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CHAPTER 16

Small-molecule Bioactivity
Databases

SEAN EKINS,*a,b ALEX M. CLARK,a,c CHRISTOPHER SOUTHAN,d

BARRY A. BUNINa AND ANTONY J. WILLIAMSe

a Collaborative Drug Discovery, Inc., 1633 Bayshore Highway, Suite 342,
Burlingame, CA 94010, USA; b Collaborations Pharmaceuticals, Inc., 5616
Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA; c Molecular
Materials Informatics, Inc., 1900 St. Jacques #302, Montreal H3J 2S1,
Quebec, Canada; d IUPHAR/BPS Guide to PHARMACOLOGY, Centre for
Integrative Physiology, University of Edinburgh, Hugh Robson Building,
Edinburgh, EH8 9XD, UK; e ChemConnector, 513 Chestnut Grove Court,
Wake Forest, NC 27587, USA
*Email: ekinssean@yahoo.com

16.1 Introduction
Over theAQ:1 last decadeAQ:2 there has been a proliferation of chemistry databases on
the internet.1,2 We have gone from a point in the early 2000’s when there was
little in the way of small-molecule and bioactivity data available online, to
today, where web based publicly accessible databases can contain tens of
millions of molecules. Many of these databases have over a million bioac-
tivity data points [such as half-maximal inhibitory concentration (IC50) or
inhibitor binding affinity (Ki)

2] and data are shared and proliferated between
them (e.g. ChEMBL, https://www.ebi.ac.uk/chembl/, PubChem, https://
pubchem.ncbi.nlm.nih.gov/, and other databases mirror some of each oth-
er’s data). The evolution of these bioactivity databases has followed different
routes. Examples include collections of molecules with one or more
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particular related bioactivity, collections of multiple curated sets of data,
user deposited datasets and combinations of these. Databases were once
mainly used to look up structure and properties, and as they expanded to
include experimental and predicted properties their function shifted. In-
creasingly, these databases are used to predict potential targets based on the
structure similarity principle,3–5 chemical–biological read-across6 and tox-
icology profiling,7,8 and in many ways have evolved into portals for different
data type.

In parallel, commercial databases, such as Chemical Abstracts (CAS)
SciFinders9 and GVKBio, focused on curated chemical structures, some of
which have been quantitatively assessed for their complementarity with
public databases and found to contain unique content.10–12 We have previ-
ously discussed the potential for divergence of these commercial systems from
the public databases.2 The focus of this chapter will be on freely accessible
databases such as BindingDB (www.bindingdb.org), PubChem, ChEMBL,
International Union of Basic and Clinical Pharmacology (IUPHAR)/BPS Guide
to PHARMACOLOGY (GtoPdb, http://guidetopharmacology.org/) and public
data in the Collaborative Drug Discovery (CDD) Vault. We also refer readers to
earlier publications and discussions regarding public domain compound
databases that have covered other systems and content.13–17

There have been numerous comparisons of public bioactivity databases at
the level of molecules or targets that have suggested complementarity, and
we do not intend to add any more from this perspective.18 There have also
been efforts to combine different bioactivity databases. For example, Con-
federated Annotated Research Libraries of Small Molecule Biological Activity
Data (CARLSBAD) brought together ChEMBL, GtoPdb, PubChem, WOM-
BAT19 and PDSP (http://kidbdev.med.unc.edu/databases/kidb.php)20 in
order to help facilitate chemical biology research and data mining.21

CARLSBAD (http://carlsbad.health.unm.edu) is only available to academics
and non-commercial researchers; and even then one must apply in order to
access it, which would likely deter the casual user. Another example of such a
combined database is the ChemProt database,22 which is made up of data
from seven databases and contains 1.7 million compounds and 7.8 million
bioactivity measurements. It uses Daylight like fingerprints and can calcu-
late the similarity ensemble approach (SEA).23 A naive Bayesian classifier was
used with the Daylight like and Morgan fingerprints to build models for 850
proteins. Performance was described for only one model for hERG, although
models for 143 other proteins were also suggested to outperform SEA.22

