
                                                              

University of Dundee

Making the invisible visible

van Steensel, Maurice A. M.

Published in:
Seminars in Cell & Developmental Biology

DOI:
10.1016/j.semcdb.2016.02.013

Publication date:
2016

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
van Steensel, M. A. M. (2016). Making the invisible visible. Seminars in Cell & Developmental Biology, 52, 58-
65. DOI: 10.1016/j.semcdb.2016.02.013

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/42552232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.semcdb.2016.02.013
http://discovery.dundee.ac.uk/portal/en/research/making-the-invisible-visible(fe08c478-d6a0-413a-b507-6b6e014ac0dd).html


 
© <2016>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 
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Science, School of Medicine 

Abstract 

In this review, I will discuss how careful scrutiny of genetic skin disorders could help us to 

understand human biology. Like other organs, the skin and its appendages, such as hairs 

and teeth, experience fundamental biological processes ranging from lipid metabolism to 

vesicular transport and cellular migration. However, in contrast to other organ systems, 

they are accessible and can be studied with relative ease. By visually revealing the 

functional consequences of single gene defects, genetic skin diseases offer a unique 

opportunity to study human biology. Here, I will illustrate this concept by discussing how 

human genetic disorders of skin pigmentation reflect the mechanisms underlying this 

complex and vital process. 

Key words: skin, genodermatosis, genetic, pigment, pigmentation 

 

Introduction 

Genetic disorders offer a unique window onto human biology, offering a glimpse of the 

machinery that underlies the normal functioning of our bodies. By correlating clinical 

observations in patients with inherited conditions and knowledge obtained from work on 
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model organisms such as mouse or zebrafish, we can begin to understand the molecular 

underpinnings of health and disease. 

Making the correlation with human biology, however, is hampered by the poor accessibility 

of the study subject. To properly analyse liver disease, for example, surgical procedures 

such as biopsies would be required. Understandably, these are only warranted if there is a 

clear medical need. Samples from other organs, such as the brain, are even more difficult, 

if not impossible, to obtain. As a consequence, we have accumulated vast knowledge 

about our model organisms that we do not know how to apply to our own physiology, if it 

can be done at all. Fortunately, there is a way out of this conundrum. 

The skin is the largest organ in the human body and, at the same time, by far the most 

accessible. Simple visual inspection can reveal much about cutaneous health already, and 

samples for analysis of arbitrary sophistication can be easily obtained with a minimum of 

discomfort to the donor. Moreover, the skin hosts an impressive array of associated 

structures such as blood vessels, nerves and mini-organs such as hair follicles that have a 

complex life of their own and are easily sampled. Add in a highly diverse microbiota 

consisting of eukaryotes, prokaryotes and viruses, and it becomes clear that all of biology 

is being played out on the canvas of the skin, whilst being quite accessible to scientific 

enquiry. 

By showing us what happens in the context of a single, well defined gene defect, genetic 

skin disorders (genodermatoses) offer a unique opportunity to deeply study basic 

biological processes. In this review, I will discuss this concept. Rather than elaborating on 

individual disorders, however, I will show how a particular symptom in genetic disorders, in 

this case abnormal cutaneous pigmentation, reflects the underlying pathology, and what 

that tells us about healthy skin biology. Of note, pigment-based skin discolourations are 
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extremely common in the general population, which is suggestive that such blemishes 

share common mechanisms with the genetic diseases of which they can be part. 

Pigmentation 

The ability of mammalian skin to tan upon exposure to sunlight is a crucial component of 

its defense against the damaging effects of UV-radiation. Specialised, neural-crest derived 

melanocytes produce two major types of pigment: eumelanin and pheomelanin. 

Eumelanins (black and brown variants exist) imparts a darker color than red and yellow 

pheomelanin, which is responsible for red to pink hues, as in lips or nipples in people with 

a Fitzpatrick type I-II (light Caucasian) skin [1] . There is a third type called neuromelanin, 

which is produced in the brain by catecholaminergic neurons of the substantia nigra and 

locus coeruleus. Its function there remains elusive, but it is known to have complex roles in 

local immunomodulation and protection from oxidative stress. Loss of neuromelanin is 

associated with Parkinson’s disease [2] . 

