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A FINITE ELEMENT METHOD FOR A CURLCURL-GRADDIV
EIGENVALUE INTERFACE PROBLEM∗

HUOYUAN DUAN† , PING LIN‡ , AND ROGER C. E. TAN§

Abstract. In this paper we propose and study a finite element method for a curlcurl-graddiv
eigenvalue interface problem. Its solution may be of piecewise non-H1. We would like to approximate
such a solution in an H1-conforming finite element space. With the discretizations of both curl
and div operators of the underlying eigenvalue problem in two finite element spaces, the proposed
method is essentially a standard H1-conforming element method, up to element bubbles which can
be statically eliminated at element levels. We first analyze the proposed method for the related
source interface problem by establishing the stability and the error bounds. We then analyze the
underlying eigenvalue interface problem, and we obtain the error bounds O(h2r0 ) for eigenvalues

which correspond to eigenfunctions in
∏J

j=1(Hr(Ωj))3 ↪→ (Hr0 (Ω))3 space, where the piecewise

regularity r and the global regularity r0 may belong to the most interesting interval [0, 1].

Key words. generalized Maxwell eigenvalue problem of curlcurl-graddiv operator, H1-confor-
ming finite element method, piecewise non-H1-space solution, error estimates, spectral correctness

AMS subject classification. 65N30

DOI. 10.1137/140980004

1. Introduction. In this paper we study the finite element method for solving a
generalized Maxwell eigenvalue interface problem, where the governing operator is the
curlcurl-graddiv operator, arising from computational electromagnetism. The finite
element method features that the solution is sought in anH1-conforming finite element
space. Given a simply connected domain Ω ⊂ R3, with a connected boundary Γ, let
n denote the outward unit normal vector to Γ. Let µ, ε represent the matrices of the
physical properties such as permeability and permittivity of the materials occupying
Ω. The generalized Maxwell eigenvalue interface problem of curlcurl-graddiv operator
is defined as follows: Find (ω2,u 6= 0) such that

(1.1) curlµ−1curlu− ε5divεu = ω2εu in Ω, u× n = 0, divεu = 0 on Γ.

A closely related model in computational electromagnetism is

(1.2) curlµ−1curlu = ω2εu, divεu = 0 in Ω, u× n = 0 on Γ.
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1194 HUOYUAN DUAN, PING LIN, AND ROGER C. E. TAN

Introduce Hilbert spaces H(curl; Ω) = {v ∈ (L2(Ω))3 : curlv ∈ (L2(Ω))3},
H0(curl; Ω) = {v ∈ H(curl; Ω) : v × n|Γ = 0}, H(divε; Ω) = {v ∈ (L2(Ω))3 :
divεv ∈ L2(Ω)}, H(div0ε; Ω) = {v ∈ H(divε; Ω) : divεv = 0}, H0(divε; Ω) = {v ∈
H(divε; Ω) : εv · n|Γ = 0}. With the notation (·, ·) for the L2 inner product, the
classical variational statement of (1.1) is to find (ω2,u 6= 0) ∈ R × H0(curl; Ω) ∩
H(divε; Ω) such that
(1.3)

(µ−1curlu, curlv) + (divεu,divεv) = ω2(εu,v) ∀v ∈ H0(curl; Ω) ∩H(divε; Ω).

Problem (1.3) is also well-known as the so-called plain regularization method of (1.2),
accounting for the divergence-free constraint [29, 30, 32, 44]. We refer to section 1
in [30] for the connection of (1.1) and (1.2) and section 7 in [30] for the variational
statement (1.3) of (1.1).

As a second-order elliptic eigenproblem, quite like the Laplacian eigenproblem,
the classical nodal-continuous or H1-conforming finite element method is most desir-
able for numerically solving problem (1.3). In fact, the H1-conforming finite element
method is appropriate whenever the solution/eigenfunction belongs to H1-space and
ε is smooth. Note that the conforming finite element space of piecewise polynomials
for (1.3) is necessarily H1-conforming (see [47, 46, 17]).

However, although the curl operator and the div operator closely relate to the
gradient operator 5, with curlu = 5× u and divεu = 5 · εu, the resultant eigen-
functions may have some nonsmooth ones, which belong not to H1-space but to
fractional-order Hilbert spaces Hr, where 0 ≤ r < 1. This situation with very low
regularity eigenfunctions is not rare. As a matter of fact, non-H1-space solutions are
commonplace in electromagnetism. A main cause is due to the reentrant corners and
edges along the domain boundary Γ and across the interfaces of different materials
occupying the domain Ω (see [30, 34, 29, 33, 4, 14] for details). For a non-H1-space
solution, it has been widely recognized that the H1-conforming finite element solution
of the eigenproblem (1.3) cannot correctly converge (e.g., see [17, 45, 49]). It turns
out that the bilinear form in (1.3) accounts for this failure. To obtain a correctly
convergent H1-conforming finite element solution, the only option is how to mod-
ify/discretize the bilinear form in (1.3) in the finite element method. Although for
many years there have been many attempts on how to use the H1-conforming finite
element method to correctly approximate a non-H1-space solution, it is only during
the last decade that we have seen a few successful methods. For (1.2), there are the
weighted method [31, 21, 48, 25], the H−α-method for some 1/2 < α ≤ 1 [18, 11, 15],
and the L2 projection method [36, 35]. We should also mention the earlier work on
the singular complement method [5, 6, 7, 8, 9], which deals with Maxwell equations
in a domain with reentrant corners as well.

To motivate the study of this paper, we first review the several mentioned
methods.

In the case of solving problem (1.1), it is not clear whether both the weighted
method and the H−α-method can be applied. This is because the main idea for both is
to introduce a weaker norm (i.e., weighted L2-norm or H−α-norm) than the standard
L2-norm for measuring the div operator. The weighted L2 inner product or using the
H−α inner product for the div term in (1.1) may introduce a different problem from
(1.1). In the case of the Maxwell eigenvalue problem (1.2), the weighted method and
the H−α-method can be well-defined by a least-squares approach which deals with
the divergence-free constraint as an independent first-order equation. If we consider
only problem (1.2), both the weighted method and the H−α-method may be suitable
with the use of the H1-conforming element.
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CURLCURL-GRADDIV EIGENVALUE INTERFACE PROBLEM 1195

On the other hand, the L2 projection method can be used for solving (1.1) as well
as (1.2), because the main idea of this method is to discretize the div operator and
the curl operator in additional finite element spaces. The discretizations of the div
and curl operators are a type of L2 finite element projections, mimicking the classical
distributional definitions of the div operator and the curl operator [36, 39, 35, 37].
This paper is a continuation of our previous works. These works are reviewed to
enforce the motivation of the study in this paper.

In [36], we study the source problem of (1.2) in homogeneous media. We adopt
local L2 projections for both curl and div operators and the Maxwell solution is
required to lie in Hr for r > 1/2. We do not study the interface problem. Besides
element bubbles, higher-order face element bubbles are also used to enrich the finite
element space of the solution. Note that face element bubbles cannot be locally
eliminated.

In [35], we study the source problem of (1.2) in discontinuous media, adopting
local L2 projection for the curl operator while mass-lumping L2 projection for the div
operator. Again, the regularity r > 1/2 of the Maxwell solution is necessary in the
error analysis and higher-order face and element bubbles are used.

In [39], we study the source problem of (1.1) but focus on the homogeneous media
in two dimensions. The method admits the regularity in Hr for any r ∈ [0, 1]. The
method is a standard H1-conforming linear element method, up to element bubbles.
But it is not known whether the argument of the analysis of the stability can be valid
if considering the direct generalization of the method to three-dimensional problems.
In this work, the case with ε being discontinuous is not studied.

All these works do not consider the associated eigenvalue problem. In [37], we
study the eigenvalue problem (1.1) in three dimensions, but in homogeneous media,
using local L2 projections for both div and curl operators. The method still requires
the eigenfunctions to lie in Hr for some r > 1/2 and involves the enrichment with
higher-order face element bubbles as well as element bubbles. The discontinuous
media are not studied. It is left as unknown whether the argument of the stability
analysis therein is applicable for higher-order elements.

So, it remains highly desirable to develop a general globally H1-conforming finite
element method and a general theory for the generalized Maxwell eigenvalue interface
problem (1.1) (including the related indefinite source interface problem). Based on
the above review, we would require that the H1-conforming method for (1.1) can
accommodate the following mathematical and numerical considerations:
• The method is globally H1-conforming, and, up to element bubbles, the method

is essentially a standard H1-conforming finite element method (e.g., linear element
method), even if the coefficients µ and ε are discontinuous and anisotropic inhomoge-
neous. As is well-known, a standard static elimination of the element bubbles leads
to a standard finite element method. In the case of the linear element method, this
is relevant for three-dimensional problems, with only 4 × 3 = 12 degrees of freedom
of nodal-value type on each tetrahedron element.
• Very low piecewise regularity is allowed, say, u ∈

∏J
j=1(Hr(Ωj))

3 ↪→ (Hr0(Ω))3,

where 0 ≤ r, r0 ≤ 1/2, as well as 1/2 < r, r0 ≤ 1 are allowed. Error bounds O(h2r0)
for eigenvalues and O(hr0) for eigenfunctions can be obtained. Here r0 stands for the
global regularity exponent and r the piecewise regularity exponent, and they coincide
(i.e., r0 = r) when the partition of the domain is trivial with global continuous
material coefficients. As is well-known, although the global regularity of most interface
problems is very low, the piecewise regularity may be higher. By contrast, however, in
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1196 HUOYUAN DUAN, PING LIN, AND ROGER C. E. TAN

the case of the Maxwell interface problem, the piecewise regularity may still possibly
be very low. There exist some examples with a piecewise r being close to zero [34].
Whenever eigenfunctions are more regular and higher-order elements are used, the
theory is straightforwardly valid.

So far, to the authors’ knowledge, none of the existing methods and theory in the
literature can fulfill the above mathematical and numerical considerations for (1.1) as
well as (1.2).

In this paper, we shall study the eigenvalue interface problem (1.1) and the related
source interface problem. We propose a new H1-conforming finite element method,
where new L2 projections are introduced to discretize the curl and the div operators
(see section 3). With the newly proposed method, the above several aspects of math-
ematical and numerical considerations are all fulfilled. We should particularly point
out a novel technique in the stability analysis, i.e., the so-called bounded co-chain pro-
jection in [3] plays a critical role. It is the use of this projection that the argument in
analyzing the stability of the proposed method covers higher-order elements in three
dimensions (see Theorem 4.3). Meanwhile, the spectral correctness of the proposed
method is shown in this paper mainly from the argument of collective compactness
(see Theorem 6.2). These are new in the context of the L2 projection method.

The rest of this paper is arranged as follows. In section 2, Hilbert spaces and
norms, notations, and the relationship of the eigenproblem and the source problem
are reviewed. The finite element method is defined in section 3. We develop the Fortin
interpolation, the Inf-Sup condition, and the dual Fortin interpolation in section 4,
and we shall use these Fortin interpolations in section 5 to establish the coercivity
and the error estimates of the finite element method of the source problem. Error
estimates for the underlying eigenvalue interface problem are developed in section 6.
Concluding remarks are made in the last section.

2. Preliminaries. In this section, we review the coefficient matrices µ and ε,
the curl and div Hilbert spaces, and the relationship between the eigenproblem and
the corresponding source problem. Throughout the paper, we shall assume that µ =
(µij), ε = (εij) are symmetric in R3×3, uniformly coercive, and in (L∞(Ω))3×3:

εij = εji, µij = µji C−1|ξ|2 ≥ ξ · εξ, ξ · µξ ≥ C|ξ|2 a.e. Ω,∀ξ ∈ R3.

Let υ represent any of µ, µ−1, ε, ε−1. We introduce the υ-weighted L2 inner products
as follows:

(u,v)υ = (υu,v);

the induced norm is ||v||0,υ, which is equivalent to the L2-norm || · ||0. Since the mate-
rials occupying Ω may have different physical properties (e.g., permeability and per-
mittivity in electromagnetic phenomena) in different subregions of Ω, we allow µ and
ε to be discontinuous. In other words, there exists a partition P = {Ωj : 1 ≤ j ≤ J}
of Ω such that µ and ε are discontinuous across the interfaces among Ωj , 1 ≤ j ≤ J .
We shall also assume that µ|Ωj

and ε|Ωj
belong to (W 1,∞(Ωj))

3×3, 1 ≤ j ≤ J .
Introduce the usual Hilbert spaces [1]: H1(Ω) = {q ∈ L2(Ω) : 5q ∈ (L2(Ω))3},
H1

0 (Ω) = {q ∈ H1(Ω) : q|Γ = 0}, H1(Ω)/R = {q ∈ H1(Ω) :
∫

Ω
q = 0}. Let

H1(Ω), H1
0 (Ω), and H1(Ω)/R be equipped with norm ||q||21 = ||q||20 + ||5q||20 and

seminorm |q|1 = ||5q||0. We also need Hilbert space Hs(Ω) with norm ||q||s for
s ∈ R, where H0(Ω) = L2(Ω). In addition, for div and curl Hilbert spaces H(curl; Ω)
and H(divε; Ω) as introduced in the previous section, the norm for H(curl; Ω) is
||v||20;curl = ||v||20 + ||curlv||20 and the norm for H(divε; Ω) is ||v||20;divε = ||v||20 +
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||divεv||20. The Hilbert space H(curl; Ω) ∩ H(divε; Ω) is equipped with the norm
||v||20;curl;divε = ||v||20 + ||curlv||20 + ||divεv||20. As a result of the following proposi-
tion, the Hilbert space H0(curl; Ω) ∩H(divε; Ω) or H(curl; Ω) ∩H0(divε; Ω) can be
equipped with the norm ||v||2curl;divε := ||curlv||20 + ||divεv||20, which is equivalent to
the norm ||v||0;curl;divε. Using µ to replace ε, we can similarly define H(divµ; Ω),
H(div0µ; Ω), H0(divµ; Ω) and H0(div0µ; Ω), H(curl; Ω)∩H0(divµ; Ω), etc., equipped
with similar norms.

