested with AscI and 

SwaI (NEB) for the sense fragment, and AvrII and BamHI (NEB) for the antisense 

fragment, cloned into pG2RNAi2 (GenBank: KT954097) and sequenced as above. 

Transgenic hairy roots were generated and nematode infection assays were performed 

similar to (Liu et al., 2012), except in 6-well plates with randomization, as in (Baum et 

al., 2000). Statistical differences were tested using the t-test in JMP Pro 11. 

 

Ectopic expression 

Nucleotides 40-546 were PCR-amplified with Platinum Taq from an HgGLAND18-3-2 

CDS plasmid clone. The PCR product was restriction-digested with SwaI and BamHI, 

cloned into pG2XPRESS and sequenced as above. pG2XPRESS was derived from 

pG2RNAi2; the GUS linker sequence was digested out. Transgenic hairy roots were 

generated as above. 

 

Growth measurements 

Growth rate was measured as the inverse of the number of days that parent roots took to 

fill an entire plate after transfer (n = 5). Biomass was measured as the percentage of dry 

root weight with the vector control mean set to 100% (n = 5). 
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qRT-PCR 

One-step quantitative real-time (q)RT-PCR was performed with qScript One-Step qRT- 

PCR Kit (Quanta). 10-ng of total RNA was used as template. Protocol: 49˚C for 10-min, 

95˚C for 5-min, 35 cycles of 95˚C for 15-sec and 60˚C for 45-sec. Minus RT reactions 

were always included. HgActin1 was used as calibrator. Data were analyzed using the 2-
 

∆∆CT method (Livak & Schmittgen, 2001), and statistical differences were tested using the 

t-test in JMP Pro 11. Two-step qRT-PCR was performed using iQ SYBR Green 

Supermix (Bio-Rad). 1-μg of total RNA was used for cDNA syntheses, cDNA samples 

were diluted to 40-μL, and 1-μL of cDNA was used as template. Protocol: 95˚C for 3- 

min, 40 cycles of 95˚C for 15-sec and 60˚C for 30-sec. The same estimated amount of 

total RNA was always included for each cDNA sample. NbActin1 (GenBank: 

AY594294.1) was used as calibrator. Data were analyzed as above, and statistical 

differences were tested using the Tukey-Kramer HSD test in JMP Pro 11. In each qRT- 

PCR, 3 biological and 4 technical replicates were used. Amplification specificities were 

verified by melting curve analysis and agarose gel electrophoresis. Melting curve 

protocol: 95˚C for 1-min, 55˚C for 10-sec and a slow temperature ramp from 55-95˚C. 

qRT-PCR was performed on an iCycler iQ Real-Time PCR Detection System (Bio-Rad). 

 

Insertion and deletion mutagenesis 

Insertion and deletion mutagenesis was performed with overlap-extension PCR (Ho et 

al., 1989). For HgGLAND18 mutants, an HgGLAND18-3-2 CDS plasmid clone was used 

as template. To generate the chimeric fusion proteins for Plasmodium fieldi CSP, a 

synthetic clone was ordered from GenScript and used as template. 

 

Southern blot 

Genomic DNA samples were treated with RNase-H (Invitrogen). 10-μg of genomic DNA 

was restriction-digested overnight with EcoRI and HindIII (Invitrogen) separately. DNA 

transfer, probe hybridization and signal detection were performed according to (Hewezi 

et al., 2006). 

 

Immunosuppression 
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PCR products for wild-type HgGLAND18-sp and mutants were TOPO-cloned into pENTR 

with the pENTR/D-TOPO Kit (Invitrogen). pENTR clones were gateway-cloned into 

pEDV6 (Fabro et al., 2011) with LR Clonase (Invitrogen), and sequenced as above. Tri- 

parental mating was used for conjugation of pEDV6 vectors into Pseudomonas 

fluorescens strain EtHAn and Pseudomonas syringae pathovar tomato (Pst) strain 

DC3000. Immunosuppression experiments were performed as in (Chakravarthy et al., 

2009). Bacteria were suspended in 10-mM MgCl2 and infiltrated into N. benthamiana 

leaves with OD600s equal to 0.2 and 0.02, respectively. It is important to note that in 

these experiments HR is triggered in N. benthamiana from the recognition of the HopQ1 

effector, and is not due to disease symptoms. For qRT-PCR experiments bacteria were 

infiltrated into entire N. benthamiana leaves. 

 

Protein secretion 

Accumulation of AvrRPS4:HA:HgGLAND18-sp in Pseudomonas and its secretion by the 

type III secretion system was verified according to (Fabro et al., 2011). Pellet and 

supernatant fractions were analyzed by SDS–PAGE, electro-blotted onto PVDF 

membrane (Bio-Rad), and probed with anti–HA–HRP antibody (Roche). Bands were 

visualized using PICO kit (Thermo) and imaged with Kodak scientific imaging film. 

 

NCBI database searches 

RR sequences from eighteen Plasmodium CSPs (Table S1), and the HgGLAND18 

(variant 3-5) repeats were searched against every NCBI database with DELTA-BLAST 

(Boratyn et al., 2012) using a sensitive E-value threshold of 10. All hits were collected 

into FASTA files. An automated bioinformatics pipeline was generated that screened for 

tandem repeats with Internal Repeats Finder (IRF) (Pellegrini et al., 1999), repeat size 

with TRUST (Szklarczyk & Heringa, 2004) and our own script was written to extract the 

tandem repeats from each hit. Any hits that did not match the tandem repeat structure of 

each Plasmodium CSP RR or the HgGLAND18 repeats were removed. Bl2seq was then 

used to eliminate hits that did not contain tandem repeats with similar sequences (i.e., E- 

value > 1.0). All hits were then evaluated for precisely paired repeats (see later Fig. 6a,b). 

Survivors were then blastp-searched against each Plasmodium sp. nr using both standard 
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and sensitive parameters (i.e., word size = 2, BLOSUM45, no adjustments) with E-value 

thresholds of 1000, and were inspected manually with Multalin (Corpet, 1988), to search 

for additional alignment to RI and RII+. In separate searches, multiple sequence 

alignments (MSAs) of all eighteen Plasmodium RI and RII+ sequences were generated 

with MUSCLE (Edgar, 2004) and were submitted to HMMER3 (Eddy, 1998) using 

standard parameters. Each profile-hidden Markov model was searched against all NCBI 

databases, and hits were collected into FASTA files. All hits were screened for additional 

domains as performed above. Finally, every protein in NCBI databases that was found to 

contain a CSP-like identifier, which we considered possible homologs, was also run 

through our screens, none of which survived. 

 

Nematode database searches 

Tblastn-searches were performed against all nematode genomic and transcriptomic 

sequences at Nematode.net (Wylie et al., 2004), and raw sequence reads from eight plant- 

parasitic nematode species (Table S2) with HgGLAND18 as query. In general, our 

searches used E-value thresholds of 0.001, and additional searches were performed with 

more sensitive thresholds but the resulting hits aligned only randomly with 

HgGLAND18, and thus, these hits were discarded. Noteworthy, the combination of 

nematode sequences from Nematode.net and the raw sequence reads covered the major 

lineages of the plant-parasitic nematode suborder Hoplolaimina (Holterman et al., 2006). 

