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GENOMIC SELECTION
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ABSTRACT Genomic selection in crop breeding introduces modeling challenges not found in animal
studies. These include the need to accommodate replicate plants for each line, consider spatial variation in field
trials, address line by environment interactions, and capture nonadditive effects. Here, we propose a flexible
single-stage genomic selection approach that resolves these issues. Our linear mixed model incorporates
spatial variation through environment-specific terms, and also randomization-based design terms. It considers
marker, and marker by environment interactions using ridge regression best linear unbiased prediction to
extend genomic selection to multiple environments. Since the approach uses the raw data from line replicates,
the line genetic variation is partitioned into marker and nonmarker residual genetic variation (i.e., additive and
nonadditive effects). This results in a more precise estimate of marker genetic effects. Using barley height data
from trials, in 2 different years, of up to 477 cultivars, we demonstrate that our new genomic selection model
improves predictions compared to current models. Analyzing single trials revealed improvements in predictive
ability of up to 5.7%. For the multiple environment trial (MET) model, combining both year trials improved
predictive ability up to 11.4% compared to a single environment analysis. Benefits were significant even when
fewer markers were used. Compared to a single-year standard model run with 3490 markers, our partitioned
MET model achieved the same predictive ability using between 500 and 1000 markers depending on the trial.
Our approach can be used to increase accuracy and confidence in the selection of the best lines for breeding
and/or, to reduce costs by using fewer markers.
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Whole genome prediction (WGP) uses genotypic information in the
form of molecular genetic markers to predict individual phenotypic
performance, and has utility in livestock and crop breeding. For a

particular population, WGP associates a phenotypic value with each
molecularmarkerallele,which is consequentlyknownasamarkereffect.
The sum of the marker effects (which relate to the alleles present in an
individual’s genotype) is a predictor of their phenotypic performance,
and is known as a genomic estimated breeding value (GEBV). In ‘Ge-
nomic Selection’ (GS), the GEBV is used to select the best parents for
breeding, or to predict the performance of progeny using only genotyp-
ing data without the need for phenotypic screening. In order to derive
GEBVs for prediction, an initial ‘training population’ is phenotyped
and genotyped to estimate marker effects. GEBVs can then be calcu-
lated for individuals descended from, or related to, the training pop-
ulation (a ‘validation population’) that have not been phenotyped, but
for which genotypic information is available. This saves both time and
the costs associated with phenotyping in a breeding program. Since GS
uses all geneticmarkers to calculate the GEBV, it potentially captures all
of the loci that influence a trait. This distinguishes GS from more
traditional marker assisted selection (MAS), where a few diagnostic
markers are used to follow the inheritance of specific loci influencing
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a trait, and marker assisted recurrent selection (MARS), where only a
subset of significant markers are used to select for quantitative trait loci
(QTL) in a given population. The potential of GS to accelerate crop
improvement due to shorter generation times and the avoidance of
phenotypic evaluation has been established (Jannink et al. 2010), and
shown to outperformMAS (Heffner et al. 2010) andMARS (Massman
et al. 2013).

Since 2001, when Meuwissen et al. (2001) compared least square,
ridge regression best linear unbiased prediction (RR-BLUP) and two
Bayesian approaches (BayesA and BayesB) for GS in animal breeding,
there has been an increase in the number of methods available (Wang
et al. 2012; de los Campos et al. 2013; Desta and Ortiz 2014), and
widespread uptake, particularly in dairy cattle breeding, where official
GEBVs are published (http://www.interbull.org). These GS methods,
however, differ in their predictive ability (de los Campos et al. 2013)
and suitability for specific applications. Crop populations may require
different GS methods to those of animals due to the potential presence
of extensive linkage disequilibrium (LD), population substructure, and
agronomic performance traits which are often influenced by many
QTL of small effect (Wimmer et al. 2013). In a simulated data set based
on actual marker data from barley, RR-BLUP was found to be more
accurate than BayesB (Zhong et al. 2009), and has been recommended
for crop improvement applications (Heslot et al. 2012). Wimmer et al.
(2013) compared the performance of four commonly used methods;
RR-BLUP and BayesB (Meuwissen et al. 2001), LASSO (Tibshirani
1996), and the elastic net (Zou and Hastie 2005). They also found good
performance with RR-BLUP, and recommended its use in crops. RR-
BLUP has the advantage over Bayesian approaches of being easily
implemented and quick.

Despite these advances, GS is only starting to be adopted in crop
breeding. Some of the reluctance to adopt GS may be due to the
additionalmodeling challenges of crop improvement scenarios. Suitable
modelsneed toaccommodatedata fromreplicateplantsof the same line,
the influence of spatial variation in the field, and potentially different
‘environments’ if the crop is trialed in several locations or multiple
years. These variables introduce significant genotype by environment
interactions (G · E) and newmethods are needed that consider G · E
effects, as well as nonadditive effects, and the crop-specific (in)breeding
cycle (Jonas and De Koning 2013).

The reasons for considering spatial variation in crop breeding
activitiesareobvious.Every trial (or environment)willhaveconsiderable
sourcesofnongenetic variation such that even thepositionof a line in the
field will impact its phenotypic response. Allowing for spatial variation
through appropriate trial design and analysis will ensure that more
accurate genetic effects are revealed (Gilmour et al. 1997). In GS, this is
also true; the accuracy of genomic prediction in RR-BLUP is improved
after adjusting for spatial variation using moving-means as a covariate
in the model (Lado et al. 2013).

Similarly, consideration should be paid to the fact that crop lines are
often assessed in a multi environment trial (MET), i.e., in different
geographic locations, seasons, or years, in order to determine perfor-
mance stability across environments (i.e., G · E). In GS, G · E is an
important component of genetic variability (Crossa et al. 2010, 2011). A
MET in a GS context is therefore an important extension as it allows the
examination of marker by environment (M · E) interactions, and, in
particular, the identification of markers whose effects are stable across
environments (trials), as well as those that are environment-specific. As
RR-BLUP involves fitting a linear mixed model, the incorporation of a
MET extension is straightforward, and improvements in prediction
when using two stage approaches to MET analysis have already been
shown (Burgueno et al. 2012; Guo et al. 2013).

Capturing nonadditive effects in genomic selection is more compli-
cated because the genomic relationshipmatrix described by themarkers
andused inRR-BLUP captures not only additive genetic relationships at
QTL but also LD and cosegregation information (Habier et al. 2013). A
first step toward modeling nonadditive effects in GS is to include ped-
igree information that captures a polygenic effect. Pedigree information
included in a BayesB model in animal GS marginally improved the
accuracy of selection, and reduced bias, which is important when
marker effect estimates are used over multiple generations (Solberg
et al. 2009). A small improvement in crops has also been shown (Crossa
et al. 2010). Burgueno et al. (2012) explored the inclusion of pedigree
information in RR-BLUP MET models, and found that it improved
prediction accuracy for individual lines in some circumstances, but not
others. However, compared to use of pedigree, inclusion of both addi-
tive and nonadditive marker-based, or realized genomic relationship
matrices further improves prediction of breeding values (Munoz et al.
(2014).

