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Abstract- The aim of this study is to evaluate the errors in measurement of volumetric flow 

rate and wall shear rate measured in radial and ulnar arteries using a commercial ultrasound 

scanning system. The Womersley equations are used to estimate the flow rate and wall shear 

rate waveforms, based on the measured vessel diameter and centreline velocity waveform. In 

the experiments, each variable (vessel depth, diameter, flow rate, beam-vessel angle and 

different waveform) in the phantom is investigated in turn and its value varied within a 

normal range while others were fixed at their typical values. The outcomes show flow rate and 

wall shear rate are overestimated in all cases, from around 13% up to nearly 50%. It is 

concluded that measurements of flow rate and wall shear rate in radial and ulnar arteries 

with clinical ultrasound scanner are prone to overestimation.  

 

 

Key Words: Radial artery, Ulnar artery, Flow rate, Wall shear rate, Womersley, Doppler 

ultrasound, Flow phantoms.   
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INTRODUCTION 

In the last decade, the number of cases investigating the blood flow in radial and ulnar 

arteries using ultrasound imaging has grown. One of the common instances is the catheterization of 

the coronary arteries. Before the catheterization, ultrasound imaging is often used to obtain the 

blood flow rate in ulnar artery to make sure that the collateral circulation via the ulnar artery is 

adequate to perfuse the hand (Habib et al. 2012). Measuring the volumetric flow rate and resistive 

index of flow waveform in the ulnar artery is also a requirement in cannulation of the radial artery 

and radial harvesting for coronary surgery (Gaudino et al. 2005; Royse et al. 2008; Kim et al. 2012). 

The blood flow velocities and waveforms in radial and ulnar arteries have been used to evaluate 

sympathetic skin response between healthy subjects and patients after stroke (Tiftik et al. 2014). 

Flow rates measured with ultrasound in the radial and ulnar arteries can also be used to distinguish 

different forms of Raynaud’s diseases that are caused by lack of blood supply from radial and ulnar 

arteries to fingers (Toprak et al. 2009; Toprak et al. 2011).  

 The methods used for estimating the flow rate in these studies estimates the flow rate 

simply through the product of maximum velocity and blood vessel area (Ozcan et al. 2011; Toprak 

et al. 2011; Tiftik et al. 2014). Further, no consideration in the literature has been given to evaluate 

the accuracy or reliability of these measurements.  Measurements of flow rate in arteries with 

ultrasound imaging are prone to errors (Li et al. 1993; Steinman et al. 2001; Swillens et al. 2009; 

Ponzini 2010). The validation for flow rates in arteries has been implemented by researchers using 

an experimental system referred to as “phantom” (Leguy et al. 2009; Hoskins et al. 2010; Ricci et 

al. 2013). A review of validation of arterial ultrasound imaging and blood flow was also provided 

by Hoskins(2008). These studies mostly consider measurement of flow rate in larger arteries such 

as the carotid and femoral which have diameters in the range 5-10 mm. The radial and ulnar arteries 

have a smaller diameter of 2-3 mm (Habib et al. 2012) and have a lower flow rate of 50 ml min-1 

(Manabe et al. 2005).  There has been no specific investigation of the errors in flow rate relevant to 

the ulnar and radial arteries.  
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In addition to flow rate, one other parameter which will be investigated in this study is wall 

shear rate. The wall shear rate, which is relevant to wall shear stress being sensed through sensors 

within the endothelium and thought to be part of a control mechanism in the arterial wall(Davies 

1995), has been attracting great interest over years (Hoeks et al. 1995; Blake et al. 2008; Mynard et 

al. 2013). Obtaining the wall shear rate values in radial and ulnar arteries should provide more 

clinical information for diseases related to these two arteries. However, there has been no study 

measuring wall shear rate in radial and ulnar arteries and evaluating their errors.  

The aim of this study is to evaluate these errors of volumetric flow rate (FR) and wall shear 

rate (WSR), based on ultrasound measurements made in a flow phantom. 

