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ORIGINAL RESEARCH

3T MRI Investigation of Cardiac Left
Ventricular Structure and Function in

a UK Population: The Tayside Screening
for the Prevention of Cardiac Events

(TASCFORCE) Study

Stephen J. Gandy, PhD,1,2 Matthew Lambert, MBChB,3 Jill Belch, FRCP,3

Ian Cavin, PhD,2 Elena Crowe, DDR,1 Roberta Littleford, PhD,3

Jennifer A. MacFarlane, PhD,2 Shona Z. Matthew, PhD,3 Patricia Martin, DDR,1

R. Stephen Nicholas, PhD,1,2 Allan Struthers, FRCP,3 Frank Sullivan, FRSE,4,5

Shelley A. Waugh, PhD,2 Richard D. White, FRCR,1,6

Jonathan R. Weir-McCall, FRCR,3 and J. Graeme Houston, MD, FRCR1,3*

Purpose: To scan a volunteer population using 3.0T magnetic resonance imaging (MRI). MRI of the left ventricular (LV)
structure and function in healthy volunteers has been reported extensively at 1.5T.
Materials and Methods: A population of 1528 volunteers was scanned. A standardized approach was taken to acquire
steady-state free precession (SSFP) LV data in the short-axis plane, and images were quantified using commercial soft-
ware. Six observers undertook the segmentation analysis.
Results: Mean values (6standard deviation, SD) were: ejection fraction (EF) 5 69 6 6%, end diastolic volume index
(EDVI) 5 71 6 13 ml/m2, end systolic volume index (ESVI) 5 22 6 7 ml/m2, stroke volume index (SVI) 5 49 6 8 ml/m2,
and LV mass index (LVMI) 5 55 6 12 g/m2. The mean EF was slightly larger for females (69%) than for males (68%), but
all other variables were smaller for females (EDVI 68v77 ml/m2, ESVI 21v25 ml/m2, SVI 46v52 ml/m2, LVMI 49v64 g/m2,
all P < 0.05). The mean LV volume data mostly decreased with each age decade (EDVI males: –2.9 6 1.3 ml/m2,
females: –3.1 6 0.8 ml/m2; ESVI males: –1.3 6 0.7 ml/m2, females: –1.7 6 0.5 ml/m2; SVI males: –1.7 6 0.9 ml/m2,
females: –1.4 6 0.6 ml/m2; LVMI males: –1.6 6 1.1 g/m2, females: –0.2 6 0.6 g/m2) but the mean EF was virtually stable
in males (0.6 6 0.6%) and rose slightly in females (1.2 6 0.5%) with age.
Conclusion: LV reference ranges are provided in this population-based MR study at 3.0T. The variables are similar to
those described at 1.5T, including variations with age and gender. These data may help to support future population-
based MR research studies that involve the use of 3.0T MRI scanners.

J. MAGN. RESON. IMAGING 2016;00:000–000.

The use of cardiac magnetic resonance (MR) for the

assessment of left ventricular (LV) structure and func-

tion is a well-established technique that is used for both

clinical and research investigations. Volunteer “normal

ranges” have been published for data acquired on 1.5T sys-

tems,1–3 with an emphasis on the use of the steady state-

gradient echo sequence since the associated T2/T1 weighting

provides excellent contrast between the myocardium and the

blood pool. Other research groups have extended this work

to acquire MR LV data on larger-scale populations.
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Examples of these include the following studies: Framing-

ham Offspring,4 Dallas Heart,5 MESA,6 AGES Reykjavik,7

German SHIP,8 and Lichfield LARGE Heart.9 Further

large-scale investigations such as the UK Biobank10 are also

in progress. However, to date all population-based cardiac

MR studies have been conducted using 1.5T scanners.

With the increasing use of 3.0T MR scanners for clin-

ical imaging, there is a need to establish equivalent data for

images acquired at this higher field strength.11 Small com-

parison studies of 1.5T vs. 3.0T MR in healthy volunteers

have previously been undertaken.12,13 Recent work from Liu

et al has reported the use of a 3.0T MR system for MR

scanning of a population of healthy African Americans,14

although it is known from previous work that ethnic varia-

tions in LV structure and function do exist,15 so there might

be a need to extend this work to a European setting.