Melanin synthesis is a highly complex, multistep process that requires more than 190 

genes and is tightly regulated. Upon UVB irradiation, keratinocytes initiate pigment 

formation in melanocytes by producing alpha-melanocyte stimulating hormone (α-MSH) in 

a p53-dependent manner [3]. As an aside, α-MSH is produced from a precursor called pro-

opiomelanocortin (POMC), whose other products include ACTH and ß-endorphin. The 

latter is an endogenous opioid and it is responsible for the addictive effects of suntanning 

[4]. One wonders about the evolutionary pressures that shaped this particular system, 

which effectively rewards pale-skinned individuals for  seeking sufficient UVB exposure to 

damage keratinocyte DNA.  α-MSH activates the melanocortin 1 receptor (MC1R), which 

in turn activates the transcription factor MITF that initiates the expression of a wide range 

of genes involved in melanocyte migration and survival, as well as melanin production and 



 
© <2016>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

transport [5]. Hypomorphic MC1R alleles are associated with red hair, fair skin and 

freckling and predispose to the development of melanoma, a malignant and highly invasive 

melanocyte tumor (OMIM #266300; this number refers to an entry in the Online Mendelian 

Inheritance in Man database at http://www.ncbi.nlm.nih.gov/omim). 

Melanins usually are co-polymers of eumelanin and pheomelanin, deposited onto protein 

fibrils in a specialised membranous organelle, the melanosome. When mature, these are 

exocytosed by melanocytes, to be actively internalised by keratinocytes in an incompletely 

understood process that depends on a number of small G proteins including RAB11B, 

RAB27A, RAB32 and RAB38 [6] . Keratinocytes in the basal layers of the epidermis need 

to have their nuclei protected from UVB, as they comprise the cells that are responsible for 

renewing most of the epidermis while its cells are being shed due to normal differentiation. 

This protection is provided by the so-called keratinocyte microparasol, a perinuclear 

microtubule-melanosome complex that is most prominent in the basal layer. This structure 

needs to be actively maintained, and requires the activity of dynein motor proteins [7] . 

Thus, pigmentation is a highly complex and active process, much of which remains poorly 

understood. Fortunately, there are genetic disorders that can bring some light to this 

darkness and they will be discussed here in some detail. This review will concern itself 

with skin pigmentation only, even though the diseases that are discussed can also cause 

ocular albinism, i.e., loss of pigment in the iris and retina. 

Human diseases reveal the machinery of pigment production 

A complete or partial lack of pigmentation is referred to as albinism and can affect all 

structures that contain pigment including the iris and retina of the eye, as in 

oculocutaneous albinism. Several forms of albinism exist and many of the underlying gene 

defects have now been elucidated. Collectively, these reveal the critical steps in 
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pigmentation and show that it depends on a large number of quite diverse processes, 

ranging from cell fate determination to vesicle maturation and protein transport. Figure 2 

summarises these complex events and illustrates the relationship between the disorders 

resulting from their dysfunction. 

Neural crest specification and migration 

Melanocytes are derived from the neural crest, a population of cells that arise from the 

margins of the neural epithelium early in embryogenesis and migrate extensively to give 

rise to structures such as the facial skeleton [8] . Genetic events that affect neural crest 

migration and differentiation, therefore, can be expected to affect not only pigmentation, 

but also facial development and hearing. Indeed, several human disorders were identified 

that show  precisely such phenotypes. They have been instrumental in understanding how 

neural crest migration and fate determination are controlled, and what structures it 

contributes to. 

The classic example is Waardenburg syndrome type 1 (#193500), caused by 

heterozygous mutations in the paired homeobox gene PAX3 [9]. People with this 

autosomal dominant disorder have a very distinct phenotype consisting of a white forelock, 

pale blue, eyes that seem wide-set because the inner corners of the eyes are too far apart 

(dystopia canthorum) and sensory hearing loss. These abnormalities result from partially 

defective neural crest migration, which PAX3 regulates through MITF and the transcription 

factor SOX10 that transactivates MITF [10,11]. Accordingly, heterozygous mutations in 

MITF cause Waardenburg syndrome type 2A (WS2A, #193510 - the number indicates a 

particular phenotype, the letter a distinct causative gene), which is like WS1 with the 

exception of the dystopia canthorum [12]. As expected from PAX3's interactions, mutations 

in SOX10 can cause a WS2 phenotype as well; WS2E (#611584) was identified in 2009 in 

a boy who had the WS2 phenotype plus neurological manifestations, including 



 
© <2016>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

hypomyelination and absence of cochlear nerves and olfactory bulbs [13]. More damaging 

heterozygous mutations in SOX10 cause WS type 4C (#613266) which in addition to the 

manifestations of WS2C is associated with Hirschsprung's disease [14] . 

