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REVIEW ARTICLE
Chemical ubiquitination for decrypting a cellular code
Mathew Stanley* and Satpal Virdee*1

*MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, U.K.

The modification of proteins with ubiquitin (Ub) is an important
regulator of eukaryotic biology and deleterious perturbation of
this process is widely linked to the onset of various diseases. The
regulatory capacity of the Ub signal is high and, in part, arises
from the capability of Ub to be enzymatically polymerised to
form polyubiquitin (polyUb) chains of eight different linkage
types. These distinct polyUb topologies can then be site-
specifically conjugated to substrate proteins to elicit a number of
cellular outcomes. Therefore, to further elucidate the biological
significance of substrate ubiquitination, methodologies that allow
the production of defined polyUb species, and substrate proteins
that are site-specifically modified with them, are essential to
progress our understanding. Many chemically inspired methods
have recently emerged which fulfil many of the criteria necessary

for achieving deeper insight into Ub biology. With a view to
providing immediate impact in traditional biology research labs,
the aim of this review is to provide an overview of the techniques
that are available for preparing Ub conjugates and polyUb chains
with focus on approaches that use recombinant protein building
blocks. These approaches either produce a native isopeptide, or
analogue thereof, that can be hydrolysable or non-hydrolysable
by deubiquitinases. The most significant biological insights that
have already been garnered using such approaches will also be
summarized.

Key words: atypical, chemical biology, chemoenzymatic, iso-
peptide, ligation, post-translational modification, semisynthesis,
ubiquitin, ubiquitination, ubiquitylation.

INTRODUCTION

Modification of substrate proteins with ubiquitin (Ub) and
polyubiquitin (polyUb) chains of diverse topology is now firmly
established as a crucial regulator of eukaryotic biology [1–3], but
the study of such conjugates remains particularly challenging.
The process of ubiquitination occurs via the concerted action of a
series of enzymes (E1s, E2s and E3s) which results in the transfer
of Ub to the Nε amino group of lysine residues within substrate
proteins, or, to Ub itself in the case of chain formation [1]. Ub
has seven lysine residues (K6, K11, K27, K29, K33, K48 and
K63) and together with the Nα amino group of the initiating
methionine residue (Met1), gives rise to eight potential polyUb
signals [3]. Proteomic efforts over the past decade have revealed
that all eight linkage types exist in cells and their abundance
can be quantified [4–8]. Ub can also form branched, heterotypic,
chains that contain more than one linkage type [9–11]. Ub can also
form heterologous chains with ubiquitin-like proteins (Ubls) such
as small ubiquitin-like modifier (SUMO) and neural precursor
cell expressed, developmentally down-regulated 8 (NEDD8) [12–
15]. Furthermore, thousands of ubiquitinated substrates have been
identified that can be modified at multiple sites. It has therefore
emerged that the versatile topology of polyUb and its attachment
to distinct positions within substrate proteins forms the basis of an
expanding code that regulates a wide array of cellular processes
[3,16,17].

The first evidence polyUb chains were significant was provided
in 1985 when it was shown that polyUb attachment to substrate
proteins accelerates substrate degradation by the proteasome [18].
Four years later it became apparent that the type of Ub linkage is
not selected arbitrarily and exquisite selectivity towards a distinct
lysine residue can be achieved [19]. An enzymatic system was
identified and cloned shortly thereafter that produced K48 chains
[20]. Fortuitously, the system was amenable to in vitro reconstit-
ution and provided a scalable platform for preparing K48-linked
Ub chains. A scalable enzymatic platform was subsequently
developed for the production of K63-linked Ub chains [21].

As a feature of these systems was the ability to prepare large
quantities of K48 and K63 linkages as free, unanchored chains,
this greatly facilitated biochemical study and accelerated our
understanding of the cellular N-terminal intein fragment roles of
these linkage types. It followed that to begin to fully appreciate the
cellular significance of substrate ubiquitination, general methods
that allow the production of substrate proteins that are site-
specifically modified with Ub species of defined topology are
needed. However, platforms for preparing the remaining ‘atypical’
linkages were less obliging and our knowledge of E3 substrates
remains poor to this day [22,23]. Increasing evidence in support of
the cellular importance of these linkages combined with unbiased
proteomic studies revealing ubiquitination sites on thousands of
proteins [4–8,24], placed strong incentive to develop enzyme-
independent methods for protein ubiquitination. Such chemical

Abbreviations: AcH4, hyperacetylated H4; Anl, azidonorleucine; APC/C, anaphase promoting complex/cyclosome; CCHF, Crimean–Congo
haemorrhagic fever virus; CuAAC, copper catalysed azide-alkyne cycloaddition; DLB, dementia with Lewy bodies; DSB, double-strand-break; DTNB,
bis(3-carboxy-4-nitrophenyl) disulphide; DUB, deubiquitinating enzyme; Dvl, Dishevelled; EPL, expressed protein ligation; ExtC, polypeptide C-terminal to
intein; ExtN, polypeptide N-terminal to intein; GAP, GTPase-activating protein; GOPAL, genetically encoded orthogonal protection and activated ligation;
H2A, histone 2A; H2B, histone 2B; H3, histone 3; IntC, C-terminal intein fragment; IntN, N-terminal intein fragment; NCL, native chemical ligation; NEDD8,
neural precursor cell expressed, developmentally down-regulated 8; OTU, ovarian tumour; PCNA, proliferating cell nuclear antigen; PD, Parkinson’s
disease; PML, promyelocytic leukaemia protein; POI, protein/peptide of interest; Pol β, polymerase β; Pol η, polymerase η; polyUb, polyubiquitin; ProcK,
propargyloxycarbonyl-L-lysine; PTS, protein trans-splicing; SUMO, small ubiquitin-like modifier; SUMOH4K12SS, disulfide SUMOylated histone 4 at Lys12;
αSyn, α-synuclein; ThT, thioflavin T; TLS, translesion synthesis; Ub, ubiquitin; UBA1, ubiquitin E1 activating enzyme; Ubl, ubiquitin-like protein; UCH,
ubiquitin C-terminal hydrolase; SANS, small angle neutron scattering; SSA, steady-state anisotropy.
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methods would be expected to have long-term utility as when
the number of lysine acceptor sites throughout the proteome is
considered, systematic identification of a compatible enzymatic
system to site-specifically, and efficiently, ubiquitinate substrates
of interest with defined topology is a formidable challenge.
Fortunately, the chemical biology community have provided a
battery of powerful methodologies over the past decade that has
begun to address this challenge and these have been extensively
reviewed in the chemical biology literature [25–29].

The aim of this review is to provide an overview of the
techniques that are available for preparing Ub conjugates and Ub
chains with particular focus on approaches that use recombinant
protein building blocks rather than those that are reliant on
synthetic peptide synthesis. Arguably, these approaches are more
general and are easier to implement in typical biology research
labs and therefore have the potential to provide immediate impact
to many Ub researchers. These approaches either produce a
native isopeptide, or analogue thereof, that can be hydrolysable
or non-hydrolysable (Figure 1 and Table 1). The most significant
biological insights that have already been garnered using such
approaches will also be summarized.

Over the past 5 years numerous enzymatic systems have been
described that have, in part, addressed the historical absence
of methods for the enzymatic assembly of atypical Ub chains
[30–35] (for a recent review see [36]). However, the enzymatic
assembly reactions described only produce seven of the eight
possible linkage types, and for the production of native K6, K11,
K29 and K33 chains, two-step assembly is usually required (i.e.
E2/E3 assembly followed by deubiquitinating enzyme ‘editing’
[37]). Furthermore, a significant task that cannot be carried out
enzymatically in a general manner is the creation of complex Ub
topologies such as defined heterotypic and heterologous linkages
[22]. Many of the technologies developed thus far can be used
in a modular fashion thereby harnessing the convenience of
enzymatic methods with the generality and site-specificity of
chemical methods, which should prove to be particularly powerful
for studying the effects of substrate ubiquitination.

CUTTING OUT THE MIDDLE MAN

The challenges associated with making defined Ub conjugates
without enzymes are classic chemical problems which have been
largely solved a myriad ways for small molecule synthesis [38].
The first being, how can one selectively modify a particular
occurrence of a chemical group (amino groups) in the presence
of multiple instances of the same chemical group? The second
problem being, how can the poorly reactive carboxylate group,
present at the C-terminus of Ub, be selectively activated or
replaced, to drive a conjugation reaction? The first point can be
addressed by incorporating a lysine surrogate amino acid that
confers inherent chemoselectivity. This can be achieved by the
inclusion of a removable auxiliary appendage on the surrogate,
which directs site-specific formation of a native isopeptide linkage
when mixed with Ub appropriately activated at its C-terminus
(Figure 2).

In some instances C-terminal activation has been solved for
us by Nature as the Ub E1 activating enzyme (UBA1) selectively
activates the C-terminus of Ub by formation of a labile thioester in
an ATP-dependent manner [39,40]. Importantly, this process can
be exploited for the large-scale chemoenzymatic synthesis of Ub
activated at its C-terminus as a small molecule thioester that can
readily undergo chemoselective chemistry [41,42]. Furthermore,
UBA1 can selectively activate the C-terminus of native and non-
hydrolysable polyUb chains allowing, in principle, the selective

functionalization of polyUb species [41,43–45]. Small molecule
protein thioesters of recombinant origin provide the basis of the
extremely powerful semisynthetic strategy known as expressed
protein ligation (EPL) [46]. EPL relies on the recombinant
expression of proteins of interest as C-terminal fusions with
engineered inteins which by virtue of their intrinsic splicing
activity, provides a general route to the preparation of C-terminal
protein thioesters [47]. As selective activation of the C-terminus
provides a powerful means of selective protein functionalization,
intein technology has become the mainstay of many semisynthetic
methodologies [48,49].

