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Abstract There is an urgent requirement for safe, oral and cost-effective drugs for the

treatment of visceral leishmaniasis (VL). We report that delamanid (OPC-67683), an approved drug

for multi-drug resistant tuberculosis, is a potent inhibitor of Leishmania donovani both in vitro and

in vivo. Twice-daily oral dosing of delamanid at 30 mg kg-1 for 5 days resulted in sterile cures in a

mouse model of VL. Treatment with lower doses revealed a U-shaped (hormetic) dose-response

curve with greater parasite suppression at 1 mg kg-1 than at 3 mg kg-1 (5 or 10 day dosing). Dosing

delamanid for 10 days confirmed the hormetic dose-response and improved the efficacy at all

doses investigated. Mechanistic studies reveal that delamanid is rapidly metabolised by parasites

via an enzyme, distinct from the nitroreductase that activates fexinidazole. Delamanid has the

potential to be repurposed as a much-needed oral therapy for VL.

DOI: 10.7554/eLife.09744.001

Introduction
The repurposing of drugs and clinical candidates offers an attractive alternative to de novo drug dis-

covery (Fischbach and Walsh, 2009; Cragg et al., 2014; Peters, 2013; Law et al., 2013;

Novac, 2013; Aube, 2012), particularly in terms of reducing research and development costs for

neglected diseases of poverty (Andrews et al., 2014). Visceral leishmaniasis (VL), a neglected tropi-

cal disease resulting from infection with the protozoan parasites Leishmania donovani or L. infantum

is a case in point, with the two anti-leishmanial front-line therapies miltefosine and amphotericin B

both originally developed for other indications (Stuart et al., 2008). In addition, the anti-trypanoso-

mal clinical candidate fexinidazole was recently discovered to have potent activity in a murine VL

model (Wyllie et al., 2012), resulting in a phase II proof of concept clinical trial (NCT01980199)

against VL being conducted in Sudan.

There are approximately 50,000 reported cases of VL per year, with the vast majority of infections

in South America, East Africa and the Indian subcontinent. However, the number of cases is likely to

be vastly underreported, with the actual annual incidence estimated to be between 200,000 and

400,000 (Alvar et al., 2012). VL is fatal if untreated and, in the absence of effective vaccines and vec-

tor control methods, efficacious chemotherapy is required to combat the disease. Each of the cur-

rently available drugs has one or more drawbacks, including the need for hospitalization, prolonged

therapy, parenteral administration, high cost, variable efficacy, severe toxic side-effects and resis-

tance (Croft et al., 2006). Thus, there is an urgent need for better, safer efficacious drugs that are

fit-for-purpose in resource-poor settings.
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Given the success of repurposing fexinidazole for use in the treatment of VL (Wyllie et al., 2012),

there is now a renewed interest in the anti-parasitic potential of nitroaromatic drugs. Recently, we

demonstrated that the anti-tubercular clinical candidate (S)-PA-824 possesses moderate activity

against L. donovani parasites both in vitro and in vivo (Patterson et al., 2013). Although (R)-PA-824,

the enantiomer of the candidate showed superior activity, this compound has not entered pre-clini-

cal development, precluding a rapid move to a VL clinical trial. In addition, a recently reported

screen of anti-tubercular nitroimidazoles against L. donovani identified DNDI-VL-2098 as a suitable

compound for further preclinical evaluation (Mukkavilli et al., 2014; Gupta et al., 2015). The high

degree of structural similarity between delamanid (Deltyba, OPC-67683) and both (R)-PA-824 and

DNDI-VL-2098 (Figure 1) prompted us to investigate this nitroimidazole, which has recently received

conditional approval in Europe for the treatment of multidrug-resistant tuberculosis (Committee for

Medicinal Products for Human Use, 2013; Ryan and Lo, 2014).

Results

In vitro sensitivity of L. donovani to (S)- and (R)-delamanid
The life cycle of L. donovani alternates between a flagellated promastigote form residing in the alka-

line midgut of the female sandfly vector and an amastigote form that multiplies intracellularly in

acidic phagolysosomes of the mammalian host macrophages. Both stages can be cultured axenically;

however, intra-macrophage cultures of amastigotes are a more suitable model of mammalian infec-

tion for drug discovery. The anti-tubercular drug delamanid and its corresponding S-enantiomer

were synthesized (Appendix 1 and Figure 1—figure supplement 1) and assessed for anti-leishman-

ial activity. The potency of both compounds was determined in vitro against L. donovani (LdBOB)

promastigotes and against intracellular amastigotes (LV9) in mouse peritoneal macrophages. The (S)-

enantiomer of delamanid showed promising anti-leishmanial activity against both developmental

stages of the parasite (EC50 values of 147 ± 4 and 1332 ± 106 nM against promastigotes and amasti-

gotes, respectively). However, delamanid (the R-enantiomer) proved to be an order of magnitude

more potent against promastigotes, axenic amastigotes and intracellular amastigotes with EC50 val-

ues of 15.5, 5.4 and 86.5 nM, respectively (Table 1). Both compounds were found to be inactive

(EC50 >50 mM) in a counter screen against the mammalian cell line HepG2 (Table 1).

eLife digest Better, safer, oral drugs are desperately needed for the treatment of visceral

leishmaniasis, a parasitic infectious disease that causes an estimated 40,000 deaths a year,

predominantly in South America, East Africa and the Indian subcontinent. The parasite that causes

visceral leishmaniasis is transmitted between individuals by blood-sucking sandflies, and there are

currently no vaccines that protect against the disease. In addition, all currently available drug

treatments have serious limitations – they are expensive, toxic, have to be applied over a long

period of time (mainly by injection) and may become ineffective as the parasites adapt to resist the

drug.

A cost-effective way to find a new treatment for a disease is to repurpose existing clinically

approved drugs that are used to treat other diseases. Patterson, Wyllie et al. now report that a drug

called delamanid, which was recently approved for the treatment of tuberculosis, can cure visceral

leishmaniasis in mice. The drug worked when applied orally at doses that might be achievable in

human patients, and can also kill parasites obtained from human patients.

Patterson, Wyllie et al. also provide evidence that suggests that delamanid is processed in the

parasites by an unknown enzyme. However, this enzyme is not the one that activates a different

class of drugs that are used to treat visceral leishmaniasis. Future studies now need to identify the

enzyme that is targeted by delamanid, and could investigate combinations of drugs that slow the

emergence of resistant parasites and improve delamanid’s safety and effectiveness. Clinical trials are

required to test how well delamanid treats visceral leishmaniasis in humans.

DOI: 10.7554/eLife.09744.002
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Future anti-leishmanial therapies will be required to demonstrate a broad spectrum of activity

against different Leishmania strains and against drug resistant parasites (Patterson and Wyllie,

2014). With this in mind, L. donovani and L. infantum clinical isolates were assessed for their sensitiv-

ity to delamanid (Table 1). These included: the Indian WHO reference strain DD8; an Indian anti-

mony resistant isolate BHU1; a recent Sudanese isolate SUKA 001; and the L. infantum strain

ITMAP263 from Morocco. These clinical isolates were marginally less sensitive to delamanid than our

laboratory strain LV9 from Ethiopia, but at the EC90 varied by only 3-fold (L. donovani) or 8-fold (L.

infantum) (Table 1). Although not investigated further here, promastigotes of L. major Friedlin, a

cause of cutaneous leishmaniasis, were also highly sensitive to delamanid (EC50 6.3 ± 0.11 nM, slope

factor 2.2).

The corresponding des-nitro analogue was also synthesized (Appendix 1 and Figure 1—figure

supplement 2) and assayed against L. donovani promastigotes. Des-nitro-delamanid was found to

be inactive (EC50 >50 mM), which is consistent with the nitro group being involved in the mechanism

of action or having a role in the binding of delamanid to its molecular target(s) in L. donovani.

Physicochemical properties of delamanid
The plasma protein binding of delamanid was measured and found to be high (Fu = 0.0045), in

agreement with that reported previously (Committee for Medicinal Products for Human Use,

2013). A kinetic solubility assay demonstrated that delamanid possesses sufficient aqueous solubility

(>250 mM in 2.5% DMSO) for use in in vitro assays.