Most methods of crop GS use a two-stage analysis. First, data from
individual replicated plants or plots are used to derive the line means.
This allows software already developed for animal studies, which cannot
handle replicates, to use the means for RR-BLUP in the second stage.
However, a two-stage approach biases marker effects, and induces
heterogeneous residual variances and residual correlations that are
not completely eliminated by a weighted analysis (de los Campos
et al. 2013). A single-stage approach that uses individual plant or plot
data, includes replication, and accounts for spatial variation and ran-
domization-based terms (e.g., blocking factors), would be preferable
because it would not have the difficulties associated with a two-stage
approach. Incorporating data from individual plant or plot replicates
would have additional advantages for GS. Markers may not capture all
the genetic variation contributing to the phenotype, particularly if the
number of markers used for prediction is low. Including replicates
allows the total genetic effect due to lines to be partitioned into the
genetic effect due to markers, and a residual genetic effect not captured
by markers, which will include nonadditive genetic effects. This ap-
proach is possible without the need for pedigree information (which is
not always available), would be more encompassing than a polygenic
effect, and would not require the calculation of additional matrices that
can induce dependency between variance components. In addition,
separating out the nonadditive genetic effects from the model residual
variance should increase the accuracy and predictive ability of the
additive genetic effects compared to two-stage analyses.

In this paper,we propose such a single-stage approach to the analysis
of multi-environment data by fitting a single linear mixed model that
extends single trial RR-BLUP analysis.Marker andM · E interactions
are incorporated as terms in the model, and form the basis for the
analysis of METs. In this GS approach, the marker and M · E in-
teraction terms are assumed to be random using RR-BLUP, and the
approach extends RR-BLUP analysis by partitioning the term for ge-
netic variation into marker and nonmarker (or residual genetic) vari-
ation using raw data from individual replicates, rather than line means.
We first outline the proposed method that we refer to as partitioned
RR-BLUP for MET, and then illustrate its use on a real data set with
appropriate comparisons to nonpartitioned, or standard, models and
single trial RR-BLUP analysis, both within a single-stage approach.

MATERIALS AND METHODS

Description of motivating example
The new approach is illustrated with an example data set of the
phenotypic trait ‘height’ in an association mapping population of
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cultivated barley. During two consecutive years (2010 and 2011; referred
to also as trials), spring barley lines were grown in pots, in the field,
within a polythene tunnel, with each pot containing one plant (from one
line). In each trial, the pots were arranged in a spatial row-column design
with five replicate blocks, where the replicate blocks correspond to bi-
ological replicates. In the 2010 trial, 648 lines were planted with pots
arranged in 405 columns by eight rows, with each replicate block con-
sisting of 81 columns by eight rows. In the 2011 trial, 856 lines were
planted with pots arranged in 535 columns by eight rows, with each
replicate block containing 107 columns (seeOakey et al. 2013 for further
details). There were 639 lines common to both trial years. The lines were
predominantly European elite cultivars of two-row spring barley. At full
maturity, the height of each plant was measured in centimeters from the
base of the plant to the top of the main stem. The software CycDesigN
4.0 (VSN International) was used to generate the design each trial year.

A set of 7864 high-confidence, gene-based single nucleotide poly-
morphism (SNP) markers, incorporated into a single Illumina iSelect
assay (Illumina Inc.), was used to genotype DNA extracted from 477
lines (Comadran et al. 2012), including 459 lines grown across both
years, one line from 2010 only, and 17 lines from 2011 only. Non-
polymorphic SNPs, and SNPs with more than 20% missing values,
were removed. For each marker, individuals were coded as 0 (homozy-
gous minor allele), or 2 (homozygous major allele). The population
consists of lines that are derived via single seed descent and should
be homozygous; a heterozygous marker within a particular individual
suggests that there is an error with the calling of the marker, thus these
heterozygous markers were coded as missing. Missing values were
imputed using the R package impute (Hastie et al. 2014). Markers that
were heterozygous and failed to converge to either 0 or 2 after several
iterations were discarded, because this suggests the marker itself may
not be appropriate for use. This resulted in a set of 4654 homozygous
markers with a minimum minor allele frequency of .5% and map
positions available for analysis. The final set of 3490 markers used in
the analysis was a subset of the 4654 markers, and had no two markers
identical in terms of their qualitative coding across the lines. Pedigree
information on the lines was unavailable. The phenotypic and geno-
typic data are available in Supplemental Material, File S2.

General form of the new model for whole
genome prediction
Ageneral formof the newmodel is nowpresented. This is a single linear
mixed model that incorporates marker and M · E interactions as
terms in the model with appropriate variance-covariance structures
to allow for correlation between trials. In this new approach, the genetic
variation is partitioned into marker and nonmarker (or residual) var-
iation through the inclusion of all raw data in the model. In addition,
spatial trends and design and randomized factors can be easily incor-
porated in the model. The new model is referred to as the partitioned
RR-BLUP for MET. We use the term ‘trial’ to denote different envi-
ronments, which for our example data set represents different years.

Consider a data set consisting of v lines and s trials. The new mixed
model for whole genome prediction can be developed as follows

y ¼ Xtþ Zgg þ Zuuþ e (1)

where yðn · 1Þ ¼ ðyT1 ; . . . ; yTs ÞT is the vector of response across

each of the s trials, yðnt · 1Þ
t is the vector of response for trial t and

n ¼ Ps
t¼1

nt, where nt is the number of observations (pots) in trial t,

t is a vector of fixed terms, consisting of an overall mean perfor-
mance for each trial, as well as trial specific global or extraneous

spatial terms, for example, linear row or linear column effects, and
X is the associated design matrix, gðvs · 1Þ is the vector of random line
effects of the v lines in each of the s trials with design matrix Zg, and
has the general form,

g ¼ ðIs5MÞum þ ue (2)

M is the (v · pÞmatrix of v lines by p SNPmarkers, Is is the (s · sÞ identity
matrix, uðps · 1Þ

m is the vector of p random SNP marker effects in each of
s trials and uðvs · 1Þ

e is the vector of v random residual genetic effects in each
of s trials, and represents line variation (and therefore genetic variation) that
has not been accounted for by the markers;5 is the kronecker product.

Let um take a general form

um ¼ Lm fm þ dm (3)

Where Lm is a (ps · pkÞ matrix, f ðpk · 1Þ
m is a vector with

var( fm)=Gm5Ip, where Gm is a (k · kÞ matrix for k factors,
dðps · 1Þ
m is a vector with varðdm) =Cm5Ip where Cm is the (s · sÞ

marker genetic variance matrix across trials.
Let ue also take a general form

ue ¼ Le f e þ de (4)

Where Le is (vs · vlÞ matrix, f ðvl · 1Þ
e is a vector with

var( f e) = Ge5Iv where Ge is a (l · lÞ matrix for l factors,
dðvs · 1Þ
e is a vector with varðde) = Ce5Iv where Ce is the (s · sÞ

residual genetic variance matrix across trials.
Thus with s trials, the genetic variancematricesCm andCe are both

(s · sÞ matrices, each with
sðsþ 1Þ

2
parameters to be estimated.

