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ABSTRACT

The segmentation of 2D images of 3D non-rigid objects into
their constituent parts can pose challenging problems, such as
missing and occluded parts, weak constraints over the spatial
arrangement of parts, and variance in form and appearance.
These problems have been addressed via segmentation meth-
ods that incorporate spatial context information, such as the
auto-context technique. In this paper, we address for the first
time the problem of segmenting multiple organs in images of
pig offal, a challenging image analysis task that constitutes
an essential step towards automated screening at abattoir for
signs of sub-clinical diseases. We applied auto-context seg-
mentation to a large data set of images and explored the effect
of complementing conventional context features with integral
features suited to our application.

Index Terms— Animal models and imaging, Internal or-
gans, Image segmentation

1. INTRODUCTION

The segmentation of 2D images of 3D non-rigid objects into
their multiple constituent parts can pose some challenging
problems. In many biological and medical imaging settings,
the spatial configuration of parts provides weak geometric
constraints; parts vary in form and appearance, sometimes
pathologically; parts can be missing; and viewpoint can be
poorly controlled, leading to varied inter-part occlusions.
Such problems have been addressed via the incorporation of
spatial context data into segmentation techniques, by com-
bining models such as conditional random fields (CRFs) [4]
with inference algorithms like belief propagation (BP) [14].
Disadvantages common to many such techniques that aim to
capture context information include their reliance on fixed
spatial configurations with confined neighbourhood relations
and the complexity of training procedures. The auto-context
(AC) technique proposed by Tu and Bai [12] aims to address
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these limitations, by simultaneously integrating local image
appearance and far-reaching context in an iterative algorithm
that is easy to implement. An attractive feature of AC is that
a prior “atlas” (obtained for example by averaging rigidly
registered label maps created by experts) can be used as a
source of contextual data for the initial iteration.

Visual inspection of carcasses is an important means of
ensuring the safety and quality of meat products, enabling the
detection of pathological conditions and public health haz-
ards, as well as the provision of useful feedback to pig pro-
ducers. However, manual inspection puts a strain on meat in-
spector resources, effectively limiting detailed screening for
the purposes of health schemes, and exposes the inspection
process to subjective assessment. This motivates the need for
the development of automated meat inspection systems and is
consistent with the wishes of the European Standards Agency
to minimize handling of carcasses at abattoir.

Existing literature on multi-organ segmentation tech-
niques focuses extensively on computer tomography (CT)
images of human abdominal organs, reporting on a wide vari-
ety of techniques ranging from hierarchical atlases combined
with statistical shape models [9] to level set optimisation
[3]. Applications to meat production deal mostly with es-
timation of proportions of muscle, fat and bone from CT
images, both in vivo and in carcasses, sometimes involving
the segmentation of internal organs without distinguishing
them individually [8, 2]. Work dealing with localisation of
individual organs from photography or video is scarce and
includes the segmentation of poultry spleen from surrounding
viscera in the work of Tao et al. [11], as a stage in the auto-
mated detection of splenomegaly from ultraviolet and colour
images. More recently, automatic recognition of ovine organs
has been proposed by Stommel et al. [10] as a component of
an envisaged robotic sorting system for sheep offal.

In this paper we introduce the demanding task of segment-
ing individual organs (namely the heart, lungs, diaphragm and
liver) in colour images of non-digestive tract offal of pigs.
This task constitutes an essential stage in the development of
a wider system aimed at on-site screening for signs of sub-
clinical diseases, which are characteristically organ-specific.
Images of pig offal acquired at abattoir pose challenging prob-
lems, such as partially or totally missing organs, occlusions,
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Fig. 1. (a) Example image of pig “pluck” and (b) correspond-
ing manual annotation. (c) 91-point context “stencil” overlaid
on example image.

severe deformation and lack of control over viewpoint. We
employed AC based segmentation and report results on a large
data set. In our experiments, we also investigated the effect of
complementing conventional context features with two types
of integral features designed for our application.

