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Abstract 18 

Ethanol is commonly admixed to petrochemical gasoline, and its amount in the 19 

fuel blend can influence the performance of an engine. The ethanol content in a 20 

commercial fuel can vary. To ensure reliable engine operation, control strategies 21 

based on a measurement of the composition need to be developed. Two possible 22 

methods to determine the ethanol content in ethanol/gasoline blends are Raman 23 

and IR spectroscopy. We compare both techniques for quantitative 24 

measurements in systematically varied blends of ethanol and a gasoline 25 

surrogate. For each method, two different approaches for data evaluation are 26 

tested and compared: Firstly, the calibration of the intensity ratio of 27 

characteristic peaks as function of composition; secondly, a principal component 28 

regression (PCR). Both methods are found to have comparable uncertainty. For 29 

the evaluation of the Raman spectra, the PCR method yielded better accuracy 30 

than the intensity ratio approach. In addition, a detailed investigation of the 31 

influence of noise in the signal is presented. When the full IR spectra were 32 

evaluated by PCR, even high noise levels did not reduce the measurement 33 

accuracy significantly.  34 



1 Introduction 35 

The recent interest in bioethanol as fuel is due to strategies to reduce the impact 36 

of greenhouse gas emissions from the transport sector and to reduce 37 

dependency on fossil fuels. Bioethanol is mainly produced by fermentation of 38 

agriculture feedstocks (e.g. sugar cane, sugar beet and corn) but the future trend 39 

is the production of ethanol from non-food biomass 1. The world’s largest 40 

producers of bioethanol are the United States and the largest exporter is Brazil 2. 41 

The main bioethanol producing European countries are Germany, France, Italy, 42 

and Spain 3.  43 

Bioethanol is probably the most widely used alternative automotive fuel 44 

in the world. It possesses interesting properties for spark ignition engine 45 

operation, for example it reduces the net CO2 emissions and has a high antiknock 46 

power 4. However, its high latent heat of vaporization alters the volatility of the 47 

mixture and hence its evaporation behavior 5, especially if the fuel is used in 48 

geographical areas that are particularly cold. For use as an automotive fuel, it is 49 

often blended with gasoline in percentages from 5% to 85% by volume. Mixtures 50 

with an ethanol content up to 7.5% by volume can be used without making any 51 

changes to the engine (complete interchangeability). If the purity of anhydrous 52 

ethanol is high enough to avoid the presence of water causing the phase 53 

separation of ethanol and gasoline, mixtures containing up to 16.5% can be used 54 

in spark ignition (SI) engines without any modifications 6. 55 

The amount of ethanol in a fuel blend is a crucial parameter, as it 56 

influences the engine performance directly 7, 8. Therefore, its accurate and fast 57 

determination is an important task. Gas and liquid chromatography are 58 

commonly used for this purpose 9-11. However, chromatographic methods 59 



normally share the disadvantage that they are relatively slow and thus do not 60 

allow real-time monitoring of the fuel quality. This disadvantage can be 61 

overcome by spectroscopic techniques such as Raman and infrared (IR) 62 

spectroscopy. Their use for fuel characterization has recently been reviewed 12. 63 

Due to different underlying physical phenomena, Raman and IR spectroscopy 64 

represent complementary techniques commonly employed to analyze molecular 65 

structure. For compositional analysis of hydrocarbon fuels, either method is 66 

normally sufficient. However, the best method for a given measurement task has 67 

to be chosen carefully.  68 

Vibrational spectroscopic methods were used to analyze blends of 69 

ethanol and gasoline (surrogates) qualitatively and quantitatively in a number of 70 

studies. Van Ness et al.13 applied IR spectroscopy to binary solutions of ethanol 71 

with heptane or toluene using IR spectroscopy. They derived information about 72 

the thermodynamics and the molecular structure of the mixtures by putting the 73 

spectra into context with heats of mixing. Infrared and excess infrared 74 

spectroscopy was used by Corsetti et al.14 to examine molecular interactions and 75 

microscopic mixing effects in blends of ethanol and a gasoline surrogate 76 

comprising heptane and iso-octane. Measuring the ethanol content in blends was 77 

briefly touched in 14 as well using approaches based on the Beer-Lambert law. 78 

Such quantitative measurements, however, are more common when mixtures 79 

containing real gasoline are investigated spectroscopically. For this purpose, 80 