16.2 Public Bioactivity Databases
There are now likely tens and possibly hundreds of bioactivity databases
available online or for download, many of which are unknown to the general
audience and perhaps only accessible as supplemental data in publications.
If you can imagine that a collection of molecules can be curated and used
for a single paper, then classed as a database and made available as
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supplemental data, then that would give some idea of the scope of bioactivity
databases. For example, approximately 1000 natural products from African
medicinal plants have been collated, analyzed and made available.24 More
extensive datasets with a small number of molecules but hundreds of assays
represent a rich data source. One example is the ToxCastt project, which
was launched in 2007 and is a long term, multi-million dollar effort that
hopes to understand biological processes impacted by chemicals that may
lead to adverse health effects, as well as generate predictive models that
should enable predictions of toxicity.25 The project is a multi-phase project
and, currently in phase 3, it covers over 3800 unique chemicals and up to 900
assays, including nuclear receptors, etc.26 The phase 1 and 2 data have been
made available via the ToxCast dashboard (http://actor.epa.gov/dashboard/)
and are available in various forms for download,27 and therefore, can be
meshed into other databases for the toxicology community. Phase 3 is
presently underway and the data will be released in phases throughout the
lifetime of this part of the project. ToxCast data are not presently available via
PubChem. A related long term project is Tox21 (https://www.epa.gov/
chemical-research/toxicology-testing-21st-century-tox21),28 a collaboration
between the US National Institutes of Health (NIH), Food and Drug
Administration (FDA) and Environmental Protection Agency (EPA). Tox21 data
are generally made available via PubChem,29 albeit with a staged release cycle.

A major challenge in this area is how to curate all of these individual
bioactivity datasets and databases, which may only be accessible via formats
that are custom designed for the task (e.g. SQL database dumps or CSV files)
or have formats such as MDL SDfile that lack provenance. Aggregating in-
dividual datasets let alone databases is a complex task with potential issues
in standardization or normalization of data across sources, duplication of
data and structure, as well as identification of errors, etc. While there have
been some efforts directed towards automation of data curation, heavy
emphasis on manual curation is likely to be needed to resolve conflicts.
Databases such as ZINC assemble and host the chemistry related features of
many of these SDF files in a single place, but are not known as bioactivity
databases. Small focused databases, such as chemical modulators of epi-
genome reader domains (ChEpiMod; http://chepimod.org/), which combine
data from manual extraction of publications and patents, as well as data-
bases such as ChEMBL,30 focus on domains rather than proteins. Another
example is GLASS, which focuses on G-protein coupled receptor (GPCR)
ligands collected from ChEMBL, BindingDB, GtoPdb, DrugBank31 and
PDSP,20 and currently has over 276 000 unique ligands and over 3000 GPCRs
(http://zhanglab.ccmb.med.umich.edu/GLASS/).32 These are just a small
sample of additional bioactivity datasets and databases in a variety of for-
mats. The utility of many bioactivity databases includes simple look ups for
information relating to a structure series of interest through to building
structure activity models. We will now give a brief summary of several well-
known public bioactivity databases and how they might be used. While there
are certainly other examples of early databases, such as ChemBank launched
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in 2003,33–35 among others,36,37 the following are notable for their continued
influence and size.

16.2.1 BindingDB

The BindingDB started following a 1997 workshop on the need for a data-
base focused on binding thermodynamics that could capture binding af-
finities, experimental details, facilitate a wide range of queries, be publically
accessible and allow user deposition.38 The database was launched in 2000.
At the time of writing, BindingDB hosts over 1 207 821 binding data, 6265
protein targets and 529 618 molecules. These can be used in various ways,
including considering off-target activity, target prediction, finding com-
pounds for targets (Figure 16.1), virtual screening and structure activity
modeling, etc.39 BindingDB uses the SEA approach23,40–42 to rank targets.
While the database collects data from other sources, the deposition and
manual curation allows for error checking and correction. Reuse of the data
is less restrictive than with ChEMBL (see below). BindingDB processes ex-
tensive amounts of data from ChEMBL but organizes it in a way that offers
users complementary options for interrogating the content of both
resources.