Figure 1. Chemical structures of delamanid ((R)-OPC-67683) and the known anti-leishmanial nitroimidazoles DNDI-VL-2098, (R)-PA-824, fexinidazole and

fexinidazole sulfone. Synthetic schemes for the synthesis of delamanid and analogues are described in Figure 1—figure supplements 1–2.

DOI: 10.7554/eLife.09744.003

The following figure supplements are available for figure 1:

Figure supplement 1. Synthetic route towards delamanid (7) and (S)-delamanid (13).

DOI: 10.7554/eLife.09744.004

Figure supplement 2. Synthetic route towards des-nitro-delamanid (18).

DOI: 10.7554/eLife.09744.005
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Efficacy of delamanid in a murine model of visceral leishmaniasis
The efficacy of delamanid was assessed in a murine model of VL. Groups of infected BALB/c mice

(seven days post infection with ex vivo L. donovani LV9 amastigotes) were dosed twice-daily, for five

consecutive days with an oral formulation of delamanid (1, 3, 10, 30 or 50 mg kg-1). On day 14 post-

infection, the parasite burdens in the livers of infected mice were determined and compared with

those of control animals. The only current oral anti-leishmanial therapy miltefosine (30 mg kg-1,

once-daily, 5 days) was included as a positive control. Both delamanid and miltefosine were well tol-

erated at these doses, with no mice displaying any overt signs of toxicity. An initial experiment

showed that treatment with delamanid at 50 mg kg-1 effectively cured the study mice, with no

detectable parasites in the liver smears, whereas control mice dosed with vehicle alone showed a

high level of infection (Figure 2). A second in vivo study with mice dosed twice-daily at 30, 10 or 3

mg kg-1 suppressed infection in the murine model by 99.5%, 63.5% and 16.0%, respectively, estab-

lishing a dose-dependent anti-leishmanial effect within the range of 3–50 mg kg-1. These results give

an estimated ED50 and ED90 of 7.3 and 21.5 mg kg-1, respectively (Figure 2—figure supplement 1).

At 30 and 50 mg kg-1 delamanid compares favourably with miltefosine (98.8–99.8% suppression at

30 mg kg-1), which exemplifies the therapeutic potential of delamanid.

A third in vivo study with a further reduced delamanid dose of 1 mg kg-1 resulted in a suppres-

sion of parasitaemia of 86.3% compared with control mice, proving unexpectedly superior to dos-

ing at 3 or 10 mg kg-1 (Figure 2). A subsequent experiment encompassing a range of doses (10,

3, 1 mg kg-1, 5 days) in a single study showed a similar hormetic effect, with twice daily dosing at

1 mg kg-1 being more efficacious than 10 mg kg-1. However, this study also demonstrated that

there is some variability in the efficacy of delamanid at lower doses (Figure 2—source data 1).

The hormetic effect was also observed in an extended dosing experiment in which delamanid

was instead dosed twice-daily for 10 days at 10, 3 or 1 mg kg-1, with the suppression of infection

being 92.3%, 24.3% and >99.9%, respectively. A second 10-day experiment with a broader range of

doses (30, 10, 3, 1, 0.3 mg kg-1) further confirmed the hormetic effect. In addition, this study demon-

strated that further reducing the delamanid dose (0.3 mg kg-1) resulted in a reduction in efficacy

comparable to dosing at 3 mg kg-1, resulting in a biphasic dose response relationship (Figure 2).

Blood levels of orally dosed delamanid in a mouse model
It is important to understand the pharmacokinetic and pharmacodynamic (PK/PD) behaviour of

delamanid in order to optimise the efficacious dosing regimen (Velkov et al., 2013). By measuring

the change in drug concentration over time in L. donovani-infected mice, two standard PK parame-

ters can be obtained: maximum concentration (Cmax) in blood; and the area under the curve (AUC),

a measure of total drug exposure over time. The drug concentration over time is measured in order

to determine whether the concentration of a drug exceeds the minimum inhibitory concentration

(MIC, EC90 in this case) and, if so, for how long (time over MIC, T>MIC). Parameters such as Cmax/

MIC, AUC/MIC and T>MIC are important for achieving drug efficacy in an in vivo model of disease.

Both Cmax and AUC measure the total drug level in blood or plasma; however, only unbound drug

Table 1. Activity of delamanid against laboratory and clinical isolates of L. donovani in vitro. EC90 values are calculated from the EC50,

Hill slopes and the molecular weight of delamanid.

Species Developmental stage
EC50, nM
(Hill slope) EC90, nM EC90

, ng ml-1

Leishmania donovani (LdBOB) Promastigote 15.5 ± 0.07 (8.4) 20.2 10.8

Leishmania donovani (LdBOB) Amastigote (axenic) 5.4 ± 0.05 (5.3) 8.2 4.4

Leishmania donovani (LV9) Amastigote (in macrophage) 86.5 ± 1.7 (2.3) 225 120

Leishmania donovani (DD8) Amastigote (in macrophage) 298 ± 13 (2.7) 672 359

Leishmania donovani (BHU1) Amastigote (in macrophage) 230 ± 10 (4.1) 393 210

Leishmania donovani (SUKA001) Amastigote (in macrophage) 259 ± 7 (3.6) 476 254

L. infantum (ITMAP263) Amastigote (in macrophage) 940 ± 0.05 (3.4) 1790 955

Human (HepG2) N/A >5000 - -

DOI: 10.7554/eLife.09744.006
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molecules are able to bind to their targets (Bohnert and Gan, 2013). Therefore, the plasma protein

binding level (expressed as the fraction unbound, Fu) of delamanid was also measured and used to

calculate an adjusted EC90 (assay EC90 � 1/Fu) for comparison with blood concentration over time.

Accordingly, the blood levels of the drug were measured at intervals (up to 8 hr post dose) dur-

ing the in vivo efficacy studies. Data for the first and ninth dose in a 5-day twice daily treatment

experiment (Figure 3A,B) show a dose-dependent response with accumulation over time. A similar

effect was noted in a 10-day study (1st and 19th dose; Figure 3C,D). More detailed analysis of the

combined PK data from five experiments (including two 10-day treatment studies) shows a linear

relationship between doses of 0.3–10 mg kg-1 and peak blood concentration (Cmax) or area under

the curve (AUC(0-t)) with accumulation from day 1 through to day 10 (Figure 3E,F). The 10 and 30

mg kg-1 doses should provide adequate coverage over the EC90 (120 ng ml-1) as measured for the L.

donovani isolate LV9 in macrophages over a 3 day exposure (Table 1). However, due to high protein

binding, the free fraction (Fu = 0.0045) cannot account for biological activity in vivo at any dose. An

Figure 2. Effects of drug treatment on the parasite burden of mice infected with L. donovani. Groups of mice (five per group) infected with L. donovani

(strain LV9) were dosed with drug vehicle (orally), miltefosine (orally) or delamanid (twice daily, orally) on day 7 post-infection and for a total of 5 or 10

days. Two days after the final dose, animals were humanely euthanized and parasite burdens were determined microscopically by examining Giemsa-

stained liver smears. Grey bars, 5-day treatment; red bars, 10 day treatment. This graph shows the combined data from six individual animal studies;

n = 9, or 10 for 1, 3 and 10 mg/kg dosing; for all other experiments n = 5. These data are available in tabular form in Figure 2—source data 1.

DOI: 10.7554/eLife.09744.007

The following source data and figure supplement are available for figure 2:

Source data 1. Efficacy and PK/PD data from all experiments.

DOI: 10.7554/eLife.09744.008

Figure supplement 1. ED50 determination for delamanid in a mouse model of VL.