EPL is an extension of the native chemical ligation (NCL)
reaction which uses entirely synthetic peptide thioesters that can
undergo chemoselective peptide bond formation with synthetic
peptides bearing N-terminal cysteines [50]. The characteristic
feature of cysteine that ensures chemoselectivity towards
thioesters is the presence of a 1,2-amino thiol moiety (Figure 2A).
However, the 1,2-amino thiol can be derived from reaction
components other than N-terminal Cys containing peptides
which allows the development of strategies for isopeptide bond
formation that will be described later (Figures 2B and 2C).

However, the primary challenge with enzyme-independent
ubiquitination is associated with the incorporation of the unnatural
surrogate amino acid into the protein of interest. Chemical
peptide synthesis grants the ability to incorporate, in principle,
any chemical functionality into a peptide but routine synthesis
is limited to ∼50 amino acids [51]. An optimized protocol
for the total chemical synthesis of Ub has been developed
that enables its unrestricted manipulation but this requires
specialist chemical methodology [42]. Challenges arise with
protein substrates because if a large protein is to be modified, the
synthetic peptide needs to be inserted into the remaining protein
components and then folded. Due to a restricted repertoire of
unnatural functionality that can be incorporated into recombinant
protein at the genetic level, surrogate amino acids that achieve
chemoselectivity but furnish non-native linkages have been
very popular. Moreover, these approaches produce important
reagents in their own right as the non-natural linkage is typically
non-hydrolysable by the enzymes that reverse Ub conjugation,
deubiquitinating enzymes (DUBs) [52] (Figure 1 and Table 1).
This enables distinct experiments to be carried out that could not
be achieved with native conjugates due to enzymatic cleavage of
the isopeptide linkage [45,53].

TRACELESS UBIQUITINATION BY SEMISYNTHESIS

The semisynthesis of K120 ubiquitinated H2B

Histone 2B (H2B) is ubiquitinated at K120 (uH2B) in cells and
this post-translational modification had been associated with the
regulation of gene expression and with increased levels of histone
3 (H3) methylation at position 79 (H3K79) [54–56]. Methylation
was known to be carried out by the methyltransferase Dot1L
but whether uH2B stimulated this activity directly or whether
accessory factors were involved remained unknown [57–59].
Seminal work from the Muir lab demonstrated the enzyme-
independent formation of a native isopeptide between Ub and
a synthetic peptide corresponding to the C-terminal H2B tail that
harboured the K120 ubiquitination site. This was achieved using
the EPL methodology that hitherto had only been used for the
linear semisynthesis of proteins [46,48]. Chemical synthesis of
the H2B peptide enabled the incorporation of an unnatural lysine
surrogate at position K120 with a fragmentable 1,2-amino thiol
moiety attached to the lysine side chain enabling formation of the
branched isopeptide [60]. The unnatural amino acid consisted of

c© 2016 Authors; published by Portland Press Limited
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Table 1 Literature examples of non-native isopeptide linkages incorporated into Ub chains or ubiquitylated proteins and peptides in lieu of the native
isopeptide linkage

Reference to the native isopeptide bond structure allows comparison of the non-native linkages with the atomic connectivity of the native isopeptide linkage. The table colour coding is given as
follows: orange, protein/peptide of interest (POI) present in a reactant or in the non-native linkage; green, Ub (or polyUb) present in a reactant or in the non-native linkage (independent of the POI);
red, small molecule reactant which forms a component of the non-native linkage; black, chemical auxiliary present in a reactant but not in the final conjugate conjugate; blue, blocking functionality
that permits iterative chain assembly. The main reagents for a specific ligation procedure are provided but not all small molecule reagents necessary have been specified. Atom labels, X, denotes the
native amino acid position whereas “X”, denotes a non-native amino acid or mutation introduced at position X (for example, 76 and ‘76’, referring to Gly-76 of Ub). Mutations of the native Ub amino
acid sequence at positions not directly relevant to the isopeptide bond are given in parentheses within the reactant chemical structures.

E1, E2/E3, ATP

POI: Protein/peptide of interest
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POI: PCNA
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lysine with a glycine residue pre-isopeptide linked to the Nε amino
group which served as a surrogate for Gly-76 of Ub (Figure 2B).
The C-terminus of Ub was then selectively activated as a thioester
using intein technology. To ensure production of an entirely native
conjugate, C-terminal thioesterification of Ub missing Gly-76 was
required (Ub1-75-SR; R is typically CH2CH2SO3H). EPL was
carried out between Ub1-75-SR and the synthetic peptide thereby
forming an isopeptide bond. Elegantly, the auxiliary could be
photolytically removed providing a mild and completely traceless
route to ubiquitinated peptides.

Subsequently, it was demonstrated that the synthetic peptide
could be appended to the complementary N-terminal H2B
peptide by extended semisynthetic methods [61]. This allowed
the traceless preparation of full-length uH2B in sufficient
quantities for biochemical analysis. Incorporation of uH2B into
reconstituted nucleosomes allowed unequivocal experiments to be
carried out revealing that ubiquitination of H2B at K120 mediated
direct cross-talk within a nucleosome by directing methylation of

H3K79 by Dot1L [61]. As established protocols for nucleosome
formation begin with denatured histones [62], and Ub is readily
refoldable [63], the synthetic nature of the H2B polypeptide
was of no consequence. Asymmetric dinucleosomes were also
prepared to determine whether internucleosomal methylation
could occur in trans. It was found that asymmetric nucleosomes
were not methylated, suggesting that nucleosomes in vivo that are
methylated at H3K79, but do not carry the Ub modification, were
at one time ubiquitinated and subsequently subjected to DUB
activity.

Limitations with this approach are that multiple ligation steps
are required which is exacerbated with large protein targets
and when the conjugation sites are not close to the substrate
termini. There is also restricted generality because the design
of the conjugate assembly tends to be tailored to a particular
substrate. Furthermore, labs that do not have expertise with
synthetic peptide synthesis might find it challenging to source
the specialist peptide building blocks on the large scales required

c© 2016 Authors; published by Portland Press Limited
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Figure 2 Chemoselective chemistry between protein thioesters and 1,2-amino thiols

(A) A protein thioester can undergo chemoselective amide bond formation with species bearing 1,2-amino thiol functionality. In the simplest embodiment, the 1,2-amino thiol can be cysteamine
(R1 = H), providing a means to linearly append a thiol group to the C-terminus of a protein. (B) A lysine surrogate prepared by preformation of an isopeptide bond between the Nε amino group of
lysine and glycine, and introduction of a fragmentable 1,2-amino thiol moiety on to the glycine N-terminus. The surrogate can undergo EPL with Ub1-75-SR followed by photolytic fragmentation to
form a native isopeptide bond. (C) Introduction of a 1,2-amino thiol moiety by appending a thiol group to the δ-C atom of lysine. EPL followed by desulfurization forms a native isopeptide bond.

for protein semisynthesis. To alleviate the latter point, simplified
approaches were developed, albeit with the introduction of C-
terminal G76A mutation in Ub, that were reapplied to H2B and
extended to histone 2A (H2A) [64,65]. In these contexts the
mutation was shown to be functionally silent. Extending the utility
of these simplified routes, DNA-barcoded nucleosome libraries
(DNL) were constructed which contained distinct combinations
of histone PTMs (acetylation, methylation and ubiquitination)
[66]. Using semi-synthetically prepared PTM carrying histones,
the authors were able to rapidly assemble a collection of 54 histone
PTM modifications upon chemically defined nucleosomes. This
library was then used for carrying out an ultrasensitive and
rapid ChIP-seq based analysis in a platform suitable for profiling
the binding preferences of various nuclear factors towards the
varied histone PTM patterns displayed. Results obtained in many
cases largely recapitulated known literature interactions and as
such acted as a successful proof-of-principle application for the
method.

GENETIC METHODS FOR NATIVE UBIQUITINATION

Genetically directed EPL for isopeptide bond formation

Two almost parallel communications subsequently reported an
alternative lysine surrogate that could undergo EPL to form a
native isopeptide bond [67,68]. In these embodiments, the 1,2-
amino thiol moiety was installed on the lysine side chain by

simply appending a thiol group at the δ (δ-thiolysine) or γ C-
atom (a 1,3-amino thiol that can still undergo NCL [67]) of
the lysine side chain (Figure 2C). Post ligation with full-length
Ub thioester (Ub1-76-SR), the minimal thiol auxiliary could be
removed by mild free-radical desulfurization [69], again yielding
an entirely native isopeptide linkage. However, incorporation
of the unnatural lysine surrogate was still limited to synthetic
peptides.

To unlock the potential of this streamlined chemistry to mediate
ubiquitination of recombinant proteins, efforts were undertaken
to effect the genetic incorporation of δ-thiolysine by amber
codon suppression using an evolved Methanosarcina barkeri
pyrrolysyl-tRNA synthetase/tRNACUA (MbPylRS/tRNACUA) pair
[70]. Genetic code expansion using wild type and evolved
MbPylRS/tRNACUA pairs had already been successfully employed
to incorporate a range of unnatural lysine derivatives into
recombinant proteins by heterologous expression in Escherichia
coli [71]. However, as the requisite directed evolution experiments
involved prolonged incubations in the presence of the amino
acid [72], there were concerns that oxidation and reaction with
cellular metabolites could complicate the selection procedure,
and the similarity between δ-thiolysine and lysine may prevent
selective recognition. To address these points the synthetase was
initially evolved against a stable analogue with an acid-cleavable
protecting group bonded to the Nε amino group. This served
as a recognition element to ensure selective incorporation by an
evolved MbPylRS/tRNACUA pair.
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By a combination of directed evolution and rational design,
a mutant MbPylRS/tRNACUA pair was identified that efficiently
incorporated a designed precursor to δ-thiolysine. Upon cellular
lysis the incorporated precursor fragmented and liberated the
desired 1,2-amino thiol moiety that could undergo EPL with Ub1-
76-SR [70] (Figure 2C).