16.2.2 PubChem

At the time of writing, PubChem43 contained 89 124 111 compounds and
1 154 429 bioassays with 229 972 149 bioactivities for 2 101 164 tested com-
pounds,44,45 making it the largest free online bioactivity database. It was
initially launched by the NIH in 2004 to support the ‘‘New Pathways to
Discovery’’ component of their roadmap initiative.44 The primary purpose
for the database was to act as a repository for the Molecular Libraries
Screening Centers Network (MLSCN) screening results that were expected to
yield chemical probes. Clearly, it now extends well beyond this and en-
compasses all of the screening data behind these probe hunting efforts as
well as hosting data mirrored from other databases such as ChEMBL. In
some ways, focusing on additional information has neglected the probes,
making those specific data hard to find.46 A new derivative database of
PubChem is called the BioAssay Research Database (BARD; https://bard.nih.
gov), and is used for housing screening data for probe development. BARD
was released in 2015 and uses a controlled vocabulary to describe the assay
protocols, enabling more structured and automated bioactivity analysis.
A limitation of this free database is that the backend relies on several soft-
ware components that require licenses,47 limiting local deployment possi-
bilities. PubChem has built itself up to become the definitive bioactivity
database in terms of scale, public accessibility, and the ease of a quick look
up for a compound and potential bioactivity (Figure 16.2). Similar to other
large submission based resources, it has been criticized for allowing the
submission of vendor libraries, including ‘‘make on demand’’ compounds
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Figure 16.1 An overview of the BindingDB database showing some DNA gyrase inhibitors for Mycobacterium tuberculosis. DOI: 10.6084/
m9.figshare.3206236.
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Figure 16.2 (A) An example of a compound summary page on PubChem showing pyronaridine. (B) Pubchem bioactivity data for
pyronaridine. DOI: 10.6084/m9.figshare.3206236.

151015202530354045

Sm
all-m

olecule
B

ioactivity
D

atabases
349



Fi
gu

re
16

.2
C

on
ti

n
u

ed
.

1

5

10

15

20

25

30

35

40

45

350 Chapter 16



that had never actually existed and certainly had never been screened in
bioassays (indeed the largest of these vendor submitters has now been re-
stricted to stock-only records). PubChem has now become a host for general
chemical data, serving many needs, including access to safety data48 and a
variety of other compound data that can be viewed inside the PubChem
Classification Browser.49 PubChem has made specific efforts to ensure ac-
cessibility by the provision of so-called ‘‘widgets’’,50 which have been used in
the recently released EPA iCSS Chemistry Dashboard (http://comptox.epa.
gov/) to provide direct access from their platform to an embedded view of the
PubChem data. While departing from its original mandate, this added scope
positions PubChem, along with others such as ChemSpider,51 as a provider
of a valuable community service across chemistry applications. Databases
such as PubChem have considerable utility for predicting compound–target
associations, including one example describing a bioactivity profile simi-
larity search (BASS).52 While not necessarily novel, the sheer volume of data now
accessible puts these types of approaches within reach of scientists in academia
or small companies. The available data can be utilized by users to build their
own quantitative structure–activity relationship or machine learning models, or
can be searched in order to propose similar compounds that can then be tested
in other assays. This fundamental shift is based on the available data, most of
which it is hoped will be released under open data licenses.53 However, more
investment is needed for utilization training and awareness.