DOI: 10.7554/eLife.09744.009
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Figure 3. Pharmacokinetic behaviour of delamanid in infected mice. (A and B) show the blood levels of delamanid following the first oral dose on day 1

(A) and the penultimate oral dose on day 5 (B) for 1, 3, 10 and 30 mg kg-1 b.i.d. (teal, black, red and blue symbols, respectively). Error bars are SEM

(n = 3 for 30 mg kg-1, n = 6 all other doses). (C and D) show the blood levels of delamanid from a single VL PK/PD study following the first oral dose on

day 1 (C) and the penultimate oral dose on day 10 (D) for 0.3, 1, 3, 10 and 30 mg kg-1 b.i.d. (grey, teal, black, red and blue symbols, respectively). Error

bars are SEM (n = 5). (E and F) show the relationship between dose with Cmax or AUC(0-8 h), respectively, after the first oral dose on day 1 (black), or the

Figure 3 continued on next page
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explanation for why the free drug theory (Bohnert and Gan, 2013) is not applicable in this case is

presented below.

Delamanid-mediated cell killing
To determine whether delamanid was cytostatic or cytotoxic, mid-log promastigotes were incubated

with drug concentrations equivalent to 10 times the EC50 value (Figure 4A). Growth of drug-treated

cultures ceased almost immediately with cell numbers declining after 8 hr and no live parasites visi-

ble at 24 hr. To determine the actual point where treated cells lost viability, at defined intervals para-

sites were washed and sub-cultured without drug. No viable parasites could be recovered after

12 hr in the presence of drug, confirming that delamanid is rapidly leishmanicidal. In support of this

apparent rapid mechanism of cell killing, EC50 values determined after 24, 48 and 72 hr were essen-

tially identical (Figure 4B). In addition, the potency (EC50 value) of delamanid was found to be

dependent on the initial cell density (Figure 4C) and on the assay serum concentration (Figure 4D).

Delamanid – mode of action studies
Many nitroheterocyclics require bio-activation of their nitro groups to become biologically active. In

Mycobacterium tuberculosis, delamanid is assumed to be reductively activated by the same unusual

deazaflavin (F420)-dependent nitroreductase (Ddn) known to activate the closely related nitroimi-

dazo-oxazine drug PA-824 (Manjunatha et al., 2006; Singh et al., 2008; Manjunatha et al., 2009).

In the absence of a Ddn homologue in Leishmania, we assessed whether the reduction of delamanid

is catalysed by the NADH-dependent bacterial-like nitroreductase (NTR) already shown to activate

the nitroimidazoles fexinidazole and nifurtimox in these parasites (Wyllie et al., 2012). The potency

of delamanid was determined against parasites overexpressing NTR. Increased concentrations of

NTR in these transgenic parasites were confirmed by a 13-fold increase in their sensitivity to nifurti-

mox (EC50 of 8.0 ± 0.2 and 0.61 ± 0.006 mM for WT and transgenic parasites, respectively

Figure 5A), known to undergo two-electron reduction by NTR (Hall et al., 2011). However, overex-

pression of NTR in promastigotes did not significantly alter their sensitivity to delamanid (EC50 of 4.5

± 0.004 and 4.1 ± 0.003 nM for WT and transgenic parasites, respectively) (Figure 5B). To confirm

that the same was also true in the amastigote stage of these parasites, metacyclic promastigotes

overexpressing NTR were used to infect mouse peritoneal macrophages. The resulting intracellular

parasites were found to be just as sensitive to delamanid as WT parasites with EC50 values of 57.8 ±

2.1 and 55.2 ± 4.3 nM, respectively (Figure 5C). These findings indicate that NTR does not play a

role in the activation of delamanid in L. donovani in either stage of the life cycle and that the mecha-

nism of action of this nitroheterocyclic drug is different from that of fexinidazole.

Metabolism of delamanid in L. donovani
Given that NTR does not activate delamanid in L. donovani promastigotes and the requirement of

the nitro group for biological activity, it was important to determine if the drug is metabolised in cul-

ture. To address this issue, the concentration of delamanid was determined by UPLC-MS/MS in cul-

tures of promastigotes over a 24 hr period. Delamanid is known to be primarily metabolised in

plasma by albumin (Shimokawa et al., 2015) and to a lesser extent by CYP3A4, CYP1A1, CYP2D6

and CYP2E1 (Sasahara et al., 2015). Thus, the concentration of delamanid in culture medium with-

out parasites was measured over the same time period as a control. In the presence of medium

alone, delamanid decreased linearly in a concentration-dependent manner (Figure 6A). However, in

the presence of L. donovani promastigotes the rate of disappearance of delamanid was markedly

increased, such that the drug had essentially disappeared by 6 hr (Figure 6B). The net amount of

delamanid metabolised by parasites as a function of time is also linear and dependent on the initial

concentration in the medium (Figure 6C). Linear regression of these data revealed that the rate of

cell metabolism is not saturated up to the top concentration tested (Figure 6D). Analogous experi-

ments using mouse peritoneal macrophages and THP-1 monocytes found no evidence of delamanid

Figure 3 continued

penultimate dose on day 5 (red) or day 10 (blue). Error bars in (E) are SEM (n ranges from 3–8 depending upon day and dose – see Figure 2 – source

data1). Lines in (E) and (F) are best fits by linear regression.

DOI: 10.7554/eLife.09744.010
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metabolism by these host cell lines. Elucidation of the chemical identity of the delamanid metabolite

(s), their possible role in parasite killing and the enzyme(s) responsible for their biosynthesis will be

the focus of future studies.

Discussion
For diseases of poverty such as visceral leishmaniasis there is limited financial incentive to initiate

expensive, high risk and time-consuming de novo drug discovery programmes. Consequently, the

repurposing of existing drugs has become an attractive approach towards the identification of much

needed new treatments for VL and other neglected parasitic diseases (Andrews et al., 2014;

Wyllie et al., 2012). The recently approved anti-tubercular drug delamanid (Ryan and Lo, 2014)

was deemed to be of particular interest as a number of other nitroimidazoles have been shown to

also possess promising anti-leishmanial activities (Wyllie et al., 2012; Patterson et al., 2013;

Gupta et al., 2015).

In the current study, we show that delamanid is highly active in vitro against intracellular L. dono-

vani amastigotes (EC50 0.087 mM) with activity superior to that of both the current VL drug miltefo-

sine (EC50 3.3 mM) and the active sulfone metabolite of the VL clinical candidate fexinidazole (EC50

5.3 mM) in the same assay (Wyllie et al., 2012). The in vitro anti-leishmanial activity of delamanid

Figure 4. Effects of delamanid on L. donovani promastigotes. (A) Delamanid causes rapid cell killing. Promastigotes were exposed to delamanid (10

times EC50) and samples removed at intervals to determine cell density and cell viability. Black symbols: no inhibitor; red symbols: plus drug; the

point of irreversible drug toxicity. (B) Drug sensitivity is independent of exposure beyond 24 hr. Black, red and blue symbols are EC50 curves

determined after 24, 48 and 72 hr, respectively. (C) Drug sensitivity is cell-density dependent. Black, red and blue symbols are EC50 curves determined

after 72 hr, with initial seeding densities of 103, 104 and 105 cells ml-1, respectively. (D) Drug sensitivity is serum dependent. Black, red and blue symbols

are EC50 curves determined after 72 hr in the presence of 5, 10 and 20% FCS, respectively.

DOI: 10.7554/eLife.09744.011
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shows the same enantiomeric specificity as the delamanid analogue DNDI-VL-2098 in

vivo (Gupta et al., 2015). Similarly, the R-enantiomer of an analogue of delamanid has been shown

to be more potent against M. tuberculosis than its corresponding S-enantiomer (Sasaki et al.,

2006). However, this contrasts with the closely related nitroimidazole PA-824, where the enantio-

meric specificity for L. donovani and M. tuberculosis is opposite (Patterson et al., 2013). Delamanid

is rapidly leishmanicidal with a cell-density dependent potency and as expected, demonstrated no

observable toxicity in a mammalian cell assay. The observed shift in drug sensitivity with increasing

serum concentration is likely due to increased metabolism by albumin to inactive metabolites, rather

than changes in free drug concentration due to protein binding.