2. DATA AND PROBLEM

The data used in this work consisted of colour images of non-
digestive tract offal obtained at an abattoir for pigs. We used
350 colour images of pig offal acquired with a single-lens
reflex digital camera mounted on a tripod and LED light-
ing. Each image had a resolution of 3646×1256 pixels and
showed a group of connected organs known as the “pluck”,
mainly comprising the heart, lungs, diaphragm and liver.
These four organs were manually annotated on each image,
with a fifth class label being used to mark the irrelevant por-
tion of the pluck located above the heart and lungs (usually
consisting of the trachea and tongue). Fig. 1(a) and 1(b)
show an example of pluck and the corresponding manual
annotation, where the upper portion, heart, lungs, diaphragm
and liver are annotated in yellow, blue, green, cyan and red,
respectively. More examples are shown in Fig. 2.

In this work it was assumed that the pluck had already
been successfully segmented from the background (a rela-
tively trivial task that can be accomplished based on hue and
focus information). Thus, the problem at hand was that of
classifying only foreground pixels into each of the five organ
classes.

Algorithm 1 Training of auto-context model.
Given training set S = {(Yj , Xj), j = 1..m}, obtain prior at-
las Q(0) from label maps Yj and use it to initialise probability
maps P (0)

j . For iteration t = 1..T :

1. Build a training set for the iteration,
S(t) = {(yji, (Xj(Ni), P

(t−1)
j (i)), j = 1..m, i =

1..n)}

2. Train a classifier on image features extracted from
Xj(Ni) and context features extracted from P

(t−1)
j (i).

3. Use the classifier to obtain new probability maps
P

(t)
j (i).

3. METHODS

3.1. Auto-context

The auto-context (AC) method, proposed by Tu and Bai [12],
is an iterative pixel labelling technique. Label probabilities
output at a given iteration are used as a source of contextual
data that are concatenated with local image features, to form
the input vector for the classifier used in the following itera-
tion. For convenience, in the formal description that follows,
we adopted a notation similar to that used by Tu and Bai.

Let S be a set of m training images Xj together with their
label maps Yj , i.e. S = {(Yj , Xj), j = 1..m}. At each
iteration t we want to train a classifier that outputs the prob-
ability distribution p

(t)
ji over labels yji ∈ {1..K} for pixel i

in image Xj , given image patch Xj(Ni) and label probabil-
ity map P

(t−1)
j (i). In Xj(Ni), Ni denotes all pixels in the

patch, and P
(t−1)
j (i) is map P

(t−1)
j output for image Xj at

previous iteration t − 1, but now centred on pixel i. In sum-
mary, we want a classifier that outputs the posterior probabil-
ity p

(t)
ji (yji|Xj(Ni), P

(t−1)
j (i)).

The AC training procedure yields a sequence of classi-
fiers, one per iteration, and is formally described in Algorithm
1. Before the first iteration, all probability maps P

(0)
j can

be initialised using a prior atlas Q(0), obtained by averaging
all the training label maps Yj , i.e. Q(0) = (

∑
j Yj)/m. On

each iteration, given pixel i in image Xj , the feature vector
input to the classifier is composed of local image features ex-
tracted from patch Xj(Ni) concatenated with context features
extracted from re-centered label probability map P

(t−1)
j (i).

Context features are typically the probabilities extracted from
selected locations on map P

(t−1)
j (i), including the central lo-

cation that corresponds to pixel i itself.
Each of our AC models consisted of a series of multi-

layer perceptrons (MLPs), trained using Algorithm 1. Each
MLP had one layer of hidden units with logistic activation
and a softmax output layer. MLP training was based on a



regularised error er = e + A
∑

w2, obtained from cross-
entropy error e and a regularisation term A

∑
w2 to penalise

large weights w [1]. In our experiments, the number of hid-
den units was set to 20 (a value chosen with the help of 3-fold
cross-validation) and A was set to 0.1. The NETLAB library
[7] was used.

3.2. Local appearance features

We used local appearance features based on a multi-level
Haar wavelet decomposition [6]. Each image was converted
to the CIELUV colour space [5]. For each component (L*, u*
and v*), the approximation wavelet coefficients, as well as the
horizontal, vertical and diagonal squared detail coefficients,
were obtained at three levels of decomposition. This resulted
in 36 feature maps (3 image components × 4 wavelet coeffi-
cients × 3 levels of decomposition), all rescaled to match the
original dimensions of the image.

