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Abstract | Genomic studies have greatly advanced our understanding of the multifactorial 

aetiology of type 2 diabetes mellitus (T2DM) as well as the multiple monogenic diabetes 

subtypes. In this Review, we discuss the existing pharmacogenetic evidence in both 

monogenic diabetes and T2DM, highlight the mechanistic insights from the study of side 

effects to antidiabetic drugs as well as their efficacy. The identification of extreme 

sulfonylurea sensitivity in patients with diabetes mellitus caused by heterozygous mutations 

in HNF1A represents a clear example of how pharmacogenetics can impact on patient care. 

However pharmacogenomic studies of response to antidiabetic drugs in T2DM has yet to 

translate into clinical practice, although some moderate genetic effects have now been 

described that merit follow up in genotype selected trials. We also discuss how future 

pharmacogenomic findings could provide insights into treatment response in diabetes that, 

complementary to other areas of human genetics, facilitates drug discovery and drug 

development for T2DM. 

Introduction 
In the past decade, genome-wide association studies (GWAS) and high-throughput 

sequencing, propelled by the fast development in affordable genomic technologies, have 

greatly advanced our understanding of the genetic aetiology of many common diseases1. 

Pharmacogenomic studies applying these genome-wide approaches to investigate drug 

response have also yielded important results2, 3. In this Review, and in this context, we 

discuss the genomic evidence that has strengthened our understanding of the multifactorial 

aetiology of type 2 diabetes mellitus (T2DM) and discuss the emerging evidence that a 

complex genetic architecture might underline the variation in response to antidiabetic drugs. 
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Genetic evidence in disease genomics is increasingly being used for target validation in drug 

discovery. We anticipate how robust pharmacogenomic evidence could provide more 

valuable information to predict both on-target and off-target effects in drug discovery and 

development.  

The multifactorial aetiology of T2DM  

T2DM is a complex metabolic disease characterized by hyperglycaemia resulting from 

functional impairment in insulin secretion, insulin action or both4. Both insulin resistance and 

secretory deficiency arise through the interplay of genetic and environmental risk factors5. 

GWAS, which have interrogated all the common genetic variants (minor allele frequency 

greater than 5%), have identified >120 T2DM risk loci6, 7. High-throughput sequencing 

studies, which could theoretically examine all the variants in the genome or at least the 

section that encodes proteins, have also enabled the discovery of rare variants (minor allele 

frequency <5%) at GWAS identified loci and novel loci for T2DM8, 9. Together these common 

variants with small to moderate effects and rare variants with relatively large impacts could 

account for ~15% of the total risk of developing T2DM and confirm its nature as a 

multisystem disorder6, 10. 

Glycaemic control is a key focus in the management of T2DM, and is associated with both 

microvascular and macrovascular benefits11-13. The treatment of T2DM has evolved with our 

understanding of the pathophysiology of this complex disease5. A wide range of drug 

treatment, characterized by different mechanism of action, is available to achieve glycaemic 

control in patients with T2DM (Figure 1)14. Apart from insulin replacement, traditional oral 

agents include the secretagogues that stimulate the pancreas to release insulin and the 

sensitizers that enhance the efficacy of insulin action14. New agents include the 

dipeptidylpeptidase-4 (DPP4) inhibitors, also known as the gliptins, that enhance the so-

called ‘incretin effect’ and promote glucose-stimulated insulin secretion15; as well as the 

sodium-glucose cotransporter-2 (SGLT-2) inhibitors that reduce hyperglycaemia by 

increasing glucose elimination via the urine16. Although these drugs are all effective at 

lowering glucose in patients with T2DM, glycaemic control often fails even after a 

combination of the available treatment options due to the progressive nature of the disease. 

Diabetes drug response can be considered at many levels, as outlined in Table 1, including 

the physiological response to the drug, or the long term effect of the drug in terms of 

microvascular or macrovascular risk reduction. In this Review, when considering drug 

response, we focus primarily on the glycaemic effect of drugs as this outcome has been the 

most studied. 