Early MR investigations that used 3.0T machines

tended to recommend the use of spoiled gradient echo

imaging since it was less susceptible to flow-related arti-

facts.16 However, with the development over time of better

shimming techniques, the steady-state sequence has become

the sequence of choice for MR at 3.0T.17

The T1 and T2 relaxation times of tissues are inher-

ently affected by the local magnetic field strength to which

they are exposed, and T1 relaxation times in particular are

elevated at higher field strengths.18 In cardiac MR, since the

process of computer segmentation involves the precise delin-

eation of myocardial boundaries, it therefore follows that

boundary delineation could be perceived differently at 1.5T

and 3.0T due to possible variations in myocardium-blood

contrast-to-noise ratio (CNR).19 Such systematic differences

could be clinically important in cases where particular LV

“cutoff” values are used to determine the future course of

patient treatments; or in longitudinal investigations where

comparisons may involve datasets acquired on machines of

different field strengths. From a clinical perspective, since

LV hypertrophy is an indicator of many underlying cardiac

conditions and can also be a strong independent predictor

for incident cardiovascular events, a precise definition of

population-based ranges is required.20

The objective of this study therefore was to use MR to

examine the LV structure and function of a large UK popu-

lation of volunteers using a standard steady-state gradient

echo sequence on a 3.0T scanner in order to establish popu-

lation range data capable of comparison with similar data

acquired at 1.5T.

Materials and Methods

This MR study was conducted as part of a wider population-based

cardiovascular MR investigation of volunteers asymptomatic of car-

diovascular disease (CVD) (the Tayside Screening for the Preven-

tion of Cardiac Events [TASCFORCE] study). The study was

allocated an International Standard Randomised Control Trial

Number: ISRCTN38976321. Local research ethical committee

(REC) approval for the work was obtained and all volunteers gave

informed consent. A total of 1528 volunteers were included in the

study, which ran from June 2008 until February 2013. Inclusion

criteria were as follows: 1) age �40 years; 2) free from CVD or

other indication for statin therapy as recommended by the Scottish

Intercollegiate Guidelines Network (SIGN) report 97 (www.sign.

ac.uk) published in February 2007; 3) 10-year risk of coronary

heart disease below 20% as predicted by the Adult Treatment Panel

III (ATPIII) algorithm21; and 4) a plasma B type natriuretic pep-

tide (BNP) level greater than the gender specific median. Exclusion

criteria included: i) pregnancy; ii) known primary muscle disease;

iii) known atherosclerotic disease, including unstable angina, previ-

ous myocardial infarction, peripheral arterial disease, amputation,

revascularization, hypertension, heart failure, or cerebrovascular

event; iv) known diabetes; v) active liver disease; vi) other known

illness or contraindication to MR; vii) participation in a clinical

trial; viii) inability to give informed consent; ix) known alcohol

abuse; and x) blood pressure (BP) of greater than 145/95 mmHg.

Each volunteer was grouped into a “decade band” based on

their age at the time of the investigation. The decade bands were

defined by age as follows: 1) the “40s” (40–49 years); 2) the “50s”

(50–59 years); 3) the “60s” (60–69 years); and 4) the “over 70s”

(�70 years).

The MR protocol has been described in detail elsewhere,22 but

in brief imaging was performed in the head-first supine orientation

using a 3T [102x32] Scanner (Magnetom Trio, Siemens, Erlangen,

Germany). A body matrix radiofrequency (RF) coil (six elements) was

used in combination with a spine array (up to 24 elements).

Three plane localizer steady-state gradient echo images of the

heart were initially obtained using a true fast imaging with steady-

state free precession (TrueFISP) sequence, and these were followed

by the acquisition of further localizers in the cardiac two-chamber

(2ch), four-chamber (4ch), and short axis (SA) orientations. Subse-

quently, electrocardiogram (ECG)-gated segmented breath-hold

cinematic (CINE) TrueFISP images were acquired in the LV 4ch

and 2ch orientations, and a stack of SA images were acquired from

the atrio-ventricular ring to the LV apex using 2D ECG-gated

breath-hold segmented CINE TrueFISP sequence with retrospective

gating. The sequence parameters for the short-axis acquisitions

were: TR/TE 5 3.4/1.5 msec, flip angle >508, field of view >360

mm (volunteer dependent), pixel matrix 173 3 256, slice thickness

6 mm and interslice gap 4 mm (slices acquired every 10 mm). Ret-

rospective ECG gating was used, with 25 cardiac phases recon-

structed (25 lines per segment) and two image slices acquired per

breath-hold. Parallel imaging was also implemented (integrated

parallel acquisition technique, iPAT x2), resulting in a scan time of

<15 seconds per breath-hold.

Image Analysis
All datasets were analyzed once by one member of a team of six

medical physics observers (S.G., R.N., J.M., S.W., S.M., and I.C.,

cardiac MR experience ranging from 7 to 12 years). This was per-

formed on a rotational basis in order to ensure (as far as possible)

that each observer was responsible for segmenting an equal number

of datasets. The images were analyzed using Argus (Siemens Multi-

modality Work Platform, VB15 and VB17). Region of interest
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(ROI) contours were placed around endocardial and epicardial LV

borders on all image slices at end-diastole and end-systole that con-

tained 50% or more full-thickness myocardium. Quantitative

measurements of ejection fraction (EF), end-diastolic volume

(EDV), end-systolic volume (ESV), stroke volume (SV), and LV

mass (LVM) (at end-diastole) were derived. Papillary muscles were

included in the LVM if visually indistinguishable from the myocar-

dial wall, but otherwise assigned to the left ventricular blood pool.