We then sub-sampled feature maps and label maps by a
factor of 20 along both dimensions, which yielded maps with
180×60 points. This was found to provide sufficient detail
for our purposes. As explained in Section 2, we were con-
cerned only with points within the foreground region of each
image (i.e. within the pluck). On average, approximately
5,700 points per image belonged to the foreground. For each
point we had a vector of 36 feature values and a class label.

3.3. Context features

For each point on a sub-sampled image, context features were
extracted for the point itself and for 90 surrounding points, as
defined by a sparse star-shaped “stencil” illustrated in Fig.
1(c). On the first iteration of AC, context features for each
image point consisted of the 5 class probabilities provided by
the prior atlas on all 91 context points. On the second and
subsequent iterations, context features consisted of the 5 class
probabilities output by the classifier on the previous iteration,
again on all 91 context points. This yielded 91×5=455 con-
text features per image point.

Optionally, we complemented the context features de-
scribed above with two types of integral context features
suitable for our application. The relative positions of organs
along the vertical direction vary little from image to image,
given that each pluck hangs from a hook and the part of the
pluck that is attached to the hook is very consistent across
plucks. Thus, given a point on an image, class probabilities
averaged over the row to which the point belongs provide
the classifier on the next iteration with useful information as
to which organs are likely to occur at that particular height.
For example, a row containing heart is likely to contain also
lungs, but very unlikely to contain liver.

In contrast, the relative positions of organs along the hori-
zontal direction vary considerably from image to image, given
that we had no control over the orientation of the pluck around

the vertical axis. The heart, in particular, is sometimes fully
occluded. Nevertheless, organs are fairly consistent in size
from pig to pig. Thus, class probabilities averaged over the
whole image reflect the proportions of the pluck covered by
each visible organ, and provide the next classifier with useful
information on which organs are likely to be visible and how
visible they are. For example, a small proportion of visible di-
aphragm is consistent with a hidden heart and a corresponding
large proportion of lung. When incorporating the two types of
integral features described above, we extracted for each point
a total of 455+2×5=465 context features.

4. EXPERIMENTAL VALIDATION

4.1. Cross-validation strategy

The 350 available images were divided into 10 subsets of 35
images each, and 10-fold cross-validation experiments were
carried out to assess the performance of AC with and without
integral context features.

On each fold, there were 35×9=315 training images.
Given that each image had on average 5,700 foreground
points, we had approximately 315×5,700'1,800,000 train-
ing samples available per fold. From these, 1600 samples
were randomly picked for each of the 5 classes, resulting in
a balanced set of 1,600×5=8000 training samples per fold.
This random sub-sampling was done for computational rea-
sons, to limit the time needed to train the MLPs. Each training
sample consisted of a local feature vector, a context feature
vector and a class label. The training samples collected on
each fold were used to train an AC model via 5 iterations of
Algorithm 1.

On each fold, there were 35 test images. Given that each
image had on average 5,700 foreground points, we had ap-
proximately 35×5,700'200,000 test samples available per
fold. Within each fold, the trained AC model was tested on
all 200,000 test samples.

4.2. Results and discussion

Table 1 shows the means and standard deviations of several
performance metrics computed at the end of the 5th AC it-
eration over 10 folds, both without and with integral context
features. The metrics used were: accuracy, mean class ac-
curacy (MCA), adjusted Rand index (ARI) [13], and mean
class F-score (MCF). Paired fold-wise results (with and with-
out integral context) were compared via two-tailed Student’s
t-tests, yielding p-values that ranged from 0.0052 to 0.0526.

Fig. 3 plots the mean value of the adjusted Rand index
over all five iterations, with and without integral context. On
iteration 1, both methods shared the same result, as context
features were extracted from the same prior atlas. The evolu-
tion of each method’s performance then followed the typical
pattern reported by Tu and Bai [12]: the largest improvement
occurred on the 2nd iteration and performance nearly levelled



Table 1. Mean (standard deviation) of several performance metrics computed after the 5th AC iteration, over 10 folds, without
and with integral context features.

