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ABSTRACT 

Vegetation affects the soil hydrology through not only evapotranspiration (ET) but also 

changes in soil water retention curve (SWRC). There are only limited models which are able 

to predict root-induced change in SWRC. These models often contain many empirical 

parameters that are not easy to be obtained and calibrated. This letter proposes a new and 

simple model with only one root parameter, namely root volume ratio Rv, needed for 

predicting SWRC of a root-permeated soil. The new model considers void ratio change 

through the volume reduction of air void of soil due to the presence of roots. The modified 

void ratio of a root-permeated soil is then fed into a void ratio-dependent SWRC model to 

predict any resulted change in SWRC. The performance of this new model is validated 

against three case studies. Good agreement between measurements and predictions is 

obtained, with discrepancies of degree of saturation less than 13% for a given suction. 
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INTRODUCTION 

The presence of vegetation is known to affect the hydrology and, hence, stability of some major civil 

infrastructure such as man-made slopes/embankments (Osman and Barakbah, 2011; Scanlon et al., 

2011; Smethurst et al., 2015; Ng et al., in press). Past studies have been carried out to investigate the 

effects of plant evapotranspiration (ET) on the changes in soil moisture content or soil suction 

through field monitoring (Lim et al., 1996; Simon & Collison, 2002; Pollen-Bankhead and Simon, 

2010; Leung & Ng, 2013; Leung et al., 2015a), laboratory studies (Fan and Su, 2009; Ng et al., 2013, 

2014; Garg et al., 2015; Leung et al., 2015b; Veylon et al., 2015) and numerical or/and analytical 

modelling (Indraratna et al., 2006; Zhu & Zhang, 2014; Ng et al., 2015). 

In addition to plant ET, some existing studies suggest that the presence of plant roots in soil 

could directly affect soil hydraulic properties. Field and laboratory tests (Gabr et al., 1995; Huat et 

al., 2006; Aravena et al., 2011; Ng et al., 2014; Leung et al., 2015b) have evidently showed that 

vegetated soil has lower water infiltration rate and enhanced water retention capacity than bare soil. 

The root-induced change in soil hydraulic properties is arguably attributed to the alteration of soil 

structures, predominantly due to occupancy of roots in soil pore space (Scanlan & Hinz, 2010; Scholl 

et al., 2014; Leung et al. 2015b), which consequently leads to changes in soil pore size and, hence, 

soil water retention curve (SWRC; Romero et al., 1999; Ng & Pang, 2000; Ng & Leung, 2012). 

However, it should be noted that such soil-root-water interaction might be different in fine-grained 

soils. Veylon et al. (2015) revealed that root growth in clayey soils influences the frequency and 

magnitude of drying-wetting cycles and consequently the formation of soil aggregates. 

Quantifying root-induced modification in soil hydraulic properties, including SWRC, are vital 

to more correctly predict the hydrology and, hence, assess the stability of the civil infrastructure 



subjected to rainfall. Such root-induced modification is especially prominent for the case under high 

relative humidity (RH; i.e., low vapour pressure deficit) and cloudy condition (i.e., minimal supply 

of radiation), during which any suction induced by plant ET and root osmotic action are practically 

negligible (Sidle et al., 1985; Snyder et al., 2003). To date, there are only a few models, which may 

capture root-induced change in SWRC. Scanlan (2009) and Scanlan & Hinz (2010) proposed a 

conceptual model to capture the reduction in soil pore size by idealising soil pore throats as a bundle 

of cylindrical tubes containing plant roots. Their model considers that the presence of a root reduces 

the effective diameter of a pore throat and this, in turn, increases the height of capillary water and 

enhances matric suction. This model requires 13 parameters, some of which are empirically-based 

and cannot be easily obtained in a test. Scholl et al. (2014) determined a set of pore size parameters 

to deduce root-induced change in SWRC through inverse analyses of column tests, where changes in 

soil moisture and suction of vegetated soil were monitored. Physical meaning of the back-analysed 

SWRC parameters is not clear, because these parameters can be heavily affected by the subjective 

choices of their initial values and the parameter searching algorithm of the inverse analysis. 

This letter proposes a new and simple model of SWRC for root-permeated soils. This model 

was then validated by three case studies. 