Additional phenotypic and genetic heterogeneity in Waardenburg syndrome reveals 

additional factors that are required for proper neural crest migration and specification and 

which, notably, all interact with MITF in one way or another. WS2 type D (#608890) is 

caused by homozygous deletions of the SNAI2 gene, which codes for a Slug-related 

transcription factor whose expression can be regulated by MITF [15]. WS type 4A 

(#277580) is associated with mutations in the Endothelin-B receptor (EDNRB), and type 

4B with mutations in one of its ligands, Endothelin 3 (EDN3, #613265) [16,17]. EDNRB 

can regulate MITF activity via the MAPK pathway [18]. Thus, human pathology is elegantly 

delineating an intricate signaling network that has MITF at its core. Since MITF activity is 

additionally stimulated through the receptor tyrosine kinase KIT, one would predict to find 

Waardenburg syndrome associated with defective KIT action. And indeed, very recently a 

heterozygous, probably dominantly acting, missense mutation in KITLG coding for KIT 

ligand was observed to segregate with a WS2 phenotype [19]. 

There are other human neural crest disorders that show a clear pigmentary phenotype, 

although in many of those diseases that is usually not noticed because  other syndrome 

manifestations, such as cardiovascular malformations, take center stage. Examples 

include the Borrone dermato-cardio-skeletal syndrome (BDCS, #211170) that is caused by 

homozygous mutations in SH3PXD2B, which codes for an adapter protein required for full 

podosome functionality [20]. Podosomes are actin-based structures capable of digesting 

extracellular matrix, made by many different cells when they need to move. Tumor 

invasion and metastasis likewise are mediated by podosome-like structures that are 

sometimes referred to as invadopodia [21]. In Borrone syndrome and the allelic disorder 
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Frank-Ter Haar syndrome (#249420), patients show clear neural crest-related phenotypes 

[22]. Notably, they have scattered areas of abnormal pigmentation on their skin, which 

strongly suggests that melanocyte progenitor cells they need to digest and remodel the 

extracellular matrix with podosomes to migrate to their destinations. This is an aspect of 

neural crest cell biology that remains to be explored, but is of obvious importance for 

understanding why malignant melanocytes are so invasive. 

 

Melanin synthesis 

Melanin is synthesized from the amino acid tyrosine in a series of reactions that critically 

depend on the activity of three known enzymes, two of which are associated with human 

disease. In these disorders, the capacity for melanin synthesis is strikingly evident in the 

amount and nature of skin pigmentation. 

Tyrosinase crucially catalyses the conversion of tyrosine to DOPAquinone, the precursor 

for both eumelanin and pheomelanin. Complete loss of tyrosinase activity causes 

oculocutaneous albinism type 1 (OCA1A, #203100), an autosomal recessive disorder in 

which pigment is completely absent from the integument and the eyes [23]. A further 

defining characteristic is misrouting of the optic nerves, which manifests outwardly in the 

eyes moving to and fro rhythmically, a movement known as nystagmus. This phenomenon 

is seen in many types of oculocutaneous albinism. 

In people with reduced tyrosinase activity, logically, some pigment will still be formed and 

they consequently have the so-called “yellow” type of albinism (OCA1B, #606952) [24]. 

The production of eumelanin requires the activity of DCT and TYRP1 [1]. The former has 

no associated disease, but loss of TYRP1 activity causes “rufous” oculocutaneous 

albinism (OCA3, #203290), which was first reported in South Africa amongst individuals 
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with a type 5 (very dark) skin [25]. In those people, OCA3 manifests with a bright copper-

red coloration fo the skin and hair, as they can still make pheomelanin and tyrosinase can 

also catalyse some eumelanin production. TYRP1’s function in human melanogenesis is 

not known. Its mouse ortholog, mutations in which cause the brown phenotype, was 

identified as having dopachrome tautomerase activity [26]. The human version may not 

have that function [27]. 