Monogenic diabetes mellitus 
With the increasing awareness that T2DM is highly heterogeneous, and as we understand 

more about the aetiology of the disease, we can begin to subdivide ‘T2DM’ into distinct 

aetiological subtypes. This development can be seen with the increasing identification of 

monogenic forms of the disease, which until the past 10-15 years were misclassified as type 

1 diabetes mellitus or T2DM. Understanding these aetiological subtypes has resulted in 

some of the earliest studies that provided the most clinically robust examples of 

pharmacogenetics to date. For example, patients with Maturity Onset Diabetes of the Young 

owing to mutations in HNF1A (which accounts for ~3% of all diabetes mellitus cases 

diagnosed under the age of 30 years) are extremely sensitive to sulfonylurea treatment, and 

can successfully transition off insulin treatment17. Similarly patients with neonatal diabetes 

due to KCNJ11 or ABCC8 mutations who have insulin dependent diabetes mellitus from 

soon after birth have been shown to respond to high dose sulfonylureas and to be able to 

transition off insulin onto oral sulfonylurea treatment18. These examples highlight how 

increasing awareness of aetiological subtypes of diabetes will enable a precise approach to 

treatment of diabetes mellitus and is an area of great interest. However, for the remainder of 

this review, we will focus on polygenic influences on drug response in T2DM.  

Pharmacogenomics and genetic architecture  
Pharmacogenetics aims to seek the genetic explanation of why individuals respond 

differently to drugs, both in terms of therapeutic efficacy as well as adverse drug reactions 

(ADR)19. Prior to the emergence of genome wide genotyping arrays, pharmacogenetic 

studies focused on candidate genes with known links to drug distribution, metabolism or 

response pathways19. With the development of cost-effective genomic technologies, 

genome-wide genotyping and sequencing has transformed this traditional pharmacogenetic 

approach into a more global pharmacogenomic approach that can systematically interrogate 

millions of genetic polymorphisms across the genome20, 21. Most published genome-wide 

studies of drug response are GWAS, and only a few such studies reported sequencing-

based investigations. One example of a sequencing-based study is the use of publicly 

available whole-genome sequence data on 482 samples to profile 231 pharmacogenetic 

genes22. In the same study, the authors also performed whole genome sequencing on 7 

family members to try to explain the genetic basis of their variable response to 

anticoagulation treatment. The two terms pharmacogenetics and pharmacogenomics are 

often used interchangeably, but in this Review we use pharmacogenomics to refer to studies 

using genome-wide approaches. 



Biomarker discovery for precision medicine remains the long-term goal of pharmacogenomic 

studies. However, an often under-appreciated benefit of such studies is that they can 

advance our understanding of the biological mechanism of drug action in humans by 

identifying variants in genes not previously thought to be associated with drug response. 

These genes might never have been included in traditional candidate gene approaches3.  

A fundamental issue underlying the validity and feasibility of pharmacogenomic studies is the 

genetic architecture of drug response23. In this context ‘genetic architecture’ refers to the 

number of response variants; the frequency spectrum of these response variants; the effect 

size spectrum of the variants; the physical distribution of the variants in the genome; and the 

amount of variation in drug response explained by these genetic variants (known as 

heritability). Whilst heritability determines the validity of pharmacogenomic studies, the other 

aspects of genetic architecture dictate the feasibility and design of pharmacogenomic 

studies. 

Adopting traditional twin and family study designs to estimate the heritability of drug 

treatment outcomes has been largely impractical, because family members may not develop 

the same disease or be treated with same drug. With the availability of GWAS data, new 

‘chip-based’ approaches have been developed to estimate heritability from population-based 

samples24. However, data from at least a few thousand individuals are required to achieve 

an accurate estimate of heritability by these methods25. Such methods, therefore, can be 

applied to estimate the heritability of treatment efficacy for commonly used drugs, but not the 

less frequent ADRs. 

In a study of GWAS data from 2,085 patients with T2DM, heritability of glycaemic response 

to metformin was estimated to be up to 34% (p=0.02)23. Furthermore, this investigation also 

found that the heritability is likely to be the result of many common response variants with 

small to moderate effect sizes scattered across the genome23. These results suggest that 

the genetic architecture of metformin efficacy is similar to that of T2DM and other complex 

traits. This similarity between the genetic architectures of T2DM and the treatment efficacy of 

metformin is likely to be rooted in the multifactorial aetiology of the disease. Variants in 

different genes or pathways might affect metformin treatment efficacy in patients whose 

pathophysiology is heterogeneous (for example, those individuals who are predominantly 

insulin resistant or those whose insulin secretion is deficient). Similar to metformin, other 

antidiabetic agents are also used to treat a combination of patients with heterogeneous 

pathophysiology. Therefore we anticipate that the genetic architecture of treatment efficacy 

for other antidiabetic agents to be similar to that of metformin response.  



