
                                                              

University of Dundee

MINDY-1 is a member of an evolutionarily conserved and structurally distinct new
family of Deubiquitinating enzymes
Rehman, Syed Arif Abdul; Kristariyanto, Yosua; Choi, Soo Youn; Nkosi, Pedro; Weidlich,
Simone; Labib, Karim; Hofmann, Kay; Kulathu, Yogesh
Published in:
Molecular Cell

DOI:
10.1016/j.molcel.2016.05.009

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Rehman, S. A. A., Kristariyanto, Y., Choi, S. Y., Nkosi, P., Weidlich, S., Labib, K., ... Kulathu, Y. (2016). MINDY-
1 is a member of an evolutionarily conserved and structurally distinct new family of Deubiquitinating enzymes.
Molecular Cell, 63, 1-10. DOI: 10.1016/j.molcel.2016.05.009

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

http://dx.doi.org/10.1016/j.molcel.2016.05.009
http://discovery.dundee.ac.uk/portal/en/research/mindy1-is-a-member-of-an-evolutionarily-conserved-and-structurally-distinct-new-family-of-deubiquitinating-enzymes(317cb61b-e60e-499a-933f-244528d70826).html


Short Article

MINDY-1 Is aMember of an Evolutionarily Conserved
and Structurally Distinct New Family of
Deubiquitinating Enzymes

Graphical Abstract

Highlights

d MINDY is a new family of DUBs consisting of FAM63A,

FAM63B, FAM188A, and FAM188B

d MINDY DUBs are highly selective at cleaving K48-linked

polyubiquitin

d Catalytic domain of MINDY-1 adopts a distinct fold with no

homology to any known DUB

d Human MINDY-1 trims ubiquitin chains from the distal end

Authors

Syed Arif Abdul Rehman,

Yosua Adi Kristariyanto,

Soo-Youn Choi, ..., Karim Labib,

Kay Hofmann, Yogesh Kulathu

Correspondence
ykulathu@dundee.ac.uk

In Brief

Abdul Rehman et al. discover a new

family of deubiquitinating enzymes called

MINDY. This structurally distinct family of

DUBs is highly selective at cleaving K48-

linked polyubiquitin chains.

Accession Numbers

5JKN

5JQS

Abdul Rehman et al., 2016, Molecular Cell 63, 146–155
July 7, 2016 ª 2016 The Author(s). Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.molcel.2016.05.009

mailto:ykulathu@dundee.ac.uk
http://dx.doi.org/10.1016/j.molcel.2016.05.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molcel.2016.05.009&domain=pdf


Molecular Cell

Short Article

MINDY-1 Is a Member of an Evolutionarily Conserved
and Structurally Distinct New Family
of Deubiquitinating Enzymes
Syed Arif Abdul Rehman,1,3 Yosua Adi Kristariyanto,1,3 Soo-Youn Choi,1,3 Pedro Junior Nkosi,1 Simone Weidlich,1

Karim Labib,1 Kay Hofmann,2 and Yogesh Kulathu1,*
1MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
2Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
3Co-first author

*Correspondence: ykulathu@dundee.ac.uk

http://dx.doi.org/10.1016/j.molcel.2016.05.009

SUMMARY

Deubiquitinating enzymes (DUBs) remove ubiquitin
(Ub) from Ub-conjugated substrates to regulate
the functional outcome of ubiquitylation. Here we
report the discovery of a new family of DUBs, which
we have named MINDY (motif interacting with Ub-
containing novel DUB family). Found in all eukary-
otes, MINDY-family DUBs are highly selective at
cleaving K48-linked polyUb, a signal that targets
proteins for degradation. We identify the catalytic
activity to be encoded within a previously unanno-
tated domain, the crystal structure of which reveals
a distinct protein fold with no homology to any of
the known DUBs. The crystal structure of MINDY-1
(also known as FAM63A) in complex with propar-
gylated Ub reveals conformational changes that
realign the active site for catalysis. MINDY-1 prefers
cleaving long polyUb chains and works by trimming
chains from the distal end. Collectively, our results
reveal a new family of DUBs that may have special-
ized roles in regulating proteostasis.

INTRODUCTION

Ubiquitylation is a post-translational modification (PTM) that reg-

ulates almost every facet of eukaryotic biology. The functional

outcome of protein ubiquitylation is determined by the type of

modification (monoubiquitin or polyubiquitin) and also the linkage

typewithin theubiquitin (Ub) chain (KulathuandKomander, 2012).