Raman15, IR16-18, and NIR19 spectra were exploited. All these methods have been 81 

found suitable in these studies. However, a systematic comparison of the 82 

techniques has not been performed to date, to the best of the authors’ 83 

knowledge. 84 



This work compares Raman and IR spectroscopy for the determination of 85 

the ethanol content in fuel blends. Samples with systematically varied ratios of 86 

ethanol and a gasoline surrogate (i.e. a mixture of n-heptane and iso-octane) 87 

have been prepared. A set of spectra from each sample has been recorded with 88 

both methods. In a previous article,14 the IR and excess IR spectra were analyzed 89 

to understand the mixing effects at the molecular level and compositional 90 

analysis was looked at only briefly. In particular, chemometric methods were not 91 

used or discussed. The quantitative analysis of the vibrational spectra is the 92 

focus of the present work. Different approaches for evaluation of the 93 

spectroscopic data are compared: (1) the calibration of the intensity ratio of 94 

characteristic peaks as a function of composition, and (2) chemometrics in terms 95 

of principal component analysis (PCA) and inverse least squares regression 96 

(ILSR). The intensity ratio approach has the advantage of being very simple and 97 

easy to implement, but it may suffer when peaks are overlapping. Chemometric 98 

methods are computationally more demanding, but may provide universal 99 

applicability. 100 

 101 

2 Experimental 102 

2.1 Fuel Blends 103 

A surrogate of gasoline was made by mixing, with a mass ratio of 1:1, iso-octane 104 

(2,2,4-Trimethylpentane, Fisher Scientific, >99%) and n-heptane (Fisher 105 

Scientific, >95%). Different ratio ethanol-gasoline blends were prepared by 106 

increasing the percentage of ethanol (VWR, >99%) in gasoline in steps of 10% by 107 

weight. The sample preparation and all measurements were carried out at 108 



atmospheric pressure and a temperature of 294 K. We note that the same 109 

samples were studied by IR and excess IR spectroscopy in a previous article14.  110 

 111 

2.2 Raman Spectroscopy 112 

Raman spectra of the blends were recorded using a 90-degree Raman set up, as 113 

shown in Figure 1. The samples were in a sealed glass cuvette, in which the light 114 

from a HeNe laser (10 mW, 632nm) was focused. The scattered light was 115 

collected in a direction perpendicular to the incident laser beam using an 116 

achromatic lens. A dielectric long-pass filter (cut-off wavelength 635 nm) 117 

blocked elastically scattered laser light. The Raman signal was focused by 118 

another achromatic lens onto an optical fiber, which guided the light to an 119 

imaging spectrograph (Andor Shamrock, entrance slit 200 micron, focal length 120 

163 mm, grating 1200 lines mm-1). An EM-CCD camera (Andor Newton) 121 

eventually detected the dispersed signal. The spectral range from 500 to 4000 122 

cm-1 was recorded with a resolution of approximately 6 cm-1. 123 

 124 

 125 

Figure 1: Schematic of the experimental Raman setup. L = lens; BD = beam dump; AC = 126 

achromatic lens; F = filter; OF = optical fiber; CCD = charge-coupled device camera. 127 

 128 

2.3 IR Spectroscopy 129 

IR spectra of the biofuel blends were collected with a Bruker Vertex v70 130 

spectrometer. The spectral range from 500 to 4000 cm-1 was recorded with a 131 



nominal resolution of 1 cm-1. For every sample 32 scans were averaged. The 132 

instrument was equipped with an attenuated total reflection (ATR) module 133 

(diamond, one reflection, 45°). During the measurements, the samples on the 134 

ATR crystal were covered with a small glass cap to avoid sample evaporation.  135 

 136 

3 Results and Discussion 137 

In this section the Raman and IR spectra obtained are briefly presented, 138 

discussed and compared. Thereafter, two different methods to extract 139 

quantitative information from both Raman and IR spectra were used. The 140 

ethanol concentration in the mixtures was determined by using (1) the intensity 141 

ratio approach and (2) principal components regression (PCR). 142 

 143 

3.1 Infrared and Raman spectra  144 

The IR and Raman spectra of the gasoline surrogate, the pure ethanol, and the 145 

blends are shown in Figure 2. The different selection rules for IR and Raman are 146 

evident in the spectra of the pure substances. In general, a vibrational mode is 147 

IR-active when the dipole moment changes during the vibrational motion, and it 148 

is Raman-active when the polarizability changes during the vibrational motion.20, 149 