Melanosomes 

Melanin synthesis and deposition take place in melanosomes, which are large (±500 nm in 

diameter) endosome-derived organelles. Because of their size, they are easily visualised 

with a brightfield microscope and have consequently been well studied, in particular in 

mouse coat color mutants. These have proven invaluable in teasing out the mechanisms 

of melanosome maturation. Melanosome biogenesis and maturation are intimately linked 

with melanin synthesis and proceed through four stages.  Although these are well defined, 

their molecular underpinnings are still incompletely understood. At each stage, appropriate 

melanosome components and enzymes for melanin synthesis must be delivered, requiring 

intricate protein sorting and transport steps. Several excellent reviews discuss this process 

in great detail (see for instance [28,29]); the present discussion focuses on known and 

well-understood connections with human disease. 

As it turns out, defective melanosome maturation underlies several human disorders in 

which altered pigmentation can be accompanied by various, often quite severe 

hematological and/or immunological abnormalities in addition to neurological defects. This 

association might seem surprising, until one realises that platelet dense granules and 

secretory granules of cells such as granulocytes and cytotoxic T-lymphocytes are also 

lysosome-related [30] . Intriguingly, in these melanosome maturation defects, pigmentation 

is often not completely absent. Rather, it is diluted, resulting for instance in silvery rather 
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than white or light-blonde hair (figure 3). When identified in a patient, this highly distinctive 

phenomenon should prompt thorough clinical evaluation for associated immune 

deficiencies or bleeding tendency as well as neurological issues. 

Melanosome maturation and transport 

Stage I, unpigmented melanosomes are vacuolar endosomes. They contain the protein 

PMEL, which causes intraluminal vesicles to form the amyloid fibrils that characterise 

stage II melanosomes [31]. These fibrils, an apparently physiological form of amyloid, 

provide a scaffold for melanin to polymerise and are thought to protect melanocytes from 

the toxic intermediates of its synthesis. PMEL17 mutations have not been reported in 

humans, but are responsible for the mouse silver phenotype and the merle coat pattern 

that is prized in several dog breeds [32,33]. In both animal species, the gene defect 

causes hearing loss and eye abnormalities. How PEML17 is sorted to the endosomes 

remains to be determined. Stage II melanosomes are characterised by internal striations, 

which are the fibrils made by PMEL17 and which form the scaffold for melanin synthesis, 

which takes place in stage III. In order for the melanosome to proceed to that stage, it 

needs to take delivery of the melanin-synthesizing machinery, including tyrosinase, DCT 

and TYRPI, through tubular-endosomal transport from the trans-Golgi compartment 

(reviewed in [28]). This process depends on the adapter proteins AP1 and AP3. Loss of 

the ß3A subunit of AP3 causes Hermansky-Pudlak syndrome type 2 (HPS2, #608233), in 

which oculocutaneous albinism is associated with immunodeficiency and prolonged 

bleeding [34]. The immune defect results from AP3 having roles in various trafficking 

events in antigen-presenting cells and cytotoxic T-lymphocytes (reviewed in [35]). Patients 

are not completely devoid of pigmentation, which indicates that there is some redundancy 

in the system - there must be other paths to deliver material to the maturing melanosomes. 
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Indeed, HPS types 1 (#) and 4 (#) were found to be caused by mutations in components of 

the lysosomal complex BLOC-3, which acts as a guanine-nucleotide exchange factor to 

RAB32 and RAB38 [36,37]. These two small GTPases are thought to facilitate targeting of 

tubular connections to the maturing melanosome, which also requires the lysosomal 

complexes, BLOC-1 and -2 [38,39]. Like BLOC-3, they are implicated in HPS. Analysis of 

melanocytes from a patient with HPS9, which is due to mutations in the Pallidin subunit of 

BLOC-1, showed that TYRP1 was not being sorted to melanosomes correctly [40]. TYRP1 

is likewise absent from maturing melanosomes in BLOC-2 deficient melanocytes derived 

from HPS (type 5) patients [41]. 