Delamanid is orally bioavailable, well tolerated, shows dose linearity up to 10 mg kg-1 and accu-

mulation with repeated administration in agreement with previous pharmacokinetic (PK) studies in

mice (Matsumoto et al., 2006). However, the pharmacokinetic / pharmacodynamic (PK/PD) relation-

ship is not straightforward.

First, the PK/PD relationship does not fit with the free drug hypothesis, which states that, in the

absence of energy-dependent transport processes, the extracellular and intracellular free drug con-

centrations are equal after steady-state equilibrium has been achieved, and that only the free drug is

able to bind to the target to exert its pharmacological effect (Bohnert and Gan, 2013; Smith et al.,

2010). Based on the in vitro intra–macrophage amastigote EC90 value (120 ng ml-1), the high PPB of

delamanid (Fu 0.0045) results in an adjusted intra macrophage L. donovani EC90 of 26,700 ng ml-1, a

concentration that is not achieved in whole blood at any point in the efficacy study. Therefore, the

efficacy of delamanid in the VL animal model is unexpected. However, there are exceptions to the

free drug theory, such as drugs that form active metabolites resulting in inactivation (covalent or oth-

erwise) of multiple targets (Smith et al., 2010). The parasite-specific metabolism presented here is

entirely consistent with this exception.

Second, the pronounced bi-phasic suppression of parasite burden at high and low doses of

delamanid in vivo is highly unusual. This U-shaped dose-response curve is reminiscent of hormesis in

toxicology (Calabrese and Baldwin, 2003; 2002), but, to our knowledge, is unprecedented in

microbiology. This effect is not observed in dose response curves in vitro, so must be related to a

physiological or metabolic threshold response in the infected drug-treated animal. In vivo delamanid

is proposed to undergo primary metabolism with loss of the nitro group, mainly catalysed by albu-

min (Committee for Medicinal Products for Human Use, 2013; Shimokawa et al., 2015). Further

metabolism to seven other metabolites is thought to occur via hydrolysis reactions and oxidation by

CYP3A4 (Committee for Medicinal Products for Human Use, 2013; Sasahara et al., 2015). The

cause of this U-shaped dose-response curve is currently not known. One possibility is that a drug

Figure 5. Mode of action of delamanid is distinct from nifurtimox. (A, B and C) Susceptibility to nifurtimox (A) is increased in NTR-overexpressing

promastigotes (red symbols), but not to delamanid (B) compared to WT cells (black symbols). Data are the mean of triplicate cultures from a single

experiment. (C) The susceptibility of delamanid is not increased in NTR-overexpressing amastigotes in macrophages (red symbols) compared to WT

(black symbols). Data are the mean of duplicate cultures from a single experiment.

DOI: 10.7554/eLife.09744.012
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metabolite of delamanid antagonises the bio-activation of delamanid, or antagonises the down-

stream effects in the leishmania parasite. The formation of a putative antagonist metabolite would

have to show a saturable sigmoidal dose response, such that at higher concentrations, delamanid, or

an active parasite-specific metabolite thereof, are able to displace the antagonist from the bio-activ-

ating enzyme, or proteins related to the downstream effect respectively. It should be noted that in

the same VL animal model the related nitroimidazole (S)-PA-824 was also more efficacious at a lower

dose (30 vs 100 mg kg-1) (Patterson et al., 2013). Further studies with (S)-PA-824 should be con-

ducted to determine if this compound also displays a hormetic PK/PD relationship and establish if

this is a chemotype-related characteristic.

Plots of Cmax versus parasite suppression and calculated AUC(0–24 hr) versus parasite suppression

(Figure 7A,B) suggest that the delamanid blood levels required for cure in the VL model exceed

those observed in TB patients receiving the drug. Increasing the dosing duration in the in vivo VL

model from 5 to 10 days improved the mean parasite suppression at all investigated doses (Figure 2)

and resulted in some mice with no detectable liver parasites when dosed at 1 mg kg-1 (Figure 2—

source data 1). As it known that delamanid is tolerated for up to six months (Committee for

Figure 6. Delamanid metabolism in L. donovani promastigotes. (A) Medium plus delamanid alone and (B) cells incubated in medium plus delamanid.

Delamanid concentrations added are 15, 45 and 150 nM (black, red and blue, respectively). The lines represent best fits by linear regression for all data

points in (A) and 0 to 5 hr in (B). The dotted line in (B) is the best fit by non-linear regression to a single exponential decay. (C) Net metabolism of

delamanid by cells was obtained by subtraction of (A) from (B). Data fitted by linear regression gave correlation coefficients of 0.996, 0.991 and 0.951 for

delamanid concentrations of 15, 45 and 150 nM, respectively. (D) Rates of delamanid metabolism obtained from (C) are linear up to 150 nM (correlation

coefficient 0.996, explicit errors used in fit).
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Medicinal Products for Human Use, 2013) further extending the duration of the VL model beyond

10 days should be considered. The VL target product profile calls for a treatment regimen of <10

days. However, in the current VL therapy, miltefosine is dosed orally for 28 days, so extended dosing

should be clinically acceptable. Note, the study mice dosed twice-daily at 1 mg kg-1 have drug levels

lower than that achieved in human TB patients dosed once daily at 100 mg. Given that this low dose

is more efficacious than any other dose below 30 mg kg-1, model studies of extended duration

should focus around this dosing level.

Despite a wealth of pharmacokinetic data in patients and human volunteers (Committee for

Medicinal Products for Human Use, 2013) the unusual PK/PD relationship hinders our ability to

accurately predict the outcome of delamanid dosing in VL patients. Indeed, careful examination of

parasite suppression versus Cmax (Figure 7—figure supplement 1) shows that the mean Cmax in

delamanid-treated TB patients corresponds to an efficacy minimum in the VL model. Given that

delamanid is rapidly metabolised by leishmania-infected macrophages in vitro, we examined the

effect of delamanid with a 5 day exposure with daily drug and medium change. This gave an EC50

value of 28.0 ± 1.6 nM (slope 2.7) from which an EC90 could be calculated (62.7 nM or 33.5 ng ml-1).

This concentration is lower than the lowest observed Cmax in the efficacy studies (Figure 7A). Thus,

careful design of the dosing regimen for VL patients may avoid the risk that treatment will lack effi-

cacy due to reaching a Cmax and AUC(0–24 hr) within the higher ineffective concentration range.

The nature of the parasite-specific metabolising / activating enzyme(s) is not known, but is clearly

distinct from the deazaflavin-dependent nitroreductase in M. tuberculosis (Manjunatha et al., 2006)

and the nitroreductase in leishmania involved in the activation of fexinidazole metabolites

(Wyllie et al., 2012). The identification of this target, and the metabolites that it produces, are the

focus of our current work. The cell-density dependent potency of delamanid is consistent with the

formation of a putative reactive, covalent metabolite. In addition, the rapidly cytocidal activity of

delamanid is consistent with the rapid rate of drug metabolism by L. donovani in culture. In terms of

drug development the divergent modes of action for fexinidazole and delamanid are advantageous,

as the likelihood of cross-resistance developing is reduced, and the potential for their co-administra-

tion as a combination therapy is retained.

Figure 7. PK/PD relationships in mice. (A and B) Mean suppression of parasite burden as a function of Cmax for the penultimate dose (panel A) and

extrapolated AUC(0–24 hr) for the last day of the 10-day treatment regimen (panel B). The black dotted line in (A) is the EC90 value obtained for infected

macrophages after 72 hr exposure (120 ng ml-1). The red dotted line in (A) and (B) represents the mean delamanid Cmax (375–400 ng ml-1) and mean

AUC(0–24 hr) (7000–8000 h*ng ml-1) obtained in 144 TB patients after 14 days treatment with 100 mg, oral, once daily from day 14–56 (Sasahara et al.,

2015). The data in this graph were derived from a single in vivo study; related aggregated data from previous studies is shown in Figure 7—figure

supplement 1.