 

 

METHODS 

Overview 

A method developed by Blake et al. (2008) was used to estimate volumetric flow rate and 

wall shear rate simultaneously. This relies on measurement of the maximum Doppler frequency 

from spectral Doppler and diameter from the B-mode image which can be obtained from the digital 

image data without the need for RF or IQ data. These are used as input to the Womersley equations. 

The output is the time-varying velocity profile from which the volumetric flow waveform and the 

wall shear rate waveform are calculated. It is noted that the method assumes fully-developed flow. 

 

Theory 

 Womersley equations were used to derive the time-varying velocity profile of the pulsatile 

flow in a long, rigid wall pipe (Womersley 1955). The original Womersley equations estimate 

velocity profiles with input of the mean velocity – time waveform. Holdsworth (1999) modified the 

Wonersley equations so that the centre-line velocity could be input instead of the mean velocity. 

The centre line velocity corresponds to the maximum velocity, apart from a brief period where the 
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flow is changing direction. This formulation then allows the maximum velocity – time waveform 

obtained from spectral Doppler to be used as input to the Womersley equations. This method was 

used by Blake et al. (2008) for estimation of wall shear rate, and this study follows the same 

methodology. Vessel diameter is measured using B-mode imaging. The velocity profile vf(y,t) in 

arteries can be calculated: 
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where Re represents the real part of a complex function; J0 is the zero order Bessel functions of the 

first kind. y is the normalised radial coordinate; ω is the angular frequency; t is time; 𝜑k represents 

the phase of each harmonic; Vk is the centreline velocity of each harmonic; and 𝜏k is represented by 

𝛼k *j
3/2 .  𝛼k is the Womersley number for each harmonic,  
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Where v is the kinematic viscosity of the fluid and R is the diameter. After obtaining the time-

varying velocity profile, the flow rate ( )Q t  can be derived using equation 3: 
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Wall shear rate ( )wsr t , is calculated using equation 4: 
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Figure 1 gives the schematic of estimating flow rate and wall shear rate using the Womersley 

equations method.  

 

Flow phantom 

The flow phantoms were made with acoustically equivalent tissue-mimicking materials (Fig. 

1). A straight blood vessel mimic made from polyvinyl alcohol cryogel (PVA-c) subject to 6 freeze-

thaw cycles (Dineley et al. 2006) was embedded at a known depth within the agar-based tissue 
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mimic (Teirlinck et al. 1998). The PVA-c vessel set in a Perspex box was filled with water and 

sealed at both ends to generate a resistance while pouring the tissue mimic. A blood mimic based on 

nylon particles was used with acoustic properties and viscosity matched to blood (Ramnarine et al. 

1998).  

Pulsatile flow patterns were achieved through connecting a gear pump (Micropump® Series 

GA-X21, Vancouver, WA, USA) to the inflow of the phantom loop. The pump was controlled by 

Labview 2010 (National Instruments, Austin, TX, USA) to generate different flow waveforms in 

the blood vessel.  

The depth of the blood vessel was chosen in the range of 5 to 6 mm. The thickness of the 

vessel wall was 2 mm. For each assembled phantom 9% glycerol was added on the top of agar-

based tissue mimic in the Perspex box to provide ultrasound coupling. The depth at which the 

vessel was positioned within the ultrasound image could be varied by adjusting the position of the 

transducer relative to the vessel through the use of a scanning well filled with speed-of-sound 

corrected water-glycerol solution. Four flow phantoms were made having different vessel 

diameters, and labelled as phantom 1 to 4.  

The true average flow rate in volume was measured using timed-collection with a measuring 

cylinder and stopwatch. The true average wall shear rate was estimated using equation 5 (Hoskins 

2011): 

8 meanvdv

dr D
                                                                                                                    (5) 

                                                                                                      

where vmean is the flow rate, D represents diameter of the vessel.  