Using the above procedure, δ-thiolysine was incorporated into
Ub in place of K6 and in the Ubl SUMO2 at position K11.
EPL was efficiently carried out with Ub1-76-SR prepared by
intein technology and the δ-thiol was chemically removed post
ligation by free-radical desulfurization [69]. These procedures
furnished K6-linked diUb and SUMO2 ubiquitinated at position
K11 (Ub-11SUMO2), both entirely of recombinant origin. Circular
dichroism and biochemical assays were used to validate the
physiological integrity of the product [70].

The Ub-11SUMO2 conjugate prepared by the genetically
directed traceless approach subsequently found utility in revealing
unexpected isopeptidase activity of Ub C-terminal hydrolase
(UCH) family DUBs [52]. Arsenic-induced formation of Ub-
11SUMO2 on the promyelocytic leukaemia protein (PML) leads
to resolution of acute promyelocytic leukaemia (APL) [14]. The
physiological DUB that reverses this conjugation is unknown.
A study was carried out to identify DUBs that cleave Ub
linearly fused to the N-terminus of proteins, a product generated
by the action of the E2 conjugating enzyme UBE2W [73–
75]. Surprisingly, UCH family DUBs were found to have
peptidase activity towards linear fusions of Ub with UBE2W and
linearly fused tetra-SUMO chains (Ub-SUMOx4) [76]. This was
unexpected because UCH DUBs are inactive towards polyUb
and it had been proposed that they only cleave small peptide
remnants linked to the Ub C-terminus [77–80]. Importantly,
UCH DUBs have been strongly associated with cancer and
neurodegeneration but their substrate scope is poorly defined.
Steady state kinetic analyses revealed that the specificity constant
of UCH-L3 towards Ub-SUMOx4 was 5.76 × 103 M− 1·s− 1 [73].
Ub-11SUMO2 prepared by the genetically directed method was
tested as a substrate of UCH-L3 and was also cleaved by UCH-
L3 with a specificity constant of 2.08 × 103 M− 1·s− 1. This study
revealed that UCH DUBs not only have the capacity to cleave
Ub from the N-terminus of intact proteins, but can also cleave
Ub isopeptide-linked to intact proteins. This highlighted the
importance of utilizing a diverse array of ubiquitinated substrates
when characterizing DUB activities and the readily available
eight Ub linkages cannot always serve as surrogate substrates
to provide conclusive readouts of DUB activity. The genetically
directed method for traceless ubiquitination of proteins will
be valuable for broadening the toolkit of model ubiquitinated
substrate proteins and thereby accelerate our understanding of
DUB activity determinants.

Limitations with the genetically directed traceless technology
are that a bespoke amino acid is involved that requires a multistep
synthesis [70]. Furthermore, some sites in proteins may not
be compatible with incorporation of the sterically encumbered
amino acid precursor and some sites are simply not amenable
to amber suppression in general. However, efforts in our lab
have streamlined the synthetic procedure and reengineered E.
coli strains should improve incorporation issues [81].

A drawback with NCL/EPL in general are the inherently slow
kinetics of the reaction [82,83]. Reactant concentrations should
approach millimolar concentrations and the reactive groups
should be well exposed. For folded substrate proteins that have
poor solubility, efficient conjugation could thus be challenging.
However, strategies exist that could be used to prepare Ub that
is activated even more so than the thioester typically employed
in EPL. For example, selenoesters undergo NCL/EPL with 1,2-

amino thiol moieties orders of magnitude faster than thioesters
[84]. The use of Ub selenoesters could negate the reduced reaction
rates expected with folded proteins at low concentrations. Also,
to produce an entirely native linkage, a desulfurization step is
required. Therefore, Cys residues present in the substrate could
also be desulfurized to alanine and that might have undesirable
consequences. However, desulfurization may not always be
required as despite the presence of a thiol group on the δ C-
atom of the modified lysine residue, the technology produces a
native isopeptide linkage that is still cleavable by DUBs [85].

Native isopeptide conjugates by Staudinger ligation

An elegant approach recently described in a methods paper
from the Raines laboratory that should complement the above
procedure also allows formation of a native isopeptide between
recombinant proteins [86]. The traceless Staudinder ligation is a
bioorthogonal amide bond-forming reaction between an azide
and a phosphinothioester [87,88]. The extension involves the
incorporation of a lysine surrogate that carries an Nε azido group
(azidonorleucine, Anl) that can be incorporated into recombinant
substrate proteins in bacteria in response to an ATG codon using
a mutant methionyl-tRNA synthetase [89] (Figure 3). In parallel,
Ub carrying a C-terminal phosphinothioester group is prepared
by intein technology. The complementarity of the azide and the
phosphinothioester permits traceless Staudinger ligation thereby
forming an isopeptide bond. Staudinger ligation is compatible
with aqueous buffer systems and near neutral pH so, in principle,
conjugation could also be carried out under entirely native
conditions on folded proteins.

However, the article is merely a conceptual protocol so its
utility remains unknown although the Staudinger ligation has
successfully been used for the linear semisynthesis of proteins
[90,91]. The Staudinger ligation also suffers from relatively slow
kinetics and as such may have limited utility [87]. Any additional
Met residues must also be mutated to an alternative amino acid to
prevent multiple coupling. Furthermore, the phosphinothiol and
the azidonorleucine need to be synthesized as they are not readily
available. It will be interesting to see what future this protocol has
as it certainly has great potential.

Genetically encoded orthogonal protection and activated ligation
(GOPAL)

Another approach for genetically directing chemical ubiquitina-
tion has been described termed genetically encoded orthogonal
protection and activated ligation (GOPAL) [92]. GOPAL uses
a different principle to the methods described thus far. Rather
than the installation of a lysine surrogate that has inherent
chemoselectivity for a C-terminally activated Ub, selectivity
towards a specific lysine Nε amino group is enforced using a
chemical protection and selective deprotection regime (Figure 4).
At the site of ubiquitination, the native MbPylRS/tRNACUA pair
system is used to direct the incorporation of lysine bearing an
acid labile protecting group into Ub. All other instances of the
amino group are then readily protected by chemical labelling
with a protecting group that can be removed with conditions that
are orthogonal to those required for removal of the genetically
installed protecting group. This enables the selective deprotection
at a genetically defined site yielding a Ub species with a single
amine group. In parallel, C-terminally activated Ub1-76-SR is
prepared and the same chemical labelling reaction is used to
protect all instances of the amino group. The two components
are then mixed and in situ silver mediated thioester conversion to
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Figure 3 Traceless Staudinger ligation for isopeptide bond formation

Genetic incorporation of a lysine derivative with Nε azido functionality (Anl) into recombinant protein and synthesis of a Ub C-terminal phosphothioester (via intein technology) generates the mutually
reactive functional ligation handles. Staudinger ligation involves the liberation of nitrogen, an S to N acyl shift and hydrolytic oxidation of phosphorus resulting in the formation of a native isopeptide
bond.

a highly reactive, but amine specific, succinimidyl ester efficiently
acylates the selectively deprotected Nε amino group forming an
isopeptide bond [93]. The protecting groups installed by chemical
labelling are then removed by incubation in an acidic cocktail [94].
The polypeptides are then isolated and folded and diUb can be
purified by ion-exchange chromatography.

This technology enabled the production of atypical K6-linked
and K29-linked diUb although it has subsequently been used
to produce all atypical isopeptide linkages [80,92,95]. Access
to K6-linked diUb enabled the determination of its crystal
structure that was consistent with subsequent NMR studies using
enzymatically prepared material [32]. The asymmetric nature of
the diUb structure enabled iterative modelling of an extended
K6-linked polymer. Intriguingly, this suggested that extended K6
polyUb chains might form helical filamentous structures. Access
to atypical chains also enabled the first comprehensive specificity
profiling of DUBs that had previously only been characterized for
activity against K48- and K63-linked Ub. Indeed, the ovarian
tumour (OTU) family DUB TRABID, implicated with Wnt
signalling, was assumed to be a K63-linkage specific DUB [96].
Profiling against a more comprehensive panel of Ub linkages

revealed that TRABID had significantly higher activity towards
the K29 linkage. Kinetic analyses revealed that TRABID was
in fact 40-times more active towards the K29 linkage relative to
the K63 linkage (kkcat/Km = 1.0 × 105 M− 1·s− 1 compared with
2.5 × 103 M− 1·s− 1), suggesting that the Wnt signalling pathway
may be regulated by atypical K29-linked chains. Subsequent
experiments revealed that TRABID also had high activity towards
K33 linkages [97].

K29-linked diUb synthesized by GOPAL also provided
intriguing insight into the polyUb linkage preference of an OTU
deubiquitinase (vOTU) encoded by Crimean Congo haemorrhagic
fever virus (CCHF) [98]. It was found that vOTU had activity
towards K6, K11, K48 and K63 linkages but was inactive towards
K29 and Met1 linkages. This raised the possibilities that K29 and
Met1 linkages do not play a role in the antiviral response and/or
they may in fact facilitate CCHF replication in infected host cells.

The GOPAL technology has been adopted by other laboratories
and has subsequently undergone evolution [80,95,98–102]. The
protecting groups installed can now be removed by mild
catalytic methods with improved efficiency [103]. GOPAL also
allows the preparation of tetrameric and branched Ub chains
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Figure 4 GOPAL strategy for site-specific isopeptide bond formation as exemplified for a diUb conjugate

Site-specific genetic incorporation of an Nε Boc-protected lysine derivative into Ub (yellow) is followed by global orthogonal protection of the remaining amine functionality with Cbz-protecting
groups, and subsequent acidic deprotection of the Boc-protecting group to generate a free lysine side chain at the genetically programmed site. Parallel production of Ub thioester, Ub1-76-SR (orange)
is followed by global amine Cbz-protection of remaining amine functionality and subsequent silver-mediated aminolysis ligation with the selectively deprotected Ub species (orange) to generate the
native isopeptide bond. The native conjugate is obtained after global deprotection of the remaining Cbz-protecting groups and protein refolding [t -butyloxycarbonyl (Boc), benzyloxycarbonyloxy
(Cbz), N-(hydroxy)succinimide (HOSu)].

and also allows monomer-specific modifications to be made
[95,99]. For example, it was demonstrated that any of the
Ub monomers in a K11-linked chain could be isotopically
labelled in a selective fashion to provide defined signals
when carrying out structural characterization by NMR [103].
This should prove to be particularly valuable for structurally
characterizing the recognition of polyUb chains by DUBs and Ub
receptors.