 

Model selection 

Model selection analysis assesses the likelihoods of different models of sequence 

evolution (Theobald, 2010), and the procedures used were consistent with (Noon & 

Baum, 2016). In our analyses, Bayesian and corrected Akaike Information Criteria were 

used as scores (Tamura et al., 2011). By statistical convention, a score difference of 

greater than 5 is strong empirical evidence for the better model (Burnham et al., 1998; 

Theobald, 2010). Four control sequences were included in the analysis. The first two 

controls were HgGLAND8 and the Bacillus cereus ‘circumsporozoite protein’, which 

were the top nr blastp hits for HgGLAND18. The third control was human SARMP2 

(GenBank: XP_006714000), which was the top nr blastp hit for the three Plasmodium 
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CSPs in question. The fourth control was Plasmodium falciparum EMP1 (GenBank: 

AEA03008), which was a sequence in Plasmodium not related to Plasmodium CSPs. 

MSAs were generated via MUSCLE within MEGA6 (Tamura et al., 2013), and poorly 

aligned regions were removed. Model selection analysis was performed in MEGA6 on 

each MSA. For model selection, different tree topologies (i.e., evolutionary models) were 

generated with the Topology Editor tool within MEGA6. Each model selection analysis 

was repeated at least once with identical results. 

 

Phylogenetic analyses 

Phylogenetic trees were constructed in MEGA6 with bootstrapped Maximum Likelihood 

estimation with the best-scoring model of amino acids substitution that resulted from 

model selection analyses. 100 bootstrap replications were used. Reported are the best- 

scoring ML phylogenetic trees with bootstrap values indicated on the corresponding 

nodes. 

 

 

 

Results 

 
 

HgGLAND18 contains a polymorphic tandem repeat region 

Gene sequence variation can exist at the DNA and RNA levels, and such variation can be 

seen between and within different populations of the same species. In order to be as 

coherent as possible, we consistently portray different versions of the same gene from 

two different populations of the same species as alleles, different versions within the 

same population as isoforms, and multiple transcripts that appear to be produced from a 

single isoform as variants (possibly due to alternative splicing, i.e., splice variants). 

We previously reported the HgGLAND18 sequence (GenBank: KJ825729.1) 

obtained from a draft genome that was sequenced from an inbred H. glycines population 

(Noon et al., 2015; line TN10 – Hg Type 1.2.6.7; Colgrove & Niblack, 2008). The TN10 

allele of HgGLAND18 contains eight exons, and exon 2 is very small encoding only 11 

amino acids (aa) (Noon et al., 2015) (Fig. 1a). To explore HgGLAND18 coding sequence 

variability, we performed RT-PCR using RNA obtained from a mixture of life stages 
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from an outbred H. glycines field population. High-resolving agarose gel electrophoresis 

revealed six distinct bands of 110- to 270-bp (Fig. 1b). Subsequent sequencing of 30 

different clones (Fig. 1c) derived from these amplification products revealed that the 

observed size differences were due to two main sequence polymorphisms. One, 

HgGLAND18 amplification products fell into four different sequence groups depending 

on the absence/presence of a single aa codon (N) close to the N-terminus or a group of 

three aa codons (VNG) towards the center of the protein. These sequence groups likely 

correspond to allelic variation or may even indicate the presence of a gene family since 

multiple intense bands were found in a Southern blot of genomic DNA obtained from 

another inbred H. glycines population (Fig. S2; line OP50 – Hg Type 1.2.3.5.6.7; 

Colgrove & Niblack, 2008). We named these four sequence types HgGLAND18 isoform 

1 through 4 (Fig. 1d). Second, we discovered that HgGLAND18 contains a tandem repeat 

region in the N-terminal half and that within the four HgGLAND18 isoforms mentioned 

above, there were variants that differed in the number (0-5) of repeats (Fig. 1d; Fig. S3). 

We added a number designator to each variant name to indicate the number of repeats 

present. Noteworthy, variant 3 with 2 repeats (HgGLAND18-3-2; GenBank KT954103) 

was substantially overrepresented (22/30 clones) in the sequencing (Fig. 1c). 

Interestingly, we found that each repeat actually corresponds to exon 2 from the TN10 

allele (Fig. 1a). Moreover, we obtained genomic DNA clones of HgGLAND18 from 

inbred line OP50 and found that compared to the TN10 allele, exon 2 is duplicated to 

form a tandem repeat (Fig. 1a). These findings indicate that there are variable numbers of 

HgGLAND18 repeats between, and within, at least some H. glycines populations. 

We also assessed the developmental expression patterns of HgGLAND18 in the 

six H. glycines life stages separately (i.e., egg to adult female) of the field population by 

RT-PCR followed by sequencing of amplification products. Consistent with cloning 

efficiency, HgGLAND18-3-2 was by far the most abundant transcript in all H. glycines 

life stages and showed similar intensity throughout the life cycle (Fig. 1e). 

 

Host-induced RNAi of HgGLAND18 decreases H. glycines pathogenicity 

To determine the importance of HgGLAND18 for H. glycines infection, we performed 

host-induced RNA interference (RNAi) to knockdown HgGLAND18 in the nematodes in 
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hairy root assays. A hairpin construct was generated to target nucleotides (nt) 84-546 of 

the HgGLAND18 gene (HgGLAND18i; Fig. 2a), which was placed under transcriptional 

control of a soybean polyubiqutin promoter [GenBank: EU310508.1; (Hernandez-Garcia 

et al., 2009)]. Noteworthy, the targeted region of HgGLAND18 was pre-determined 

through blastn-searches to be absent from soybean and to match only HgGLAND18 in the 

H. glycines genome at E-value < 1.0. 

Our T-DNA construct also contained a functional GFP gene, which allowed the 

identification of transgenic soybean roots by GFP expression. RT-PCR determined 

transgenic hairy roots to express HgGLAND18i. HgGLAND18i-expressing and vector 

control roots were inoculated with surface-sterilized H. glycines, and parasitic life stages 

were isolated at 7-days post-inoculation (dpi). qRT-PCR detected significantly reduced 

HgGLAND18 transcripts in nematodes that had infected HgGLAND18i-expressing 

compared to vector control roots (Fig. 2b). To test off-target effects we also analyzed the 

expression levels of three non-target effector genes, and none of these genes showed 

significant differences from vector control (Fig. 2b). Thus, in our assay, host-induced 

RNAi of HgGLAND18 was successful at specifically reducing HgGLAND18 transcripts. 

