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Abstract

Nuclear data are the foundation of simulation and design in the nuclear industry. The

success of commercialising thermonuclear fusion will be based on a set of highly accurate

simulations used in design, optimisation and safety analyses.

This work focuses on the often overlooked, pre-processing stage of nuclear data. The e↵ect

of legacy methods in a fusion context is a concern within the community, but has never

been quantified. The sensitivity of fusion neutronics to pre-processing was determined

using a set of codes and methods developed as part of this thesis.

Legacy pre-processing methods demonstrated a di↵erence between the processed and un-

processed distributions of up to 20%. Simple Monte-Carlo radiation transport simulations

exhibited sensitivity within energy distributions for small models (< 5 mfp). Alternative

data formats did not improve simulation results su�ciently to justify their implementa-

tion. Complex, fusion specific models showed a general insensitivity to the pre-processing

when run to the current levels of statistical precision.

Future recommendations are to process all future data libraries into the cumulative tab-

ulated probability format. Improved methods are not required at this stage as the core

data libraries are incomplete and sometimes inaccurate. Only after the libraries have

improved will pre-processing become significant.
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Chapter 1

Introduction

Nuclear fusion is a solution to the current energy crisis. Not only does it promise clean

and safe energy, but it has the potential to produce su�cient energy to fuel civilisation

for many thousands of years to come [1]. The culmination of over 50 years of interna-

tional collaboration has brought fusion research to the point of constructing ITER, the

International Thermonuclear Experimental Reactor. It is expected to be the first fusion

device to achieve a net power output and will form the basis of future commercial power

stations.

The ability to harness fusion energy, in a manner which is commercially viable, is an ongo-

ing challenge. The nuclear physics behind the fusion process is well understood, and the

knowledge base of controlling the plasma is growing, but the largest contributors delaying

the demonstration of a commercially viable fusion reactor are the engineering elements.

The conditions within a fusion device of reactor scale are expected to be exceptionally

harsh. High temperatures and extreme radiation damage make the behaviour of com-

ponents unpredictable as a device of this scale has never been realised before. ITER is

one of many fusion experiments around the world designed to validate and test models

of the plasma, interactions with surrounding components, candidate materials and power

extraction. Results from these experiments will inform the designs of the next-generation

1



fusion devices. High fidelity computational modelling of nuclear processes is at the core of

all fusion experiment and reactor design. This in turn requires high quality nuclear data

and the proper treatment thereof. Many years have been spent collating and refining data

for fission applications, yet important fusion relevant data are still left deficient. This is of

great concern to the fusion and nuclear data communities, and as such there is an ongoing

e↵ort to rectify the situation. References [2–8] show a small insight into the continued

pursuit of complete and accurate data libraries for fusion neutronics.

This work focuses on the treatment of nuclear data prior to their use in radiation trans-

port simulations for fusion relevant scenarios. The current state of nuclear data and the

methods used to manipulate them are highly biased towards fission energies and materi-

als. Fusion regimes are centred around higher energies and non-standard materials, so in

many cases the data and their treatment are still lacking. The findings are not limited

to fusion, and will have consequences throughout the nuclear and high-energy particle

physics fields.

1.1 Nuclear fusion

Nuclear fusion is the process of joining light nuclei with the resulting release of thermal

energy from the reaction. The energy released corresponds to the nuclear mass di↵erence

between the fusing, and fused nuclei, i.e. the di↵erence between initial and final mass

states. The fusing nuclei must have su�cient kinetic energy to allow them to overcome

the repulsive, long-range Coulomb force, and allow the attractive, short-range strong

nuclear force to take over allowing the nuclear reaction.

1.1.1 History of nuclear fusion

Nuclear fusion experiments began in the 1930s in an e↵ort to understand the physical

process. The first tokamak was built in 1950 by the Soviet Union, which opened up the

2



potential engineering solutions to realise fusion as a power source [9]. Culham Centre

for Fusion Energy (CCFE) is the UK’s national laboratory for fusion research and has

been at the forefront of the field since its commissioning in 1965. CCFE has developed

and built the MAST (MegaAmp Spherical Tokamak) experiment and hosts JET (Joint

European Torus) on behalf of the European collaboration. JET has been in operation

since 1983 and is currently the world’s largest magnetic confinement fusion experiment. It

has undergone many upgrades and is the testbed for the ITER device, which is currently

under construction. Over 50 years have been spent attempting to achieve a net energy

output from the tokamak in order to create a commercially viable nuclear fusion reactor.

While break-even has not yet been achieved, ITER is expected to demonstrate a Q-value

1 of greater than 10. DEMO, the next step in the fusion power roadmap is expected

to demonstrate a Q-value greater than 25. A higher Q-value is needed to improve the

commercial aspect of fusion power. The larger the Q-value, the more cost-e↵ective each

unit of energy put into the device will be. Figure 1.1 shows how fusion capabilities have

improved over the last 50 years, and some of the key experiments in the journey to

commercialising nuclear fusion are shown in Table 1.1.

1The Q-value here is the factor gain in energy, i.e. the energy production minus any losses with respect
to the total energy consumption. Break-even occurs when Q=1 and Q>1 results in net power output.
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Figure 1.1: Progress of magnetic confinement fusion experiments as measured with the fusion triple
product, which is a measure of the e�ciency of confinement. Over time, fusion facilities have been able
to burn plasma at increasingly high temperatures (T ) and densities (n) for longer periods of time ⌧ in
an e↵ort to achieve the reactor level conditions for commercial viability [10, p179].
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Table 1.1: Details of key fusion experiments based on the tokamak design over the last 50 years [11, 12]

Name Date commissioned Details

T1 1950 First tokamak device, Russia
T3 1968 Highest temperatures and confinement times

reached, Russia
TFR 1973 Plasma temperatures of 2 keV, France
JET 1983 Joint European Torus, produced 1.7 MW of power

in 1991, 16 MW in 1997
TFTR 1983 Tokamak Fusion Test Reactor produced 10 MW of

power in 1993, USA
Tore Supre 1988 Longest plasma duration time of over 6 minutes in

1996, France
JT-60 1985 Highest value of fusion triple product, Japan
ITER ⇠2025 Net power output, Q = 10
DEMO ⇠2050 First fusion device to put power on to grid, Q >

25
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1.1.2 Confinement

There are three broad types of confinement for nuclear fusion, gravitational, inertial and

magnetic [13, p49]. Nuclear fusion is the process which powers the stars, the gravitational

pressure associated with the high mass produces the necessary conditions for fusion to

occur. Inertial confinement involves the compression of a solid, supercooled fuel pellet,

typically with laser beams. The evaporation of fuel from the surface of the pellet increases

the density and temperature within the core su�ciently to induce the fusion reaction.

Magnetic confinement is the basis of ITER, JET and many other fusion experiments, and

is the most developed technique with respect to commercially viable fusion reactors at this

point in time [14]. Specifically these experiments are based on the tokamak design; where

a highly charged plasma is contained within a toroidal magnetic field to prevent the direct

heat loading to the vessel walls and loss of plasma temperature. Figure 1.2 shows the

schematic of ITER. A set of D-shaped magnets provide the toroidal field lines; the poloidal

field is generated via the plasma current and works in conjunction with the outer magnets

to maintain the shape and stability of the plasma. The tokamak is relatively simple to

build given its symmetry, but it is di�cult to control the plasma behaviour for long

periods of time. An alternative to the tokamak is the stellarator. It is a toroidal device,

but with helical magnetic fields. These fields are more stable for confining a plasma, but

the largest operating example of the stellarator is the Wendelstein 7-X [15]. This design

is much more complex to construct and is still in the early stages of implementation, so

it is not a commercially viable option at present.

Magnetic fields are able to control the behaviour of the highly charged plasma, but the

uncharged photons and neutrons produced are free to escape. After leaving the plasma the

photons and neutrons interact with the surrounding materials and deposit their energy

and/or escape. The energy with which these leave the plasma is dependent on the choice

of fuel.
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Figure 1.2: Cross-section through the ITER tokamak design. Plasma is contained within the D-shaped
vessel with a combination of poloidal field (central solenoid and PF1-6) and toroidal field (TF) coils [16,
p10].

1.1.3 Fuels

The fuel selection is based on a balance between interaction Q-values, fusion tempera-

tures, abundances, and confinement parameters required to achieve net power out. The

interaction Q-value is determined by the nuclear mass di↵erence between the fusing and

fused nuclei. Figure 1.3 shows the binding energy per nucleon with respect to atomic

mass. In general, isotopes with an atomic mass below 56Fe will produce energy when

fused due to the mass di↵erence.
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Figure 1.3: Average binding energy per nucleon with respect to atomic mass. Low mass nuclei of
interest to fusion are highlighted in red. Up to 56Fe, energy can be produced from fusing nuclei. Past
this point, energy can be produced from fission.

Higher atomic masses require a higher temperature due to the larger number of protons

within the nucleus, hence increasing the Coulomb repulsion factor. Low charge, and

typically low mass, nuclei require a lower temperature to achieve fusion. The isotopes

of hydrogen are the most practical options in terms of producing a fusion reactor. The

two main candidates are deuterium-deuterium (D-D) or deuterium-tritium (D-T). Their

reactions are given below:

2H +2 H !3 He+ n (Q = 3.3 MeV )

2H +2 H !3 H + p (Q = 4.0 MeV )

2H +3 H !4 He+ n (Q = 17.6 MeV )

D-D fusion has two pathways which are equally probable, whereas D-T fusion has only

one primary pathway, though in both cases, there will be contributions from all reaction
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channels. The high Q-value from the D-T reaction is due to the formation of the highly

stable 4He nucleus. The binding energy per nucleon is 7.1 MeV, compared to the 2.6

MeV in 3He or 2.8 MeV in 3H from the D-D reactions. The neutron producing reaction

channels result in neutron energies of 2.5 MeV and 14.1 MeV respectively.

To determine which fuel is the best choice within a commercially viable fusion reactor,

the Lawson criterion, as given in Equation 1.1.1 is used.

n⌧ >
12kT

h�viQ (1.1.1)

This equation balances plasma density, temperature and the confinement time required

for break-even. The plasma density (n) multiplied by the confinement time (⌧) must

be greater than the given function of temperature (T ) and average reaction rate h�vi.

Where � is the microscopic fusion cross-section and v is the average particle velocity [13,

p131]. The temperature must be high enough to overcome the Coulomb barrier, minus

any e↵ects from quantum tunnelling, the ion density must be high enough that su�cient

fusion reactions occur and the confinement time is a key factor in producing net power

out.

Figure 1.4 shows the fusion cross-sections of di↵erent fuels as a function of the centre-

of-mass energy. The cross-section for D-T fusion is consistently higher than that of D-D

fusion below 1 MeV, resulting in a higher probability of fusion occurring at a lower energy,

and temperature, with D-T fuel when compared to D-D fuel.
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Figure 1.4: Left figure shows the interaction cross-sections for D-T and D-D fuels as a function of
deuteron energy. Right figure shows the Bremsstrahlung losses in comparison to the power output of
D-T and D-D fusion reactions with plasma temperature. Dashed lines show the temperature at which
the fusion power output surpasses the Bremsstrahlung losses. [17, p533, p541] These plots do not show
the losses associated with the neutrons escaping the plasma.

Equation 1.1.1 does not include radiative or conduction losses, i.e. Bremsstrahlung or

neutrons leaving the plasma. It assumes that all energy produced from the fusion reaction

is deposited within the plasma. This is not the case, so for D-T plasma a minimum

temperature of 10 keV is required to overcome these losses. For D-D plasma this minimum

temperature is around 100 keV. At these temperatures, the n⌧ Lawson criterion are

1020 sm�3 (D-T) and 1022 sm�3 (D-D), i.e. the density and confinement time requirements

are two orders of magnitude lower for D-T fusion, in addition to requiring a lower overall

plasma temperature. For these reasons, D-T fuel has been selected for use in ITER.
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1.1.4 Tritium breeding

The main downfall of including tritium is the availability. It has a relatively short half-life

of 12.3 years and the latest available inventory, as of 2011, was around 20 kg. ITER is

expected to consume 0.8-1.2 kg per year of operation [18]. The predicted tritium inventory

is not su�cient to fuel ITER and future fusion experiments so it must be bred within the

device. Using the neutrons from the fusion reaction, tritium can be bred from lithium via

the two reaction channels given below:

6Li+ n !3 H +4 He (Q = 4.8 MeV )

7Li+ n !3 H +4 He+ n⇤ (Q = �2.5 MeV )

The 6Li reaction is energetically favoured, with the capture of a thermal neutron, whereas

the 7Li reaction channel is a threshold reaction and the incoming neutron must have an

energy above 2.5 MeV to initiate the reaction. The 6Li tritium breeding yield is far higher

than that from 7Li due to the di↵erences within the cross-sections, as seen in Figure 1.5.

For self-su�ciency, ITER and future devices must breed enough tritium to maintain stable

levels of fuel including any losses due to extraction e�ciency and radioactive decay. The

ability of a fusion reactor to be self sustaining is defined by the tritium breeding ratio

(TBR) and is the rate of production over the rate of burning in the plasma [21]. The

lithium is built into breeder modules which surround the plasma, as can be seen for ITER

in Figure 1.2. ITER is an experimental reactor so the predicted TBR is low, whereas

DEMO must satisfy a net TBR greater than 1. This is not possible with the one-to-one

conversion of neutrons to tritium by the 6Li reaction channel. Additional neutrons must

be created via neutron multiplication reactions in 9Be or 208Pb depending on the blanket

design. These types of engineering details will be tested within ITER.
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Figure 1.5: Cross-section data for tritium breeding candidates 6Li and 7Li with incident neutron energy.
The probability of the 6Li(n,t) reaction (red) behaves approximately as 1/

p
E or 1/v, so a lower energy

of incident neutron is preferred to maximise the tritium production. The 7Li(n,n↵) reaction (blue) is only
energetically available when the neutron is above the threshold. Above 5.0 MeV this reaction is more
productive than the 6Li channel. Data taken from the ENDF/B-VII.1 [19] and EAF-2010 [20] libraries.

