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Abstract

Multi-type recurrent event data arise in many situations when two or more differ-

ent event types may occur repeatedly over an observation period. For example, in a

randomized controlled clinical trial to study the efficacy of nutritional supplements for

skin cancer prevention, there can be two types of skin cancer events occur repeatedly

over time. The research objectives of analyzing such data often include characterizing

the event rate of different event types, estimating the treatment effects on each event

process, and understanding the correlation structure among different event types. In

this paper, we propose the use of a proportional intensity model with multivariate

random effects to model such data. The proposed model can take into account the de-

pendence among different event types within a subject as well as the treatment effects.

Maximum likelihood estimates of the regression coefficients, variance-covariance com-

ponents, and the nonparametric baseline intensity function are obtained via a Monte

Carlo Expectation Maximization (MCEM) algorithm. The expectation step of the al-

gorithm involves the calculation of the conditional expectations of the random effects

by using the Metropolis-Hastings sampling. Our proposed method can easily handle

recurrent event data that have more than two types of events. Simulation studies were

used to validate the performance of the proposed method, followed by an application

to the skin cancer prevention data.

Key Words: Correlated frailty; MCMC; Proportional hazards model; Random

effects; EM algorithm; Skin cancer.
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1 Introduction

In many research fields, it is common to observe processes that generate events repeatedly

over the follow-up time for a given subject. Such processes are called recurrent event pro-

cesses and the generated data are referred to as recurrent event data. In clinical studies,

patients may experience transient clinical events repeatedly over an observation period, such

as occurrences of heart attack in cardiovascular studies, epileptic seizures in neurology stud-

ies, fractures in osteoporosis studies, and recurrence of bladder cancer tumors in oncology

studies. Multi-type recurrent event data arise when two or more different kinds of events may

occur repeatedly over an observation period. For example, in bone marrow transplantation,

different types of recurrent infections (e.g., bacterial, fungal, and viral infections) can occur

after the surgery.

The analyses of such multi-type recurrent event data often aim to answer scientific ques-

tions such as: what are the effects of explanatory variables (e.g., treatment) on the event

process of different types, how to characterize the individual-to-individual difference in the

event processes, and what is the correlation among the event process of different types. For

example, in the Nutritional Prevention of Cancer Trial conducted by Arizona Cancer Center

(see Section 5 for more details), the investigators were interested in the efficacy of nutri-

tional supplement of selenium on preventing skin cancer of different types, as well as the

heterogeneity and correlation among the recurrence of skin cancer of different types. Thus, a

general method to analyze multi-type recurrent event data needs to be developed to address

these scientific questions.

Multivariate frailty model are widely used to model recurrent event data (e.g., Duchateau

et al. 2003, Manda and Meyer 2005, and McGilchrist and Yau 2008). Although there

has been many developments on recurrent event data analysis, existing methods are not

general or flexible enough to model and characterize multi-type recurrent event data. In this

paper, we propose the use of a semiparametric proportional hazards model with correlated

random effect to characterize multi-type recurrent event data. Monte Carlo Expectation

Maximization (MCEM) algorithm is used to estimate unknown parameters in the model.

For a literature review, a general description of models for recurrent event data can be

found in literature, for example, Cook and Lawless (2007). In terms of baseline modeling,

Abu-Libdeh, Turnbull, and Clark (1990), and Cook et al. (1999) considered a frailty model

with parametric baseline functions. Chen et al. (2005), Moreno (2008), and Chen and Cook

(2009) used a piecewise constant baseline intensity function to analyze multi-type recurrent

event data. For piece-wise constant function models, one needs to specify the locations

and number of pieces for the intensity function. As it is pointed out by Friedman (1982),

the estimator will be biased if the locations and the number of pieces are not correctly
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specified. Thus, in comparison to the parametric and piecewise constant assumptions, the

nonparametric baseline assumption used in this paper is more flexible.

For modeling of multiple types of events, Cai and Schaubel (2004) proposed a class of

semi-parametric marginal means/rates models for multiple type recurrent event data, with-

out random effects. Cook, Lawless, and Lee (2010) introduced a bivariate mixed Poisson

model using a copula function to describe the correlation between frailties of the two types

of events. They applied the Expectation-Maximization (EM) algorithm and used numerical

integration in the expectation step (E step) to calculate the conditional expectations. How-

ever, numerical integration can be unstable, even when the number of event types is two.

When the number of event types is more than two, it is challenging to make numerical inte-

gration work. The Monte Carlo sampling used in our method is more flexible than numerical

integration in dealing with multi-type events, even for large number of event types. Rondeau,

Mazroui, and Gonzalez (2012) developed an R package for the analysis of correlated survival

data with frailty models. Mazroui et al. (2013) considered multivariate frailty models for

two types of recurrent events with parametric baseline and spline based baseline functions.