Use of the Womersley equations assumes fully developed flow. The inlet length was 

estimated using equation 6 with values of 3.3mm2 s-1 for viscosity (Ramnarine et al. 1998), 4 mm 

for diameter and 1.33 m s-1  for mean velocity when volumetric flow rate is at maximum of 100ml 

min-1. The inlet length was 26 mm confirming that the ultrasound data was acquired in a region of 

fully developed flow.  
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Experimental protocol 

 Blood vessel depths, beam-vessel angles, flow rates, vessel diameters and flow waveforms 

were investigated to evaluate their effects on the flow rate and wall shear rate estimations. The 

ranges of these variables were based on published data and a preliminary set of measurements 

which were made on 15 normal volunteers to help inform the choice of diameter, depth, flow rate 

and waveform, and are shown in table 1 and fig. 2.  

Spectral velocity waveforms from the radial or ulnar artery were quite different among the 

15 volunteers. Therefore, an averaged waveform from 15 volunteers’ spectral Doppler velocity 

outlines in both radial and ulnar arteries was adopted as the typical centreline velocity waveform in 

the experiment, which was indicated in waveform 1 in fig. 2.  

The flow mediated method has been often used to study the artery-relevant diseases in the 

arm (Agewall et al. 2001; Moens et al. 2005; Stout 2009). In the flow mediated method, the brachial 

artery was blocked for five minutes with a pressure cuff. The dynamics of the downstream flow is 

then studied from the moment when the cuff is released. Waveforms in this case will be quite non-

typical. To allow fully consideration of different waveforms of radial and ulnar arteries in clinical 

research and clinical practice, waveforms from different stages of flow mediated experiment in a 

healthy volunteer were also used in this study, as shown in waveform 2, 3 and 4 in figure 3.  

Volunteers were told not to consume any food other than water within 2 hours before the 

experiment and asked to take a rest at least five minutes to allow them to relax. The room 

temperature was about 22 ±1ºC. The experimental protocol for these measurements was reviewed 

and approved by the Research Ethics Committee of Dundee University and all volunteers gave their 

written informed consent to participate.  

The typical value for each variable was chosen. This was 10mm for vessel depth, 68° for 

beam-vessel angle, 2.60 mm for the diameter, 40 ml min-1 for the flow rate and the waveform 1 
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(Fig. 2) for the waveform. In the experiments, only one variable was altered at a time in turn while 

the others were set at their typical value. 

 

Ultrasound data acquisition and processing 

Data acquisition. A Philips HDI 5000 clinical ultrasound scanner was used to collect all the 

data from the flow phantom and volunteers. A  L12-5 transducer with B-mode frequency10 MHz 

and Doppler frequency 6 MHz was used. The diameters from each frame of the B-mode were 

averaged through several cardiac cycles.  The centreline velocity in the vessel was obtained from 

the spectral Doppler mode with the sample volume placed centrally in the vessel. In order to 

achieve the accurate measurements both for diameter and centreline velocity, the transducer was 

adjusted to get the clearest view of the vessel and the sonogram in the longitudinal orientation (Fig. 

3). The wall filter was set to low and Doppler gain was adjusted to give spectral Doppler traces with 

consistent brightness for all measurements. The sample gate size was 2.0 mm which is enough to 

cover the centreline of the vessel to get maximum velocity. The measurements were repeated six 

times with the transducer repositioned between each.  

Data processing.  The data obtained from the ultrasound machine was processed in 

MATLAB R2013b (The MathWorks, Natick, MA, USA). An in-house developed MATLAB code 

was used to read the binary files generated from the cine loop memory of the ultrasound scanner.  

The diameter of the blood vessel within the phantom was measured using the distance-intensity 

method (Blake et al. 2008). The distance-intensity method uses the intensity differences of the 

reflected B-mode signal between lumen and tissue to estimate the vessel diameter. As shown in fig. 