Proposition 2.1 (see [40, 55]). On Lipschitz domain Ω, with ε as assumed, for
any v ∈ H0(curl; Ω) ∩H(divε; Ω) or v ∈ H(curl; Ω) ∩H0(divε; Ω), we have

(2.1) ||curlv||20 + ||divεv||20 ≥ C||v||20.

Put

(2.2) λ := 1 + ω2.

The eigenproblem (1.2) is restated as follows: Find (λ,u 6= 0) ∈ R × H0(curl; Ω) ∩
H(divε; Ω) such that

L(u,v) := (µ−1curlu,v) + (divεu,divεv) + (εu,v) = λ(εu,v)(2.3)

∀v ∈ H0(curl; Ω) ∩H(divε; Ω).

The corresponding boundary value problem is as follows:
(2.4)
curlµ−1curlu− ε5divεu + εu = λεu in Ω, u× n = 0, divεu = 0 on Γ.

Since H0(curl; Ω) ∩ H(divε; Ω) is compactly embedded into (L2(Ω))3 (see [40, 49,
28, 55]), it follows from [29] that the eigenproblem (1.1) has an infinite sequence of
eigenvalues 0 ≤ ω2

1 ≤ ω2
2 ≤ · · · ↗ +∞. As a consequence of Proposition 2.1, all

eigenvalues ω2 > C > 0 of the eigenproblem (1.1). Thus, from (2.2),

(2.5) 1 + C < λ1 ≤ λ2 ≤ · · · ↗ +∞.

Closely related to the eigenproblem (2.4), the source problem reads as follows:
Given f ∈ (L2(Ω))3, find z such that

(2.6) curlµ−1curlz − ε5divεz + εz = εf in Ω, z × n = 0, divεz = 0 on Γ,

for which the variational statement is to find z ∈ H0(curl; Ω) ∩H(divε; Ω) such that

(2.7) L(z,v) = (εf ,v) ∀v ∈ H0(curl; Ω) ∩H(divε; Ω).

With (2.7), a linear operator T : (L2(Ω))3 → H0(curl; Ω) ∩H(divε; Ω) is defined as
follows: for any given f ∈ (L2(Ω))3, z = Tf ∈ H0(curl; Ω) ∩H(divε; Ω) satisfies

(2.8) L(Tf ,v) = (εf ,v) ∀v ∈ H0(curl; Ω) ∩H(divε; Ω).

From Proposition 2.1 it can be easily verified that the linear operator T is bounded
from (L2(Ω))3 to H0(curl; Ω)∩H(divε; Ω). Moreover, T is symmetric positive definite
with respect to both the ε-weighted L2 inner product (·, ·)ε and the L-induced inner
product (·, ·)L := L(·, ·). Furthermore, T : (L2(Ω))3 → (L2(Ω))3 is compact (due
to the compact embedding of H0(curl; Ω) ∩ H(divε; Ω) ↪→ (L2(Ω))3). Also, T :
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1198 HUOYUAN DUAN, PING LIN, AND ROGER C. E. TAN

H0(curl; Ω)∩H(divε; Ω)→ H0(curl; Ω)∩H(divε; Ω) is compact. Clearly, an eigenpair
(λ,u 6= 0) of (2) if and only if (ν = 1/λ,u 6= 0) is an eigenpair of T, i.e.,

(2.9) Tu = ν u with ν = 1/λ,

and the sequence of eigenvalues of T satisfies

(2.10) 0↙ · · · ≤ ν2 ≤ ν1 < 1/(1 + C) < 1.

3. The finite element method. In this section we define the finite element
method. Let Ω and Ωj , 1 ≤ j ≤ J , be simply connected bounded polyhedra in R3,
with connected boundaries Γ = ∂Ω and ∂Ωj . Denote by Th the conforming (also
conforming to Γ and ∂Ωj) triangulation of Ω into shape-regular and quasi-uniform
tetrahedra [24], where h = maxK∈Th

hK and hK is the diameter of K. Let Fh be the
collection of all element faces, FΓ

h the collection of all the element faces on Γ, and
F Inter
h the set of all the element faces on the interfaces of the discontinuous ε. Denote

by F 0
h = Fh\(FΓ

h ∪F Inter
h ) the collection of all interior element faces which are not on

the domain boundary and the interfaces. Denote by Pl(K) the space of polynomials
on K of total degree not greater than l, where l ≥ 1 is an integer. Introduce the
element bubble bK ∈ H1

0 (Ω). A typical element bubble is bK = λ1λ2λ3λ4, where λi
denotes the ith basis of P1(K) associated with the ith vertex of K, 1 ≤ i ≤ 4. We
shall assume that ε = (εij), εij is a piecewise polynomial with respect to the partition
P of Ω, and it is also piecewise on Th, i.e., εij |K is a polynomial for K ∈ Th.
For a general piecewise smooth ε, we can consider its finite element interpolation of
piecewise polynomials as a replacement. On K ∈ Th, we introduce

(3.1) P l−1(ε;K) = span{ε(Pl−1(K))3, (Pl−1(K))3},

(3.2) Φh = {v ∈ (H1
0 (Ω))3 : v|K ∈ bKP l−1(ε;K) ∀K ∈ Th},

(3.3) V lh = {q ∈ L2(Ω) : q|K ∈ Pl(K) ∀K ∈ Th}.

We define the H1-conforming finite element space Uh for the solution

(3.4) Uh = (V lh ∩H1(Ω))3 + Φh, W c
h = (V lh ∩H1(Ω))3.

We should emphasize that even if ε is discontinuous, Uh is always continuous
and H1-conforming over the whole Ω. An example for Uh is l = 1. In that case,
Uh is an H1-conforming linear element, enriched with some element bubbles. The
number of element bubbles is up to the degree of the polynomial ε|K . For example,
for piecewise constant ε and l = 1, there are 1×3 element bubbles for the function v =
(v1, v2, v3) ∈ Uh on each element K. Since all element bubbles are in (H1

0 (K))3, they
can be element locally eliminated by a standard static condensation procedure before
the implementation of the finite element method. The static condensation procedure
is a technique to eliminate the element bubbles. Note that any function of Φh is a
function of (H1

0 (K))3 for all K ∈ Th and that any function vh of Uh from (3.4) can be
written as the sum of two parts, i.e., vh = vlh+vbh, where vlh ∈ (V lh∩H1(Ω))3,vbh ∈ Φh.
We refer to [15, pp. 248–249] for a description of the realization of such a procedure
for the MINI element of the Stokes problem. Thus, Uh is in essence a standard
nodal-continuous Lagrange element of degree l.
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Moreover, we introduce two finite element spaces Qh and Wh for the definitions
of two L2 projections R̆h and Rh, respectively, as follows:

(3.5) Qh = V lh ∩H1
0 (Ω),

(3.6) Wh = V lh ∩H(curl; Ω).

Here, Qh is H1-conforming finite element space, while Wh is H(curl; Ω)-conforming
finite element space of Nédélec elements of the second family. Classical theory for Qh
and Wh can be found, respectively, in [24, 19] and [51, 49, 45, 17]. Note that the
choices of (3.5) and (3.6) correspond to the natural regularity divεu ∈ H1

0 (Ω) and
µ−1curlu ∈ H(curl; Ω) for the solution u. For any given v ∈ (L2(Ω))3, we define
R̆h(divεv) ∈ Qh and Rh(µ−1curlv) ∈Wh in the following:

(3.7) (R̆h(divεv), q) = −(v, ε5q) ∀q ∈ Qh,

(3.8) (Rh(µ−1curlv),w)µ = (v, curlw) ∀w ∈Wh.

Note that, in general, Rh and R̆h are not genuine L2 projectors, but they are indeed
when v ∈ H0(curl; Ω) ∩H(divε; Ω). In that case,

(3.9) (R̆h(divεv), q) = (divεv, q) ∀q ∈ Qh,

(3.10) (Rh(µ−1curlv),w)µ = (µ−1curlv,w)µ ∀w ∈Wh,

and there hold

(3.11) ||Rh(µ−1curlv)||0,µ ≤ ||µ−1curlv||0,µ, ||R̆h(divεv)||0 ≤ ||divεv||0.

So, we will simply call Rh and R̆h L
2 projectors.

The H1-conforming finite element method we propose is to find (λh,uh 6= 0) ∈
R× Uh such that

(3.12) Lh(uh,vh) = λh(εuh,vh) ∀vh ∈ Uh,

where

Lh(uh,vh) = (Rh(µ−1curluh), Rh(µ−1curlvh))µ

+ (R̆h(divεuh), R̆h(divεvh)) + (εuh,vh).(3.13)

The method is nonconforming, not only due to the nonconformity of Uh, but also due
to the introduction of the L2 projections in the bilinear form. Note that the bilinear
form Lh(u,v) is well-defined for all u,v ∈ (L2(Ω))3. As such, even when the exact
solution is only L2, a correct convergence would be expected.

Let Th : (L2(Ω))3 → Uh be a bounded linear operator, defined in the following
way: Given f ∈ (L2(Ω))3, find Thf ∈ Uh such that

(3.14) Lh(Thf ,vh) = (εf ,vh) ∀vh ∈ Uh.

As in the continuous case, analogously, an eigenpair (λh,uh) of (3.12) if and only if
(νh = 1/λh,uh) is an eigenpair of Th, i.e.,

(3.15) Thuh = νh uh with νh = 1/λh.

Since the most interesting solution is the Hr space solution for some r ≤ 1, we
shall only focus on the analysis for the linear element method, i.e., l = 1. How-
ever, all the analysis will be valid for higher-order element methods, with very few
modifications.
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4. The Fortin-type interpolation and the Inf-Sup inequality. In this
section we shall construct two Fortin-type interpolations and an Inf-Sup inequal-
ity associated with the following trilinear form, which will be the main tools for
analyzing the stability and the error bounds. We introduce a trilinear form over
(L2(Ω))3 ×H1

0 (Ω)×H(curl; Ω) as follows:

(4.1) b(v; (p,w)) = (v, curlw)− (εv,5p) : (L2(Ω))3 ×H1
0 (Ω)×H(curl; Ω)→ R.

This trilinear form relates to the curlcurl-graddiv operator in (1.1) by inserting w =
µ−1curlu and p = divεu. The role of b(v; (p,w)) is for dealing with the nonconformity
caused by the L2 projections.

4.1. Properties of the kernel of b. We shall investigate the properties of the
kernel set of the trilinear form b, so that we can arrive at an Inf-Sup condition and a
Fortin-type interpolation in the L2 orthogonal complement of the kernel of b in Uh.
Some of the properties established for the kernel of b will also be used in the error
estimates.

Let the kernel set of b be defined by

(4.2) Kh(b) = {v ∈ Uh : b(v; (p,w)) = 0 ∀p ∈ Qh, ∀w ∈Wh}.

For the finite dimensional space Uh we can have the following orthogonal decomposi-
tion with respect to the ε-weighted L2 inner product (·, ·)ε:

(4.3) Uh = Kh(b) + Kh(b)⊥,

satisfying

(4.4) (εu,v) = 0 ∀u ∈ Kh(b),∀v ∈ Kh(b)⊥.

Since, in terms of Rh and R̆h,

(4.5) b(v; (p,w)) = (Rh(µ−1curlv),w)µ + (R̆h(divεv), q) ∀q ∈ Qh,∀w ∈Wh,

the kernel set Kh(b) of b can also be equivalently defined as follows:

(4.6) Kh(b) = {v ∈ Uh : Rh(µ−1curlv) = 0, R̆h(divεv) = 0}.

Proposition 4.1 (see [40, 2]). We have the following ε-weighted L2 orthogonal
decomposition and the µ-weighted L2 orthogonal decomposition:

(L2(Ω))3 = ε−1curl(H(curl; Ω) ∩H0(div0µ; Ω)) + 5H1
0 (Ω)

= H0(div0µ; Ω) + 5(H1(Ω)/R).(4.7)

Assumption 1. We require that the following two continuous embeddings hold for
some 1 ≥ r ≥ 0:

(4.8) H0(curl; Ω) ∩H(divε; Ω), H(curl; Ω) ∩H0(divµ; Ω) ↪→
J∏
j=1

(Hr(Ωj))
3,

where for any v ∈ H0(curl; Ω)∩H(divε; Ω), or v ∈ H(curl; Ω)∩H0(divµ; Ω) we have

(4.9)

J∑
j=1

||v||r,Ωj ≤ C||v||curl;divε or C||v||curl;divµ.

Above, r stands for the piecewise regularity exponent.
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In the case where ε and µ belong to (W 1,∞(Ω))3×3, the above assumption is
known to hold in (Hr(Ω))3. In fact, r > 1/2 for Lipschitz polyhedra [2] and r = 1/2
for general Lipschitz domains [28]. On the other hand, for non-Lipschitz domains, r
may be less than 1/2; see [30]. Throughout this paper we do not require r > 1/2,
although we have assumed a Lipschitz polyhedron Ω. In addition, the above two con-
tinuous embedding may have different regularity r. In fact, (4.8) may come from the
regularity of the second-order elliptic interface problem of Laplacian, corresponding
to Dirichlet and Neumann boundary conditions [2, 43]. As pointed out in [34], for
interface problems, not only is the global regularity commonly very low [16], but also
the piecewise regularity is possibly very low.