Mazroui et al. (2015) considered multivariate frailty models for two types of recurrent events

with time-varying coefficients.

Although MCEM algorithms were used in parameter estimation for frailty models of

single-type recurrent event data analysis (Vaida and Xu 2000, and Ripatti, Larsen, and

Palmgren 2002), the generalization of the MCEM algorithm to multi-type recurrent event

data is not a trivial task. The challenges mainly arise from the need to estimate multiple

baseline functions, correlated frailty, and parameters in the frailty distribution, which are

incorporated in this paper. In summary, the proposed method provides a flexible and general

approach that can be directly implemented to analyze multi-type recurrent event data.

The remainder of this paper is organized as follows. Section 2 describes the data setup, the

model for the intensity function, and the model for the random effects. Section 3 describes

the MCEM algorithm that is used to estimate the unknown parameter in the model and

statistical inference procedures. Section 4 uses simulations to validate the estimation and

inference procedure developed in this paper. Section 5 applies the proposed method to the

skin cancer dataset. Section 6 gives some concluding remarks and areas for further research.

2 Data and Model

In this section, we introduce the notation for the data and the models to describe the data.
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2.1 Data

The kth event time for subject i of event type j is denoted by tijk, i = 1, . . . , m, j = 1, . . . , J ,

and k = 1, . . . , Nij(τi). Here m is the number of subjects under the study, J is the total

number of event types, τi is the length of follow-up time for subject i, and Nij(t) is defined

to be the number of type j events occurred over time interval (0, t] for subject i. The

censoring indicator δijk equals to 1 if event type j is observed for subject i at time tijk,

and δijk = 0 otherwise. We also have information on covariates for subject i, denoted

by xi = (xi1, . . . , xip)
′, where p is the number of covariates. Let ti denote the data for

subject i which includes observed event times, censoring indicator and the covariates. We

use t = {t1, . . . , tm} to denote the dataset for all subjects.

2.2 Model for Event Intensities

Let Yi(t) = I(t ≤ τi) be the at-risk process for subject i, i = 1, · · · , m. The event history for

subject i up to time t is defined as Hi(t) = {Nij(s),xi, Yi(s); j = 1, · · · , J, 0 ≤ s < t}. The

intensity function for the type j events of subject i is defined as (e.g., Cook and Lawless

2007),

λij [t|Hi(t)] = lim
∆t→0

Pr [Nij(t+∆t)−Nij(t) = 1|Hi(t)]

∆t
.

In this paper, we use the following form to model the event intensity for type j

λij(t) = λ0j(t) exp(x
′
iβj + wij), (1)

where i = 1, . . . , m, and j = 1, . . . , J . Here, λ0j(t) is the baseline intensity function for event

type j. The vector βj with dimension p × 1 contains the fixed effect parameters for the

type j events, and wij is the random effect for the jth event type of the ith subject. The

cumulative intensity function can be written as

Λij(t) =

∫ t

0

λij(s) ds = Λ0j(t) exp(x
′
iβj + wij), (2)

where Λ0j(t) =
∫ t

0
λ0j(s) ds is the baseline cumulative intensity function. In this paper, the

baseline cumulative intensity function is left to be unspecified. That is we use a nonpara-

metric form to describe the function Λ0j(·), j = 1, · · · , J . Note that the intensity function

(1) can also be rewritten as

λij(t) = λ0j(t) uij exp(x
′
iβj),

where uij = exp(wij) is called the frailty for the jth event type of the ith subject.
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2.3 Model for Random Effects

Let wi = (wi1, . . . , wiJ)
′ be the random effects vector for the ith subject. A multivariate

normal distribution was used to model the random effectwi. In particular, the random effects

are independent and identically distributed (i.i.d.) with a multivariate normal distribution

MVN (0,Σ). The variance-covariance matrix Σ for the ith subject is

Σ =




σ11 · · · σ1J
...

. . .
...

σJ1 · · · σJJ


 .

Letw=(w′
1, . . . ,w

′
m)

′ be a vector of random effects for all subjects. Then, w ∼ MVN(0,Σw) ,

where 0 is a zero vector, and the variance-covariance matrix Σw can be defined as a block-

diagonal matrix with all elements in the diagonal equal to Σ. We write Σw = diag(Σ, · · · ,Σ).

3 Parameter Estimation

3.1 The Likelihood Function

Let β = (β′
1, . . . ,β

′
J)

′
be the vector for the regression parameters for all types of events.