16.2.3 ChEMBL

ChEMBL is a database of drugs and other small molecules of biological
interest.54–56 ChEMBL_21 contains 1 592 191 compounds with 13 967 816
activities. It includes target binding relationships for small molecules, the
effect of these compounds on cells and organisms (e.g. Ki, IC50), and asso-
ciated absorption, distribution, metabolism and excretion (ADME)/toxicity
(Tox) data. In contrast to PubChem, ChEMBL has focused specifically on
literature extraction, but since 2011 it has also included a filtered subset of
confirmatory PubChem BioAssay results.57 The database contains manually
curated structure–activity relationship (SAR) data from the primary medi-
cinal chemistry and pharmacology literature, and therefore, provides high
quality data that may be used for computational purposes. As described
herein, it has been used extensively for SEA analyses as well as data aggre-
gation efforts. In addition, ChEMBL data have been used to assess the re-
producibility of kinase selectivity studies.58 Data for the rat and human
adenosine receptors from ChEMBL have been used to perform virtual
screening based on proteochemometric modeling, resulting in the identifi-
cation of novel inhibitors.59 ChEMBL has obtained large datasets from in-
dustry for neglected diseases such as malaria60 and ADME/Tox datasets that
AstraZeneca have published61 (Figure 16.3). The focused portals it has cre-
ated include ChEMBL-Neglected Tropical Disease (NTD), Kinase SARfari,
GPCR SARfari62 and ADME SARfari.
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Figure 16.3 Examples of the data in ChEMBL. (A) AstraZeneca in vitro data report card. (B) Detail on the individual AstraZeneca in vitro
DMPK datasets.
Credit: European Bioinformatics Institute. DOI: 10.6084/m9.figshare.3206236.
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16.2.4 GtoPdb

GtoPdb is the successor of an earlier database, IUPHAR-DB, which was fo-
cused on receptors and channels mapped to endogenous ligands, clinical
drug candidates and research compounds. This was established in 2009
under the auspices of the IUPHAR Committee on Receptor Nomenclature
and Drug Classification (NC-IUPHAR).42,43 From 2012 to 2015 Wellcome
Trust funding facilitated the expansion of IUPHAR-DB into GtoPdb, which
now covers all human pharmacological target classes. Release 2016.2 covers
2775 targets, 8400 ligands, 14 327 binding constants and 29 247 references.
The website features extensive curated information and links. As an ex-
ample, searching for the histone deacetylase 2 (HDAC2) target retrieves gene
and protein information, database links (Figure 16.4A), as well as a down-
loadable list of inhibitors (Figure 16.4B). Note that approved drugs, ligand
selectivity and small-molecule status are highlighted (Figure 16.4C). This
resource has two other unique features. The first is the support of the NC-
IUPHAR target class sub-committees for content selection. The second is
collaboration with the British Journal of Pharmacology for the publication of
biannual content overviews, live tables of links and instructions for authors
to get their results ready for curation.63,64

16.2.5 Public Data in the CDD Vault

In 2004, CDD (https://www.collaborativedrug.com/) started to develop the
CDD Vault65 as a web based database that would enable scientists to move
away from storing their data in spreadsheets, and make them accessible to
mining and sharing in their group or with collaborators from any browser.
A number of applications for collaborative research have previously been
described66 regarding the large number of public datasets in the CDD Vault
and their use for dataset analysis.67 Public data in the CDD Vault can be
accessed by anyone after first registering (http://www.collaborativedrug.com/
register) and data can be searched across over 100 datasets. Currently, these
cover several vendor libraries as well as unique datasets submitted by re-
searchers and companies. CDD has a considerable focus on datasets for
screening against neglected diseases such tuberculosis,17,68–81 malaria,82

Chagas disease83 and Ebola.84 Many of these datasets have been used in
the drug discovery efforts of those submitting themAQ:3 . In addition, CDD has
included other datasets and then enhanced them. For example, the physi-
cochemical property datasets deposited by AstraZeneca in ChEMBL
(Figure 16.5A) have been used in the CDD Vault and the data visualized
alongside calculated properties (Figure 16.5B). These efforts perhaps point
to some of the dataset and database integration challenges. For example,
CDD Public contains a small fraction of the datasets from ChEMBL or
PubChem, and has focused on very specific areas such as neglected diseases.
Creating long lists of datasets is not ideal and the organization of them by
type is currently rudimentary. Efforts to use the CDD Vault to host the
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currently available bioactivity databases described above have not been at-
tempted but could be valuable.

