

University of Dundee

Automatic transformation of raw clinical data into clean data using decision tree
learning combining with string similarity algorithm
Zhang, Jian

Published in:
OpenAccess Series in Informatics

DOI:
10.4230/OASIcs.ICCSW.2015.87

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Zhang, J. (2015). Automatic transformation of raw clinical data into clean data using decision tree learning
combining with string similarity algorithm. In OpenAccess Series in Informatics. (Vol. 49, pp. 87-94). Schloss
Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. DOI: 10.4230/OASIcs.ICCSW.2015.87

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/42553157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ICCSW.2015.87
http://discovery.dundee.ac.uk/portal/en/research/automatic-transformation-of-raw-clinical-data-into-clean-data-using-decision-tree-learning-combining-with-string-similarity-algorithm(69f4abe0-ee05-488e-b242-5345523da7b8).html

Automatic Transformation of Raw Clinical Data
Into Clean Data Using Decision Tree Learning
Combining with String Similarity Algorithm∗

Jian Zhang

School of Computing, University of Dundee
Perth Road, Dundee, UK
j.s.zhang@dundee.ac.uk

Abstract
It is challenging to conduct statistical analyses of complex scientific datasets. It is a time-
consuming process to find the relationships within data for whether a scientist or a statisti-
cian. The process involves preprocessing the raw data, the selection of appropriate statistics,
performing analysis and providing correct interpretations, among which, the data pre-processing
is tedious and a particular time drain. In a large amount of data provided for analysis, there
is not a standard for recording the information, and some errors either of spelling, typing or
transmission. Thus, there will be many expressions for the same meaning in the data, but it will
be impossible for analysis system to automatically deal with these inaccuracies. What is needed
is an automatic method for transforming the raw clinical data into data which it is possible
to process automatically.In this paper we propose a method combining decision tree learning
with the string similarity algorithm,which is fast and accuracy to clinical data cleaning. Exper-
imental results show that it outperforms individual string similarity algorithms and traditional
data cleaning process.

1998 ACM Subject Classification H.3.3 Information Search and Retrieval, I.2.6 Learning

Keywords and phrases Raw Clinical Data, Decision Tree Learning, String Similarity Algorithm

Digital Object Identifier 10.4230/OASIcs.ICCSW.2015.87

1 Introduction

Cancer research has become a greatly data rich environment. Several data analysis packages
can be used for analyzing the data like SPSS (Statistical Product and Service Solutions) [1],
Minitab [9]. However, before analyzing the data, it needs to be preprocessed to fix the errors,
misspelling of the raw data and transform the raw data into an uniform data [15], making it
fit-for-purpose. This process is both time-consuming and tedious. For example, a specific
binary variable may require only the entries ‘Yes’ or ‘No’ in a large data column. However,
‘Yes’ may have been entered onto a spreadsheet as Yes, yes, Y, y, yES, 1, or been misspelled
as Yed, yef, y es, y e s (note the inappropriate use of spacing), etc.. Clearly, there are an
infinite number of possibilities of entering this 3-letter word incorrectly, and each of these
entries is treated as separate entities by a computer program.

Obviously, we can see that there are only three possible answers in this data like the first
column of the Table 1 – Yes, No or null. However, the errors include spelling, typing or
transmission [2]. Besides, there is not a standard for scientists to collect data and record

∗ This work was partially supported by Henry Lester Trust.

© Jian Zhang;
licensed under Creative Commons License CC-BY

2015 Imperial College Computing Student Workshop (ICCSW 2015).
Editors: Claudia Schulz and Daniel Liew; pp. 87–94

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2015.87
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

88 Automatic Transformation of Raw Clinical Data Into Clean Data

Table 1 The example of raw data.

Clean data Raw data
yes yes, Yed, yef, Y...
no No, N, not...
null don’t know, waiting for lab...

them. Thus, the collected data will probably be the raw data which includes some errors like
that in the second column of the Table 1. It is difficult for the system to directly deal with
these inaccuracies for statistical analysis.