We use η = {β,Λ01(·), . . . ,Λ0J(·)} to denote the unknown parameters in the event intensity

model in (1). Let θ = vech(Σ) be the vector for the parameters in Σ, which is the variance-

covariance matrix for the distribution of the random effects. Here, vech(Σ) is the half

vectorization of the matrix Σ. The set of unknown parameters included in the model is

denoted ξ = {η, θ}. The likelihood function for ξ based on data t and random effects w is

L (ξ|t,w) =
m∏

i=1




J∏

j=1





Nij(τi)∏

k=1

[λij(tijk)]
δijk



 exp [−Λij(τi)] f(wi; θ)


 ,

where f (wi; θ) is the probability density function (pdf) of wi. Here λij(·) and Λij(·) are

defined in (1) and (2), respectively. The log-likelihood function is L(ξ|t,w) = log[L(ξ|t,w)].

In particular,

L (ξ|t,w) = L1(η|t,w) + L2(θ|w), (3)

where

L1(η|t,w) =
m∑

i=1

J∑

j=1




Nij(τi)∑

k=1

δijk
{
log[λ0j(tijk)] + (x′

iβj + wij)
}
− Λ0j(τi) exp(x

′
iβj + wij)


 ,

(4)

and

L2(θ|w) = −
Jm

2
log(2π)−

m

2
log(|Σ|)−

1

2

(
w′Σ−1

w w
)
.
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The pdf of the conditional distribution of w given t is denoted by g(w|t),

g(w|t) =
L (ξ|t,w)∫∞

−∞
L (ξ|t,w) dw

.

It can be shown that the pdf of w|t is

g(w|t) ∝ exp

[
m∑

i=1

J∑

j=1

Nij(τi)wij − Λ0j(τi) exp(x
′
iβj) exp(wij)−

1

2

(
w′

iΣ
−1wi

)
]
.

3.2 The EM Algorithm

The EM algorithm provides a tool for obtaining maximum likelihood estimates under models

that yield analytically formidable likelihood equations. It is an iterative routine requiring two

primary calculations at each iteration: computation of a particular conditional expectation

of the log-likelihood (E step) and maximization this expectation over the corresponding

parameters (M step). The Monte Carlo EM (MCEM), introduced by Wei and Tanner (1990),

is a modification of the EM algorithm where the expectation in the E step is computed

numerically through Markov chain Monte Carlo (MCMC) methods such as the Gibbs sampler

and Metropolis-Hastings sampling as described in Robert and Casella (2009), and McLachlan

and Krishnan (2007).

The EM algorithm will start with an initial value of ξ, denoted by ξ̂
(0)
, which can be

obtained by fitting a Gaussian frailty model separately for each type of events (i.e., set the

correlations among different event types to be 0). Then it iteratively carries out the E step

and M step as described below until convergence.

E Step:

The estimates for the parameters at the qth iteration of the EM algorithm are represented

by ξ̂
(q)
. In the E step, we need to find the conditional expectation of the full log-likelihood

function with respect to the conditional distribution w|t. That is to find

Q(ξ|ξ̂
(q)
) = Ew|t[L(ξ|t,w)]. (5)

Because there is no closed-form expression for g(w|t), we use MCMC to simulate sample

from g(w|t). The Metropolis-Hastings algorithm steps are shown in Algorithm 1.

Algorithm 1:

1. Choose an initial value w(0) = (w
(0)′
1 , . . . ,w

(0)′
m )′.

2. At iteration s, draw a candidate value w∗
i , for the ith component of w from a pro-

posal distribution q(w∗
i |w

(s−1)
i ), where a standard proposal distribution would be the
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multivariate normal distribution with mean equal to the current value w
(s−1)
i and with

some proposal variance.

3. Compute an acceptance ratio (probability)

r(s) =
g (w∗

i |ξ) q
(
w

(s−1)
i |w∗

i

)

g
(
w

(s−1)
i |ξ

)
q
(
w∗

i |w
(s−1)
i

) .

4. Accept w∗
i as the new value with probability min(1, r(s)); otherwise, w

(s)
i = w

(s−1)
i .

Repeat step 3 and 4 until finishing updating each element in w.

5. Repeat steps 2 to 4 for generating S̃ samples w(1), . . . ,w(S̃).

M Step:

The goal of the M step is to find the value of ξ that maximizes Q(ξ|ξ̂
(q)
) in (5). The

maximizer is denoted by ξ̂
(q+1)

. Note that

Ew|t[L (ξ|t,w)] = Ew|t[L1(η|t,w)] + Ew|t[L2(θ|w)].