DOI: 10.7554/eLife.09744.014

The following figure supplement is available for figure 7:

Figure supplement 1. (A and B) Mean suppression of parasite burden as a function of Cmax for the penultimate dose and extrapolated AUC(0–24 hr) for

the last day of the 5- and 10-day treatment regimens, respectively.
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The current practice in the pharmaceutical industry is to avoid developing compounds containing

a nitro-aromatic group due to the known liabilities of this class, particularly potential mutagenicity

and carcinogenicity. As a result, outside the anti-infectives there are relatively few nitro-aromatic

drugs. Indeed, nitro-aromatic moieties are relatively common in drugs or clinical candidates for

kinetoplastid diseases compared to chemotherapies for other indications. This over-representation is

linked to the mechanism of action of nitro-drugs; selective bio-activation by parasitic bacterial-like

NTRs leading to selective anti-parasitic activity. The studies presented herein are consistent with

delamanid also being activated by a parasite-specific enzyme absent from host cells. Preclinical stud-

ies have demonstrated that delamanid is not mutagenic (Matsumoto et al., 2006). Moreover,

repeated oral administration in mice or rats for up to 104 weeks showed no evidence of carcinoge-

nicity (Committee for Medicinal Products for Human Use, 2013). Taken together these points alle-

viate some of the concerns ordinarily associated with the development of nitro-drugs, although long

term safety can only be established after extensive clinical use in relevant populations.

While revising this manuscript, Thompson and co-workers reported the structure-activity relation-

ships for an extensive series of bicyclic nitro-compounds, including delamanid (Thompson et al.,

2016). These authors observed partial efficacy in L. infantum-infected hamsters dosed with delama-

nid, not inconsistent with our findings. The lower efficacy observed by these authors could be due to

one or more of the following: inadequate dosing (once versus twice per day); different animal model

(hamster versus mouse); or different species of leishmania (L. infantum is less sensitive than L. dono-

vani). Although this paper found VL-2098 to have superior efficacy in a once daily treatment regi-

men, pre-clinical development of this compound has been abandoned due to testicular toxicity

(http://www.dndi.org/diseases-projects/portfolio/completed-projects/vl-2098/ last accessed 3rd April

2016). Importantly, this reproductive toxicity has not been observed with delamanid (Committee for

Medicinal Products for Human Use, 2013).

Delamanid meets many of the criteria specified in the target product profile (TPP) for VL [http://

www.dndi.org]. It is rapidly cytocidal and thus potentially efficacious in immunocompromised

patients such as those co-infected with HIV (Alvar et al., 2008) particularly since delamanid is not

associated with any clinically relevant anti-retroviral drug-drug interactions (Ryan and Lo, 2014;

Blair and Scott, 2015). Due to the prevalence of TB-VL coinfection in Ethiopia (Hurissa et al., 2010)

and Sudan (El-Safi et al., 2004) the TPP also specifies that any new treatments should be compatible

with TB medications, a stipulation met by delamanid (Blair and Scott, 2015). Delamanid can be

administered orally, an important requirement for patients who have limited access to even the most

basic of health care facilities, whereas liposomal amphotericin B (AmBisome) has to be administered

intravenously and requires cold storage for stability. Perhaps the most challenging issue may be cost

of goods. Assuming an efficacious dose of 100 mg once-daily for in excess of 10 days and the mar-

ket cost of delamanid in developed countries (US$42 per 50 mg tablet) (Lessem, 2014), the pre-

dicted cost per patient would be over US$840, significantly higher than that specified in the VL TPP

(<US$10 or <$80 per course) and predicted to be more expensive than other current treatment

strategies (Meheus et al., 2010). However, differential pricing or financial arrangements may reduce

the cost for this neglected disease of poverty. Additional factors also support the development of

delamanid as a VL therapy. Importantly, the results presented here demonstrate that delamanid is

active against a number of clinically-relevant field isolates. In addition, we are currently investigating

the potential of delamanid to be repurposed for Chagas’ disease.

In summary, these data suggest that delamanid has the potential to be repurposed as a VL ther-

apy. Additional VL animal model studies exploring the effect of extended delamanid dosing beyond

10 days should be investigated.

Materials and methods

Cell lines and culture conditions
All leishmania strains follow the WHO International Code designating the animal from which the par-

asite was isolated, country, date of isolation and strain designation (see International Leishmania

Network http://leishnet.net/site/?q=node/5). The WHO designations and origins of each Leishmania

isolate used are detailed in Table 2. The clonal Leishmania donovani cell line LdBOB was grown as

promastigotes at 24˚C in 10% FCS, as previously described (Goyard et al., 2003), except when
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investigating the effect of serum concentration on drug efficacy, in which case 5, 10, or 20% FCS

was used. Transgenic LdBOB promastigotes expressing the L. major nitroreductase (LmjF.05.0660)

enzyme (Wyllie et al., 2012) were cultured under identical conditions in the presence of nourseothri-

cin (100 mg ml�1). L. major promastigotes (Friedlin strain) were grown in M199 medium (Caisson Lab-

oratories, Logan, UT) with supplements, as previously described (Oza et al., 2005). L. donovani (LV9

strain) ex vivo amastigotes were used in both in vitro and in vivo drug sensitivity assays. Amastigotes

were derived from hamster spleens, as previously described (Wyllie and Fairlamb, 2006). All other

Leishmania clinical isolates (Table 2) were grown in RPMI 1640 (Sigma, UK) supplemented with 20%

FCS, 100 mM adenine, 5 mM hemin, 20 mM MES, 3 mM 6-biopterin and 1 mM biotin. In all cases the

FCS used was certified as mycoplasma free.

Chemical synthesis of delamanid and analogues
Delamanid was prepared as previously described (Sasaki et al., 2006; Kiyokawa and Aki, 2005)

(Figure 1—figure supplement 1). Modification of the delamanid synthetic route afforded (S)-delam-

anid and des-nitro-delamanid (Figure 1—figure supplements 1–2). Compound purity was deter-

mined by liquid chromatography-mass spectrometry, with all compounds found to be >95% pure.

For in vivo experiments, delamanid was further analysed by ultra high-performance liquid chroma-

tography-mass spectrometry (UPLC-MS), with all batches found to be of >98% purity. The optical

rotation of delamanid was in close agreement to the published value (Sasaki et al., 2006), confirm-

ing the optical purity of the material used in this study. Detailed synthetic procedures and analysis of

key compounds and intermediates are provided in Appendix 1.

In vitro drug sensitivity assays against promastigotes
To examine the effects of test compounds on growth, triplicate cultures were seeded with 1 � 105

parasites ml-1. Parasites were grown in the presence of drug for 72 hr, after which 50 mM resazurin

was added to each well and fluorescence (excitation of 528 nm and emission of 590 nm) measured

after a further 2 hr incubation (Jones et al., 2010). Data were processed using GRAFIT (version

5.0.13; Erithacus software) and fitted to a 2-parameter equation, where the data are corrected for

background fluorescence, to obtain the effective concentration inhibiting growth by 50% (EC50):

y¼
100

1þ ½I�
EC50

� �m

In this equation [I] represents inhibitor concentration and m is the slope factor. Experiments were

repeated at least two times and the data is presented as the weighted mean plus

weighted standard deviation (Young, 1962). When investigating the speed of drug-mediated cell

killing, parasites were grown in the presence of drug for 24, 48, or 72 hr in an otherwise identical

assay. The same assay was used to investigate the effect of seeding density upon drug efficacy,

except that the number of parasites used to seed the assays was varied to be either 103, 104 or 105

parasites ml-1.

Table 2. Leishmania isolates used in delamanid drug sensitivity studies.