Neutrons are critical to a commercially viable fusion reactor. Not only are they crucial

to tritium self-su�ciency, but neutrons are the main mechanism for heat extraction as

they are able to escape the plasma. These neutrons determine the shielding requirements

and the degree of radiation damage to vacuum vessel components. The neutron yields

expected from the D-T plasma in ITER range from 1014ns�1 up to 1021ns�1 for the various

modes of operation [22]. These neutron yields are far higher than have been seen before

in an engineering environment, so the true extent of radiation damage and activation of

components is unknown. This is another area in which ITER will be used to investigate

the lifetime of components within the reactor, and the resulting activation.
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1.2 Radiation transport for fusion

Radiation transport simulations are regularly performed to aid in the design of nuclear

facilities. Within the realms of fusion reactors, its application is multifaceted. Simulations

are used to determine the heat loading on the various components and their respective

lifetimes. It is used in shielding design, particularly around the diagnostic components,

and streaming. Other considerations are shutdown doses from photons due to neutron

activation of the vessel, tritium breeding ratios and waste management. The radiation

transport code of specific interest is MCNP (Monte-Carlo N-Particle) [23]. This is the

industry standard Monte-Carlo radiation transport code, and has a long history within

fission applications. It has more recently been applied to general-purpose scenarios, in-

cluding fusion. Figure 1.6 shows the MCNP geometry for a 40� segment of the ITER

device, which is used by CCFE and the wider fusion community for the various analyses

mentioned above.

These radiation transport codes utilise nuclear data to determine the behaviour of radi-

ation quanta within the system. These data undergo a series of processes in order for

them to be applied within the radiation transport codes. For the simulation results to

be an accurate depiction of the physical system, the data must replicate the physical

interactions of the radiation with matter. One particular stage within the data cycle is

the focus of this work; pre-processing. This is the preparation of general-purpose data

files for use in specific applications such as MCNP. This stage was designed with fission

in mind, so applying the same methods and techniques to fusion is not well validated and

is often not considered.
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Figure 1.6: MCNP model of the ITER tokamak, the symmetry of the design allows for a 40� segment
(highlighted in red) to be representative of the whole tokamak, reducing computation. Model dimensions
are 20 m radially and 25 m axially, consisting of 8500 separate cells, 212 materials and 63 isotopes.[24]

1.3 Key objectives and commercial context

The priority was to rigorously test the current processed data formats and their appli-

cability to fusion systems. This was done by first highlighting that a problem exists

with applying legacy methods to non-legacy applications. From here several computa-

tional tools were developed to determine the e↵ect of pre-processing on the simplest of

systems up to engineering relevant control cases. In addition to the currently available

pre-processed data formats, these tools allowed the investigation into alternative data for-

mats, which would not otherwise be accepted by standard radiation transport codes. The
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final stage was to determine the sensitivity of real-world simulations, which are currently

used within the fusion community, to the pre-processing of nuclear data.

Commercial viability of a thermonuclear fusion reactor is dependent on the degree to

which the uncertainty in the models and codes can be predicted, as these inform upon the

final engineering tolerances. Benchmarking, validation and uncertainty quantification are

key factors in determining the accuracy of codes and data. References [25–34] represent a

small fraction of the work carried out in these areas (in fusion neutronics and elsewhere).

This thesis has provided a framework for trialling and validating many aspects of nuclear

data. While in this instance it has specifically been applied to the pre-processing of

angular distributions for fusion neutronics, it has the potential to be utilised within many

other areas of nuclear data.

15



Chapter 2

Theory

This Chapter covers each aspect involved in the transport of neutrons within a Monte-

Carlo radiation transport code, along with the methods of quantifying di↵erences within

nuclear data. The way in which neutrons interact with matter is parameterised by nuclear

data. These data form the basis of any radiation transport code, and the manner in which

it is treated can impact upon the final simulation result.

2.1 Neutron interactions

The interactions of uncharged particles with matter are not a↵ected by the Coulomb

barrier and they are able to directly interact with a nucleus of any mass and at any

energy [35, p. 116]. The change in energy and direction of the interacting particle are

almost entirely stochastic in nature; this means that the path of any individual neutron

(or photon) is unique and cannot be predicted exactly. In principle it is known how likely

a neutron is to interact with a certain isotope, and how likely a certain interaction type

is to occur.

The interactions of neutrons within a fusion scenario have far reaching consequences, in-

cluding first wall neutron economy, heat extraction, tritium breeding and fuel e�ciency

[36, p. 19]. Table 2.1 shows the di↵erent interactions that are of importance to fusion neu-
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tronics and the candidate materials associated with each component. This work focuses

specifically on the transport of neutrons in fusion regimes, hence the following discus-

sion is limited to the interaction of fast neutrons with materials of importance to fusion

systems.

Table 2.1: Important neutron induced reactions within the area of fusion neutronics. For each area of
interest, the relevant reaction channels and candidate materials for that purpose are given. The reaction
channel shown as (n,Xn) refers to all neutron multiplication reactions and (n,abs) refers to the total of
all absorption reactions. Adapted from [36, pp. 18-19]

Purpose Reactions
Candidate
materials

First wall neutron
economy

All
Fe, Cr, Ni, Ti, V,
Mo, Nb, W

Neutron multiplication (n,Xn) Be, Pb

Neutron moderation (n,el), (n,n’) Be, B, C, O

Tritium breeding (n,Xt), (n,n’↵) Li-compounds

Shielding (n,el), (n,n’), (n,Xn), (n,abs)
B, C, O, Si, Ca,
Fe, Ba

Transmutations (n,p), (n,↵), (n,d), (n,t), (n,3He) All

Neutron dosimetry (n,�), (n,p), (n,↵), (n,n’), (n,Xn) All

Radioactivity estimates
(n,p), (n,pn), (n,np), (n,↵), (n,n↵),
(n,↵n), (n,d), (n,t), (n,3He)

All

There are two broad categories for the interaction of neutrons with matter, scattering

events and absorption events. Scattering events produce an exit neutron (or retain the

original with updated properties), which then continues to be transported within the

system. Absorption events remove the original neutron from the system, but have a

tendency to produce additional particles in the process, such as low mass nuclei, neutrons

and photons. The primary neutron energy from the D-T plasma is 14.1 MeV, many
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more interaction pathways are accessible at this energy when compared to fission type

energies around 2.0 MeV. At 14.1 MeV the interacting neutrons are above the threshold

for certain reaction types, such as inelastic scattering, charged particle production and

neutron multiplication.

2.1.1 Scattering reactions

The elastic and inelastic scattering of neutrons are of particular interest to fusion reactors

and this thesis. The high-energy (14.1 MeV) neutrons emitted from the D-T plasma are

the primary method of extracting energy from the fusion reaction via energy deposition.

The emitted neutrons interact with the surrounding vessel and, at the energy of interest,

scattering is the preferred method of interaction despite the competing reaction chan-

nels. They can undergo many sequential scattering events and are moderated within the

vessel and surroundings, depositing energy as heat. This heat must be deposited within

appropriate regions for it to be extracted. Certain components, such as the supercooled

magnets and diagnostics must be well shielded against the heating e↵ects of the plasma

and associated neutrons. Neutron scattering is important to all shielding requirements.

The uncharged nature of the neutrons mean that they have long mean free paths and the

level of shielding required is largely dependent on scattering and multiplication reactions.

Large numbers of moderated neutrons are needed to induce the necessary amount of

tritium breeding reactions for fuel self-su�ciency. Elastic and inelastic reactions are the

primary energy loss mechanisms for neutrons to reach the required energy. The tritium-

breeding capabilities of a fusion reactor are of vital importance to its commercial viability.

If the reactor over-produces tritium, storage and proliferation become an issue. If the

reactor under produces tritium, it is not possible to operate long term. The expected

tritium requirement for ITER is below 0.1 kg per day and DEMO is around 0.5 kg per

day operating at full power [37]. This far outweighs the current tritium inventory, so it
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will be bred within the reactor itself. The understanding and control of neutron energy

deposition within a reactor is fundamental to fusion engineering.

Elastic scattering, as defined by pure nuclear physics, refers to the quantum mechanical

definition of a neutron scattering from a fixed nucleus and is governed by the wave-like

properties of the neutron [38, p. 2]. In applied nuclear physics, elastic scattering is

defined in a di↵erent way. The total kinetic energy of the system is conserved, but the

nucleus is treated as a point that is able to recoil (and can exhibit thermal vibrations) post

collision. Inelastic scattering in radiation transport theory is the absorption of a neutron

by an interacting nucleus to form a compound nucleus. The nucleus then ejects a neutron

minus the interaction threshold energy in the centre-of-mass frame. At high energies,

multiple neutrons may be emitted after the interaction. In the case of radiation transport

these are also considered to be inelastic scattering interactions [39, p. 7]. Each discrete

level of excitation within the compound nucleus is considered as a separate interaction

type.

In applied nuclear physics, the emission angle (and hence neutron energy after elastic

scatter) is determined from probability distributions. These distributions correspond to

the polar scattering angle, ✓, but as these are three-dimensional problems the azimuthal

angle, !, needs to be included. This is treated as a canonical distribution between 0 and

2⇡ radians, i.e. isotropic in !. The three-dimensional scattering transform is shown in

Equations 2.1.1 to 2.1.3 [39, p. 341]. Translating the incoming neutron vector ~⌦ into

~⌦0 through polar angle ✓ and azimuthal angle ! can be seen schematically in Figure 2.1.

Typically the polar scattering component is represented by the scattering cosine, µ, where

µ = cos ✓.
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Figure 2.1: A particle with initial direction ~⌦ parallel to the z-axis, is transformed into the new
direction ~⌦0 after a scattering event has occurred at the origin. It is transformed through polar angle ✓
and azimuthal angle !. Note that this is the only case where Equations 2.1.1 to 2.1.3 do not hold. In this
instance the transformation is performed with respect to the y-axis within radiation transport codes.

Elastic scatter

When a neutron interacts with matter via elastic scattering, the neutron collides with a

nucleus and subsequently undergoes a change in energy and momentum; the lost energy

is transferred to the nucleus as it recoils. The total energy of the two-body system is

conserved, if the nucleus were fixed there would be no change in the neutron energy and

an isotropic scattering distribution would result [38, p. 4].

The kinematics of the elastic scatter of a neutron from a nucleus varies based on the energy

of the interacting neutron. At low energies (4 eV and below [23, p. 2-54]) the thermal
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motion of the nucleus is significant with respect to the incoming neutron energy and

must be accounted for [39, p. 342]. At higher energies the thermal motion is considered

negligible and the interacting nucleus is considered at-rest in the lab frame. The energy

loss of the neutron is related to the exit angle in the centre-of-mass frame. Low energy

and low mass scattering tends to be relatively isotropic, and becomes more anisotropic

with the increase of energy and/or mass. Figure 2.2 shows the schematics of the reaction

in both lab and centre-of-mass frames.

Figure 2.2: Schematic diagram of the elastic scattering kinematics (adapted from [35, p. 427]) in the lab
(blue) and centre-of-mass (red) frame. The solid lines represent the pre-collision particle paths, and the
dashed lines represent the post-collision paths. Note that the pre-collision path of the incident particle
in the centre-of-mass frame is obscured by the pre-collision path in the lab frame. The masses of the
incident (scattered) and target (recoil) particles are given by m1 and m2. The lab frame velocities of the
incident particle are v0 and v1 pre- and post-collision, and v2 is the recoil velocity post-collision. Scatter
and recoil angles are ⇥1 and ⇥2 in the lab frame, and the scattered angle in the centre-of-mass frame is
given by ✓ = (⇡2 �⇥).
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Based on energy and momentum conservation laws, the exit energy of the neutron (E
out

)

is given by Equation 2.1.4, where A is the mass (in amu) of the target nucleus, E
in

is the

incident neutron energy and ✓
cm

is the scattering angle in the centre-of-mass frame [40,

p. 66].

E
out

= E
in


1 + A2 + 2A cos ✓

cm

(1 + A)2

�
(2.1.4)

The outgoing angle of the neutron in the centre-of-mass frame is governed by a set of

energy dependent probability distributions. The maximum energy loss occurs with a ⇡

radian scattering angle (complete backscatter), and a minimum when the angle is zero

(forward scatter). The equation for maximum energy loss simplifies to Equation 2.1.5.

E
out

= E
in

(A� 1)2

(A+ 1)2
= ↵E

in

(2.1.5)

Lower mass nuclei are better at moderating neutrons as a higher proportion of energy

is deposited per interaction when compared to higher mass nuclei. For example, a 1.0

MeV neutron elastically scattering from a 12C nucleus has a maximum energy loss of

0.3 MeV at ✓
cm

= ⇡ radians, resulting in a 0.7 MeV neutron; whereas the same original

neutron scattering from 56Fe has a maximum energy loss of 0.1 MeV. Figure 2.3 shows

the fractional energy loss with mass of the interacting nucleus.
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Figure 2.3: Fractional energy loss �E

E

with respect to atomic mass on a log scale. Each line corresponds
to the energy loss at scattering angles 0 6 ✓ 6 ⇡ radians. For 1H, complete energy loss of the neutron
occurs at ✓ = ⇡ radians. The neutron will retain some energy with all other nuclides at complete back
scatter. For all masses, a zero scattering angle corresponds to zero energy loss.

Inelastic scatter

Inelastic scatter is a threshold reaction, where the incident neutron is captured by the

target nucleus. This forms a compound nucleus in an unstable, excited state, which

subsequently decays via the emission of at least one neutron and high-energy photon [41,

p. 19]. These interactions only occur when the neutron is above the reaction Q-value and

the energy loss of the neutron is directly related. For the case of the first inelastic level,

the Q-value is equal to the first excited state within the nucleus. In general the neutron

imparts su�cient energy to the nucleus that the constituent nucleons are raised in energy

to the nth excitation and de-excitation follows via particle and photon emission. Where

more than one neutron is emitted from the interaction, i.e. neutron multiplication, the
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Q-value is much higher, and hence are only available to high-energy neutrons.

The emission energy is independent of the angle, but the exit angle for each emitted

neutron is governed by probability distributions, as with elastic scatters. For the case of

non-multiplying inelastic scatters the lab-frame energy, post collision E
out

is calculated

with Equation 2.1.6. Where A is the atomic mass of the target nucleus, E
in

is the incident

neutron energy and Q is the energy threshold for the reaction [40, p. 67].

E
out

=

✓
A

A+ 1

◆2 ✓
E

in

� A+ 1

A
Q

◆
(2.1.6)

For nuclides with a high atomic mass, inelastic scattering is the most e�cient reaction for

energy loss. For example, a 14.1 MeV neutron incident on 56Fe, inelastically scattering to

the first level can reduce the neutron energy to 12.8 MeV (91% of the original), whereas

a maximum energy loss via elastic scatter results in neutron energy of 13.1 MeV (93%).

Figure 2.4 shows the fractional energy loss for multiple, identical and consecutive scatters

in 56Fe.
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Figure 2.4: Comparison of energy loss via ⇡ radian elastic (red) and first level inelastic (blue) scattering
for consecutive events in 56Fe. Initial neutron energy is 14.1 MeV. Top figure shows the resulting neutron
energy and the bottom shows the fractional energy loss per scatter for 0 to 10 scatters. Assuming complete
back scatter for elastic events (maximum energy loss) a fixed 7% is lost per scatter. First level inelastic
scatter results in a fixed energy loss of 847 keV per event. In this case, the inelastic scattering is more
e�cient at reducing the neutron energy.