Recently, the refined GOPAL methodology enabled further
analysis of structure and dynamics of non-canonical Ub
linkage types in solution [104]. The generation of isotopically
labelled Ub dimers enabled generation of population-weighted
conformational ensembles from NMR and small angle neutron
scattering (SANS) data. Though characteristic ensembles were
found for each chain type, a significant degree of overlap
was found between the atypical and K48 or K63 structural
ensembles. In short, similar Ub-dimer arrangements were also
found between K6- and K11-linked diUb (K6Ub2 and K11Ub2)

and between K29- and K33-linked diUb (K29Ub2 and K33Ub2).
Several conformations of K6Ub2, K11Ub2 and K27Ub2 resembled
K48Ub2 bound to the Ub receptor UBA2 and conformations of
K27Ub2, K29Ub2 and K33Ub2 resembled K63Ub2. This led the
authors to propose the idea that redundancy of function is inherent
with polyUb signalling and suggests possible overlap in biological
function [104].

Production of heterologous chains by GOPAL

As GOPAL technology requires extensive chemical manipulation
of the polypeptides, and the produced conjugate must be
compatible with refolding, there were uncertainties over its utility
beyond Ub chains. Excitingly, it was demonstrated that it could
be extended to heterologous Ub-Rub1 chains [100]. Rub1 is the
yeast orthologue of human NEDD8, a Ubl that regulates Cullin
E3 ligase activity and that may also have cullin-independent
functions [105,106]. Despite the occurrence of rubylation of
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Ub and ubiquitination of Rub1 under cellular stress conditions
[12,13], the physiological significance of these modifications and
the potential cross-talk between rubylation and ubiquitination
is not well understood. To begin to generate tools to address
questions towards the biological relevance of Rub1 and Ub cross-
talk, GOPAL was used to prepare heterologous Ub/Ubl dimers of
Rub1 and Ub where Ub was rubylated at K29 (Rub1–29Ub) and
K48 (Rub1–48Ub). Rub1 ubiquitinated at K48 was also prepared
(Ub–48Rub1) [100].

Interaction of the known K48 Ub binding domain UBA2 (from
the proteasomal shuttle protein hHR23a) with Rub1–48Ub and
Ub–48Rub1, but not Rub1–29Ub, was determined by NMR titration
assays. Both heterodimers were shown to be structurally and
functionally indistinguishable from the K48-linked heterodimer,
the native Ub linkage to which UBA2 binds. The authors also
showed that DUBs also had derubylase activity, as USP5 had
high activity towards Rub1/Ub heterodimers. Other DUBs tested
were more selective, exhibiting activity dependent on the position
of the Ub moiety in either the proximal (OTUB1) or distal (UBP6
and USP2) position.

Ubiquitination of non Ub/Ubl substrates with GOPAL

It has also recently been demonstrated that GOPAL can be used to
site-specifically ubiquitinate proteins other than Ub/Ubls [101].
Dishevelled (Dvl) relays Wnt signals from the plasma membrane
to various cytosolic effectors and the signalling activity of Dvl
is governed by its DIX domain [107]. Wnt signalling regulates
animal development and tissue homoeostasis and its dysregulation
can result in cancer [108]. The DIX domain undergoes head
to tail polymerization to assemble signalosomes which are
responsible for relaying the Wnt signals [107]. Using the GOPAL
methodology, recombinant, mono-ubiquitinated Dvl2 DIX was
generated, with the Ub moieties site-specifically installed at
two previously identified ubiquitination sites (K54 and K58)
in human Dvl2 [109,110]. Correct folding was determined by
circular dichroism measurements. This allowed the authors to
establish that ubiquitination of the DIX domain at K54 inhibits
Dvl oligomerization (though dimerization is possible) whereas
oligomerization of the DIX domain ubiquitinated at K58 is
unaffected. A crystal structure of the Dvl2 DIX domain was
determined enabling these observations to be rationalized as
UbK54 points into the DIX/DIX interface, where it was predicted
to sterically impede the interacting DIX monomer, whereas K58
points away from this important interface.

Subsequent DUB profiling of the two respective ubiquitinated
Dvl proteins discovered 28 DUBs (from all major DUB
families) that could hydrolyse the DIX–Ub conjugates, with
over half of those DUBs tested showing preference for Ub-
54Dvl rather than Ub-58Dvl, including DUBs which only had
previously demonstrated activity towards K11 or K63 polyUb
chains. In contrast, Ub-58Dvl could only be hydrolysed by more
indiscriminate DUBs and DUBs implicated with Wnt signalling.
The results further highlight the deficiencies in using only Ub
chains as tools for garnering meaningful insight into DUB
activities.

GOPAL can now be used to prepare all Ub linkages
and tetrameric K11-linked chains have been prepared. Recent
developments, with the exception of K27-linked Ub, enable all
Ub chains to be prepared by enzymatic reconstitution. However,
there are still challenges associated with obtaining native chains
of defined length. Although methods have been described for
controlling the length of enzymatically assembled Ub chains
[103,111], these methods are only compatible with assembly

systems that produce a single linkage type with high fidelity. This
is not the case with the current enzymatic systems for preparing
K6, K11, K29 and K33 linked chains. Methods such as GOPAL
should continue to be invaluable additions to the Ub biologists
toolkit by enabling the production of heterotypic and heterologous
chains, and otherwise inaccessible modified substrates, with the
capability of introducing monomer-specific modifications with
high precision.

NON-NATIVE UBIQUITINATION

Disulfide-directed ubiquitination and SUMOylation of histones

Protein engineering based on the humble disulfide bond has
provided a platform for of an extremely powerful means to
prepare Ub and Ubl conjugates. The heroic efforts involved in the
described semisynthesis of uH2B restricted the generality of the
procedure [61]. However, once the native conjugate was in hand
it served as a reference standard to validate structural analogues
prepared using simpler and more general approaches.

Parallel reports described an extremely versatile strategy for
site-specifically ubiquitinating recombinant proteins under native
conditions [112,113]. The caveats being that it produced a redox
sensitive disulfide linkage that was slightly bulkier and longer
than the native isopeptide (Figure 1 and Table 1). The substrate
also could not contain additional cysteine residues as these would
potentially undergo modification. To carry out this procedure
the surrogate lysine residue was a cysteine residue introduced
simply by mutagenesis. Full-length Ub thioester (Ub1-76-SR)
was then prepared by intein technology. Ub1-76-SR was then
subjected to an EPL-like reaction with the minimal 1,2-amino
thiol species, cysteamine (Figure 2A). This procedure produced
Ub bearing a thiol group that was amide-linked to its C-terminus
(Ub-SH). Ub-SH could then be disulfide linked to the introduced
Cys residue but to enhance the propensity of Ub-SH to undergo
chemistry, it was ‘spring-loaded’ by the formation of a mixed
disulfide with a low pKa small molecule thiol. This was achieved
by facile incubation of Ub-SH with bis(5-nitro-2-pyridyl)
disulfide (DTNP) [112] or the related compound, bis(3-carboxy-
4-nitrophenyl) disulfide (DTNB) [113], more commonly known
as Ellman’s reagent. Of note, DTNB offers improved aqueous
solubility and, conveniently, disulfide formation can be monitored
colorimetrically. Disulfide formation between activated Ub-SH
and the cysteine-containing substrate was extremely rapid and
compatible with folded proteins in physiological buffer at modest
micromolar concentrations.

This method enabled the disulfide-directed ubiquitination of
H2B at K120 (uH2BSS) and unlike the previous work, the
procedure to produce uH2BSS was expedient and could be
carried out on intact recombinant histones under non-denaturing
conditions, without the need for protracted semisynthetic
techniques [112]. Histones were particularly amenable to
this approach as only histone H3 (H3B) contains a single
cysteine residue that can be mutated without consequence.
Reconstituted nucleosomes containing uH2BSS stimulated Dot1L
methyltransferase activity towards H3K79 to a similar extent
as nucleosomes containing native isopeptide-linked uH2B. This
result demonstrated that the easily implementable disulfide-
directed ubiquitination strategy could have broad utility for
studying the effects of protein ubiquitination in general.
Importantly, the facile and general nature of the approach
enabled the production of a panel of H2B species Ub-modified
at various lysine positions proximal to K120 (K108, K116,
K125), including a K22 site on a histone 2A (H2A). Strikingly,
modification of K125 on H2B and K22 on H2A both stimulated
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Dot1L methyltransferase activity to a similar extent (∼85%) as
uH2BSS.

The conjugate uH2BSS was also used to monitor the effects
of H2B ubiquitination on higher-order chromatin compaction
[114]. Extended nucleosomal arrays, representative of chromatin
fibres, were prepared containing uH2BSS or unmodified H2B and
effects on compaction were determined by sedimentation velocity
experiments. The presence of uH2BSS was found to significantly
decrease the degree of chromatin compaction to a similar extent to
that observed with histone 4 (H4) acetylation [115]. Biochemical
accessibility of the nucleosomal array was also determined by
measuring Dot1L mediated H3K79 methylation and it was found
that ubiquitination of H2B also stimulated methylation in the
context of a chromatin fibre.