We performed susceptibility assays using two different soybean-H. glycines 

pathosystems. Soybean cultivars Essex (susceptible) and Forrest (resistant) were infected 

with H. glycines avirulent line PA3 (Hg Type 0; Colgrove & Niblack, 2008) and virulent 

line TN19 (Hg Type 1-7; Colgrove & Niblack, 2008), respectively. Our expectation was 

that if reduced susceptibility were to be observed in both pathosystems, this would 

support an important pathogenicity function of HgGLAND18 for compatible/susceptible 

interactions. However, if reduced susceptibility were only observed in the TN19-‘Forrest’ 

pathosystem, this would support an important pathogenicity function for 

incompatible/resistant interactions (e.g., to suppress ‘Forrest’ resistance). In these 

experiments, HgGLAND18i-expressing and vector control roots exhibited similar 

appearances (Fig. 2c), indistinguishable growth rates (Fig. 2d) and biomasses (Fig. 2e). 

HgGLAND18i-expressing soybean roots resulted in highly significant reductions in the 

number of H. glycines adult females compared to vector control in both pathosystems 

(Fig. 2f,g). Taken together, these results reveal an important pathogenicity function of 

HgGLAND18 for compatible/susceptible interactions. 
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We also assayed the PA3-‘Forrest’ pathosystem, however, similar to vector 

control, RNAi knockdown of HgGLAND18 did not increase the ability of H. glycines 

PA3 to develop on resistant soybean cultivar Forrest (i.e., negligible PA3 nematodes 

developed to adult females; data not shown). Thus, at least in this pathosystem, 

HgGLAND18 does not appear to be a canonical avirulence gene. 

 

HgGLAND18 causes severe growth defects in soybean roots 

To further assess the importance of HgGLAND18 for H. glycines pathogenicity, we 

constitutively expressed the HgGLAND18 (variant 3-2) CDS without the signal peptide 

(HgGLAND18-sp) in soybean hairy roots under the GmUBI promoter (Fig. 3a). We did 

not include the signal peptide since it is most likely removed from HgGLAND18 before 

delivery into the plant. This manipulation resulted in severe qualitative and quantitative 

growth differences. Compared to the vector control, HgGLAND18-sp-expressing roots 

grew significantly slower (Fig. 3b), generated significantly less biomass (Fig. 3c), and 

overall showed a STUMPY/GLOSSY phenotype (Fig. 3d). Because of these severe growth 

defects, we were unable to reliably assay these roots for changes in susceptibility to H. 

glycines. 

 

HgGLAND18-sp suppresses basal immunity and HR 

The relatively strong expression of HgGLAND18 throughout the H. glycines life cycle as 

well as the important role of the encoded effector for pathogenicity led us to hypothesize 

that this effector suppresses the plant innate immune system. Because we were unable to 

assay HgGLAND18-sp-expressing roots due to the growth defects, we used heterologous 

immunosuppression assays. HgGLAND18-sp was translationally fused with the type III 

secretion system (T3SS) signal from the AvrRPS4 effector of the Pst DC3000 plant 

pathogen (Fig. 4a). This construct allowed the secretion of HgGLAND18-sp from 

Pseudomonas bacteria into colonized plant tissues and cells via the T3SS (Fabro et al., 

2011). The plasmid vector was conjugated into non-pathogenic EtHAn and Pst DC3000 

for basal immunity and HR suppression experiments, respectively. Note that following 

successful colonization, Pst DC3000 triggers HR in N. benthamiana due to the 

recognition of the HopQ1 effector; the HR is not a disease symptom caused by Pst 
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DC3000. Prior to inoculation, the bacteria were grown in T3SS-inducing medium, 

pelleted, and the supernatants were confirmed to contain HgGLAND18-sp, while a strong 

common band in the pellets was not detected in the supernatants (Fig. 4b). These 

preliminary control analyses indicated the secretion of HgGLAND18-sp from both 

bacteria via the T3SS (Fabro et al., 2011). 

For basal immunity suppression assays, wild-type (WT) EtHAn or EtHAn + 

HgGLAND18-sp were infiltrated into N. benthamiana leaves, and infiltrated sectors then 

were challenged with Pst DC3000 (Chakravarthy et al., 2009) (Fig. 4c), which triggers 

HR after successful colonization. Basal immunity triggered by WT EtHAn completely 

prevented the colonization by Pst DC3000 (no HR) within the infiltration zones on all 

leaves, while outside of the WT EtHAn zones Pst DC3000 caused strong HR (Fig. 4c). 

However, nearly all EtHAn + HgGLAND18-sp zones allowed the spread of HR caused by 

Pst DC3000 (Fig. 4c), which indicated suppression of basal immunity by HgGLAND18- 

sp. These differences were determined to be highly significant (Fig. 4d). 

In separate experiments, WT EtHAn, EtHAn + HgGLAND18-sp, or buffer control, 

were infiltrated into N. benthamiana leaves. At 6 hours post-infiltration (hpi), we 

quantified the transcripts of four SA-responsive defense marker genes via qRT-PCR. 

These four marker genes were pathogenesis-related 1a (PR1a), PR2, WRKY transcription 

factor 12 (WRKY12) and proteinase inhibitor 1 (PI1) (Liu et al., 2013). We chose 6-hpi 

because in pilot assays this time point was determined to be the optimum for the 

experiments (Fig. S4). All four marker genes showed significant downregulation of 

mRNA abundance in EtHAn + HgGLAND18-sp compared to WT EtHAn (Fig.  4e). 

EtHAn + HgGLAND18-sp showed increases in transcript abundances for all four marker 

genes compared to buffer control (Fig. 4e). Thus, basal immunity was initiated in EtHAn 

+ HgGLAND18-sp, but the magnitude of the response was significantly reduced 

compared to WT EtHAn. 

To test the ability of HgGLAND18-sp to suppress HR, WT Pst DC3000 and Pst 

DC3000 + HgGLAND18-sp were infiltrated into N. benthamiana leaves (Fig. 4f). After 2 

and 3-dpi, Pst DC3000 + HgGLAND18-sp infiltrated zones showed suppressed HR 

compared to WT Pst DC3000 (Fig. 4f). These differences were determined to be highly 

significant (Fig. 4g). In separate experiments, quantification of the expression levels of 
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the four SA-responsive defense marker genes revealed significant downregulation in the 

Pst DC3000 + HgGLAND18-sp infiltrated leaves compared to the leaves infiltrated with 

WT Pst DC3000 (Fig. 4h). Also, similar to basal immunity suppression experiments, 

comparison of the transcript levels of the marker genes for Pst DC3000 + HgGLAND18- 

sp with buffer control indicated that HR signaling still occurred, but much weaker than 

WT Pst DC3000. Collectively, these results indicated that HgGLAND18-sp suppresses the 

induction of both basal immunity and HR. 

 

Multiple protein domains in HgGLAND18 coordinate for immunosuppression 

HgGLAND18 contains an internal 43-aa stretch (aa 91-133) of mostly charged aa, which 

we termed supercharged domain (Fig. 5a). Because of the unique aa composition in this 

domain, we deleted this domain (HgGLAND18-sp_∆91-133), and both this deletion mutant 

and various regions of HgGLAND18 were tested for HR suppression. 