Let Lm ¼ Lm15Ip and Le ¼ Le15Iv , where Lm1 and Le1 are
(s · kÞ and (s · lÞ matrices of k and l factor loadings for each trial,
respectively

then

varðumÞ ¼
�
Lm1GmL

T
m1 þCm

�
5Ip

and

varðueÞ ¼
�
Le1GeL

T
e1 þCe

�
5Iv

The vector uðb · 1Þ consists of sub vectors uðbi · 1Þ
i , where the subvector

ui corresponds to the ith random term. The corresponding design
matrix Zðb · 1Þ

u is partitioned conformably as ½Zu1 . . .Zub �. The sub-
vectors are assumed mutually independent with variance u2i Ibi . The
subvectors include random terms for describing spatial trends in in-
dividual trials, such as random row, random column, or spline terms.
The residual vector e has variance R ¼4s

t¼1Rt , a block diagonal
matrix of s blocks, Rt¼u2t Int .

In crops, the modeling of spatial trends in field trials is crucial
(Gilmour et al. 1997), and themodel above enables the addition of these
trends where necessary. Furthermore, trial-specific design or random-
ization-based terms such as blocking factors can also be included in the
model (Cullis et al. 2006).

Thus the line term g reflects the total genetic variation partitioned
into additive variation as described by the markers and residual genetic
or nonadditive variation, the fixed t, random u and residual e terms
reflect the design and conduct of the trials, and as such provide the
underlying structure for nongenetic variation.

Special cases of the general form of g: The general form of g (Equa-
tion 2) shows the details for partitioning the total genetic variation.
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There are two special cases of g . A phenotypic model can be fitted by
letting g ¼ ue, so that the um marker term is omitted, and g represents
total genetic variation (assuming unrelated lines) as described by the
phenotypic information. A standard RR-BLUP model for GS can be
fitted by letting g ¼ ðIs5MÞum, so that ue, the residual genetic term, is
omitted; here, g represents additive genetic variation as described by the
markers. The standardmodel reflects the most common current prac-
tice in GS, where only themarkers are included in themodel. These two
additional models will be used as comparators to the new partitioned
model.

Special cases of the general form of um: From the general form of um
(Equation 3), special cases of s, the number of trials, and k, the number
of factors, can be considered. By varying s, single and multiple envi-
ronment trials are encompassed, and by varying k different structures
for the variance-covariance matrix of um can be considered (Table 1).
Varying k enables an appropriate form of the varðumÞ to be established
to describe the correlation structure between trials, and may vary
depending on the data set. A similar table of special cases of the
form of ue (Equation 4) can also be constructed if l ¼ k, e ¼ m and
v ¼ p.

For a single trial uðp · 1Þ
m ¼ dðp · 1Þ

m is a main marker term, with
varðumÞ ¼ u2mIp. Models for multiple environment trials are now
discussed.

The simplest model for more than one trial is the diagonal
(DIAG) model, where uðsp · 1Þ

m ¼ dðsp · 1Þ
m is a main marker term in

each of the trials. The varðumÞ ¼ Cm5Ip, where Cm has off-
diagonals for all trials assumed zero. The DIAG model therefore
assumes a separate marker variance for each trial, and no marker
covariance between trials, and is equivalent to fitting each trial
separately.

In the compound symmetry (CS) model, f ðp · 1Þ
m is a main term for

markers, and dðps · 1Þ
m is an interaction term for the markers and trials.

All trials have the same marker variance, and all pairs of trials have the
same marker covariance, so that the varðumÞ ¼ ðu2mJs þCmÞ5Ip
where Js is (s · sÞ matrix of ones and Cm ¼ u2meIs.

For the Cullis et al. (1998) (CS+DIAG) model, f ðp · 1Þ
m is a main

marker term, and dðps · 1Þ
m is a term for the interaction of the markers

and trials. This model assumes the same marker covariance for pairs of
trials, and a separate marker variance for each trial. Thus, the form of
varðumÞ is the same in the CS and (CS+DIAG)models; however, in the
latter,Cm ¼ 4s

t¼1u
2
mt . In this model, the covariance between pairs of

trials is assumed to be not greater than the variance of the individual
trials.

An unstructured (US) model allows different marker variances and
covariances between trials, so that uðsp · 1Þ

m ¼ dðsp · 1Þ
m is an interaction

term of the markers and trials, and no main marker effect is fitted.
The varðumÞ ¼ Cm5Ip, where Cm has diagonal elements that are
the marker variances for the individual trials, and off-diagonal element
that are the marker covariance between trials. As the number of trials
increases, the US model becomes over parameterized, making it diffi-
cult to fit.

Multiplicative models have been shown to work well in practice in
MET analysis (Smith et al. 2005), and are viable alternatives to the
unstructured model. In fact, Kelly et al. (2007) found that the factor
analytic model with k factors (FAk) of Smith et al. (2001) was preferred
over an unstructured model because it improved the predictive accu-
racy of the line empirical BLUPs.

In a GS situation, a factor analytic model with a main marker
term and k factors (FAMk) may be more appropriate than a FAk
model that excludes this term. This is because a main marker term

represents QTL that are common and stable across trials (in the
absence of an interaction between trials and markers) and the
marker · trial term will give information on QTL that are trial
or environment specific.

Smith et al. (2001) showed that a FAMk model is equivalent to
a factor analytic model with (k+1) factors, where the first set of
loadings are constrained to be equal. For a FAMk model, we
let f Tm ¼ ð f T0 ; f TÞ, where u0 ¼ um f 0, with varðu0Þ ¼ u2mIp, f

ðsk · 1Þ

is a vector of line scores with varð f Þ ¼ Ik5Ip, then
varðumÞ ¼ ðu2mJs þLfL

T
f þCmÞ5Ip, where Lf is a (s · kÞ matrix

of loadings, andCm is a diagonal matrix with the diagonal elements
referred to as specific variances. The approach of including a main
marker term is in contrast to a phenotypic model for estimating
genotypic values, where, in crop field trials, the main line term is
usually excluded. Notice when k = 0, the FAM0 model is equivalent
to the CS+DIAG model. The special cases of the general form of um
shown in Table 1, can be fitted in each of the three models, pheno-
typic, standard, and partitioned, which reflect different forms of
g (Equation 2).

Computational efficiency: If the number of markers exceeds the
number of individuals, we can fit

ug ¼ ðIs5MÞum
The analysis will now be dependent on the number of lines rather than
on the number of markers, and therefore will reduce the dimension-
ality of themodel, making it more computationally efficient (Stranden
and Garrick 2009).