To establish the Fortin interpolation stated in Theorem 4.2 later on using H1-
conforming and nodal-continuous elements, with Assumption 1 at hand, we need to
introduce a real number to indicate the global regularity

r0 = min(r, 1/2− ε),

where the parameter ε can be any given small positive constant in the interval (0, 1/2).
All the analysis and theoretical results throughout this paper hold for r0. Below we
make some remarks on the relationship between the global regularity r0 and the
piecewise regularity r. If r < 1/2, noting the fact that Hr(Ωj) = Hr

0 (Ωj), we have∏J
j=1(Hr(Ωj))

3 = (Hr(Ω))3, and we take r0 = r. If 1 ≥ r ≥ 1/2, noting the fact

that Hr(Ωj) continuously embeds into H1/2−ε(Ωj) for any positive constant ε > 0,

we have that
∏J
j=1(Hr(Ωj))

3 continuously embeds into (H1/2−ε(Ω))3, and we take
r0 = 1/2 − ε. In other words, from the continuous embeddings in Assumption 1, we
find that the following hold in terms of the global regularity r0 as defined:
(4.8)′

H0(curl; Ω) ∩H(divε; Ω), H(curl; Ω) ∩H0(divµ; Ω) ↪→
J∏
j=1

(Hr(Ωj))
3 ↪→ (Hr0(Ω))3,

where for any v ∈ H0(curl; Ω)∩H(divε; Ω), or v ∈ H(curl; Ω)∩H0(divµ; Ω) we have

(4.9)′ ||v||r0 ≤ C
J∑
j=1

||v||r,Ωj ≤ C||v||curl;divε or C||v||curl;divµ.

We should note that if r itself stands for the global regularity (e.g., this often happens
for ε = µ = 1), we just take r0 = r, without the restriction being less than 1/2 on r0.
In addition, under some situations where the piecewise regularity r > 1, we may also
take r0 = r itself. See further remarks in Remark 4.1 after Theorem 4.2.

Lemma 4.1. For any given f , if f ∈ H0(curl; Ω) ∩ H(divε; Ω), then, under
Assumption 1,

(4.10) f = 5A+ ε−1curlB,

where A ∈
∏J
j=1H

1+r(Ωj) ∩H1
0 (Ω) and B, curlB ∈

∏J
j=1(Hr(Ωj))

3, satisfy

(4.11)

J∑
j=1

||A||1+r,Ωj + ||B||r,Ωj + ||curlB||r,Ωj ≤ C||f ||curl;divε.D
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Proof. From Proposition 4.1 we can write f into the ε-weighted L2 orthogonal
decomposition f = 5A + ε−1curlB, where A ∈ H1

0 (Ω), and B ∈ H(curl; Ω) ∩
H0(div0µ; Ω), and A satisfies div ε5A = divεf in Ω and A = 0 on Γ. Since 5A ∈
H0(curl; Ω)∩H(divε; Ω), from Assumption 1 we know that A ∈

∏J
j=1H

1+r(Ωj) satis-

fies
∑J
j=1 ||A||1+r,Ωj ≤ C||f ||0,divε. Note that from Assumption 1, f ∈ H0(curl; Ω)∩

H(divε; Ω) ↪→
∏J
j=1(Hr(Ωj))

3, satisfying
∑J
j=1 ||f ||r,Ωj

≤ C||f ||curl;divε. Also, note

that from Proposition 2.1, ||f ||0 ≤ C||f ||curl;divε. Since ε−1curlB = f −5A ∈
H0(curl; Ω) ∩ H(divε; Ω), from Assumption 1 we have ε−1curlB ∈

∏J
j=1(Hr(Ωj)

3,

satisfying
∑J
j=1 ||ε−1curlB||r,Ωj ≤ C||f ||curl;divε and ||curlB||0 ≤ C||f ||0. Since

ε|Ωj
∈ (W 1,∞(Ωj))

3×3, we further have curlB ∈
∏J
j=1(Hr(Ωj))

3, satisfying
∑J
j=1

||curlB||r,Ωj
≤ C||f ||curl;divε. While, Assumption1 also gives B ∈

∏J
j=1(Hr(Ωj))

3,

satisfying
∑J
j=1 ||B||r,Ωj ≤ C||B||curl;divµ = C||curlB||0 ≤ C||f ||0 ≤ C||f ||curl;divε.

We then obtain (4.11).

Theorem 4.1. Assume Assumption 1 and f ∈ H0(curl; Ω) ∩ H(divε; Ω). We
have

(4.12) |(εf ,v0,h)| ≤ Chr||f ||curl,divε ||v0,h||0 ∀v0,h ∈ Kh(b).

Proof. From Lemma 4.1, we write f as f = ε−1curlB − 5A, where A ∈∏J
j=1H

1+r(Ωj) ∩H1
0 (Ω) and B, curlB ∈

∏J
j=1(Hr(Ωj))

3 satisfy
∑J
j=1 ||A||1+r,Ωj +

||B||r,Ωj +||curlB||r,Ωj ≤ C||f ||curl,divε. Since v0,h satisfies b(v0,h; (IhA,JhB)) = 0,
where IhA ∈ Qh and JhB ∈ Wh, respectively, stand for the finite element interpo-
lations of A and B, we have
(4.13)
(εf ,v0,h) = (curlB − ε5A,v0,h) = b(v0,h; (A,B)) = b(v0,h; (A− IhA,B − JhB)),

where

(4.14) (curl(B − JhB),v0,h) ≤ Chr
J∑
j=1

||curlB||r,Ωj
||v0,h||0,

(4.15) − (ε5(A− IhA),v0,h) ≤ Chr
J∑
j=1

||A||1+r,Ωj
||v0,h||0.

It follows that

(4.16) |(εf ,v0,h)| ≤ Chr
 J∑
j=1

||curlB||r,Ωj + ||A||1+r,Ωj

 ||v0,h||0.

4.2. The Fortin-type interpolation and the Inf-Sup inequality. We first
introduce a mesh-dependent norm for the establishment of the Inf-Sup inequality. For
any vh ∈ Uh, with vh = v0,h + v⊥0,h, v0,h ∈ Kh(b), and v⊥0,h ∈ Kh(b)⊥, we define

||vh||2h = h−2r||v0,h||20 + ||v⊥0,h||20 +
∑
K∈Th

h2−2r
K ||divεvh||20,K(4.17)

+
∑
K∈Th

h2−2r
K ||curlvh||20,K

+
∑
F∈FΓ

h

h1−2r
F

∫
F

|vh × n|2 +
∑

F∈F Inter
h

h1−2r
F

∫
F

|[εvh · n]|2,D
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where hF is the diameter of the face F , 0 ≤ r ≤ 1 comes from Assumption 1, and [q]
denotes the jump.

Lemma 4.2. For all vh ∈ Uh, the following holds:

(4.18) ||vh||h ≥ C||v⊥0,h||h.

Proof. In fact, since vh = v0,h+v⊥0,h, with v0,h ∈ Kh(b) and v⊥0,h ∈ Kh(b)⊥, from
the element-local inverse estimates for the functions of finite dimensional spaces, i.e.,

(4.19) ||v||1,K ≤ Ch−1
K ||v||0,K ,

we have

h2−2r
K ||divεv⊥0,h||20,K ≤ 2h2−2r

K ||divεvh||20,K + 2h2−2r
K ||divεv0,h||20,K ,

h2−2r
K ||divεv0,h||20,K ≤ Ch2−2r

K ||v0,h||21,K ≤ Ch−2r
K ||v0,h||20,K ,

h2−2r
K ||curlv⊥0,h||20,K ≤ 2h2−2r

K ||curlvh||20,K + 2h2−2r
K ||curlv0,h||20,K ,

h2−2r
K ||curlv0,h||20,K ≤ Ch2−2r

K |v0,h|21,K ≤ Ch−2r
K ||v0,h||20,K ,

h1−2r
F

∫
F

|v⊥0,h × n|2 ≤ 2h1−2r
F

∫
F

|vh × n|2 + 2h1−2r
F

∫
F

|v0,h × n|2,

h1−2r
F

∫
F

|v0,h × n|2 ≤ Ch−2r
K ||v0,h||20,K ,

h1−2r
F

∫
F

|[εv⊥0,h · n]|2 ≤ 2h1−2r
F

∫
F

|[εvh · n]|2 + 2h1−2r
F

∫
F

|[εv0,h · n]|2,

h1−2r
F

∫
F

|[εv0,h · n]|2 ≤ Ch−2r
K ||v0,h||20,K + h−2r

K′ ||v0,h||20,K′ ,

where F = ∂K ∩ ∂K ′, with K,K ′ ∈ Th. Combining all these, we obtain the
result (4.18).

By the triangle inequality, moreover, we obtain from Lemma 4.2 ||v0,h||h ≤
||vh||h + ||v⊥0,h||h ≤ C||vh||h. On the other hand, by the triangle inequality again,

we have ||vh||h ≤ ||v0,h||h + ||v⊥0,h||h. So, ||v0,h||h + ||v⊥0,h||h is equivalent to ||vh||h
over Uh. Thus, there exists some orthogonality between v0,h and v⊥0,h. Here we should
note that the mesh-dependent norm || · ||h is introduced only for theoretical analysis
and never involved with the implementation of the proposed finite element method.

Proposition 4.2. We have the following inclusions:

(4.20) curlWh|K , ε5Qh|K ⊂ P l−1(ε;K) ∀K ∈ Th.

Proof. By the definitions (3.1), (3.3), (3.5), and (3.6), we conclude.

Theorem 4.2. Under Assumption 1, for any given v ∈ H0(curl; Ω)∩H(divε; Ω),
there is a Fortin-type interpolation ṽ ∈ Uh ∩H0(curl; Ω) of v such that

(4.21) b(ṽ; (p,w)) = b(v; (p,w)) ∀p ∈ Qh,∀w ∈Wh,

(4.22) ||ṽ||h ≤ C ||v||curl;divε,

where || · ||h is defined by (4.17) but with r replaced by r0, and the following inter-
polation properties (4.23)–(4.25) hold in terms of the global regularity r0 as defined
earlier:
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∫
K

(ṽ − v) ·w = 0 ∀w ∈ P l−1(ε;K),∀K ∈ Th,(4.23)

||v − ṽ||0 ≤ Chr0 ||v||curl;divε,(4.24) ( ∑
K∈Th

h−2r0
K ||v − ṽ||20,K

)1/2

+ ||ṽ||r0 ≤ C||v||curl;divε.(4.25)

Proof. First, from Assumption 1 (see (4.8) and (4.9)),

v ∈
J∏
j=1

(Hr(Ωj))
3 ↪→ (Hr0(Ω))3,

satisfying

||v||r0 ≤ C
J∑
j=1

||v||r,Ωj
≤ C||v||curl;divε.

From the finite element interpolation theory [27, 12, 41, 54],1 we can construct vh ∈
(V lh ∩H1(Ω))3 ∩H0(curl; Ω) ⊂ Uh, the finite element interpolation of v ∈ (Hr0(Ω))3,
satisfying

||v − vh||0 ≤ Chr0 ||v||r0 ≤ Chr0 ||v||curl;divε,(4.26) ( ∑
K∈Th

h−2r0
K ||v − vh||20,K

)1/2

+ ||vh||r0 ≤ C||v||r0 ≤ C||v||curl;divε.(4.27)

We then define ṽ ∈ Uh ∩H0(curl; Ω) as follows:

ṽ(a) = vh(a) ∀ nodes a of Pl(K) ,∀K ∈ Th,(4.28) ∫
K

(ṽ − v) ·w = 0 ∀w ∈ P l−1(ε;K),∀K ∈ Th.(4.29)

It is not difficult to verify that ṽ ∈ Uh ∩ H0(curl; Ω) is uniquely determined by
(4.28) and (4.29). In fact, writing ṽ = vL + vB , with the part vL ∈ (V lh ∩H1(Ω))3 ∩
H0(curl; Ω) and with the bubble part vB ∈ Φh, we see that the part vL is determined
by (4.28) and the bubble part vB by (4.29) element by element. In other words,

(4.30) vL = vh,

(4.31)

∫
K

vB ·w =

∫
K

(v − vh) ·w ∀w ∈ P l−1(ε;K),∀K ∈ Th.

We therefore first conclude that (4.21) holds, since, from (4.29) and Proposi-
tion 4.2, we have

b(ṽ − v; (p,w)) = (ṽ − v, curlw − ε5p) = 0 ∀p ∈ Qh,w ∈Wh.

1The vector interpolation with vanishing tangential components can follow from the Scott–Zhang
interpolation, since this interpolation preserves conforming boundary values and since the normal
vector n is constant to each polygonal face of Γ.
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On K ∈ Th, by the standard scaling argument [24, 19, 41] , we can have

(4.32) ||vB ||0,K ≤ C ||v − vh||0,K ,

and we obtain

(4.33) ||ṽ − v||0,K ≤ C ||v − vh||0,K .

Hence, ṽ satisfies the same interpolation error properties (4.26) and (4.27), that is,
(4.24) and (4.25) hold. Note that the boundedness of ||ṽ||r0 can be obtained as follows:

||ṽ||r0 ≤ ||ṽ − vh||r0 + ||vh||r0 ≤ Ch−r0 ||ṽ − vh||0 + C||v||curl;divε

≤ Ch−r0 ||ṽ − v||0 + Ch−r0 ||vh − v||0 + C||v||curl;divε ≤ C||v||curl;divε.

Moreover, (4.23) comes from the definition (4.29). By the element-local inverse esti-
mates over finite dimensional spaces, h1−t

K ||u||1,K ≤ C||u||t,K , for all t ∈ [0, 1], for all
u ∈ Uh, and for all K ∈ Th, we obtain from (4.25) that∑

K∈Th

h2−2r0
K ||divεṽ||20,K +

∑
K∈Th

h2−2r0
K ||curlṽ||20,K ≤ C||ṽ||2r0 ≤ C||v||

2
curl;divε.