5, each frame of B-mode images was used to obtain vessel diameter at the pixel level by searching 

the peak points on the distance-intensity curve resulting from the strong reflection from both inner 

surfaces of blood vessel. The diameter was obtained by averaging time-varying diameter waveform 

over integers of cardiac cycle.  
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For the centreline velocity, over 10 cycles of the peak velocity waveform in Doppler 

ultrasound’s sonogram were averaged into one single cycle. The averaged diameter and one cycle 

of velocity waveform were processed as indicated in fig 1 to calculate flow rate and wall shear rate 

waveforms over one cardiac cycle. Finally the time-averaged flow rate and wall shear rate were 

calculated from their waveforms. With the estimated time-averaged flow rate and wall shear rate 

(repeated six times under each circumstance), the percentage error in form of mean ± standard 

deviation was calculated based on the true average flow rate from timed-collection and true average 

wall shear rate from equation 5.  

 

 

RESULTS 

Diameter measurement 

Figure 5 shows the diameter waveform of the blood vessel in phantom 2 over two cardiac 

cycles when the flow rate is 40 ml min-1. The vessel diameter in the phantom is not constant. It 

changes with the pulsatile flow in the vessel.  

Table 2 lists the diameters of phantom 1 to 4, measured in both static and pulsatile 

conditions. The diameters of blood vessel in phantom 1 to phantom 4 under static condition were at 

1.86(0.02) mm, 2.60(0.03) mm, 2.89(0.03) mm and 3.49(0.04) mm. The mean diameter of vessel in 

the pulsatile condition was greater than the diameter in static condition.  

 

Flow rate and wall shear rate from Womersely equations 

The Womersley equations method could estimate the time-varying waveforms of flow rate 

and wall shear rate over the cardiac cycle in the flow phantom. 

Figure 7 to Figure 11 show the error estimations of flow rate and wall shear rate with 

different vessel depths, beam-vessel angles, flow rates, vessel diameters and flow waveforms. From 

these figures, it can be seen that all results, both for flow rate and for wall shear rate, are 
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overestimated in a range of 13% to nearly 50%. In fig. 7, 9, 11, with different vessel depths, flow 

rates and flow waveforms, the overestimation errors remains at the same level, indicating that 

different vessel depths, flow rates and waveforms do not have an obvious effect on flow rate and 

wall shear rate estimations.  

However, vessel diameter and beam-angle do effect the flow rate and wall shear rate 

estimations. When the beam-vessel angle increased from 38° to 68° (Fig. 8), the overestimation 

shifted from around 14% to 35%. The overestimation was only about 13% for vessel diameter at 

1.86mm, but around 35% at 2.60 mm and 2.89 mm, going up dramatically to nearly 50% at the 

vessel diameter of 3.49 mm (Fig. 10). 

 

 

DISCUSSION 

This study used PVA-c blood vessel mimic coupled with agar-based tissue mimic in the 

phantoms. It was found that the vessel was slightly compressed into an ellipse-like shape within 

transverse plane due to a pressure generated by weight of the tissue mimic above the vessel. The 

non-circular vessel may lead to the underestimation of the vessel diameter, and may also have an 

effect on the estimation of velocity profile based on Womersley. Despite measures taken to 

minimise the non-circularity effect, including burying the vessel at only a shallow depth within 

tissue mimic, making the PVA-vessel wall thicker and filling the vessel with water while pouring 

the tissue mimic, a difference between the horizontal and vertical directions (less than 0.1 mm) 

within the cross-sectional plane of the vessel still existed. The non- circularity may have some 

effects on the estimations of flow rate and wall shear rate.  

The error in flow rate and wall shear rate ranged from 14% to 35%, depending on beam-

vessel angle from 38° to 68°. The flow rate and wall shear rate were derived based on the maximum 

velocity measured from Doppler ultrasound. The estimation errors in flow rate and wall shear rate 

in this study were consistent with the previously reported estimation error caused by the geometric 
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spectral broadening in maximum velocity (Hoskins 1996; Hoskins 1999; Steinman et al. 2001). 