Currently statisticians will manually change these entries into a uniform string or a
number allowing the system to do further analysis. Potter’s Wheel [16], Google Refine [17, 5]
are interactive data cleaning system, which can be used to clean the data up and transform
the data from one form into another. Therefore, it will save time for statisticians if an
automated method can be used instead of a manual operation [4]. During the transformation,
the statisticians usually amend these data using their previous experience.

Decision tree learning is a common algorithm of machine learning [10]. It will set some
rules via previous experience to build a tree, and then predict the result using the built tree.
Its process is similar to the operation of transformation by statisticians mentioned above.
According to this feature and the necessity of data classification, decision tree learning has
been chosen to clean the raw data automatically.

Meanwhile,the comparison between the new entry and the previous data is another
important method to transform the raw clinical data to clean data during the manual
operation [6]. Thus, it is worth attempting the string similarity algorithm for this research.

In the raw clinical data, there is ordinal data and continuous data. The ordinal data hold
larger percentage in the research data so this paper will explore the research in the ordinal
data, especially two-category data.

In this paper, decision tree learning algorithms and string similarity algorithm will be
separately investigated to transform the raw clinical data to clean data and their features
will be explored. After that, the result of the two methods will be analyzed. Finally, the two
method will be combined as their features for the raw clinical data.

2 Decision Tree Learning

In general,training, validation and comparison with training data set will be the process
of making a prediction in machine learning. Decision tree learning as one of the machine
learning algorithm is a method for approximating discrete-valued functions [10], which is
one of the most popular inductive algorithms. Decision tree learning is a method to classify
different values under different attributes. It can set the rules based on the past data to
classify the new raw data to the clean data, whose process is the same as the manual data
pre-processing.

2.1 Decision Tree Representation
Decision trees classify data through arranging the case from the tree root to a leaf. Every
internal node (not leaf node) on the tree stands for a test of the value of the attribute; the
branch represents the result of the test; every leaf represents a classification categories. In
short, decision trees are similar to the tree structure of the workflow, adopting the top-down

J. Zhang 89

Outlook

Humidity Wind

Sunny

Yes

RainOvercast

YesNo

NormalHigh

YesNo

Strong Weak

Figure 1 A simple decision tree example from [13].

inductive method. It begins from the root node, and then tests the value of the attribute in
the internal nodes, next, confirms the matched branch based on the value of the attribute,
finally, gets the result in the leaf node [10].

Figure 1 represents a typical learned decision tree. It describes the relationships between
the weather and playing tennis [10]. In the figure, Yes equals play tennis, and No equals not
to play tennis. There are three attributes, outlook, humidity and windy. Each attribute has
their own value. For example, {outlook=rain; windy=strong; result =No} is a branch of the
tree.

Generally, decision trees represent a disjunction of conjunctions of constraints on the
attribute values of instances [10]. Each path from the root to a leaf corresponds to these
disjunctions of conjunctions. In order to classify the raw clinical data, it can test the attribute
values based on the structure of the decision tree, from the tree root down to the child node,
and finally to the leaf node. And the corresponding category of the leaf node will be the
category of the data object.

2.2 Decision Tree Learning Algorithm
ID3 was proposed by Quinlan in 1986 [13]. It is a representation of a decision tree algorithm
and most of the decision tree algorithms are achieved based on improvements to it. It adopts
the divide-and-conquer strategy and uses information gain as the standard to choose the
attribute at the different levels of the decision tree in order that it can collect the most
information of the categories about the test records in the process of testing each non-leaf
node.

And its demerits are that it can only process the discrete attribute, and sometimes it is
not the best to process the attribute with lots of values.

As a result of some problems with the ID3 algorithms in the practical application, Quinlan
proposed the C4.5 algorithm [12], strictly speaking, which is just an improved algorithm
of ID3.C4.5 algorithm inherits the advantages of the ID3 algorithm, and improves several
aspects of the ID3 algorithm. C4.5:

It uses information gain ratio to choose an attribute so that it overcomes the weakness

ICCSW’15

90 Automatic Transformation of Raw Clinical Data Into Clean Data

Table 2 Probability of transforming the test data to clean data using different decision tree
algorithm.