The estimation of variance parameters is by residual maximum
likelihood (REML). Given estimates of the variance components, em-
pirical best linear unbiased predictors (E-BLUPs) were obtained for
random terms from the mixed model equations as

~um ¼
�
Is5MT

�
MMT�21

�
~ug (5)

where ~ug is the vector of genomic breeding values in each trial.
Here, we use MMTas in Piepho et al. (2012), where MMT repre-

sents a realized genomic relationship matrix. Meuwissen et al. (2001)
usedMMT=p, where p is the number of marker (locations), andHabier
et al. (2007) used MMT=2

P
q
pqð12 pqÞ, where pq is the allele fre-

quency at marker locus q. Omission of the scalar term will not affect
the conclusions of the analysis.

If ðMMTÞ21 is of full rank, then

var

�
ug
um

�
¼ Gf5

�
MMT M
MT Ip

	

for Gf ¼ Lm1GmL
T
m1 þCm

Thus, if

ug ¼ ðIs5MÞum ¼ ðIs5MÞLm fm þ ðIs5MÞdm ¼ uf þ ud

Then, the E-BLUPs obtained from the mixed model equations are

Lm
~fm ¼

�
Is5MT�MMT�21

�
~uf (6)

and

~dm ¼
�
Is5MT�MMT�21

�
~ud (7)
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If ðMMTÞ21 is of full rank, then

var

�
uf

Lm fm

�
¼ Lm1GmL

T
m15

�
MMT M
MT Ip

	
 and var

�
ud
dm

�

¼ Cm5

�
MMT M
MT Ip

	

For our data set, the number of markers exceeds the number of
individuals, therefore the standard and partitionedmodels were fitted
using the computationally efficient approach. All models were fitted
in ASReml v3.0-1 (Butler et al. 2009) for R v3.2.0 (R Core Team 2015).
Instructions for completing all the analysis shown in the paper can be
found in File S1 along with supporting data (File S2) and R scripts
(File S3, File S4, File S5, File S6, File S7, File S8, File S9, File S10, File
S11, File S12, File S13, File S14, File S15, File S16, File S17, File S18,
and File S19).

Heritability
The calculation of the generalized heritability in complex linear mixed
models is not straightforward (Cullis et al. 2006). Here, the generalized
heritability for each trial is calculated from the phenotypic model

(where g ¼ ue) as 12
a

2u2gt
where a is the average pairwise prediction

error variance of line effects, and u2gt is the genetic variance of trial t
(Cullis et al. 2006). The R code for calculating the heritability is in File S19.

Cross-validation
Initially, the phenotypic, standard, and partitioned models were fitted
using the full data set to enable the most appropriate MET form of um
(Table 1), the term representing marker or additive variation, and ue,
the term representing nonadditive or residual genetic variance, to be
established for use in the cross-validation. A single trial analysis was
also investigated in the cross-validation represented by the DIAG form.
We generally denote the phenotypic, standard, and partitionedmodels
with specific forms of um as EFORM, SFORM, and PFORM, respectively
[where FORM is either DIAG, US, CS, CS+DIAG, or FAMk (Table 1)].

To establish which MET form of um is superior, and to undertake
initial comparisons between the three models, the Akaike information
criteria (AIC) (Akaike 1974), or log-likelihood ratio test (if the models
were nested), were used. For example, the phenotypic and standard
model are nested within the partitioned model when the form of um
is the same, and can be compared using the log-likelihood ratio test.
However, models with different forms for um need to be compared
using the AIC. The AIC was calculated as twice the number of
random parameters minus twice the log-likelihood (the number of

fixed parameters was ignored in this calculation as this was constant
over the models). For the AIC, lower values indicate superior models.
Once the form of um for the MET analyses has been established, the
cross-validations could proceed.

The cross-validation involved randomlydividing the lines in thedata
set (as evenly as possible) into 10 groups, which were used across the
single and MET analyses so that consistency and comparability was
maintained as much as possible (Table 2).

Three different cross-validations were examined, and were defined
by the number of groups in the validation and training sets. These were
CV10, CV20, and CV40, where approximately 10, 20, and 40% of lines,
respectively, were included in the validation set (Table 3), with the
remaining lines used as the training set. Iteration across all combina-
tions was investigated. For example, for the CV20 cross-validation, two
groups (the validation set) were omitted in any one iteration. To cover
the possible combinations of two of the 10 groups, a total of 45 itera-
tions were necessary. The R scripts with details of the random division
of the data and group combinations for CV10, CV20, and CV40 are in
File S3, File S4, and File S5, respectively.

Using the training set, marker effects were obtained under each model
(standard and partitioned), each cross-validation (CV10, CV20, and
CV40), and each scenario (single trial 2010, single trial 2011, and MET).
The marker effects (Equation 6 and Equation 7) were used to predict the
GEBVs of the lines in the validation set. TheDIAG form of um and ue was
used to generatemarker effects equivalent to analyzing each trial separately,
with each trial having one set of marker effects. For the MET analyses of
both trials, different forms ofum andue (Table 1)were initially investigated
as described previously, with themost appropriate forms used in the cross-
validation. For the CS, CS+DIAG, and FAM1 forms of um and ue, there
were three sets of marker effects. These were: the main marker effects,
representing markers that are stable across both trials, and marker effects
from each trial, which represent the additional marker by trial interaction.
A totalmarker effect for each trialwas obtained by adding themainmarker
effect to the marker by trial interaction effect. For completeness, the US
form, which produces only total marker effects for each trial, was also
initially investigated, although, as we are interested in MET models with
main marker effects, the cross-validation focused on the most appropriate
of the CS, CS+DIAG, and FAM1 forms.

In simulations, the true breeding value is known, and the GEBV
calculated in the lines of the validation set can be compared to the true
breeding values to determine the predictive ability and the accuracy and
precision of the GEBV. As real data were used here, the true breeding
value was unknown. In the absence of pedigree information, the
genotypic values (GV) of the lines in the validation set were used as
the comparator. These were calculated from a phenotypic model, based

n Table 1 Summary of the special cases of the general form of uma

Model Description s k Lm1 Gm Cm STY or MET Reference

Single trial Diagonal (s = 1) 1 0 u2m STY
DIAG Diagonal s 0 4s

t¼1u
2
mt

b STY
US Unstructured s 0 Cm MET
CS Compound symmetry s 1 1s u2m u2meIs MET Patterson et al. (1977)
CS+DIAG CS+DIAG s 1 1s u2m 4s

t¼1u
2
mt MET Cullis et al. (1998)

FAMkc,d Factor analytic (main effect) s k þ 1 ½um1s Lf �
�
u2m 0
0 Ik

	
4s

t¼1u
2
mt MET Smith et al. (2001)

STY, single trial year (note the DIAG model is equivalent to analyzing each trial year separately); MET, multi-environment trial.
a