Similarly, since v ∈ H(divε; Ω), we have∑
F∈F Inter

h

h1−2r0
F

∫
F

|[εṽ · n]|2 =
∑

F∈F Inter
h

h1−2r0
F

∫
F

|[ε(ṽ − v) · n]|2 ≤ C||v||2curl;divε.

On the other hand, since ṽ = ṽ0 + ṽ⊥0 , satisfying ||ṽ||20,ε = ||ṽ0||20,ε + ||ṽ⊥0 ||20,ε, where

ṽ0 ∈ Kh(b) and ṽ⊥0 ∈ Kh(b)⊥, we have

||ṽ0||20,ε = (ṽ0, ṽ0)ε = (ṽ0, ṽ)ε = (ṽ0, ṽ − v)ε + (ṽ0,v)ε.

From (4.24) and Theorem 4.1,

(ṽ0, ṽ − v)ε ≤ ||ṽ0||0,ε||ṽ − v||0,ε ≤ Chr0 ||ṽ0||0||v||curl,divε,

|(ṽ0,v)ε| ≤ Chr0 ||ṽ0||0 ||v||curl,divε.

We thus have

(4.34) h−2r0 ||ṽ0||20 ≤ C||v||2curl;divε,

(4.35) ||ṽ⊥0 ||20 ≤ 2(||ṽ||20 + ||ṽ0||20) ≤ C||v||2curl;divε.

Hence, combining all the above, we obtain (4.22).

We call such ṽ the Fortin-type interpolation which satisfies (4.21), mimicking the
classical Fortin interpolation for mixed methods [20]. In terms of L2 projectors Rh
and R̆h, (4.21) equivalently states

(4.36) Rh(µ−1curl(v − ṽ)) = 0, R̆h(divε(v − ṽ)) = 0.
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Remark 4.1. There are some remarks on the rate r0 in (4.26) (or that in (4.24)).
If u ∈ (Hr(Ω))3, the rate r0 in L2-norm can be r, which may take any value in the

interval [0, 2] (considering the linear element). If u ∈ (H1(Ω))3∩
∏J
j=1(Hr(Ωj))

3 and

if r ≥ 1, the rate r0 in L2-norm can still be r (see Lemma 6.3 in [38]), and similarly, for

u ∈ H(curl; Ω)∩H(div; Ω)∩
∏J
j=1(Hr(Ωj))

3, where H(curl; Ω)∩H(div; Ω) replaces

(H1(Ω))3, the rate r0 can be r, as well, which may take any value in the interval [0, 2].
Note that the u which belongs to H(curl; Ω)∩H(divε; Ω) does not necessarily belong

to H(curl; Ω) ∩ H(div; Ω). If u ∈
∏J
j=1(Hr(Ωj))

3 and is discontinuous with either
the jump [n×u] 6= 0 or the jump [u ·n] 6= 0 (albeit [(εu) ·n] = 0) or the jump [u] 6= 0
on some interfacial boundaries, there are two cases: (C1) if r < 1/2, then the rate r0

in L2-norm is still r, since
∏J
j=1H

r(Ωj) =
∏J
j=1H

r
0 (Ωj) = Hr

0 (Ω) = Hr(Ω); (C2) if
r ≥ 1/2, the rate r0 could not be r, because it seems not to be possible to construct a
nodal-continuous interpolation with the rate r for a discontinuous function which has
the piecewise regularity r. Of course, the rate r0 can be 1/2− ε for any small ε > 0,
as remarked after Assumption 1; see (4.8) and (4.9).

Proposition 4.3 (see [40]). For any given w ∈ H0(div0µ; Ω) and p ∈ L2(Ω),
there exists a unique solution v ∈ H0(curl; Ω) ∩H(divε; Ω) to the following problem:

(4.37) µ−1curlv = w, divεv = p in Ω, v × n = 0 on Γ.

Moreover, v ∈
∏J
j=1(Hr(Ωj))

3 from Assumption 1, satisfying

(4.38)

J∑
j=1

||v||r,Ωj ≤ C (||w||0 + ||p||0).

Now we are able to establish an Inf-Sup inequality in the following. This will
mainly rely on the classical orthogonal decomposition of the H(curl; Ω)-conforming
Wh and the so-called bounded co-chain projection [3]. The bounded co-chain projec-
tion plays a critical role in the establishment of the Inf-Sup condition in the case of
higher-order elements. For lower-order elements, a different argument without using
this projection can be found in [37].

From [45, 49, 51, 41], we first recall the following µ-weighted L2 orthogonal de-
composition:

(4.39) Wh = W0,h + 5Mh,

where

(4.40) W0,h = {w0,h ∈Wh : (w0,h,5χh)µ = 0 ∀χh ∈Mh},

(4.41) Mh = {χh ∈ H1(Ω)/R : χh|T ∈ Pl+1(T ) ∀T ∈ Th}.

Theorem 4.3. Under Assumption 1, we have the following Inf-Sup inequality:

(4.42) sup
06=vh∈Uh

b(vh; (ph,w0,h))

||vh||h
≥ C(||ph||0 + ||w0,h||0) ∀ph ∈ Qh,∀w0,h ∈W0,h.

Note that, corresponding to Theorem 4.2, the r in || · ||h which is defined in (4.17) is
replaced by r0.

D
ow

nl
oa

de
d 

08
/0

5/
16

 to
 1

34
.3

6.
50

.2
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CURLCURL-GRADDIV EIGENVALUE INTERFACE PROBLEM 1207

Proof. We have the µ-weighted L2 orthogonal decomposition from Proposition 4.1:

w0,h = 5q + w∗, q ∈ H1(Ω)/R,w∗ ∈ H0(div0µ; Ω),(4.43)

||w0,h||20,µ = ||5q||20,µ + ||w∗||20,µ,
||w∗||0,µ ≤ ||w0,h||0,µ,

where, from Assumption 1,

w∗ ∈ H(curl; Ω) ∩H0(div0µ; Ω) ↪→
J∏
j=1

(Hr(Ωj))
3,

J∑
j=1

||w∗||r,Ωj ≤ C||curlw∗||0 = C||curlw0,h||0.

Let ρhw
∗ ∈ Wh denote the bounded co-chain projection of w∗ ∈ (L2(Ω))3 as con-

structed in [3], which satisfies

(4.44) ρhw
∗ ∈Wh, ||ρhw∗||0 ≤ C||w∗||0.

Moreover, for 5q, there exists a qh ∈Mh such that

(4.45) ρh5q = 5qh.

We clearly have

w0,h = ρhw0,h = ρhw
∗ + 5qh,

but w0,h ∈W0,h, we have

||w0,h||20,µ = (ρhw
∗,w0,h)µ ≤ C||ρhw∗||0||w0,h||0,µ ≤ C||w∗||0||w0,h||0,µ,

so we have

||w0,h||0,µ ≤ C||w∗||0 ≤ C||w∗||0,µ.

Hence

(4.46) C||w0,h||0,µ ≤ ||w∗||0,µ ≤ ||w0,h||0,µ.

Consider the following problem: Given w0,h ∈ W0,h, ph ∈ Qh, with w∗ ∈
H(curl; Ω) ∩H0(div0µ; Ω) being given by (4.43), find v∗ ∈ H0(curl; Ω) ∩H(divε; Ω)
such that

µ−1curlv∗ = w∗, divεv∗ = ph in Ω, v∗ × n|Γ = 0.

From Proposition 4.3 and Assumption 1 we know that the above problem has a unique
solution v∗ ∈ H0(curl; Ω) ∩H(divε; Ω) ↪→

∏J
j=1(Hr(Ωj))

3 ↪→ (Hr0(Ω))3, satisfying

(4.47) ||v∗||r0 ≤ C
J∑
j=1

||v∗||r,Ωj
≤ C||v∗||curl;divε ≤ C(||ph||0 + ||w∗||0).

We also have

(4.48) b(v∗; (ph,w
∗)) = (µ−1curlv∗,w∗)µ + (divεv∗, ph) = ||ph||20 + ||w∗||20,µ.
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1208 HUOYUAN DUAN, PING LIN, AND ROGER C. E. TAN

Let v∗h ∈ Uh be the Fortin-type interpolant to v∗ ∈ (Hr0(Ω))3, as constructed in
Theorem 4.2. We have

b(v∗h; (ph,w0,h)) = b(v∗h − v∗; (ph,w0,h)) + b(v∗; (ph,w0,h))

= b(v∗; (ph,w0,h))(4.49)

= b(v∗; (ph,w
∗)) + (v∗; curl(w0,h −w∗))

= b(v∗; (ph,w
∗)) = ||ph||20 + ||w∗||20,µ,

||v∗h||h ≤ C||v∗||curl;divε ≤ C(||ph||0 + ||w∗||0,µ),(4.50)

sup
0 6=vh∈Uh

b(vh; (ph,w0,h))

||vh||h
≥ b(v∗h; (ph,w0,h))

||v∗h||h
≥ C(||ph||0 + ||w∗||0,µ),(4.51)

but ||w∗||0,µ ≥ C||w0,h||0,µ from (4.46), and we complete the proof.

Before closing this subsection, we point out two facts associated with Kh(b)⊥.
These two facts will be used later on. We first note that the Inf-Sup inequality (4.42)
holds over Kh(b)⊥, i.e.,
(4.52)

sup
0 6=vh∈Kh(b)⊥

b(vh; (ph,w0,h))

||vh||h
≥ C(||ph||0 + ||w0,h||0,µ) ∀ph ∈ Qh,∀w0,h ∈W0,h.

We next note that the Fortin-type interpolation in Theorem 4.2 of

v ∈ H0(curl; Ω) ∩H(divε; Ω) ↪→
J∏
j=1

(Hr(Ωj))
3 ↪→ (Hr0(Ω))3

can be taken in Kh(b)⊥ only, i.e., the part ṽ⊥0 of the L2 orthogonal decomposition of
ṽ ∈ Uh,

ṽ = ṽ0 + ṽ⊥0 with ṽ0 ∈ Kh(b) and ṽ⊥0 ∈ Kh(b)⊥.

We clearly have

(4.53) b(ṽ⊥0 ; (ph,wh)) = b(v; (ph,wh)) ∀ph ∈ Qh,∀wh ∈Wh,

which can also be expressed in terms of L2 projectors Rh and R̆h as follows:

(4.54) Rh(µ−1curl(v − ṽ⊥0 )) = 0, R̆h(divε(v − ṽ⊥0 )) = 0.

From (4.24) and (4.34) we see that ṽ⊥0 satisfies

(4.55) ||v − ṽ⊥0 ||0 ≤ ||v − ṽ||0 + ||ṽ0||0 ≤ Chr0 ||v||curl;divε.

By the inverse estimates on finite dimensional space Uh

hr0 ||vh||r0 ≤ C||vh||0 ∀vh ∈ Uh,

we have from (4.25) and (4.34) that

(4.56) ||ṽ⊥0 ||r0 ≤ ||ṽ||r0 + ||ṽ0||r0 ≤ C||v||curl;divε + h−r0 ||ṽ0||0 ≤ C||v||curl;divε,

and we further have from Lemma 4.2, (4.22), (4.25), and (4.34)
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||ṽ⊥0 ||h ≤ C||ṽ||h ≤ C ||v||curl;divε,(4.57) ( ∑
K∈Th

h−2r0
K ||v − ṽ⊥0 ||20,K

)1/2

+ ||ṽ⊥0 ||r0 ≤ C||v||curl;divε.(4.58)

Thus, we have seen that the ṽ⊥0 satisfies the same interpolation properties as ṽ, except

that (4.23) does not hold for ṽ⊥0 . Note that (4.23) are used to make (4.21) hold.

4.3. The dual Fortin-type interpolation. In this subsection, with the Inf-
Sup inequality in (4.52), we show that there is a “dual” Fortin-type interpolation over
Qh ×Wh through the trilinear form b.

We consider the following problem: Given p ∈ H1
0 (Ω) and w ∈ H(curl; Ω) ∩

H0(div0µ; Ω), find p̃ ∈ Qh and w̃ ∈W0,h such that

(4.59) b(vh; (p̃, w̃)) = b(vh; (p,w)) ∀vh ∈ Kh(b)⊥.

The choice of Kh(b)⊥, together with the established Inf-Sup inequality (4.52), en-
sures that the stated problem has a unique solution. Relative to the Fortin-type
interpolation ṽ as constructed in Theorem 4.2, we call (p̃, w̃) the dual Fortin-type
interpolation of (p,w). For (q,z) ∈ H1(Ω) × (H1(Ω))3, with r being in Assumption
1 and r0 = min(r, 1/2 − ε), corresponding to || · ||h defined in (4.17) with r being
replaced by r0, we introduce

||(q, z)||2∗,h :=
∑
K∈Th

h2r0−2
K (||q||20,K + ||z||20,K)

+
∑
F∈FΓ

h

h2r0−1
F

∫
F

|n× (z × n)|2 +
∑

F∈F Inter
h

h2r0−1
F

∫
F

|q|2.(4.60)

Assumption 2. In addition to Assumption 1, for any w ∈ H(curl; Ω) ∩
H0(div0µ; Ω), we assume that there exists a regular-singular decomposition as fol-
lows:

w = w1 + 5p1, w1 ∈ (H1(Ω))3, p1 ∈ H1(Ω) ∩
J∏
j=1

H1+r(Ωj),(4.61)

||w1||1 + ||p1||1 ≤ C||curlw||0,
J∑
j=1

||p1||1+r,Ωj ≤ C||curlw||0.(4.62)

If, additionally, ε−1curlw ∈ H0(curl; Ω) ∩H(div0ε; Ω), we further assume that

(4.63) w1 ∈
J∏
j=1

(H1+r(Ωj))
3,

J∑
j=1

||w1||1+r,Ωj ≤ C||curlε−1curlw||0.