To appreciate the scale of the heritability estimate of 34% for glycaemic response to 

metformin, it is necessary to put it into the context of other complex traits. In a 2015 study 

again using a population-based method, the heritability estimate for BMI was 

27%(S.E.=2.5%) 26, which is considerably lower than the heritability estimates of 40%~60% 

derived from traditional twin and family studies27. The discrepancy observed between the 

two methods could be explained by the facts that heritability is underestimated by the ‘chip-

based’ method due to imperfect tagging and it is often overestimated by the traditional twin 

studies due to common environment confounding28. Therefore the actual heritability of 

glycaemic response to metformin could be even higher than what has been estimated from 

GWAS data. In addition, chip-based heritability estimates also suffer underestimation due to 

the incomplete coverage of contribution from rare variants, whereas traditional twin and 

family studies are unbiased in this regard24. Finally, the diversity of the microbiota residing in 

the gut might also contribute to the variable response to metformin. For example, metformin-

associated change in gut microbiome accounts for a considerable proportion of the 

difference in taxonomic composition between patients with T2DM and non-diabetic 

controls29. Examining the diversity of this gut microbiome might, therefore, enable the 

identification of novel targets for the prevention or management of T2DM as the microbiota 

genome is easier to modify with prebiotics or probiotics compared to the host genome30.  

Notably, twin and family studies have been used to estimate the heritability of physiological 

response to antidiabetic agents in participants without T2DM. For example, in a twin-family 

study of 100 healthy twins and 25 siblings, the heritability of GLP-1 stimulated insulin 

secretion during hyperglycaemia to be 53%31. In another family study, the heritability of 

tolbutamide stimulated insulin secretion (Acute Insulin Responsetolbutamide) in 284 healthy 

family members of patients with T2DM was estimated to be 69%32. The results of these twin 

and family studies that include non-diabetic individuals have demonstrated that a large 

component of the variation in physiological measures in response to antidiabetic drugs is 

contributed by genetic variants. However, to what extent such high heritability estimates are 

comparable to that of glycaemic response estimated from population-based studies of 

patients with T2DM is unclear. Two reasons might account for different heritability estimates 

between the two study designs. Firstly, twin and family studies are often performed in 

controlled settings, which have less environmental variance than real world patient 

populations. Consequently, the same genetic effect sizes could lead to higher heritability 

estimates. Secondly, the pharmacodynamics in patients with T2DM might differ from that in 

healthy individuals as the mechanism of glycaemic homeostasis could vary by physiological 

states in which different functional pathways are involved33.  



Most of the robust findings in pharmacogenomic studies to date are related to severe 

ADRs2. The variants associated with these rare ADRs often confer a large risk. For example 

carrying the HLA-B*57:01 allele causes an 80 fold (p=9.0x10-9) increased risk of flucloxacillin 

induced liver injury compared to non-carriers of this allele34. Encouraged by findings like this, 

it has been proposed that many of the drug-response variants should have considerable, 

clinically significant impact on treatment outcome35, 36. This proposal is supported by the 

hypothesis that drug response variants lack the evolutionary constraint that has filtered out 

large disease risk variants via natural selection35. However, two explanations exist as to why 

large impact pharmacogenomics variants are unusual, especially for variants affecting 

treatment efficacy. Firstly, pharmaceutical interventions often achieve clinical impact via 

complex metabolic networks, which rely on redundant pathways and synergistic effects to 

maintain their robustness when confronted with external stimuli37. Partial or complete 

impairment of one node in the network is, therefore, more likely to have marginal impact on 

the treatment efficacy than a complete shutdown on all the relevant pathways. Secondly, the 

established spectrum of large impact ADR variants might also reflect a publication bias, 

which accumulated the so called ‘low hanging fruit’ that have been identified by 

pharmacogenomic studies often using fewer than 1000 cases3, 38. Although the genetic 

architecture of rare ADRs might be akin to those of polygenic diseases in which large impact 

variants dominate3, we anticipate the genetic architecture of treatment efficacy and mild 

ADRs would both encompass a spectrum of rare-to-common variants with moderate effect 

sizes. This notion is in line with the fact that rare variants with moderate impact have been 

successfully identified for common diseases such as T2DM by sequencing and imputation-

based rare variant association studies of over one hundred thousand samples9. Assembling 

large samples would, therefore, enable the identification of more drug response variants by 

future pharmacogenomic studies. 

Pharmacogenomics of T2DM drugs 
Owing to the considerable variability in response to existing drugs to treat diabetes mellitus, 

a large number of pharmacogenetic studies have been published, but only one 

pharmacogenomic GWAS study of metformin treatment efficacy reported39. These studies 

each focused on a single oral agent and have been the subject of many previous reviews 40-

42. No report exists on the pharmacogenetics of drug-drug interaction, despite a large 

number of patients requiring multiple agents to combat diabetes progression and maintain 

glycaemic control. In this section we summarize the replicated findings in studies of 

treatment efficacy and place more emphasis on the investigation of adverse effects (Table 

2). 