Thus, major determinants of melanosome biogenesis are revealed by the HPS phenotype. 

All types of HPS are associated with prolonged bleeding, revealing profound and intriguing 

parallels between melanogenesis and dense granule biogenesis.   However, depending 

upon additional functions that the causative gene might have, they may also have distinct 

clinical manifestations as in HPS2  (includes immunodeficiency) or in HPS1/4, which 

include pulmonary fibrosis because the BLOC-3 complex also has a role in surfactant 

secretion in alveolar type II cells [42]. There is no doubt that additional, genetically distinct 

HPS subtypes will be discovered in the future, since at least 15 murine equivalents of 

Hermansky-Pudlak syndrome have been identified. 

Melanosome delivery to the cell membrane 

Whereas stage 3 critically depends on protein sorting and vesicular transport events, stage 

4 has no such requirements. Instead, this fully mature melanosome, distinguished by its 

lack of internal structure, needs to be transported into melanocyte dendrites, which are 

cellular extensions that contact up to 40 keratinocytes. Transport into those structures 

takes place along the microtubules, presumably mediated by kinesin motors, although 

there is no clinical evidence for this and the available in vitro data are conflicting. We do 
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know that melanosomes switch tracks once they reach the dendrite trips, moving from the 

microtubule onto the actin cytoskeleton where they are captured by a complex consisting 

of the unconventional myosin MYO5A, the small G protein RAB27A and the exophilin 

Melanophilin (MLPH) [43]. Loss-of-function MYO5A mutations cause Griscelli syndrome 

type 1 (#214450) [44]. People with this rare, autosomal recessive disorder have silvery 

hair, light skin and neurological dysfunction including muscular hypotonia and seizures. 

From studying GS type 2 (#607624, figure 3) and 3 (#609227), which are characterised by 

additional immune deficiency, or just hypopigmentation respectively, RAB27A and MLPH 

were identified [45,46]. The lack of neurological symptoms and immune dysfunction in 

GS3 suggests that MLPH’s function is specific to melanocytes and some recent data 

support this notion by showing that it increases the melanosome’s dwell time on cortical 

actin. By slowing the melanosome down, MLPH probably facilitates the interactions that 

are required for exocytosis [47]. Interestingly, there is no ocular albinism in the various 

types of GS, suggesting that eye pigmentation uses different systems to transport mature 

melanosomes. 

Pigment transfer 

Recent evidence suggests that melanocytes transfer their products by shedding vesicles 

containing melanosomes from filopodia on their dendrites [48]. These vesicles are 

captured by microvilli on keratinocytes and subsequently phagocytosed in a PAR22 

dependent manner, after which they are degraded. The melanosomes then spread along 

the keratinocyte microparasol. At present, there are no known human genetic diseases 

associated with this phase of pigmentation. However, a number of proteins associated with 

pigmentation disorders do not have a known function as yet and some might be involved in 

pigment transfer. 

Loose ends 
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From clinical observations, we know of some proteins that are involved in pigmentation, 

but that do not have a clearly assigned function yet. 

Type 2 oculocutaneous albinism (OCA2, #203200) is an autosomal recessively inherited 

disorder, in which patients retain some tanning ability that improves with age. It is caused 

by mutations in the P gene, which codes for a 12-pass transmembrane protein that is 

present in melanosome membranes from stage 2 [49]. Its function is unknown, but it is 

thought to be an anion transporter that controls melanosomal pH [50]. The molecular basis 

of OCA type 4 (#606574) provides strong evidence that this idea might be correct. 

Mutations in SLC45A2 cause OCA4 [51]. This gene codes for a solute carrier (MATP), 

which is expressed in melanosomes. Interestingly, its knockdown causes melanosome pH 

to drop and is associated with lowered tyrosinase activity, which can be recovered by 

copper treatment. Tyrosinase activity requires copper, which it binds in a pH-dependent 

manner [52]. Thus, MATP could be regulating tyrosinase activity by helping to control 

melanosomal pH, although it is unlikely to be its primary function. Rather, MATP might 

export as yet unknown sugars from the melanosome, as it strongly resembles known 

sucrose/proton symporters that use proton gradients to pump their cargo across cell or 

organelle membranes. What sugars would be present in melanosomes, and what their 

function would be remains to be investigated. It is conceivable that they could originate 

from the turnover of glycosylated proteins. 