HgGLAND18-sp_∆91-133 no longer suppressed HR, while HgGLAND1891-133 was 

still active, but significantly less so than WT HgGLAND18-sp (Fig. 5b). We also tested 

constructs HgGLAND1821-91, HgGLAND1891-182, and HgGLAND18133-182, none of 

which suppressed HR (Fig. 5b). However, HgGLAND1821-133 still suppressed HR at a 

level between WT HgGLAND18-sp and HgGLAND1891-133 (Fig. 5b). We then generated 

transgenic soybean hairy roots for all HgGLAND18 constructs described above, and only 

HgGLAND1821-133 and HgGLAND1891-133 phenocopied the  STUMPY/GLOSSY 

phenotype observed for WT HgGLAND18-sp (Fig. 5c). Thus, the 70 N-terminal aa and 

the supercharged domain are necessary for immunosuppression, the supercharged domain 

alone is partially sufficient, and the 70-aa N-terminal and 49-aa C-terminal domains 

coordinate with the supercharged domain for the most potent effect. Also, there is an 

evident correlation between HgGLAND18 immunosuppression and  its 

STUMPY/GLOSSY phenotype in soybean roots. 

 

The N-terminal domain of HgGLAND18 contains marginal sequence similarity to 

RI, RR and RII+ domains from Plasmodium CSPs 

The N-terminal and supercharged domains contain interesting sequence features [i.e., the 

former contains tandem repeats (Fig. 1b) and the latter contains mostly charged aa (Fig. 
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5a)], and both domains are necessary for HgGLAND18 function (Fig. 5b,c). Thus, we 

were next interested in determining whether other similar, but annotated sequences could 

be found in databases to provide putative mechanistic details. HgGLAND18 (variant 3-5; 

GenBank: KT954106) was used as query in a blastp-search of nr at E-value < 0.001. This 

search resulted in significant similarity (E-value = 9E-12) to the H. glycines candidate 

effector HgGLAND8 (GenBank: AJR19776.1) also reported in (Noon et al., 2015). The 

sequence alignment covered the full-length of the sequences, but the greatest and 

significant alignment was within and near the signal peptides (aa 1-28). 

The next highest blastp hit was a hypothetical protein from Bacillus cereus 

(GenBank: WP_000823209.1, E-value = 4E-08). In a separate blastp-search against nr 

using the latter as query, we identified another nearly identical B. cereus protein (E-value 

= 4E-75) named ‘circumsporozoite protein’ (GenBank: ACM13733.1), although Bacillus 

spp. do not form a sporozoite life stage. Many near identical proteins were found in other 

Bacillus spp. Also, the similarity to HgGLAND18 was exclusive to the tandem repeats in 

the N-terminal domain, of which the HgGLAND18 11-aa repeat SDPIPIPKQEG aligned 

with  the  Bacillus  protein  11-aa  repeat  HADLPAPKQEG.  Interestingly,  the  blastp- 

searches  with  the  B.  cereus  ‘circumsporozoite  protein’  also  resulted  in  significant 

similarity to actual CSPs from Plasmodium simiovale, P. fieldi and a P. vivax-like species 

(Table S1) (E-value = 5E-09, 7E-09 and 2E-08, respectively). The B.  cereus repeat 

aligned with the tandem 11-aa repeat AAA/VPGANQEG in the three Plasmodium CSPs. 

Intriguingly, sequence alignments with manual inspection resulted in alignment 

between the HgGLAND18 N-terminal domain and the Plasmodium CSPs also outside of 

the repeats. The RI domain from Plasmodium CSPs aligned with the HgGLAND18 

domain  immediately  N-terminal  to  the  tandem  repeats  with  36%  identity  and  71% 

similarity (Fig. 6a,b). The RR domain from Plasmodium CSPs shared 36% identity and 

64% similarity with the HgGLAND18 tandem repeats (Fig. 6a,b). Finally, an internal 

region (31-aa) of RII+ from Plasmodium CSPs aligned with 35% identity and 58% 

similarity with the HgGLAND18 domain immediately C-terminal to the tandem repeats 

(Fig. 6a,b). However, PEXEL/VTS, RIII and GPI-anchor domains, which have been 

shown  to  function  in  Plasmodium-specific  infection  processes,  did  not  align  with 

HgGLAND18  (Fig.  6a,b).  Thus,  the  N-terminal  domain  of  HgGLAND18  contains 
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sequence  similarities  exclusively  to  RI,  RR  and  RII+  domains  from  these  specific 

Plasmodium CSPs. 

 

 

The observed sequence similarity between HgGLAND18 and the Plasmodium CSPs 

is significant and unique 

Extensive database searches were performed to identify any other protein sequences with 

similarity to RI, RR and RII+ domains. In short, we performed sensitive blast-searches of 

NCBI databases using CSP RR domains from eighteen Plasmodium species reported in 

GenBank (Table S1) and the HgGLAND18 repeats. Also, we used profile-hidden 

Markov models to search NCBI databases with position-specific scoring matrices 

generated individually for Plasmodium CSP RI and RII+ domains. All hits were 

evaluated for the similarities between HgGLAND18 and the Plasmodium CSP domains 

in question (Fig. 6a,b). These searches failed to identify any sequence other than 

HgGLAND18 with similarity to the multiple Plasmodium CSP domains. 

To confirm whether the similarity between HgGLAND18 and Plasmodium CSPs 

is significant (i.e., more than a random alignment), we used model selection analysis, 

which produces Bayesian and corrected Akaike Information Criteria (BIC and AICc) 

scores, to compare different models of sequence evolution by placing them into different 

clusters. Clustering HgGLAND18 with Plasmodium CSPs produced much better BIC and 

AICc scores than clustering HgGLAND18 with the Bacillus proteins mentioned above 

(Table S3). These findings indicate that HgGLAND18 is more similar to the Plasmodium 

CSPs than to the Bacillus proteins. In a second analysis, we tested whether HgGLAND18 

was more likely to be specifically related to the three Plasmodium CSPs in question or to 

all Plasmodium CSPs in general. When HgGLAND18 was clustered specifically with 

CSPs from P. fieldi, P. simiovale and P. vivax-like, our analyses produced substantially 

better BIC and AICc scores than clustering with any other branch in the Plasmodium 

phylogeny (Table S3). Also, to further assess the significance of the supported clustering 

of HgGLAND18 with Plasmodium CSPs, we tested four control sequences identified 

from blastp-searches (Materials and Methods). None of these controls resulted in better 

scores when clustered to Plasmodium CSPs (Table S3). Furthermore, we generated 

Maximum Likelihood (ML) phylogenetic trees for HgGLAND18 and the four control 
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sequences separately with the eighteen Plasmodium CSPs. All of the controls formed 

outgroups to the Plasmodium CSPs while HgGLAND18 clustered with bootstrap support 

specifically to the three Plasmodium CSPs in question (Fig. 6c-g). These results indicated 

that the HgGLAND18 N-terminal domain is significantly similar to the RI, RR and RII+ 

domains of the three Plasmodium CSPs in question. 