Hence the maximization of Q(ξ|ξ̂
(q)
) can be done by maximizing Ew|t[L1(η|t,w)] and

Ew|t[L2(θ|w)] separately. Because Ew|t[L1(η|t,w)] involves both β and nonparametric base-

lines Λ0j(·), it is challenging to do a direct maximization. Thus we use the profile likelihood

approach to estimate β first. In this case the log profile likelihood function for β is equiva-

lent to the conditional expectation of the log partial likelihood function. In particular, the

conditional expectation of log partial likelihood function is

Ew|t [PL(β)] =
J∑

j=1

Lj∑

l=1



x′

iβj + Ew|t (wij)− log


∑

i∈Rjl

Ew|t (uij) exp
(
x′
iβj

)




 . (6)

Here, Rjl is the risk set at time tjl, which contains all individuals that are still under study

at time tjl. Those time points tjl are the ordered distinct event times for type j events. That

is, tj1 < · · · < tjl < · · · < tjLj
where Lj is the number of distinct event time points for type

j, j = 1, · · · , J . Also, let djl be the total number of event of type j occurred at time tjl.

The required conditional expectations Ew|t(wij), and Ew|t(uij) in (6) are not available in

closed forms. It is, however, possible to approximate these integrals by numerical methods

or Monte Carlo simulation. Numerical integration was used for bivariate gamma frailties by

Cook, Lawless, and Lee (2010). This solution is feasible, however, only for low-dimensional

random vectors wi (Vaida and Xu 2000). The MCEM method used in this paper, however,

provides a flexible way to handle more than two types of events.
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At E step, we obtain S samples after burn-in and thinning from the conditional distribu-

tion of the random effects. Based on graphical checks of the MCMC trace plot, we discarded

5,000 samples for burn-in in the simulation study and data analysis. We use the autocor-

relation function (ACF) plot to diagnose the autocorrelations among the MCMC samples.

For the simulation study and data analysis, we took a sample of every 10 samples based on

the ACF plots. For the computation of the conditional mean and the variance-covariance

matrix, we used S = 10,000 thinned samples, which is typically large enough to make the

MCMC error negligible. Because the MCMC algorithm was implemented in C, the MCMC

sampling is efficient computationally.

With the thinned samples, the conditional expectations Ew|t(wij) and Ew|t(uij) can be

estimated by

Ew|t(wij) =
1

S

S∑

s=1

w
(s)
ij , andEw|t(uij) =

1

S

S∑

s=1

exp
(
w

(s)
ij

)
.

The estimate, β̂
(q+1)

= (β̂
(q+1)′

1 , · · · , β̂
(q+1)′

J )′, can thus be obtained by maximizing Ew|t [PL(β)]

in (6). Because there is no closed-form expression for the maximum likelihood (ML) esti-

mate β̂
(q+1)

, numerical optimization procedures are used. In particular, we used the optim()

function in R (2013) for optimization.

For estimating the baseline cumulative intensity functions, we used the profile likelihood

approach at which we fix β = β̂
(q+1)

in (4), and used a step function to estimate the baseline

cumulative intensity function, which only jumps at the distinct event time points. This leads

the Breslow type of estimator. In particular, the estimate of the Λ0j(t) is given by

Λ̂
(q+1)
0j (t) =

∑

tjl≤t

djl
∑

i∈Rjl
Ew|t(uij) exp(x′

iβ̂
(q+1)

j )
, j = 1, · · · , J.

By maximizing Ew|t[L2(θ|w)], the maximum likelihood estimate for the variance-covariance

matrix can be given in the form

Σ̂ =
1

m

m∑

i=1

Ew|t(wiw
′
i) =

1

Sm

S∑

s=1

m∑

i=1

w
(s)
i w

(s)′
i .

Note in this case, θ is the unknown parameters in Σ.

We summarize the MCEM algorithm as follows.

Algorithm 2:

1. Choose a starting point ξ̂
(0)
.

2. (E step), at step q, using the current parameter values ξ̂
(q)
, generate S thinned samples

(w(1)′, · · · ,w(S)′)′ from the conditional distribution of g(w|ξ) using the Metropolis-

Hastings algorithm in Algorithm 1.
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3. (M step), given the MCMC samples from the conditional distribution in Step 2, then

(a) Find estimates for β̂
(q+1)

that maximize Ew|t [PL(β)].

(b) Given β̂
(q+1)

in Step 3(a), compute the estimates for the baseline cumulative

intensity function Λ̂
(q+1)
0j (·), j = 1, · · · , J .

(c) Maximize Ew|t[L2(θ|w)] to obtain θ̂
(q+1)

.

4. If convergence is achieved, declare the current values to be the maximum likelihood

parameter estimates; otherwise return to Step 2.