Ub binding domain (UBD)-containing proteins bind to different

Ub modifications and link Ub signals to downstream signaling

(Di Fiore et al., 2003). The outcome of Ub signals is regulated by

deubiquitinating enzymes (DUBs), which are proteases that re-

move Ub from modified substrates (Reyes-Turcu et al., 2009).

DUBs are therefore important regulators of the Ub system and

regulate a plethora of cellular processes, including protein turn-

over, protein sorting, and trafficking (Clagueet al., 2012;MacGurn

et al., 2012). Indeed, deregulated DUB activity may promote

human disease, and hence DUBs are being actively explored as

potential drug targets (Heideker andWertz, 2015; King andFinley,

2014). There are approximately 100 DUBs encoded in the human

genome that can be classified into five families on the basis of

the mechanism of catalysis (Clague et al., 2013; Nijman et al.,

2005). Of the five families, four are thiol proteases, while the fifth

includes metalloproteases (Reyes-Turcu et al., 2009).

Onemajor function of ubiquitylation is in protein degradation, a

precise proteolytic process essential for the turnover of many

proteins and also for removing damaged proteins (Eletr and Wil-

kinson, 2014). Modification of proteins with K48-linked polyUb

chains, the most abundant linkage type detected in cells, is the

canonical signal that marks proteins for degradation by the

26S proteasome (Finley, 2009; Kulathu and Komander, 2012).

Prior to degradation, proteasome-associated DUBs release Ub

from substrates to recycle Ub (Inobe and Matouschek, 2014).

Some DUBs can trim the K48 chains on ubiquitylated substrates

to rescue them from degradation (Lam et al., 1997; Lee et al.,

2010; Rumpf and Jentsch, 2006), highlighting the fine control

that can be exerted by DUBs.

Here we make the surprising discovery that an uncharacter-

ized protein, FAM63A, is a deubiquitinase that is highly selective

at hydrolyzing K48-linked polyUb. We delineate this deubiquiti-

nating activity to be encoded within a previously unannotated

domain. Our structural analyses reveal that the catalytic domain

of FAM63A is a distinct folding variant of the superfamily of

cysteine proteases. FAM63A has no homology to any of the

known DUBs, so we classify this newly discovered Ub protease

to be a prototype of a new family of DUBs. Defining FAM63A as a

DUB led to the identification of further members that form part of

this family.

RESULTS AND DISCUSSION

In order to understand linkage selectivity in Ub signaling, we

recently developed methods to assemble tetraUb chains of

different linkage types that allow us to profile linkage selectivity

of UBDs (Kristariyanto et al., 2015b). The motif interacting with

Ub (MIU) is a small UBD consisting of a helical motif that binds

to monoUb (Lee et al., 2006; Penengo et al., 2006). When inves-

tigating this class of UBDs, we identified FAM63A to contain MIU

motifs with high selectivity for binding K48-linked polyUb (Figures

1A, 1B, and S1A). In addition to this K48-binding UBD, FAM63A

146 Molecular Cell 63, 146–155, July 7, 2016 ª 2016 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:ykulathu@dundee.ac.uk
http://dx.doi.org/10.1016/j.molcel.2016.05.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molcel.2016.05.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Figure 1. Identification of the MINDY Family of DUBs

(A) Schematic representation of the domain structure of human FAM63A.

(B) Halo-tagged FAM63A (388–426) coupled to HaloLink resin was incubated with tetraUb of the indicated linkage types. The captured materials were separated

on 4%–12% SDS-PAGE gel and silver stained.

(C–H) DUB assays testing activity and specificity of polyUb cleavage by FAM63A (C), putative catalytic domain of FAM63A (110–384) (D) (asterisk indicates

FAM63A), full-length FAM63B (E), YPL191C/MIY1 (F), YGL082W (G), and full-length human FAM188A (H); 1.6 mMof DUBs were incubated with 2.2 mMof tetraUb

chains for the indicated time.

(I) Phylogenetic tree of MINDY family DUBs based on alignment of catalytic domains (Figure S2B).

See also Figure S1.
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contains a domain of unknown function (DUF544) (Figure 1A).

Given the presence of a UBD, we posited a Ub-dependent func-

tion for the associated DUF domain (Marcotte et al., 1999).