To obtain higher resolution information about chromatin fibre
conformation, a homo-FRET assay was established that enabled
monitoring of fluorescence emission steady-state anisotropy
(SSA) of fluorescently labelled nucleosomal arrays. Decrease in
the monitored SSA signal signified a decrease in internucleosomal
distances and as such, chromatin fibre compaction. Nucleosomal
arrays containing fluorescently labelled uH2Bss, hyperacetylated
H4 (AcH4) or both modifications, were used to study the
effects and potential interplay between the two histone PTMs.
In comparison with unmodified H2B, distinct profiles were
obtained for uH2Bss and AcH4, both of which demonstrated
reduced levels of compaction. This appears to relate to potentially
different mechanisms of array compaction elicited by the
distinct PTMs. The effects of chromatin compaction upon
nucleosomal arrays containing uH2Bss were shown to be Ub-
specific rather than a result of generic steric bulk effects. The
disulfide connectivity of the Ub modification enabled facile
redox-induced ‘deubiquitination’ of uH2Bss resulting in SSA
profiles corresponding to fully compacted nucleosomal arrays.
The SSA profiles for mixed uH2Bss/AcH4 modified nucleosomal
arrays were indistinguishable from AcH4-only. In this case,
deubiquitination did not lead to an SSA profile indicative of
fibre compaction but remained unaltered, indicating that the PTM
effects upon chromatin fibre compaction are non-additive and that
AcH4 is dominant over uH2Bss.

Recent follow up studies explored the significance of distinct
patches on the Ub surface by carrying out alanine scanning
[116]. This study required a high-throughput approach for the
preparation of site-specifically ubiquitinated nucleosomes. To
address this, the protocol was streamlined such that nucleosomes
were reconstituted first with cysteine mutant histone and were
subsequently modified with ‘spring-loaded’ Ub-SH in their
intact form. The stoichiometry of modification was compromised
with this approach but was relatively consistent resulting in
acceptably efficient (50–70%) modification. Importantly, control
experiments revealed that the presence of unreacted cysteine
mutant histone, ‘spring-loaded’ Ub-SH or the small molecule thiol
byproduct of the disulfide-directed ubiquitination reaction, did not
interfere with Dot1L methyltransferase activity. This provided
an efficient way to screen intact nucleosomes containing 13 Ub
patch mutations for their ability to stimulate Dot1L-mediated
methylation of K3K79.

Contrary to the archetypal role of the Ile44/Leu8 patch in
Ub on mediating biochemical processes, alanine mutagenesis
at this position resulted in comparable levels of Dot1L activity
to control sample [116]. The study mapped the C-terminal
region of Ub consisting of residues 71–74 (LRLR) as being
important for activity with L71 and L73 being the critical
determinants. A second region consisting of residues 37–
39 (PPD) also demonstrated reduced activity. Interestingly,
these two patches were in close spatial proximity indicating

that methyltransferase activity on chromatin is dependent
on a functional hotspot at the Ub C-terminus. A similar
requirement for methyltransferase activity was observed with the
methyltransferase Set1 that methylates H3 at position K4, also
in an uH2B dependent manner [117]. Interestingly, nucleosomes
modified with the LRLR alanine mutant Ub underwent uH2B-
dependent chromatin fibre compaction similar to wild type Ub.
This illustrated that Ub molecule mediates chromatin regulation
through multifunctionality.

Subsequently, other research labs have pursued the disulfide-
directed strategy to ubiquitinate other histone proteins. As an
example, a simplification of the disulfide strategy that simply
uses a Ub G76C mutation (that further increases structural
perturbation) was used to gain rapid access to ubiquitinated
histone 2A (H2A) [118] which allowed investigation and
corroboration of complementary experiments into the role of H2A
ubiquitination in recruitment of 53BP1 to DNA double-strand-
break (DSB) sites located near chromatin.

The extension of the disulfide-directed strategy to other
Ubl-proteins has also been demonstrated. Through the use of
similar chromatin compaction and oligomerization experiments
described earlier [114], the generation of homogenous, site-
specifically SUMOylated histone 4 at Lys12 (SUMOH4K12SS)
provided the first insights into the structural effects of H4
SUMOylation upon incorporation into nucleosomal arrays.
Namely that SUMOylation at this position inhibits nucleosome
array folding and oligomerization. The study revealed that the
mechanism by which SUMO modification stimulates inhibitory
activity upon chromatin compaction is different from the
mechanism of chromatin compaction displayed by H4 acetylation
[119].

Disulfide-directed ubiquitination of PCNA

A parallel study based on the first disulfide-directed strategy
further highlighted its generality and utility [113]. During DNA
replication minor lesions that have failed to be repaired need
to be tolerated to prevent unnecessary cell death. Proliferating
cell nuclear antigen (PCNA) is a trimeric ring-shaped protein
complex that encircles the DNA duplex and overlooks the status
of the replication fork [120]. Genetic studies had suggested that
when a bulky DNA lesion is encountered, translesion synthesis
(TLS) is initiated by mono-ubiquitination of PCNA at K164. This
results in the recruitment of the TLS polymerase η (Pol η) that
has increased substrate tolerance at the expense of fidelity of
DNA replication. An error-free mechanism known as template
switching can also occur and this is believed to be triggered
by K63-linked polyubiquitination of K164 by an unknown
mechanism [120]. PCNA can also be modified with SUMO at
K127 and K164 which prevents recombination during S-phase
[121,122].

At the time, natively ubiquitinated PCNA could be carried out
by in vitro enzyme reconstitution but was extremely inefficient
thus preventing biochemical experimentation [113]. The initial
study showed that ubiquitinated PCNA could be readily prepared
in large quantities. As the disulfide-directed ubiquitination
reaction takes place on native protein, one can be confident
that protein folding is not compromised. In vitro polymerase
exchange assays revealed that disulfide Ub modified PCNA at
K164 (Ub-164PCNASS) recruited Pol η similarly to wild type Ub-
PCNA, thereby highlighting the validity of the disulfide strategy
in this context. Similarly to the initial study of uH2B, attachment
of the Ub to multiple sites also mediated polymerase exchange
illustrating plasticity in the mechanism of Pol η recruitment by
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Ub-PCNA. This also explained why highly perturbed analogues
of ubiquitinated PCNA were biochemically functional [123].
Attachment of the Ubl SUMO at position K127 or K164 was
found to have no effect on template switching thereby confirming
that this was indeed a Ub-dependent process.

Disulfide-directed polyubiquitination of PCNA

The versatility of the disulfide-directed approach also enabled
the preparation and study of PCNA modified with K63-linked
polyUb [124]. The strategy involved combining the disulfide-
directed approach with chemoenzymatic production of K63-
linked diubiquitin building blocks. This granted the ability to
attach polyUb chains of defined length. Although K63-linked
chains can be readily prepared by enzyme reconstitution of
E1 activating enzyme and the K63-specific heterodimeric E2
complex UBE2N–UBE2V1 [21], a mixture of chain lengths are
produced. Early work from the Pickart lab showed that enzymatic
assembly of K63-linked (and K48-linked) polyUb chains can be
controlled by supplying two Ub species where one is blocked at
the C-terminus and one is blocked at K63 by cysteine mutation
[111]. This enforces the production of a single product which in
this case is a K63-linked diubiquitin molecule. The C-terminus
can be readily ‘deblocked’ with a UCH family DUB, and the
C63 site is ‘deblocked’ by its conversion to a pseudo lysine
residue by alkylation with ethyleneimine [63,111]. In the PCNA
study, the C-terminus of Ub was blocked by virtue of the thiol
appendage present in Ub-SH. The C63 site in the second Ub was
photocaged by alkylation with p-nitrobenzyl bromide producing
a K63 diubiquitin that was linked via a native isopeptide and
outfitted with a C-terminal thiol group (PCK63Ub-63Ub-SH). The
cysteine could then be conveniently decaged by photo irradiation
with low energy UV light allowing iterative extension of the
K63 chain by additional rounds of disulfide-directed reaction
with ‘spring-loaded’ Ub-SH or ‘spring loaded’ PCK63Ub-63Ub-SH
producing triUb or tetraUb modified PCNA, respectively.

In vitro assays were carried out allowing the role of polyUb
chain length on DNA lesion tolerance to be systematically
measured by observing Pol η read-through of an abasic site in
a DNA template. As expected, mono Ub modification of PCNA
promoted read-through whereas di-, tri- and tetra-modified PCNA
demonstrated significantly, and progressively, reduced read-
through of the DNA lesion. However, affinity of PCNA towards
Pol η increased as the chains became longer. As only a single
Ub binding domain is present in Pol η, enhanced affinity was
assumed to be a consequence of avidity effects. As read-through
was reduced with longer chain lengths it was proposed that longer
chains sequester and trap Pol η in a non-productive configuration
thereby inhibiting TLS. Strikingly, polymerase switching assays
revealed that extended K63 chains reduced the capacity to switch
from Pol δ to the error-prone TLS polymerase Pol η. These results
provided novel insight into how polyubiquitination of PCNA at
K164 promotes an error-free mode of replication.

Disulfide-directed ubiquitination of α-synuclein

Another example of the utility of the disulfide-directed approach
was a study of multiple ubiquitinated forms of the intrinsically
disordered protein α-synuclein (αSyn) [125]. The presence of
protein aggregates in neurons, known as Lewy Bodies, rich
in αSyn are the hallmark of a number of neurodegenerative
conditions termed synucleinopathies [126]. These conditions
include Parkinson’s disease (PD) and dementia with Lewy
bodies (DLB). Lewy bodies also contain ubiquitinated forms

of αSyn and multiple ubiquitination sites have been identified.
However, whether ubiquitination at distinct sites contributed to
pathogenicity was unknown. The conjugate αSyn ubiquitinated
at K6 had been prepared previously by a challenging three
component semisynthetic procedure requiring chemical peptide
synthesis [127]. This study revealed that ubiquitination at K6
of αSyn stabilizes the monomeric form of the protein and thus
prevents its oligomerization and fibrillogenesis in vitro. However,
the facile nature of the disulfide-directed ubiquitination strategy
allowed a more comprehensive study as all nine of the known
modified forms could be readily prepared and used to establish
whether ubiquitination at a particular site, or sites, gave rise to
fibrillogenesis and hence pathogenicity [125]. A potentially costly
caveat with this approach however, is that without natively linked
reference samples, erroneous conclusions can be drawn due to
the non-native linkage behaving unexpectedly. Nevertheless, all
nine identified ubiquitination sites were mutated to cysteine (K6C,
K10C, K12C, K21C, K23C, K32C, K34C, K46C and K96C) in
recombinant αSyn and were then ubiquitinated by reaction with
activated Ub-SH. The conjugates could be prepared in milligram
quantities.