21 Some peaks are strong in one spectrum and weak in the other, and vice versa. 150 

Furthermore, some features appear in the IR spectra, but not in the Raman ones 151 

and vice versa.  152 

A detailed analysis and assignment of the individual peaks can be found in 153 

previous articles 14, 22 and the references therein, and hence only a brief 154 

overview is given here. The characteristic and broad OH stretching band of 155 

ethanol can be found in the region between 3000 and 3600 cm-1. The CH 156 



stretching modes of ethanol and the hydrocarbons are located between 2800 157 

and 3100 cm-1. The OH is strong in the IR while the CH dominates the Raman 158 

spectrum. The range below 1600 cm-1 is commonly referred to as the fingerprint 159 

region. Between 1200 and 1600 cm-1, the CH bending modes can be found. The 160 

peak doublet between 1000 and 1100 cm-1 can be attributed to the symmetric 161 

and asymmetric CO stretches of ethanol with contributions from CH rocking 162 

modes. Below 1000 cm-1, the CC stretching modes can be identified as well as a 163 

broad OH deformation band from ethanol. 164 

 165 

 166 

Figure 2: IR and Raman spectra of the pure ethanol (red), pure gasoline (dashed blue), and the 167 

blends (black). 168 

 169 

The CH stretching region was employed for the quantitative measurements in 170 

various ways in this work. Therefore, Figure 3 shows this region of both the IR 171 

and the Raman spectra. Both sets of spectra exhibit four isosbestic points in the 172 



CH stretching region. These points represent the wavelengths at which both 173 

substances have the same IR absorbance or Raman intensity and their mixtures 174 

behave as ideal solution.  175 

The IR peaks from ethanol at 2973, 2928, and 2881 cm-1 are usually assigned to 176 

the CH3 antisymmetric stretching, the CH3 symmetric stretching and the CH2 177 

symmetric stretching, respectively. However, from a Raman study of a series of 178 

alcohols, Atamas et al.23 suggested that the peaks, which they observed at 2974 179 

and 2873 cm−1 can be a result of the Fermi resonance between the fundamental 180 

vibration ∼2930 cm−1 and the overtones of two vibrations at ∼1450 and 1470 181 

cm−1. In our case, this means that the peaks at 2973 and 2881 cm-1 may be due to 182 

Fermi resonances between the fundamental vibration at 2928 cm-1 and the CH 183 

bending overtones at 1455 and 1479 cm-1. Later, Yu at al.24 carried out a more 184 

detailed analysis by comparing the Raman spectrum of gaseous and liquid 185 

ethanol. They concluded that the two spectra present very similar features, 186 

except for an enhancement of the CH3 antisymmetric band and the red shifted 187 

band positions in the liquid phase. They assigned the band at ~2881 cm-1 to the 188 

overlapping symmetric stretching vibrational modes of both CH2 and CH3. The 189 

band at ∼2938 cm-1 was assigned to two symmetric -CH3 Fermi resonances and 190 

the weak CH2 antisymmetric stretching mode. The band at ∼2983 cm-1 was 191 

assigned to the symmetric CH2 Fermi resonance and the weak CH3 192 

antisymmetric stretching mode. 193 

 194 



 195 

Figure 3: CH stretching region in the IR and Raman spectra of the pure ethanol, pure gasoline, 196 

and the blends. The highlighted areas indicate those spectral ranges, which are referred to as 197 

‘limited CH range’ in the text. The dashed vertical lines indicate the positions of the isosbestic 198 

points. 199 

 200 

3.2 Intensity ratio approach 201 

The intensity ratio approach is a straightforward method to get quantitative 202 

information from a vibrational spectrum. It allows calibrating the intensity ratio 203 

of two characteristic peaks from different species against the mixture 204 

composition. This method is often used as it is very robust compared to 205 

calibrating a single peak as a function of composition 25. The latter approach 206 

would require highly stable radiation sources and detectors as any fluctuation 207 

would immediately translate into a significant and systematic measurement 208 

error. 209 



The most commonly used bands for the intensity ratio method in mixtures 210 

containing alcohols and hydrocarbons are the OH and CH stretching bands. They 211 

provide strong signals and are spectrally well separated from the excitation 212 

wavelength in a Raman experiment. Hence, they are normally not influenced by 213 

interference from elastically scattered light and laser-induced fluorescence. The 214 

former can be an issue in field studies when the fluid under investigation 215 

contains droplets or particles, which scatter large amounts of photons elastically 216 