Sequence conservation within the FAM63 family suggested the

presence of a cysteine protease active site, and therefore we hy-

pothesized that it may be a Ub protease. To test this hypothesis,

weperformedDUBassays inwhichwemonitored invitrocleavage

ofdifferent linkagesof tetraUbchains,whichshows that full-length

FAM63A readily cleaves K48 chains (Figure 1C). In contrast, all

other chain types are intact. This revealed that FAM63A is a

DUB with unique selectivity for cleaving K48-linked polyUb.

To identify the catalytic domain in FAM63A, we used multiple

sequence alignment and secondary structure prediction (Kelley

et al., 2015), on the basis of which we predicted the middle region

ofFAM63A (residues110–384),whichalso includesDUF544, tobe

the catalytic domain (Figures 1A and S1C). Indeed, this predicted

domain encodes catalytic activity that maintains high specificity

for K48 linkages (Figures 1D, S1B, and S1D).

Human FAM63B is another DUF544-containing protein that

shares sequence similarity and domain organization with

FAM63A (Figure S2A). DUB assays reveal that FAM63B also

cleaves polyUb chains (Figure 1E). Remarkably, both FAM63A

and FAM63B are highly selective at hydrolyzing K48-linked pol-

yUb and do not cleave any of the other linkage types tested.

There are several human DUBs that contain additional UBDs,

but to our knowledge this is the first instance of DUBs with

MIU motifs (Clague et al., 2013). Therefore, FAM63 members

are unannotated human DUBs that do not bear sequence simi-

larity to any of the known DUBs. We classify these newly discov-

ered enzymes to be a distinct family of DUBs, which we name

MINDY (MIU-containing novel DUB family), with FAM63A as

MINDY-1. Orthologs of FAM63 are also present in plants,

budding yeast andDictyostelium. Notably, the specificity toward

cleaving K48-linked polyUb is conserved in yeast YPL191C (Fig-

ure 1F), hereafter named MIY1 (MINDY deubiquitinase in yeast).

In contrast, the other yeast homolog, YGL082W, does not show

Table 1. Data Collection and Refinement Statistics

MINDY-1cat (Anomalous) MINDY-1cat (Native) MINDY-1cat�Ub (Complex)

Data Collection

Beamline I02, DLS ID23-1, ESRF ID29, ESRF

Space group P4122 P4122 P6522

a, b, c (Å) 100.55, 100.55, 165.64 99.67, 99.67, 165.12 82.33, 82.33, 332.46

a, b, g (�) 90.00, 90.00, 90.00 90.00, 90.00, 90.00 90.00, 90.00, 120.00

Wavelength (Å) 1.0073 0.93927 0.97623

Resolution (Å) 63.93–3.39 (3.39–3.30)a 48.18–3.0 (3.18–3.0) 48.63–2.65 (2.78–2.65)

R-merge 0.35 (4.31) 0.065 (0.883) 0.089 (0.595)

I/s(I) 9.8 (1.2) 14.4 (2.1) 17.1 (3.3)

Completeness (%) 99.7 (99.2) 99.8 (99.9) 99.9 (100.0)

Multiplicity 13.8 (13.5) 5.0 (5.2) 9.4 (10.0)

CC1/2 0.996 (0.526) 0.998 (0.866) 0.999 (0.925)

Refinement

Resolution (Å) 48.18–3.0 48.63–2.65

No. of reflections 17,325 (2,732) 20,518 (2,621)

Rwork/Rfree 0.197/0.242 0.205/0.231

No. of Atoms

Protein 2,009 3,078

Waters 0 53

Ligand/ion 13 26

B Factors (Å2)

Wilson B 97.80 51.5

Protein 120.74 71.55

Ligand/Ion 130.70 78.20

Water 50.64

RMSDs

Bond length (Å) 0.007 0.008

Bond angles (�) 1.204 1.104

Ramachandran statistics

(favored/allowed/outliers)

95.0/5.0/0.0 97.0/3.0/0.0

DLS, Diamond Light Source; ESRF, European Synchrotron Radiation Facility; RMSD, root-mean-square deviation.
aValues for the highest-resolution shell are shown in parentheses.
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Figure 2. Crystal Structure of MINDY-1cat

(A) Structure of catalytic domain of FAM63A/MINDY-1cat (110–370). The Cys loop (cyan) and the catalytic residues are indicated. b sheets are colored red

and 3_10 helices blue.

(B) A close-up image of the MINDY-1cat catalytic site. Q131, C137, and H319 are shown.

(legend continued on next page)
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any deubiquitinating activity despite the conserved catalytic res-

idues being present (Figures 1G, S2B, and S2E).