A similar table could be constructed for ue with l ¼ k, e ¼ m and v ¼ p.
b
4 represents a kronecker sum, so that 4s

t¼1u
2
mt results in a diagonal matrix with elements u2mt for the specific variance of trial t.

c
L

ðs · kÞ
f is a matrix of k factor loadings at each of the s trials.

d
For FAMk let f Tm ¼ ð f T0 ; f TÞ where u0 ¼ um f 0, varðu0Þ ¼ u2mIp and varð f Þ ¼ Ik5Ip.
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on all the lines withmarker information, where lines were assumed to be
unrelated. The GVs from this phenotypic model reflect total genetic
effects, and were calculated using single trial and MET analyses. In
crops, breeders are most often interested in the commercial potential
of lines, so the adoption of the genotypic values (which are the total
genetic values of each line) as the comparator to GEBV of validation
lines reflects this crop breeding strategy. Linear regression models were
fitted in which the response was the observed GVs of lines in the val-
idation set, and the explanatory variable was the GEBVs of those same
lines calculated using the marker effects. The cross-validation investi-
gated the performances of the partitioned and standard RR-BLUPmod-
els in terms of their predictive ability measured by the R-squared value,
and the accuracy and precision of the GEBV measured by the mean
square error (MSE) from the linear regressionmodels. The standard and
phenotypic models were compared using the same training sets.

Comparisonswere investigated between theGEBVs andGVs,where the
samemodel (single trialorMET)andmarker termswereused toderiveboth
theGEBVandGV.A further comparisonwasmade between theGEBVs of
the main effect from the METmodel to GVs from a single trial analysis of
each trial year. The R script for performing each cross-validation (CV10,
CV20,andCV40)undereachscenario(singletrial2010,singletrial2011,and
MET) can be found in File S6, File S7, File S8, File S9, File S10, and File S11.

Implementing GS with a lower density of markers
In addition to using all the markers to predict the GEBV of lines in the
validation set, we explored a low-densityGS approach, where a subset of
random, rather than significant, markers and their effects were used to
predict the GEBV of lines. This was explored for CV10 only (Table 2).

For each of the 10 training sets of lines, subsets of markers of
increasing size, x, from x = 10 to x = 3490 (all markers) were chosen
at random. For each size x, and each training set of lines, the markers
were chosen at random, and resampled to provide 200 different ran-
dom combinations of size x. The performance at each subset of
markers was measured as the average of the regression coefficients,
and mean square error over the 200 random combinations of size x.
For each x, each scenario and model was compared using the same
randommarker subsets and the same training set of lines. R scripts can
be found in File S12, File S13, File S14, File S15, File S16, and File S17.

Data availability
All data necessary for confirming the conclusions presented in this
manuscript are provided in Supplemental Material.

RESULTS

Height phenotypic data in multi-environment trials
An association mapping population of two-row spring barley lines was
grown in a randomized spatial row-column design in two consecutive

trials in years 2010 and 2011 (i.e., two environments), with five replicate
plants of each line. At full maturity, the height of each plant was
measured. The raw mean heights for lines grown in both years, and
for which we have marker information, are shown in Figure 1. The
plant height was slightly elevated in 2010 as opposed to 2011; the mean
height in 2010 was 94.8 cm, and in 2011 was 87.9 cm. The correlation
between the means of the line heights across the years was high at 0.76.
These data were subsequently used, as described below, to develop our
new GS model, and to predict, based only on the complement of lines
with molecular markers present in each training set, the GEBV for
height of lines that were in each validation set.

Comparison of models for whole genome prediction
Initially, the partitioned, standard, and phenotypic models were fitted
(Table 4) using the full data set, enabling the form of um (Table 1), the
term representingmarker variation, and ue, the term representing non-
additive or residual genetic variance, to be established for use in the
cross-validation. All models included a random term for replicate block
for both trials; an additional random term was also included in the
analysis to account for spatial variation present between columns in
2011.

Log-likelihood ratio tests comparing standard and partitioned
models with the same form of um (e.g., SDIAG vs. PDIAG, SCS+DIAG vs.
PCS+DIAG, etc.) were significant (P , 0.001), suggesting the partitioned
models are superior to the standardmodels (Table 4). In addition, all
the MET models had lower AIC than the single trial year models,
suggesting that the METmodels were superior (Table 4). For two trials,
the factor analytic models (EFAM1, SFAM1, and PFAM1), and the unstruc-
tured models (EUS, SUS, and PUS), respectively, are identical, and there-
fore the US results are shown with the FAM1model in Table 4. Given
that the factor analytic model has been shown previously to improve
the predictive accuracy of the line empirical BLUPs, that factor analytic
models are easier to fit than an unstructured model (Kelly et al. 2007),
and given that we are primarily interested in models that fit a main
marker term, the US model is not discussed further.

For the phenotypic, standard, and partitioned MET models, the
compound symmetry form (ECS, SCS and PCS) had the highest AIC,
suggesting that this model was not a good choice in comparison to the
other forms. The CS+DIAG forms (ECS+DIAG and PCS+DIAG) had similar
AICs to the factor analytic models (EFAM1 and PFAM1). However, the
factor analytic model of the standard model (SFAM1) showed a lower
AIC than the CS+DIAG form (SCS+DIAG). Examining the REML
estimates of the variance components (Table 5), it is clear that the
CS+DIAGmodel does not necessarily fit as well as the FAM1model, as
the covariance between years has been constrained to be equal to the
2011 trial variance. However, as the variance component estimates of
the CS+DIAG form (ECS+DIAG, SCS+DIAG, and PCS+DIAG) and the
FAM1 form (EFAM1, SFAM1, and PFAM1) were similar for this data

n Table 2 Number of lines with marker information in the groups used in the cross-validation

Groups for
Cross-Validation

Number of Linesa in Each Group
Total Number of Lines in Each Group
(Total Number of Lines Across Groups)

Commonb 2010 Only 2011 Only 2010 2011 METc

1–6 46 0 2 46 (276) 48 (288) 48 (288)
7–9 46 0 1 46 (138) 47 (141) 47 (141)
10 45 1 2 46 (46) 47 (47) 48 (48)
Total 459 1 17 460 476 477
a

These are the number of lines with marker information.
b

The common lines groups are kept the same across all analyses.
c

The multi-environment trial (MET) analyses contain information from both trial years.
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despite these constraints, both these forms were investigated further
in the cross-validation. It is worth noting that Table 4 does not show
the complete set of possible partitioned models. For the partitioned
model, we have explored only models with the same form for the um
and ue terms. It is, however, possible to include different forms for
each of um and ue terms, for example, the former could take a com-
pound symmetry form, and the latter a factor analytic form. When
fitting the FAM1 model, the full parameterization required five pa-
rameters (one for the main effect, two loadings, and two specific
variances), two more than the three required. Thus, when fitting
the FAM1 model, the two specific variances were constrained to be
zero. Smith et al. (2001) discuss the parameter constraints necessary
for FAk models with k . 1. Thus based on the results of the log-
likelihood ratio tests, AIC, and estimates of the model variance com-
ponents, for the MET analysis of trials in the cross-validation, we
explore only the CS+DIAG and FAM1 forms for the marker and
residual genetic effects. From the variance components of the diago-
nal form of the phenotypic model, the heritability of the trials was
calculated as 0.90 in 2010 and 0.75 in 2011, so both trials have high
heritability. The difference in heritability between years reflects a
greater contribution of environment to the variation in 2011, and
consequently a lower proportion of variation that is genetic in that
year. A comparison between the variance of the ue term from pheno-
typic and the partitioned DIAG models (EDIAG and PDIAG, respec-
tively) enabled an estimate of the proportion of genetic variation
accounted for by the markers, which was 0.75 for trial 2010, and
0.73 for trial 2011. The R code for determining the proportion of
genetic variation is in File S19.