2.1.2 Absorption reactions

An absorption reaction involves the loss of the original neutron to the interacting nucleus

which is removed from the system. The two main mechanisms of neutron absorption

are radiative capture and charged particle emission. For radiative capture, the incoming

neutron is absorbed by the target nucleus. The now excited nucleus (plus one neutron)

decays to the ground state via gamma emission (and possibly undergoes �� emission).

Charged particle emission reactions occur when the compound nucleus is su�ciently ex-

cited that it ejects a secondary particle. These secondary particles are typically low mass,

such as hydrogen and helium nuclei. There are three main considerations for absorption or

capture reactions within fusion scenarios; tritium breeding, transmutation and activation,

and radiation damage.
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The candidate breeder material for current reactor designs is lithium. Both 6Li and

7Li are capable of producing a triton after the capture of a neutron. The 6Li reaction

has an a�nity for lower energy neutrons, and is more productive; whereas 7Li produces

the triton as part of a threshold reaction and removes energy from the system. (The

reaction channels and cross-sections are given in Section 1.1.4, Figure 1.5). The 6Li

reaction channel absorbs the incoming neutron, removing it from the system. This one-

for-one conversion would result in a tritium-breeding ratio (TBR) below 1 due to losses

in the system 1. DEMO is required to have a minimum tritium-breeding ratio of 1.1

[37]. Neutron multiplication (inelastic scatter) is necessary to achieve a satisfactory TBR.

The accuracy with which tritium production is achieved and controlled can make the

di↵erence between a self-sustaining reactor and one that cannot maintain a stable level of

fuel. Tritium self-su�ciency is an absolute requirement for a commercially viable fusion

reactor.

When a neutron is captured to form a compound nucleus, the instability causes the nucleus

to decay in an e↵ort to form a stable state. For radiative capture de-excitation occurs

via the emission of a high-energy photon, and secondary particle emission reactions can

produce many di↵erent low-mass nuclei. Secondary particle emission changes the atomic

number of the nuclide and hence it is transmuted. This new nuclide will have di↵erent

properties from the original with respect to interaction and mechanical behaviours. This

process of neutron absorption and consecutive decay contributes to the level of radiation

within the system, particularly after shutdown. In a reactor scenario, the degree to

which activation has occurred will determine the time required, after shutdown, before

any repairs or maintenance can take place. Activation a↵ects the shielding design of a

reactor; a large volume of shielding will maintain safe radiation levels whilst the reactor is

on-load, but will produce more secondary radiation as a result of activation than a smaller

1A tritium-breeding ratio below 1 means that the device is consuming more tritium than is being
produced, a value greater than 1 means that more tritium is being produced than being consumed
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volume. The design is carefully balanced between on-load and shutdown conditions.

Figure 2.5 shows the main contributions to dose and activity from structural steel after

2.3 years of simulated irradiation in the DEMO fusion reactor [42].

Figure 2.5: Simulated dose (left) and activity (right) profiles of the Eurofer steel after shutdown.
Irradiation profiles are equivalent to those expected in DEMO over 2.3 years of operation. Immediately
after shutdown the largest contributor to dose is 56Mn, the largest contributor to activity is 55Fe [42].

In the same way that neutron capture and subsequent decay of the compound nucleus

causes activation, it also produces irreversible radiation damage. The absorption and

decay results in a change in proton number, and hence is changed to a di↵erent element

than the original. This transmutation a↵ects the mechanical and chemical properties of

the material, and when considering structural components, can be a big concern. One

example of this is tungsten. It is transmuted into osmium and rhenium at high tempera-

tures, changing a ductile material into a brittle one [43]. In addition to the transmutation

of isotopes, secondary particle emission can cause gas production. When low mass nuclei,

such as hydrogen and helium, are produced from a reaction, they tend to form neutral

gas atoms and collect together along grain boundaries to form pockets of gas [44]. These

can cause physical distortions to the components, such as swelling and cracking, again

compromising the mechanical properties of the material.

All structural materials within ITER are expected to last the lifetime of the reactor, but
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plasma facing components will have much shorter in-situ lifetimes due to the high neutron

fluxes and will require periodic replacement. The useful lifetime of a component takes

into account how many damaging radiation events are allowed before the structural prop-

erties of the material are compromised. Lifetime estimates are based on computational

simulations, but the behaviour of materials at the expected temperatures and neutron

fluxes is relatively unknown. Estimates will improve with the construction of IFMIF (In-

ternational Fusion Materials Testing Facility) [45]. This facility is designed to deliver a

lifetime equivalent neutron flux to test components, within much shorter time periods.

A better understanding of the materials behaviour will improve the overall design and

estimates of component lifetimes within a fusion reactor.

2.1.3 Interaction cross-sections

Interaction cross-sections are the key quantities used within radiation transport to deter-

mine how particles behave. The microscopic cross-section, �, can be considered as the

e↵ective cross-sectional area of the target nucleus as seen by the incident particle and has

units of barns; where 1 barn = 10�24cm2. This is the probability with which the particle

will interact with the target nuclei and is shown schematically in Figure 2.6.
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Figure 2.6: Schematic representation of neutron interaction cross-section, �. A beam of neutrons, of den-
sity n (neutrons cm�3), velocity v (cm s�1) and area A (cm2), is incident on a sample of thickness dx (cm)
and number density N

D

(nuclei cm�3). The incident neutron flux � is given by nv (neutrons cm�2 s�1).
As the neutrons interact within the target, they are removed from the beam, resulting in an unreacted
beam density n0. The unreacted beam is related to the incoming beam density by n

0

n

= exp(��N
D

x)
(Equation 2.1.8), where � is the interaction probability, or microscopic cross-section in units of barns.

For an incoming particle flux � which is reduced to �� d� through thickness dx of x, the

fractional change in flux is given by Equation 2.1.7 [38, p. 25]. Where N
D

is the number

density of the target2.

d�

�
= ��N

D

dx (2.1.7)

Integrating Equation 2.1.7 gives Equation 2.1.8, i.e. the unreacted particle flux reduces

exponentially with target thickness, where �0 and �
x

are the initial and final fluxes, and

x is the target thickness.

�
x

�0
= exp (��N

D

x) = exp (�⌃x) (2.1.8)

2The number density of a target is calculated by ⇢NA

mA
, where ⇢ (g cm�3) is the target mass density,

N
A

(mol�1) is Avagadro’s constant and m
A

(g mol�1) is the atomic mass of the target nuclei.
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The microscopic cross-section is dependent only on the incident particle energy and nu-

clide; it is independent of the global target properties. The macroscopic cross-section

⌃ (cm�1) is the interaction probability per unit track length and is dependent on the

target properties. This is calculated by multiplying the number density, N
D

, by the mi-

croscopic cross-section �. The reciprocal of the macroscopic cross-section provides the

mean free path of neutrons within the target; with reference to Equation 2.1.8, this is

the distance over which the intensity or particle flux is reduced by a factor of e. The

reaction rate, R (s�1), can be calculated by multiplying the incoming particle flux by the

macroscopic cross-section and the volume of interaction, i.e. R = �⌃V .
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The preceding discussion relates to the total interaction cross-section. This includes all

individual scattering and absorption events which remove the particles from the phase

space. Each of these interactions have a distinct microscopic cross-section, and the total

is determined from the sum of each individual macroscopic cross-section. For a sense of

the possible variation within the cross-sections, Figure 2.7 shows the energy dependence

of the total, elastic and inelastic microscopic cross-sections with energy in 56Fe. The

total microscopic interaction cross-section varies by approximately 5 orders of magnitude

within the energy range of 1 eV to 20 MeV (7 orders of magnitude).

Figure 2.7: Interaction cross-sections as a function of incident neutron energy, for the total, elastic and
inelastic reaction channels in 56Fe. Three main regimes exist in most interaction cross-sections; at low
energy the cross-section varies approximately as 1/

p
E or 1/v. With increasing energy, more reaction

channels become energetically available causing a deviation from this trend. The resonance region is
characterised by the sharp peaks and troughs, in this example within the region of 1 keV to 2 MeV.
Their locations correspond to the energy levels within the compound nucleus. At higher energies, the
resonances occur more frequently and can no longer be resolved; hence this is the unresolved resonance
region.
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Di↵erential and double-di↵erential cross-sections

Where an interaction results in the emission of secondary particles, the properties with

which they are produced are determined by the di↵erential, and double-di↵erential cross-

sections. The di↵erential cross-section can be with respect to energy or angle, it is the

probability with which the exiting particle will have an energy E 0 or solid angle ⌦ in the

centre-of-mass frame, as denoted by d�

dE

0 and
d�

d⌦ . The units of di↵erential cross-section are

b sr�1, or b eV �1. The double-di↵erential cross-section is the probability that the exiting

particle will have a specific energy and angle, and is written d

2
�

d⌦dE

0 or d

2
�

dE

0
d⌦ , in units of

b sr�1 eV �1. The solid angle, d⌦, is subtended by sin ✓d✓d!, where ✓ is the polar angle

and ! is the azimuthal angle. For scattering interactions, the system is symmetric in

!. Figure 2.8 shows the variation in polar angle distributions for di↵erent mass targets,

energies and reaction channels.

Figure 2.8: Di↵erential probability distributions with respect to the scattering cosine, µ, in the centre-
of-mass frame. Data are shown for the natC(n,el), 56Fe(n,el) and 56Fe(n,n1⇤) reaction channels. Dashed
lines represent the lower energy, 2.0 MeV, distributions, and the solid lines represent the higher energy,
14.1 MeV, distributions. For the scatter of neutrons, low energy and low mass nuclei tend to have closely
isotropic systems with respect to scattering cosine, when compared to high energies and masses the level
of anisotropy increases.
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2.1.4 Neutron transport equation

The transport of radiation within a certain region of phase space can be described by

the neutron transport equation. This is a derivative of the Boltzmann transport equation

[46], which is a general form for all radiation, both charged and uncharged. Setting the

electromagnetic terms to zero results in the uncharged transport equation. All versions of

the Boltzmann transport equation are conservation statements; they describe the net flow

of radiation quanta through an element of phase space by quantifying the production and

loss within that region. The phase space is defined within 7 dimensions, three in space,

two in direction and one each in energy and time. This equates to the rate of change of

neutrons within a small volume element dV , with energy dE about E and direction d~⌦

about ~⌦. Figure 2.9 shows this di↵erential phase space element schematically. The time

dependent neutron density within this element is represented by n(~r, E, ~⌦, t)dV dEd~⌦,

where n(~r, E, ~⌦, t) is the number of neutrons per unit time, t, at position ~r.

Figure 2.9: Schematic for the di↵erential element of phase space dV dEd~⌦ used within the neutron
transport equation. The volume element, dV is three-dimensional, the directional element, d~⌦ is two-
dimensional with respect to polar and azimuthal angles, and the energy element dE. Adapted from [47,
p. 440]
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Neutrons within this di↵erential element can be introduced via multiple mechanisms; an

internal source within dV producing neutrons with energy dE about E and direction d~⌦

about ~⌦, neutrons can flow into element dV from the surroundings with energy dE about

dE and direction d~⌦ about ~⌦, and finally neutrons can scatter within dV into the energy

and directional ranges.

Neutrons within this di↵erential element can be lost by absorption, i.e. the neutron un-

dergoes a capture reaction that removes it from the system, flowing out of element dV and

scattering out of the volume, energy or direction ranges. By balancing these production

and loss components, the rate of change of neutrons is defined as @

@t

n(~r, E, ~⌦, t)dV dEd~⌦.

All neutrons must be accounted for within the di↵erential phase space element to pro-

vide continuity. The time-dependent, integro-di↵erential form of the neutron transport

equation is given in Equation 2.1.9.

1

v

@

@t
�(~r, E, ~⌦, t) +r.~⌦�(~r, E, ~⌦, t) + ⌃

total

(E)�(~r, E, ~⌦, t)

=

4⇡Z

0

d~⌦0
1Z

0

⌃
scatter

(E 0 ! E, ~⌦0 ! ~⌦)�(~r, E 0, ~⌦0, t)dE 0 + S(~r, E, ~⌦, t) (2.1.9)

The neutron flux within element dV dEd~⌦, is represented by �(~r, E, ~⌦, t). The first term

is the balancing component for the rate of change of neutron flux within the di↵erential

element, where v is the neutron speed and is proportional to
p
E. The second term is

defined as the streaming term, and is the net flow of neutrons through the phase space.

The third term is the loss of neutrons via interaction, this includes both scattering and

absorption reactions, where ⌃
total

is the total macroscopic interaction cross-section. The

fourth term corresponds to the in-scattering of neutrons from the surrounding regions,

where ⌃
scatter

(E 0 ! E, ~⌦0 ! ~⌦) is the macroscopic, double-di↵erential scattering cross

section from E 0 and ~⌦0 into the energy and direction of interest. This is integrated over
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all possible incoming directions and energies. The final term is the source term for any

neutron production localised within the region. All terms are given in units of particles

per unit time.

2.2 Nuclear data

The neutron transport equation uses the macroscopic cross-sections and di↵erential cross-

sections to determine the probabilities with which each event will occur. These cross-

sections are represented by nuclear data. These are the parameters used to describe the

underlying physics of an engineering relevant problem. Within the scope of radiation

transport simulations, the interaction cross-section data (with di↵erential and double

di↵erential components) are included for each nuclide within a defined problem geometry.

These are the basis of calculations to determine global parameters; for fusion these could

be shut-down dose rates, tritium breeding ratios or shielding requirements. The quality

and reliability of these global parameters are intimately linked to the nature of the input

data; i.e. if these data do not properly represent the underlying physics, it is not possible

to reliably predict the required engineering constraints. The discretisation introduced

by pre-processing, or errors within the original evaluation contribute to this reduction of

physical likeness. To design a commercially viable fusion reactor, the ability to quantify

and minimise the errors within the nuclear data is vital.

Monte-Carlo based radiation transport results are typically quoted with a statistical error

only; this makes the assumption that the underlying data and models are exact replica-

tions of the physical interactions. If this is not the case, the Monte-Carlo calculations are

able to converge to a very high precision on a solution given su�cient histories, but this

does not equate to accuracy. The data are subject to measurement and evaluation errors,

and pre-processing discretisation, so all results should be quoted with an error that is

sympathetic to these other sources in addition to the statistical component. Given the
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multiple sources of error, this can be di�cult to quantify. The method most widely used

within the nuclear industry is the benchmarking of simulation results against physical

experiments. There are a set of fusion specific, neutronics benchmarks within SINBAD

(Shielding and Integral Benchmark Archive and Database) [48]. These benchmarks are

quality checked, but many of these experiments are outdated and are missing information

concerning experimental conditions and errors, so are limited in their applicability.