While the public datasets in the CDD Vault showcase how many different
datasets can be searched, the CDD Vault can also archive the user’s own data
and allow them to mine a broad range of diverse objects that can later be
selectively and securely shared with other researchers (or permanently kept
private, which is the default behavior). The CDD web based database
architecture handles a broad array of data types (e.g. CSV and SD file con-
vertible formats that represent the chemical and biological data) and in-
corporates industry standard Marvin chemical structure tools, calculator
plug-ins for physicochemical calculations and the JChem Cartridge for
structure searching from ChemAxon (Budapest, Hungary). These features

Figure 16.4 (A) Summary of a search for HDAC2 in Guide to Pharmacology. (B) List
of HDAC2 inhibitors. (C) Compound selectivity profile against other
HDACs. DOI: 10.6084/m9.figshare.3206236.
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allow similarity and substructure searching, and more complex analyses
within the application. The CDD Vault is used as the database behind several
large collaborative projects such as NIH Blueprint, Bill and Melinda Gates
Foundation Tuberculosis Drug Accelerator, Kinetoplastid drug development
consortium and More Medicines for Tuberculosis, with each sharing data in
different ways in their own secure environment. CDD has therefore enabled
complex collaborations to become manageable and scalable using their
technologies.

16.2.5.1 CDD Models in the CDD Vault

The capacity to build Bayesian models with open source ECFP6 and FCFP6
fingerprints (https://github.com/cdd/modified-bayes)85 is available in the
CDD Vault and implemented as CDD Models. This provides a powerful
machine learning technology to scientists that can be used in a secure CDD
Vault to build and share models.86 This work built on earlier efforts with
collaborators at Pfizer to show that open source tools could produce

Figure 16.4 Continued.
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Figure 16.4 Continued.
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Figure 16.5 An example of a dataset in the CDD Vault. (A) A spreadsheet view and (B) CDD Vision view of AstraZeneca microsomal
intrinsic clearance. DOI: 10.6084/m9.figshare.3206236.
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comparable models to those generated with commercial tools when mod-
eling ADME data.87 It has been shown that commercial fingerprint de-
scriptors and Bayesian models could be used to pick active compounds after
virtual screening, with good enrichments and hit rates for Mycobacterium
tuberculosis,73,75,88–90 predict in vivo Mtb activity in mice,80 and be used to
identify leads and repurpose drugs for Chagas disease83 and Ebola.84 We
have applied this machine learning approach to modeling decision making
for chemical probes,8 ADME-Tox models9 as well as microsomal stability in
mice.91 As an example, we have used the public AstraZeneca physico-
chemical property and ADME data to build models (Figure 16.6). The open
source descriptors and Bayesian algorithm have also been used outside of
the CDD Vault to create several thousand Bayesian models with the
ChEMBL data10 or manually curated data from other sources.92 One ex-
ample of the utility of such ChEMBL data involved cleaning up and using
the data to create a Bayesian model of 536 HDAC2 inhibitors to produce
models with excellent receiver operating characteristic (ROC) values (40.89;
Figure 16.7). The Bayesian approach is undergoing continual refinement,
most recently with a Bayesian binning approach.93 By enabling model
building in the CDD Vault we have gone someway to creating a machine
learning model repository. While there are academic efforts in this
area,94,95 CDD Models may represent the first commercial effort, and this
aspect could be expanded further, creating a database that allows the user
to flip between models and the data underpinning them. Until then, we
have created thousands of models and made them accessible through web
pages (Table 16.1).