Treatment efficacy  
Very few robust pharmacogenetic findings related to treatment efficacy of diabetes mellitus 

drugs have been reported. Previous candidate gene studies largely focused on drug 

transporters or metabolizing enzyme variants that have been implicated in the 

pharmacokinetics of drug exposure41. Variation in metformin pharmacokinetics is mainly the 

result of variants in transporters SLC22A1 (encoding OCT1) and SLC47A1 (encoding 

MATE1)43, 44. However, the most investigated reduced-function OCT1 variants with low 

transporter activity showed no consistent impact on glycaemic control in patients45-48. 

Sulfonylureas are mainly metabolized by Cytochrome P450 2C9  which is encoded by 

CYP2C9. Individuals with the loss-of-function variants in CYP2C9 have higher drug 

exposure, and this in turn does lead to consistent observations of greater glycaemic 

response than those carrying the wild-type alleles49-51.  

Studies of potential pharmacodynamic variants, which might affect how antidiabetic agents 

alter glucose levels, have largely focused on the genes involved in glucose metabolism and 

the risk of developing T2DM. One replicated finding is seen for TCF7L2 and sulfonylurea 

response, where the allele associated with reduced β-cell function and, therefore, increased 

risk of T2DM is also associated with reduced efficacy of sulfonylureas52-54. The K allele of the 

E23K variant in KCNJ11, which encodes the known targets of sulfonylureas, also had 

association with greater glycaemic response in multiple studies55-57. These observations of 

E23K carriers were consistent with the evidence that neonates with monogenic diabetes  

who have causal variants in KCNJ11 could be effectively treated with sulfonylureas18. 

Another replicated finding is the association between PPARG Pro12Ala variant and 

response to Thiazolidinediones (commonly known as TZDs). A few studies each using less 

than 200 participants consistently reported the T2DM risk Pro allele is associated with poor 

glycaemic response 58-60. For the newer agents such as gliptins and SGLT2 inhibitors, 

pharmacogenetic studies of treatment efficacy have been sparse with only one relatively 

large study reporting the association and replication between rs7202877 near CTRB1/2 and 

response to gliptins61. 

The only GWAS of any antidiabetic agent published to date  identified a variant rs11212617 

near the ATM locus being associated with glycaemic response to metformin39. Independent 

replications were later reported in multiple cohorts of different ancestries, strengthening the 

evidence that the variant is the most established drug response variant for antidiabetic 

drug62, 63. Given the moderate impact on glycaemic response to metformin, this variant is not 

a useful biomarker that can substantially increase our ability to accurately predict the 

treatment outcome in individual patients. However, as this variant has no functional link to 

any known metformin mode-of-action, it demonstrates that such a pharmacogenomic 



discovery could reveal novel mechanisms of action of an antidiabetic drug, which might in 

turn identify further pathways to target with new therapeutic agents. The finding that variants 

near ATM are associated with metformin response has prompted further study of the genes 

at this locus in relation to glucose metabolism and metformin response. For example, in a 

small study of patients with ataxia telangiectasia who have recessive loss of function 

mutations in ATM, the investigators identified an impaired glucose tolerance and insulin 

resistance supporting a potential role for ATM in glucose metabolism and metformin 

response64. 

ADRs 
Pharmacogenetic studies have also been performed to help in the understanding of ADRs 

associated with antidiabetic drugs. Key ADRs studied include sulfonylurea-induced 

hypoglycaemia, TZD-associated oedema, hepatotoxicity and heart failure, and metformin 

associated gastrointestinal (GI) disturbance65-69. To date, no studies have been published on 

the pharmacogenomics of the potentially fatal but rare ADRs of metformin-associated lactic 

acidosis70. Thus far, the investigators in all the published pharmacogenetic studies have 

adopted a candidate gene approach. For sulfonylurea-induced hypoglycaemia, a number of 

small studies using no more than 108 patients have been conducted and they consistently 

showed that the loss-of-function CYP2C9 variants, which are associated with increased drug 

exposure66, are also associated with a higher risk of hypoglycaemia65, which is consistent 

with the efficacy studies showing these variants are associated with greater glucose 

reduction than wild-type alleles45. For TZDs, the results have indicated that variants in 

GSTT1 and CYP2C19 were associated with troglitazone-induced hepatotoxicity68, 71; whilst 

variants in NFATC2 are associated with the rate of rosiglitazone-induced oedema67. 

Although some safety concerns have been raised against the newer agents, such as genital 

and urinary tract infections associated with SGLT2 inhibitors and the pancreatitis and liver 

dysfunction associated with gliptins70, to our knowledge, no pharmacogenetic reports on 

these ADRs exist. 