Decision Tree Unknown Entry Total Time
(%) (%) (ms)

ID3 4 75 109
C4.5 27 81 109

that the system tends to choose the attribute with more values when using information
gain.
It adds prune in the process of constructing the tree.
It can complete the discretization of the continuous attributes.
It can process the incomplete data [14].

2.3 Experiments and Results
Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine learning
software written in Java, which contains a collection of algorithms for data analysis and
predictive modeling [18]. The algorithm ID3 and C4.5 are also coded in this software, and
the detailed results including the possibility of the prediction will be calculated as well, so it
will be adopted in testing the data.

The raw clinical data in this research is about breast cancer research from the website
[3]. As mentioned in the introduction section, the two-category data will be undertaken in
this experiment. The value of data is similar as the data in the Table 1. It will be divided
into two parts, and one part is as training data set and the other part is as testing data set.
In the testing data set, the data can be found in the training dataset, which is called the
existing data; the other part is called the unknown data, which takes up 26%.

Table 2 shows that the probability of the correct transformation using the algorithm ID3
and C4.5 for the existing data, the unknown data and total. All the existing entries have
been cleaned in the process. Compared with the probability of the correct transformation for
the existing data, the percentage for the unknown data is quite low, which is 4% and 27% of
all the unknown data respectively for ID3 and C4.5. Total results for correct transformation
is 75% and 81% respectively.

All in all, decision tree learning have a good performance for the existing data trans-
formation, but have a low performance on the unknown data [19]. The efficiency of the
transformation mainly depends on the percentage of the existing data in the whole testing
data set.

3 String Similarity Algorithm

3.1 String Similarity Algorithms
In this research, it is necessary to calculate the string similarity of the two strings when the
entry is transformed from the raw data to processable data by the system. String-based
similarity has a long history. Levenshtein proposed the edit distance, which is widely used
for string similarity through calculating the minimum number of insertions, substitutions
and deletions between two strings [8].The Levenshtein distance will be calculated once when
add, delete or substitute have been done once during transformation. It provides a numeric

J. Zhang 91

Table 3 Probability of transforming the test data to clean data using different string similarity
algorithms.

Decision Tree Unknown Entry Total Time
(%) (%) (ms)

C4.5 27 81 109
Levenshtein Distance 58 89 1045
Needleman-Wunsch 73 89 846

Jaro-Winkler distance 73 91 907
N-W + Len 73 93 900

approach for transformation. For example, the Levenshtein distance between ’Yef’ and ’Yes’
is 1, because only one edit should be done, substitution of ’s’ for ’k’.

Needleman and Wunsch [11] extended the model to allow contiguous sequences of mis-
matched characters, or gaps, in the alignment of two strings, and described a general dynamic
programming method for computing edit distance. For example, the score of Needleman and
Wunsch between ’Yef’ and ’Yes’ is 2, since there are two matching letters ’Ye’ between them.

Jaro-Winkler distance find the approximating string matching by means of calculating
the number of matching characters and the number of transpositions. And a prefix scale is
added in this method as well [7]. For example, the score between ’Yef’ and ’Yes’ is 0.82, and
the score between ’Yef’ and ’Tef’ is 0.77. Even though the two group of string both have two
matching letters, the first group have the prefix matching. Hence, ’Yef’ is more similar as
’Yes’ rather than ’Tef’ based on this algorithm.

The Needleman-Wunsch algorithm is used to calculate the longest common substring
(LCS). We can consider the effect of the length (Len) of the string in the N-W algorithm to
improve it. For example,the score between ’Yef’ and ’Yes’ is 0.67, and the score between ’Yef’
and ’Yest’ is 0.57. Even though the two group of string both have two matching letters, the
first group have the shorter string. Hence, ’Yef’ is more similar as ’Yes’ rather than ’Yest’
based on this algorithm.