The decomposition (4.61) is a well-known regular-singular decomposition in the
literature, whatever µ ∈ (W 1,∞(Ω))3×3 or µ as assumed in section 2, with ||w1||1 +
||p1||1 ≤ C||curlw||0; see [13, 14, 34, 42]. The second in (4.62) just follows from

Assumption 1, with w ∈
∏J
j=1(Hr(Ωj))

3. Regarding (4.63), it has been available

only in the last decade; see [30, 34]. An intuitive observation of the regularity of w1

in (4.63) is as follows. From Assumption 1 we have curlw ∈
∏J
j=1(Hr(Ωj))

3, so one
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could expect w1 ∈
∏J
j=1(H1+r(Ωj))

3 due to curlw = curlw1, with w1 ∈ (H1(Ω))3.

In two dimensions, this is exactly the case, since w itself is of H1+r function. Note
that since r0 = min(r, 1/2− ε) ≤ r, if Assumption 2 holds, then it also holds for r0 in
place of r through (4.61) to (4.63).

Theorem 4.4. Assume that Assumption 1 holds. Let p ∈ H1
0 (Ω),w ∈

H(curl; Ω) ∩ H0(div0µ; Ω), and let (p̃, w̃) ∈ Qh × W0,h be constructed as in prob-
lem (4.59). For any w1 ∈ (H1(Ω))3 which satisfies curlw1 = curlw and for any
z1
h ∈ W c

h = (V lh ∩H1(Ω))3 ⊂ Wh, choosing a χ1
h ∈ Mh such that zh := z1

h + 5χ1
h ∈

W0,h, for any qh ∈ Qh, we have

||p̃− qh||0 + ||w̃ − zh||0 ≤ C ||(p− qh,w1 − z1
h)||∗,h,(4.64)

||p̃||0 + ||w̃||0 ≤ C(||5p||0 + ||curlw||0).(4.65)

Proof. We only show (4.64), while (4.65) can be shown more easily. From the
Inf-Sup inequality (4.52) we have

||p̃− qh||0 + ||w̃ − zh||0 ≤ C sup
06=vh∈Kh(b)⊥

b(vh; (p̃− qh, w̃ − zh))

||vh||h
,

where

b(vh; (p̃− qh, w̃ − zh)) = b(vh; (p̃− p, w̃ −w)) + b(vh; (p− qh,w − zh))

= b(vh; (p− qh,w − zh)),

b(vh; (p− qh,w − zh)) = (vh, curl(w1 − z1
h)− ε5(p− qh)),

(vh, curl(w1 − z1
h)) = (curlvh,w

1 − z1
h)

−
∫

Γ

vh × n · (n× (w1 − z1
h)× n),

(vh, ε5(p− qh)) = −
∑
K∈Th

(divεvh, p− qh)0,K

+
∑

F∈F Inter
h

∫
F

[εvh · n](p− qh).

We have
||p̃− qh||0 + ||w̃ − zh||0 ≤ C ||(p− qh,w1 − z1

h)||∗,h.

Corollary 4.1. For p and w as in Theorem 4.4, under Assumptions 1 and 2,

(4.66) ||p− p̃||0 + ||w − w̃||0 ≤ Chr0(||p||1 + ||curlw||0).

Proof. From Assumption 1 we know that

w ∈
J∏
j=1

(Hr(Ωj))
3,

J∑
j=1

||w||r,Ωj
≤ C||curlw||0.

From Assumption 2, the regular-singular decomposition of w is as follows:

w = w1 + 5p1, w1 ∈ (H1(Ω))3, p1 ∈ H1(Ω) ∩
J∏
j=1

H1+r(Ωj),

||w1||1 + ||p1||1 +

J∑
j=1

||p1||1+r,Ωj
≤ C||curlw||0.
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Since W c
h = (V lh ∩H1(Ω))3 ⊂Wh, we choose z1

h ∈W c
h and qh ∈ Qh such that

||w1 − z1
h||0 ≤ Ch||w1||1 ≤ Ch||curlw||0,

(4.67)

||p− qh||0 ≤ Ch||p||1,∑
K∈Th

h2r−2
K (||w1 − z1

h||20,K + ||p− qh||20,K)

≤ Ch2r(||w1||1 + ||p||1)2 ≤ Ch2r(||curlw||0 + ||p||1)2,∑
F∈FΓ

h

h2r−1
F ||w1 − z1

h||20,F ≤ C
∑
K∈Th

(h2r−2
K ||w1 −w1

h||20,K + h2r
K |w1 −w1

h|21,K)

≤ Ch2r||w1||21 ≤ Ch2r||curlw||20,∑
F∈F Inter

h

h2r−1
F ||p− qh||20,F ≤ C

∑
K∈Th

(h2r−2
K ||p− qh||20,K + h2r

K |p− qh|21,K)

≤ Ch2r||p||21.

All the above hold for r0 in place of r. Combining these, with r0 replacing r, we have

(4.68) ||p̃− qh||0 + ||w̃−zh||0 ≤ C||(p− qh,w1−z1
h)||∗,h ≤ Chr0(||p||1 + ||curlw||0).

We choose

(4.69) χ1
h ∈Mh, (5χ1

h,5χ)µ = −(z1
h,5χ)µ ∀χ ∈Mh,

(4.70) zh = z1
h + 5χ1

h ∈W0,h.

For all χ ∈Mh,

(5(χ1
h − χ),5(χ1

h − χ))µ = −(z1
h,5(χ1

h − χ))µ − (5χ,5(χ1
h − χ))µ

= (w1 − z1
h,5(χ1

h − χ))µ − (w1 + 5p1,5(χ1
h − χ))µ + (5(p1 − χ),5(χ1

h − χ))µ,

but, from w ∈ H(curl; Ω) ∩H0(div0; Ω),

−(w1 + 5p1,5(χ1
h − χ))µ = −(w,5(χ1

h − χ))µ = 0,

we have

||5(χ1
h − χ)||0,µ ≤ C(||w1 − z1

h||0 + ||5(p1 − χ)||0),

and we have

||5(χ1
h − p1)||0 ≤ ||5(p1 − χ)||0 + ||5(χ1

h − χ)||0
≤ C(||w1 − z1

h||0 + ||5(p1 − χ)||0).

From the finite element interpolation theory in [12, 27, 54], we can find a χ ∈Mh (cf.
Lemma 6.3 in [38]) so that

||5(p1 − χ)||0 ≤ Chr
J∑
j=1

||p1||1+r,Ωj
,
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1212 HUOYUAN DUAN, PING LIN, AND ROGER C. E. TAN

and we have

(4.71) ||5(χ1
h − p1)||0 ≤ Ch||w1||1 + Chr

J∑
j=1

||p1||1+r,Ωj ≤ Chr||curlw||0.

Combining (4.67) and (4.71), with zh = z1
h + 5χ1

h ∈W0,h, we have

(4.72) ||w − zh||0 ≤ ||w1 − z1
h||0 + ||5(p1 − χ1

h)||0 ≤ Chr||curlw||0.

Therefore, by the triangle inequality and the fact that r0 ≤ r, we have

||p− p̃||0 + ||w − w̃||0 ≤ ||p− qh||0 + ||qh − p̃||0 + ||w − zh||0
+ ||zh − w̃||0 ≤ Chr0(||p||1 + ||curlw||0).(4.73)

Corollary 4.2. For p and w as in Theorem 4.4, under Assumption 2 with the
additional assumption on w and w1 ∈

∏J
j=1(H1+r(Ωj))

3, if p ∈
∏J
j=1H

1+r(Ωj),
then, with r0 = min(r, 1/2− ε),

||p− p̃||0 + ||w̃ − zh||0 ≤ Ch2r0(

J∑
j=1

||p||1+r,Ωj
+ ||w1||1+r,Ωj

)

≤ Ch2r0(

J∑
j=1

||p||1+r,Ωj
+ ||curlε−1curlw||0),(4.74)

and, for all v ∈ H0(curl; Ω),

|(w − w̃, curlv)| ≤ Ch2r0(

J∑
j=1

||p||1+r,Ωj + ||w1||1+r,Ωj )||curlv||0

≤ Ch2r0(

J∑
j=1

||p||1+r,Ωj + ||curlε−1curlw||0)||curlv||0.(4.75)

Proof. From (4.64) and the finite element interpolation theory it is not difficult
to have (4.74). For all v ∈ H0(curl; Ω),

(w − w̃, curlv) = (w − zh, curlv) + (zh − w̃, curlv),

(w − zh, curlv) = (w1 − z1
h, curlv) ≤ Ch1+r

J∑
j=1

||w1||1+r,Ωj
||curlv||0,

where we have used (5(p1 − χ1
h), curlv) = 0, and h1+r ≤ h2r, and we obtain (4.75),

noting that r0 ≤ r.
Different from p− p̃, we cannot have ||w − w̃||0 = O(h2r0), in general. However,

as will be seen in (5.61) later on, (4.75) is sufficient for our purpose.

5. Coercivity and error estimates. With the Fortin-type interpolations es-
tablished in the previous section we are now in a position to investigate the coercivity
property and to analyze the error estimates associated with the eigenproblem (3.12).
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5.1. Coercivity. In this subsection we shall use the dual Fortin-type interpola-
tion to establish the coercivity property of the curl/div part of the bilinear form in
(3.13), that is,

(5.1) L⊥h (u,v) := (Rh(µ−1curlu), Rh(µ−1curlv))µ + (R̆h(divεu), R̆h(divεv)).

Note that if either of u and v belongs to Kh(b), then L⊥h (u,v) = 0.

Theorem 5.1. Assume that Assumption 1 holds. We have
(5.2)
L⊥h (vh, vh) = ||Rh(µ−1curlvh)||20,µ + ||R̆h(divεvh)||20 ≥ C||vh||20 ∀vh ∈ Kh(b)⊥,

where Kh(b)⊥ is given in (4.3).

Proof. From Proposition 4.1 we write vh as the following ε-weighted L2 orthog-
onal decomposition:

vh = ε−1curlw −5p p ∈ H1
0 (Ω), w ∈ H(curl; Ω) ∩H0(div0µ; Ω),

||vh||20,ε = ||5p||20,ε + ||curlw||20,ε−1 ,

and let p̃ ∈ Qh, w̃ ∈W0,h be the dual Fortin-type interpolations of p,w, respectively,
i.e.,

b(vh; (p̃, w̃))− b(vh; (p,w)) = 0 ∀vh ∈ Kh(b)⊥,

such that

(5.3) ||p̃||0 + ||w̃||0 ≤ C (||p||1 + ||curlw||0) ≤ C ||vh||0,ε.

Let α > 0 be a constant to be given. We have

||Rh(µ−1curlvh)||20,µ = ||Rh(µ−1curlvh)− αw̃||20,µ
+ 2α(Rh(µ−1curlvh), w̃)µ − α2||w̃||20,µ,

where

(Rh(µ−1curlvh), w̃)µ = (vh, curlw̃) = (vh, curl(w̃ −w)) + (vh, curlw),

(vh, curlw) = ||curlw||20,ε−1 ,

and we have

2α(Rh(µ−1curlvh), w̃)µ = 2α(vh, curl(w̃ −w)) + 2α||curlw||20,ε−1 .

On the other hand, with the same α, we have

||R̆h(divεvh)||20 = ||R̆h(divεvh)− αp̃||20 + 2α(R̆h(divεvh), p̃)− α2||p̃||20,

where
(R̆h(divεvh), p̃) = −(vh, ε5p̃) = (vh, ε5(p− p̃))− (vh, ε5p),

−(vh, ε5p) = ||5p||20,ε,

and we have

2α(R̆h(divεvh), p̃) = 2α(vh, ε5(p− p̃)) + 2α||5p||20,ε.
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1214 HUOYUAN DUAN, PING LIN, AND ROGER C. E. TAN

We therefore have

||Rh(µ−1curlvh)||20,µ + ||R̆h(divεvh)||20
= ||Rh(µ−1curlvh)− αw̃||20,µ + ||R̆h(divεvh)− αp̃||20

+ 2α((vh, curl(w̃ −w)) + (vh,−ε5(p̃− p)))
+ 2α(||5p||20,ε + ||curlw||20,ε−1)− α2(||p̃||20 + ||w̃||20,µ),

where

(vh, curl(w̃ −w)) + (vh,−ε5(p̃− p)) = b(vh; (p̃− p, w̃ −w)) = 0,

||5p||20,ε + ||curlw||20,ε−1 = ||vh||20,ε,
||p̃||20 + ||w̃||20,µ ≤ C||vh||20,ε.

Hence, by choosing a suitable α > 0, we have for all vh ∈ Kh(b)⊥

||Rh(µ−1curlvh)||20,µ + ||R̆h(divεvh)||20 ≥ α(2− αC)||vh||20,ε.

The proof is finished.

5.2. Regularity results. In this subsection we review the regularity results
associated with the eigenproblem (1.1).

Consider the general source problem: Find u ∈ H0(curl; Ω) ∩ H(divε; Ω) such
that

B(u,v) = (µ−1curlu, curlv) + (divεu,divεv)− β(εu,v) = (εf ,v)

∀v ∈ H0(curl; Ω) ∩H(divε; Ω),(5.4)

where β 6= 0. Note that L(u,v) defined in (2) satisfies L(u,v) = B(u,v) with
β = −1. The corresponding boundary value problem is

(5.5) curlµ−1curlu−ε5divεu−βεu = εf in Ω, u×n = 0, divεu = 0 on Γ.