2.2.1 Nuclear data cycle

The data that are input to the radiation transport codes di↵er significantly from indi-

vidual experimental measurements. For example, this could be the measurement of the

total interaction cross-section at a single energy. Radiation transport codes require a full

complement of data, i.e. they must cover the entire phase space of the application in

materials, reaction channels, energy and angle. Evaluation is used to ensure the entire

phase-space is covered, and when applied within a radiation transport system, informs

the next iteration of experimental measurements in the areas most lacking. The cyclical

nature of nuclear data can be seen in Figure 2.10. The little acknowledged pre-processing

step is the focus of this work.

Figure 2.10: The nuclear data cycle, from experimental measurement through to application. For each
iteration, the needs of the application determines the next set of experimental measurements. Each of
the steps are described in the main text, Section 2.2.1.
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Experimental measurement

The measurement technique depends on many di↵erent factors, the energy of the neutrons,

quantity of interest and the availability of experimental facilities. Certain properties such

as the individual reaction channel cross-sections, and di↵erential and double di↵erential

components are more di�cult to measure than integral quantities. When applied to

a radiation transport problem, high quality experimental data are the grounding for a

trustworthy simulation result. For each published measurement, the data are added to

the EXFOR (EXchange FORmat) database with bibliographic and experimental details

[49]. This database is managed by the NRDC (international network of Nuclear Reaction

Data Centres) and is accessible internationally to encourage the sharing of data. The

quality of the measurements are variable and they are sometimes incomplete; for example

there could be uncertainty information missing, as is common with legacy data. There

are also cases where conflicting information exists as seen in Figure 2.11. The measured

values of the inelastic cross-section between 10 MeV and 20 MeV in 56Fe are shown with

the evaluated data.
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Figure 2.11: For the inelastic scatter of neutrons from 56Fe cross-section data are shown within the
range of 10-20 MeV. The individual points are taken from the EXFOR database and are from separate
experiments. Where the points are equal in energy, none match within experimental errors and very
little of the energy range is populated with experimental data. The line shows the evaluated cross-section
data, taken from the ENDF/B.VII.1 library [19], this covers the entire energy range, though only two of
the data points agree with the evaluation.

Evaluation

The details of this process are dependent on the evaluating authority, but the overall flow

is generalised as a multi-step process for each nuclide. The evaluators determine which

experimental data to include within the evaluation from EXFOR. Usually each authority

has preferred sources, particularly when conflicting or incomplete information exists, as

seen in Figure 2.11. These measured physical parameters are combined with well-known

nuclear models in order to extract the fitted parameters, which allow for the extrapolation

and interpolation over the entire range.

The precision and accuracy with which a measurement is made are crucial to the cal-

culation of the fitted parameters. The degree to which the experimental data fit with

the nuclear theory is quantified and recorded within covariance matrices. These matrices

are now being included within the evaluation wherever possible, but there is no standard
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format so the usefulness varies. The parameterisation of the experimental measurements,

followed by the reduction to a tabulated format, is characterised as an evaluation [50,

p. 2]. Each evaluation needs to contain data covering the entire range of the intended

application, this usually covers energy from 10�5 eV to 20 MeV, and sometimes higher,

in fusion applications. Any angular data must cover the full ⇡ radian range of exit an-

gles. If the necessary experimental data are unavailable, the evaluator must rely on the

systematics and nuclear models to provide the necessary information. The discrete exper-

imental data points are used in conjunction with a nuclear model code, such as TALYS

[51] to populate this phase space with tabulated data points and appropriate interpolation

laws. The resulting parameters are output to the generalised ENDF-6 format (Evaluated

Nuclear Data File)[50]. This is the standard method of nuclear data presentation for com-

patibility between authorities (Section 3.1 describes the ENDF format in detail). Each

evaluation group packages the individual nuclides together to form libraries; the libraries

typically used for fusion neutronics are listed in Table 2.2.

Table 2.2: List of fusion relevant, evaluated nuclear data libraries and their respective authorities [50,
p. 5]

Library Authority/author Newest release

ENDF/B United States Evaluated Nuclear Data File ENDF/B-VII.1 (2011)
JEFF NEA Joint Evaluated Fission and Fusion File (for-

merly JEF)
JEFF-3.2 (2014)

TENDL Joint evaluation (IAEA, NRG, PSI), produced
from TALYS nuclear model code

TENDL-2015 (2016)

FENDL IAEA Fusion Evaluated Nuclear Data Library
(ENDF/B + TENDL)

FENDL-3.1b (2015)

Pre-processing

As this is the main focus of this thesis, the pre-processing mechanisms and codes are

described in detail in Section 2.2.2 and here the discussion is limited to the place of

pre-processing within the nuclear-data cycle. The general purpose ENDF format is not
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directly compatible with the majority of radiation transport codes; thus the data file

must be processed into an application specific format. MCNP [23], Serpent [52] and

FLUKA [53] require ACE format data (A Compact ENDF). These contain the inter-

action cross-section data, with resonances Doppler broadened to the set temperature,

and any di↵erential/double-di↵erential components associated with the di↵erent reaction

channels. The ENDF files are processed using a code such as NJOY [54] or PREPRO

[55]; these codes use a series of modules to perform the necessary processing to create

MCNP/Serpent/FLUKA compatible files.

Benchmarking

Benchmarking simulation data against physical experiments is used to verify the validity

of the data libraries and measure the extent to which they can be applied. Experimental

set-ups are converted into equivalent computational models, which replicate the physical

geometry and source. Data libraries are then passed to this model and the simulation

output data are compared to the original experimental measurements. If the two results

di↵er significantly, the data are not considered suitable for that application. Databases

of these experiments and their respective models have been compiled over many years, in

addition to their relative qualities as a benchmark. The experiments are limited in scope,

i.e. there are not su�cient benchmark experiments to cover the full range of applications

so it is not possible to fully predict the e↵ect of the data in every scenario. For fusion,

the benchmarks are predominantly shielding experiments as given in SINBAD [48]. As

the field continues to progress it is hoped that a broader range of fusion benchmarks will

be produced.
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Application

Once data files and libraries have successfully passed through the previous stages of the

nuclear data cycle, they are considered suitable for use in applications. Typical fusion

simulations include, but are not limited to, shielding, shut down doses, tritium-breeding

and activation analyses. The use of the libraries in these applications informs the needs

for the next iteration of the nuclear data cycle and future experimental campaigns.

2.2.2 Pre-processing

Within the context of the nuclear data cycle, radiation transport codes, such as MCNP,

cannot accept the general purpose ENDF file without the appropriate conversion to ACE

format. The ENDF files are created with all available information associated with the

evaluation; not all of this is used directly for transport, while other parts are not in

the correct format to be compatible with the code. The pre-processing step removes all

extraneous data not directly required for the simulation and converts the remaining data

into the accepted format. NJOY is the industry standard code for pre-processing data for

MCNP via a series of individual modules. The first step is to produce a PENDF (Point-

wise ENDF) containing the cross-section data for all reaction channels, whilst leaving the

remainder of the file untouched. Some radiation transport codes, such as Tripoli [56],

accept data in the PENDF format, subject to its own internal pre-processing. Figure

2.12 shows a typical module flow to produce the PENDF and ACE files. The PENDF

production is the first stage of the two-step process to create the ACE; the second stage

combines the PENDF with the processed di↵erential and double di↵erential data.
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Figure 2.12: Module flow for NJOY to produce the ACE files for use in MCNP. The top chain of modules
produces the PENDF file from one NJOY run, this is then passed, along with the original ENDF, to the
ACER module as part of the second NJOY run. The ACER module is used twice; once to process the
file and again to check for consistency using VIEWR. The descriptions of each of the modules can be
found in Table 2.3. The ACER module highlighted in red is the main consideration for this work.

With reference to Figure 2.12, the first NJOY run reads in the ASCII ENDF file and

converts it to binary with the MODER module (not shown). The description of each

module used in the production of the PENDF is given in Table 2.3.

Table 2.3: Description of NJOY modules used within ENDF to PENDF conversion [54, 57]

Module Description

RECONR
Creates a common energy grid, superimposes resonances and
sums individual cross-sections to ensure that the totals are
the exactly the sum of its parts

BROADR
Doppler broadening of the resonances at a set of user input
temperatures

UNRESR
Calculates the e↵ective cross-sections in the unresolved
resonance region

THERMR
Thermal range cross-sections are calculated for coherent and
incoherent, and free and bound scatters

HEATR
Produces the cross-section data associated with nuclear
heating and radiation damage

PURR Produces probability tables in the unresolved resonance region

GASPR
Produces point-wise cross-section data for the gas production
reaction channels

VIEWR Produce a set of plots to visually check the data
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The cross-sections within the ENDF file are evaluated on a fine energy grid with resonances

superimposed and Doppler broadened at the required temperature. Cross-sections in the

unresolved region and thermal transport parameters are calculated. Nuclear heating,

radiation damage and gas production are evaluated on a point-wise energy grid. Final

visual checks can be made by inspecting the outputs from the VIEWR module.

While the resulting PENDF from these modules can be accepted by some codes at this

point, NJOY must be run a second time to produce MCNP compatible files. The PENDF

and the original ENDF are converted to binary with the MODER module, before being

passed to the ACER module. For the sake of computational e�ciency, the neutron and

photon data within the PENDF and ENDF need to be further processed. For cross-section

data, the linearly interpolated, point-wise data produced by RECONR and BROADR are

used, thermal data are taken from the THERMR output and the unresolved probability

tables are added from the PURR module.

Di↵erential cross-section distributions, such as for two-body interactions, are represented

by one of two formats within the ENDF: as a set of Legendre coe�cients or as tabulated

data points, with a given interpolation law. For the case of elastic and discrete level

inelastic scattering, the distributions are always given in the centre-of-mass frame and

tend to be represented by Legendre coe�cients. This provides a continuous probability

distribution over the entire angle and/or energy phase space. However, this format is

unacceptable for MCNP and must be discretised to a form that is more computationally

e�cient. The two options are the legacy, 32 equal-probability histogram and the more

recent, tabulated cumulative probability distribution with linear interpolation. Figure

2.13 shows an example of how the original form is represented with the two formats. The

practicalities and methods of producing these data formats are seen in Sections 3.2 and

3.3.

43



Figure 2.13: Plot shows the elastic scattering probability distributions for 56Fe at 14.1 MeV, as a
function of scattering cosine µ. The original, functional data (F (µ)) is relatively well represented by the
tabulated data (T (µ)), but is crudely discretised by the 32 equal-probability histogram (H(µ)). The inset
shows the forward biased section of the distribution on a linear scale, a step-function from the histogram
data overlays the functional data.

The legacy 32 equal-probability histogram format was created at a time when computa-

tional resources were scarce and e�ciency was the key consideration for data formatting.

Fission di↵erential distributions are not badly a↵ected by the application of the legacy

method, as this is the regime for which it was designed. When this method is applied

to higher energy regimes, such as for fusion, the distributions can be severely degraded.

Tabulated cumulative probability distributions are slower to sample and tend to produce

larger data files. Computational resources are more freely available and the additional

runtime remains a consideration, but is not a limiting factor. After being checked for con-

sistency with a second pass through ACER, each individual ACE file is combined within

a library for use in MCNP, or similar.
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The impact of pre-processing the angular component of di↵erential and double-di↵erential

distributions has never truly been quantified. The following work demonstrates the prob-

lems associated with using legacy formats with non-legacy or non-standard applications,

in addition to determining the sensitivity of full-scale Monte-Carlo radiation transport

problems to these formats.

2.3 Accuracy quantification

To discuss the source and scale of errors within a radiation transport simulation, it is

first necessary to consider the di↵erence between accuracy and precision, specifically with

respect to the Monte-Carlo approach. When a Monte-Carlo simulation is performed, the

problem converges to the expectation value of the system with respect to the number of

source histories. The precision of this result refers to the statistical spread of sampled

values which have contributed to the final answer. With the Monte-Carlo method it is

possible to achieve an arbitrary level of precision; the variance around the expectation

value can be reduced to negligible levels by increasing the particle population within the

model. The accuracy of this result is defined as the closeness of the expectation value

to the true value. The precision of a simulation result can be improved via the methods

described in Section 2.4.2, but to properly quantify the accuracy of that result is not as

straightforward.

2.3.1 The nature of errors

Factors which a↵ect the accuracy of a simulation result can be separated into three broad

categories: code, model and human. All three of these categories contribute to the total

systematic error, and their e↵ect on the simulation result is not always obvious.

Code based factors include how the physics in the system is modelled, the uncertainties

and quality of the input nuclear data and any bugs within the source code. The model
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based factors a↵ecting accuracy include the level of detail included in the geometry, the

adequacy of the source definition and the definition of the materials. These types of

error can be reduced by better replicating the physical set-up with a fine level of detail.

Human based factors are largely due to user error in creating the input file, selecting the

appropriate data libraries and the interpretation of the output data. All Monte-Carlo

based codes perform basic statistical analyses on the output data, but it is ultimately

the user who must determine if the results are correct. This requires a good knowledge

of the model, expected values and how the Monte-Carlo method works, particularly if

non-analogue techniques are employed. Of the three contributors to the systematic, the

human element is the most di�cult to predict and eradicate.

Errors or uncertainties within nuclear data can be further categorised into experimental,

evaluation and pre-processing areas, as mentioned in Section 2.2. All three of these

contribute to the overall systematic error of the simulation result, by quantifying and

reducing them, the accuracy of the simulation can be improved. Improved confidence in

the result could ultimately reduce the engineering tolerances built into fusion devices and

hence reduce construction costs.

It is not possible to experimentally measure any nuclear data quantity, such as inter-

action cross-sections and di↵erential distributions, without an associated measurement

uncertainty. These values are associated with their own systematic and random errors

as part of the experimental method. Data are made accessible to the evaluators via the

EXFOR sharing platform with as much uncertainty information as possible; though many

of the older experimental data are presented with little or no error information and it is

impossible to retrieve.

The uncertainty introduced from the evaluation stage includes approximations or errors

within the physics models, and the chosen experimental data used to refine the model

fitting. Where many experimental data points are available within well understood en-
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ergy regimes, the evaluated data can be highly reliable. When less standard materials,

energies and reaction channels are considered, the current experimental data and models

are insu�cient in many cases. Particularly for the case of fusion, the level of nuclear data

is severely lacking compared to fission relevant data. Recent libraries have been released

with covariance matrices. These quantify how well the models fit the experimental data.

In some cases data uncertainties have been propagated to simulation results with a total

Monte-Carlo approach [58, 59]. This involves producing a set of randomised cross-sections

within the uncertainty limits of the data using the TENDL-6 framework. The same model

is used for all data sets and the subsequent results are compared. This is impossible when

uncertainty information is missing from evaluations.