 

NEW WATER RETENTION MODEL FOR ROOT-PERMEATED SOIL 

The new model considers that plant roots occupy some soil pore space and, hence, reduce soil pore 

size. Considering the mass-volume relationship and phase diagram of an unsaturated soil where part 

of its air void is occupied by plant roots (Fig.1), the void ratio of a root-permeated soil may be 

expressed by the following equation: 
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where e0 is the void ratio of bare soil [-], Rv is the root volume ratio [mm3/mm3], which is defined as 

the total volume of roots per unit volume of soil. Rv = 0 means that there are no plant roots in the soil 

(i.e., bare soil). Rv is less than e0/(1+e0), as total root volume cannot be larger than the total soil pore 

size. Depending on the plant type, Rv is a function of depth within root zone. It should be noted that it 

is not the intention of this study to model any effects of root decay, and the associated formation of 

macro-pores (Ghestem et al., 2011), on the change in soil void ratio. Furthermore, for simplicity, the 

proposed model does not consider any change of soil microstructure (i.e., micro-cracks development 

and aggregates formation) during drying-wetting cycles. The proposed model is thus more suitable 

for low plasticity soils such as sands and/or silts. 

In order to model the effects of the presence of roots on the change in water retention ability of a 

soil, the void ratio-dependent SWRC equation proposed by Gallipoli et al. (2003) may be adopted: 

12
4

3

1

mmm

r
seS
m



  
    
   

                  (2) 

where Sr is the degree of saturation of soil; s is the matric suction; and m1 [-], m2 [-], m3 [kPa], m4 [-] 

are the model parameters. m1 and m2 control the shape of a SWRC (van Genuchten, 1980), while m3 

and m4 are related to the air-entry value (AEV) of the parent soil. Considering that the void ratio has 

negligible effects on SWRC at high suction range, the product, m1 m2 m4, can be set to 1 (Gallipoli et 

al., 2003). Therefore, by knowing the SWRC of the parent soil and the root parameter, Rv, SWRC of 

root-permeated soil can be predicted. 

 

VALIDATION OF THE NEW MODEL 



In order to validate the new SWRC model, field and laboratory tests are conducted to obtain all 

necessary parameters. In addition, the laboratory test data reported by Leung et al. (2015b) is also 

selected for validation. Although there are some limited case studies that also show the SWRCs of 

both bare and root-permeated soil (Rahardjo et al., 2014; Yan & Zhang, 2015), the root parameter, Rv, 

is not reported. These case histories thus cannot be used for validation of this study. 

 

Test plan and procedures 

The field tests were double-ring infiltration tests conducted at a site called Eco-Park in Hong Kong 

(Fig. 2(a)). A flat soil bed was constructed by compacting a 2 m-thick layer of completely 

decomposed granite (CDG; silty sand), until a relative compaction of 95% (i.e., dry density of 1777 

kg/m3) was reached. Two rings with diameters of 0.6 and 0.3 m were inserted into the ground by 150 

and 75 mm depth, respectively. Any gapping between the ground and the two rings was sealed with 

cement paste. Inside both rings, 19 seedlings of Schefflera heptaphylla were transplanted to the soil 

bed in the uniform pattern and were irrigated every two days for four months for root establishment 

prior testing (Wang et al., 2007). The leaf area index, which is a dimensionless index indicating the 

total area of leaves over the projected planar area of plant canopy, of this species was 1.8 ± 0.2. 

Three pairs of moisture probes and tensiometers were installed at 100, 250 and 400 mm depths at the 

middle of the rings for monitoring the responses of soil moisture content and suction, respectively. 

When plant roots were established, a constant ponding head of 100 mm was applied inside both rings. 

Changes in soil moisture and suction were monitored continuously until the steady state was reached. 

The vegetated soil bed was then allowed for natural evapotranspiration, during which the changes in 

soil water content and suction at 100 mm (i.e., within the root zone) were measured to determine the 



SWRC of root-permeated soil. After testing, the plant roots were excavated to obtain Rv using an 

image-based analysis (Himmelbauer et al., 2004). The root zone was divided into several horizontal 

layers along root depth. An average Rv value was determined for each layer. In order to account for 

any plant variability, three repeated tests (i.e., 57 seedlings in total) were conducted. The above test 

procedures were repeated for soil bed without vegetation, for determining SWRC of bare soil. 

The laboratory tests were carried out at a temperature- and humidity-controlled plant room. The 

same type of CDG was compacted in a steel drum in 15 layers (600 mm in diameter; see Fig. 2(b)), 

until a relative compaction of 95% (i.e., dry density of 1777 kg/m3) was reached. In total, 13 

seedlings of S. heptaphylla were transplanted to the compacted CDG uniformly. The method of root 

establishment, instrumentation and the test procedures to obtain SWRCs were identical with the field 

tests described above. Three test replications for bare and vegetated soils were examined (i.e., 39 

seedlings in total). 

Leung et al. (2015b) conducted a similar laboratory test to those carried out in this study, using 

the identical soil type and plant type. The tests were performed in the same plant room. The only 

differences were that in Leung et al. (2015b), (i) the tests were for one single tree, and (ii) the 

relative compaction of the soil adopted was 80%. Similarly, three test replications were performed. 