The importance of melanosome pH regulation presents an interesting parallel with 

lysosomes, whose proper function likewise depends on maintaining their internal pH within 

a defined (acidic) range. Indeed, in the past, melanosomes were considered as modified 

lysosomes, but this idea, as we’ve seen, is too simplistic. Rather, the two organelles share 

a common endosomal origin as suggested by the finding that Chédiak-Higashi syndrome 

(CHS, #214500) is caused by loss of the protein LYST (Lysosomal trafficking regulator) 
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[53] . CHS is characterised by oculocutaneous albinism, prolonged bleeding, severe 

immunodeficiency, recurrent bacterial infection, neurologic dysfunction and 

hemophagocytic lympohistiocytosis. LYST function remains to be fully defined, but in 

retinal pigment epithelium from CHS patients, enlarged melanosomes were observed [54]. 

Interestingly, other cell types in CHS also exhibit enlarged, lysosome-like organelles. They 

are defective in  secretory lysosome exocytosis, and  recent work indicates that LYST 

might be involved in trafficking of the required effector proteins [55] . It is very tempting to 

speculate that it might therefore be one of the missing links in the transfer of pigment from 

melanocytes to keratinocytes. Consistent with this notion, LYST is one of nine BEACH 

(BEige And Chediak-Higashi) domain proteins, all of which are hypothesized to mediate 

membrane fusion and fission events [56].  Considering that Chediak-Higashi syndrome is 

very difficult to distinguish clinically from Griscelli syndrome, the author would like to 

propose that LYST could interact with the MYO5-RAB27A-MLPH complex and control 

melanosome fusion with the melanocyte membrane. 

While much of our knowledge about the biology of pigmentation is derived from the 

elucidation of genetic diseases, is of interest to note that several of the genes discussed 

above are responsible for the normal variation in skin, hair and eye pigmentation (SHEP, 

11 OMIM entries). 

Other determinants of pigmentation 

This review only scratches the surface of human pigment biology. For instance, additional 

complexity to melanosome biogenesis, which apparently shares some of its machinery 

with neurons, is suggested by the Cross oulocerebral hypopigmentation syndrome 

(#257800). This is an ultra-rare disorder of pigment dilution with severe neurological 

dysfunction and microcephaly. Given its resemblance to Griscelli type 1 syndrome, 

Hermansky-Pudlak and Chédiak-Higashi syndromes, it might be caused by mutations in a 
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component of melanosome biogenesis that functions in the MYO5 complex. No doubt 

there will be other conditions identified in the future that are related to melanosome 

biogenesis - work in model organisms such as mouse and zebrafish has identified many 

pigment dilution mutants for which there is no human equivalent yet. Furthermore, 

melanocyte growth and activity is strongly influenced by RAS signalling, which accepts a 

great many inputs and has pervasive effects on cellular physiology. Whilst outside the 

scope of this review, this system is of considerable clinical interest because its deregulated 

activity is a major driver of melanoma growth [57]. How RAS signalling affects pigment 

production, which is increased in RASopathies, remains to be defined but is of obvious 

interest for clinical and cosmetic dermatology. 

There exist also some fascinating mosaic disorders of pigmentation, in which a genetic 

defect limited to the descendants of a single cell manifests as a pigmented patch of skin, 

or a local accumulation of melanocytes. These phenotypes reveal the existence of 

additional determinants of pigmentation, including receptors that seem to have a role in the 

migration of melanocyte precursors. Whilst outside the scope of this review, strictly 

speaking, it is of interest to mention blue nevi, which are dermal accumulations of 

melanocytes whose brown melanin appears blue at the skin surface due to the so-called 

Tyndall effect. These innocuous but sometimes cosmetically disturbing lesions carry the 

activating mutation c.548G>A,(p.Arg183Gln) in GNAQ, which codes for the Gqα subunit of 

Guanine nucleotide-binding (G-) proteins that transduce signals received by G-protein 

coupled receptors [58]. 