Finally, we used HgGLAND18-3-5 as query in tblastn-searches of other plant- 

parasitic nematode genomic and/or transcriptomic sequence databases. No sequences 

from plant-parasitic nematodes other than H. glycines were obtained with an E-value < 

0.001, not even from potato cyst nematode (Globodera spp.) genomes or transcriptomes, 

or the Heterodera avenae transcriptome. Unfortunately, the direct sister species of H. 

glycines, the sugar beet cyst nematode H. schachtii (Maafi et al., 2003), was unable to be 

searched due to insufficient genomic and transcriptomic sequences. Southern analysis of 

H. schachtii genomic DNA resulted in hybridization of a HgGLAND18 CDS probe with 

multiple intense bands for both H. glycines and H. schachtii, but not another sedentary 

plant-parasitic nematode, the root-knot nematode M. incognita (Fig. S2). Collectively, 

these findings indicated that GLAND18 is likely present in only the Heterodera genus, 

and possibly only a few species. To further explore this observation, we cloned the H. 

schachtii GLAND18 (HsGLAND18) homolog (GenBank: KT954108) via RT-PCR. 

HsGLAND18 was 85% identical to HgGLAND18 (Fig. S5), but the similarity to the 

Plasmodium CSP domains in question was absent from HsGLAND18. Instead a number 

of single nucleotide polymorphisms and insertions/deletions in HsGLAND18 were 

evident where the domains in question aligned in HgGLAND18 (Fig. S4). Also, model 

selection analysis using HsGLAND18 did not result in better scores when clustered to 

Plasmodium CSPs (Table S3) and resulted as an outgroup in the ML phylogenetic tree 

(Fig. 6h). Thus, these results indicate that the similarity of the HgGLAND18 N-terminal 

(CSP-like) domain with the Plasmodium CSPs in question likely appeared specifically in 

H. glycines, and thus, is best explained by convergent evolution. 

 

 

RI, RR and RII+ domains from Plasmodium fieldi CSP complement the loss of the 

CSP-like domain from HgGLAND18 
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It appeared conceivable that convergence of the HgGLAND18 and Plasmodium CSP 

protein sequences could have developed due to similar immunosuppressive functions 

required in their requisite pathosystems. Since we had determined that the CSP-like 

deletion mutant HgGLAND1891-182 is non-functional, and that the supercharged domain 

alone (HgGLAND1891-133) has a weaker function compared to when CSP-like is present 

(Fig. 5), we performed functional complementation experiments by translationally fusing 

RI, RR and RII+ domains from P. fieldi CSP in-frame to the N-terminus of these CSP- 

like deletion mutants (see Table S4 for primer sequences). These chimeric proteins (Fig. 

7a) were then tested for HR suppression. Remarkably, these chimeric proteins fully 

complemented WT HgGLAND18-sp and HgGLAND1821-133 (Fig. 7b). However, neither 

of the controls for these chimeric proteins resulted in complementation (Fig. 7b), which 

indicated that the complementation of the CSP-like domain in HgGLAND18 was 

dependent on the sequences of the P. fieldi CSP domains. Finally, the P. fieldi CSP 

domains alone did not suppress HR (Fig. 7b, RI,RR,RII+), exactly as found for the CSP- 

like domain alone (Fig. 5b). Taken together, these results indicated that the RI, RR and 

RII+ domains from P. fieldi CSP fully complement the CSP-like domain in 

HgGLAND18, and thus, strongly support the conclusion of sequence convergence due to 

similar immunosuppressive functions. 

 

 

 

Discussion 

 

In this study, we showed that exon 2 in HgGLAND18 from H. glycines inbred line TN10 

is duplicated in inbred line OP50. In an outbred H. glycines field population, we 

identified four different HgGLAND18 isoforms, of which three appeared to have 

produced protein variants that differ in the number of exon 2 repeats ranging from 0 to 5. 

Thus, allelic variation and/or alternative splicing of repeat exons appear to generate 

extensive HgGLAND18 variation; the latter process has been documented for the 

chorismate mutase effector of plant-parasitic nematodes (Yu et al., 2011). Inter and intra- 

population variation in the number of repeats has been documented for other cyst 

nematode effectors (Eves-van den Akker et al., 2014b), and this feature may be of critical 
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importance for infection. Importantly, HgGLAND18 variant 3-2 is strongly expressed at 

each individual stage of the H. glycines life cycle, while all other variants are much less 

abundant. Thus, although there appears to be extensive variation in HgGLAND18, only a 

particular variant(s) may be of critical importance during infection. 

Multiple effectors from plant-parasitic nematodes have been shown to suppress 

basal and/or HR-related immune responses, and their mechanisms include scavenging 

reactive oxygen species (Chen et al., 2013; Lin et al., 2016), non-photochemical 

quenching (Lozano-Torres et al., 2014), and less well-understood mechanisms (Chronis 

et al., 2013; Ali et al., 2015a; Ali et al., 2015b; Chen et al., 2015). Some of these 

effectors can even activate immune responses (Lozano-Torres et al., 2012; Ali et al., 

2015a; Ali et al., 2015b). In heterologous assays, we found that HgGLAND18-sp strongly 

suppresses both canonical basal and HR immune responses. For deletion mutagenesis 

experiments, we only focused on HR suppression for HgGLAND18 mutants because WT 

HgGLAND18-sp suppressed the induction of all four SA-responsive defense marker genes 

similarly during both basal immunity and HR. We found that HgGLAND18 

immunosuppression requires both the N-terminal CSP-like domain and the internal 

supercharged domain. The supercharged domain was also found to be partially sufficient 

for immunosuppression resulting in an about 2-fold less effect than WT HgGLAND18-sp. 

Addition of the CSP-like domain to the supercharged domain increased 

immunosuppression to a level in between supercharged alone and WT HgGLAND18-sp. 

Interestingly, addition of the C-terminal domain alone to supercharged completely 

abolishes its function, while adding back the CSP-like domain, and thus WT 

HgGLAND18, blocks the C-terminal inhibitory effect on supercharged, while also 

resulting in the strongest immunosuppression. Thus, HgGLAND18 immunosuppression 

requires the coordination of the CSP-like and C-terminal domains with the supercharged 

domain for the strongest effect. We hypothesize that HgGLAND18 suppresses both basal 

immunity and HR by targeting a conserved point in the pathways conditioning these 

responses, which may not be surprising given the extent of overlap (Jones & Dangl, 

2006; Spoel & Dong, 2012), and that such a function has been proposed before for the 

ubiquitin carboxyl extension protein effector from cyst nematodes (Chronis et al., 2013). 
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Consistent with an important role in infection, RNAi of HgGLAND18 decreased 

H. glycines pathogenicity. For this analysis, we designed two separate experiments to 

scrutinize HgGLAND18 function. Since the usual R-gene-mediated plant pathogen 

resistances involve HR, the two separate experiments were designed to deduce whether 

or not HgGLAND18 suppresses soybean resistance to H. glycines. In the first 

experiment, susceptible cultivar Essex was infected with H. glycines line PA3, which has 

no ability to overcome any known soybean resistance genes and thus is termed ‘avirulent’ 

on resistant soybean cultivars. Silencing of HgGLAND18 in this experiment resulted in 

reduced H. glycines pathogenicity indicating that even in soybean–H.  glycines 

interactions in which no major resistance genes have been shown to be present, H. 