26, 27. The latter may become a problem when the fluid contains aromatic 217 

compounds or dyes 28-30, both of which are typical in commercial fuels. 218 

 219 

3.2.1 Spectral window selection 220 

The first step towards reproducible and accurate composition measurements 221 

using the intensity ratio method is the selection of suitable spectral windows, 222 

over which the signal is integrated before the ratio is calculated. This is done in 223 

order to maximize the signal to noise ratio and thus to minimize the statistical 224 

uncertainty. As a first attempt, the full CH stretching band is utilized and 225 

secondly, the window is limited to the region between those isosbestic points, 226 

between which the gasoline signal dominates, in order to maximize the 227 

sensitivity of the ratio. The regions are indicated in Fig. 3. For the IR spectra, this 228 

approach has shown to be beneficial in our previous work 14. Whether or not it is 229 

advantageous in the exploitation of the Raman spectra as well will be examined 230 

in the following.  231 

To determine the robustness of the calibration curves, a leave one-out cross 232 

validation was carried out. For this purpose, one data point is removed from the 233 

calibration data set. The calibration function is then determined from the 234 



remaining data points. Eventually, the absorbance (IR) or intensity (Raman) 235 

value of the removed data point is fed into the calibration function as a blind 236 

value in order to determine the ethanol mass fraction. This procedure was 237 

repeated with all individual data points. Plotting the difference between the 238 

actual mass fraction (gravimetric value) and the calibrated value for every 239 

compositions yields an estimate of the measurement uncertainty and the 240 

robustness of the calibration method.  241 

Figure 4 compares the Raman and IR calibration curves. The trends of the curves 242 

are very similar, but the OH band in the Raman spectra is relatively weak so that 243 

the absolute numbers of the OH/CH ratio are a factor of ~20 lower than in IR. In 244 

both Raman and IR a narrowing of the spectral window results in an increase in 245 

sensitivity. This can be deduced from the steepness of the slopes of the 246 

calibration curves. The steeper the slope, the higher the sensitivity.  247 

The residuals from the leave-one-out cross-validation, i.e. the deviation of the 248 

predicted values from the actual concentration values, are plotted in Figure 5. 249 

Generally, a comparable quality of the results can be found for both methods. 250 

Larger deviations can be observed at the low and high ethanol concentration 251 

ends of the diagrams. This is reasonable, as the calibration functions in these 252 

cases have to be extrapolated in order to find a concentration value. 253 

 254 



 255 

Figure 4: Calibration curves for the intensity ratio of the OH and CH stretching bands in the 256 

Raman and IR spectra. The solid and the dashed lines represent best-fit functions of the Raman 257 

and IR data, respectively. The Raman data are multiplied by a factor of 20. 258 

 259 

 260 

Figure 5: Residuals from the leave-one-out cross validation. Difference between the predicted 261 

ethanol concentration, and the actual ethanol concentration in the IR, and Raman spectra. 262 

 263 

3.2.2 Influence of Noise 264 



In a practical application, the signal to noise level in the spectra recorded can 265 

vary substantially depending on the environment in which the measurement is 266 

carried out. In order to test the accuracy of the intensity ratio method, different 267 

levels of noise were added to the IR and Raman spectra. Figure 6 shows CH and 268 

OH region of the ethanol IR and Raman spectra with 10% of added noise. The 269 

noise represents a uniform random distribution with a maximum value 270 

corresponding to the value of the maximum peak in the CH stretching region. In 271 

the 10% noise case, for example, this means that a uniformly distributed random 272 

noise with minimum value zero and maximum value of 10% of the absorbance 273 

(IR) or intensity (Raman) value of the strongest peak in the CH stretching region 274 

was added to the spectrum. 275 

For each level of noise, the IR and Raman calibration curves, considering the full 276 

CH and the limited CH windows, were obtained and a leave-one-out cross-277 

validation was carried out again. The same procedure was repeated 100 times, 278 

testing different random noise matrices. The root mean square error (RMSE) 279 

normalized with respect to the mean of the predicted ethanol concentration 280 

values (coefficient of variation of the RMSE), determined from each calibration 281 

from the gravimetrically set values, was calculated. The RMSE is an indicator of 282 

the difference between the predicted values and the actual values. The resulting 283 

coefficients of variation of the RMSE vs. the noise level are shown in Figure 6. 284 

Each curve represents the average of 100 curves for the different random noise 285 

matrices. Narrowing the CH window has different effects on the measurement 286 

accuracy in IR and Raman when the noise level is considered. In the IR plot, the 287 

values for the limited CH range case are higher and, in Raman, the opposite 288 

behavior can be observed. It must be noted that without addition of noise, the 289 



values in all four cases considered are reasonable similar. The coefficient of 290 

variation of the RMSE increases strongly for the Raman data (the values are 291 

factor of about three larger). This can be attributed to the low intensity of the OH 292 

band in the Raman spectra. When noise is added, this band becomes easily 293 

obscured resulting in a reduced measurement accuracy. The strong OH band in 294 

the IR spectra provides a robust basis for accurate concentration determination. 295 