As far as possible (within the constraints of the software capability)

the adopted methodology was performed as per the guidance notes

provided by Schulz-Menger et al.23

Statistical Analysis
All original study participants were included in the baseline analy-

sis, as a representative UK population of individuals asymptomatic

of CVD. A subanalysis of the full cohort was also performed in

order to identify those volunteers (“subset cohort”; n 5 782) who,

in addition to being asymptomatic, had more stringent low-risk

factor criteria for future CVD. Participants were assigned to this

subset if they had BP < 140/90 mmHg and no history of smok-

ing,6 together with plasma BNP lower than 2 SDs above the full

cohort gender-specific mean (30.60 pg/ml for men and 53.36 pg/

ml for women).

Normalization of MR LV data to body surface area (BSA)

was performed using the simple formula described by Mosteller.24

Data were presented as mean 6 SD in all cases.

Comparison of the mean values of each LV parameter

between male and female cohorts was performed using a Student’s

t-test, with P < 0.05 indicating significant differences between the

two genders. The association of all LV parameters with age (for

each gender) was evaluated, and a one-way analysis of variance

(ANOVA) (with Tukey post-hoc analysis) was performed (four

samples per gender) in order to identify statistical differences

between the mean values of each of these variables with age.

Regression analysis was also performed to investigate the various

associations between each LV variable and age. From this, a “per

decade” change in each variable was calculated, based on the

assumption that the changes were linear with age. A formal assess-

ment of intra- and interobserver repeatability has not been pre-

sented since this is reported elsewhere.22 However, reasonable

estimates of interobserver variation can be extracted from the data

generated by different segmentation observers because each of the

respective cohorts were age-matched, gender-matched, and normal-

ized to BSA. Comparison of 3T data versus 1.5T data was per-

formed by tabulating the pooled data reported by Kawel-Boehm

et al11 against the data acquired in this study. Data were presented

for both field strengths as a mean 6 SD for all LV variables, and

stratified according to gender. Full data ranges for each LV variable

were also recorded. Differences between the means of each variable

were calculated by simple subtraction in order to estimate whether

the LV variable means varied randomly between 1.5T and 3.0T, or

whether the means were systematically different. All statistical test-

ing was performed using SPSS (IBM, Armonk, NY).

Results

A total of 1515 volunteers were scanned successfully, and a

description of demographic information related to anatomic

size is shown in Table 1. A further n 5 13 volunteers were

also scanned (original study size n 5 1528) but were

excluded from the analysis as a result of either radiographic

TABLE 1. Demographic Information Related to Anatomical Size for All Volunteers in the Study

ABSOLUTE No
Volunteers

Height (m) Weight (kg) BMI
(kg/m2)

BSA
(Mosteller)

BSA
(DuBois)

All 1515 (100%) 1.69 (0.09) 75.04 (14.31) 26.18 (4.23) 1.87 (0.21) 1.85 (0.20)

Males 574 (37.9%) 1.77 (0.07) 83.53 (12.28) 26.52 (3.50) 2.02 (0.17) 2.01 (0.16)

Females 941 (62.1%) 1.64 (0.07) 70.54 (13.00) 26.25 (4.44) 1.79 (0.18) 1.76 (0.16)

Males (40s) 197 (13.0%) 1.79 (0.07) 85.02 (12.65) 26.59 (3.53) 2.05 (0.17) 2.03 (0.16)

Males (50s) 235 (15.5%) 1.77 (0.07) 84.11 (12.13) 26.72 (3.41) 2.03 (0.17) 2.01 (0.15)

Males (60s) 118 (7.7%) 1.76 (0.06) 80.68 (11.61) 26.13 (3.46) 1.98 (0.16) 1.96 (0.15)

Males (�70s) 24 (1.6%) 1.76 (0.06) 79.72 (11.41) 25.95 (4.27) 1.97 (0.15) 1.95 (0.13)

Females (40s) 318 (21.0%) 1.65 (0.07) 72.09 (14.33) 26.48 (4.98) 1.81 (0.19) 1.79 (0.17)

Females (50s) 371 (24.5%) 1.64 (0.07) 70.43 (12.64) 26.22 (4.65) 1.78 (0.17) 1.76 (0.15)

Females (60s) 213 (14.1%) 1.63 (0.06) 66.50 (10.71) 25.05 (3.95) 1.73 (0.15) 1.71 (0.14)

Females (�70s) 39 (2.6%) 1.62 (0.07) 64.61 (9.55) 24.56 (3.55) 1.70 (0.14) 1.69 (0.13)

Data are stratified by gender and age, and other parameters such as mean body mass index (BMI) and mean body surface area (BSA)
are included. The mean BSA was calculated using the formulae described by Mosteller24 (BSA Mosteller) and DuBois-DuBois29 (BSA
DuBois). The values for height, weight, BMI and BSA are represented as means - with standard deviations alongside in parentheses.
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error or significant movement artifacts experienced during

the MR scanning process.