Metformin causes gastrointestinal disturbance in as many as 20-40% of patients with 5-10% 

of patients not being able to tolerate this drug70. The biological mechanism for 

gastrointestinal intolerance to metformin remains poorly understood. Based on the 

hypothesis that individuals who are intolerant of metformin are exposed to higher 

concentrations of the drug in the gastrointestinal tract, investigators have explored variants 

in transporter genes such as OCT172. In a large study of 2,166 patients, both reduced-

function variants in OCT1 and co-medication of certain OCT1 inhibitors (that is, verapamil, 

proton pump inhibitors, citalopram, codeine and doxazosin) significantly increased the risk of 

metformin induced gastrointestinal side effect69. The combination of carrying the genetic 



variants and taking co-medications could result in a four-fold (p<0.001) increased risk of 

gastrointestinal side effect69. Therefore this large impact on metformin induced 

gastrointestinal side effects by these OCT1 variants have the potential to be translated into 

clinical practice by prescreening the patients on OCT1 genotype and co-medication of OCT1 

inhibitors. Moreover, this study  highlighted two key factors for successful 

pharmacogenomics of antidiabetic drugs: large sample sizes are required for adequate 

statistical power; and the need to consider co-prescribed medication that potentially interacts 

with these agents. This result has since been replicated in an independent study which 

showed the same genetic variants were associated with increased risk (OR=2.3; p=0.02) of 

less severe metformin intolerance73. 

Genetics and drug target validation  
A major challenge in the modern pharmaceutical industry is that fewer than 15% of drugs 

entering the development pipeline make it to market74, a vastly expensive, inefficient and 

wasteful process. Toxicity and lack of efficacy both contribute to the high failure rate of new 

drugs development, which reflects the ineffectiveness of conventional target validation 

methods used in preclinical studies. Moreover, the model systems used in the preclinical 

studies often fail to represent the real biological system working in humans.  

Genetic variants that arise as a result of historical mutation and recombination events can be 

viewed as naturally occurring experiments that perturb human gene function. These naturally 

occurring mutations are an opportunity to see the impact of perturbing a gene (for example, 

by a potential novel drug) on disease risk and off-target effects without the need to develop 

and trial the drug. For example, in a large survey of 61,104 drugs across the various stages 

of development, those drug candidates that targeted proteins encoded by genes with robust 

human genetic evidence (GWAS evidence or link to Mendelian diseases in OMIM) are twice 

as likely to be therapeutically valid75.  

To address the question of how to harness the human genetic evidence to guide target 

validation in drug development, the ‘therapeutic hypothesis’ has been proposed76. Central to 

this approach is the concept of a genetic evidence based ‘dose-response’ curve. An 

example of translating such a hypothesis into a new drug is the development of the PCSK9 

inhibitors to reduce levels of LDL cholesterol77. Rare ‘gain-of-function’ variants in PSCK9 led 

to high levels of LDL cholesterol and increased the incidence of coronary heart disease 

risk78. Conversely, rare ‘loss-of-function’ variants resulted in lower LDL cholesterol levels and 

a reduced risk of coronary heart disease79. GWAS also identified common variants in other 

genes such as SORT1 and LDLR with mild impact on LDL cholesterol levels and risk of 

coronary heart disease80, 81. These experiments (which are essentially designed by nature) 



have demonstrated that reducing levels of LDL cholesterol and the risk of coronary heart 

disease is possible by inhibiting the function of PCSK9 without any observable adverse 

effects77. With further support by other mechanistic evidence derived from model systems, a 

new generation of LDL cholesterol lowering PCSK9 inhibitors have been developed, tested 

and licensed for use82. 

Dozens of common and rare variants have been convincingly associated with glycaemic 

control and the risk of developing T2DM10. Representatives from both academia and 

pharmaceutical companies have now formed the Accelerating Medicines Partnership to 

enhance the translation of human genomic research outputs into the development of new 

drugs (https://www.nih.gov/research-training/accelerating-medicines-partnership-amp)83. As 

one of the three prioritized area, the Accelerating Medicines Partnership aims to establish an 

open-access portal for T2DM genetics research (http://www.type2diabetesgenetics.org), 

which will pool genomic and phenotyping data to facilitate novel data mining efforts83. One 

target of potential interest raised by the Accelerating Medicines Partnership is the zinc-

transporter-encoding SLC30A8. The use of GWAS has established robust evidence that the 

common coding variant Arg325Trp is associated with the risk of T2DM84. The results of 

mechanistic studies in humans and mice have both indicated that the reduced zinc 

transporter activity allele is associated with an increased risk of T2DM85, 86However, in a 

sequencing based study of ~150,000 individuals, rare protein-truncating variants In 