When the relative change in parameter values from two successive iterations is small then

it is considered as convergence achieved. That is, one can apply the stopping rule suggested

by Booth and Hobert (1999), which is

max
d

(∣∣∣ ξ̂
(s)

d − ξ̂
(s−1)

d

ξ̂
(s−1)

d − δ1

∣∣∣
)

< δ2, (7)

where (d = 1, . . . , D) is the number of parameters in the parameter vector ξ, and δ1 and

δ2 are predetermined values. Alternatively, Levine and Casella (2001) suggested a stopping

rule after a fixed number of iterations, which is a useful stopping rule for practice. Graphical

tools can be used for checking the convergence of the algorithm.

3.3 Statistical Inference

The EM algorithm provides only the parameter estimates. For statistical inference, the

variance-covariance matrix is often needed. Because the baseline cumulative intensity func-

tion is nonparametric, we use the discrete local information matrix for inference. The discrete

local information matrix is usually used for the statistical inference of frailty models (e.g.,

Chapter 5 of Duchateau and Janssen 2008).

In the discrete local information matrix, the parameters are β, θ, and the amount of

jump in the step functions for the baseline. Those jumps are denoted by λjl = Λ0j(tjl) −

Λ0j(tj, l−1), l = 1, · · · , Lj, j = 1, · · · , J . Let λj = (λj1, . . . , λjLj
)′, and λ = (λ′

1, · · · ,λ
′
J)

′. We

use ζ = (β′, θ′,λ′) to denote all the discrete parameter. Now we can compute the variance-

covariance matrix corresponding to ζ. The Louis’s formula in Louis (1982) is used for finding

estimates of the variance-covariance matrix. In particular,

I
ζ̂
= Ew|t

(
−
∂2L(ζ)

∂ζ∂ζ ′

∣∣ζ̂
)
− Ew|t

[
∂L(ζ)

∂ζ

∂L(ζ)

∂ζ ′

∣∣ζ̂
]
. (8)

9



The formulae for the first and second derivatives are available in Appendix A. One can

compute the terms in (8) using samples of the last iteration of the EM steps to obtain I
ζ̂
.

The variance-covariance matrix of ζ is obtained as Σ
ζ̂
= I−1

ζ̂
. Let Σ

β̂
, Σ

θ̂
, and Σ

λ̂j
be the

diagonal block matrices of Σ
ζ̂
corresponding to parameter vectors β, θ, and λj , respectively.

According to the asymptotic theory in Parner (1998), the asymptotic normality holds for

the ML estimators for β̂ and θ̂. That is, β̂∼̇MVN
(
β, Σ

β̂

)
, and θ̂∼̇MVN

(
θ, Σ

θ̂

)
, which

can be used for statistical hypothesis testing and construction of confidence intervals for β

and θ.

The estimator of Λ0j(t) can be expressed as Λ̂0j(t) = gj(t, λ̂j), where gj(t,λj) =
∑

tjl≤t λjl,

j = 1, · · · , J . The asymptotic normality does not hold for the estimators for the jumps λ̂.

The estimator for the cumulative intensity function Λ̂0j(·), however, asymptotically follows a

Gaussian process with the mean function Λ0j(·) and a variance function V0j(·)(Parner 1998).

The variance function V0j(·) can be consistently estimated by

V̂0j(·) =

[
gj(·,λj)

∂λ′
j

∣∣∣∣
λj=λ̂j

]
Σ

λ̂j

[
gj(·,λj)

∂λj

∣∣∣∣
λj=λ̂j

]
.

The statistical hypothesis testing and construction of confidence interval for Λ0j(t) can be

based on the asymptotic normality of Λ̂0j(t).

4 Simulation Studies

In this section, simulations were used to examine the empirical performance of our proposed

method in finite samples.

4.1 Simulation Settings

To illustrate the flexibility of the proposed approach, we simulated data where three types

of events may occur. There was one treatment variable with two levels (e.g., treatment vs.

placebo) in the simulated data. Different sample sizes were also simulated to study the effect

of sample size on estimation performance. The details of simulation are described as follows.

1. Set the study sample size m = 100, 200, and 500, respectively. The regression coeffi-

cients were set to be β1 = −1, β2 = −.5, and β3 = −0.8 for each of the three event

types, respectively.

2. The multivariate random effect wi = (wi1, wi2, wi3)
′ is generated from a multivari-

ate normal distribution with mean (0, 0, 0)′ and variance-covariance matrix Σ. The
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variance-covariance matrix is set to be

Σ =




1 0 0
0 1 0
0 0 1


 , Σ =




1 .4 .4
.4 1 .4
.4 .4 1


 , and Σ =




1 .8 .8
.8 1 .8
.8 .8 1


 ,

corresponding to independent, moderate, and high correlation cases. That is, the

values of all variances σ11 = σ22 = σ33 = 1 and the values of all covariance entries

σ = σ12 = σ13 = σ23 are set to be 0, 0.4, and 0.8.