Having identified MINDY-1/FAM63A as a new DUB, we

wondered if there were other more distantly related proteins

that also form part of the MINDY DUB family. Sequence analysis

reveals that FAM188 members (FAM188A and FAM188B in hu-

mans) are related to FAM63 (Figure S2B). DUB assays of

FAM188A against tetraUb reveal that FAM188A is also a DUB,

with predicted catalytic residues C51 and H287 (Figures 1H

and S2B). Interestingly, FAM188A is described as a caspase in-

teracting pro-apoptotic protein and tumor suppressor (Liu et al.,

2002; Shi et al., 2011) and has an EF hand motif inserted into the

catalytic domain (Figure S2A). Despite being divergent from

FAM63, FAM188A is also highly selective for the cleavage of

K48-linked polyUb. Hence, we include FAM188 members in

the highly conserved MINDY family of DUBs (Figure 1I).

In order to determine the mechanism of this newly identified

DUB, we crystallized the minimal catalytic domain of FAM63A/

MINDY-1 spanning residues 110–384 (MINDY-1cat). The struc-

ture of MINDY-1cat domain was determined at 3 Å resolution

by X-ray crystallography (Table 1). The asymmetric unit (ASU)

contains one molecule of MINDY-1cat with discernible electron

density for residues 110–370. The catalytic core domain of

MINDY-1 with a dimension of 32 3 64 3 36 Å resembles a light

bulb consisting of two subdomains, a central ‘‘bulb’’ subdomain

that sits on a ‘‘stalk’’ subdomain, which resembles the base of

the bulb (Figures 2A and S2C). The core of the central bulb sub-

domain contains a seven-stranded b sheet (b4–b10), where b7 is

connected to b8 by a short 310-helix (Figures S2D and S2E). The

stalk subdomain, made up of three a helices (a5–a7), forms a

long helical arm that protrudes away from the central domain.

A Dali search against structures in the Protein Data Bank

(PDB) did not identify any matches with significant Z scores or

sequence identity (Holm and Rosenström, 2010). Given the low

homology to known protein structures, we classify MINDY-1cat

as a new folding variant of the diverse superfamily of cysteine

proteases (Figure S3). The structure of MINDY-1cat does not

bear close homology to any of the known DUBs, further support-

ing our classification of MINDY as a new family of DUBs.

Cysteine-based DUBs usually have a catalytic triad with a cat-

alytic Cys, a nearby His that lowers the pKa of the catalytic Cys

for nucleophilic attack, and a third residue, usually an Asp or

Asn, that stabilizes the catalytic His (Reyes-Turcu et al., 2009).

We predict the conserved C137 at the N terminus of helix a1

and H319 on the adjacent b6 to be the catalytic residues and

these are present in a C-H architecture typical of papain-like

peptidases (Figures 2B and 2E). The third catalytic residue,

which serves to polarize the catalytic His, is not obvious in the

observed crystal structure. Mutation of either C137 or H319 to

Ala completely abolishes catalytic activity of FAM63A toward

K48-linked polyUb (Figure 2C). A conserved Gln (Q131) residue

N-terminal of the catalytic Cys residue may form the oxyanion

hole to stabilize the negative potential formed on the carbonyl

oxygen atom of the scissile bond in the transition state. Indeed,

mutation of Q131 to Ala or Glu completely abolishes catalytic

activity (Figure 2D). However, in the structure of isolated

MINDY-1cat, the active site is in an unproductive conformation

and C137 is rotated out of hydrogen bond distance from the

other catalytic residues (Figure 2B). Therefore, the observed

structure is MINDY-1 in an inhibited state.