glycines pathogenicity is supported by the effector function. In the second experiment, 

resistant cultivar Forrest was infected with H. glycines line TN19, which has the ability to 

overcome the ‘Forrest’ resistance and thus is termed ‘virulent’. If HgGLAND18 is an 

effector conveying pathogenicity in a specific manner to line TN19 (e.g., to suppress 

‘Forrest’ resistance), then silencing in this experiment should reduce line TN19 

pathogenicity on cultivar Forrest, but not that of line PA3 pathogenicity on cultivar 

Essex. Because reduced pathogenicity was observed in both experiments, we conclude 

that HgGLAND18 is not an effector specifically conveying pathogenicity on resistant 

soybean cultivars, but is an effector that, likely, broadly suppresses immune responses in 

compatible interactions. It could be argued that if HgGLAND18 suppresses HR, then it 

should suppress host resistance. However, the most common soybean resistances to H. 

glycines, including for ‘Forrest’, has been demonstrated to be different than the usual R- 

gene-mediated plant pathogen resistances, involving gene networks not identified in other 

pathosystems (Cook et al., 2012; Liu et al., 2012). Moreover, it has been proposed that at 

least some plant pathogen resistances may actually be disconnected from HR, and rather, 

be due to non-immune processes, and that suppression of HR may be important for 

compatible interactions (Coll et al., 2011). Thus, it is plausible that HgGLAND18 

suppression of both basal immunity and HR is relevant for the compatible interaction 

between H. glycines and soybean. However, we cannot exclude the possibility that this 

effector might be involved in the suppression of as yet unknown canonical R-gene- 

mediated resistances to H. glycines in wild soybean relatives. 
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HgGLAND18-sp caused severe growth defects in soybean roots. This phenotype 

was shown to be correlated with immunosuppression by determining that only the 

HgGLAND18 mutants that still suppressed immunity resulted in the same phenotype. We 

consider it unlikely that this phenotype was caused by overgrowth of Agrobacterium 

rhizogenes because the infected cotyledons were decontaminated in antibiotics prior to 

root induction, and the roots were maintained as well in media with high concentrations 

of antibiotics. There are tradeoffs between growth and immune responses that are 

generally understood to be due to limited resource availability (Huot et al., 2014). In 

general, growth and immune responses are inversely related with activated immune 

responses suppressing growth, and vice versa (Huot et al., 2014). Thus, it can be argued 

that if HgGLAND18 strongly suppresses immune responses, growth should be favored. 

However, the overlaps between growth and immune response pathways are complex and 

not well understood (Huot et al., 2014). Thus, it remains possible that the observed 

growth defects could be a consequence of constitutive suppression of immune responses, 

or possibly the opposite—that the effect of HgGLAND18 on growth might cause 

immunosuppression. Future projects aimed at examining the transcriptional changes that 

occur in HgGLAND18-sp-expressing soybean roots will determine the underlying causes 

of this phenotype. 

The innate immune systems of plants and animals are mechanistically similar. 

Both use receptors to detect foreign invaders, and when activated, result in robust 

intracellular signaling to induce cellular defenses. Interestingly, the sequence and 

functional similarities between these plant and animal immune regulators are best 

explained by convergent evolution due to limited protein sequences and domains that can 

efficiently detect microbes in order to mount robust immune responses (Ausubel, 2005; 

Coll et al., 2011; Maekawa et al., 2011). Here, we showed that the CSP-like domain in 

HgGLAND18 contains marginal sequence similarity to CSP domains RI, RR and RII+ 

from three closely related Asian primate malaria species. Also, extensive database 

searches did not find proteins other than HgGLAND18 that contain the extent of 

similarity to the multiple CSP domains. Furthermore, model selection coupled with 

phylogenetic analysis determined that the similarity is significant and greatest to the 

Plasmodium species in question. We have obtained preliminary in silico protein structural 
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data that suggests that both HgGLAND18 and the Plasmodium CSPs in question largely 

lack defined secondary structures and appear to form highly disordered rod-like tertiary 

structures, which also suggests that the similarities between these two effector proteins 

extend  beyond  the  sequence  level.  Interestingly,  the  GLAND18  homolog  in  H. 

schachtii—the sister species of H. glycines—and the paralogous effector HgGLAND8 do 

not contain similarity to the respective CSP domains. Thus, the similarity most likely 

appeared specifically in HgGLAND18. Moreover, the RI, RR and RII+ domains from P. 

fieldi CSP fully complemented the loss of the CSP-like domain from HgGLAND18. We 

have  also  obtained  preliminary  subcellular  localization  data  for  HgGLAND18  that 

strongly suggests its localization to the plant cell nucleus (Fig. S6), and thus, is consistent 

with  the  idea  that  HgGLAND18  and  Plasmodium  CSPs  might  use  similar  nuclear 

mechanisms  for  immunosuppression.  Collectively,  our  findings  support  a  scenario 

whereby these effectors from highly divergent parasites of plants and animals converged 

on a similar protein sequence due to similar immunosuppressive functions. Thus, in 

addition to shaping analogous immune regulators within the immune systems of plants 

and  animals,  convergent  evolution  might  be  an  important  force  causing  even  very 

different pathogens that infect these eukaryotes to utilize similar, but analogous effectors. 

In summary, we have shown that H. glycines uses the pathogenicity effector 

HgGLAND18 throughout its life cycle to suppress both basal and HR innate immune 

responses,  and  that  the  effector’s  mechanism  might  be  comparable  to  that  of  the 

Plasmodium  CSPs.  As  very  few  Heterodera  effectors  have  been  characterized,  our 

findings help fill the gap in our understanding of how these nematodes are able to be such 

successful pathogens. Given the essential HgGLAND18 pathogenicity roles, this work 

also exposes this effector as a possible target for novel H. glycines control measures. 
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Figure 1. A single HgGLAND18 variant predominates throughout the Hetereodera 

glycines life cycle. (a) HgGLAND18 gene structures in H. glycines lines TN10 and OP50. 

TN10 HgGLAND18 was obtained from a H. glycines draft genome sequence (Noon et al., 

2015) and OP50 HgGLAND18 was PCR-amplified from genomic DNA, cloned and 

sequenced. Exons and introns are illustrated as boxes and horizontal lines, respectively. A 

scale of nucleotide positions is provided below each HgGLAND18 gene. Exons that 

encode individual repeats are colored light blue and labeled. Annealing sites for the RT- 

PCR primers are shown within the corresponding exons. (b) RT-PCR on the 

HgGLAND18 tandem repeat region using mixed parasitic H. glycines life stages. Bands 

are labeled according to the number of repeats. Shown is an inverted gel image. (c) RT- 

PCR was performed on the full-length HgGLAND18 coding DNA sequence using mixed 

parasitic H. glycines life stages, and a single, smeared band was cloned, and plasmids 

obtained from 30 different bacterial colonies were sequenced. Shown is the number of 

colonies that resulted in each HgGLAND18 variant (22/30 colonies = HgGLAND18-3-2). 