Finally, a large number of other genetic skin disorders are associated with pigmentary 

abnormalities other than albinism, indicating that there is even more complexity to making 

and maintaining melanocytes and pigment than was just discussed. A particularly 

interesting group is that of the reticulate hyperpigmentations, which is implicating quite 
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unexpected players. For instance, dominant negative mutations in the intermediate 

filament proteins keratin (K)5 and its obligate partner K14 cause the blistering disorder 

epidermolysis bullosa simplex (EBS, #131800, 131900). A specific mutation in K5 

(p.Pro25Leu) causes a peculiar manifestation of this disease, called EBS with mottled 

pigmentation (#131960) [59,60]. Here, the skin blisters are accompanied by patchy 

hyperpigmentation, in particular on the limbs. Intriguingly, other keratin (K) 5 or 14 

mutations are associated with quite distinct, non-blistering disorders: Dowling-Degos 

disease (DDD) type 1 (#179850) and Naegeli-Franceschetti-Jadassohn 

syndrome/dermatopathia pigmentosa reticularis (#161000/125595, figure 4) [61,62]. 

People with those disorders exhibit reticular hyperpigmentation, with a preference for 

flexures. The mechanism of hyperpigmentation is not understood - histopathological 

analysis of skin samples in DDD shows increased pigment deposition in basal 

keratinocytes, but how keratin mutations should cause this phenomenon remains unclear. 

K5 mutations that cause DDD1 are associated with abnormal melanosome distribution. 

There seems to be a specific interaction between the K5 head domain and the chaperone 

Hsc70, which is involved in vesicle uncoating. Loss of this interaction could conceivably 

impact pigment distribution [63] . K14 does not have this specific association, and as a 

more general mechanism it has been speculated that inflammatory signaling results from 

keratinocyte apoptosis induced by the keratin mutation [64,65]. This in turn might increase 

pigment production by melanocytes, as in post-inflammatory hyperpigmentation. Some 

support for this hypothesis is provided by the recent identification of a novel disorder 

caused by homozygous loss of function mutations in SASH1, which was first described as 

a tumour suppressor. The new phenotype consists of mottled hypo- and hyperpigmented 

macules on the trunk and face and reticulate hyperpigmentation of the extremities, 

combined with alopecia, palmoplantar keratoderma, nail dystrophy and squamous cell 

carcinoma [66]. Whilst originally reported as a tumour suppressor, SASH1 has been 
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recently observed to function as a scaffold for TLR4 signaling, and may also have a role in 

regulating NF-kB activity thereby implicating dysregulation of inflammation in the loss-of-

function phenotype [67]. 

However, there are other causes of DDD that point to additional determinants of pigment 

production and homeostasis. Heterozygous mutations in the POFUT1 gene cause DDD 

type 2 (#615327). POFUT1 is a protein O-fucosyltransferase, which adds O-fucose 

glycans to Notch receptors and seems to essential for proper signaling by them [68]. 

Recent work has started to implicate Notch signalling in melanocyte survival and 

migration, showing that it is required to maintain hair pigmentation by providing a survival 

signal for melanocytic stem cells [69]. The existence of DDD type 4 (#615696, type 3 has 

no associated gene defect yet) provides additional evidence that Notch is important in 

pigmentary homeostasis, as DDD4 is caused by heterozygous mutations in POGLUT1 

which codes for protein O-glycosyltransferase 1, an endoplasmic reticulum (ER) O-

glucosyltransferase that adds glucose moieties to the transactivating NOTCH intracellular 

domain [70]. Why and how alterations of cutaneous Notch signalling should give rise to 

reticular hyperpigmentation is not clear. There are other disorders that cause similar 

discolourations and whose molecular basis might help to answer this question. One of the 

best studied is reticulate acropigmentation of Kitamura (RAK, #615537). This disorder, 

which for reasons unknown affects mostly people with a type IV (Asian) skin, is caused by 

heterozygous mutations in the ADAM10 gene, which codes for a metalloprotease [71]. 

ADAM10 has many roles, but one of them is to activate Notch1 signalling [72]. 