To gain insights into this newly discovered family of DUBs, we

focused our efforts on understanding the catalytic mechanism of

MINDY-1. C-terminally propargylated Ub (UbPrg) is a potent

and selective covalent inhibitor of most thiol DUBs and forms a

vinylthioether linkage with the catalytic cysteine (Ekkebus

et al., 2013). We purified and crystallized a covalent complex be-

tween MINDY-1cat and UbPrg (MINDY-1cat�Ub) and determined

its structure by molecular replacement (Figures S4A–S4D and

Table 1). Such monoUb complexes represent a product-inter-

mediate state with the distal Ub bound in the S1 site. There is

one MINDY-1cat�Ub complex in the ASU. Although the electron

density for MINDY-1cat is well ordered, the electron density for

Ub was not easily interpretable. Refining the structure at lower

resolution revealed that Ub exists in two alternate conformations

(UbA and UbB), with each at�50% occupancy (Figures 3A, S4C,

and S4D). The distal Ub rests on the stalk subdomain, and the re-

gion of MINDY-1cat that makes contact with Ub is conserved in

evolution (Figure 3B). Mapping conserved residues on the sur-

face of MINDY-1cat reveals conserved regions around and oppo-

site to where the distal Ub makes contacts, suggesting where

the proximal Ub might bind (Figure 3B). The C terminus of Ub

sits in a conserved catalytic groove, and L73 of Ub sits in a highly

conserved hydrophobic pocket (Figures 3C and 3D). Mutating

residues lining this hydrophobic pocket to disrupt interactions

with the C terminus of Ub abolishes catalytic activity (Figure 3E).

MINDY-1 therefore is similar to many other DUBs that require an

interaction with L73 of the distal Ub for catalysis (Békés et al.,

2013). MINDY-1 also mediates ionic interactions with the distal

Ub, and mutating the key interacting residues in MINDY-1cat

completely abolishes catalytic activity of the DUB (Figures 3F

and 3G).

Binding of UbPrg toMINDY-1cat does not induce global confor-

mational changes in the catalytic domain, and both free and

MINDY-1cat�Ub complex superpose well (root-mean-square

deviation � 1 Å over 244 aligned Ca atoms). One notable differ-

ence between free and complexed states of MINDY-1cat is the

movement of the Cys loop (b2-a1) that in the structure of apo

MINDY-1cat blocks access of Ub to the catalytic site (Figures

3H, 3I, 2B, S4E, and S4F). Movement of the Cys loop also rotates

the catalytic C137 to bring it closer to the catalytic H319. Intrigu-

ingly, we observe H319 to exist in two alternate conformations

(Figure 3H). In one conformation, H319 is closer to the C137,

(C and D) Hydrolysis of 1.9 mMK48-linked triUb by 1.6 mMMINDY-1 wild-type (WT) and the indicatedmutants of the active site residues (C) or Q131 that forms the

oxyanion hole residue (D).

(E) Sequence alignment of human FAM63A, FAM63B, FAM188A, and FAM188B. Secondary structure elements are shown for MINDY-1cat. The catalytic residues

are highlighted with red asterisks. Residues 300–371 of FAM188A that form the EF hand domain have been omitted from the alignment. Fully conserved residues

are shaded in red.

See also Figures S2 and S3.
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Figure 3. Structure of MINDY-1cat�Ub
(A) Overall structure of the catalytic core domain of MINDY-1 (pink) covalently bound to Ub. Ub exists in two alternate conformers in the structure that are rotated

by �45� (cyan and orange). The vinylthioether linkage connecting UbPrg with MINDY-1 is shown in sticks. The Cys loop (b2-a1) is shown in blue.

(B) Conserved residues on the surface ofMINDY-1 based on the sequence alignment in Figure S1C generated with the Consurf server (http://consurf.tau.ac.il) are

shown. While the backside of MINDY-1cat is not conserved, surfaces interacting with and around the distal Ub are conserved.

(C) Close-up view of the catalytic groove where the C terminus of Ub sits, with coloring scheme as in (B).

(D) An aromatic cage formed by V212, W240, Y258, and F315 interacts with L73 of Ub. Close-up view of the conserved hydrophobic pocket accommodating L73

colored as in (B).

(E) DUB assays monitoring cleavage of 1.9 mM K48-triUb with 1.6 mM MINDY-1cat performed as in Figure 1C comparing activity of MINDY-1 and point mutants

lining the L73 pocket: V210A, W240A, Y258A, and F315A.

(F) Close-up view of ionic interactions between Ub and MINDY-1.

(G) DUB assays comparing activity of MINDY-1 mutants that disrupt ionic interactions with Ub as performed in (E).

(H) Close-up image of the MINDY-1 catalytic triad showing two alternate conformations for H319 and Q131. Distances to C137 are indicated by dotted lines.

(I) Superposition of apo and complex states of MINDY-1cat shows movement of the Cys loop (apo in orange and MINDY-1cat�Ub complex in pink).

See also Figure S4.
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resembling an active site poised for catalysis. In an alternate

conformation, H319 is flipped away from C137 in a conformation

in which the DUB is again in an inhibited state. Our analyses point

to a substrate-induced conformational change that remodels

the Cys loop and realigns the catalytic residues to an active

conformation.