(d) Illustration of the four different HgGLAND18 isoforms identified from codon 

insertions/deletions labeled at the corresponding positions. Multiple protein variants from 

each isoform are shown with the repeats colored light blue (signal peptide is colored 

green). N, asparagine; VNG, valine-asparagine-glycine. (e) RT-PCR on the HgGLAND18 

tandem repeat region as in panel (b) on each individual stage of the H. glycines life cycle, 

with HgActin1 as reference. Top, inverted gel image of HgGLAND18; middle, regular gel 

image of HgActin1; bottom, inverted gel image of HgGLAND18 with greater exposure. 

Bottom, bands are labeled according to the number of repeats. Top, the most intense band 

was purified from each lane and sequenced, which resulted exclusively in the 

HgGLAND18-3-2 variant. 

 

Figure 2. Host-induced RNA interference of HgGLAND18. (a) Host-induced RNA 

interference (RNAi) construct generated for specifically silencing HgGLAND18 in 

feeding Heterodera glycines. Annealing sites within the hairpin loop are shown for the 

primers used for diagnosis of HgGLAND18i transgene expression (F and R). All 

HgGLAND18i independent transgenic events included in the experiments were pre- 

determined via RT-PCR to express the transgene, while no expression was observed in 
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the vector control roots. Annealing sites for the primers used for quantitative real-time 

reverse-transcription (qRT)-PCR assessment of HgGLAND18i target gene silencing are 

shown (qF and qR). (b) qRT-PCR assessment of HgGLAND18i target gene silencing in 

H. glycines that fed from transgenic soybean roots. Hg3B05 (GenBank: AF469058.1), 

Hg4G06 (GenBank: AF469060.1) and Hg8H07 (GenBank: AF500024.1) were included 

as non-target (nt), negative control, H. glycines effector genes (Sindhu et al., 2009). 

Expression levels of HgGLAND18 and the non-target genes in HgGLAND18i-exposed H. 

glycines are relative to H. glycines exposed to vector control. Data were normalized to 

HgActin1. Baseline expression is set at 1.0. Five biological replicates, each representing 

an individual experiment on a different transgenic event, were included for all. Data 

shown are representative of both soybean cultivars Essex and Forrest infected with inbred 

lines PA3 and TN19, respectively. (c) Qualitative and (d,e) quantitative growth 

comparisons between HgGLAND18i-expressing and vector control roots. (c) At least 10 

independent transgenic events were qualitatively evaluated per construct.  Scale  bars 

equal 2 millimeters. (d,e) Data are representative of three independent experiments (n = 5 

independent transgenic events). (c-e) Data shown are representative of both soybean 

cultivars Essex and Forrest. (f,g) Comparisons between the number of H. glycines adult 

females that developed on HgGLAND18i-expressing and vector control roots. (f) 

Susceptible soybean cultivar Essex inoculated with H. glycines avirulent line PA3 (n = 20 

replicates, each replicate containing a mixture of hairy roots from 3 independent 

transgenic events). (g) Resistant soybean cultivar Forrest inoculated with H. glycines 

virulent line TN19 (n = 20 replicates, each replicate containing a mixture of hairy roots 

from 3 independent transgenic events). (f,g) Data are representative of two independent 

experiments. (b,d-g) Data are presented as the means (thick horizontal lines) ± one 

standard deviation (error bars). **, P < 0.01; ***, P < 0.001; ns, not significant (P > 

0.05). 

 

Figure 3. Ectopic expression of HgGLAND18 in soybean roots. (a) Construct 

generated for ectopic expression of HgGLAND18 minus signal peptide (HgGLAND18-sp) 

in soybean roots. Annealing sites for the primers used for diagnosis of HgGLAND18-sp 

transgene expression are shown (F and R). All HgGLAND18-sp  independent transgenic 
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events included in the experiments were pre-determined via RT-PCR to express the 

transgene, while no expression was observed in the vector control roots. (b,c) 

Quantitative and (d) qualitative growth comparisons between HgGLAND18-sp-expressing 

and vector control roots. (b,c) Data are representative of three independent experiments 

(n = 5 independent transgenic events). Data are presented as the means (thick horizontal 

lines) ± one standard deviation (error bars). ***, P < 0.001. (d) At least 10 independent 

transgenic events were qualitatively confirmed for the STUMPY/GLOSSY phenotype for 

HgGLAND18-sp-expressing roots. Scale bars equal 2 millimeters. 

 
Figure 4. HgGLAND18 suppresses plant innate immune responses. (a) Construct 

generated for HgGLAND18 minus signal peptide (HgGLAND18-sp) expression in and 

secretion from Pseudomonas into Nicotiana benthamiana for basal immunity and 

hypersensitive cell death reaction (HR) suppression experiments, respectively. (b) 

Western blot showing specific expression of HgGLAND18-sp in (pellet) and secretion 

from (supernatant) both Pseudomonas syringae pathovar tomato strain DC3000 (Pst 

DC3000) and Pseudomonas fluorescens strain EtHAn. Bacteria were cultured in hrp- 

inducing (type III secretion system; T3SS) minimal medium beforehand. Anti (α)-HA 

antibody was used for the Western blot and a strong common band present in all pellet 

samples from Coomassie Brilliant Blue (CBB)-stained gels was used as loading control, 

and this strong common band was not detected in the supernatant. (c,d) Basal immunity 

suppression experiments. (c) Wild-type (WT) EtHAn and EtHAn + HgGLAND18-sp 

(HgG18) (both OD600 = 0.2) were infiltrated into N. benthamiana leaves (black tracing) 

on opposite sides of the midrib, and after 6-hrs, challenge infiltrations were performed 

with WT Pst DC3000 (OD600 = 0.02) (red tracing). Red arrows show HR caused by Pst 

DC3000 after 2-days post-infiltration (dpi) within the overlapping areas for EtHAn + 

HgGLAND18-sp, indicating a suppressed basal immune response against EtHAn. Scale 

bar equals 1 inch. (d) Comparison between the percentage of overlapping areas (n = 20) 

with suppressed basal immunity (presence of HR caused by Pst DC3000) for WT EtHAn 

and EtHAn + HgGLAND18-sp. Data were pooled from three independent experiments. 

(e) Quantitative real-time reverse-transcription (qRT)-PCR assessment of the induction of 

salicylic acid  (SA)-responsive defense marker gene expression during basal immune 
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responses for both WT EtHAn and EtHAn + HgGLAND18-sp at 6-hrs post-infiltration 

(hpi). Expression levels are relative to mock-infiltrated leaves, and normalized to 

NbActin1. Three biological replicates were included for all, each representing an 

individual experiment. (f,g) HR suppression experiments. (f) WT Pst DC3000 and Pst 

DC3000 + HgGLAND18-sp (HgG18) (both OD600 = 0.02) were infiltrated into N. 

benthamiana leaves on opposite sides of the midrib, and images were taken at 3-dpi. 