 

Observed root characteristics 

Overview of the root systems of some typical tree seedlings tested in the field and laboratory studies 

is shown in Fig. 3. It can be generally seen that the roots growing from the bottom of tree stem are 

predominantly fresh roots, which is displayed as whitish colour (MaCrady & Comerford, 1998). No 

observable decayed roots are found. These root characteristics satisfy the conditions and assumptions 



stated in the proposed SWRC model and, hence, can be used for validation. 

Fig. 4 shows the measured distribution of Rv of the S. heptaphylla obtained from the three cases. 

Note that the vertical axis is the depth normalised with the maximum root depth in each 

corresponding case. It can be seen that the Rv for both the field and laboratory tests conducted in this 

study distributes non-linearly along depth, exhibiting a parabolic shape. A peak value of Rv of about 

0.032 and 0.034 mm3/mm3 is identified near the mid-depth of the root zone. On the contrary, the 

distribution of Rv obtained from Leung et al. (2015b) is rather different and it is approximately linear, 

with a peak value of about 0.065 mm3/mm3 near the soil surface. The SWRC of root-permeated soil 

in each case is evaluated at the depth, where the instruments were installed. The depth of evaluation 

and the corresponding value of Rv in each case are summarised in Table 1. 

 

Performance of the new model 

Figs 5(a) to (c) show the measured SWRC of bare soil tested in each case. Each SWRC is fitted with 

Eq. (2) to calibrate the coefficients, m1, m2, m3 and m4 (see Table 1). Based on these coefficients and 

the root parameter Rv, SWRC of root-permeated soil is predicted and compared with the respective 

measurements (including all replicates). Good agreement between the measurement and prediction 

can be generally seen in all three cases. At any given suction, the maximum discrepancy of Sr is less 

than 13%. It can be consistently seen that in all three cases, the presence of roots caused an increase 

in air-entry value (AEV), while the desorption rate does not show significant change. The AEV 

increased from 1 to 3 kPa for both the field and laboratory tests conducted in this study. Similarly, 

Leung et al. (2015b) also reported an increase in AEV by 4 kPa in their laboratory study. The similar 

SWRC change due to the presence of roots is also found in the test data presented by Rahardjo et al. 



(2014) and Yan & Zhang (2015), who report an increase in AEV by 4 kPa in silty soils and 3 kPa in 

sandy soils, respectively. The observed increase in AEV, from both the measurements and prediction, 

is an indication of the increase in water retention capacity due to the presence of roots in soil pore 

space. This is in line with the experimental observation made by Romero et al. (1999) and Ng & 

Pang (2000), who also show that a decrease in void ratio of bare soil (i.e., denser soil) would possess 

a higher AEV. 

 

CONCLUSIONS 

A new and simple SWRC model was developed for root-permeated, low plasticity soils such as sands 

and silts, which do not show significant soil microstructural changes during drying-wetting cycles. 

This model can capture the reduction of soil void ratio due to the presence of roots in the air void of 

soil. Totally the model requires five parameters: four for describing the SWRC of the parent soil 

(without any vegetation) and one for characterising a root property, namely root volume ratio. The 

performance of this new model is verified by a laboratory test reported in literature and two new 

additional field and laboratory studies. The model illustrates its capability of predicting SWRC of 

silty sand vegetated with a tree species, S. heptaphylla, reasonably well. Moreover, it is able to 

capture a substantial increase in soil air-entry value (AEV) due to the presence of roots. The 

maximum discrepancy of degree of saturation is less than 13%, for a given suction. 
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Table 1. Summary of parameters for the new water retention model 

Test 
Parameters for Eq. (2) Depth 

[mm] 
Rv 

[mm3/mm3] m1 [-] m2 [-] m3 [kPa] m4 [-] e0 [-] 
This study (Field) 0.11 2.5 0.30 3.64 0.52 100 0.032 
This study (Laboratory) 0.15 1.9 0.18 3.51 0.50 100 0.034 
Leung et al. (2015b) 0.04 8.6 0.70 2.98 0.72 50 0.043 
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Fig. 1. Volumetric phase diagram of (a) a bare soil and (b) a root-permeated soil 
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(b) 
Fig. 2. Experimental setup and instrumentation for (a) the field study and (b) the laboratory study 
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                                            (a) 

 
Replicate 1    Replicate 2 

(b) 
Fig. 3. Overview of the root systems of some typical tree seedlings after testing of (a) the field study and 
(b) the laboratory study (each grid represents a 10 mm×10 mm square)  



 
Fig. 4. Measured distributions of Rv with depth. Error bars represent standard error. 
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