The variance components of the residual terms in eachyearwere higher
in the standardmodels compared to the equivalent forms of the phenotypic
and partitionedmodels, particularly in 2011. The total genetic variation is
therefore not accounted for in this model, perhaps as expected, given that
the marker effect should reflect just additive genetic variation; the pro-
portion of the genetic variation not being accounted for by the markers
thus has contributed to the enlarged residual term. Given these limitations,
the standard models were not taken forward for cross-validation.

Cross-validation of selected models
The lines were randomly divided into 10 equivalent groups to facilitate
comparative cross-validations, where the majority of lines were used as
the training set, while 10%, 20%, or 40% of lines constituted the CV10,
CV20, and CV40 validation sets, respectively (seeMaterials and Meth-
ods and Table 3).

The cross-validation focuses on comparing the partitioned and the
standard RR-BLUP model in each of three scenarios, which are each
trial year separately (PDIAG and SDIAG, respectively), and in a jointMET
analysis of both years. From the initial fitting of the MET models just
discussed, we examine only the models where the form of um and ue
takes either CS+DIAG (PCS+DIAG and SCS+DIAG, respectively), or FAM1
(PFAM1 and SFAM1, respectively). When fitting the standard and

partitioned models of the factor analytic form (SFAM1, PFAM1) in
ASReml, specific variances were set to zero as in the full data set,
and the variance components of SFAM1 were used as starting values
for the variance components of PFAM1.

Various comparisons between the predicted (GEBVs) and observed
(GVs) results were made, and the performance of the partitioned and
standard RR-BLUPmodels in terms of predictive ability of the markers
was measured by the R-squared value (Table 6), while the accuracy of
line estimates (GEBVs) was measured by the mean square error (Table 7).
Both of these were averages across the iterations (Table 3).

Inall threedifferentCVevaluations [CV10,CV20, andCV40(Table3)],
the partitioned model showed a higher R-squared and lower MSE
than the standard model, indicating that the predictive ability and
accuracy of line estimates (GEBVs) were superior in the partitioned
model. This supports the finding of lower log-likelihoods and superior
fit of the partitionedmodels as compared to the standardmodels when
the full data were used (Table 4). The R-squared decreased, and the
MSE increased, as the number of lines in the training set decreases
(going from CV10 to CV40) for the equivalent model (i.e., within the
partitioned models, or within the standard models), which was
expected, as predictions were based on fewer lines. It should be noted
that, except where the 2011 marker effects from the PDIAG model were
used to generate the GEBVs (Comparisons 2 and 3, Table 6), the
R-squared in the partitioned model in CV40 (where 40% of the lines
were in the validation set) was similar to, or higher than, the R-squared
of the standard model in CV10 (where 10% of the lines are in the
validation set), suggesting the partitioned model was superior even
when reducing the number of lines upon which the predictions are
based. There was only a small compensating increase in MSE between
the standardmodel in CV10, and the partitionedmodel in CV40, with
the same exception of the 2011 marker effects from the PDIAG model
(Comparisons 2 and 3, Table 7), and also the main marker effects from
the PFAM1, which showed larger increases (Comparison 12, Table 7).
These results shows that the partitioned model provides the best
predictions of the height of lines in the validation set.

The results of the CV10 cross-validation were considered in more
detail, bearing in mind that the other cross-validations (CV20 and
CV40) reflect similar patterns. Initially, results where the equivalent of a
single trial analyseswas used togenerate bothGEBVs (PDIAGandSDIAG)
and GVs (EDIAG) were examined. Using the same trial year to generate
both the GEBVs and GVs (Comparisons 1 and 3, Table 6) gave the best
results. The single trial analysis from 2010 showed a higher predictive
ability than that from 2011 for the partitioned model (0.461 vs. 0.334,
Table 6), and for the standard model (0.404 vs. 0.323, Table 6). This
difference between the predictive ability in each year was initially sur-
prising; given that there was a large overlap of individuals, the percent-
age of variation explained by the markers was similar, and the
observations were highly correlated across the 2 years. The partitioned
model showed a 5.7% and 1.1% improvement for 2010 and 2011, re-
spectively, in predictive ability over the standard model.

n Table 3 Summary of validation and training groups in three cross-validations

Cross-Validation
Number of Groups in
VALIDATION Set Numbera (%) of Line Numbers in the VALIDATION Set

Number of Groups
in TRAINING Set

Total Numberb

of Iterations

2010 2011 MET (both years)
CV10 1 46 (10) 47 (9.7) – 48 (10.1) 47 (9.9) – 48 (10.1) 9 10
CV20 2 92 (20) 94 (19.7) – 96 (20.2) 94 (19.7) – 96 (20.1) 8 45
CV40 4 184 (40) 188 (39.5) – 192 (40.3) 188 (39.4) – 192 (40.3) 6 210
a

The number will be a range for 2011 and the MET as the number of lines in each group (Table 2) is variable.
b

This is the number of iterations so all combinations of groups in the validation set can be investigated.
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If the opposite trial years were used to generate the GEBVs, then
predicting 2010 GVs using the marker effects generated in 2011
(Comparisons 2, Table 6) had a higher predictive ability than the op-
posite combination (Comparisons 4, Table 6), for both the partitioned
and standard models. Ly et al. (2013) suggested that G · E, which
cannot be accounted for in a single trial, reduces the ability to make
predictions. These results suggest that the 2011 heights had a higher
environmental component than those observed in 2010, making pre-
diction of the GEBVs from 2011 more difficult. We would therefore
expect to be able to predict trial year 2011 better if a marker by trial
interaction effect was included in aMETmodel, and this is exactly what
was found, as discussed below.

The next comparisons are the MET analyses, where the GEBVs and
GVs are based on a total effect found by summing the main or overall
marker effect and the trial year marker effects. The first thing to note is
that for 2010 the CS+DIAG form for um had around a 4–6% higher
predictive ability than the FAM1 form in both the standard and par-
titioned models (Comparisons 5 and 7, Table 6). For 2011, the results
were similar between the forms of um (Comparisons 6 and 8, Table 6),
with around a 0.1% difference in predictive ability between the FAM1
form and the CS+DIAG form, with the latter showing only a slightly
lower predictive ability, but a lower MSE. This suggests that the
CS+DIAG form was superior to the FAM1 form for this data set.
Exploring different forms for um is clearly an important step in
determining the best model for GS.