The IR based curves in Figure 7 change only moderately with increasing noise. 296 

 297 

 298 

Figure 6: IR and Raman CH and OH regions of ethanol with 10% of noise added. 299 

 300 



 301 

Figure 7: IR and Raman coefficient of variation of the RMSE vs noise level. 302 

 303 

3.3 Chemometric approach 304 

Differently from the intensity ratio approach, in which the concentration of the 305 

components is calculated from a direct regression of the concentrations onto the 306 

intensity/absorbance, the PCR regresses the concentration on the principal 307 

components analysis (PCA) scores. Another important difference is that the 308 

chemometric method can take the full spectrum into account rather than relying 309 

on limited regions.  310 

The PCA has a primary scope to decrease the number of correlated variables 311 

representing the set of measured data. This is done by a linear transformation of 312 

the variables, which can be visualized as a set of coordinates (one axis per 313 

variable), projecting the original ones in a new Cartesian system, in which the 314 

variables are sorted in descending order of variance. Therefore, the variable with 315 



higher variance is projected onto the first axis, the second on the second axis and 316 

so on. The reduction of the number of variables is achieved by considering just 317 

those with higher variance between the new variables. Details can be found, e.g., 318 

in the text of Jolliffe31. PCA can also be considered as a form of multidimensional 319 

scaling. It is a linear transformation of the variables into a lower dimensional 320 

space, which retain maximal amount of information about the variables. The new 321 

variables, differently from the original ones, are uncorrelated and are called 322 

principal components. The PCA scores represent a summary of the relationship 323 

among the observations, the loading a summary of the variables. A regression 324 

method can then be used to correlate the principal components with the quantity 325 

to be measured. In our case, PCR combines PCA and an Inverse Least Squares 326 

regression (ILSR) to solve the calibration equation for the spectra 32, 33. More 327 

sophisticated approaches such as support vector machines (SVM)34 and artificial 328 

neuronal networks (ANN)35 are not necessary for the relatively simple system to 329 

be analyzed here, but they may be an option when real multicomponent fuels are 330 

the subject of investigation. 331 

 332 

3.3.1 Spectral window selection 333 

As mentioned above, the chemometric method can in principle be applied to the 334 

full spectrum. For better comparability, we performed additional PCR analyses 335 

using the same spectral regions as for the intensity ratio method: the full CH 336 

stretching region and the limited CH stretching region. The residuals from the 337 

PCR, i.e. the deviation of the predicted mass fraction from the actual mass 338 

fraction, were calculated and they are shown in Figure 8. The values of the 339 

residuals are slightly smaller than the ones obtained by predicting the ethanol 340 



mass fraction using the intensity ratio approach. This is reasonable as more 341 

spectral information is taken into account. 342 

 343 

 344 

Figure 8: Residuals from the PCR. Difference between the predicted ethanol mass fraction, and the actual 345 

ethanol mass fraction determined from the IR and Raman spectra. 346 

 347 

To validate the model, again a leave-one-out cross-validation was carried out. 348 

For this purpose, a vector of the intensity of a single ratio blend is taken out from 349 

the matrix of all the blends. A PCA is performed on the new matrix. Eventually, 350 

the ethanol mass fraction value of the blend corresponding to the removed 351 

vector is fed into the PCR curve as a blind value in order to determine the 352 

composition. This procedure was repeated with all individual vectors. The 353 

residuals of the cross-validation, i.e. the differences between the actual 354 

responses and the cross-validated fitted values, are shown in Figure 9. The 355 

residuals measure the predictive ability of the model. Selecting different portions 356 



of the spectrum, the resulting residuals are similar. The values are comparable 357 

with the ones obtained by using the intensity-ratio method. 358 

 359 

 360 

Figure 9: Residuals from the leave-one-out cross validation for the IR and Raman data. 361 

 362 

3.3.2 Influence of Noise 363 

To test the accuracy of the method, different levels of noise have been added to 364 

the Raman and IR spectra, as previously done for the intensity ratio method. A 365 