3. The treatment effect variable xi is generated from a Bernoulli distribution with p = 0.5.

4. The maximum follow up time C is set to be 1 or 2 to represent different study lengths.

The random censoring time C∗
i is assumed to be exponentially distributed with rate

αc = 0.5. Here Ci is the censored time for subject ith and Ci = min {C∗
i , C}.

5. For each event type (j = 1, 2, 3), for simplicity, set λ0j(t) = 1 which makes the recurrent

event process to be a Poisson process. This means we can simulate the inter-arrival

time, zijl, between two events from an exponential distribution with rate parameter

αj =
[
exp(x′

iβj + wij)
]
.

6. The observed event times tijk = min(Ci, Yijk), where Yijk =
∑k

l=1 zijl. The censoring

indicator δijk = 1 if tijk = Yijk and δijk = 0 otherwise.

4.2 Simulation Results

We used 1000 simulation runs. All calculations for the simulation studies were performed

using parallel computing with R (2013). The results are obtained based on the algorithms

of Section 3. The empirical mean square errors (MSE), variance, average of the estimated

variance, and bias of the estimators were obtained. The coverage probability of the confidence

interval procedures for unknown parameters were also obtained.

Due to the page limit, we only report several representative results here. The complete

simulation results are available in supplementary Section 1. Figure 1 shows the empirical

MSE for the estimators for the treatment effects β and θ, the parameters in the variance-

covariance matrix. In Figure 1, there are six panels in 2 × 3 format. The censoring times

that we used are C = 1 and C = 2. The values of the covariance entries are σ = 0, 0.4, and

0.8. The MSE is plotted as a function of number of subjects (m = 100, 200, and 500) in each

panel for each parameter. Figure 2 shows the pointwise empirical MSE for the estimator of

Λ01(·). In each panel of Figure 2, the pointwise MSE is plotted as a function of time, for

different values of m = 100, 200, and 500. Figure 3 shows the empirical coverage probability
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for confidence interval procedures for β and θ. Figure 4 shows the pointwise empirical

coverage probability for the confidence interval procedure for Λ01(·).

From the comprehensive simulation results, we observed the following:

• In general, the MSE decrease as the number of subjects increases, and longer follow-up

time leads to a smaller MSE, because more events are observed. Higher correlation in

the variance-covariance matrix of random effects tends to have a higher MSE.

• The results for the variance, estimated variance, and bias are similar. The estimated

variance tends to be larger than the variance but they are getting closer when the

number of subjects increase or the follow-up period is extended.

• The performance of the coverage probability is around the 0.95 nominal level, and it is

getting closer to 0.95 when the number of subjects increases. For the baseline intensity

functions Λ0j(·)’s, the improvement is more evident on the early part (i.e., when t is

small) of the function, when m increases.

In summary, the simulation results for the regression coefficients β, variance-covariance

parameters θ, and the baseline intensity functions Λ0j(·)’s are as expected and show that

our procedure works well.

5 Application to a Real Dataset

We applied our proposed model to the data collected as a part of the Nutritional Prevention

of Cancer trial conducted by Arizona Cancer Center (e.g., Abu-Libdeh et al. 1990, Clark

et al. 1996, and Duffield-Lillico et al. 2003) to study the efficacy of a nutritional supple-

ment of selenium in the prevention of skin cancers among high-risk patients. Patients with

previous history of either multiple basal cell carcinoma (BCC) or a squamous cell carcinoma

(SCC) or otherwise at high risk for skin cancer were recruited into the trial in one of seven

clinics. A total of 1,312 patients were enrolled in the study. There were 120 patients found to

have incomplete follow-up data for the tumor types thus we exclude them from the analysis.

We applied the analysis to a total of 1,192 patients with 606 and 586 randomly assigned

to treatment (Selenium) group (xi = 1) and placebo group (xi = 0), respectively. Patients

received a nutritional supplement of 200 micro-gram of selenium per day or a placebo. Pa-

tients were followed closely for a minimum of 4 years by means of frequent and regular clinic

visits. They were also instructed on self-examination for appearance of skin lesions and told

to report to the clinic if they observe any suspicious symptoms without waiting for the next

scheduled appointment.
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Figure 1: Empirical MSE for estimators of β and θ.
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Figure 2: Pointwise empirical MSE for the estimator of Λ01(·).
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Figure 3: Empirical coverage probability for confidence interval procedures for β and θ.
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Figure 4: Pointwise empirical coverage probability for the confidence interval procedure for

Λ01(·).
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Figure 5: Multi-type event plot for tumor occurrence times and types for a sample of 40

patients of the skin cancer dataset.