The results for predictive ability were similar between the MET
analysis and single year analysis for 2010 (Comparisons 5 and 1, 0.462
v 0.461, partitionedmodel, Table 6), but the MET shows a lower MSE
(Comparisons 5 and 1, 7.35 v 7.47, partitioned model, Table 7). For
2011, the results of the MET were clearly superior over the single year
analysis (Comparisons 6 and 3, Table 6), at 11.4% higher (0.448 v
0.334) for the partitioned model and 7.2% (0.395 v 0.323) for the
standardmodel. This suggests that using 2 years’ data greatly improved
the accuracy of the GEBVs by up to 11.4% for this data set. The benefit
of including the marker by trial interaction effect was apparent in 2011
in particular, the year in which the results from the single trial analysis

suggested that the environment had a large influence on the results. The
greater environmental influence in 2011 is consistent with the lower
heritability and reduced genetic influence on plant height compared to
the 2010 trial (see previous section). Greater environmental stress may
also explain the lower mean height of lines in 2011.

Finally, we compared the GEBVS derived from the main marker
effects in a MET analysis with the GVs derived from the single year
analysis. Again the CS+DIAG formwas superior to the FAM1 form for
um in terms of predictive ability, and we therefore concentrated on the
former (Comparisons 9 and 10, Table 6). There was a reduction in
predictive ability if the year specific marker effect was omitted when
calculating the GEBVs, particularly for 2011 (0.448 vs. 0.336, Compar-
ison 6 and 10, Table 6), where the environmental influence was higher.
However, despite this reduction, a similar predictive ability to a single
trial analysis was maintained, and the main effect still had a higher
predictive ability than using the marker effects from the opposite year.
For example, it is 3.5% higher in 2010 (Comparisons 9 and 2, 0.442 vs.
0.407), and 1.7% higher in 2011 (Comparisons 10 and 3, 0.336 vs.
0.319), with correspondingly lower MSE.

Implementing GS with a lower density of markers
A low density GS approach was considered, where, for each of the
training sets of lines in CV10, the predictive ability of subsets of random
markers was investigated. The results of the MET analyses and single
trial analyses across the subsets of random markers were compared in
each trial year (Figure 2 and Figure 3 for trial 2010 and trial 2011,
respectively). Both plots showed that the partitioned models have a
much steeper incline within the subsets of randommarkers containing
less than 500 markers than the standard models, with the graphs flat-
tening out more than the standard models as the marker numbers in
subsets increase. This suggests that, for lower numbers of markers, the
predictions were more accurate and reliable in the partitioned model,
and therefore fewer markers were required to obtain similar predic-
tions. This would tend to support the finding that the line estimates
based on markers from the partitioned model were more accurate
(lowerMSE, Table 7) than those of the standardmodel. The horizontal
lines in Figure 2 and Figure 3 show the single trial year analysis of the
standardmodel using data from the same year. For trial 2010, all of the
partitioned models had superior predictive ability across the entire
range of marker subsets (Figure 2), with the main improvements in
predictive ability coming within the first 1000 or so markers. In the
standard RR-BLUP model, although there was an initial improvement
in the predictive ability, this was less intense, and mostly small and
steady over all of the latter marker subsets. This means that we can
achieve the same predictive ability with the MET model as with the
standard RR-BLUPmodel using around 1000markers, or around 2490
markers less than in the full higher-density GS. In 2011, the partitioned
models had superior performance over the standard single year model
for lower numbers of markers, with the partitionedMETmodel reach-
ing the same level of prediction with only 500 markers.

DISCUSSION
In this paper, a method for genomic selection is proposed for the
analysis of multi-environment crop trials. The method differs from
other methods in a number of ways.

Themethoduses rawdataobservationsat theplot, or pot, level rather
than line means, thus incorporating line replication. This enables the
total genetic variation due to lines to be partitioned into variation due to
markers, and residual genetic variation,where the latter accounts for any
genetic variation unexplained by the markers. The GEBVs, which are
based on marker effects, are assumed mostly to reflect additive effects.

Figure 1 Correlation of mean heights of lines in the 2010 and 2011
trials. The datapoints represent only the lines with marker data that
were grown in both years.
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The residual genetic effect therefore should capture nonadditive effects.
In inbred lines, the nonadditive effect will represent epistatic effects.
However, in noninbred lines, other nonadditive effects will include
dominance, inbreeding depression andhomozygous dominance effects,
the covariance between additive and dominance effects, and epistatic
effects (de Boer and Hoeschele 1993).

Previous studies (Solberg et al. 2009; Crossa et al. 2010; Burgueno
et al. 2012) have included pedigree information, which captures a poly-
genic effect as a way of accounting for nonadditive effects, and more
recent studies (Da et al. 2014; Munoz et al. 2014) have used marker-
based relationships to separate additive and nonadditive variation. Da
et al. (2014) only included additive and dominance relationship matri-
ces. Munoz et al. (2014) included, in addition, first-order epistatic re-
lationship matrices (additive by additive, dominance by dominance,
and additive by dominance); however, their approach has the disad-
vantage that the resulting genetic effects are nonorthogonal, and there is
dependency between some of the estimates of the additive and non-
additive variance components, as the first-order epistatic relationship
matrices they form are based on Hadamard products of the additive
and dominance relationship matrices. This means that the matrices
may not be capturing all nonadditive variation. Also, given the number
of relationship matrices necessary to account for nonadditive variation,
extension to a MET model may be difficult. In contrast, the residual
genetic effect representing nonadditive effects found in our model is
more encompassing and less restrictive, and should capture all non-
additive effects. It is, however, worth noting that, because of the flex-
ibility of the linear mixed model, additional relationships matrices
may also be added to our model if required. For example, if pedigree
information was available, a single polygenic effect could be added, or
it may be possible to further partition our residual genetic effects by the
addition of further genomic relationship matrices, for instance, a ge-
nomic dominance matrix could be added in the case of hybrid crops.

Recent studies have shown that maximum prediction was reached
when the breeding value was based on both additive and nonadditive
effects (Da et al. 2014;Munoz et al. 2014), and Ly et al. (2013) notes that
considering only the additive component may underestimate predic-
tion accuracy. Here, we have only investigated the use of the additive

proportion of the total genetic effect as described by the markers for the
prediction of breeding values where, for future lines, only marker in-
formation is available. We found that partitioning the total genetic
variation into marker and residual genetic variation, and using the
improved predictive ability of the marker additive genetic effects for
future predictions, gavemore accurate estimates even for the single trial
analysis than was the case if the total genetic variation was not parti-
tioned (i.e., when fitting the standard model, which excluded the re-
sidual genetic and therefore nonadditive, variation). Improvements of
up to 5.7% in predictive ability were found. Further work is required to
determine whether improved prediction can be achieved by using the
total genetic effect (as opposed to the total genetic effect frommarkers)
of a line from the partitioned model for phenotypic evaluation. The
value of using the total genetic effect (additive plus nonadditive) for
phenotypic evaluation would depend on the impact of the nonadditive
proportion. If the nonadditive proportion of variation was reasonably
high, the use of the total genetic effect for phenotypic evaluation would
be important. However, it is worth noting the total genetic effect does
not reflect the potential of a line as a parent as nonadditive effects are
not inherited, although it may better predict the commercial viability of
a line and may be useful in determining which lines to take forward
from a breeding program for elite development.