DUBs can either cleave within chains (endo-DUB) or remove

Ubs from one end of the chain (exo-DUB), and the mode of

cleavage used by a DUB provides insights into its function

(Komander et al., 2009). For instance, CYLD, a negative regulator

of NF-kB signaling, cleaves within chains to release Ub chains en

bloc from substrates (Komander et al., 2008). In contrast, DUBs

such as USP14 trim Ub chains and can edit the degradation

signal on substrates to rescue them from the proteasome (Lee

et al., 2010). To determine the mode of chain cleavage used by

MINDY-1, we carefully monitored the time-dependent cleavage

of K48-linked pentaUb chains (Figure 4A). Upon cleavage by

MINDY-1FL and MINDY-1cat, tetraUb and monoUb are formed

at the earliest time points, followed by the appearance of triUb

(Figure 4A, lanes 3, 4, 10, and 11). DiUb is detected only at later

time points, while there is a steady increase in the intensity of

monoUb from the start (Figure 4A, lanes 3–7 and 10–14). This

suggests that MINDY-1 cleaves Ub chains in a stepwise manner,

releasing one Ub at a time (exo-DUB), and this mode of cleavage

is not influenced by the MIU. In contrast, yeast MIY1 does not

discriminate between the positions at which it cleaves within a

Ub chain (endo-DUB), so all cleavage products (tetra-, tri-, di-,

and monoUb) are formed at similar rates (Figure 4A, lanes 17–

21). MINDY-1 has poor Ub C-terminal hydrolytic activity (Fig-

ure S5A), and two conformations are observed for the distal

Ub (Figure 3A), which further suggests that the preferred sub-

strate of MINDY-1 is Ub chains.

To explore the efficiency of MINDY-1 to cleave K48-polyUb

chains, we set out to determine the kinetics of MINDY-1 and to

compare its activity with OTUB1, a well-studied DUB, which is

also highly selective at cleaving K48-linked chains (Wang et al.,

2009). Using in-gel-based DUB assays, we monitored the cleav-

age of K48-linked diUb substrate that carries an infrared fluores-

cent dye at the distal end. We found that MINDY-1cat cleaves

diUb poorly, whereas MIY1 and OTUB1 both efficiently cleave

diUb substrates (Figures 4B and 4C). Similarly, MINDY-1 cleaves

triUb weakly, suggesting that diUb and triUb are poor substrates

for MINDY-1 (Figures S5C and S5D).

Several DUBs have been reported to preferably cleave long

polyUb chains (Békés et al., 2015; Todi et al., 2009). To investi-

gate whether long polyUb chains are the preferred substrate

of MINDY-1, we assembled K48-linked pentaUb chains with

an infrared fluorescent label incorporated at the proximal end.

When these fluorescently labeled chains were used as the sub-

strate, MINDY-1cat was as efficient as MIY1 and OTUB1 at

cleaving pentaUb (Figures 4D and 4E). Interestingly, even though

the rates of K48-Ub5 cleavage of MIY1 and OTUB1 are compara-

ble with MINDY-1cat, the cleavage products generated by MIY1

and OTUB1 range from monoUb to tetraUb, further supporting

endo-DUB activity for MIY1 and OTUB1 (Figures 4A and 4D). On

the other hand, the chain-trimming activity of MINDY-1 is clearly

demonstratedby the formation of tetraUband the subsequent for-

mation of triUb at later timepoints (Figure 4D).Moreover, because

theproximalUb is fluorescently labeled, theseassaysalso reveal a

marked directionality in chain cleavage where MINDY-1 cleaves

polyUb chains from the distal end. Next, we used pentaUb for

kinetic analysis, because MINDY-1 cleaves pentaUb efficiently,

and tetraUb is theonlyproduct formedat theearly timepoints (Fig-

ure 4D). We determined the kcat and Km of MINDY-1 for K48-Ub5

to be �5.71 3 10�3 s�1 and �872 nM, respectively. The low Km

values suggest a strong interaction of MINDY-1 with pentaUb

chains. Taken together, these results demonstrate that MINDY-1

prefers to trim longer K48-polyUb chains from the distal end.