3.2 Experiments and Results

In this experiment, the training data set and the testing data set in the previous section will
be used again. Because the algorithm C4.5 gets a higher performance and is suitable for the
continuous data, which can be used in the future research, the result of C4.5 will be added
to the result of this experiment for analysis.

Table 3 represents that the same testing elements as previous experiment. For all the
existing entries, Levenshtein distance, Jaro-Winkler distance and improved N-W have the
100% as the same as the C4.5 gets. The Needleman-Wunsch algorithm gets 97%. The string
similarity algorithms get a better results for the unknown data rather than the algorithm
C4.5. The result for Levenshtein distance transforming the unknown is more than 2 times
as the algorithm C4.5. The results for rest algorithm are much higher, which is 73% of
the unknown data. Because of the larger improvements for the unknown data, the string
similarity algorithm have a lot improvements for transforming the raw data to clean over the
C4.5 algorithm.

Overall, the string similarity have a higher performance for the unknown data transform-
ation. However, it is found that the time for running the string similarity algorithm is much
slower than the algorithm C4.5 during the transformation.

ICCSW’15

92 Automatic Transformation of Raw Clinical Data Into Clean Data

Table 4 Probability of correct prediction for different string similarity algorithms combined with
decision tree learning.

Decision Tree Unknown Entry Total Time
(%) (%) (ms)

C4.5 27 81 109
C4.5 + Lev 58 89 342
C4.5 + N-W 65 91 292
C4.5 + J-W 73 93 308

C4.5 + N-W + Len 73 93 305

4 Decision Tree Learning Combined with String Similarity Algorithm

According to the two previous experiments, the algorithms C4.5 have a low performance for
the unknown data transformation but have fast process whilst the string similarity algorithm
has a higher performance for the unknown data but is much slower. Thus, the combination
of the two algorithms is worth exploring based on their features and performance.

The string similarity algorithm Levenshtein distance (Lev), Needleman-Wunsch (N-W),
Jaro-Winkler distance (J-W) and a improved string similarity algorithm based on Needleman-
Wunsch (NW-Len) will be undertaken to process the incorrect prediction in the following
experiment combined with the algorithm C4.5.

This experiment will be undertaken the same training data set and testing data set as
the previous experiment.

Table 4 shows that the probability of correct prediction for different combining algorithms
and includes that for the algorithm C4.5 for comparison. The second row of the table shows
the results of decision tree prediction. The other rows represent the results of each string
similarity algorithms combining with the decision.The result for transforming the unknown
data is the same as them without the combination. The improved NW-Len combined with
the algorithm C4.5 share the highest percentage (73%) with the J-W distance combined
with the algorithm C4.5. And they both get the highest percentage (93%) of the total data
transformation. The result for the N-W algorithm and the Levenshtein distance combined
with the algorithm C4.5 is 91% and 89% respectively, which is higher than the result of the
algorithm C4.5 (81%).

To sum up, the results for transforming the raw clinical data to the processable data
have improved significantly after combining the decision tree learning algorithm with string
similarity algorithms, especially with the Jaro-Winkler distance and the modified Needleman-
Wunsch algorithm to compare with decision tree learning.And the combining algorithm get
much faster than the individual string similarity algorithm.

5 Conclusion and Future Work

This paper attempts to find an approach to reduce the manual operation for tedious and
repeated data transformation work. To sufficiently introduce the performance of the decision
tree learning algorithm combined with the string similarity algorithm, this paper firstly
introduces the decision tree learning algorithm and tests its performance for transformation
from the raw clinical data to clean data. The results represent that it has high performance
for the existing entry but low performance for the unknown data. The testing process is fast.
Secondly, this paper undertakes the string similarity algorithm to test in the same way. The

J. Zhang 93

results demonstrate that it has a higher performance for the unknown data. However, the
process is slower than the decision tree algorithm. Finally, this paper tests the efficiency of
the combining algorithm. The results show that it has the high performance for the existing
data as the algorithm C4.5 and the same performance for the unknown data as the string
similarity algorithms. And the process is slower than the algorithm C4.5 but quite faster
than the string similarity algorithm.