SLC30A8 protected the carriers from developing T2DM9. This conflicting genetic evidence 

does not provide a consistent dose-response curve based on the functional characterization 

of the variants87. Further mechanistic studies, especially those involving intensive 

phenotyping of individuals carrying rare extreme functional SLC30A8 variants will be useful 

to validate whether inhibiting or enhancing the zinc transporter 8 function could be the 

therapeutic option for treating T2DM. The example provided by SLC30A8 demonstrates that 

human genetic evidence is not always sufficient to validate a gene/protein as a drug target, 

especially in situations when uncertainty surrounds the exact mechanism of how target 

genes alter a phenotype of interest. 

The discovery of sodium glucose transporter 2 (SGLT2) inhibitors to treat T2DM is another 

example of how genetic evidence can be used in assisting drug development (Figure 2). 

Early evidence indicated that phlorizin, a natural inhibitor of SGLT2 and isolated from the 

bark of apple trees, restored euglycaemia and insulin sensitivity in animal models of T2DM88. 

After the cloning of SLC5A2 which encodes SGLT2, functional variants in SGLT2 have been 

linked to familial renal glycosuria (http://www.omim.org/entry/233100)89. Patients with familial 

renal glycosuria, who carry a spectrum of >50 mild heterozygote to severe homozygote 

SGLT2 loss-of-function variants, have different levels of glycosuria but apparently normal 

http://www.omim.org/entry/233100


renal functions, normal glucose concentrations and general health90. Here the genetic 

evidence not only validated the therapeutic potential of inhibiting SGLT2 but also provided 

critical evidence that selective inhibitors targeting the protein would result in no long-term 

ADRs. Consequently, several selective SGLT2 inhibitors have been successfully developed 

and licensed to treat T2DM14. Aside from their glucose lowering effect, these SGLT2 

inhibitors have an average impact of 1.63kg (p<0.001) weight reduction benefit16, 91, which is 

increasingly being considered as an important component in the management of T2DM92.  

Pharmacogenomics and drug discovery 
Conventional pharmacogenetics, which is based on candidate genes has been used in all 

stages of the drug development pipeline, from target identification, to clinical trials and 

postmarket analysis of ADRs35. As pharmacogenetics moves to pharmacogenomics, this 

genome-wide hypothesis free approach could also have more applications in drug discovery 

and development20. 

The proposed ’therapeutic hypothesis’ is based on the principle that human genetics is an 

experiment of nature, which shows what phenotypic outcomes the natural perturbations of 

gene functions can lead to in a human population76. Clearly human genetics has the 

advantage that the experimental system is in living humans as opposed to the cell or animal 

model systems used in preclinical studies. However, the ideal system for validating a 

therapeutic hypothesis would be a genetic study carried out in the exact context the new 

drug is developed for. Genetic evidence of disease risk could be useful in validating the 

targets for a preventive drug but less informative to predict the therapeutic potential for 

disease management. For example, let us consider using human genetic evidence to 

validate candidate drug targets to improve glycaemic control in patients with T2DM. The 

most available candidates would be those genes with established variants associated with 

the risk of developing T2DM or poor glycaemic control in the general population. However, it 

has been suggested that the mechanism regulating glycaemia can vary between different 

physiological states33. The variants affecting glycaemia in normal individuals and those 

associated with T2DM risk only partially overlap33, suggesting perturbations of glycaemia are 

not always linked to the risk of T2DM. Similarly, the variants conferring risk to T2DM have 

little impact on the rate of disease progression93, which suggests that the mechanism 

controlling glycaemia when T2DM has developed might be different from those involved in 

its development. Consequently, targeting the genes involved in regulation of glycaemia in 

healthy individuals or the risk of T2DM might not have the desired glycaemic impact on the 

management of T2DM, especially if their biological functions have been altered by the onset 

of the disease. In the context of disease management, pharmacogenomic studies of existing 



antidiabetic drugs can identify genes involved in glycaemic control in patients with T2DM. 

Robust pharmacogenomic findings would, therefore, provide physiological state specific 

information for drug target validation in addition to other evidence of normal glycaemic 

control and risk of T2DM derived from human genetic studies.  