By the well-known Fredholm alternative theorem, with the compact operator T,
it is not difficult to show the following proposition; see [49].

Proposition 5.1. For any β ≤ 0 or any β > 0 which is not an eigenvalue of the
eigenproblem (1.1), we have

(5.6) ||u||curl;divε ≤ C||f ||0.

Let u ∈ H0(curl; Ω) ∩ H(divε; Ω) be the exact solution of problem (5.4) for
f ∈ (L2(Ω))3. Noticing that θ := divεu satisfies 〈θ,divε∇q〉 + β(θ, q) = −(εf ,∇q)
for all q ∈ D(∆Dir

ε ) the Dirichlet domain of the operator ∆Dir
ε : H1

0 (Ω)→ H−1(Ω), q 7→
divε∇q, following a similar argument in Theorem 1.2 or Theorem 7.1 in [30] (see also
Proposition 4.1 in [14]), it can be shown that divεu ∈ H1

0 (Ω). Consequently, from
(5.5), µ−1curlu ∈ H(curl; Ω).

Under Assumption 1, from Propositions 5.1 and 2.1, it is not difficult to have
Proposition 5.2 below.

Proposition 5.2. Let u ∈ H0(curl; Ω)∩H(divε; Ω) be the exact solution of prob-

lem (5.5). Then, under Assumption 1, u, µ−1curlu ∈
∏J
j=1(Hr(Ωj))

3, satisfying

(5.7)

J∑
j=1

||u||r,Ωj + ||µ−1curlu||r,Ωj + ||divεu||1 + ||curlµ−1curlu||0 ≤ C||f ||0.
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Let u denote the solution of problem (5.5). We put

(5.8) p := divεu ∈ H1
0 (Ω), w := µ−1curlu ∈ H(curl; Ω) ∩H0(div0µ; Ω).

We see that if f ∈ H0(curl; Ω) ∩H(divε; Ω), then p ∈ H1
0 (Ω) and w ∈ H(curl; Ω) ∩

H0(div0µ; Ω), respectively, satisfy

−divε5p− βp = divεf in Ω, p = 0 on Γ,(5.9)

−curlε−1curlw = βcurlu + curlf , divµw = 0 in Ω, µw · n = 0,(5.10)

ε−1curlw × n = 0 on Γ.

Under Assumptions 1 and 2, from Proposition 5.1, it is not difficult to have
Proposition 5.3 below.

Proposition 5.3. Let u ∈ H0(curl; Ω)∩H(divε; Ω) be the exact solution of prob-
lem (5.5). Assume that f ∈ H0(curl; Ω) ∩H(divε; Ω). With p = divεu ∈ H1

0 (Ω) and
w = µ−1curlu ∈ H(curl; Ω) ∩ H0(div0µ; Ω), under Assumptions 1 and 2, we have

p ∈
∏J
j=1H

1+r(Ωj) and w = w1 + 5p1, with p1 ∈ H1(Ω) ∩
∏J
j=1H

1+r(Ωj) and

w1 ∈
∏J
j=1(H1+r(Ωj))

3,
(5.11)
J∑
j=1

||p||1+r,Ωj + ||w1||1+r,Ωj + ||curlw||r,Ωj + ||p1||1+r,Ωj + ||p1||1 ≤ C ||f ||curl;divε.

5.3. Error estimates of source problem. In this subsection we analyze the
error bounds between the exact solution and the finite element solution for the general
source problem (5.5). This mainly consists of the consistency error estimates from
the L2 projections in Lemma 5.1 and the L2 error estimates in Theorem 5.2.

The finite element problem of (5.4) is to find uh ∈ Uh such that, for all vh ∈ Uh,

Bh(uh,vh) = (Rh(µ−1curluh), Rh(µ−1curlvh))µ

+ (R̆h(divεuh), R̆h(divεvh))− β(εuh,vh) = (εf ,vh).(5.12)

Note that Bh is also well-defined over H0(curl; Ω) ∩H(divε; Ω).

Lemma 5.1. Let u ∈ H0(curl; Ω) ∩ H(divε; Ω) be the exact solution of problem
(5.5) and uh ∈ Uh the finite element problem (5.12), respectively. Let p̃ ∈ Qh and
w̃ ∈ Wh be the dual Fortin-type interpolations of p = divεu ∈ H1

0 (Ω) and w =
µ−1curlu ∈ H(curl; Ω) ∩H0(div0µ; Ω), respectively. Then, under Assumption 1,

(5.13) Bh(u−uh,v) = (w−w̃, Rh(µ−1curlv))µ+(p−p̃, R̆h(divεv)) ∀v ∈ Kh(b)⊥.

Proof. With p = divεu ∈ H1
0 (Ω) and w = µ−1curlu ∈ H(curl; Ω)∩H0(div0µ; Ω),

we have for all v ∈ Uh

Bh(uh,v) = (εf ,v) = (v, curlw − ε5p)− β (εu,v) = b(v; (p,w))− β (εu,v),

Bh(u,v) = (Rh(µ−1curlu), Rh(µ−1curlv))µ + (R̆h(divεu), R̆h(divεv))− β (εu,v)

= (u, curlRh(µ−1curlv))− (u, ε5R̆h(divεv))− β (εu,v)

= (µ−1curlu, Rh(µ−1curlv))µ + (divεu, R̆h(divεv))− β (εu,v)

= (w, Rh(µ−1curlv))µ + (p, R̆h(divεv))− β (εu,v),
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1216 HUOYUAN DUAN, PING LIN, AND ROGER C. E. TAN

and we have

(5.14) Bh(u− uh,v) = (w, Rh(µ−1curlv))µ + (p, R̆h(divεv))− b(v; (p,w)).

Since p̃ ∈ Qh, w̃ ∈Wh are the dual Fortin-type interpolations of p and w, respectively,
i.e.,
(5.15)

(Rh(µ−1curlv), w̃)µ + (R̆h(divεv), p̃) = b(v; (p̃, w̃)) = b(v; (p,w)) ∀v ∈ Kh(b)⊥,

we thus obtain (5.13) from the sum of (5.14) and (5.15).

Corollary 5.1. Under Assumptions 1 and 1, for w ∈ H(curl; Ω) ∩ H0(div0µ;
Ω), we have, for all v ∈ Kh(b)⊥,
(5.16)
|Bh(u− uh,v)| ≤ Chr0(||p||1 + ||curlw||0)(||Rh(µ−1curlv)||0,µ + ||R̆h(divεv)||0).

Proof. This is a simple consequence of Lemma 5.1 and Corollary 4.1.

Corollary 5.2. Let u ∈ H0(curl; Ω)∩H(divε; Ω) and uh ∈ Uh be the exact so-
lution to problem (5.5) and the finite element solution to problem (5.12), respectively.
Let ũ ∈ Uh be the Fortin-type interpolation of u. For vh = ũ−uh = v0,h + v⊥0,h with

v0,h ∈ Kh(b) and v⊥0,h ∈ Kh(b)⊥, under Assumptions 1 and 2, we have

|Bh(vh,v
⊥
0,h)| ≤ Chr0(||u||curl;divε + ||p||1 + ||curlw||0)(||Rh(µ−1curlv⊥0,h)||0,µ

(5.17)

+ ||R̆h(divεv⊥0,h)||0).

Proof. Under Assumption 1, u ∈
∏J
j=1(Hr(Ωj))

3 ↪→ (Hr0(Ω))3 and ||u||r0 ≤
C
∑J
j=1 ||u||r,Ωj ≤ C ||u||curl;divε. We have

(5.18) Bh(vh,v
⊥
0,h) = Bh(ũ− uh,v

⊥
0,h) = Bh(ũ− u,v⊥0,h) + Bh(u− uh,v

⊥
0,h),

where Corollary 5.1 leads to

|Bh(u− uh,v
⊥
0,h)| ≤ Chr0(||p||1 + ||curlw||0)(||Rh(µ−1curlv⊥0,h)||0,µ

+ ||R̆h(divεv⊥0,h)||0),

while from (4.36), Theorem 4.2, and the coercivity in Theorem 5.1, we have

|Bh(ũ− u,v⊥0,h)|

= |(Rh(µ−1curl(ũ− u)), Rh(µ−1curlv⊥0,h))µ + (R̆(divε(ũ− u)),

R̆(divεv⊥0,h))− β(ε(ũ− u),v⊥0,h)|
= | − β(ε(ũ− u),v⊥0,h)| ≤ Chr0 ||u||curl;divε||v⊥0,h||0
≤ Chr0 ||u||curl;divε(||Rh(µ−1curlv⊥0,h)||0,µ + ||R̆h(divεv⊥0,h)||0).(5.19)

Hence, (5.2) holds.

To turn to the error estimates, we first analyze the errors between the finite
element solution and the finite element interpolation.

Let uh ∈ Uh be the finite element solution of (5.12), and let ũ ∈ Uh be the Fortin-
type interpolation of the exact solution u ∈ H0(curl; Ω)∩H(divε; Ω) of problem (5.5).
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Writing ũ = ũ0,h+ ũ⊥0,h with ũ0,h ∈ Kh(b), ũ⊥0,h ∈ Kh(b)⊥ and uh = u0,h+u⊥0,h with

u0,h ∈ Kh(b),u⊥0,h ∈ Kh(b)⊥, we introduce

(5.20) vh := ũ− uh = v0,h + v⊥0,h

with v0,h = ũ0,h − u0,h ∈ Kh(b),v⊥0,h = ũ⊥0,h − u⊥0,h ∈ Kh(b)⊥.

We shall estimate v⊥0,h from the duality argument. Choosing the v⊥0,h ∈ Kh(b)⊥,
we consider the following auxiliary problem: Find u? ∈ H0(curl; Ω)∩H(divε; Ω) such
that
(5.21)
curlµ−1curlu?−ε5divεu?−β εu? = εv⊥0,h in Ω, u?×n = 0, divεu? = 0 on Γ.

Letting

(5.22) p? := divεu? ∈ H1
0 (Ω), w? := µ−1curlu? ∈ H(curl; Ω) ∩H0(div0µ; Ω),

we have from Propositions 5.1 and 5.2

(5.23)

J∑
j=1

||u?||r,Ωj
+ ||w?||r,Ωj

+ ||u?||curl;divε + ||p?||1 + ||curlw?||0 ≤ C||v⊥0,h||0.

Theorem 5.2. Let v⊥0,h be defined as in (5.20). Under Assumptions 1 and 2, for
all h < h∗ with h∗ < 1 sufficiently small we have

||v⊥0,h||0 ≤ Chr0(||u||curl;divε + ||divεu||1 + ||curlµ−1curlu||0),(5.24)

||Rh(µ−1curl(u− uh))||0,µ + ||R̆h(divε(u− uh))||0
= ||Rh(µ−1curl(u− u⊥0,h))||0,µ + ||R̆h(divε(u− u⊥0,h))||0(5.25)

≤ Chr0(||u||curl;divε + ||divεu||1 + ||curlµ−1curlu||0),

where uh = u0,h+u⊥0,h is the finite element solution of (5.12), with u0,h ∈ Kh(b),u⊥0,h
∈ Kh(b)⊥, and r0 = min(r, 1/2− ε).

Proof. From (5.21) we have

C||v⊥0,h||20 ≤ ||v⊥0,h||20,ε = (curlw?,v⊥0,h)− (ε5p?,v⊥0,h)− β (εu?,v⊥0,h)

= b(v⊥0,h; (p?,w?))− β (εu?,v⊥0,h) = (Rh(µ−1curlu?), Rh(µ−1curlv⊥0,h))µ

+ (R̆h(divεu?), R̆h(divεv⊥0,h))− β (εu?,v⊥0,h) + b(v⊥0,h; (p?,w?))

− (Rh(µ−1curlu?), Rh(µ−1curlv⊥0,h))µ − (R̆h(divεu?), R̆h(divεv⊥0,h))

:= I1 + I2,(5.26)

where

I1 = (Rh(µ−1curlu?), Rh(µ−1curlv⊥0,h))µ

+ (R̆h(divεu?), R̆h(divεv⊥0,h))− β (εu?,v⊥0,h),

I2 = b(v⊥0,h; (p?,w?))

− (Rh(µ−1curlu?), Rh(µ−1curlv⊥0,h))µ − (R̆h(divεu?), R̆h(divεv⊥0,h)).

In the following we estimate I1 and I2. The estimates are divided into two steps.
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Step 1: Estimate I1. Let u?h ∈ Uh be the Fortin-type interpolation of u?, and
write it as the following decomposition:

(5.27) u?h = u?0,h + u?0,h
⊥,

where u?0,h ∈ Kh(b),u?0,h
⊥ ∈ Kh(b)⊥, satisfying the properties as stated in (4.36),

(4.54), and Theorem 4.2. We have

I1 = (Rh(µ−1curlu?), Rh(µ−1curlv⊥0,h))µ(5.28)

+ (R̆h(divεu?), R̆h(divεv⊥0,h))− β (εu?,v⊥0,h)

= (Rh(µ−1curlu?), Rh(µ−1curlv⊥0,h))µ + (R̆h(divεu?), R̆h(divεv⊥0,h))

− β (εu?h,v
⊥
0,h)− β (ε(u? − u?h),v⊥0,h)

= (Rh(µ−1curlu?0,h
⊥), Rh(µ−1curlvh))µ + (R̆h(divεu?0,h

⊥), R̆h(divεvh))

− β (εu?0,h
⊥,vh)− β (ε(u? − u?h),v⊥0,h)

= (Rh(µ−1curlu?0,h
⊥), Rh(µ−1curl(u− uh)))µ

+ (R̆h(divεu?0,h
⊥), R̆h(divε(u− uh)))

− β (εu?0,h
⊥,u− uh)− β (εu?0,h

⊥, ũ− u)− β (ε(u? − u?h),v⊥0,h)

= Bh(u− uh,u
?
0,h
⊥)− β (εu?0,h

⊥, ũ− u)− β (ε(u? − u?h),v⊥0,h),

where we have used vh = ũ−uh = ũ−u+u−uh and the Fortin-type interpolation

(5.29) ũ = ũ0,h + ũ⊥0,h with ũ0,h ∈ Kh(b), ũ⊥0,h ∈ Kh(b)⊥

of the exact solution u. Define u?0,h
⊥ the element-local L2 projection of u?0,h

⊥ by

(5.30) u?0,h
⊥|K =

∫
K
u?0,h

⊥

|K|
∀K ∈ Th,

for which we have the interpolation property

(5.31) ||u?0,h
⊥ − u?0,h

⊥||0 ≤ Chr0 ||u?0,h
⊥||r0 .