Events of interest were the successive incidence times of the two types of tumors. The

first type was the detection of one or more basal cell carcinoma (BCC) at a clinic visit, while

the second type was the medical detection of one or more squamous cell carcinoma (SCC)

at a clinic visit. Figure 5 shows the tumor occurrence times and types for a sample of 40

patients in the skin cancer dataset. Some patients did not develop any new events (e.g.,

subjects 101, 103, and 130), some patients were observed to develop only new events of a

particular type (e.g., subjects 100, 110, and 124), and some experienced both types (e.g.,

subjects 102, 120, and 140). The last follow-up time point was treated as a censoring point.

Descriptive statistics for the total number of observed events according to the cancer type

and treatment group are given in Table 1.

We fitted the proposed multi-type model using the MCEM algorithm to the skin cancer

data with two types of events (BCC - type I; SCC - type II). The initials values for ξ were

the estimated values from the corresponding Cox model with Gaussian frailties separately

for each type of event. In the E step of the MCEM algorithm, we used the Metropolis-

Hastings algorithm with 100,000 samples after a burn-in sample of 5,000. The convergence

of the MCMC was checked through visual inspection. Supplementary Figure 21 shows the

MCMC trace plot, which shows the Monte Carlo chains converge well. We also used the

autocorrelation function (ACF) plot to assess the autocorrelation among the MC samples.

Supplementary Figure 21 also shows the ACF plots for the Monte Carlo samples. Based on
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Table 1: Number of observed events (N) and patients (m) affected by cancer types according

to the cancer type and treatment group.

Cancer type
Total (1192 subject) Placebo (586 subject) Selenium (606 subject)
m N N/m m N N/m m N N/m

BCC 856 3453 2.896 407 1582 2.699 449 1871 3.087
SCC 374 759 0.637 172 351 0.599 202 408 0.673

BCC or SCC 924 4212 3.533 434 1933 3.298 490 2279 3.760

Table 2: Estimates of the treatment effects of BCC and SCC event type for the proposed

multi-type model.

Para. EST. S.E. p-value
95 % CI RR 95 % CI

lower upper EST. lower upper
β1 0.088 0.072 0.221 -0.053 0.229 1.092 0.948 1.258
β2 0.122 0.128 0.340 -0.128 0.372 1.129 0.880 1.450
σ11 1.027 0.072 < 0.001 0.887 1.167
σ12 0.457 0.089 < 0.001 0.282 0.632
σ22 2.044 0.205 < 0.001 1.642 2.446

the ACF plots, we took a thinned sample of every 10 Monte Carlo samples. Thus, we used

S = 10,000 thinned samples in the MCEM algorithm.

Table 2 presents the estimates for the treatment effects and variance-covariance com-

ponent parameters and the corresponding 95% confidence intervals based on the multi-type

model. Figure 6 shows the estimated baseline cumulative intensity functions and correspond-

ing 95% point-wise confidence intervals for the BCC and the SCC, based on the multi-type

model. The results show that there is an estimated 9.2% increase in the rate of BCC in the Se-

lenium group compared to the placebo group with an estimated relative risk RR(β1) =1.092

(95% CI: [0.948, 1.258]; p-value: 0.221). There is an estimated 12.9% increase in the rate

of SCC in the Selenium group compared to the placebo group with estimated relative risk

RR(β2) =1.129 (95% CI: [0.880, 1.450]; p-value: 0.340). The variances of the random effects

are estimated as σ̂11= 1.027 (95% CI: [0.887, 1.167]) and σ̂22= 2.044 (95% CI : [1.642, 2.446]).

The estimate of the covariance between random effects for the two event types is 0.457 (95%

CI : [0.282, 0.632]). The correlation coefficient (ρ12) is estimated at 0.315 which indicates a

mild to medium correlation between the occurrence of the two cancer types.

We did some additional analyses on the skin cancer data for some comparisons and to gain

some more insights. Existing approaches include single-type Andersen-Gill (AG) analysis
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Figure 6: Cumulative intensity functions for BCC and SCC tumor types.

with robust variance, single-type semiparametric model using the normal distribution for the

random effects (Gaussian), and single-type semiparametric frailty gamma model (Gamma).

Table 3 gives a summary of alternative model fittings to the skin cancer dataset. The AG1

model in Table 3 is the AG model according to the method described in pages 185-186

of Therneau and Grambsch (2000). In this model, there is only one covariate, which is

the treatment group (treatment vs placebo). Thus, the model essentially is a time-varying

Poisson process. In this special case, the AG model and the model in Lin et al. (2000) are the

same. Because the independent increments model assumption may not be met, the robust

variance is typically used for inference. Overall, the results from the single-type frailty

models and the AG1 model reveal broadly comparable estimates for both the treatment

effects. The results from the multi-type model, however, has a smaller p-value (0.340 vs

0.498) for the treatment effect in the SCC type, although this effect is not statistically

significant. In addition, we fitted the AG model with the number of previous events as

an additional covariate in the model. The results are shown as AG2 model in Table 3.