In order to test some of the open technologies created we have opted to
prototype them in a mobile app called TB Mobile.85,96 This app can be
thought of as a subset of one of the public datasets in the CDD Vault relating
to compounds and targets.72 We first demonstrated the use of the finger-
prints and Bayesian algorithms in this app to predict potential targets for
compounds in addition to using similarity calculations and clustering of
data. Such apps themselves could be used and considered as bioactivity
databases, although it remains to be seen whether more will be created like
them, and what challenges and benefits these in turn will create as they may
represent silos that cannot be readily integrated.

16.3 Data Quality
Within the global cheminformatics community concerns have surfaced in
recent years over the quality of data in public chemistry and bioactivity
databases. Initially our focus was on data released by drug companies and
how the quality of the compounds compared from the perspective of phy-
sicochemical properties and reactive groups.97 We then turned our attention
to ‘‘new databases’’ as they were released and found frequent issues in the
curation of molecule structures,13 which in turn led us to larger scale an-
alysis of many public databases and the analysis of the proliferation of errors
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in chemistry across the web.15 Up until this point there was little interest in
data quality.98 Others have also recently compared bioactivity databases
from commercial and public sources (ChEMBL, WOMBAT, PubChem,
Evolvus and Ki Database) identifying errors such as incorrect molecular
structures or stereoisomers in 8.8% of molecules.11,12

Figure 16.6 CDD Human Microsome intrinsic clearance model built with data
from AstraZeneca in ChEMBL showing the ROC plots for three fold
cross validation.
Credit: European Bioinformatics Institute. DOI: 10.6084/m9.figshare.
3206236.
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Figure 16.7 An example of an extracted dataset from ChEMBL and subsequent analysis, leading to the detection of a suitable activity
threshold. This shows a plot of population versus activity, for which the solid curve shows the integral, which is colored to
show inactive (below threshold: light grey) and active (above threshold: dark grey) molecules. The ROC integral for subset
models at various thresholds is plotted, as is the overall desirability composite score. To the right is the ROC curve for ECFP6
and FCFP6 models, built using the whole dataset at the determined threshold. A representative diverse selection of ‘‘active’’
and ‘‘inactive’’ molecules is shown underneath.
Credit: European Bioinformatics Institute. DOI: 10.6084/m9.figshare.3206236.
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Several researchers have also been drawn to the challenges in drug re-
purposing when molecule structures from industry with ambiguous identi-
fiers are shared, resulting in analytical errors.99 Similar problems arise when
dealing with patents and massive data disclosures.2 Some of these issues
have also come to the fore with the recent clinical trial tragedy that resulted
in serious adverse events and one death with BIA 10–2474, in which the
structure and bioactivity data had not been disclosedAQ:4 . Initially, a particular
structure was used with target prediction software, but was subsequently
found to be the incorrect structure. The lack of mapping between patents
and identifiers confounded the problem and it took a week of speculation
before the structure’s name was disclosed in a leaked protocol. Even then, 3
months elapsed before an official report with some new data surfaced, but
we are still no closer to a causative understanding of the tragedy at the
mechanistic toxicology level.100–102

Other technical issues that have surfaced over the years specifically relate
to some of the aspects of generating bioactivity data in the first place. Even
steps such as how a liquid is dispensed and how dilution steps are con-
structed have been found to have a profound effect on the bioactivity of a
compound.103 These types of potential sources of error can also to some
extent be modeled mathematically,104 suggesting perhaps that we could
correct data in databases if we had a complete understanding of how they
were generated, including details such as what hardware was used to run the
experiment. This points to the importance of complete documentation and
creation of bioassay ontologies.47,105–107 There are likely to be many efforts
and companies that could exploit this important aspect to improve our
current bioactivity databases.