Pre-processing a↵ects the nuclear data in various ways depending on the required out-

put format and nature of the information being processed. Section 2.2.2 described the

method of processing evaluated data into the MCNP compatible format. Uncertainties

are introduced during the reconstruction of the cross-sections and resonances, and when

the di↵erential data are converted to the discretised format. The uncertainty introduced

due to the pre-processing of the evaluated data files is often considered to be negligible.

In the past, this may have been true, but for applications such as fusion neutronics this

assumption no longer holds.

To quantify the e↵ect of pre-processing nuclear data, specifically with respect to di↵er-

ential distributions, it is not useful to consider parameters such as the average di↵erence

between the processed and unprocessed distributions. The nature of the processing causes

all di↵erences to sum to zero over the range of the distribution. With reference to Figure

2.13, the 56Fe(n,el) reaction channel at 14.1 MeV shows a highly featured back scatter

region with a low probability, and an extreme forward bias. The forward peaked elastic

scattering data, with a large rate of change, is poorly replicated with certain formats.

Within Figure 2.13, the two currently available processed formats are overlaid upon the
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original distribution. The 32 equal-probability histogram is a crude representation of

the original over the entire distribution. The tabulated data are capable of replicating

the original distribution to a reasonable degree, with a su�cient number of points. In

both cases, the sum of the di↵erences over the µ range equal zero, and any standard

calculation of mean di↵erence are irrelevant. This is an artefact of the normalisation

required to ensure safe sampling of the distributions; i.e. they cannot exceed the bounds

of the Monte-Carlo sampling schemes. Applying the pre-processing methods described in

Section 2.2.2 removes the smooth, functional description and replaces it with a coarse,

discretised data set.

Two methods have been used to quantify how well the processed data represents the

original: the maximum di↵erence and the coe�cient of variation. The first is a legacy

method, and the second is one that is non-traditional for these applications. Each provides

unique information concerning the distributions, and the shortfalls of each are covered by

the other.

2.3.2 Maximum di↵erence

The maximum di↵erence is calculated from the evaluation of processed and original dis-

tributions on a fine µ grid. One is subtracted from the other and the largest residual,

positive or negative, is taken as the maximum di↵erence. Based on the data in Figure

2.13, the corresponding plot of di↵erences is shown in Figure 2.14.
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Figure 2.14: The top plot echoes the distributions in Figure 2.13 and the bottom plot shows the
di↵erence between the processed formats and the original as a function of µ. The maximum di↵erence, �

m

is marked for both histogram and tabulated formats. For the maximum di↵erence, all other information
is discarded.

The maximum di↵erence, �
m

, given by Equation 2.3.1, provides a measure of the largest

mis-representation of the original data F (µ,E) by the processed form G(µ,E).

�
m

= max
�16µ61

(F (µ,E)�G(µ,E)) (2.3.1)

This is capable of quantifying both the nature and magnitude of any narrow or peaked

features that are lost through pre-processing. The maximum di↵erence must be nor-

malised if it is to be comparable to the results from other isotopes. Historically this has

been the standard technique for comparing two distributions within the field of nuclear

data processing [47, p. 300], but it is not capable of providing a measure of how well
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(or how badly) the processed format replicates the original over the entire range of the

distribution, only how well it represents a single point.

2.3.3 Coe�cient of variation

The coe�cient of variation, C
v

, provides a measure of how far, on average, the residual

deviates from zero; this is used to determine the accuracy of the processed representation

over the entire µ range. A C
v

of zero corresponds to an exact replication and a large

C
v

corresponds to a poorly replicated distribution. This method is not typically used in

nuclear data analyses, but works well to quantify the di↵erence between two continuous

distributions. The C
v

is calculated using Equation 2.3.2, where the two distributions F (µ)

(original) and G(µ) (processed) are evaluated on a fine grid of N points.

C
v

=
1

F (µ,E)

vuuut
NP
i=0

(F (µ
i

, E)�G(µ
i

, E))2

N
(2.3.2)

For clarity, this process is shown in Figure 2.15. By using the root mean square of

the di↵erences the magnitude of the di↵erences is retained, regardless of their sense.

The normalisation by the original distribution average allows for the comparison between

methods, materials and reaction channels. The C
v

is often expressed as a percentage and

provides a measure of how closely the processed data follows the original over the entire

range, with respect to the mean of the original distribution [60]. The main down-side of

using the C
v

, is that the nature of the di↵erences are lost, i.e. it is impossible to determine

from the C
v

alone whether a region will be under or over sampled when compared to the

original. The application of the maximum di↵erence and coe�cient of variation can be

seen in Chapters 3 and 4.
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Figure 2.15: The process of calculating the root-mean-square deviation (D
r

), which is subsequently used
to calculate the coe�cient of variation. Equation 2.3.2 can be written in terms of D

r

; C
v

= D
r

/F (µ,E).
In this instance, the 32 equal-probability histogram, H(µ) is subtracted from the original, functional form
F (µ) for 105 equally spaced samples in µ. The di↵erence can be seen in the middle figure with respect
to the scattering cosine. The bottom figure shows the histogrammed di↵erences, the area marked by the
dashed lines is equal to D

r

for this data set. The solid black line marks the mean di↵erence, this is always
equal to zero.
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2.4 Computational methods

Section 2.1 covered the nature of neutron interactions, and how their behaviour can be

described by the neutron transport equation (Equation 2.1.9). The neutron behaviour

within a system cannot be accurately solved with the full neutron transport equation. The

phase space covered by this equation is seven dimensional; computational capabilities are

insu�cient to solve this equation for the entire phase space for anything but the simplest

of problems [61].

In practice there are two methods for determining neutron behaviour within a system,

deterministic or stochastic. Deterministic methods reduce the phase space of the neutron

transport equation to allow for a direct solution. The phase space reduction is in the

form of simplifying assumptions and discretisation. It provides a fast and repeatable,

solution to an approximated model. These methods solve for the particle behaviour in

the Eulerian reference frame, i.e. the overall observable neutron behaviour.

Stochastic methods directly replicate the behaviour of neutrons within the system based

on empirical neutron interaction data. The neutrons can be transported in both space and

time, without any simplifications. This is not a direct solution to the neutron transport

equation, but provides statistical answers to integral quantities; i.e. they can provide an

approximate answer to an exact model. This is a stochastic solution in the Lagrangian

frame of reference, where the mean behaviour over many samples converges on the Eule-

rian solution.

2.4.1 Deterministic methods

There are several di↵erent approaches to solving Equation 2.1.9 deterministically in the

steady state. These methods apply restrictions on the phase space but the approxima-

tions remove a level of physical representation and cannot reliably be applied to non-trivial

problems. Deterministic solutions are fast to compute, as only a single calculation is re-
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quired once the necessary simplifications have been made. For the same reason the results

are always repeatable. The three main simplifications used in deterministic calculations

are energy, angular and spatial.

The most common method of discretising the energy region of the transport equation

is via the multi-group method. The continuous, energy dependent sections of Equation

2.1.9 are split into groups, most notably the interaction cross-section data. Complex,

continuous cross-sections with respect to energy, such as those shown in Figure 2.7, are

condensed to a set of tabulated data points. Each of these points are calculated from

the flux weighted average of the continuous data within the chosen group limits. To

retain as much physical information as possible, the groups must be of a high enough

resolution to ensure a reasonable representation of the original data. It follows that

a complex distribution with many resonances requires more groups than one with few

resonances. The neutron transport equation reduces to Equation 2.4.1 with the multi-

group approximation, where g is the energy associated with the group and all other

parameters have their usual meaning. Equations 2.4.2 to 2.4.4 show the relationship of

the group equation to the original neutron transport equation [47, p. 346].
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E

0
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⌃
scatter

(E 0 ! E, ~⌦0 ! ~⌦)�(~r, E 0, ~⌦0, t)dE 0 (2.4.4)

Angular discretisation takes two main forms, discrete ordinates (S
N

) or spherical harmon-

ics (P
N

). The discrete ordinates method describes the angular variation of the neutron flux

as a set of N discrete points with respect to µ. For the simple case of a one-dimensional,

plane geometry, the neutron transport equation can be re-written as Equation 2.4.5 [62,

p. 239].

µ
@

@x
�
g

(µ, x) + �SN
g

(x)�
g

(µ, x) =
NX

l=0

P
l

(µ)
X

g

0

�SN
l,g g

0(x)�
l,g

0 + S
g

(µ, x) (2.4.5)

The integral components are replaced with weighted Legendre polynomials. These weights

are chosen to be as close to the expected flux as possible; for thermal systems the flux is

well known. Within highly anisotropic systems it is far more di�cult to estimate these

weighting factors appropriately, hence this method is not typically used for fusion systems.

The P
N

method uses spherical harmonics to describe the angular variation of flux. The

number of terms required to describe the flux is dependent on the complexity of the

problem. This results in a semi-discrete version of the neutron transport equation that
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can then be solved numerically. Equation 2.4.6 shows the P
N

form of the Boltzmann

transport equation, where �PN
l,t,g

and �SN
l,g g

0 are the group averaged cross sections [62, p.

181].
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0 + S
g
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The final method covered here is the di↵usion approximation. This is based on the

assumption that neutrons behave similarly to a gas, in the sense that areas of high con-

centration will di↵use to areas of low concentration. The equivalent form of the neutron

transport equation is shown in Equation 2.4.7.

1
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@

@t
�(~r, E, t) +r.D(~r, E)r.�(~r, E, t) + ⌃

total

(E)�(~r, E, t)

=

1Z

0

⌃
scatter

(E 0 ! E)�(~r, E 0, t)dE 0 + S(~r, E, t) (2.4.7)

This equation only holds in the case of flux having a weak spatial and angular dependence

and a slowly varying current density, i.e. no sources or sinks for neutrons. For situations

such as homogenous fission reactor cores, this approximation is simple and accurate. It

cannot however by used when the angular dependence of the flux is anisotropic, or if there

are any materials boundaries within the problem.

Deterministic methods have their advantages, but all methods involve approximations

and restrictions. This lends itself to some areas of fusion neutronics, but in general

deterministic methods are not appropriate for this application.
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2.4.2 Stochastic methods

The alternative to deterministic solutions to the neutron transport equation is to use

stochastic methods. The most well known stochastic approach is the Monte-Carlo method.

Neutron transport is largely stochastic so the Monte-Carlo method of simulating particle

behaviour is a natural choice. This method is particularly advantageous as it is capable

of simulating neutron behaviour in complex, three-dimensional systems with virtually no

approximations. This method uses empirical nuclear data in conjunction with random

sampling techniques to directly simulate the trajectory of neutrons within the system. By

simulating many neutrons, their average behaviour within the system can be inferred.

The Monte-Carlo approach is primarily an integration technique and does not directly

solve the neutron transport equation. However it is capable of producing engineering rel-

evant, measurable quantities via the indirect solution of the integral form of the neutron

transport equation. Directly simulating the Lagrangian particle behaviour allows the in-

ference of the Eulerian behaviour over many samples. Monte-Carlo radiation transport

was designed to study complex systems and covers the entire phase space of the transport

equation. It is capable of handling many interacting components, including mixed par-

ticle fields. By combining known interaction probability laws, such as cross-section data

into the Monte-Carlo process, the resulting particle tracks are abstract analogues of real

world processes. The main downside to this method is the time of computation required.

Deterministic methods require only one calculation once the problem has been properly

defined. Monte-Carlo methods require large numbers of simulated particles to determine

the average behaviour within a reasonable level of precision. However, it is possible to

reduce the statistical uncertainties to negligible levels by increasing the particle popula-

tion so the problem is, theoretically, only limited in accuracy by the input parameters.

Large scale simulations, such as the DEMO or ITER models require a minimum of 109

source particles to fully populate the phase space. This equates to many days worth of
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computational time.

Within Monte-Carlo radiation transport, the neutron transport equation can be reduced

to a set of integral operators as shown in Equation 2.4.8.

�(~r, E, ~⌦, t) = S(~r, E, ~⌦, t) + C(~r, E 0 ! E, ~⌦0 ! ~⌦)T (~r0 ! ~r, E, ~⌦).�0(~r0, E 0, ~⌦0, t)

(2.4.8)

The particle density is represented by � at ~r with direction ~⌦ and energy E. The source

operator, S(~r, E, ~⌦, t), describes the external generation of particles. The collision oper-

ator, C(~r, E 0 ! E, ~⌦0 ! ~⌦), describes all interactions including neutron capture. This

determines the energy and direction components entering into E and ~⌦ at ~r. The transport

operator, T (~r0 ! ~r, E, ~⌦), moves the neutron between interaction sites and �0(~r0, E 0, ~⌦0, t)

is the initial particle density.

The analogue event chain of Monte-Carlo radiation transport can be described in terms

of these operators. The transport is described for the simple example of a high-energy

neutron incident on a block of tritium breeding material, as shown in Figure 2.16. It

undergoes many di↵erent reactions which are stochastic in nature, producing additional

particles throughout the history. Similar histories will be statistically equivalent, but will

demonstrate di↵erent physical processes based on their relative probabilities.

A source neutron is generated with energy E and direction ~⌦. The path length to the

next interaction, R is sampled from the total macroscopic interaction cross-section of the

material. The transport operator then moves the neutron distance R along the direction

vector ~⌦ to the interaction site. The collision operator determines the interacting nuclide,

reaction type and emission properties based on the random sampling of the relative prob-

abilities at energy E. The energy and direction of the neutron are updated if it has not

been removed from the system via capture. This sequence of transport and collision is
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Figure 2.16: Example history of a neutron incident on a block of tritium breeding material. In this
example, a source neutron generated at 0 undergoes an inelastic scatter at 1, with the production of a
secondary photon. This is banked, and will be followed after the main neutron history has terminated.
The neutron properties are updated, and it continues to 2, where it undergoes a neutron multiplication
reaction. One of the neutrons is banked and the other continues to position 3, where it is captured in
a tritium breeding reaction and terminated. The banked neutron is transported to position 4 where it
undergoes an elastic scatter before leaking from the cell at position 5. The photon produced at 1 is
followed to position 6 where it is captured and hence terminated.

repeated until the neutron is terminated, either through escaping the geometry, capture

or a computational cut-o↵. Random sampling is at the heart of the Monte-Carlo method.

Each time a random number is required, it is sampled uniformly between 0 and 1 and

then mapped on to the relevant probability distribution. Figure 2.17 demonstrates this

with the angular distribution for the elastic scatter of a 14.1 MeV neutron from 56Fe. It

is given with the integral form of the distribution which increases from 0 to 1. A random

number, ⇠, is sampled and the distribution solved to give the value of µ.
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Figure 2.17: Top figure shows the normalised probability distribution function for the elastic scatter of
14.1 MeV neutrons from 56Fe. This is integrated to give the cumulative probability distribution between
0 and 1. For a random number ⇠ sampled between 0 and 1, it is mapped onto the cumulative probability
distribution to give the sampled value of µ

s

.