Table 1 outlines the differences between pharmacogenomic studies of drugs to treat T2DM 

and genomics of other diabetes mellitus-related traits. Compared to the wealth of findings 

from other areas of human genetics, to date pharmacogenomics has yielded less robust 

results, in part owing to the challenge to assemble tens of thousands of samples that could 

provide adequate statistical power to detect variants with moderate effect. However, we 

anticipate future drug discovery and drug development to benefit more from the 

pharmacogenomic findings derived from larger samples that are increasingly available from 

biobanks linked to electronic health record data (e.g. the UKBiobank). Notably, longitudinal 

data from clinical trials or health record linkage do enable the study of outcomes other than 

simple measures of glycaemia. For example, given a sufficient sample size, using 

pharmacogenomics to assess cardiovascular endpoints of antidiabetic drugs might be 

possible. In addition, large samples would also enable pharmacogenomics to joint analyse 

multiple outcomes (for example both glycaemic benefit and weight benefit of metformin), 

which would help to identify variants associated with pleiotropic effects of antidiabetic drugs.  

Avoiding ADRs or off-target effects is also an important consideration in drug development. 

The very existence of ADRs is an illustration of our incomplete understanding of the complex 

interactions between our biological system and any designed interventions94. The increased 

availability of genome-wide screening tools will enable the identification of more ADR 

variants at an early stage of drug development, which has a number of clear advantages. 

For example, if the ADR variants were identified before phase 3 clinical trials, recruitment by 

genotype trials could be performed to evaluate the efficacy and risk in stratified patient 

subgroups35. When a drug is approved for marketing, understanding the genetic basis of 

severe ADR could also help the continuous development of the drug by prescreening the 

genotype ahead of treatment95. 

A system biology view of drug response 
One of the biggest challenges facing contemporary biological research is to understand the 

complex biological networks that function in a living system96. This complexity can be seen in 

T2DM, where the genes harbouring the established aetiological variants have an excess of 

interactions within a high-confidence interaction network97. The variants in this network affect 

the protein function, stability of protein or transcript, and expression of individual genes, 

which collectively perturb or rewire the network structure to alter the risk of T2DM98, 99. 



Interestingly, when considering a network of disease genes and genes encoding known drug 

targets, the distance between genes reported in GWAS and known drug targets are shorter 

than that between random gene-drug targets pairs100. This is predominantly driven by a 

three-fold enrichment of drug target genes among the first neighbours of the GWAS reported 

genes. More evidence of direct overlap between the drug target genes and disease risk 

genes was also presented in a gene set enrichment analysis101. In this study a set of 102 

target genes for existing diabetes mellitus drugs (e.g. insulin, metformin and TZDs), as 

curated from the literature, showed significant enrichment of genetic association with T2DM 

susceptibility101. Such findings indicate that potential drug targets are enriched in a disease 

network, but might only be identified when considering the network as a whole, rather than 

individual disease genes.  

When modelling a drug intervention in a functional network, it is important to consider how 

the drug alters the functional network at the levels of cell, tissue and disease state, which will 

ultimately determine the beneficial and harmful effects of the drug. So far our knowledge of 

biological networks has been largely limited to the generic, static models lacking such 

contextual information102. Research in system biology is beginning to offer more 

comprehensive cell lineage and tissue specific networks103-105, which will enable the 

modelling of drug intervention in more specific contexts such as the cell type, tissue and the 

physiological state. Such analyses will provide insights into how drugs can achieve the 

desired therapeutic effect in target tissue or known site of action, but importantly highlight the 

potential undesirable off-target effects in other contexts. Moreover, adopting a system-wide 

approach might change the focus of drug development for complex diseases such as T2DM 

from targeting an individual protein or gene to system-wide attacks on multiple dynamic 

targets106.  

Conclusions 
The availability of affordable high-throughput genomic technologies has expanded our 

knowledge about the multifactorial aetiology of T2DM. Studies adopting such genome-wide 

approaches to investigate the response of existing antidiabetic drugs have been limited, but 

have the potential to improve our understanding of the biological mechanisms underlying 

treatment efficacy and side effects. With the major investments in precision medicine in the 

US107, the 100,000 genomes project in the UK108, and the EU funded stratified medicine in 

diabetes mellitus initiative IMI-DIRECT109 (Innovative Medicines Initiative: DIabetes 

REsearCh on patient straTification), more findings from adequately powered 

pharmacogenomic studies are expected to complement other human genetic discoveries to 

facilitate more efficient antidiabetic drug discovery programs. 
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 Key points 