PCR analysis of each spectrum, considering the full spectrum, the full CH 366 

stretching band, and the limited CH stretching band, with different noise levels 367 

was done. A leave-one-out cross-validation was carried out for each PCR curve to 368 

determine the predicted ethanol concentration. As previously done with the 369 

intensity ratio approach, 100 different random noise matrices were used. The 370 

root mean square error (RMSE) normalized with respect to the mean of the 371 

predicted values (coefficient of variation of the RMSE) and the coefficient of 372 



determination R2 vs. the noise level are shown in Figure 10. The R2 values 373 

indicate the goodness of the linear fit of the predicted concentration vs. the 374 

actual concentration curve. The closer R2 is to 1 the better is the correlation 375 

between the data points. Each curve in the plots represents the average of 100 376 

curves (each one done by using a different random noise matrix). 377 

The change in the coefficient of variation of RMSE with the noise level suggests 378 

that the PCR is more accurate if the entire spectrum is considered. In contrast to 379 

the intensity ratio method, narrowing the window selection leads to a loss in the 380 

accuracy in predicting the mass fraction. When the full spectrum is considered, 381 

there are more spectral data points making the model less susceptible to spectral 382 

noise. The R2 values confirm for both Raman and IR a better correlation between 383 

the predicted concentration and the actual one if a larger portion of the spectrum 384 

is used. One reason is that the strong features associated with the symmetric and 385 

asymmetric CO stretches of ethanol at 1046 and 1088 cm-1 contribute. Regarding 386 

the results obtained from the full IR spectra it can be concluded that the noise 387 

level has almost no influence on the accuracy. In other words, the method is very 388 

robust. The corresponding Raman data show a moderate decrease in accuracy 389 

when the level of noise exceeds ~5%. The R2 value deceases monotonically from 390 

~0.997 at 5% to ~0.986 at 20%, which is acceptable in many applications. 391 

The comparison of the chemometric results with the ones obtained with the 392 

intensity ratio method reveals an improvement when the PCR is used for both IR 393 

and Raman. This is particularly true when the full spectral range is exploited in 394 

the analysis. However, it should be noted that the improvement is more 395 

significant on the Raman side as the weak OH band of ethanol is no longer the 396 

only characteristic feature taken into account.  397 



 398 

 399 

Figure 10: Coefficient of determination R2 and coefficient of variation of the RMSE vs. noise level calculated 400 

for both Raman and IR data. 401 

 402 

 403 

 404 

4 Summary and Conclusion 405 

In this paper we have used Raman and IR spectroscopy to determine the ethanol 406 

content in ethanol/gasoline blends. For this purpose, two different evaluation 407 

methods to extract quantitative information from the spectra have been 408 

compared. The first method was the commonly used approach of an intensity 409 

ratio calibration. Secondly, Principal Components Regression (PCR) has been 410 

used.  411 

Using the intensity ratio method, an enhancement of the sensitivity and accuracy 412 

in predicting the blend composition has been achieved by narrowing the spectral 413 

window in the CH stretching region for both Raman and IR. On the contrary, 414 



using the PCR led to a better accuracy when the full spectrum was considered. 415 

Overall, the uncertainty of the two methods has been found comparable. The PCR 416 

method seemed to be more accurate in predicting the blend composition than 417 

the intensity ratio method when applied to the Raman spectra, but not when 418 

applied to the IR ones. However, a higher accuracy can be obtained at the 419 

expense of a loss of simplicity of the approach. 420 

In order to find the method of choice for a given application, a number of further 421 

points must be taken into account. IR spectroscopy has advantages in the 422 

analysis of opaque samples, as ATR probes can record spectra in non-423 

transparent samples. It may also be more suitable when the samples contain a 424 

high amount of fluorescing species. A problem, on the other hand, may be high 425 

amounts of water as the water absorption is very strong, virtually across the 426 

entire mid-infrared spectral range. Also, the costs and dimensions for a high-427 

quality IR instrument may be an issue. Raman spectroscopy is well suited when 428 

the samples are transparent in the spectral region under study. The arbitrary 429 

choice of the excitation wavelength provides some flexibility here. This is also an 430 

advantage when the use of fiber probes is necessary. Employing visible lasers for 431 

excitation allows the use of very long optical fibers, while the length of ATR 432 

probes in IR spectroscopy is normally limited to a few meters due to the poor 433 

transmission. Moreover, Raman instruments with dispersive elements can be 434 

made very compact and are ideally suited for field measurements. With the costs 435 

for sufficiently sensitive miniature spectrometers decreasing, the 436 

implementation of Raman spectroscopy as versatile and portable sensors seems 437 

very promising. 438 

 439 
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