Even though the results demonstrate that the decision tree algorithm combined with
the string similarity algorithm can to some extent, automatically transforming the raw
clinical data into the clean data in order to reduce the manual operation, there is still plenty
of challenge in the further research. Firstly, the time-consuming may be a problem for
a very large data set transformation when the training data set is not rich. This paper
investigates the transformation for two-category data. Secondly, it can be extended to the
more than two category data. Thirdly, once the raw data set has been transformed by
the combining algorithm, the correct transformed the unknown entry can be considered to
update the training data set, and then a new decision tree will be built so that maybe the
next transformation process will be faster. What’s more, the process of transformation is
not completely automated in this paper. There is still a lot space for improving.

References
1 Alan C Acock. Sas, stata, spss: A comparison. alan c. acock. Journal of Marriage and

Family, 67(4):1093–1095, 2005.
2 Cyril N Alberga. String similarity and misspellings. Communications of the ACM,

10(5):302–313, 1967.
3 Clinical. https://www.clinicalstudydatarequest.com/. Accessed: 25 June 2015.
4 Mita K Dalal and Mukesh A Zaveri. Automatic text classification: a technical review.

International Journal of Computer Applications, 28(2):37–40, 2011.
5 Google. https://code.google.com/p/google-refine/. Accessed: 25 June 2015.
6 D Gussfield. Algorithms on strings, trees, and sequences. Computer Science and Compu-

tional Biology (Cambrigde, 1999), 1997.
7 Matthew A Jaro. Advances in record-linkage methodology as applied to matching the 1985

census of tampa, florida. Journal of the American Statistical Association, 84(406):414–420,
1989.

8 Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and re-
versals. Soviet physics doklady, 10(8):707–710, 1966.

9 Ruth Meyer and David Krueger. Minitab guide to statistics. Prentice-Hall, Inc., 1997.
10 Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,

1997.
11 Saul B Needleman and Christian D Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of molecular biology,
48(3):443–453, 1970.

12 J Quinlan. R.(1993) c4. 5: Programs for machine learning, 1993.
13 J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
14 J. Ross Quinlan. Improved use of continuous attributes in c4. 5. Journal of artificial

intelligence research, pages 77–90, 1996.
15 Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current approaches. IEEE

Data Eng. Bull., 23(4):3–13, 2000.
16 Vijayshankar Raman and Joseph M Hellerstein. Potter’s wheel: An interactive data clean-

ing system. In VLDB, volume 1, pages 381–390, 2001.

ICCSW’15

https://www.clinicalstudydatarequest.com/
https://code.google.com/p/google-refine/

94 Automatic Transformation of Raw Clinical Data Into Clean Data

17 Seth Van Hooland, Ruben Verborgh, Max De Wilde, Johannes Hercher, Erik Mannens, and
Rik Van de Walle. Free your metadata: Integrating cultural heritage collections through
google refine reconciliation. Pre-submission paper available on. http://freeyourmetadata.
org/publications/freeyourmetadata. pdf, 2011.

18 Ian H Witten, Eibe Frank, Leonard E Trigg, Mark A Hall, Geoffrey Holmes, and Sally Jo
Cunningham. Weka: Practical machine learning tools and techniques with java implement-
ations, 1999.

19 Jian Zhang, Karen Petrie, and Tingting Yu. Automatic transformation of raw clinical data
into clean data using decision tree learning. LMT, 84(91):0–2344.

	Introduction
	Decision Tree Learning
	Decision Tree Representation
	Decision Tree Learning Algorithm
	Experiments and Results

	String Similarity Algorithm
	String Similarity Algorithms
	Experiments and Results

	Decision Tree Learning Combined with String Similarity Algorithm
	Conclusion and Future Work