A summary of the results is shown in Table 2. When

the normalized data from all female and male participants

were examined together the mean EF was higher for females

(P < 0.05), but all other variables (EDV, ESV, SV, and

LVM) were higher for males (all P < 0.05).

When the LV variables were subdivided into age

decade categories (40s, 50s, 60s, and �70s) a number of

age-related changes were evident. For males, the mean

EF rose slightly over the first decade studied (11%, P <

0.04) but then remained stable across the remaining age

decades. However, the means of all other variables were

reduced with age (Fig. 1) (40s vs. �70s; EDVI and SVI

P < 0.05).

For females, the mean EF rose marginally with age (a

4.0% increase was noted in the �70 years cohort relative to

the 40–49 years cohort) but the means of all other

TABLE 2. LV Structure and Function Data Acquired on a Cohort of 1515 Volunteers

ABSOLUTE No Volunteers EF (%) EDV (ml) ESV (ml) SV (ml) LVM (g)

All 1515 (100%) 69 6 6 133 6 29 42 6 15 91 6 19 103 6 29

Males 574 (37.9%) 68 6 6 155 6 28 50 6 15 105 6 19 129 6 24

Females 941 (62.1%) 69 6 7 120 6 21 37 6 12 82 6 14 87 6 17

Males (40s) 197 (13.0%) 67 6 6 163 6 27 54 6 13 109 6 20 135 6 27

Males (50s) 235 (15.5%) 68 6 6 153 6 27 49 6 15 104 6 18 128 6 22

Males (60s) 118 (7.7%) 68 6 7 147 6 26 47 6 15 100 6 17 123 6 21

Males (�70s) 24 (1.6%) 68 6 6 143 6 32 47 6 15 97 6 21 122 6 24

Females (40s) 318 (21.0%) 68 6 6 127 6 20 41 6 11 86 6 14 88 6 17

Females (50s) 371 (24.5%) 69 6 7 121 6 21 38 6 12 83 6 14 88 6 17

Females (60s) 213 (14.1%) 71 6 7 110 6 19 33 6 12 78 6 12 84 6 16

Females (�70s) 39 (2.6%) 72 6 6 104 6 18 30 6 10 74 6 12 81 6 15

NORMALISED No
Volunteers

EF
(%)

EDVI
(ml/m2)

ESVI
(ml/m2)

SVI
(ml/m2)

LVMI
(g/m2)

All 1515 (100%) 69 6 6 71 6 13 22 6 7 49 6 8 55 6 12

Males 574 (37.9%) 68 6 6 77 6 13 25 6 7 52 6 9 64 6 10

Females 941 (62.1%) 69 6 7 68 6 11 21 6 7 46 6 7 49 6 8

Males (40s) 197 (13.0%) 67 6 6 80 6 13 26 6 7 53 6 9 66 6 12

Males (50s) 235 (15.5%) 68 6 6 76 6 13 24 6 8 52 6 9 63 6 10

Males (60s) 118 (7.7%) 68 6 7 74 6 13 24 6 8 51 6 9 62 6 10

Males (�70s) 24 (1.6%) 68 6 6 73 6 14 24 6 7 49 6 9 62 6 10

Females (40s) 318 (21.0%) 68 6 6 70 6 10 22 6 6 48 6 7 49 6 8

Females (50s) 371 (24.5%) 69 6 7 68 6 11 21 6 7 47 6 7 49 6 8

Females (60s) 213 (14.1%) 71 6 7 64 6 10 19 6 7 45 6 7 49 6 8

Females (�70s) 39 (2.6%) 72 6 6 61 6 9 18 6 5 43 6 6 48 6 8

The presented data (mean 6 SD) are stratified by gender and also by age decades. Normalization of the absolute values to body sur-
face area was performed using the Mosteller formula. EF 5 ejection fraction, EDV 5 end diastolic volume, ESV 5 end systolic vol-
ume, SV 5 stroke volume, LVM 5 left ventricular mass, EDVI 5 end diastolic volume index, ESVI 5 end systolic volume index,
SVI 5 stroke volume index, LVMI 5 left ventricular mass index. Statistically significant differences were detected for all mean LV
variables between the male (n 5 574) and female (n 5 941) cohorts (P < 0.05).
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volumetric variables were noted to decrease with age (40s

vs. �70s; EDVI, ESVI, SVI P < 0.05). The most stable of

all the variables was found to be the mean LVMI, which

was only reduced by 1 g/m2 in the �70 years cohort relative

to the 40s cohort. This pattern appeared different from that

observed in the male cohort, which demonstrated a more

defined reduction in mean LVMI with age.