The pigmentary changes in RAK affect the backs of the hands and feet. Reticulate 

acropigmentation of Dohi, or dyschromatosis symmetrica hereditaria (DSH, #127400) is 

rather similar, but can also cause hypopigmentations to appear and affects the face, in 

contrast to the other disorders of reticulate hyperpigmentation. Interestingly, DSH is the 
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consequence of mutations in DSRAD/ADAR1, coding for an RNA-specific adenosine 

deaminase that can change adenosine in double-stranded RNA to inosine [73]. While it is 

not immediately obvious how RNA editing would relate to pigmentation, it was recently 

published that loss of A can cause apoptosis in intestinal crypt cells through endoplasmic 

reticulum stress, followed by interferon-mediated inflammation [74] . It also is tempting to 

speculate, given the phenotypic similarities between RAK and DSH, that DSRAD might in 

some way be involved in editing transcripts of genes downstream of Notch signaling. 

Why DDD, RAK and DHS give rise to reticular hyperpigmentation remains to be explained 

- it is not clear why some keratinocytes should be more prone to accumulating pigment 

than others. Perhaps there is a relation here with the known Notch involvement in 

embryonic patterning, and in that case studying the diseases of reticulate 

hyperpigmentation might teach us a lesson or two about embryonic development. 

Conclusion 

In this review, I have endeavoured to show how highly visible human phenotypes that 

result from a single gene defect can illuminate very complex biological processes, in this 

case skin pigmentation.  I have particularly stressed the observation that phenotypic 

similarity is reflected on the molecular level - if two distinct (not allelic!) genetic disorders 

strongly resemble each other, the proteins involved are likely to interact in some way. 

Thus, by the simple expedient of looking closely at skin one can learn much about some 

very complex biology in a relatively easy way. Numerous mouse and zebrafish models 

greatly facilitate the study of pigmentation phenotypes and additionally provide platforms 

for testing treatments, or for developing drug screens. Given the crucial role that 

melanocytes have in protecting the skin from harmful solar radiation, as well as their 



 
© <2016>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

obvious cosmetic function, the basic biology of these cells deserves our undivided 

attention. 
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List of abbreviations not explained in the text 

ACTH: adrenocorticotropic hormone; ADAM10: a disintegrin and metalloprotease 10; 

AP1/3: adaptor protein 1/3; BLOC1-3: biogenesis of lysosome-related organelles complex 

1-3 ; DCT: dopachrome tautomerase; DSRAD; GNAQ: G protein Gqα subunit; LYST: 

lysosomal trafficking regulator; MATP: membrane-associated transporter protein; MITF: 

microphtalmia associated transcription factor ; MYO5A: myosin 5A; PAR2: proteinase-

activated receptor 2; PAX3: paired-like homeobox containing 3; PMEL17: melanocyte 

protein 7; RAB(n): RAS-associated protein B, there are at least 60 RABs; RAS: rat 

sarcoma viral oncogene homolog; SLC45A2: solute carrier family 45, member 2; 

SH3PXD2B: SH3 and PX domains-containing protein 2B; SOX10: SRY-related HMG-box 

protein 10; TYRP1: tyrosinase-related protein 1. 

Figure legends 

Figure 1. A Somali family consisting of a mother and her two young daughters. The 

youngest child has type 1 oculocutaneous albinism, manifesting as a complete lack of 

pigmentation, which forms a dramatic contrast with her dark-skinned sib and mother.\ 
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Figure 2. A schematic illustration of known, crucial steps in neural crest specification and 

migration, respectively melanosome biogenesis. Genetic disorders of pigmentation are 

shown next to their associated protein (complex). Abbreviations are the ones used in the 

body text. MT: microtubules, cActin: cortical actin. The illustrations follow the order in 

which events are discussed in the review. 

Figure 3. Griscelli syndrome type 2. A.  Partial albinism with silvery hair in this child of 

Turkish descent, whose parents are dark-haired and have a Mediterranean skin type. B. A 

detail of the hair, illustrating the silvery sheen sheen that is typical of human pigment 

dilution phenotypes. The child died as a result of an intracranial abscess that formed 

subsequent to an ear infection. 

Figure 4. Reticulate hyperpigmentation of inguinal flexures in a female with dermatopathia 

pigmentosa reticularis. The phenotype is rather subtle and was overlooked; the patient 

presented for analysis of nail dystrophy, which can be part of the disorder. 
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