Scale bar equals 1 inch. (g) Comparison between the percentage of infiltrated areas (n = 

20) with comparatively weaker HR for WT Pst DC3000 and Pst DC3000 + 

HgGLAND18-sp. Data were pooled from three independent experiments. (h) qRT-PCR 

assessment of the induction of SA-responsive defense marker gene expression during HR 

responses for both WT Pst DC3000 and Pst DC3000 + HgGLAND18-sp at 16-hpi, as in 

panel (e). (d,e,g,h) Data are presented as the means ± one standard deviation (error bars). 

*, P < 0.05; **, P < 0.01; ***, P < 0.001. 

 

 

Figure 5. Analyses of HgGLAND18 deletion mutants. (a) Illustration of the amino acid 

(aa) positions within HgGLAND18 (variant 3-2) where the supercharged domain is 

located. The aa sequence of supercharged is provided below the illustration with cationic 

and anionic aa colored light blue and red, respectively, and polar aa colored green. (b) 

Hypersensitive cell death response (HR) suppression experiments for HgGLAND18 

deletion mutants, performed as in Figure 4f,g. In addition to comparing the percentage of 

overlapping areas with suppressed HR between each Pseudomonas syringae pathovar 

tomato (Pst) strain DC3000 + HgGLAND18 mutant and wild-type (WT) Pst DC3000, 

comparisons were made between WT HgGLAND18-sp and the two HgGLAND18 

mutants that also suppressed HR. Data are presented as the means ± one standard 

deviation (error bars). *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant (P > 

0.05). (c) All HgGLAND18 mutants were ectopically expressed in soybean roots as in 

Figure 3 for WT HgGLAND18-sp, and at least 5 independent transgenic events were 

confirmed via RT-PCR to express the respective transgene, with no amplification in 

vector control. Images from qualitative growth comparisons are shown for all 

HgGLAND18 mutants and vector control roots, as in Figures 2c and 3d. Each image is 

representative of at least 5 independent transgenic events pre-determined for transgene 
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expression. Scale bars equal 2 millimeters. (-), no STUMPY/GLOSSY phenotype (i.e., 

identical to vector control). 

 

Figure 6. The HgGLAND18 N-terminal domain is similar to domains RI, RR and 

RII+ from specific Plasmodium CSPs. (a) Illustration showing specific similarity of 

domains RI (region I), RR (repetitive region) and RII+ (region II+) from Plasmodium 

CSPs (circumsporozoite proteins) with the HgGLAND18 N-terminal (CSP-like) domain. 

(b) Multiple sequence alignment (MSA) between the HgGLAND18 N-terminal (CSP- 

like) domain and domains RI, RR (i.e., 5 repeats) and RII+ from Plasmodium fieldi, P. 

simiovale and P. vivax-like CSPs. Black triangles indicate the removal of the 

corresponding domains from the CSPs in order to generate the MSA. A consensus 

sequence is provided below the MSA only to indicate the identical amino acids. (c-h) 

Maximum likelihood (ML) phylogenetic trees of all eighteen Plasmodium CSP RI, RR 

and RII+ domains reported in GenBank (Table S1) with (c) HgGLAND18 [i.e., N- 

terminal (CSP-like) domain], (d) Bacillus cereus ‘circumsporozoite protein’ (Bc‘CSP’), 

(e) HgGLAND8, (f) Human SARMP2, (g) Plasmodium falciparum EMP1, and (h) 

Heterodera schachtii GLAND18 (HsGLAND18). (d-g) Negative controls for the analysis 

(Materials and Methods). (c-h) Bootstrap values indicate the percentage of trees (n = 100) 

at the corresponding nodes that resulted in the same topology. Bootstrap values < 50 were 

removed. Scale bars indicate the rates of amino acid substitution per site. Branches for 

the five major Plasmodium clades are color coordinated as follows: P. reichinowi/P. 

falciparum malaria clade, red; Avian malaria clade (P. gallinaceum), orange; African 

Primate malaria clade, mustard; Rodent malaria clade, light green; Asian Primate malaria 

clade, blue; monophyletic group of Asian Primate malarias P. fieldi, P. simiovale and P. 

vivax-like, light blue (Mitsui et al., 2010; Pacheco et al., 2012). Note that the 

phylogenetic trees are rooted at the P. reichinowi/P. falciparum plus Avian malaria 

clades as this was the first independent lineage that formed in Plasmodium (i.e., the most 

ancient). 

 

Figure 7. Complementation of the CSP-like domain in HgGLAND18 with domains 

RI,  RR  and  RII+  from  Plasmodium  fieldi  CSP.  (a)  Plasmodium  fieldi  CSP 
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(circumsporozoite protein) domains RI (region I), RR (repetitive region) and RII+ (region 

II+) (RI,RR,RII+) were fused and substituted in-frame for the CSP-like domain in 

HgGLAND18, and all chimeric proteins that were tested for complementation of 

immunosuppression are shown with the wild-type (WT) HgGLAND18 minus signal 

peptide (HgGLAND18-sp) provided above for reference. A sequence from GUSPlus of 

the same size as the substituted RI,RR,RII+ sequence was used as a random, negative 

control sequence for the experiments. RI,RR,RII+ alone was also included as a negative 

control. (b) Hypersensitive cell death response (HR) suppression experiments for 

RI,RR,RII+ and control chimeric proteins, performed as in Figure 4f,g, with statistical 

cross comparisons as in Figure 5b, but shown as significance groups (groups are 

significantly different at P < 0.05). WT HgGLAND18-sp, HgGLAND1821-133 and 

HgGLAND1891-133 were included in the experiments for comparisons. Data are presented 

as the means ± one standard deviation (error bars). **, P < 0.01; ***, P < 0.001; ns, not 

significant (P > 0.05). 

 

 

 

Supporting Information Legends 

 
 

Figure S1. Multiple sequence alignment of Plasmodium CSPs and illustration of 

domains. 

 

Figure S2. GLAND18 Southern blot. 

 

 

Figure S3. Multiple sequence alignment of all HgGLAND18 variants identified from 

sequencing. 

 

Figure S4. qRT-PCR screen for the optimum time point for quantification of 

salicylic acid-responsive defense marker gene expression during basal immune 

responses. 
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Figure  S5.  Pairwise  sequence  alignment  of  GLAND18  protein  sequences  from 

Heterodera glycines and Heterodera schachtii. 

 

 

Figure  S6.  Subcellular  localization  of  HgGLAND18-3-2  in  N.  benthamiana  leaf 

epidermal cells with the nucleus counterstained with DAPI. 

 

Table S1. GenBank accession numbers for all Plasmodium CSP sequences used in 

our study. 

 

Table S2. Plant-parasitic nematode raw sequence reads searched for HgGLAND18 

homologs. 

 

Table S3. Model selection analyses for HgGLAND18 and controls with Plasmodium 

CSPs. 

 

 

Table S4. Complete list of primers used in our study. 