There are certainly many other areas that could be improved, including
ensuring that data from papers are automatically deposited in databases as a
way to limit potential errors. Bioactivity data should move in a lossless
manner via electronic formats, preferably using open community standards,
rather than having a third party curation step.108 Also, the deposition of
bioactivity data (molecular structures, experimental protocols and activity
values) should be considered as important as data types, such as crystal
structures, and deposition should be mandated prior to publication. There
are numerous standards that have been created that could be readily

Table 16.1 Bayesian models developed with ChEMBL and public data.

URL Summary Ref.

http://molsync.com/
bayesian1

ADME/Tox and neglected disease datasets
curated from public data

86

http://molsync.com/
bayesian2

Models developed from ChEMBL 122

http://molsync.com/
transporters

Select transporter datasets curated from
public data

92

http://molsync.com/
ebola/

Ebola models developed from curated data 84
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followed, e.g. minimum information about a bioactive entity (MIABE).109

Collective encouragement by publishers and/or requirements from funding
organizations such as the NIH to require direct data deposition could help
this happen, as was done for the deposition of the majority of the data points
in PubChem. However, despite the successes of the Protein DataBank,
GenBank and the Crystallographic Structure Database community, agree-
ment in terms of the deposition of experimental data and descriptors of
associated metadata, for example ADME/Tox data, has not come to fruition
despite encouragement110 and available platforms for hosting models.95,111

Platforms and options already exist that could support the mandated de-
position of bioactivity data. Time will tell whether this situation will change.

16.4 Conclusions
Bioactivity databases, both large and small, are a valuable asset for re-
searchers working in drug discovery and other areas of the biomedical in-
dustry. We, and others, have illustrated how the curation of such data
creates a starting point for large scale machine learning and target inference
methods. At the same time, most of these databases do not provide data in a
format that can be readily used for modeling so there is an opportunity for
improvement. There are also few databases that allow the user to select the
data to build their own machine learning models with either public data,
their own data or a combination of the two. Of course the challenge here is
testing the models and evaluating their applicability112–117 in such a way that
the user does not need extensive cheminformatics expertise. This is a tall
order, especially considering how long it has taken us to get to where we are
today. In addition, there is still naivety regarding what databases are avail-
able online, and difficulty understanding the complexities of their data
structures in order to make informed judgments on quality, content and
fitness for purposes. This chapter has hopefully introduced a few more
databases to the reader of which they may not have been aware and clarified
their role in the ecosystem of bioactivity databases. There are likely many
more of interest to the readers in the Nucleic Acids Research database
summary list.118 However, there are still far too many flat files of data ‘‘out in
the wild’’ that should either be meshed into new databases or preferably one
of the existing databases such as CDD Public. In this way, these ‘‘lost data’’
can be made mineable and useful for modeling. The benefits of having ac-
cess to thousands of machine learning models created from such data
means that a scientist could start a new project, use the model to suggest
new compounds to test and, with a collaborator, readily validate the pre-
dictions. From our experience, this is already feasible and the proof of
concept has been repeatedly demonstrated.84,119,120

How do we justify the continued costs of creating and maintaining these
databases? The success that has resulted from the development of these
databases, or the data residing in them, should be continually highlighted
(and if necessary celebrated) as it may result in additional usage or even
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encourage data contribution. Any drug repositioning121 opportunities that
could be attributed to one or more databases should highlight the value and
business proposition. We are not aware of this type of retrospective analysis
of databases to assess their successes and perhaps this is long overdue. It is
clear that without public bioactivity databases the researcher would be en-
tirely dependent on commercial databases, which for many would be out of
reach. Therefore, there should be a balance between making data (which in
the majority of cases has been generated with public funding) generally
accessible and providing incentives for companies to develop new software
and database products. Freely accessible bioactivity databases fill a gap that
existed over a decade ago, but their long term viability remains unclear and
how we will use them in the next 5–10 years will depend on a combination of
issues: data quality, data licenses and software tools for analysis, mining,
modeling, and data distribution. Progress is being made in all of these areas
and we should be optimistic, but it is likely important that we start collating
examples to justify how increasingly limited research funding can have the
highest impact with bioactivity databases.
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