MINDY-1 is amodular enzymewith tandemUBDs (MIUmotifs)

that binds selectively to K48-linked polyUb and a catalytic

domain that selectively cleaves the same linkage type. In

DUBs such as OTUD1 and OTUD2, the associated UBDs regu-

late chain linkage specificity of the DUBs (Mevissen et al.,

2013). However, inMINDY-1, theUBDdoes not influence linkage

specificity of the DUB, as the minimal catalytic domain still main-

tains selectivity for K48-linked polyUb (Figures 1C and 1D). To

investigate the potential roles of MIU in MINDY-1, we expressed

wild-type Flag-MINDY-1 or MIU mutant in HEK293 cells. Flag

immunoprecipitations from cell extracts reveal high-molecular-

weight K48-linked polyubiquitylated proteins associated with

wild-type MINDY-1 (Figures 4G and S5I). The amount of ubiqui-

tylated proteins associated with MINDY-1 is reduced when

the MIU is mutated, suggesting a role for the MIU in targeting

MINDY-1 to K48-polyubiquitylated potential substrates.

If the MIU of MINDY-1 mediates substrate targeting, then we

expect it to influence the catalytic activity and cleavage of Ub

chains by MINDY-1. We observed that MIU does not affect

MINDY-1 activity toward K48-Ub5 chains (Figure 4A, lanes

1–14). Because MINDY-1 prefers to cleave longer polyUb chains

(Figure S5H), we repeated the investigations using long K48-

linked polyUb chains (pentaUb or longer) as substrates. Surpris-

ingly, we now observe that in the absence of MIU, cleavage of

long K48-chains is significantly compromised (Figure 4H). Hence

in MINDY-1, the MIU regulates substrate targeting and is crucial

for cleavage of long polyUb chains.

Collectively, our analysis of human MINDY-1 reveals that it

is a chain-trimming enzyme, which uses the Ub-binding MIU

together with the catalytic domain to cleave K48-linked polyUb

chains from the distal end in a stepwise manner (Figure 4I). It is

fascinating that thisDUB, in addition to sensingpolyUbchain link-

age, also appears to sense chain length and detect the distal end

of a chain. A lingering question in the field of Ub research is how

long Ub chains have to be in cells in order to elicit a response. A

long-held idea has been that K48 chains have to be at least four

Ubs in length for efficient recognition and degradation of sub-

strate proteins by the proteasome (Thrower et al., 2000). Recent

work suggests that distributed shorter chains are more effective

degradation signals (Lu et al., 2015). On the other hand, USP14

and yeast OTU1 trim K48 signals on substrates to rescue them

from proteasomal degradation (Lee et al., 2010; Rumpf and

Jentsch, 2006). Long K48-linked polyUb chains are poor sub-

strates of several USP DUBs (Schaefer and Morgan, 2011). With

its exquisite specificity for trimming K48 chains, MINDY-1 may

alter the fate of proteins marked for degradation. Notably,

while all MINDY family members analyzed are highly selective at

cleaving K48-linked polyUb, we observe differences in their
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mode of action. With different domain architectures, expression,

subcellular localization, andmode of action, we envisage diverse

functional roles for this new family of DUBs.

EXPERIMENTAL PROCEDURES

cDNA and Antibodies

All the cDNAconstructs used in this studywere generated by the cloning teamof

the Division of Signal Transduction Therapy, MRC Protein Phosphorylation and

Ubiquitylation Unit, University of Dundee, United Kingdom (Table S1). All con-

structs are available on request from the MRC Protein Phosphorylation and

Ubiquitylation Unit reagents Web page (http://mrcppureagents.dundee.ac.uk).

Protein and epitope tags were detected by western blotting using the

following antibodies: anti-K48-linked polyUb chains (05-1307; Millipore),

anti-Ub antibody (Z0458; DAKO), anti-Flag M2 antibody (F1804; Sigma-

Aldrich), and anti-a-Tubulin antibody (3873; Cell Signaling Technology).

Bioinformatics

Sequence database searches with generalized profiles (Bucher et al., 1996) or

hidden Markov models (HMMs) (Eddy, 1998) created frommultiple alignments

of the FAM63 catalytic domain failed to find significant relatives outside the

FAM63 family, with members of the FAM188 family yielding slightly sub-signif-

icant scores. However, the application of the HHSEARCH software (Söding,

2005), which performs HMM-to-HMMcomparisons, allowed to establish a sig-

nificant relationship between the FAM63 and FAM188 families. An HMMmade

from a FAM63 alignment matched the FAM188 family with a p value of 9.2 3

10�7. Conversely, an HMM made from the FAM188 family matched the

FAM63 family with a p value of 7.93 10�7. The resulting HMM-to-HMM align-

ment revealed a perfect conservation of the active site residue, suggesting a

functional similarity between the two distantly related protein families. Multiple

sequence alignments were created in Jalview (Waterhouse et al., 2009) by us-

ing the L-INS-I algorithm of the MAFFT package (Katoh and Toh, 2010). Phylo-

genetic trees were generated using PhyML (Dereeper et al., 2008) (http://

phylogeny.lirmm.fr) using bootstrapping with alignment of catalytic domains

as input and trees rendered using TreeDyn (http://phylogeny.lirmm.fr).