Each history within the Monte-Carlo simulation will follow the same computational event

chain. This is shown in Figure 2.18. Each area associated with the operators in Equation

2.4.8 are highlighted. The area not shown on this flow diagram is the geometry tracking.

At each point, whether it is collision or transport, the neutron must know where it is

within the geometry to determine which are the relevant interaction cross-sections.
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Figure 2.18: Monte-Carlo event chain for a particle history within analogue Monte-Carlo. With ref-
erence to Equation 2.4.8, the components associated with the source operator are highlighted in yellow,
transport operator in green and the collision operator in blue. All random numbers (⇠) are sampled
between 0 and 1. The total interaction cross-section for the material ⌃

total,all

is the sum of all nuclides
within the material. The total cross-sections for each nuclide ⌃

total,n

are scaled to sum to 1. A random
number is sampled and used to choose nuclide k of N . Once the nuclide has been selected, the same
process occurs to select the interaction type, s of T from the microscopic cross-sections �. If the particle
has not been terminated, the properties are updated and the history continues. Any secondary particles
are banked and transported once the main particle has terminated.
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Simulating the neutron history is only part of the process. Tallying is used to acquire a

specific quantity of interest, for example the particle flux through a surface, reaction rate

or dose deposited within a volume. There are several di↵erent types of information that

can be extracted, the simplest being the particle current, J , through a surface. This is

represented by Equation 2.4.9, where, for analogue transport, the scored quantity is the

number of particles crossing the surface.

J =

Z
dE

Z
dt

Z
dA

Z
d~⌦|~⌦.~n| (~r, E, ~⌦, t) (2.4.9)

The average surface flux, �
s

is described by Equation 2.4.10, and is given in units of

particles per unit area, where A is the area of the surface in question. The scored quantity

is 1/(|µ|A), where |µ| = |~⌦.~n| and ~n is the vector for the surface normal.

�
s

=
1

A

Z
dE

Z
dt

Z
dA

Z
d~⌦ (~r, E, ~⌦, t) (2.4.10)

The volume flux, �
V

, is calculated with Equation 2.4.11 and is given in units of particles

per unit volume, where V is the volume of the cell. The scored quantity is T
l

/V , where

T
l

is the track length of particles within the cell. The volume flux can be multiplied by

interaction cross-sections to calculate a reaction rate within a volume.

�
v

=
1

V

Z
dE

Z
dt

Z
dA

Z
d~⌦ (~r, E, ~⌦, t) (2.4.11)

These are the three most commonly used tallies in MCNP, though several others exist,

such as point detectors, energy deposition and pulse height tallies. These are covered in
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detail in reference [23, p. 2-80]. Each tally can be subdivided into energy, cosine and time

bins. This converts the continuous integrals into sums over a discrete set of limits.

All tally results are subject to an associated statistical uncertainty. Central to the Monte-

Carlo method is the law of large numbers; this describes the long-term stability of the

mean of a variable. The calculated mean tends to the expectation value over a large

number of sampled events. In the case of radiation transport, su�cient particle histories

must be simulated for the expectation value to be reached within the desired level of

statistical uncertainty. The central limit theorem is used to calculate a mean, standard

deviation, variance and standard error. This states that the observations of a quantity,

which is influenced by many independent and identically distributed random variables,

tends to a normal distribution. These two principles form the basis of the statistical tests

that are used to determine whether the problem has converged on the expectation value

within the required limits of uncertainty.

For any tally, the sample mean, x, is calculated as the sum of all contributions, x
i

, over

the number of source particles, N , as given in Equation 2.4.12.

x =
1

N

NX

i=1

x
i

(2.4.12)

The standard deviation, S, is calculated from Equation 2.4.13, and can be approximated

to
p

x2 � x2 for a large number of histories. This demonstrates a 1/
p
N relationship, as

with Poisson statistics, which should be replicated within the simulation results.

S =

vuuut
NP
i=1

(x
i

� x)2

N � 1
(2.4.13)
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The variance about the sample mean S2
x

is given by Equation 2.4.14 and is used to calculate

the relative error, R
x

(Equation 2.4.15) [63].

S2
x

=
S2

N
(2.4.14)

R
x

=
S
x

x
(2.4.15)

This informs upon the confidence limits about the mean value; for an infinite number

of particles, there is a 68% probability that the true value will lie within the range of

x(1 ± R
x

), and a 98% probability that it will be within the range of x(1 ± 2R
x

) [23, p.

2-114]. This only holds if the Monte-Carlo technique has su�ciently sampled the source

and populated the geometry, otherwise a statistically rare event can greatly a↵ect the

mean and standard deviation and the problem is not truly converged. If some regions

of the phase space are left un-sampled, the mean and standard deviation are unlikely to

converge to the expectation value of the problem. Additional statistical analyses are used

in combination to mitigate the problem, see reference [64, pp. 35-39] for details on the

ten standard statistical tests within MCNP.

The figure of merit (FoM) is used to study how well behaved a tally result is. This is

calculated from Equation 2.4.16, where R is the relative error on the tally and T is the

computational time.

FoM =
1p
R2

x

.T
(2.4.16)

This should tend to a constant value with increasing particle histories as R
x

/ 1/
p
N and

T / N . The figure of merit measures the cost of error reduction in terms of computational
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time and can be used to consider the e�ciency of the computation. If the relative error is

not significantly reduced with increasing particle histories, then the problem has converged

(subject to agreement from the other statistical parameters) and no further histories are

required.

To improve the figure of merit, and the overall convergence of the simulation, the relative

error on tallies must be reduced without significantly increasing the computational time.

Running more histories is computationally ine�cient for an already expensive method, so

a non-analogue approach to particle transport can be employed to reduce the standard

deviation about the mean, and hence the relative error. Variance reduction methods are

introduced to boost particle populations within the regions that are important to the tally

by limiting the phase space of the problem. To increase particle numbers in the region

of interest is not physical, as in the real world particle numbers are always conserved.

To avoid this lack of physicality, all particles are assigned a statistical weight; this is

the conserved property in non-analogue Monte-Carlo, instead of the absolute particle

numbers. Full descriptions of the available variance reduction methods can be found in

references [65, pp. 83-135], [39, pp. 327-339] and many other Monte-Carlo texts. The

simplest variance reduction method involves energy or weight cut-o↵s. These terminate

particles that are below the energy or weight, which would not significantly contribute to

the tally. To preserve the weight, this is combined with Russian rouletting. Each particle

below the weight or energy limit will be terminated based on a statistical game. The

survival weight is calculated, and a random number sampled, if the survival weight is

lower than the sampled number, the particle is killed. Otherwise the particle is allowed

to continue until the next event, with a proportionally larger weight.

Another example of variance reduction is implicit capture. This adjusts the statistical

weight of the interacting particle, rather than losing it to a capture reaction. In analogue

radiation transport a neutron captured by the interacting nuclide is removed from the
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system. The particle energy and weight is deposited at the point of capture and it can no

longer contribute to the remainder of the problem. Alternatively, implicit capture reduces

the particle weight based on the probability of capture with respect to the total micro-

scopic interaction cross-section. The statistical weight is adjusted by 1��
capture

/�
total

for

each collision, but the particle is allowed to continue transport within the system.

For models with dimensions that span over many mean free paths, importance mapping

is used to encourage higher particle populations in the regions of interest. If a particle

moves from a region of lower importance to a region of higher importance, the particle

is split into a number of particles, corresponding to the di↵erence in importance between

regions. Each split particle carries a fraction of the original particle weight. For example,

if a neutron, with weight of 1.0, moves from a region of importance 1 to a region of

importance 2, it will split into two identical neutrons, each carrying a weight of 0.5. This

is useful for regions that have a high interaction cross-section, such as shielding materials,

as it forces an increased particle population throughout the volume. If particles are moving

from a region of high importance to low importance, Russian roulette is played on the

particle to determine whether it is allowed to continue or if it is terminated.

This section has presented the theoretical background to neutron interactions and their

relation to nuclear data, and the computational methods which implement these data to

determine the average particle behaviour within complex systems. This knowledge forms

the basis of the tools developed to analyse the e↵ect of the pre-processing of nuclear data

on simulation results.
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Chapter 3

Method

This Chapter covers the various methods and tools implemented within this work. It

covers the ENDF format, and the embedded structures for the sections of interest. This

is important to understand how to extract and parse the required data prior to processing.

The various processing techniques are defined for current systems and additional schema

developed as part of this project. The consequences of these various methods will be

quantified with several tiers of analysis. At the lowest level, the original ENDF data are

evaluated alongside the processed data and the goodness-of-fit measured. The various

data are then implemented within a simple Monte-Carlo code, developed in-house to

study the di↵erent sampling schema. A more complex (yet still simpler than full radiation

transport codes) version of this code allows restricted, analogue transport of neutrons in

standardised geometries. These simulations are used to benchmark the code against the

industry standard MCNP and quantify the computational burden associated with the

di↵erent data formats. The real-world e↵ects of pre-processing angular distributions are

investigated with MCNP fusion models, where only specific data formats are allowed.

This information allows for the quantification of the sensitivity of large-scale neutronics

simulations to the pre-processing of nuclear data, and the consequences of format choice

on other computational parameters.
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3.1 ENDF format

The ENDF files are used to store documented data evaluations in a computer-readable

format that can then be processed as necessary for a particular application in nuclear

technology (described in Section 2.2). The ENDF format was originally developed in

1966 due to a need for a simple, consistent format for the nuclear data files produced by

di↵erent authorities [66]. Previously, each operating group had developed data sets that

were specific to their own requirements. Unfortunately this limited the extent to which

the data could be tested, as alternatives would be incompatible with the system. This new

format was rigorous in the mathematical techniques and the interpolation methods used

to ensure well-defined and repeatable results [50, p. 365]. The ENDF format was adopted

within the nuclear technology community to use the same original data files, processed

into application specific format for cross-comparison. There has been little change to

these files and their structure since the adoption of the ENDF format internationally.

The radiation transport code MCNP requires ACE format data, the ENDF is converted to

the accepted format with the pre-processing code NJOY. The general flow of NJOY pro-

cessing of ENDF data files is well known and is documented in Section 2.2. It is common

for NJOY users to black-box each module, resulting in potentially incorrect or unknown

behaviour within the processed files. If the user is unaware of the di↵erent processes oc-

curring within the NJOY modules, the consequences can be serious. Understanding the

original data, before it is degraded with various processing mechanisms is vital. In the

following sections, the behaviour of the ACER module of the NJOY code is replicated as

far as possible. This allows the quantification of the e↵ect of ACER processing on the

di↵erential and double di↵erential cross-section distributions compared to the originals.

By understanding the e↵ect of current pre-processing methods, it is possible to then test

alternative structures to improve the physical representation of the data and minimise
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the computational burden. To replicate these ACER components, the data must first

be extracted from the ENDF files, which in turn requires a detailed knowledge of the

structures within these files. This section is kept as general purpose as possible, but the

56Fe(n,el) reaction channel at 14.1 MeV is used to demonstrate the various techniques as

appropriate.

3.1.1 Structure of ENDF tape

The ENDF files are strictly formatted with the ENDF-6 format, which has been adopted

internationally to allow the ease of data transfer and use between agencies. The file, or

tape as it is called historically, is a general-purpose ASCII file to allow machine indepen-

dent data to be transferred. The interaction data are stored in a hierarchical structure,

starting with the tape. The tape contains the materials (MAT), though typically these

are individual to each nuclide. Each material contains files (MF), which determine the

type of data being presented. Each file contains sections (MT), which usually determine

the reaction type. Finally each file contains records (MR) that contain the information

associated with the MAT, MF and MT. This can be seen visually in Figure 3.1. This

nested structure is strictly conformed to by all ENDF data files to aid in the further,

consistent processing of data.

The tape is delivered as a series of 80 character long lines in ASCII format. The first

66 characters of each line are dedicated to storing the record information, the next 4

characters contain the MAT number, the next 2 contain the MF number, the next 3

contain the MT number and the final 5 contain the record number, MR. While this

format is easy to parse and process, there are limitations to the format that are now

becoming an issue. Largely this is due to the restrictive width of the files which is a relic

of the punchcard history. Each record can contain 6x11 character wide entries, which

limits the precision of the data. Standard scientific notation is ine�cient, and as such
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Figure 3.1: Schematic of the nested ENDF tape structure (adapted from [50, p. 28]). Each tape
starts with an initial record for the identifier (TPID). The remainder of the tape is divided into materials
(MAT). These materials can correspond to di↵erent nuclear isomers of one nuclide, or a range of nuclides
depending on the evaluation. Each material contains multiple files (MF) for the di↵erent classes of
information, e.g. cross-section, covariance, angular distributions etc. Each file is separated into sections
(MT) corresponding to the various reaction types. The files are further divided into individual records
(MR) which contain the evaluated parameters. The first record in a section (HEAD) provides information
on how the following data are presented, i.e. number of entries, interpolation laws etc. At the end of
each item (TAPE, MAT, MF or MT) there is an associated termination card (TEND, MEND, FEND or
SEND).

the data are presented as a stripped down notation. This allows a maximum of 6 or

7 digit precision, depending on the value of the exponent; for example ±1.23456 ± nn

or ±1.234567 ± n. Full scientific notation can provide a maximum of 5 digit precision

(±1.2345E ± nn), given the fusion energies cover up to 7 orders of magnitude, and the

cross-sections over 5, this is ultimately a limiting factor in precision [4].

The MAT number identifies the target nuclide and its various isomer states. It is calcu-

lated based on 100Z + I, where I is the isomer state and is equal to 25 for the lightest

isotope in the ground state and increases by 3 for each consecutive isotope. The interme-

diary numbers are reserved for various excited states. For 56Fe in the ground state the

MAT number is 2631.
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The MF number identifies the file, of which there are approximately 26 di↵erent types,

a full list can be seen in the ENDF6 formats manual [50, p. 12]. The MF numbers of

interest are shown in Table 3.1, specifically the di↵erential data with respect to angle

contained within MF 4 is the primary consideration.

Table 3.1: Partial list of file numbers (MF) and their descriptions.

MF Description

1 Information and tape description
3 Cross-section data (�(E))
4 Angular distributions (F (µ,E))
6 Energy-angle distributions (�(µ,E,E) or �(E 0, µ, E))

The correlated energy-angle distributions within MF 6 are also a↵ected by the pre-

processing in similar ways but are not considered directly. MF 4 contains the probability

distributions associated with the exit angle of the primary or secondary particles. This

is referred to as F (µ,E), where µ is the scattering cosine of angle ✓ in the centre-of-mass

frame and E is the energy of the incident particle. This is normalised as shown in Equa-

tion 3.1.1, but must be multiplied by the associated scattering cross-section (�
s

(E)) given

in MF 3 to give the absolute di↵erential cross-section �(µ,E) in barns per steradian, as

given by Equation 3.1.2 [50, p. 103].