Propensity for each of the ubiquitinated forms to aggregate
was assayed by CD, thioflavin T (ThT) fluorescence and TEM.
Results from the three independent assays were largely consistent
with one another and revealed that protein modified at K10C
and K23C readily formed fibrils and behaved like unmodified
αSyn. However, modification at C6, C12 and C21 could inhibit
fibril formation, and modification at C32, C34, C43 and C96
strongly inhibited fibril formation. These data suggested that
modification of αSyn within regions that make up the core of
the fibril fibre (residues 22 − 36 to 90 − 98) [128–130], prevent
fibrillogenesis, whereas modification sites near the N-terminus
(K6, K10 and K12) do not. Additionally, ubiquitination sites
near fibril boundaries have fibre forming properties (e.g. K23)
or can promote oligomerization (K96). It was suggested that the
inhibitory effect of these modifications could be a result of Ub
sterically interfering with significant aggregation intermediates
such as long-range interactions with the N-terminus that are
proximal to the ubiquitination sites. Masking of N-terminal lysine
charges that may be involved in interactions with the highly
negatively charged C-terminus or ions in solution were also
proposed as potential inhibitory mechanisms.

Follow up studies by the same lab using the disulfide-
directed strategy determined the contribution of the same
nine ubiquitination sites on αSyn towards propensity for
proteasomal turnover [131]. The authors concluded that site-
specific modification of αSyn with Ub supports varied levels of
αSyn degradation with N-terminal modifications, K12, K6, K21
leading to the most pronounced levels of degradation compared
with other positions investigated.

More recently, SUMOylated αSyn was prepared using both
SUMO1 and SUMO3 [132]. In cell culture, αSyn SUMOylation
has been mapped to K96 and K102 and Lewy bodies are
immunoreactive to SUMO1 [133–135]. SUMOylation at K102 of
αSyn inhibited aggregation more significantly than SUMOylation
at K96 and modification with SUMO1 was more inhibitory than
SUMO3. The identification of isoform-dependent and SUMO
site-specific effects upon αSyn aggregation are in contrast with
ubiquitination of αSyn, where K102 is not a physiological site
[125]. This study has now identified SUMO1ylation at K102 as
an attractive target for therapeutic intervention towards tackling
synucleinopathies [132].

Interestingly, the recent use of the disulfide-directed strategy
to generate Ub dimers allowed a kinetic analysis of enzyme-
independent ubiquitination and demonstrated a correlation with
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linkage abundance in yeast [136]. This suggested that intrinsically
accessible lysines within Ub were selected for prevalent cellular
functions. Disulfide methods have also been use to show that
site-selective mono-ubiqutination of the GTPase, Ras decreases
protein sensitivity to GTPase-activating protein (GAP)-mediated
hydrolysis [137].

Ubiquitin chains using thiolene chemistry

Another approach for preparing Ub conjugates uses thiolene
chemistry [138,139]. This approach is conceptually similar
to the disulfide-directed strategy with distinct advantages and
disadvantages. In this approach, a cysteine residue is also
introduced as the lysine surrogate but it is reacted with Ub
bearing a terminal vinyl (ene) group. The latter can be readily
prepared using intein technology. In short, the Ub is activated
at the C-terminus as a thioester which can then undergo a
simple aminolysis reaction with an excess of small molecule
amine [140]. To append the ene functionality allylamine was
employed [138]. The functionalized Ub can also be prepared
using a complementary approach utilizing a UCH family DUB,
via a transamidation reaction with allylamine [141]. Since 1905
it has been appreciated that substituted enes can undergo free-
radical addition with thiols forming a thioether, a reaction known
as thiol-ene chemistry [142]. Thiol-ene chemistry has seen a
resurgence over the past years as it meets many of the requirements
of desirable ‘click’ reactions (i.e. processes that work under
operationally simple, oxygen- and water-tolerant conditions, and
generate products in high yields with minimal requirements for
product purification), but mainly in the area of polymer chemistry.
Importantly, the reaction produces the anti-Markovnikov product
(i.e. the thiol sulfur adds to the terminal C atom of the ene
forming a linear rather than a branched linkage) that gives a
good impression of the native lysine side chain. However, like the
disulfide linkage, it is slightly longer than the native isopeptide but
less bulky (Figure 1). A significant advantage over the disulfide
linkage is that it is redox stable. However, it has not been
demonstrated that thiol-ene coupling can be used to ubiquitinate
proteins other than Ub itself and as such has only been used to
prepare Ub chains.

Recent biophysical analysis of thiol-ene produced Ub chains
compared with native conjugates was carried out in order to
ascertain the extent to which thiol-ene-generated Ub conjugates
successfully mimic the native isopeptide bond. For the most part,
high similarity between native and the non-native surrogates was
found (by SAXS analysis) but DUB activity assays indicated that
for OTUB1, the non-native surrogate was an unsuitable mimic of
the native linkage [143].

NON-HYDROLYSABLE Ub CONJUGATES

The archetypal click reaction involving the formation of a triazole
linkage between azides and alkynes, known as copper catalysed
azide-alkyne cycloaddition (CuAAC), has found huge utility in
protein research [144,145]. Furthermore, numerous methods for
incorporating the requisite azide and alkyne reactive handles into
recombinant proteins have been developed [146–148], and these
methods have been adopted in innovative ways to prepare Ub
conjugates that cannot be hydrolysed by DUBs.

The first example where CuAAC was utilized for preparing a
Ub/Ubl conjugate was between alkyne-functionalized SUMO2
prepared by semisynthetic methods and a synthetic peptide
corresponding to a region known to contain a SUMOylation site
in PML [149]. Subsequent work used a different strategy that

enabled incorporation of both the alkyne and azide functionality
at the genetic level allowing the production of recombinantly
derived diubiquitins conjugated at all seven linkage sites
[150] (Figure 1). Azide functionality was introduced adjacent
to the C-terminus of a distal Ub using selective pressure
incorporation [148]. The proximal Ub was prepared by amber
codon suppression using the native MbPylRS/tRNACUA pair that
granted the incorporation of the alkyne-functionalized unnatural
amino acid, propargyloxycarbonyl-L-lysine (ProcK) [146].
Folded Ub molecules were purified and coupled by CuAAC.
Follow up studies demonstrated the ability to ubiquitinate
substrate proteins and was exemplified by the modification
of PCNA at K164 and polymerase β (Pol β) at position 61
[151,152].

Evolution of this technology allowed its deployment for the
production of polymeric Ub chains [45] and detailed experimental
procedures have been reported [153]. The evolved procedure
involves incorporation of azide and alkyne functionality into the
same Ub molecule by carrying out amber codon suppression
and selective pressure incorporation simultaneously. This yielded
0.5–2.0 mg of bifunctional protein per litre of culture medium.
CuAAC could then be carried out resulting in the production
of non-hydrolysable Ub polymers linked at K11, K27, K29 or
K48 positions [45]. Importantly, the K48 polymeric species was
recognized by a K48-specific antibody whereas the K11, K27 and
K29 linkages were not. Polymers linked at other sites were not
prepared nor was a K11-specific antibody tested against the panel
[154]. Excitingly though, it was demonstrated that in a one-pot
reaction, a recombinant substrate protein containing ProcK could
be site-specifically modified with non-hydrolysable polymeric Ub
chains. The exemplar substrate in this case being Pol β. This
technique should have broad utility for assessing the role of Ub
modification in protein function and assigning DUBs to substrates
for example.

The authors exploited the non-hydrolysable nature of the
linkages and used them as inhibitors of DUBs in Xenopus laevis
extracts. The process under investigation was the degradation of
the cell cycle regulator Cyclin B in response to Ca2 + activation
of the multi-subunit anaphase promoting complex/cyclosome
(APC/C) E3 ligase. It is known that Cyclin B is typically
modified with K11-linked Ub chains that ensure its cell cycle-
dependent degradation [155]. Xenopus extracts were treated with
K11, K27 and K29 non-hydrolysable chains prior to APC/C
activation. Interestingly, K11-linked polymers potently inhibited
Cyclin B degradation, presumably by binding to the proteasome
and inhibiting its activity, whereas K27- and K29-linked polymers
did not. It was proposed that K27- and K29-linked chains do
not serve as proteasome targeting signals as they would also be
expected to inhibit Cyclin B degradation if this was the case.
Assessment of DNA morphology and spindle formation indicated
that the meiotic state of the cell extracts had been perturbed by
the addition of the non-hydrolysable K11 chains as evident from
extension of the meiotic state owing to the inability to degrade
Cyclin B. In comparison, buffer-treated extracts displayed typical
interphasic nuclear morphology confirming exit from meiosis
associated with Cyclin B degradation.