But, since u?h = u?0,h + u?0,h
⊥, with u?0,h ∈ Kh(b),u?0,h

⊥ ∈ Kh(b)⊥, is the Fortin-type
interpolation of u?, we have from (4.56)

(5.32) ||u?0,h
⊥||r0 ≤ C ||u?||curl;divε.

Hence

(5.33) ||u?0,h
⊥ − u?0,h

⊥||0 ≤ Chr0 ||u?0,h
⊥||r0 ≤ Chr0 ||u?||curl;divε ≤ Chr0 ||v⊥0,h||0,

and we have

(5.34) −β(εu?0,h
⊥, ũ−u) = −β(ε(u?0,h

⊥−u?0,h
⊥), ũ−u) ≤ Ch2r0 ||v⊥0,h||0||u||curl;divε,

where, since εu?0,h
⊥ ∈ P 0(ε;K) ⊂ P l−1(ε;K), we have used (4.23) and (4.25). We

also have from (5.23)

(5.35) − β(ε(u? − u?h),v⊥0,h) ≤ Chr0 ||u?||curl;divε||v⊥0,h||0 ≤ Chr0 ||v⊥0,h||20.
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On the other hand, for u?0,h
⊥ ∈ Kh(b)⊥, from Corollary 5.1, we have

|Bh(u− uh,u
?
0,h
⊥)| ≤ C hr0 (||p||1 + ||curlw||0) (||Rh(µ−1curlu?0,h

⊥)||0,µ
+ ||R̆h(divεu?0,h

⊥)||0),(5.36)

where

||Rh(µ−1curlu?0,h
⊥)||0,µ + ||R̆h(divεu?0,h

⊥)||0(5.37)

= ||Rh(µ−1curlu?h)||0,µ + ||R̆h(divεu?h)||0
= ||Rh(µ−1curlu?)||0,µ + ||R̆h(divεu?)||0
≤ C(||µ−1curlu?||0,µ + ||divεu?||0)

≤ C||v⊥0,h||0.

Therefore, from (14), (5.34), (5.35), (5.36), and (14) we have

|I1| ≤ C hr0 ||v⊥0,h||20 + C h2r0 ||v⊥0,h||0 ||u||curl;divε(5.38)

+ C hr0 (||p||1 + ||curlw||0) ||v⊥0,h||0.

Step 2: Estimate I2. Letting p̃? ∈ Qh, w̃? ∈ Wh be the dual Fortin-type inter-
polations of p? = divεu?,w? = µ−1curlu?, respectively, i.e.,

(5.39) b(v; (p?,w?)) = b(v; (p̃?, w̃?)) ∀v ∈ Kh(b)⊥,

we have

(5.40)

(Rh(µ−1curlu?), Rh(µ−1curlv⊥0,h))µ + (R̆h(divεu?), R̆h(divεv⊥0,h))

= (u?, curlRh(µ−1curlv⊥0,h))− (u?, ε5R̆h(divεv⊥0,h))

= (curlu?, Rh(µ−1curlv⊥0,h)) + (divεu?, R̆h(divεv⊥0,h))

= (w?, Rh(µ−1curlv⊥0,h))µ + (p?, R̆h(divεv⊥0,h))

= (w? − w̃?, Rh(µ−1curlv⊥0,h))µ + (p? − p̃?, R̆h(divεv⊥0,h))

+ (w̃?, Rh(µ−1curlv⊥0,h))µ + (p̃?, R̆h(divεv⊥0,h))

= (w? − w̃?, Rh(µ−1curlv⊥0,h))µ + (p? − p̃?, R̆h(divεv⊥0,h)) + b(v⊥0,h; (p̃?, w̃?)).

We therefore obtain from (5.40), Corollary 4.1, and (5.23) that

(5.41)

|I2| = |b(v⊥0,h; (p?,w?))− (Rh(µ−1curlu?), Rh(µ−1curlv⊥0,h))µ

− (R̆h(divεu?), R̆h(divεv⊥0,h))|
= |b(v⊥0,h; (p̃?, w̃?))− (Rh(µ−1curlu?), Rh(µ−1curlv⊥0,h))µ

− (R̆h(divεu?), R̆h(divεv⊥0,h))|

= | − (w? − w̃?, Rh(µ−1curlv⊥0,h))µ − (p? − p̃?, R̆h(divεv⊥0,h))|

≤ (||w? − w̃?||0 + ||p? − p̃?||0)(||Rh(µ−1curlv⊥0,h)||0,µ + ||R̆h(divεv⊥0,h)||0)

≤ Chr0(||curlw?||0 + ||p?||1)(||Rh(µ−1curlv⊥0,h)||0,µ + ||R̆h(divεv⊥0,h)||0)

≤ Chr0 ||v⊥0,h||0(||Rh(µ−1curlv⊥0,h)||0,µ + ||R̆h(divεv⊥0,h)||0).
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1220 HUOYUAN DUAN, PING LIN, AND ROGER C. E. TAN

Summarizing the estimates on I1 and I2 we have

(1− Chr0)||v⊥0,h||20 ≤ Ch2r0 ||v⊥0,h||0||u||curl;divε + C hr0 (||p||1 + ||curlw||0) ||v⊥0,h||0
(5.42)

+ Chr0 ||v⊥0,h||0(||Rh(µ−1curlv⊥0,h)||0,µ + ||R̆h(divεv⊥0,h)||0).

Taking
h < h∗ < 1 with h∗r0 ≤ 1/C,

we have

||v⊥0,h||0 ≤ Ch2r0 ||u||curl;divε + Chr0(||Rh(µ−1curlv⊥0,h)||0,µ + ||R̆h(divεv⊥0,h)||0)

(5.43)

+ C hr0 (||p||1 + ||curlw||0),

that is,

||v⊥0,h||0 ≤ Chr0(||u||curl;divε + ||divεu||1 + ||curlµ−1curlu||0)(5.44)

+ Chr0(||Rh(µ−1curlv⊥0,h)||0,µ + ||R̆h(divεv⊥0,h)||0).

In what follows, we shall estimate ||Rh(µ−1curlv⊥0,h)||0,µ + ||R̆h(divεv⊥0,h)||0. We
have

||Rh(µ−1curlv⊥0,h)||20,µ + ||R̆h(divεv⊥0,h)||20(5.45)

= ||Rh(µ−1curlvh)||20,µ + ||R̆h(divεvh)||20 − β ||v⊥0,h||20,ε + β ||v⊥0,h||20,ε
= (Rh(µ−1curlvh), Rh(µ−1curlv⊥0,h))µ + (R̆h(divεvh), R̆h(divεv⊥0,h))

− β (εvh,v
⊥
0,h) + β ||v⊥0,h||20,ε = Bh(vh,v

⊥
0,h) + β ||v⊥0,h||20,ε,

where, from Corollary 5.2,

|Bh(vh,v
⊥
0,h)| ≤ Chr0(||u||curl;divε + ||p||1 + ||curlw||0)(||Rh(µ−1curlv⊥0,h)||0,µ

(5.46)

+ ||R̆h(divεv⊥0,h)||0)

= Chr0(||u||curl;divε + ||divεu||1 + ||curlµ−1curlu||0)×
× (||Rh(µ−1curlv⊥0,h)||0,µ + ||R̆h(divεv⊥0,h)||0).

Hence, we have from (5.44), (5.45), and (5.46) that for h < h∗,

(1− Ch∗2r0)(||Rh(µ−1curlv⊥0,h)||20,µ + ||R̆h(divεv⊥0,h)||20)

(5.47)

≤ Ch2r0(||u||curl;divε + ||divεu||1 + ||curlµ−1curlu||0)2

+ Chr0(||u||curl;divε + ||divεu||1 + ||curlµ−1curlu||0)(||Rh(µ−1curlv⊥0,h)||0,µ
+ ||R̆h(divεv⊥0,h)||0),

from which we have, for some suitable small 0 < δ < 1− Ch∗2r0 ,

(1− Ch∗2r0 − δ)(||Rh(µ−1curlv⊥0,h)||20,µ + ||R̆h(divεv⊥0,h)||20)(5.48)

≤ Ch2r0(||u||curl;divε + ||divεu||1 + ||curlµ−1curlu||0)2,
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that is to say, we have

||Rh(µ−1curlv⊥0,h)||0,µ + ||R̆h(divεv⊥0,h)||0 ≤ Chr0(||u||curl;divε(5.49)

+ ||divεu||1 + ||curlµ−1curlu||0).

Therefore, we obtain (5.24) from (5.44) and (5.49),

(5.50) ||v⊥0,h||0 ≤ Chr0(||u||curl;divε + ||divεu||1 + ||curlµ−1curlu||0).

Moreover, from (5.49) and the interpolation property of ũ⊥0,h we can have (5.25).

From (5.24) and Proposition 5.2, we have

(5.51) ||v⊥0,h||0 ≤ Chr0 ||f ||0.

If the right-hand side f is more regular, we can obtain O(h2r0) error bound for v⊥0,h.
This result is stated in following lemma.

Lemma 5.2. Under the same assumptions as in Theorem 5.2,

||v⊥0,h||0 ≤ Ch2r0(||u||curl;divε + ||divεu||1 + ||curlµ−1curlu||0)

+ C
(w − w̃, Rh(µ−1curlu?0,h

⊥))µ + (p− p̃, R̆h(divεu?0,h
⊥))

||v⊥0,h||0
,

(5.52)

||v⊥0,h||0 ≤ Ch2r0

||u||curl;divε + ||p||1 + ||curlw||0 +

J∑
j=1

||p||1+r,Ωj + ||w1||1+r,Ωj

 .

(5.53)

Proof. In fact, from (14), (5.34), (5.35), and (5.41), we have obtained (5.52).

In what follows, we show (5.53). Under Assumption 2, w1 ∈
∏J
j=1(H1+r(Ωj))

3,

satisfying curlw1 = curlw, and from Proposition 5.3 we know that p = divεu ∈∏J
j=1H

1+r(Ωj). Instead of (5.36), we estimate Bh(u−uh,u
?
0,h
⊥) in a different way

as follows:

Bh(u− uh,u
?
0,h
⊥) = (w − w̃, Rh(µ−1curlu?0,h

⊥))µ + (p− p̃, R̆h(divεu?0,h
⊥))

(5.54)

= (w − w̃, Rh(µ−1curlu?))µ + (p− p̃, R̆h(divεu?))

= (w − w̃, Rh(µ−1curlu?)− µ−1curlu?)µ

+ (p− p̃, R̆h(divεu?)− divεu?)

+ (w − w̃, curlu?) + (p− p̃,divεu?).

Since Rh(µ−1curlu?) is µ-weighted L2 projection of µ−1curlu?, we have

||Rh(µ−1curlu?)− µ−1curlu?||0,µ = inf
zh∈Wh

||zh − µ−1curlu?||0,µ(5.55)

= inf
zh∈Wh

||zh −w?||0,µ ≤ Chr||v⊥0,h||0,

where we have chosen an H1-conforming finite element interpolation zh ∈W c
h = (V lh∩

H1(Ω))3 ⊂Wh such that ||zh−w?||0 ≤ Chr
∑J
j=1 ||w?||r,Ωj =

∑J
j=1 ||µ−1curlu?||r,Ωj

≤ Chr||v⊥0,h||0. Similarly, since R̆h(divεu?) is L2 projection of divεu?, we have

D
ow

nl
oa

de
d 

08
/0

5/
16

 to
 1

34
.3

6.
50

.2
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1222 HUOYUAN DUAN, PING LIN, AND ROGER C. E. TAN

||R̆h(divεu?)− divεu?||0 = inf
qh∈Qh

||qh − divεu?||0 = inf
qh∈Qh

||qh − p?||0(5.56)

≤ Ch||p?||1 = Ch||divεu?||1 ≤ Chr||v⊥0,h||0,

while, from Corollary 4.2, we have

|(w − w̃, curlu?) + (p− p̃, divεu?)|(5.57)

≤ Ch2r0(

J∑
j=1

||w1||1+r,Ωj + ||p||1+r,Ωj )||u?||curl;divε

≤ Ch2r0(

J∑
j=1

||w1||1+r,Ωj + ||p||1+r,Ωj )||v⊥0,h||0.

So we have

(5.58) |Bh(u− uh,u
?
0,h
⊥)| ≤ Ch2r0

 J∑
j=1

||w1||1+r,Ωj
+ ||p||1+r,Ωj

 ||v⊥0,h||0.
From Lemma 5.2, Theorem 5.2, and Propositions 5.2 and 5.3, we can have the

following corollary.