+1Z

�1

F (µ,E)dµ = 1 (3.1.1)

�(µ,E) =
�
s

(E)

2⇡
F (µ,E) (3.1.2)

The MT number identifies the section; this usually determines the interaction type and

has approximately 800 options [50, p. 13], though in practice not all exist for each MAT.

Here the focus is on scattering data, and the key MT values are given in Table 3.2.
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Table 3.2: Partial list of section numbers (MT) and the associated reaction channels.

MT Description

1 Total
2 Elastic scattering

50-90 Inelastic scattering, discrete levels 1 to 40
91 Inelastic continuum

Chapter 4 will demonstrate that these data are most a↵ected by the processing methods

at fusion energies, but it is not limited to these cases.

The MR number identifies the record index within each section. MR = 1 corresponds

to the start of a section, and MR = 99999 corresponds to the end of a section. For the

56Fe file from the ENDF/B-VII.1 library there are 168 combinations of MT-MF numbers,

summing to 3⇥ 104 records. This is an average file size. From the same library, 3He has

the minimum file size with 8 combinations and 5⇥ 102 records in total, and 235U has the

maximum, with 132 combinations and 7⇥ 105 records in total.

3.1.2 Cross-section data MF 3

The internal structure of the MF3 file is demonstrated in the file excerpt in Figure 3.2.

The records are split into the content and identifiers (MAT, MF, MT and MR), where

the content is further divided into 6x11 character data entries. The main body of data

is presented as energy (E), cross-section (�(E)) pairs, where E is measured in eV and

�(E) in barns. The HEAD of this file contains the necessary information for parsing the

remaining data, and the FEND card flags the end of the file. The HEAD is always the first

record in a section containing the material identifier, ZA, in mass terms (1000.0⇥Z)+A

and the atomic weight ratio (AWR) of the material, defined as the mass of the material

with respect to that of a neutron. In the example shown in Figure 3.2, these values are

26056 and 55.454 respectively.
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Figure 3.2: Excerpt from 56Fe, ENDF/B-VII.1 [67] for the cross-section data (MF3) for elastic scattering
(MT2). In reference to Figure 3.1, the first record corresponds to the HEAD of the section (MR1) within
the file with an additional two lines of variables which define the format of the data to follow (highlighted
in blue). The main body (MR4 to MR906) contains the cross-section data, highlighted in green. The
terminator for the section within the file, SEND, is highlighted in orange. The data continues to other
MT values, before being terminated with the FEND card, highlighted in red.

The next two records contain the information concerning the reaction kinematics and

the format of the subsequent data set. The first value of MR 2 is the mass-di↵erence

Q-value (QM) given in units of eV . This is defined by Equation 3.1.3 for a reaction of

type a + A ! b + c + ... + B, where the m values are the masses associated with the

reaction components in amu.

QM = [(m
a

+m
A

)� (m
b

+m
c

+ ...+m
B

)]⇥ (eV/amu) (3.1.3)

The second entry is the reaction Q-value (QI) in eV . For ground state reactions with no

complex breakup QI = QM . As Figure 3.2 shows the data for the elastic scatter reaction

channel, these are both equal to zero. This is not the case for any of the inelastic or

absorption reaction channels. The next entries of note are the final two on MR 2, and the

first two on MR 3. These describe the format of the following data. Entry 5 on MR 2 is

the number of di↵erent interpolation laws used within the data set, followed by the total
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number of pairs. The entries on MR 3 are the number of pairs within the first and only

(in this case) interpolation region, and the interpolation law associated with these pairs.

Law 2 is a linear-linear interpolation. The available interpolation schemes are shown in

Table 3.3 and are presented schematically in Figure 3.3.

Table 3.3: Available interpolation laws in ENDF format. Variables A and B are used as interpolation
constants within the equations. These are calculated based on the (x, y) points being interpolated and
are shown schematically in Figure 3.3.

Identifier Law Description Equation

1 Histogram y constant with x y = A
2 Linear-linear y linear with x y = Ax+B
3 Linear-log y linear with ln (x) y = A ln (x) + B
4 Log-linear ln (y) linear with x y = exp (Ax) exp (B)
5 Log-log ln (y) linear with ln (x) y = exp (B)xA

Figure 3.3: Elastic scattering cross-section data taken from 56Fe, ENDF/B-VII.1 [67]. Figure shows
the cross-section, �(E) measured in barns at the tabulated energy, E points in MeV. The data points
are interpolated with one of the five possible laws (Table 3.3). The inset figure schematically shows the
di↵erent interpolation laws. The choice of law is important to ensure the physical representation of the
data is not lost [68].
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3.1.3 Angular distributions MF 4

The angular distributions for incident neutron reactions are stored within MF 4. These

distributions describe the probability with which emitted particles exit the interaction at

a certain angle. Predominantly this is used for the elastic and the discrete level inelastic

scattering reactions, where the kinematics of the reaction are easily derived from the exit

angle or reaction Q-value. Where the exit angle and energy are strongly correlated, MF 6

is used in place of MF 4, as it provides a two-dimensional data set of angular distributions

at each tabulated exit energy (or vice-versa). Figure 3.4 shows schematically how the data

are presented in ENDF for the example of 56Fe elastic scattering (MT 2).

Figure 3.4: Excerpt from 56Fe, ENDF/B-VII.1 for the angular distributions (MF 4) for elastic scattering
(MT 2). MR 1-3 contain the HEAD of the section and an additional three lines of variables which define
the format of the data to follow (highlighted in blue). The main body (green) is split into two sections,
the angular distributions in terms of Legendre coe�cients or tabulated (µ, F (µ,E)) pairs. MR 5-6 shows
the first entry at 10�5 eV described by two Legendre coe�cients. MR 1433-1459 contains the tabulated
data associated with an energy of 150 MeV. The section is terminated with the SEND card (orange).
The data continues to other MT values, before the file is terminated with the FEND card (red).
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This follows a similar format to the MF3 data in the sense of the first few records contain

the information on how the data are to be interpreted, the actual data forms the central

block and the section of the file is terminated with a SEND card. As above the first two

entries on the HEAD record are the ZA and AWR numbers. The fourth entry in this

record is the LTT value; this flag specifies the representation of the data. A value of 0

corresponds to all distributions being isotropic, a value of 1 corresponds to all distributions

being described by Legendre coe�cients and a value of 2 corresponds to all distributions

being described by tabulated probability distributions of µ and F (µ,E). An LTT of

3, as shown in Figure 3.4, means that a combination of representations are used; at

low energy, the distributions are described by Legendre coe�cients and at high energy

they are described with tabulated data. For elastic and discrete level inelastic scattering

data, Legendre coe�cients are preferred [50, p. 108]. Tabulated probabilities are only

used when the distributions cannot be su�ciently described with a polynomial of the

maximum allowed order (65) or below with non-negative probabilities.

Within the second record (MR 2) the fourth entry (LCT) describes the reference frame.

A value of 1 is for lab frame data and a value of 2, as seen in the example, is for centre-

of-mass frame data. The following two records mirror the format of MR2 and MR3 in the

cross-section data. These indicate that there is one energy range, of which there are a total

of 375 energy values. All of these 375 values are interpolated in energy with law 2, linear.

The first distribution entry starts with MR5, this gives the temperature of the evaluation,

T , in K and the energy, E, of the neutron in eV. In the example shown, the data are

evaluated at 0K for energy 10�5eV. As the data must cover the full phase space of particle

transport, almost all data begins at 10�5eV. As the lower energy entries are given in terms

of Legendre coe�cients, entry 5 on this record gives the highest order coe�cient (NL) as

well as the number of entries to read. It is always assumed that the zeroth component

a0 = 1.0 so is not included in the file, so the two values for a1 and a2 are given. Due
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to the low energy, both coe�cients are zero; this corresponds to isotropic scattering in

the centre-of-mass frame. The remaining data in this regime follows the same pattern.

At MR 1433 in this example, we see the transition to tabulated probability distributions.

The temperature and energy are given as the first two entries. The remaining entries

correspond to the number of regions within the tabulated data (1) and the total number

of points (73). The subsequent record describes the number of points (73) governed by the

interpolation law (2). The next record begins the tabulated (µ, F (µ,E)) pairs. Finally

the section of the file is terminated with the SEND card. To fully appreciate the quantity

and complexity of the information stored within this small section of ENDF, Figure 3.5

shows the two-dimensional phase space covered by the Legendre coe�cients.

Figure 3.5: Elastic scattering data for 56Fe, ENDF/B-VII.1 as plotted with NJOY2012. These data
correspond to the Legendre coe�cient portion of MF 4 MT 2 only, with energies between 10�5eV up
to 20MeV. The image gives the scattering probability (F (µ,E) or Prob/Cos) in terms of the scattering
cosine (µ or Cosine) for each energy entry. Low energy corresponds to a relatively isotropic scattering
probability in the centre-of-mass frame. At higher energies more features appear and a more anisotropic
distribution results, i.e. forward scatter (µ = 1.0) is more favoured than back scatter.
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As mentioned in Section 3.1.1, these angular probability distributions, F (µ,E) are nor-

malised within the µ range of �1.0 6 µ 6 1.0, and are given in units of (unit� cosine)�1.

When described by Legendre coe�cients, the functional form of the distribution is con-

structed by Equation 3.1.4, where µ is the scattered cosine, E is the incident energy, l is

the order of the Legendre polynomial P
l

(µ) up to NL and a
l

is the lth coe�cient.

F (µ,E) =
NLX

l=0

2l + 1

2
a
l

(E)P
l

(µ) (3.1.4)

3.2 File handling

The previous Section, 3.1, described some of the intricacies of the ENDF format. This

knowledge is used to parse and manipulate the data as required by the various pre-

processing codes, such as NJOY. In order to understand the e↵ect of NJOY on the data

and further reduce it, parallel methods have been developed to study and quantify the

e↵ect of various techniques. These quantification methods will be described in Section 3.3,

and this section is dedicated to the file handling and how the data are further manipulated.

NJOY processes the ENDF into MCNP compatible ACE format with one of two data

representations for the angular distributions. The equal-probability histogram, with a

fixed 32 bins, or the tabulated cumulative probability distributions with linear interpo-

lation. The former is a legacy format designed for times when computational resources

were at a premium. It provides a compact data set that is very fast to sample at the

cost of accurate data representation, particularly at fusion energies and higher. This is

demonstrated in Chapter 4. The latter format can provide a better representation at

the cost of computational e�ciency. This is now the default method for any new data

libraries, but many older libraries have been processed into the histogram format and are

still in use.
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Due to the strict formats required by MCNP it is impossible to trial variations or alterna-

tive formats other than the two specified; hence the need for a simple Monte-Carlo code.

Turnip 1 is a Monte-Carlo code developed as part of this work for nuclear data sampling

analyses. It is capable of replicating MCNP sampling schemes and implementing alter-

natives. Here it is used to evaluate di↵erent formats for angular distributions, but its

potential application extends far beyond this. The development and processes of Turnip

will be detailed in Section 3.3.1. The ENDF files are parsed and processed into Turnip

compatible format using a code called Swede-Mash2. This has been designed to replicate

NJOY processes for the two known MCNP formats and produces additional formats as

required. Swede-Mash is constructed of three core modules, one to parse, one to process

and one to analyse. Figure 3.6 shows the generalised flow diagram for Swede-Mash, and

Sections 3.2.1, 3.2.2 and 3.2.3 will describe the three stages in detail.

Figure 3.6: Global flow diagram for the Swede-Mash code. The main modules for processing, parsing
and analysing are highlighted in yellow, green and blue. These three sections are detailed in sections 3.2.1,
3.2.2 and 3.2.3. The variables PATH, LIB, ISO, MT , Nhst, Ntab, and NJ correspond, respectively,
to the home path of the source and input/output files, the library directory, the ENDF isotope to be
parsed/processed, the reaction channel of interest, the number of histogram bins, the number of tabulated
points and finally whether an NJOY input file is required.

1Note to the reader, Turnip is not an acronym and this code is not currently available to the public.
Turnip was developed in collaboration with (T.W. Leadbeater, private communication) and is intended
for future release.

2Note to the reader, Swede-Mash is not an acronym either. This was developed by the author as part
of this thesis and is not publicly available at present, though future release is expected.
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The required parameters for the parse/process are input via a basic text file. The structure

is simple, each consecutive line is a di↵erent parameter, and any line starting with a # is

considered as a comment. A basic input file is shown in Listing 3.1.

Listing 3.1: Example input file for Swede-Mash

# Path to home (PATH)
/Users /work/Documents/swede mash
# l i b r a r y d i r e c t o r y (LIB)
endfb 71
# Iso tope to parse ( ISO)
Fe56
# Reaction channel to parse (MT)
2
# Formats to proce s s
# Number o f EP bins (Nhst )
32
# Number o f tabu lated po in t s (Ntab )
# min 2 , or 0 f o r opt imised
0
# NJOY (NJ)
# Produce NJOY input f i l e s f o r p ro c e s s i ng 0 = no , 1 = yes
0

The first parameter tells Swede-Mash where to find the source and is the home directory

for any input or output files. The second parameter is the directory within the home

path that contains the ENDF library. The next two entries correspond to the isotope and

reaction channel of interest, in this example these are 56Fe and the elastic scattering data.

All associated MF data are extracted (cross-sections, di↵erential data etc.) The following

two entries determine the number of equal-probability histogram bins (the MCNP re-

quirement is 32) and the number of tabulated points. If either of these values are set to 0,

they are optimised based on a hard-coded level of accuracy. This is set to be a maximum

of 1.0% variation between the original and processed formats. The final parameter is a

flag to determine whether an NJOY input file is required for the given isotope.
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3.2.1 Parse ENDF

The parsing module shown in Figure 3.6 has been designed to parse only the files of

interest to this work as detailed in Table 3.1. Figure 3.7 shows a more detailed program

flow within this module for MF 3 and 4. Swede-Mash is capable of parsing MF 5 and 6, but

the methods are very similar to those used for MF 4 and are not shown. The complexity

in parsing the ENDF is predominantly due to the ASCII format; while this is well suited

to FORTRAN based interpreters it requires a di↵erent approach when using any other

programming language, such as C. The file is parsed character by character for each line,

with the relevant content being stored in character arrays before further parsing. As the

format of each line within each section of file is dependent on the previous, a series of flags

and switches were implemented to retain information on the section header parameters

and what the next process should be. For data (versus information) containing entries the

split content is then converted into floats and integers as required rather than the compact

ENDF scientific notation. Each unique MT-MF combination associated with the target

is parsed and output to temporary binary files to be used in the processing stages of

Swede-Mash. So for the example input file shown in Listing 3.1, the data would be fully

parsed for MF 3, MF 4, MF 5 and MF 6 if they exist in the file. Other associated files

with the MT value such as information (MF 1) and covariances (MF 33) are extracted,

but no further parsing is implemented for these files at this point.
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Figure 3.7: Simplified flow diagram for the parse module of Swede-Mash. ENDF input file is
passed to this module with the target MT and home path. The ASCII file is read character by
character and is assigned to the character arrays cContent, cMAT , cMF , cMT , cMR. When
the MT value changes from the previous line it is checked against the target. If this is the
required section, the content is parsed according to its file MF number. The three shown are
for the information (1), cross-section (3) and angular data (4) files. Counters scount, ecount,
ccount, tcount correspond to the line in section, energy, coe�cient and tabulated points, and are
used in combination with other flags to switch between processes.