The results of regression analysis describing the linear

change of each LV variable per decade of age are highlighted

in Table 3. All variables except for EF were noted to

decrease with age, and the EDVI showed the biggest “per

decade” reduction (–2.9 6 1.3 ml/m2 for males and –3.1

6 0.8 ml/m2 for females). The biggest difference between

the male and female population was noted for LVMI, where

greater “per decade” losses were measured in the male

cohort (–1.6 6 1.1 g/m2) relative to the female cohort,

which remained virtually stable (–0.2 6 0.6 g/m2).

A total of n 5 782 volunteers satisfied the more stringent

low-risk factor inclusion criteria for the subset cohort, and the

resulting data are presented in Appendices 1 (demographics)

and 2 (MR parameters). There were no statistically significant

differences between the means of any of the normalized LV var-

iables when the data from the full cohort and the subset cohort

were compared (P > 0.05 for all LV variables, including all

comparisons when subdivided by gender and age).

The variation in normalized mean LV measurements

between the different segmentation observers is detailed in

Table 4, and illustrated graphically in Fig. 2 for LVM (the

most variable measurement). Although the group of volun-

teers segmented by each observer was different in each case,

the data were stratified by age and gender, and normalized

to BSA in order to make comparisons closely related to the

segmentation technique itself. The consistency of the data

between observers for mean EF data ranged from 66 6 6%

(observer 5) to 71 6 5% (observer 1) for males, and from

68 6 7% (observer 4) to 73 6 5% (observer 1) for females.

These were similar to the mean EF for the full cohort

(Table 2) of 69 6 6%. For the LV mass index, the consis-

tency of the data ranged from 61 6 9 g/m2 (observer 4), to

69 6 11 g/m2 (observer 2) for males, and from 45 6 6 g/

m2 (observer 4) to 55 6 7 g/m2 (observer 2) for females.

These also compare favorably to the mean LV mass index

for the entire cohort (Table 2) of 55 6 12 g/m2.

Finally, a comparison of the 3.0T data with 1.5T data

from elsewhere is presented in table 5. The mean EF was

found to be marginally greater at 3.0T relative to 1.5T, but

for all other variables the means were a little lower at 3.0T.

Discussion

In this study we present data describing MR LV structure

and function in a large cohort of volunteers. The study

methodology is similar to others performed previously.1–3

This work was prepared in response to the specific need for

FIGURE 1: A plot of mean ejection fraction (EF), end-diastolic
volume (EDV), end-systolic volume (ESV), stroke volume (SV),
and left ventricular mass (LVM) showing the change of each
variable with age in males and females for cohorts in the
age ranges 50–59 years (50s), 60–69 years (60s) and over
70 years (�70s), relative to the baseline 40–49 years (40s)
cohort.

Gandy et al.: Left Ventricle, 3T MRI Population Study



3.0T MR data of this type as recently reported by Kawel-

Boehm et al.11 Statistical limitations associated with small

study cohorts have been addressed by extending this work

to include a large asymptomatic population, with full cover-

age across the adult age range to account for remodeling

processes associated with the heart that occur with age.

In this study the means and ranges obtained for LV

structure and function parameters at 3.0T are generally similar

to those reported at 1.5T. The mean EF was marginally

greater at 3.0T relative to 1.5T, but for all other variables the

means were a little lower at 3.0T. The reason for these differ-

ences is not clear but may be related to variations in edge

TABLE 3. Results of Linear Regression Analysis Performed on the Male and Female Cohorts in Order to Derive
“Per Decade” Change for Each of the Measured Indexed LV Variables

Correlation
Coefficient
r (95% CI)

Slope
(95% CI)

y-intercept Per Decade
Change
(95% CI)

Male Age (x-variable)

EF (%) 0.08 0.06 64.66 0.6 (60.6)

EDVI (ml/m2) 20.18 20.29 92.67 22.9 (61.3)

ESVI (ml/m2) 20.14 20.13 31.81 21.3 (60.7)

SVI (ml/m2) 20.15 20.17 60.86 21.7 (60.9)

LVMI (g/m2) 20.13 20.16 72.69 21.6 (61.1)

Female Age (x-variable)

EF (%) 0.15 0.12 62.87 1.2 (60.5)

EDVI (ml/m2) 20.25 20.31 84.45 23.1 (60.8)

ESVI (ml/m2) 20.22 20.17 30.18 21.7 (60.5)

SVI (ml/m2) 20.17 20.14 54.27 21.4 (60.6)

LVMI (g/m2) 20.02 20.02 49.91 20.2 (60.6)

TABLE 4. LV Structure and Function Data (Mean 6 SD) as Derived by Each of the Six Segmentation Observers