Therefore, the angle-dependent maximum velocity estimation led to the corresponding errors in 

flow rate and wall shear rate estimations. In this study, 68° was chosen as the typical beam-vessel 

angle, because, in most cases, the angle was near 68° when placing the linear array transducer on 

the surface of the human wrist to which the radial and ulnar arteries are parallel. As a result, the 

flow rate and wall shear rate were obviously overestimated when studying all other variables, 

shown in fig. 7, 9, 10 and 11. As proposed in many published studies, angle corrections can be 

conducted to reduce the inaccuracies in estimating the maximum velocity due to angle-dependence 

(Hoskins 1996; Hoskins 2008), which consequently should reduce the inaccuracies of estimation in 

flow rate and wall shear rate.  

 Errors in measurements of vessel diameter have a crucial effects on the estimate of flow 

rate and wall shear rate (Hoskins et al. 2010; Vergara et al. 2010a). In this study, accurate 

measurement of the vessel diameters is very important in three areas in particular. The Womersley 

equations for deriving the velocity profile (shown in equation 1) is sensitive to the measurements of 

vessel diameter (Vergara et al. 2010b). As indicated in equation 3 and 4, the calculations of flow 

rate and wall shear rate are determined by the measurement of vessel diameter. Further, the mean 

wall shear rate calculated by equation 5 is based on the estimated vessel diameter. However, for this 

work there was no knowledge as to the true diameters of the vessels after fabrication of the 

phantom. In clinical practice, visualizing the radial and ulnar arteries with ultrasound will not be as 

easy as on the flow phantom. A high frequency transducer is necessary to measure the diameter 

accurately. Since the depth of the radial and ulnar arteries is small, attenuation in using a high 

frequency transducer will not be a problem in clinical practice. 

 The overestimation was less at flow rates above 40 ml min-1. This is explained by the 

average diameter of the blood vessel being underestimated at high flow rates. Higher flow rates 

going through the tube could increase the amplitude of vessel wall motion, leading to a higher 

velocity of blood vessel wall in radial direction. Therefore, if the B-mode frame rate was too low, it 
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may not be fast enough to capture the fast motion of the vessel wall, causing the underestimation of 

the diameter. Frame rates of 17 fps and 34 fps in B-mode were both used to measure the diameter 

during the study. We also found that the estimated diameters of vessel at the flow rate over 40 ml 

min-1 with 17 fps were smaller than the diameters measured with 34 fps. However, 34 fps was the 

upper limit frame rate at this depth for the HDI5000 scanner and may not be enough to capture the 

fast-moving vessel motion. According to equation 3 and equation 5, the underestimation of vessel 

diameter could reduce overestimation (compared to flow rate no more than 40 ml min-1) of flow rate 

and wall shear rate.  A higher frame rate should be used to capture the fast motion when measuring 

vessel diameter in B-mode if possible.  

Although a high flow rate up to 100 ml min-1 was applied within the vessel made of PVA-c 

shown in Table 2, the vessel diameter could return to its original size 2.60 ± 0.03 mm once the flow 

rate reduced. The greatest extension of the PVA-c was comfortably less than 30% in the radial 

direction (about 25%, from 2.60 mm to 3.25 mm). 

  When the flow rate was kept at 40 ml min-1 (fig. 10), the overestimation increased as the 

diameter of the vessel changed from 1.86 mm to 3.49 mm. This increase in overestimation may be 

attributed to the larger error in measurement of larger vessel diameter but another possibility is that 

the vessel diameter had an effect on the estimation of flow rate and wall shear rate when the true 

flow rate in the flow loop was kept at the same level.  

It was found the waveforms did not influence the measurement. However only single flow 

direction in the phantom was investigated and there was no reverse flow. The fact is that the reverse 

flow was found in the radial and ulnar arteries of very few volunteers. The reverse flow pattern may 

have an effect on the Womersley-based calculations.  

The same velocity profile calculated by inputting diameter and centreline velocity into 

Womersley equations was used to derive both flow rate and wall shear rate. The references for 

mean flow rate and mean wall shear rate in the phantoms were estimated based on time collected 

and Hagen–Poiseuille approach respectively. Although the references were different and unrelated, 
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the percentage errors of flow rate and wall shear rate were consistent, which suggests that the 

derived velocity profile based on Womersley equations was reliable.  