Usingthe rawdata ina single stageapproachhas theaddedadvantage
that it allows spatial variation to be incorporated into the analysis,
enabling joint estimation of all effects, genetic and nongenetic. This is
the preferred option, as the precorrection of data necessary in a two
stage approach can have undesirable consequences, such as biased
estimates of marker effects, and induced correlations between residuals
(de los Campos et al. 2013).

It was evident from the analysis that the standard model had an
inflated trial residual (error) term compared to the partitioned model.
The partitionedmodel enabled the additive variation due to markers to
be estimated, and it was found to account for approximately 75% of the
total genetic variation in each of the trials. In the standard model, the
inflation of the trial residual term, while apparent, was not sufficient to
explain all of the unaccounted nonadditive genetic variation. This
suggests that, in the standard model, some of the omitted nonadditive

n Table 4 Summary of the models fitted to the full data set

Modela Formb of um Form of ue STY or MET Log-Likelihood AIC

Phenotypicc EDIAG DIAGd STY 211,074.6 22,163.1
ECS CSe MET 210,877.0 21,768.1
ECS+DIAG CS+DIAGf MET 210,872.5 21,760.9
EFAM1, EUS FAM1g, USh MET 210,872.4 21,760.8

Standardi SDIAG DIAG STY 210,924.9 21,863.8
SCS CS MET 210,794.0 21,602.1
SCS+DIAG CS+DIAG MET 210,790.6 21,597.2
SFAM1, SUS FAM1, US MET 210,787.8 21,591.6

Partitioned j PDIAG DIAG DIAG STY 210,876.4 21,770.8
PCS CS CS MET 210,747.2 21,512.5
PCS+DIAG CS+DIAG CS+DIAG MET 210,744.6 21,511.2
PFAM1, PUS FAM1, US FAM1, US MET 210,744.2 21,510.4

STY, single trial year; MET, multi-environment trial; AIC, Akaike information criteria.
a

All models derive from Equation 1 but are special cases of g (Equation 2).
b

Details of forms of um are given in Table 1.
c

Phenotypic model has g = ue.d
DIAG implies the covariance between the two trials is assumed to be zero, and is equivalent to fitting the two trials separately.

e
CS is the compound symmetry model.

f
CS+DIAG is the model described by Cullis et al. 1998.

g
FAM1 is the factor analytic model (Smith et al. 2001), with main effect with k the number of factors equal to 1.

h
US is the unstructured model (US), for two trials this model is equivalent to the FAM1 model.

i
Standard RR-BLUP model has g ¼ ðIs5MÞum.j
Partitioned RR-BLUP model has g ¼ ðIs5MÞum+ ue.
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genetic variation is incorporated into the estimate of the genetic var-
iation due to the markers, and they do not therefore reflect purely
additive variation. This perhaps explains why, in the standardmodel,
the marker effects are not as good for prediction of GEBVs, and this
model showed higher MSE of prediction. The outcome is that esti-
mates of marker effects from the partitioned model should be less
biased, be more likely to reflect additive variation, and therefore lead
to better estimation for future prediction.

The single trial RR-BLUP partitionedmodel was extended to enable
a multi-environment approach to analysis. Analyzing trials under the
partitioned RR-BLUP model in a MET setting extends a phenotypic
MET model in an intuitive manner. In the GS model, we implicitly
included both a main effect for markers, and a marker by trial inter-
action term.We found that a main marker effect in an analysis of trials
in a MET was a useful predictor, even when a strong marker by trial
interaction was present. These main marker effects seem to reflect a
more ‘stable’ proportion of the marker, and were shown to have a
predictive ability slightly superior to a single trial analysis. Presumably,
the addition of more trials would improve the robustness of the main
marker effect to G · E.

The RR-MET (partitioned and standard) performed well particu-
larly where there was a larger environmental influence. In the example
data set, in the 2011 trial, improvements of theMET over the single trial
analysis of as much as 11.4% were seen, probably due to the inability of
a single year analysis to account for the marker by trial variation. The
poorer performance found when using 2011 marker effects to predict
2010 supports the observation of Ly et al. (2013) that the presence of
G · E reduces the ability to make predictions in locations where no
evaluations have previously been done. MET analysis uses the correla-
tion between trials to improve prediction of lines (Smith et al. 2005).
Where the environmental influence was lower, as in the 2010 trial, the
partitioned single trial model performed well, with similar predictive
ability to the partitionedMETmodel, but with lower MSE in the latter.
As in Guo et al. (2013), gains here are attributable to the more accurate
estimates of trial-specific marker effects through utilizing genetic cor-
relations. In our cross-validation approach, we excluded validation
lines from both trials, and found that, in 2011, where environmental
influence was large, the MET was superior to the single trial analysis.
Burgueno et al. (2012) and Guo et al. (2013) also looked at MET verses
single trial analysis and included cross-validation schemes (referred to
as CV1 in both papers), which also excluded validation lines from all
environments. Our findings are contrary to those of Burgueno et al.
(2012), who found no improvement in predictability of a MET over a
single trial analysis, but support the findings of Guo et al. (2013), who
found similar average gains in prediction accuracies of up to 10%.

In terms of using a subset of the markers in a low density GS
approach, similar predictive ability could be gained with a much lower
number of markers in the partitionedMETmodel, particularly in 2011.
The results suggest that the partitionedmodel increased the accuracy of
themarker effects with further gains to be had by using theMETmodel,
particularly if the environmental influence on results is high (as in
2011). When examining the value of predictive ability of random sub-
sets of markers, some subsets were superior to others (results not
shown). Examining markers that are consistently found in the highly
predictive subsets may lead to suitable choices for a MARS approach,
and this may be worth exploring when considering the practical and
optimal use of markers in GS in crops. Finally, as Heffner et al. (2011a,
2011b) have found, reducing the number of lines in a training popu-
lation decreases the predictive ability. However, our observations sug-
gest that the partitionedmodel goes some way to alleviating this effect.n
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In summary, the partitionedMETmodel used here is a single linear
mixed model that incorporates trial, residual genetic-by-trial interac-
tions, and trial-specific field and randomization-based terms, in a ran-
dom RR-BLUP setting for marker effects and their interaction with
trials. The MET model offers a viable, flexible addition to the GS tool
box.
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