No.
Volunteers

Mean
Age (yrs)

EF
(%)

EDVI
(ml/m2)

ESVI
(ml/m2)

SVI
(ml/m2)

LVMI
(g/m2)

Males - Obs 1 102 (6.7%) 55 6 9 71 6 5 74 6 12 22 6 6 52 6 8 64 6 8

Males - Obs 2 106 (7.0%) 54 6 8 68 6 5 74 6 13 24 6 6 50 6 9 69 6 11

Males - Obs 3 95 (6.3%) 53 6 8 68 6 5 79 6 12 25 6 6 54 6 8 63 6 12

Males - Obs 4 90 (5.9%) 56 6 8 67 6 7 79 6 15 27 6 9 53 6 10 61 6 9

Males - Obs 5 70 (4.6%) 55 6 8 66 6 6 78 6 16 26 6 8 52 6 11 65 6 12

Males - Obs 6 111 (7.3%) 54 6 8 67 6 7 76 6 12 26 6 8 51 6 8 62 6 9

Females - Obs 1 164 (10.8%) 54 6 8 73 6 5 64 6 10 17 6 5 46 6 7 49 6 7

Females - Obs 2 145 (9.6%) 55 6 9 70 6 6 66 6 10 20 6 6 46 6 7 55 6 7

Females - Obs 3 154 (10.2%) 55 6 8 68 6 6 70 6 11 22 6 6 47 6 7 48 6 8

Females - Obs 4 161 (10.6%) 54 6 8 69 6 6 69 6 11 22 6 6 48 6 7 45 6 6

Females - Obs 5 180 (11.9%) 54 6 9 68 6 7 70 6 11 23 6 8 47 6 8 51 6 9

Females - Obs 6 137 (9.0%) 55 6 8 68 6 7 65 6 10 21 6 7 44 6 6 45 6 7

EF 5 ejection fraction, EDVI 5 end diastolic volume, ESVI 5 end systolic volume, SVI 5 stroke volume, LVMI 5 left ventricular
mass.
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boundary perception due to changes in the T1 (and T2) relax-

ation times of the blood pool, myocardium, and other sur-

rounding tissue structures. There may also be small

differences in our study cohort demographics in relation to

those reported from elsewhere. The greatest differences were

noted for female volunteers, where the mean EDV and LVM

parameters were 12 ml and 11 g lower, respectively, at 3.0T

when compared to the previous pooled 1.5T data reported by

Kawel-Boehm et al.11 If the individual articles that contribute

to this published range are scrutinized more closely, the best

agreement to our 3.0T mean EDV (120 ml) is found in the

work by Maciera et al,3 who obtained a mean EDV of 126 ml

for their cohort of female volunteers in the 50–59 years age

decade at 1.5T. Similarly, the closest agreement to our mean

LVM (87 g) is reported in the work by Alfakih et al,1 who

obtained a mean LVM of 88.1 g for their cohort of female

volunteers in the 40–65 years age range at 1.5T. In other

words, although some discrepancy exists between the pooled

1.5T data, there are individual contributions that agree quite

closely with our findings at 3.0T.

When our 3.0T data were subdivided into male and

female groups, the mean data for females were significantly

lower than the means for males in all parameters studied,

except for EF. This is expected and consistent with findings

reported elsewhere.2 Alternative subdivision of the data into

age decades (40s, 50s, 60s, and �70s) revealed that mean EF

was virtually stable with age in males but rose a little with

TABLE 5. Comparison of Data Acquired at 1.5T (Taken From Ref. 11) With That Acquired in This Study

LV 1.5T 1.5T 1.5T 3.0T 3.0T 3.0T Difference

Variable Mean SD Range Mean SD Range 1.5T -3.0T

MALES EF (%) 67 5 57–77 68 6 55–80 21

EDV (ml) 160 27 106–214 155 28 100–210 5

ESV (ml) 54 14 26–82 50 15 21–80 4

SV (ml) 108 18 72–144 105 19 67–143 3

LVM (g) 134 21 92–176 129 24 81–178 5

EDVI (ml/m2) 81 12 57–105 77 13 50–103 4

ESVI (ml/m 2) 26 6 14–38 25 7 10–40 1

SVI (ml/m2) 54 6 42–66 52 9 34–70 2

LVMI (g/m 2) 67 9 49–85 64 10 43–85 3

FEMALES EF (%) 67 5 57–77 69 7 56–83 22

EDV (ml) 132 23 86–178 120 21 78–162 12

ESV (ml) 44 11 22–66 37 12 13–61 7

SV (ml) 87 15 57–117 82 14 54–111 5

LVM (g) 98 21 56–140 87 17 54–120 11

EDVI (ml/m2) 76 10 56–96 68 11 46–89 8

ESVI (ml/m 2) 24 5 14–34 21 7 8–34 3

SVI (ml/m2) 52 7 38–66 46 7 32–61 6

LVMI (g/m 2) 61 10 41–81 49 8 33–65 12

Data are presented as the mean, SD, and range (defined as 6 2 SD of the mean). With the exception of EF, the calculated figures at
3.0T were all lower than those previously published at 1.5T and the difference was clearer in the female volunteer cohort.