Species WHO Code Laboratory Code Origin Year of Isolation Provided by

L. donovani MHOM/SD/62/1S CL2D a LdBOB Sudan 1962 via Professor Stephen Beverley, Washington University

L. donovani MHOM/ET/67/HU3 LV9 Ethiopia 1967 via Professor Jennie Blackwell, Cambridge University

L. donovani MHOM/IN/02/BHU1 BHU1 India 2002 via LSHTM, London, UK

L. donovani MHOM/SU/09/SUKA001 SUKA001 Sudan 2009 via LSHTM, London, UK

L. donovani MHOM/IN/80/DD8 DD8 India 1980 via LSHTM, London UK

L. infantum MHOM/MA/67/ITMAP263 ITMAP263 Morocco 1967 via LSHTM, London, UK

L. major MHOM/IL/81/Friedlin Friedlin Israel 1981 via LSHTM, London, UK

a Derived from this strain (Goyard et al., 2003)
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Cytocidal effects of delamanid on L. donovani promastigotes
Delamanid was added to early-log cultures of LdBOB promastigotes ( ~1 � 106 ml-1) at concentra-

tions equivalent to 10 times its EC50 value. At intervals, the cell density was determined, samples of

culture (500 ml) removed, washed and resuspended in fresh culture medium in the absence of drug.

The viability of drug-treated parasites was monitored for up to 24 hr and the point of irreversible

drug toxicity determined by microscopic examination of subcultures after 5 days.

In vitro drug sensitivity assays in mouse macrophages and toxicity to
HepG2 cells
In-macrophage drug sensitivity assays were carried out using starch-elicited mouse peritoneal mac-

rophages and hamster-derived ex vivo amastigotes (Wyllie et al., 2012) or metacyclic promastigotes

(Wyllie et al., 2013), where appropriate. Assays to determine the sensitivity of HepG2 cells to test

compounds were carried out precisely as previously described (Patterson et al., 2013). HepG2

were obtained from ATCC and routinely tested for mycoplasma contamination by Mycoplasma

Experience Ltd.

In vitro pharmacokinetic and biophysical properties
The PPB of delamanid was determined by the equilibrium dialysis method (Jones et al., 2010). The

aqueous solubility of delamanid was measured using a laser nephelometry-based method

(Patterson et al., 2013).

In vivo drug sensitivity
Groups of female BALB/c mice (5 per group) were inoculated intravenously (tail vein) with approxi-

mately 2 � 107 L. donovani LV9 amastigotes harvested from the spleen of an infected hamster

(Wyllie and Fairlamb, 2006). From day 7 post-infection, groups of mice were treated with either

drug vehicle only (orally), with miltefosine (30 mg kg-1 orally), or with delamanid (1, 3, 10, 30 or 50

mg kg-1 orally). Miltefosine was administered once daily for 5, or 10 days, with vehicle and delama-

nid administered twice daily over the same period. Drug dosing solutions were freshly prepared

each day, and the vehicle for delamanid was 0.5% hydroxypropylmethylcellulose, 0.4% Tween 80,

0.5% benzyl alcohol, and 98.6% deionized water. On day 14 (for 5 day dosing experiments), or day

19 post-infection (for 10 day dosing experiments), all animals were humanely euthanized and para-

site burdens were determined by counting the number of amastigotes/500 liver cells (Wyllie et al.,

2012). Parasite burden is expressed in Leishman Donovan Units (LDU): mean number of amastigotes

per 500 liver cells � mg weight of liver (Bradley and Kirkley, 1977). The LDU of drug-treated sam-

ples are compared to that of untreated samples and the percent inhibition calculated. ED50 values

were determined using GRAFIT (version 5.0.13; Erithacus software) by fitting data to a 2-parameter

equation, as described above.

Determination of delamanid exposure in infected mice after oral dosing
Blood samples (10 ml) from 3 of 5 infected mice (see in vivo drug sensitivity above) in each dosing

group were collected from the tail vein and placed into Micronic tubes (Micronic BV) containing

deionized water (20 ml). Samples were taken following the first dose on the first (day 7 post-infection)

and last day of dosing (day 11, or 16 post-infection) at 0.5, 1, 2, 4 and 8 hr post-dose. Diluted blood

samples were freeze-thawed three times prior to bioanalysis. The concentration of delamanid in

mouse blood was determined by UPLC-MS/MS on a Xevo TQ-S (Waters, UK) by modification of that

described previously for the analysis of fexinidazole (Sokolova et al., 2010) and PK parameters

determined using PKsolutions software (Summit, USA). AUC(0–24 hr) was extrapolated from the calcu-

lated AUC(0-8 hr), with second daily dose administered at 8 hr post first daily dose.

Rate of delamanid metabolism in L. donovani promastigotes
Rate of metabolism studies were carried out at 15, 45 and 150 nM delamanid (equivalent to 1-, 3-

and 10-times EC50) in culture medium alone and in the presence of wild type L. donovani promasti-

gotes (1 � 107 parasites ml-1). At 0, 0.5, 1, 2, 4, 6, 8 and 24 hr aliquots were removed, precipitated

by addition of a 3-fold volume of acetonitrile and centrifuged (1665 � g, 10 min, room temperature).
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The supernatant was diluted with water to maintain a final solvent concentration of 50% and stored

at �20ºC prior to UPLC-MS/MS analysis, as described below.

UPLC-MS/MS was performed on a Waters Acquity UPLC interfaced to a Xevo TQ-S MS. Chro-

matographic resolution was achieved on a 2.1 � 50 mm Acquity BEH C18, 1.7 mm column which was

maintained at 40ºC with an injection volume of 8 ml. The mobile phase consisted of A: deionized

water plus 0.01% (v/v) formic acid and B: acetonitrile plus 0.01% (v/v) formic acid at a flow rate of

0.6 ml min-1. The initial gradient was 5% B held for 0.5 min before increasing to 95% B from 0.5–

2 min, where it was held from 2–2.6 min before decreasing back to 5% B from 2.6–3 min. Mass spec-

tra were obtained using electrospray ionization (ESI), in positive ion mode with the following condi-

tions: capillary 3.5 kV; desolvation temperature 600ºC; source temperature 150˚C; desolvation gas

flow (nitrogen) 1000 l h-1 and collision gas (argon) gas of 0.15 ml min-1. Multiple reaction monitoring

(MRM) was performed for delamanid using the transition 535.02 > 351.80 at a cone voltage of 16 V

and collision energy of 33 V. Data was processed using the TargetLynx feature of Mass Lynx v4.1.
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Appendix 1

Procedures for the synthesis of delamanid and analogues

General
Chemicals and solvents were purchased from Sigma-Aldrich (UK), Alfa Aesar (UK), Apollo

Scientific (UK), Fisher Chemicals (UK), Tokyo Chemical Industry (UK) and VWR (UK) and were

used as received. Air and moisture sensitive reactions were carried out under an inert

atmosphere of nitrogen. Analytical thin-layer chromatography (TLC) was performed using pre-

coated TLC plates (layer 0.20 mm silica gel 60 with fluorescent indicator UV254, from Merck,

UK). Developed plates were air-dried and analysed under a UV lamp (UV254/365 nm), and/or

with chemical stains where appropriate. Flash column chromatography was performed using

prepacked silica gel cartridges (230-400 mesh, 35-70 mm, from Teledyne ISCO) using a

Teledyne ISCO CombiFlash Rf. 1H-NMR, 13C-NMR, 19F-NMR, and 2D-NMR spectra were

recorded on a Bruker Avance DPX 500 spectrometer (1H at 500.1 MHz, 13C at 125.8 MHz, 19F

at 470.5 MHz), or a Bruker Avance III HD (1H at 400.1 MHz, 13C at 100.6 MHz,). Chemical shifts

(d) are expressed in ppm recorded using the residual solvent as the internal reference in all

cases. Signal splitting patterns are described as singlet (s), doublet (d), triplet (t), quartet (q),

multiplet (m), broad (br), or a combination thereof. Coupling constants (J) are quoted to the

nearest 0.5 Hz. LC-MS analyses were performed with either an Agilent HPLC 1100 series

connected to a Bruker Daltonics MicrOTOF or an Agilent Technologies 1200 series HPLC

connected to an Agilent Technologies 6130 quadrupole LC/MS, where both instruments were

connected to an Agilent diode array detector. LCMS chromatographic separations were

conducted with either a Waters XBridge C18 column, 50 mm � 2.1 mm, 3.5 mm particle size,

or Waters XSelect C18 column, 30 mm � 2.1 mm, 2.5 mm particle size; mobile phase, water/

acetonitrile +0.1% HCOOH, or water/acetonitrile +0.1% NH3. High-resolution electrospray

measurements were performed on a Bruker Daltonics MicrOTOF mass spectrometer.