Integral Accuracy MCA ARI MCF Class F-score
context Upper Heart Lungs Diaph. Liver
Without 0.890 (0.017) 0.956 (0.007) 0.772 (0.030) 0.869 (0.021) 0.921 (0.013) 0.757 (0.055) 0.871 (0.023) 0.840 (0.021) 0.956 (0.011)

With 0.895 (0.015) 0.958 (0.006) 0.781 (0.026) 0.875 (0.018) 0.925 (0.014) 0.778 (0.046) 0.878 (0.025) 0.838 (0.024) 0.957 (0.007)

Image Labels No i.c. With i.c. Image Labels No i.c. With i.c. Image Labels No i.c. With i.c.

(a) (b) (c)

Fig. 2. Ground-truth labels, segmentation results without integral context (i.c.), and segmentation results with integral context,
for three example images. (Best viewed in colour.)
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Fig. 3. Evolution of mean adjusted Rand index over five AC
iterations, without and with integral context features.

off on the 5th iteration. It is interesting to note that integral
context features had a beneficial effect on performance, de-
spite corresponding to only 10 features out of 465.

Also shown in Table 1 are class-specific F-scores. The
heart registered the lowest F-scores, which is not surprising.
Being relatively small, this is the organ whose 2D projection
on each image is most affected by the orientation of the pluck:
it can be fully visible at the centre, fully or partially visible
on either side of the pluck, or completely hidden. The heart
also registered the largest improvement in F-score with the
addition of integral context, suggesting that integral features
help to deal with the unpredictability of the heart’s presence
and position in the image. In other words, integral context
helped to deal with multi-modality in the data.

For three test images, Fig. 2 shows the ground truth la-
belling and the segmentation results obtained without and

with integral context on the 5th iteration. Note that a sim-
ple denoising post-processing step would have improved the
quality of segmentation results, but we left that step out to
more clearly show the effect of adding integral context.

The importance of integral features is most visible in cases
like that of Fig. 2(a), in which standard (stencil based) con-
text was not enough to yield a confident segmentation of the
heart. Fig. 2(b) illustrates the reverse situation, where integral
features helped to dissipate a mistakenly segmented heart. In
this case, the integral features representing class probabilities
averaged over the whole image will have reflected the small
area occupied by the diaphragm and large area covered by
the liver, thus helping to identify a pluck whose dorsal aspect
faced the camera, hiding the heart. Nevertheless, in rare sit-
uations where the pluck hangs in an unusual way, as in the
example shown in Fig. 2(c), severe segmentation problems
may occur that integral features are unable to correct. This
suggests the need for more training examples of this kind.

5. CONCLUSION

We introduced the task of organ segmentation in the context
of visual inspection of carcasses. We tackled this problem via
auto-context segmentation and investigated the effect of com-
plementing stencil-based context features with integral fea-
tures suited to our application. Results on a large data set of
pig offal images were reported, showing statistically signifi-
cant improvements with the introduction of integral features.
Future work will focus on dealing more explicitly with the
multi-modal nature of the data, noticeable especially in the
high variability of heart labels.
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[2] L. Bünger, C. Glasbey, G. Simm, J. Conington, J. Mac-
farlane, K. McLean, K. Moore, and N. Lambe. CT Scan-
ning - Techniques and Applications, chapter Use of X-
ray computed tomography (CT) in UK sheep production
and breeding, pages 329–348. InTech, 2011.

[3] T. Kohlberger, M. Sofka, J. Zhang, N. Birkbeck,
J. Wetzl, J. Kaftan, J. Declerck, and S. Zhou. Automatic
multi-organ segmentation using learning-based segmen-
tation and level set optimization. In Medical Image
Computing and Computer-Assisted Intervention (MIC-
CAI), pages 338–345, 2011.

[4] S. Kumar and M. Hebert. Discriminative random fields:
A discriminative framework for contextual interaction
in classification. In IEEE International Conference on
Computer Vision (ICCV), pages 1150–1157, 2003.

[5] M. Mahy, L. Eycken, and A. Oosterlinck. Evaluation
of uniform color spaces developed after the adoption of
CIELAB and CIELUV. Color Research & Application,
19(2):105–121, 1994.

[6] S. Mallat. A theory for multiresolution signal decompo-
sition: the wavelet representation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 11(7):674–
693, 1989.

[7] I. Nabney. NETLAB: algorithms for pattern recognition.
Springer, 2002.

[8] E. Navajas, C. Glasbey, K. McLean, A. Fisher, A. Char-
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