FIGURE 2: Variation in mean left ventricular mass index (LVMI;
6 SD) between the different observers who participated in the
data analysis. Of note is that observer 2 consistently derived
the largest LVMI values and observer 4 consistently derived
the smallest LVMI values. These data do not represent “true
interobserver variation” since each study cohort was different
for each observer. However, by using the LVMI and stratifying
by gender, the component of the variation due to different
cohort sizes and gender ratios has been minimized.
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increasing age in females. Conversely, the mean LVMI was

virtually stable with age in females but reduced with age in

males. The other mean variables (EDVI, ESVI, and SVI)

were found to reduce with age by varying amounts. These

patterns of change over time are most similar to those

reported by Hudsmith et al2 at 1.5T, where they compared

cohorts of volunteers in groups with age stratification <35

years and >35 years. Similar patterns of change over time are

also presented by Alfakih et al1 and Macieira et al3 at 1.5T.

The normalization of cardiac structure and function

data is a complex area, and many approaches have been

reported. Normalization to height,25 fat-free mass (FFM),26

and weight27 have been proposed, but the method most

commonly employed is normalization to BSA.28 The Mos-

teller index to BSA was chosen for this work since it is rela-

tively simple, widely used, and validated on a wide range of

subject sizes. Other normalization methods such as that pro-

posed by DuBois and DuBois29 are also available, but this

latter study was only validated on very small cohorts and is

considered to be less meaningful at the lower and upper

ranges of height and weight combinations.

In order to maintain optimal consistency, the study

was conducted over a 5-year period using the same scanner

and the same RF coil combinations. No significant down-

time was experienced over the duration of the work and the

only minor change to the system over this period was an

upgrade from software version VB15 to VB17, which did

not noticeably affect the functionality of the MR protocols

and analysis packages used. To this end, the experimental

equipment was considered to remain stable for the duration

of the experiment.

The data were acquired over such a large cohort that we

elected to use multiple observers for the segmentation analy-

sis. Each observer (six in total) was responsible for segmenting

approximately n 5 250 datasets. These data were stratified by

gender and normalized to BSA (using the Mosteller formula)

in order to account for body habitus variations between each

of the cohorts allocated to each of the segmentation observers.

This approach enables the variations in each LV parameter to

be attributable to the segmentation technique, and not be

influenced by the physical size or gender distribution of the

cohort populations. The mean age of the cohorts allocated to

each segmentation observer is also closely matched, which has

ensured further consistency, ie, the segmentation technique

itself is the dominant factor that forms the variation between

observers. Although the segmentation technique was agreed

beforehand and all observers were experienced, some real-

world differences between observers were apparent. The mean

EF was slightly larger (and the ESVI slightly lower) for volun-

teers segmented by observer 1, suggesting that the observer

was heavily excluding papillary muscles at end-systole from

the ESV blood pool volume. Similarly, the range of values for

mean LVMI was variable in places, with observer 4 tending to

generate slightly smaller mean values. While some of this vari-

ation may be due to the fact that different volunteers were

included in each cohort (an accepted limitation of the study

design), the likelihood is that it is mostly down to subtle var-

iations in the segmentation technique between the observers

(similar variability figures are reported in studies by Chuang

et al30 and Suinesiaputra et al31). It was, however, most

encouraging to note that the generated data were generally

very similar between all of the observers.

The use of a 3.0T scanner for this work was proposed

on the basis that the theoretical improvement to the signal-to-

noise ratio might be traded for faster scanning (ie, more LV

SA slices per breath-hold) and therefore faster volunteer

throughput. However, in reality much of the “time saved”

(relative to 1.5T) was required for the process of image opti-

mization, eg, the use of optimized volunteer-specific shim-

ming techniques (eg, “frequency scout”) and targeted shim

regions placed over the area of interest during the examination

in order to eradicate resonant-offset banding and flow-related

artifacts. Although relatively little “time-saving” was achieved,

the comparison with existing 1.5T data should help to pro-

vide support data for future population-based research studies

that may utilize scanners at both field strengths.

Limitations of the study include the fact that the soft-

ware used was not easily able to account for papillary mus-

cle volumes, leading to possible small variation between

observers as to how the papillary structures would in prac-

tice be treated. A further limitation of the study is that no

direct equivalent 1.5T data were available and no spoiled

gradient echo data were acquired for comparative purposes.