Preparative HPLC separations were performed with a Gilson HPLC (321 pumps, 819 injection

module, 215 liquid handler/injector) connected to a Gilson 155 UV/vis detector. HPLC

chromatographic separations were conducted using a Waters XBridge C18 column, 19 � 100

mm, 5 mm particle size; mobile phase, water/acetonitrile +0.1% NH3, or HCOOH. Optical

rotation measurements were performed using a PerkinElmer model 343 polarimeter.

Synthesis of delamanid (7)
Delamanid was synthesised according to published procedures (Figure 1—figure supplement

1). In brief, commercially available (2R)-2-methylglycidyl-4-nitrobenzoate (1) (Sigma-Aldrich)

was transformed to (R)-2-bromo-1-((2-methyloxiran-2-yl)methyl)-4-nitro-1H-imidazole (5) in four

steps via intermediates 2, 3 and 4 as described by Sasaki and coworkers (Sasaki et al., 2006).

Epoxide 5 was subsequently reacted with 4-(4-(4-(trifluoromethoxy)phenoxy)piperidin-1-yl)

phenol (6) (Sasaki et al., 2006; Kiyokawa and Aki, 2005) and sodium hydride as described

below to furnish delamanid (7).

Synthesis of (R)-2-methyl-6-nitro-2-((4-(4-(4-(trifluoromethoxy)phenoxy)piperidin-1-yl) phenoxy)

methyl)-2,3-dihydroimidazo[2,1-b]oxazole (delamanid, OPC-67683, 7) (Sasaki et al., 2006).

Solid NaH (60% suspension in oil, 19 mg, 0.48 mmol) was added to a solution of phenol 6 (141

mg, 0.40 mmol) and epoxide 5 (126 mg, 0.48 mmol) in anhydrous DMF (5 mL) at 0˚C. The
reaction was then allowed to warm to room temperature and subsequently heated to 50˚C for

1.5 hr. Upon completion the reaction mixture was added to satd. aq. NaCl:EtOAc (1:1, 50 mL),

the layers separated and the aq. layer extracted with EtOAc (3�25 mL). The combined EtOAc

layers were then dried over MgSO4, filtered and the solvent removed under reduced pressure.

The crude product was purified by column chromatography (24 g silica, 0:100fi100:0 EtOAc:
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hexane) to give the title compound as a pale yellow solid (104 mg, 49% yield). Rf (silica, 50:50

EtOAc:hexane) 0.24. 1H-NMR (500 MHz, CDCl3) d 7.55 (s, 1H, ArH), 7.16-7.13 (m, 2H, AA0BB0,

2�ArH), 6.93-6.89 (m, 4H, 2�AA0BB0, 4�ArH), 6.80-6.77 (m, 2H, AA0BB0, 2�ArH), 4.50 (d, 1H,

J=10 Hz, CHH), 4.44-4.40 (m, 1H, CH), 4.18 (d, 1H, J=10 Hz, CHH), 4.06-4.02 (m, 2H, 2�CHH),

3.40-3.35 (m, 2H, 2�CHH), 3.03-2.98 (m, 2H, 2�CHH), 2.13-2.08 (m, 2H, 2�CHH), 1.98-1.92

(m, 2H, 2�CHH), 1.77 (s, 3H, CH3).
19F-NMR (470 MHz, CDCl3) d -58.4. 13C-NMR (125 MHz,

CDCl3) d 156.0 (C), 155.8 (C), 151.7 (C), 147.3 (C), 146.9 (C), 142.8 (C), 122.5 (CH), 120.6 (q,

J=204 Hz, CF3), 118.6 (CH), 116.8 (CH), 115.9 (CH), 115.6 (CH), 112.5 (CH), 93.2 (C), 72.7 (CH),

72.3 (CH2), 51.5 (CH2), 47.9 (CH2), 30.6 (CH2), 23.2 (CH3). MS (ES+): m/z (%) 535 (100) [M+H]+.

HRMS (ES+): calcd. for C25H26F3N4O6 [M+H]+ 535.1799, found 535.1779 (3.7 ppm).

½a�20D ¼ �10:8ðc 1:02; CHCL3Þ.

Synthesis of (S)-delamanid (13)
The synthesis of (S)-delamanid (13) was accomplished via a modification of the published

(Sasaki et al., 2006) route towards delamanid (Figure 1—figure supplement 1). In brief,

commercially available (2S)-2-methylglycidyl-4-nitrobenzoate (8) (Sigma-Aldrich) was

transformed to (S)-2-bromo-1-((2-methyloxiran-2-yl)methyl)-4-nitro-1H-imidazole (12) in four

steps via intermediates 9, 10 and 11 as described (Sasaki et al., 2006). Epoxide 12 was

subsequently reacted with 4-(4-(4-(trifluoromethoxy)phenoxy)piperidin-1-yl)phenol (6)

(Sasaki et al., 2006) and sodium hydride as described below to afford (S)-delamanid (13).

Synthesis of (S)-2-methyl-6-nitro-2-((4-(4-(4-(trifluoromethoxy)phenoxy)piperidin-1-yl) phenoxy)

methyl)-2,3-dihydroimidazo[2,1-b]oxazole ((S)-delamanid, 13) (Sasaki et al., 2006).

Solid NaH (60% suspension in oil, 5.4 mg, 0.14 mmol) was added to a solution of phenol 6 (40

mg, 0.11 mmol) and epoxide 5 (36 mg, 0.14 mmol) in anhydrous DMF (2.5 mL) at 0˚C. The
reaction was then allowed to warm to room temperature and subsequently heated to 50˚C for

1.5 hr. Upon completion water (0.2 mL) was added to the reaction, the resultant mixture was

then filtered and purified by reverse phase HPLC (20:80fi95:5 MeCN:water +0.1% HCOOH)

to give the title compound as a pale yellow solid (22 mg, 36% yield). 1H-NMR (500 MHz,

CDCl3) d 7.55 (s, 1H, ArH), 7.15-7.13 (m, 2H, AA0BB0, 2�ArH), 6.93-6.89 (m, 4H, 2�AA0BB0,

4�ArH), 6.80-6.76 (m, 2H, AA0BB0, 2�ArH), 4.49 (d, 1H, J=10.5 Hz, CHH), 4.44-4.39 (m, 1H,

CH), 4.18 (d, 1H, J=10.5 Hz, CHH), 4.05-4.00 (m, 2H, 2�CHH), 3.39-3.35 (m, 2H, 2�CHH),

3.03-2.98 (m, 2H, 2�CHH), 2.13-2.07 (m, 2H, 2�CHH), 1.98-1.91 (m, 2H, 2�CHH), 1.77 (s, 3H,

CH3). MS (ES+): m/z (%) 535 (100) [M+H]+. HRMS (ES+): calcd. for C25H26F3N4O6 [M+H]+

535.1799, found 535.1754 (8.4 ppm).

Synthesis of des-nitro-delamanid (18)
The synthesis of des-nitro-delamanid (18) was accomplished via a modification of the published

(Sasaki et al., 2006) route towards delamanid (Figure 1—figure supplement 2). Full details of

the synthetic route are given below.

Synthesis of (R)-2-hydroxy-2-methyl-3-(2-nitro-1H-
imidazol-1-yl)propyl 4-nitrobenzoate (14)
Neat DIPEA (465 mg, 3.6 mmol) was added to a suspension of 2-nitroimidazole (1.02 g, 9.0

mmol) and epoxide 1 (2.13 g, 9.0 mmol) in anhydrous EtOAc (45 mL) and stirred at 65˚C for

20 hr. The reaction was subsequently diluted with MeCN (15 mL) and the reaction

temperature increased to 77˚C, after which the resultant solution was stirred for an additional

24 hr. The reaction mixture was then directly purified by column chromatography (120 g silica,
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10:90fi100:0 EtOAc:heptane) to give the title compound as a white solid (2.27 g, 72% yield).