• The list of known variants affecting type 2 diabetes mellitus (T2DM) risk confirms that 

this disease has a multifactorial aetiology 

• The concept of precision medicine has been exemplified in pharmacogenetic studies 

of monogenic diabetes  

• The genetic architecture of mild adverse drug reactions and treatment efficacy for 

antidiabetic agents probably resembles that of T2DM and other complex traits 

• Existing pharmacogenetic evidence of T2DM is limited; future pharmacogenomics 

studies utilizing large samples will help identify variants that reveal novel mechanism 

of drug action 

• Genetic evidence-based ‘dose-response’ curves have been used in validating 

candidate drug targets 

• Pharmacogenomic studies adopting a system biology approach are expected to 

provide context specific evidence for future T2DM drug development  
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Figure 1 | Target organs and action mechanism of antidiabetic drugs. The 

mechanism for metformin action remains uncertain: metformin might target the liver 

to reduce gluconeogenesis and skeletal muscles to enhance peripheral glucose 

utilization110 with a possible role in the gut to increase levels of GLP-1111. 

Sulfonylureas and meglitinides increase insulin secretion in the pancreas112, 113. 

Thiazolidinediones (TZDs) act as insulin sensitizers in the skeletal muscle, adipose 

tissue and the liver114. GLP-1 agonists target the pancreas to increase insulin 

secretion and reduce glucagon production, as well as act in the gut to reduce gastric 

emptying115. DPP-4 inhibitors increase the level of endogenous incretin levels by 

blocking the action of a catalytic enzyme DPP-4115. SGLT-2 inhibitors reduce renal 

glucose reabsorption116. Abbreviations: DDP4, dipeptidyl peptidase 4, GLP1RA, 

glucagon like peptide 1 receptor agonist, SGLT2I, sodium glucose transporter 2 

inhibitor

 



 

Figure 2 | Dose-response curve for the therapeutic hypothesis of selective SGLT2 

inhibitors. The Y axis represent the range of glucose level, in which the high range 

represents the hyperglycaemic state seen in T2DM as compared to the normal range seen 

in healthy individuals or those patients with familial renal glycosuria. The X axis represents a 

spectrum of naturally occurring SGLT2 loss-of-function variants observed in patients with 

familial renal glycosuria. The variants were ordered from the mild heterozygotes to the 

severe homozygotes as defined by the resulting severity of glycosuria. For on-target adverse 

reactions, the benign glucosuria and apparently normal health seen in these patients also 

supports the safety profile of selectively inhibiting SGLT2 function in a wide dose window. 

Abbreviation: SGLT2, sodium glucose transporter 2. 

 

  



 

Table 1 | Pharmacogenomic studies of antidiabetic drugs and genomic studies of other diabetes 

mellitus-related traits 

 Pharmacogenomics of antidiabetic 

drugs  

Genomic studies of other diabetes 

mellitus-related traits  

Sample sizes Currently <10,000 individuals Currently >100,000 individuals 

Number of 

established 

variants 

Only a few >120 for T2DM risk 

>83 for other diabetes mellitus-related 

traits 

Data type Longitudinal Cross sectional 

Outcomes Physiological response e.g. 

insulin secretion 

Treatment efficacy: glucose 

reduction 

Hard endpoints: cardiovascular 

risk 

Other outcomes: weight 

reduction 

Onset of type 2 diabetes 

Hyperglycaemia: fasting glucose level, 

HbA1c levels 

Insulin resistance: HOMA-IR 

Insulin secretion: fasting insulin level, 

fasting C-peptide, HOMA-B 

 

Table 1. This table highlights that the published GWAS of response to antidiabetic agents used 

considerably smaller sample sizes, and therefore established less variants, than those GWAS of other 

diabetes mellitus-related traits.  Given that more longitudinal data in large samples are increasingly 

available through large bioresources such as the UkBiobank, pharmacogenomic studies are expected 

to provide more insights into the genetic basis of various drug response phenotypes.  



Table 2. Replicated pharmacogenetic findings of antidiabetic agents 

 

NA means no evidence has been published on the drug-outcome pair. 

 

  

Agent Treatment Efficacy ADRs 
Metformin HbA1c reduction: ATM39, 62 

 
Gastrointestinal side effects: 
OCT169, 73 
Lactic Acidosis: (NA) 

Sulfonylureas HbA1c reduction: TCF7L252-54, 
KCNJ1155-57 and CYP2C949, 51 
Maintenance dose: CYP2C950  

Hypoglycaemia: CYP2C965 

Thiazolidinedione 
(TZDs) 

HbA1c/Glucose reduction: 
PPARG58-60 

troglitazone-induced 
hepatotoxicity: GSTT168 and 
CYP2C1971 
 

Gliptins  
(DPP4i) 

HbA1c reduction (insulin 
response): CTRB1/261 

pancreatitis and liver 
dysfunction: (NA) 

SGLT2i NA genital and urinary tract 
infections: (NA) 
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