This study is the first one to validate the measurements of volumetric flow rate and wall 

shear rate in radial and ulnar arteries using a clinical ultrasound scanner with the flow phantoms. 

This Womersley equations method can be readily applied in clinical practice providing the scanner 

can provide spectral Doppler and B-mode image data(Yang et al. 2013).  

 

 

CONCLUSION 

In this study, the measurement and validation of flow rate and wall shear rate in radial and 

ulnar arteries are described based on the soundly-designed flow phantoms which mimicked these 

two arteries in depth, diameter, flow rate, flow waveform and also the beam-vessel angle when 

using the ultrasound imaging technologies. Generally, the flow rate and wall shear rate were both 

overestimated from around 13% to 50%. Beam-vessel angle and vessel diameter appeared to affect 

the estimations while vessel depth, flow rate and flow waveform did not. Overestimations of flow 

rate and wall shear rate may be caused by the overestimation of maximum velocity when using 

spectral Doppler ultrasound. In clinical practice, these overestimations can lead to 

misunderstandings when it comes to diagnosing the diseases which are relevant to the flow rate and 

wall shear rate in radial and ulnar arteries.  
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Figures. 

 

 

Fig. 1. Estimation of volumetric flow and wall shear rate wavefroms using the Womersley 

equations method. The maximum velocity waveform and the diameter are used in Womersley 

equations. The resulted velocity profile is then used to calcuate the volumetric flow and wall shear 

rate waveforms. The schematic shown is from the phantom where the flow rate is 40ml min-1 and 

the diameter is 2.89mm. 
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Fig. 2. The diagram of flow phantom 

 

 

 

Fig. 3.  Four different waveforms used in the flow phantom 
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Fig. 4. The data collecting image with ultrasound scanner 

 

 

 

Fig. 5. The distance-intensity method to measure the diameter of the vessel, the white line on the 

left picture indicating measurement position and the right picture giving the corresponding distance-

intensity. 
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Fig. 6. The pulsatile diameter over two cardiac cycles measured by distance-intensity method 

 

 

Fig. 7. The % error (mean ± SD) in measured flow rate and wall shear rate at different vessel depths 

 

 

Fig. 8. The % error (mean ± SD) in measured flow rate and wall shear rate at different beam-vessel 

angles 
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Fig. 9. The % error (mean ± SD) in measured flow rate and wall shear rate at different flow rates 

 

 

Fig. 10. The % error (mean ± SD) in measured flow rate and wall shear rate at different vessel 

diameters 
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Fig. 11. The % error (mean ± SD) in measured flow rate and wall shear rate at different flow 

waveforms 
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Tables 

Table 1.  The details of these five variables used in the flow phantoms 

variables 1 2 3 4 5 

Depth(mm) 6 8 10 12 14 

Angle(degree) 38°  48° 58° 68° ---- 

Diameter(mm) 1.86 2.6 2.89 3.49 ---- 

Flow rate(ml min-1) 20 40 60 80 100 

Waveform Waveform 1 Waveform 2 Waveform 3 Waveform 4 ---- 

 

 

 

Table 2. The diameters of blood vessels in phantoms under still condition and  

different flow rates 

Flow rate 

Phantom1 

Diameter(mm) 

mean ± SD 

Phatnom2 

Diameter(mm) 

mean ± SD 

Phantom3 

Diameter(mm) 

mean ± SD 

Phantom4 

Diameter(mm) 

mean ± SD 

0 ml min-1 1.86±0.02 2.60±0.03 2.89±0.03 3.49±0.04 

20 ml min-1  2.72±0.03   

40 ml min-1 1.99±0.04 2.89±0.03 3.00±0.03 3.70±0.02 

60 ml min-1  3.06±0.03   

80 ml min-1  3.17±0.05   

100 ml min-1  3.25±0.04   

 

 