An alternative to this approach also involves amber codon
suppression but with a different azide-functionalized unnatural
amino acid [156,157]. Mutant substrate protein was prepared
bearing azidophenylalanine in place of the acceptor lysine residue
using an evolved Methanocoldococcus jaanaschii tyrosyl-tRNA
synthetase/tRNACUA pair [147] (Figure 1). Complementary alkyne
functionality was chemically appended to the C-terminus of Ub
or a Ubl using the semisynthetic aminolysis strategy mentioned
above but with propargylamine in place of allylamine. Using
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this approach the effect of SUMO2 automodification of the
SUMO E2 conjugating enzyme UBE2I (also known as Ubc9)
was studied. UBE2I is the cognate E2 partner for the SUMO
E1 activating enzyme SAE (SAE1–SAE2). It was reported that
autoSUMOylation of UBE2I on K14 with SUMO1 modulated
its substrate specificity and attenuated its activity towards its E3-
independent substrate RanGAP1 but increased it for a different
substrate, Sp100 [158]. However, it was not known whether the
SUMO2 isoform, that has 44 % sequence identity with SUMO1,
could also be regulated in this manner. The triazole approach was
used to prepare homogenously SUMO2 modified UBE2I that
was then used in direct biochemical experiments. Indeed, it was
found that SUMO2 conjugated to UBE2I via a triazole linkage
had reduced activity towards RanGAP and activity towards Sp100
was increased [156].

Caveat emptor

As with all methods that produce a non-hydrolysable linkage,
caution must be exercised when interpreting biological data
using these tools. It is known that certain DUBs make intricate
contacts with the linkage [37,159]. Furthermore, Ub recognition
modules termed Ub-binding domains can exist as a series of
repeating Ub-binding units which can only be complemented
when a distinct Ub linkage is presented, as the repeating nature
of the binding domain serves as a molecular ‘ruler’, and avidity-
driven binding is only demonstrated when the correct linkage
is present [160]. Any perturbation to the isopeptide linkage
could disrupt this finely tuned mode of recognition such that
the conjugate no longer measures up. Quantum mechanical and
molecular mechanical models of native K48-linked diubiquitin
and the triazole-linked analogue have revealed that the structures
are largely similar although the triazole-linked conjugate has
reduced flexibility [161]. Whether other linkage types can be
acceptably recapitulated via triazole linkages remains to be
determined. Comparative biophysical and structural analyses of
native and triazole-linked conjugates would also help determine
the utility of these chain types for exploratory biological
experiments.

ENZYME-INDEPENDENT UBIQUITINATION IN CELLULAR SYSTEMS

In vitro methods for ubiquitinating proteins offer precise control
over the substrate, the site, the extent and the topology of the
modification. Being able to afford this level of precision in
the context of live cells, with spatiotemporal control, would
enable exciting new possibilities for cell biology experimentation
and address limitations with existing strategies. For example,
E3s responsible for substrate modification are often unknown
and even when they are known, the constitutive nature of
gene disruption and the low temporal resolution of RNA
knockdown and complementation approaches can result in
lethality or adaptive responses that alter the (patho)physiology
under investigation [162,163]. Novel experimental possibilities
granted by the ability to trigger ubiquitination in cells with high
temporal resolution would also enable the study of ubiquitination
at various sites and their effect on substrate localization in real-
time could be inferred. Furthermore, Ub regulated cell signalling
networks could be dissected by obviating the requirement
to activate upstream signalling components. The kinetics of
ubiquitination-dependent downstream events could also be
quantified.

Towards this goal protein trans-splicing (PTS) has been
harnessed to install a Ub modification on H2B in cellular

nucleosomes in purified nuclei (in nucleo) [164]. PTS is
an extension of intein activity whereby the intein is split,
either artificially or naturally, into N-terminal (IntN) and C-
terminal (IntC) fragments that form a functional intein upon
complementation [47]. Inteins are analogous to RNA introns as
they catalyse their own excision from a polypeptide sequence
with concomitant ligation of the N-terminal polypeptide (ExtN)
with the C-terminal polypeptide (ExtC) via a native peptide bond.
In the example with H2B, the ExtN fragment corresponded to
the N-terminal bulk of the H2B protein but was devoid of the
C-terminal nine residue tail that harbours the K120 ubiquitination
site (H2BdeltaC) (Figure 5). This was exogenously expressed in
HEK293T cells as an IntN fusion (H2B�C-IntN). Various split
intein systems were explored and that from the cyanobacterium
Anabaena variabilis (Ava) gave the highest levels of H2B�C-
IntN fusion protein (∼10% total H2B) and the majority was
found to localize to chromatin. The ExtC fragment corresponded
to the nine residue C-terminal H2B tail with a Ub pre-attached at
K120 via an isopeptide bond. This was fused to the C-terminus
of IntC (IntC-�N_H2B-UbK120) (Figure 5). A lysine surrogate
was incorporated at position K120 of the synthetic peptide that
enabled EPL with Ub1-75-SR. Post-ligation, desulfurization of
the thiol auxiliary introduced a C-terminal Ub G76A mutation, as
discussed earlier, that also rendered the isopeptide more resistant
to DUB isopeptidase activity.

In a proof of concept experiment, intact nuclei from cells
expressing H2B�C-IntN were isolated [164]. As the nuclear
membrane is permeable to protein cargoes, the IntC-�N_H2B-
UbK120 species could be delivered to the nucleosomes. Western
blotting confirmed production of semisynthetic uH2B by the PTS
mechanism. To confirm if the semisynthetic uH2B was functional,
methylation levels of K3K79 were probed by immunoblotting.
A 2-fold increase in H3K79 methylation was observed when
all PTS components were present confirming in nucleo,
enzyme-independent production of biochemically functional
uH2B.

Other methods for protein ubiquitination

Although this review has endeavoured to provide an informative
overview on recombinant protein-based methods for protein
ubiquitination that have garnered significant biological insight,
there exists in the literature other examples of structurally
divergent non-native isopeptide conjugates. Though having not
formed a significant part of this review, certain examples are worth
highlighting for their potential in generating insight into the Ub
system, historic or otherwise. For example, the use of chemical
methods that exploit the nucleophilicity of thiol functional groups
present in cysteine amino acid side chains have been widely
used to generate non-hydrolysable Ub conjugates of entirely
recombinant origin. Cross-linking agents such as dichloroacetone
[53,165–167] or Michael acceptors based on dibromo-maleimides
and dibromo-pyridazinediones [168] have furnished Ub dimers of
varied linkage identity (Table 1). Methods that enable formation
of non-hydrolysable linkages with synthetic peptides have also
been reported [169,170]. In many cases, the experimental utility
of such conjugates has been largely superseded by EPL and
GOPAL methods to make native isopeptide bonds, however, the
non-hydrolysable nature of specific isopeptide mimetics make
them attractive and powerful tools for investigating DUB activity
and biology upon Ub chains or ubiquitinated substrates. Also, not
an area highlighted herein but recently reviewed elsewhere [171],
the generation of diUb conjugates as activity-based probes for
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Figure 5 PTS methodology for installing Ub modifications in cellular systems

The complementation of engineered IntN and IntC fusion proteins undergo splicing to generate a native peptide bond. (A) Generation of the exogenous IntC–ExtC fusion (IntC-�N_H2B-UbK120)
harbouring an isopeptide-linked Ub was assembled by EPL between Ub1-75-SR and a lysine surrogate (at position K120) of the synthetic H2B 117-125 fragment. (B) The installation of a Ub
modification upon H2B in cellular nucleosomes following nuclear extraction. Extracted nuclei containing exogenously expressed H2B�C-IntN, that has been incorporated into chromatin, are
permeable to protein cargoes. Delivery of, IntC-�N_H2B-UbK120 enables PTS to generate ubiquitinated H2B, eliciting a downstream biological response that can be measured.

profiling the specificity and activity of DUBs has been reported
[172–176].

SUMMARY

There are now several divergent approaches for chemically
ubiquitinating substrates via a native isopeptide bond that pave
the way for a new line of investigation into this fundamental
post-translational modification. Methods reliant on synthetic
peptide synthesis and those using recombinant technologies,
complement one another as no single strategy can satisfactorily
address all protein conjugates under investigation. Strategies
for preparing non-hydrolysable conjugates allow distinct and
insightful experiments to be carried out that cannot be achieved
with their native counterparts. However, these conjugates should
have high structural similarity with the native isopeptide bond
such that they engage precisely the same biochemical processes.

The field has unquestionably reached a level of maturity
whereby greater biological understanding of the Ub system can
be obtained through use of the technologies described herein.
Significant contributions have been made that provide great

opportunity for those actively engaged in Ub research to carry
out more direct and insightful experiments. However, despite
the obvious progress there is no single strategy that can address
all of the necessary requirements for rigorous and conclusive
interrogation of the Ub system. Where appropriate and possible,
the use of native conjugates should be utilized in order to ensure
robust and conclusive data and that interpretation of experimental
results are not obscured by deviation from non-physiological
parameters.

Ub chains and ubiquitinated conjugates prepared via enzyme-
independent methods are proven and established tools for
studying ubiquitination. However, the functional relevance of
ubiquitinated proteins produced by the methods described herein
compared with those found in vivo is a valid query. For all of
the examples described above that produced native isopeptide
linkages, but required artificial protein folding, the structural
integrity of the material was exhaustively validated by structural
and biochemical analysis. Invariably, the examples that form an
unnatural linkage are performed on natively folded material under
non-denaturing conditions. Despite being confident that protein
fold is not compromised in these latter cases, a potential caveat is
that the isopeptide linkage displays compromised isostery with
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the native linkage. The significance and consequence of this
methodological compromise is very dependent on the biological
question being asked and should be considered on a case-by-case
basis.