Rf (silica, 50:50 EtOAc:hexane) 0.16. 1H-NMR (400 MHz, DMSO-d6) d 8.38-8.35 (m, 2H,

AA0BB0, 2�ArH), 8.26-8.23 (m, 2H, AA0BB0, 2�ArH), 7.59 (s, 1H, ArH), 7.17 (s, 1H, ArH), 5.49 (s,

1H, OH), 4.67 (d, 1H, J=14.0 Hz, CHH), 4.60 (d, 1H, J=14.0 Hz, CHH), 4.13 (s, 2H, CH2), 1.14

(s, 3H, CH3).
13C-NMR (100 MHz, DMSO-d6) d 164.5 (C), 150.9 (C), 146.3 (C), 135.3 (C), 131.3

(CH), 128.7 (CH), 127.4 (CH), 124.3 (CH), 70.6 (C), 69.9 (CH2), 54.8 (CH2), 22.8 (CH3). MS (ES+):

m/z (%) 351 (100) [M+H]+, 701 (40) [2M+H]+.

Synthesis of (R)-2-methyl-3-(2-nitro-1H-imidazol-1-yl)
propane-1,2-diol (15)
Solid K2CO3 (18.6 mg, 0.135 mmol) was added to a solution of ester 14 (944 mg, 2.70 mmol) in

anhydrous MeOH (25 mL) and stirred at room temperature for 20 hr. A solution of HCl (6 N,

aq, 0.55 mL) and solid MgSO4 (550 mg) were then added to the reaction and the resultant

mixture stirred for 1 hr, before being filtered through a plug of celite, and the solvent

removed under reduced pressure. The crude product was purified by column chromatography

(80 g silica, 0:50:50fi20:80:0 EtOH:EtOAc:heptane) to give the title compound as a pale

yellow solid (475 mg, 83% yield). Rf (silica, EtOAc) 0.33. 1H-NMR (400 MHz, DMSO-d6) d 7.50

(s, 1H, ArH), 7.12 (s, 1H, ArH), 4.96 (t, 1H, J=5.0 Hz, OH), 4.79 (br s, 1H, OH), 4.48 (d, 1H,

J=14.0 Hz, CHH), 4.39 (d, 1H, J=14.0 Hz, CHH), 3.14 (dd, 1H, J=11.0, 5.0 Hz, CHH), 3.07 (dd,

1H, J=11.0, 5.0 Hz, CHH), 0.95 (s, 3H, CH3).
13C-NMR (100 MHz, DMSO-d6) d 146.5 (C), 128.4

(CH), 127.0 (CH), 72.1 (CH2), 67.3 (C), 54.8 (CH2), 22.7 (CH3). MS (ES+): m/z (%) 202 (100) [M

+H]+.

Synthesis of (R)-2-hydroxy-2-methyl-3-(2-nitro-1H-
imidazol-1-yl)propyl methane sulfonate (16)
Neat MsCl (344 mg, 3.0 mmol) was added to a solution of diol 3 (402 mg, 2.0 mmol) and

anhydrous pyridine (791 mg, 10.0 mmol) in CH2Cl2 (20 mL) at 0˚C before being allowed to

warm to room temperature and stirred for an additional 16 hr. The reaction was then poured

onto HCl (1N, aq, 20 mL) and the pH of the aqueous layer adjusted to 2.5. The layers were

subsequently separated and the aq, extracted with CH2Cl2 (4 � 50 mL). The combined CH2Cl2
layers were dried over MgSO4, filtered and the solvent removed under reduced pressure to

give the crude product as a yellow oil which was reacted on without further purification, or

analysis.

Synthesis of (R)-1-((2-methyloxiran-2-yl)methyl)-2-nitro-1H-
imidazole (17)
Neat DBU (335 mg, 2.2 mmol) was added to a solution of crude mesylate 16 (~ 2.0 mmol) in

anhydrous EtOAc (20 mL) and stirred at room temperature for 16 hr. The reaction was

subsequently washed with satd. aq. NaCl (50 mL), followed by extraction of the aq. layer with

EtOAc (2�50 mL). The combined EtOAc layers were dried over MgSO4, filtered, and the

solvent removed under reduced pressure. The crude product was purified by column

chromatography (80 g silica, 25:75fi100:0 EtOAc:heptane) to give the title compound as a

thick clear oil (58 mg, 15% yield over 2 steps). Rf (silica, EtOAc) 0.6. 1H-NMR (400 MHz, CDCl3)

d 7.16-7.13 (m, 2H, 2�ArH), 4.93 (d, 1H, J=14.5 Hz, CHH), 4.41 (d, 1H, J=14.5 Hz, CHH), 2.69

(d, 1H, J=4.0 Hz, CHH), 2.45 (d, 1H, J=4.0 Hz, CHH), 1.36 (s, 3H, CH3).
13C-NMR (100 MHz,

CDCl3) d 145.0 (C), 128.4 (CH), 126.7 (CH), 55.6 (C), 53.1 (CH2), 51.6 (CH2), 18.8 (CH3). MS

(ES+): m/z (%) 184 (100) [M+H]+.
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Synthesis of des-nitro-delamanid ((R)-2-methyl-2-((4-(4-(4-
(trifluoromethoxy)phenoxy) piperidin-1-yl)phenoxy)
methyl)-2,3-dihydroimidazo[2,1-b]oxazole) (18)
Solid NaH (60% dispersion in oil) (30 mg, 0.76 mmol) was added to a solution of epoxide 17 (58

mg, 0.32 mmol) and phenol 6 (134 mg, 0.38 mmol) in anhydrous DMF (4 mL) at 0˚C. The
reaction was then allowed to warm to room temperature followed by heating at 50˚C for 5 hr.

The reaction mixture was subsequently added to satd. aq. NaCl:EtOAc (1:1, 20 mL), the layers

separated and the aq. layer extracted with EtOAc (3�10 mL). The combined EtOAc layers

were then dried over MgSO4, filtered and the solvent removed under reduced pressure. The

crude product was purified by reverse phase HPLC (5:95fi95:5 MeCN:water + 0.1% NH3) to

give the title compound as a clear semi-solid (51 mg, 30% yield). 1H-NMR (500 MHz, CDCl3) d

7.16-7.13 (m, 2H, AA’BB’, 2�ArH), 6.94-6.90 (m, 4H, 4�ArH), 6.84-6.81 (m, 2H, AA’BB’,

2�ArH), 6.71 (d, 1H, J=1.5 Hz, ArH), 6.57 (d, 1H, J=1.5 Hz, ArH), 4.44-4.40 (m, 1H, CH), 4.29

(d, 1H, J=9.5 Hz, CHH), 4.12 (d, 1H, J=9.5 Hz, CHH), 4.02 (d, 1H, J=9.5 Hz, CHH), 3.86 (d, 1H,

J=9.5 Hz, CHH), 3.40-3.35 (m, 2H, 2�CHH), 3.03-2.98 (m, 2H, 2�CHH), 2.14-2.09 (m, 2H,

2�CHH), 1.99-1.92 (m, 2H, 2�CHH), 1.73 (s, 3H, CH3).
19F-NMR (470 MHz, CDCl3) d -58.4

(CF3).
13C-NMR (100 MHz, CDCl3) d 159.1 (C), 155.9 (C), 152.3 (C), 146.6 (C), 142.8 (C), 129.5

(CH), 122.5 (CH), 118.6 (CH), 116.9 (CH), 115.4 (CH), 110.6 (CH), 92.1 (C), 72.8 (CH), 72.1

(CH2), 51.4 (CH2), 48.0 (CH2), 30.6 (CH2), 23.5 (CH2). Note, the CF3 resonance was not

observed. MS (ES+): m/z (%) 490 (80) [M+H]+, 479 (100) [2M+H]+. HRMS (ES+): calcd for

C25H27F3N3O4 [M+H]+ 490.1948, found 490.1967 (-3.8 ppm).
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