UBD Linkage Specificity Analysis

TetraUb chains of the different linkage types were assembled and purified

as described previously (Kristariyanto et al., 2015a, 2015b). Briefly, 58.5 nM

tetraUb chains in 500 ml pull-down buffer (50 mM Tris-HCl [pH 7.5], 150 mM

NaCl, 0.1% NP-40, 1 mM DTT, 0.5 mg/ml BSA) was captured using

10.5 nmol Halo-MINDY-1 (388–426) immobilized on HaloLink resin for 2 hr at

4�C. Captured materials were analyzed on silver-stained SDS-PAGE gel. For

details, see Supplemental Experimental Procedures.

Crystallization and Structure Determination

MINDY-1cat and MINDY-1cat-UbPrg complex were purified and crystallized

and their structures determined as detailed in Supplemental Experimental

Procedures.
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Figure 4. MINDY-1 Cleaves PolyUb Chains in a Stepwise Manner

(A) Time course of cleavage of 3.5 mM K48-pentaUb by 1.6 mM of full-length MINDY-1 and MINDY-1cat and 160 nM MIY1. Asterisks indicate MINDY-1.

(B) Kinetics of cleavage of fluorescently labeled K48-linked diUb byMINDY-1cat, MIY1, and OTUB1. DUBs (1 mM) were incubated with 500 nM of K48-linked diUb

that has been labeled with an infrared fluorescent dye at its distal Ub (green circle) for the indicated times. Fluorescent Ub was visualized using Odyssey LI-COR

system at 800 nm channel. D, distal Ub, P, proximal Ub.

(C) Quantification of K48-Ub2 hydrolysis by MINDY-1cat, MIY1, and OTUB1 in (B). Percentage of the formed Ub1 intensity is shown on the y axis (n = 3;

mean ± SD).

(D) DUB assays monitoring time-dependent cleavage of fluorescently labeled pentaUb by MINDY-1cat, MIY1, and OTUB1 as in (B). The proximal Ub of the chain

(indicated by green circle) was labeled with an infrared fluorescent dye.

(E) Quantification of cleavage of K48-linked pentaUb by MINDY-1cat, MIY1, and OTUB1 in (D). The percentage of the total intensities of Ub4, Ub3, Ub2, and Ub1

formed is shown on the y axis (n = 3; mean ± SD). See also Figure S5.

(F) Steady-state kinetics of K48-linked pentaUb cleavage by MINDY-1cat. MINDY-1cat (15 nM) was incubated with 0.075–2.4 mM fluorescently labeled pentaUb

(IR-K48-Ub5). The K48-Ub4 formed at the early time point (less than 10%of the substrate) was quantified to obtain initial velocities (V0). V0 was plotted against IR-

K48-Ub5 concentration, and the data were fitted to the Michaelis-Menten equation to derive kcat and Km (n = 3; mean ± SD).

(G) Flag pull-downs from extracts of HEK293 cells inducibly expressing the indicated full-length MINDY-1 constructs. ev, empty vector; MIU*, MIU mutant,

L415A/A416G. Immunoblotting with a K48-linkage specific antibody was performed to monitor captured polyUb material.

(H) Time course comparing hydrolysis of K48-polyUb chains containing at least 5 Ub by full-length MINDY-1 and MINDY-1cat, which lacks the MIU.

(I) Model depicting the synergy between different domains of MINDY-1, where the UBDmediates substrate targeting to result in trimming of the Ub chain from the

distal end by the catalytic domain.

See also Figure S5.
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Békés, M., Rut, W., Kasperkiewicz, P., Mulder, M.P.C., Ovaa, H., Drag, M.,

Lima, C.D., and Huang, T.T. (2015). SARS hCoV papain-like protease is a

unique Lys48 linkage-specific di-distributive deubiquitinating enzyme.

Biochem. J. 468, 215–226.

Bucher, P., Karplus, K., Moeri, N., and Hofmann, K. (1996). A flexible motif

search technique based on generalized profiles. Comput. Chem. 20, 3–23.
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