The next logical progression would be to extend the concept
of enzyme-independent ubiquitination into live cells, thereby
enabling the spatio and temporal aspects of ubiquitination to be
studied with an unprecedented level of precision.
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H., Zweckstetter, M., Kügler, S., Melchior, F. et al. (2011) Sumoylation inhibits
alpha-synuclein aggregation and toxicity. J. Cell. Biol. 194, 49–60 CrossRef PubMed

135 Kim, Y.M., Jang, W.H., Quezado, M.M., Oh, Y., Chung, K.C., Junn, E. and Mouradian,
M.M. (2011) Proteasome inhibition induces α-synuclein SUMOylation and aggregate
formation. J. Neurol. Sci. 307, 157–161 CrossRef PubMed

c© 2016 Authors; published by Portland Press Limited

http://dx.doi.org/10.1021/ja029752e
http://www.ncbi.nlm.nih.gov/pubmed/12720426
http://dx.doi.org/10.1021/ja073204p
http://www.ncbi.nlm.nih.gov/pubmed/17713909
http://dx.doi.org/10.1038/nchembio.426
http://www.ncbi.nlm.nih.gov/pubmed/20802491
http://dx.doi.org/10.1002/(SICI)1097-0282(1999)51:4elax protect $elax <$247::AID-BIP2elax protect $elax >$3.0.CO;2-W
http://www.ncbi.nlm.nih.gov/pubmed/10618594
http://dx.doi.org/10.1021/ja00277a031
http://dx.doi.org/10.1021/ja207220g
http://www.ncbi.nlm.nih.gov/pubmed/21962295
http://dx.doi.org/10.1101/gad.463208
http://www.ncbi.nlm.nih.gov/pubmed/18281465
http://dx.doi.org/10.1038/nsmb.2169
http://dx.doi.org/10.1073/pnas.1015287108
http://www.ncbi.nlm.nih.gov/pubmed/21266548
http://dx.doi.org/10.1016/j.bmc.2013.02.052
http://www.ncbi.nlm.nih.gov/pubmed/23557636
http://dx.doi.org/10.1002/anie.201402642
http://www.ncbi.nlm.nih.gov/pubmed/24764216
http://dx.doi.org/10.1038/ncomms7718
http://www.ncbi.nlm.nih.gov/pubmed/25907794
http://dx.doi.org/10.1039/c4cc03721a
http://www.ncbi.nlm.nih.gov/pubmed/24915456
http://dx.doi.org/10.1039/c0cc04868b
http://dx.doi.org/10.1039/C5CP04601G
http://www.ncbi.nlm.nih.gov/pubmed/26422168
http://dx.doi.org/10.1016/j.sbi.2011.01.003
http://www.ncbi.nlm.nih.gov/pubmed/21288713
http://dx.doi.org/10.1038/nrm3919
http://dx.doi.org/10.1038/nsmb1247
http://www.ncbi.nlm.nih.gov/pubmed/17529994
http://dx.doi.org/10.1016/j.cell.2012.05.012
http://www.ncbi.nlm.nih.gov/pubmed/22682243
http://www.ncbi.nlm.nih.gov/pubmed/24643799
http://dx.doi.org/10.1016/j.molcel.2010.01.035
http://www.ncbi.nlm.nih.gov/pubmed/20227366
http://dx.doi.org/10.1074/jbc.272.38.23712
http://www.ncbi.nlm.nih.gov/pubmed/9295315
http://dx.doi.org/10.1038/nchembio.315
http://www.ncbi.nlm.nih.gov/pubmed/20208522
http://dx.doi.org/10.1038/nchembio.316
http://www.ncbi.nlm.nih.gov/pubmed/20208521
http://dx.doi.org/10.1038/nchembio.501
http://www.ncbi.nlm.nih.gov/pubmed/21196936
http://dx.doi.org/10.1126/science.1124000
http://www.ncbi.nlm.nih.gov/pubmed/16469925
http://dx.doi.org/10.1073/pnas.1504483112
http://www.ncbi.nlm.nih.gov/pubmed/26240340
http://dx.doi.org/10.1016/j.cell.2009.02.027
http://www.ncbi.nlm.nih.gov/pubmed/19410543
http://dx.doi.org/10.1038/nature12318
http://www.ncbi.nlm.nih.gov/pubmed/23760478
http://dx.doi.org/10.1074/jbc.M114.591644
http://www.ncbi.nlm.nih.gov/pubmed/25294883
http://dx.doi.org/10.1038/nature07963
http://www.ncbi.nlm.nih.gov/pubmed/19325626
http://dx.doi.org/10.1016/j.molcel.2005.06.001
http://www.ncbi.nlm.nih.gov/pubmed/15989970
http://www.ncbi.nlm.nih.gov/pubmed/15931174
http://dx.doi.org/10.1093/nar/gkl1102
http://www.ncbi.nlm.nih.gov/pubmed/17251197
http://dx.doi.org/10.1021/cb500133k
http://www.ncbi.nlm.nih.gov/pubmed/24918305
http://dx.doi.org/10.1021/ja300094r
http://www.ncbi.nlm.nih.gov/pubmed/22404520
http://dx.doi.org/10.1016/j.conb.2015.07.007
http://www.ncbi.nlm.nih.gov/pubmed/26282834
http://dx.doi.org/10.1002/anie.201005546
http://www.ncbi.nlm.nih.gov/pubmed/21154793
http://dx.doi.org/10.1074/jbc.M700368200
http://www.ncbi.nlm.nih.gov/pubmed/17573347
http://dx.doi.org/10.1073/pnas.0506109102
http://www.ncbi.nlm.nih.gov/pubmed/16247008
http://dx.doi.org/10.1073/pnas.0712179105
http://www.ncbi.nlm.nih.gov/pubmed/18550842
http://dx.doi.org/10.1016/j.chembiol.2013.09.009
http://www.ncbi.nlm.nih.gov/pubmed/24210006
http://dx.doi.org/10.1021/bi501512m
http://www.ncbi.nlm.nih.gov/pubmed/25607946
http://dx.doi.org/10.1074/jbc.M510127200
http://www.ncbi.nlm.nih.gov/pubmed/16464864
http://dx.doi.org/10.1083/jcb.201010117
http://www.ncbi.nlm.nih.gov/pubmed/21746851
http://dx.doi.org/10.1016/j.jns.2011.04.015
http://www.ncbi.nlm.nih.gov/pubmed/21641618


1314 M. Stanley and S. Virdee

136 Andersen, K.A., Martin, L.J., Prince, J.M. and Raines, R.T. (2015) Intrinsic site-selectivity
of ubiquitin dimer formation. Protein Sci. 24, 182–189 CrossRef PubMed

137 Baker, R., Lewis, S.M., Sasaki, A.T., Wilkerson, E.M., Locasale, J.W., Cantley, L.C.,
Kuhlman, B., Dohlman, H.G. and Campbell, S.L. (2013) Site-specific
monoubiquitination activates Ras by impeding GTPase-activating protein function. Nat.
Struct. Mol. Biol. 20, 46–52 CrossRef PubMed

138 Valkevich, E.M., Guenette, R.G., Sanchez, N.A., Chen, Y.-C., Ge, Y. and Strieter, E.R.
(2012) Forging isopeptide bonds using thiol-ene chemistry: site-specific coupling of
ubiquitin molecules for studying the activity of isopeptidases. J. Am. Chem. Soc. 134,
6916–6919 CrossRef PubMed

139 Trang, V.H., Valkevich, E.M., Minami, S., Chen, Y.-C., Ge, Y. and Strieter, E.R. (2012)
Nonenzymatic polymerization of ubiquitin: single-step synthesis and isolation of
discrete ubiquitin oligomers. Angew. Chem. Int. Ed. Engl. 51, 13085–13088
CrossRef PubMed

140 Borodovsky, A., Kessler, B.M., Casagrande, R., Overkleeft, H.S., Wilkinson, K.D. and
Ploegh, H.L. (2001) A novel active site-directed probe specific for deubiquitylating
enzymes reveals proteasome association of USP14. EMBO J. 20, 5187–5196
CrossRef PubMed

141 Trang, V.H., Rodgers, M.L., Boyle, K.J., Hoskins, A.A. and Strieter, E.R. (2014)
Chemoenzymatic synthesis of bifunctional polyubiquitin substrates for monitoring
ubiquitin chain remodeling. Chembiochem 15, 1563–1568
CrossRef PubMed

142 Hoyle, C.E. and Bowman, C.N. (2010) Thiol-ene click chemistry. Angew. Chem. Int. Ed.
Engl. 49, 1540–1573 CrossRef PubMed

143 Pham, G.H., Rana, A.S.J.B., Korkmaz, E.N., Trang, V.H., Cui, Q. and Strieter, E.R. (2016)
Comparison of native and non-native ubiquitin oligomers reveals analogous structures
and reactivities. Protein Sci. 25, 456–471 CrossRef PubMed

144 Thirumurugan, P., Matosiuk, D. and Jozwiak, K. (2013) Click chemistry for drug
development and diverse chemical-biology applications. Chem. Rev. 113, 4905–4979
CrossRef PubMed

145 Kolb, H.C., Finn, M.G. and Sharpless, K.B. (2001) Click chemistry: diverse chemical
function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021
CrossRef PubMed

146 Nguyen, D.P., Lusic, H., Neumann, H., Kapadnis, P.B., Deiters, A. and Chin, J.W. (2009)
Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins
via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry. J. Am. Chem. Soc.
131, 8720–8721 CrossRef PubMed

147 Chin, J.W., Santoro, S.W., Martin, A.B., King, D.S., Wang, L. and Schultz, P.G. (2002)
Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J. Am.
Chem. Soc. 124, 9026–9027 CrossRef PubMed

148 Kiick, K.L., Saxon, E., Tirrell, D.A. and Bertozzi, C.R. (2002) Incorporation of azides into
recombinant proteins for chemoselective modification by the Staudinger ligation. Proc.
Natl. Acad. Sci. U.S.A. 99, 19–24 CrossRef PubMed

149 Weikart, N.D. and Mootz, H.D. (2010) Generation of site-specific and enzymatically
stable conjugates of recombinant proteins with ubiquitin-like modifiers by the
Cu(I)-catalyzed azide-alkyne cycloaddition. Chembiochem 11, 774–777
CrossRef PubMed

150 Eger, S., Scheffner, M., Marx, A. and Rubini, M. (2010) Synthesis of defined ubiquitin
dimers. J. Am. Chem. Soc. 132, 16337–16339 CrossRef PubMed
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