Corollary 5.3. Assume that Assumptions 1 and 2 hold. With the same v⊥0,h as

in Theorem 5.2, if f ∈ (L2(Ω))3, we have

(5.59) ||v⊥0,h||0 ≤ C hr0 ||f ||0.

As a result, we have

(5.60) ||u− u⊥0,h||0 + ||u− u⊥0,h||L⊥h ≤ C h
r0 ||f ||0,

where ||v||2L⊥h := L⊥h (v,v) as defined in (5.1). If f ∈ ∩H0(curl; Ω)∩H(divε; Ω), then

(5.61) ||v⊥0,h||0 ≤ Ch2r0 ||f ||curl;divε.

Corollary 5.4. The finite element problem (5.12) has a unique solution.

Proof. We follow the argument in [53]. Note that uniqueness and existence are
equivalent for a finite dimensional square system. We need only consider the unique-
ness. If the solution of (5.12) is not unique, then for f = 0, there should be a solution
uh 6= 0. For such uh = u0,h +u⊥0,h with u0,h ∈ Kh(b),u⊥0,h ∈ Kh(b)⊥, from the error

estimates (5.60) we know that u⊥0,h = 0, since f = 0 leads to u = 0. Meanwhile,
noting that u0,h is determined by

−β(εu0,h,v) = (εf ,v) ∀v ∈ Kh(b),

but f = 0, we have u0,h = 0. Hence uh = 0, which contradicts uh 6= 0.

From Corollary 5.3 and Theorem 4.1, it is not difficult to show the following
corollary.

Corollary 5.5. Let uh = u0,h + u⊥0,h with u0,h ∈ Kh(b),u⊥0,h ∈ Kh(b)⊥ be the
solution to the finite element problem (5.12). Let u ∈ H0(curl; Ω)∩H(divε; Ω) be the
solution of problem (5.5). If f ∈ H0(curl; Ω) ∩H(divε; Ω), then, under Assumptions
1 and 2, we have

||u0,h||0 + ||u− uh||0 ≤ Chr0 ||f ||curl;divε.
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Note that Lh(·, ·) = Bh(·, ·) with β = −1. Define an energy norm

||v||2Lh
:= ||v||20,ε + ||Rh(µ−1curlv)||20,µ + ||R̆h(divεv)||20.

From Corollaries 5.3 and 5.5, we have established the following error estimates:

||u− uh||Lh
≤ C hr0 ||f ||curl;divε.

6. Error estimates for the eigenproblem. In this section, we shall analyze
the error estimates of the eigenproblem (2.4) and the finite element eigenproblem
(3.12), or, equivalently, the error estimates of the eigenpairs of the operators T and
Th which are, respectively, defined in (2.8) and (3.14). We first investigate the well-
posedness of the eigenproblem (3.12) and review the error estimates of the source
problem in terms of the operators T and Th.

Theorem 6.1. The eigenproblem (3.12) is well-posed, and λh = 1 is the only one
whose eigenfunction space is Kh(b). For any other eigenvalues λh 6= 1, it satisfies

(6.1) λh ≥ 1 + C > 1,

and its eigenfunction space belongs to Kh(b)⊥, where C comes from Theorem 5.1.
Moreover, for different eigenvalues, their eigenfunctions are orthogonal in both the
Lh-induced inner product (·, ·)Lh

= Lh(·, ·) and the ε-weighted L2 inner product (·, ·)ε.
Proof. The eigenproblem (3.12) is well-posed, thanks to the coercivity of Lh on

Uh, i.e.,

Lh(vh,vh) = ||Rh(µ−1curlvh)||20,µ + ||R̆h(divεvh)||20 + ||vh||20,ε ≥ ||vh||20,ε > 0

(6.2)

∀vh( 6= 0) ∈ Uh.

We first note that all the eigenvalues are real numbers, because of the symmetry prop-
erty of (3.12). From (4.4) and (4.6), we can verify the orthogonality of eigenfunctions
corresponding to different eigenvalues with respect to both (·, ·)Lh

and (·, ·)ε. Also,
we can see that λh = 1 is an eigenvalue and its eigenspace is Kh(b). For any other
eigenvalue λh 6= 1, with eigenfunction uh ∈ Uh, we have (6.1) and

(6.3) uh ∈ Kh(b)⊥.

In fact, write

uh = u0,h + u⊥0,h, where u0,h ∈ Kh(b) and u⊥0,h ∈ Kh(b)⊥.

If u0,h = 0, then (6.3) holds. Otherwise, from Lh(uh,v) = (εuh,v) = (εu0,h,v) for
all v ∈ Kh(b), we have

(εu0,h,v) = λh (εu0,h,v) ∀v ∈ Kh(b).

Thus, we find that both (εu0,h,u0,h) = λh (εu0,h,u0,h) and λh 6= 1 lead to ||u0,h||0,ε =
0, i.e., u0,h = 0. Hence, uh = u⊥0,h ∈ Kh(b)⊥, i.e., (6.3) holds. Since uh ∈ Kh(b)⊥,

uh 6= 0, we have from Theorem 5.1 that ||uh||2L⊥h ≥ C||uh||20,ε > 0. From (3.12),

(3.13), and Theorem 5.1, we then have λh ||uh||20,ε = ||uh||2Lh
= ||uh||2L⊥h + ||uh||20,ε ≥

(1 + C)||uh||20,ε, which yields (6.1).
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According to (2.5), the only a priori known eigenvalue λh = 1 should be aban-
doned, whose eigenfunction space is Kh(b). Such a situation also exists in other
methods [23, 22]. In terms of Th, νh = 1 is the only a priori known eigenvalue with
eigenspace Kh(b), and it follows that all the other eigenvalues of Th satisfy

(6.4) 0 < νh ≤ 1/(1 + C) < 1

and the associated eigenspaces belong to Kh(b)⊥. From (6.4), there exists a fixed gap
γ := 1/(1 + C) < 1 independent of h such that all the eigenvalues νh < 1 and the
only a priori known eigenvalue νh = 1 are well-separated.

By decomposing Th f , which is determined as in (3.14), as

(6.5) Th f = T0,h f + T⊥0,h f , where T0,h f ∈ Kh(b) and T⊥0,h f ∈ Kh(b)⊥,

we know that any eigenpair (λh 6= 1,uh 6= 0) satisfies (3.12) if and only if

(6.6) T⊥0,h uh = νh uh with νh = 1/λh and uh ∈ Kh(b)⊥.

In the following, we will analyze the errors between eigenpairs of (6.6) and (2.9). Note
that Lh = Bh with β = −1. We recall (5.60) in Corollary 5.3 in terms of T⊥0,h in the
following:

(6.7) ||Tf − T⊥0,hf ||0 ≤ Chr0 ||f ||0 ∀f ∈ (L2(Ω))3,

(6.8) ||Tf − T⊥0,hf ||Lh
≤ Chr0 ||f ||0 ≤ Chr0 ||f ||Lh

∀f ∈ (L2(Ω))3.

In what follows, we shall show the spectral correctness property and the optimal
error bound of the finite element method (3.12), in the spirit of [10], since the un-
derlying T is self-adjoint and compact. We recall the following theorem on spectral
correctness stated in [50], which is due to [10, 52].

Theorem 6.2. Let X be a Hilbert space with inner product (·, ·)X and norm ||·||X
and A : X → X a self-adjoint and compact operator. Let Θ = {hn ⊂ R : 1 ≤ n <∞}
be a discrete subset such that hn → 0 as n → ∞. Let Ah which is defined with
respect to h ∈ Θ denote a family of linear self-adjoint operators. Assume that Ah
converges pointwise to A and that the set A = {Ah : X → X,h ∈ Θ} is collectively
compact. Let ν be an eigenvalue of A of multiplicity m and let φi, 1 ≤ i ≤ m, be
the associated orthonormal eigenvectors. Then, (a) for any ρ > 0 such that the disk
B(ν, ρ) which centers at ν with radius ρ contains no other eigenvalues of A, there
exists hρ which depends on ρ such that for all h < hρ, Ah has exactly m eigenvalues
(repeated according to their multiplicity) in the disk B(ν, ρ); (b) for h < hρ, denoting
the set of the eigenvalues of Ah in the disk B(ν, ρ) as νh,i, 1 ≤ i ≤ m, we have, for all
1 ≤ i ≤ m,

(6.9) c|ν − νh,i| ≤
m∑

k,l=1

|((A−Ah)φk, φl)X |+
m∑
l=1

||(A−Ah)φl||2X .

Put X := (L2(Ω))3, (·, ·)X := (·, ·)ε and || · ||X := || · ||0,ε, A := T, Θ := {h :
h = maxK∈Th hK}, and Ah := T⊥0,h. As mentioned in section 2, T is self-adjoint and

compact from (L2(Ω))3 to (L2(Ω))3. It can be easily verified that T⊥0,h : (L2(Ω))3 →
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(L2(Ω))3 is also self-adjoint. The error estimates in (6.7) ensure the pointwise conver-
gence of T⊥0,h to T and the collective compactness of the sequence {T⊥0,h}h>0. There-
fore, Theorem 6.2 holds.

From the error estimates in operator norm in (6.7), it is not difficult to obtain
the error estimates for eigenvalues within the general spectral theory for compact
operators in [10].

Theorem 6.3. Let ν−1 = λ denote the eigenvalue of the eigenproblem (2.4) and
ν−1
h = λh the eigenvalue of the finite element eigenproblem (3.12). Under Assump-

tions 1 and 2, with the global regularity r0 as defined after Assumption 1, we have

|ν − νh| ≤ Ch2r0 .

In what follows, we shall briefly address how to deal with the Maxwell eigenprob-
lem (1.2). For convenience, here we restate (1.2) as follows: Find (ω2

M ,uM 6= 0) such
that

(6.10) curlµ−1curluM = ω2
MεuM , divεuM = 0 in Ω, uM × n = 0 on Γ.

Above and below, the subscript M is used to indicate that (ω2
M ,uM ) denotes the

eigenpairs (i.e., eigenvalue and eigenfunction) of the Maxwell’s eigenproblem. Associ-
ated with (6.10), the curlcurl-graddiv eigenproblem reads as follows: Find (ω2,u 6= 0)
such that

(6.11) curlµ−1curlu− sε5divεu = ω2εu in Ω, u× n = 0, divεu = 0 on Γ,

where, comparing with (1.1), we see that there is an additional parameter s > 0 which
is referred to as the regularization parameter, whose role will be seen later on.

The eigenpairs of the eigenproblem (6.11) can be divided into two families; cf.
[32, 29]. One family is (ω2

L,uL), such that

(6.12) curluL = 0,

where (ω2
L,uL) := (sκ,5ϕ) ∈ R × H0(curl; Ω) ∩ H(divε; Ω), and (κ, ϕ 6= 0) ∈

R×H1
0 (Ω) denotes the eigenpair of the Laplace Dirichlet eigenproblem, such that

(6.13) − divε5ϕ = κϕ in Ω, ϕ = 0 on Γ.

Above and below, the subscript L is used to indicate that (ω2
L,uL) denotes the eigen-

pair related to the Laplace Dirichlet eigenproblem. The other is (ω2
M ,uM ), the eigen-

pairs of the Maxwell’s eigenproblem (6.10), such that

(6.14) divεuM = 0.

All the eigenfunctions of (6.11) are independent of s (only their multiplicities depend
on s). Further, the Maxwell eigenvalues ω2

M do not depend on s, while the eigenvalues
ω2
L depend on s linearly, i.e.,

(6.15) ω2
L = sκ.

Likewise, accordingly, the finite element eigenproblem of (6.11) will produce two fam-
ilies of eigenpairs. Those finite element eigenvalues ω2

h (ω2
h := λh − 1) which do not

vary with s are approximations of Maxwell eigenvalues, while those ω2
h which vary

linearly with s are not.
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A practical approach is to solve the finite element eigenproblem with different
values of the regularization parameter s. Let s increase, for example. Observe that
those eigenvalues that are constant and do not vary when the value of s increases
are Maxwell eigenvalues, while those that linearly vary with s are not. On the other
hand, we can always set s = 1. Recall that (6.12) and (6.14) can be used to determine
which eigenvalues are Maxwell eigenvalues and which are not. In fact, we define a
quantity for a finite element eigenfunction uh as follows:

(6.16) τ(uh) :=
||Rh(µ−1curluh)||20,µ
s||R̆h(divεuh)||20

.

According to the value of τ(uh), we can distinguish if uh is an approximation of
Maxwell eigenfunctions or not. In other words, from (6.16), we can conclude that
those uh with large τ(uh) are Maxwell eigenfunctions, and otherwise not. These two
approaches are used in [32, 31].

7. Concluding remarks. In this paper, we have presented a newH1-conforming
finite element method for the curlcurl-graddiv eigenvalue interface problem, where L2

projections are applied to the curl and the div operators. The H1-conforming finite
element space of the solution is the standard nodal-continuous Lagrange element, en-
riched with some element bubbles. The method is analyzed for the general source
problem and the eigenproblem in a three-dimensional simply connected Lipschitz
domain with connected boundary. Discontinuous and anisotropic, nonhomogeneous
coefficients are allowed, which may lead to very low piecewise regularity in the solu-
tion. It is shown that the method is suitable for a non-H1 space solution of piecewise
Hr regularity, where r can be any number in [0, 1]. The error bounds relative to
the piecewise Hr regularity of the solution have been established, where, particularly,
the error bounds O(hr0) and O(h2r0) are obtained for eigenfunctions and eigenvalues,
respectively, where r0 comes from the continuous embedding of the piecewise Hr into
the global Hr0 . The spectrally correct property of the proposed finite element method
is also shown.

Acknowledgment. The authors would like to thank the anonymous referees for
their valuable comments and suggestions, which have helped to greatly improve the
overall presentation of the paper.

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
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