The size of the study was such that this was considered pro-

hibitive in terms of time, but similar comparisons are avail-

able in the existing literature for 1.5T data12 and it is likely

that similar trends would be seen at 3.0T. Finally, it is

accepted that the inclusion criteria used to identify certain

risk factors associated with CVD during the recruitment

phase were a little more relaxed than current recommenda-

tions. The decision to select asymptomatic volunteers with a

BNP greater than the gender-specific median was made

with a view to undertaking further MR examinations on the

same volunteer cohort as they become older. However, the

risk of this significantly confounding the results of this

study is minimal: we have knowingly excluded anybody

with clinically apparent CVD in this work, and in addition

to which there were no statistical differences detected within

any of the cardiac MR parameters when only those with a

BNP <2 SD above the gender-specific mean (and therefore

associated with normal limits) were included in the analysis.

In conclusion, we describe LV reference ranges in a

population-based MR study of volunteers asymptomatic of

CVD at 3.0T. The resulting figures are similar to those nor-

mal ranges previously reported at 1.5T, and changes with

age and gender also follow similar patterns. Data acquired
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from the full cohort are very similar to those derived from a

subgroup with lower risk factors for CVD, suggesting that

CVD risk at these levels does not contribute a significant

effect. These baseline data might also enable future monitor-

ing of LV changes over time as/when individuals within the

cohort require future MR examinations.

APPENDIX 1. Demographic information related to anatomical size for a subset of volunteers (n 5 782) with
lower risk factors for CVD, based on 1) BP <140/90 mmHg, 2) nonsmokers, and 3) BNP <2 SD above the original
cohort gender-specific mean.

ABSOLUTE No
Volunteers

Height
(m)

Weight
(kg)

BMI
(kg/m2)

BSA
(Mosteller)

BSA
(DuBois)

All 782 1.68 (0.10) 74.99 (14.30) 26.09 (4.23) 1.87 (0.21) 1.85 (0.20)

Males 299 1.78 (0.07) 83.78 (11.26) 26.47 (3.21) 2.03 (0.16) 2.02 (0.15)

Females 483 1.64 (0.07) 69.30 (13.13) 25.85 (4.74) 1.77 (0.18) 1.75 (0.16)

Males (40s) 118 1.79 (0.07) 85.37 (11.24) 26.60 (3.35) 2.06 (0.15) 2.04 (0.15)

Males (50s) 135 1.77 (0.07) 83.64 (11.51) 26.64 (3.09) 2.02 (0.16) 2.01 (0.16)

Males (60s) 38 1.77 (0.07) 79.45 (10.09) 25.38 (3.12) 1.97 (0.14) 1.96 (0.13)

Males (�70s) 8 1.76 (0.04) 83.08 (8.20) 26.89 (3.01) 2.01 (0.10) 1.99 (0.09)

Females (40s) 176 1.65 (0.06) 70.68 (13.78) 26.14 (4.84) 1.79 (0.19) 1.77 (0.17)

Females (50s) 185 1.64 (0.07) 70.36 (13.74) 26.24 (5.09) 1.78 (0.18) 1.76 (0.16)

Females (60s) 107 1.63 (0.07) 65.90 (10.53) 24.89 (3.90) 1.72 (0.15) 1.71 (0.14)

Females (�70s) 15 1.62 (0.07) 64.43 (9.75) 24.70 (3.89) 1.70 (0.15) 1.68 (0.14)

APPENDIX 2. LV structure and function data acquired in the n 5 782 subset of volunteers. When compared with
the equivalent normalized data acquired from the whole cohort (Table 2), there were no significant differences
between the means of any variable (P > 0.05 for all data, including subcomparisons stratified by age and gender).

ABSOLUTE No Volunteers EF (%) EDV (ml) ESV (ml) SV (ml) LVM (g)

All 782 69 6 6 134 6 29 43 6 14 92 6 19 102 6 28

Males 299 67 6 6 158 6 25 52 6 14 106 6 18 128 6 22

Females 483 70 6 6 119 6 20 37 6 11 83 6 14 86 6 16

Males (40s) 118 66 6 6 165 6 26 56 6 13 109 6 20 133 6 24

Males (50s) 135 68 6 6 154 6 24 49 6 14 104 6 17 126 6 20

Males (60s) 38 68 6 7 153 6 24 50 6 17 103 6 14 123 6 19

Males (�70s) 8 67 6 4 154 6 12 51 6 10 102 6 7 121 6 13

Females (40s) 176 68 6 5 125 6 20 40 6 11 85 6 13 86 6 15

Females (50s) 185 70 6 6 121 6 20 37 6 10 84 6 14 87 6 17

Females (60s) 107 71 6 6 109 6 15 31 6 9 78 6 12 84 6 14

Females (�70s) 15 73 6 5 105 6 21 29 6 9 76 6 13 81 6 14
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