Interestingly but as expected, the treatment effect is completely wiped out for both types of

the events. The effect is picked up by the number of previous events. For subject with more

number of previous events, it is more likely to have events in the future. We also examined a

non-parametric approach to test the treatment effect within each type, using the robust test

for treatment comparison in Cook, Lawless, and Nadeau (1996). The p-values were 0.124

and 0.527 for the treatment effects for types BCC and SCC, respectively. These results are
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Table 3: Summary of alternative model fittings to the skin cancer dataset. Here, β1 and β2

are the treatment effects for BCC and SCC, respectively. The parameters γ1 and γ2 show

the effect of the previous number of events on BCC and SCC, respectively.

Model Para. EST. S.E. p-value
95 % CI RR 95 % CI

lower upper EST. lower upper
BCC

Gaussian β1 0.073 0.068 0.280 -0.060 0.206 1.076 0.942 1.229
Gamma β1 0.102 0.070 0.147 -0.036 0.240 1.108 0.965 1.272
AG1 β1 0.114 0.074 0.122 -0.031 0.259 1.121 0.970 1.295

AG2
β1 0.019 0.048 0.689 -0.075 0.114 1.019 0.927 1.121
γ1 0.148 0.006 0.000 0.136 0.160 1.160 1.146 1.174

SCC
Gaussian β2 0.075 0.110 0.498 -0.141 0.291 1.078 0.868 1.337
Gamma β2 0.079 0.126 0.533 -0.168 0.325 1.082 0.845 1.385
AG1 β2 0.089 0.140 0.526 -0.186 0.363 1.093 0.830 1.438

AG2
β2 -0.002 0.126 0.984 -0.250 0.245 0.998 0.779 1.277
γ2 0.170 0.022 0.000 0.126 0.214 1.185 1.135 1.238

similar to the AG1 model fitting.

In summary, the treatment effects for both types of skin cancers are not statistically sig-

nificant, although the point estimates show increased rates in the treatment group. Through

the multi-type modeling, we found that there is more heterogeneity in the event process of

the SCC type of cancer and there is a mild to medium correlation between the occurrence

of the two cancer types.

6 Concluding Remarks and Areas for Future Research

This paper provides a semiparametric methodology to characterize the incidence rate of

event types, estimate the impact of covariates, and understand the correlation structure

among event types. Maximum likelihood estimates of the regression coefficients, variance-

covariance components, and nonparametric baseline intensity functions are obtained based on

an MCEM algorithm. A Metropolis-Hastings sampling was used to draw from the conditional

distribution of the random effects. The proposed model performs well for simulated datasets

with different censoring rates and number of events per subject. The method is illustrated

via its application to the skin cancer prevention dataset collected to study the effect of

selenium supplementation on the risk of developing two types of tumors.

The model is developed for data with multiple covariates and a multivariate Gaussian

distribution is used to model the correlated random effects. The algorithm can be modified
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for other multivariate distributions desired for the random effects. The model can also be

adopted easily for data with time-dependent covariates. Furthermore, generalizations of

the model are not considered in this paper but can be made in a future work by including

multilevel frailty, dependent censoring, and assessing the goodness of fit and the influence

analysis. Robust variance estimators can also be considered in the setting of multi-type

events (e..g, Al-Khalidi et al. 2011). Automated MCEM algorithms (e.g., Booth and Hobert

1999, and Levine and Fan 2004) could be adopted for the current model and study the

efficacy of the different routines. Finally, using the copula function to model the multivariate

correlated frailties is an area of interest for our future work.
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A Derivatives

In the appendix, we provide the technical details for the statistical inference in Section 3.3.

Let θa and θb be two arbitrary elements in θ = vech(Σ). The first and second partial

derivatives of the loglikelihood function in (3) with respective to θa’s are
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respectively. Here, L = L (ξ|t,w). The first and second partial derivatives of the loglikeli-

hood function in (3) with respective to βj’s and λjl’s are

∂L

∂βj

=

m∑

i=1

Nij(τi)xi −

m∑

i=1

Λ0j(τi) exp(x
′
iβj + wij)xi
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∂2L

∂βj∂β
′
j

=−
m∑

i=1

Λ0j(τi) exp(x
′
iβj + wij)xix

′
i
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respectively. All other partial second derivatives that are not shown above are zero.
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