81



3.2.2 Process ENDF

After the entire ENDF has been parsed and the relevant MT-MF combinations converted

into a more accessible format, the various processing methods can be applied to the

di↵erential data. The flow diagram for this module can be seen in Figure 3.8. The case

shown here applies to the processing of the angular distributions (MT 4). It is dependent

on the initial input deck, namely the requested number of histogram bins and tabulated

points. The processing treatment is applied to the di↵erential data for all energy entries

described by Legendre polynomials. The three formats presented in the following section

are described by the computational methods used to produce the required data; these will

be shown graphically in Section 4.1 for the example case of 56Fe for clarity.
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Figure 3.8: Flow diagram for the process module of Swede-Mash. This takes the parsed ENDF files
and for each energy associated with the angular distributions, they are processed into the three formats;
functional (FUN), histogram (HST) and tabulated (TAB) and written to Turnip binary files. These
formats are described in detail within the text. Initially the Legendre coe�cients are converted to plain
polynomial coe�cients, for both the normalised probability (pdf) and cumulative probability (cdf) distri-
butions. These distributions are then used to calculate the histogram and tabulated formats, dependent
on the number of bins/channels requested. For these two formats, an optimised option is available if
Nhst and/or Ntab are equal to zero. This determines the optimum number of bins/points to achieve an
accuracy below the set tolerance and is described within the text.

83



Functional

The first stage produces functional data that replicates the original Legendre polynomials

and is referred to as the exact or original data. While this format is not strictly exact,

it is the best possible case when processing the evaluated data, and is the standard

to which all processed formats are compared. This format is not currently employed

within any of the standard radiation transport codes. The coe�cients are converted into

standard polynomial coe�cients, i.e. for each order the coe�cients are summed. This

representation is identical (subject to rounding errors and polynomial evaluation [69, p.

253]) to the original, but simplifies the numerical integration required throughout the

processing module and is compatible with Turnip. Equation 3.1.4 shows how the ENDF

probability distributions are constructed, whereas Equation 3.2.1 shows how the converted

coe�cients are used. Where p is the order of the polynomial from 0 to P and a
p

is the

pth coe�cient.

F (µ,E) =
PX

p=0

a
p

.µp (3.2.1)

These data are written to the Turnip binary files with the general format as shown in

Listing 3.2, both the normalised probability C
f

and cumulative probability C
p

coe�cients

are given.
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Listing 3.2: Representation of functional data output format for Turnip

⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤
Comment + Header [500 cha ra c t e r s ]
example f i l e ZZAAAMFMT FUN. bin
NE = number o f e n e r g i e s
E(0) ,E(1) . . . E(NE�1) = energy va lue s in eV
NP = number o f c o e f f i c i e n t s
Cf = polynomial c o e f f i c i e n t f o r o rde r s 0 up to NP�1
Cp = polynomial c o e f f i c i e n t f o r o rde r s 1 up to NP
⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤
NE
E(0) NP
Cf (0 ) Cp(1)
Cf (1 ) Cp(2)
. . . . . .
Cf (NP�1) Cp(NP)
. . .
E(NE�1) NP
Cf (0 ) Cp(1)
Cf (1 ) Cp(2)
. . . . . .
Cf (NP�1) Cp(NP)

Histogram

This simplified functional form, F (µ,E), is used to calculate the remaining formatted

data, either in histogram or tabulated form. The equal probability histogram is calculated

using Equation 3.2.2, where k is the bin number andK is the total number of bins required.

µkZ

�1.0

F (µ,E)dµ =
k

K
(3.2.2)

This histogram format can be represented as a piece-wise polynomial as given by Equation

3.2.3, where the c values correspond to the height of each bin to give an area of 1/K.

In this way, an arbitrary number of histogram bins can be systematically investigated in

comparison to the MCNP specific 32 bin histogram.
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H(µ,E) =

8
>>>><

>>>>:

c0 : �1.0 6 µ 6 µ1

. . .

c
K�1 : µ

K�1 6 µ 6 1.0

(3.2.3)

The limits of each bin in µ are calculated based on an iterative solution to the integral

of F (µ,E). This method only works due to the normalisation of the distributions and

measures have been taken to ensure that this is preserved. Listing 3.3 depicts the format

of these data as output to Turnip. For each energy entry, the full µ range must be

accounted for; the number of bins as determined by NB are each associated with an

upper and lower limit, so MUL(0) will always equal �1.0 and MUU(NB) will always be

1.0. Each bin is presented along with their normalised and cumulative probabilities. The

histogram format is widely accepted by radiation transport codes, though the number of

bins and the strictness varies; as previously mentioned MCNP will only accept 32 bins.

Listing 3.3: Representation of histogram data format for Turnip

⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤
Comment + Header [500 cha ra c t e r s ]
example f i l e ZZAAA MF MT HST. bin
NE = number o f e n e r g i e s
E(0) ,E(1) . . . E(NE�1) = energy va lue s in eV
NB = number o f histogram bins a s s o c i a t ed with E
MUL, MUU = lower /upper mu l im i t s f o r binned data
PDF = histogram value o f PDF
CDF = histogram value o f CDF
⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤
NE
E(0) NB
MUL(0) MUU(0) PDF(0) CDF(0)
MUL(1) MUU(1) PDF(1) CDF(1)
. . . . . . . . . . . .
MUL(NB) MUU(NB) PDF(NB) CDF(NB)
. . .
E(NE�1) NB
MUL(0) MUU(0) PDF(0) CDF(0)
MUL(1) MUU(1) PDF(1) CDF(1)
. . . . . . . . . . . .
MUL(NB) MUU(NB) PDF(NB) CDF(NB)
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Tabulated

The final format considered is the tabulated cumulative distribution function, with linear

interpolation between points. The user will input the required number of data points, t,

these are then equally spaced in angle, ✓, before being converted into cosines, µ. At each

value of µ, the functional form is evaluated. These points are then linearly interpolated

to produce a continuous distribution. Equation 3.2.4 shows the basic construction of this

distribution.

T (µ,E) =

8
>>>>><

>>>>>:

T (�1.0) + (µ+ 1.0)
(T (µ1)� T (�1.0))

(µ1 + 1.0)
: �1.0 6 µ 6 µ1

. . .

T (µ
t�1) + (µ� µ

t�1)
(T (1.0)� T (µ

t�1))

(1.0� µ
t�1)

: µ
t�1 6 µ 6 1.0

(3.2.4)

One additional step must be undertaken to preserve the normalisation required for the

sampling. The total area is calculated simply with the trapezium rule, if this di↵ers from

the required value of 1.0, the height of all points are divided through by the area. The

data are then output to the Turnip files, with the representation shown in Listing 3.4.
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Listing 3.4: Representation of tabulated data output format for Turnip

⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤
Comment + Header [500 cha ra c t e r s ]
example f i l e ZZAAAMFMT TAB. bin
NE = number o f e n e r g i e s
E(0) ,E(1) . . . E(NE�1) = energy va lue s in eV
NP = number o f data po in t s a s s o c i a t ed with E
MU = mu value
PDF = value o f PDF eva luated at mu
CDF = value o f CDF eva luated at mu
⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤
NE
E(0) NP
MU(0) PDF(0) CDF(0)
MU(1) PDF(1) CDF(1)
. . . . . . . . .
MU(NP) PDF(NP) CDF(NP)
. . .
E(1 ) NP
MU(0) PDF(0) CDF(0)
MU(1) PDF(1) CDF(1)
. . . . . . . . .
MU(NP) PDF(NP) CDF(NP)

Optimisation

Swede-Mash has the additional capability to produce histogram and tabulated data that

have been optimised with respect to file size, sampling time and accuracy. In a perfect

world, it would be possible to have exact representations of di↵erential data, with no loss

of computational e�ciency. Unfortunately this is not the case, to optimise just one of

these parameters is typically at the cost of the others. To optimise based on file size,

it is trivial to set the tabulated and histogram formats to have the minimum number of

bins/points. In some instances this is not an issue, but with mid to high mass or high

energy distributions this degrades the data to the point that they are non-physical. To

optimise for sampling time, histogram format should always be used, but this again risks

information loss. To optimise for accuracy, the C
v

metric is used to quantify accuracy

as introduced in Section 2.3. The implementation of the C
v

will be described in Section

3.2.3 with respect to the analysis module of Swede-Mash. An arbitrary level of accuracy

is hard-coded into Swede-Mash, currently this set to 1.0% to be commensurate with the
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expected statistical precision of the Monte-Carlo simulations, but can easily be changed

dependent on the level of optimisation required. To optimise the histogram data, a single

histogram bin is used initially; the original and processed forms are evaluated on a fine

µ grid and the di↵erences used to calculate the C
v

. If this is higher than the set level of

accuracy, two bins are used and Swede-Mash will recalculate the µ limits and C
v

. The

process repeats iteratively with an increasing number of bins until the required accuracy

is achieved. The data are then output in the same way to the Turnip files. For tabulated

data, the method is identical, i.e. an initial number of points is trialled, if the resulting

C
v

is higher than the set-level, more points are added. This iterative process is much

slower to produce the processed files than having a fixed number of bins/points, but the

file handling and processing methods remain completely transparent and controllable.

3.2.3 Analyse ENDF

There is one analysis method built in to Swede-Mash that is used throughout the code

and further data analyses; the general form of the C
v

as given by Equation 2.3.2. In the

practical sense, the original, functional form, F (µ,E) is evaluated for each energy at 105

equally spaced points in µ. The processed distributions are evaluated on the same µ grid;

the values of F (µ,E), H(µ,E) and T (µ,E) are calculated according to Equations 3.2.1

to 3.2.4 in Section 3.2.2. The number of points was determined by a simple convergence

study. Figure 3.9 shows the calculated C
v

for the histogram format with respect to the

unprocessed format for the elastic scattering reactions in 56Fe and natC. The C
v

converged

within negligible errors by 105 points and the spacing in µ is smaller than the calculated

bin spacing ensuring all regions are sampled. In 56Fe, the scattering distribution is highly

anisotropic, hence C
v

is much higher overall. The extreme forward bias means that the

bins are very narrow in the forward scattering region and a high sampling rate is required

to populate these bins for the C
v

calculation and hence reduce the errors. Whereas natC
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is closely isotropic, so the bins are relatively evenly spaced in µ and a lower sampling rate

is required to populate the entire distribution for the C
v

calculation. This results in a

much lower overall C
v

and convergence at just 50 sampled points.

Figure 3.9: Convergence of the coe�cient of variation as a function of sampled points. The red
points correspond to the 56Fe(n,el) fusion relevant reaction channel at 14.1 MeV, and the blue shows
the natC(n,el) fission relevant reaction channel at 2.0 MeV. These data are based on the processing of
functional data into the 32 bin, equal-probability histogram shown in Figure 2.13.

The error on the coe�cient of variation was calculated from the variance of the variance,

in this case the variance of the root mean square deviation D
r

(or standard deviation, s)

with the number of samples. From [70, p. 199], the variance of the variance s2, is defined

by Equation 3.2.5, where N is the number of samples, µ4 is the fourth central moment of

the distribution and µ2 is the second central moment, or variance.

�2(s2) =
1

N

✓
µ4 �

N � 3

N � 1
µ2
2

◆
(3.2.5)
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The kurtosis can be substituted into this equation as the normalised fourth moment as

shown in Equation 3.2.6 [71, p. 27]. The kurtosis is a measure of how well the distribution

represents the normal; in the case of a perfect normal distribution Equation 3.2.6 is equal

to zero.

k =
µ4

µ2
2

� 3 (3.2.6)

This is substituted into Equation 3.2.5, and given that the standard deviation is the

square root of the variance the error on the standard deviation can be calculated from

this relationship. For large values of N , the error on the standard deviation, �(s) is

calculated from Equation 3.2.7.

�(s) = s

r
k + 2

N
(3.2.7)

Sampling at 105 intervals results in convergence to the expectation value of the C
v

within

negligible errors for 56Fe(n,el). Fewer samples are required to achieve the same error for

more isotropic systems, as shown for natC(n,el), so the number of intervals is deliberately

set to be conservative. The C
v

will also be used to quantify the di↵erences between

Monte-Carlo simulation results. In these cases, assuming a high enough level of sampling,

the error on the C
v

will be calculated through the propagation of statistical errors as a

conservative estimate. Figure 3.10 shows how this analysis module has been implemented

within Swede-Mash.
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Figure 3.10: Flow diagram for the analyse module of Swede-Mash. Data are read from the pro-
cessed Turnip binaries one energy entry at a time. The three formats are evaluated on a µ grid, of 105

equally spaced points. The C
v

is calculated as a comparison between histogram-functional and tabulated-
functional. Lookup tables of E, C

v

pairs are produced, and full data are output for the entry closest to
the target energy.
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3.3 Analysis techniques

Section 3.2.3 covered the point-wise analysis for comparing the original ENDF format to

the processed variations with respect to accuracy; this is measured with the coe�cient

of variation, C
v

and the maximum di↵erence, �
m

. When using nuclear data within the

Monte-Carlo radiation transport codes there are other considerations such as the compu-

tational burden associated with sampling from the di↵erent regimes. Simple Monte-Carlo

geometries are used to study the propagation of pre-processing di↵erences to macroscopic

quantities, such as surface current. The model complexity is increased throughout the

analyses to determine where and how, within a full working model, the data format e↵ects

global parameters.

Figure 1.6 within Chapter 1 showed the MCNP model of ITER that has been widely

used within the fusion community to investigate the safety and e�ciency of the proposed

design. Due to the symmetry of the tokamak, a 40� segment is modelled to reduce the

computational burden of running the full geometry. To populate this model with neutrons,

109 source particles are required. This equates to 9.4 days of total computational runtime

[72], and 866 MB of nuclear data loaded into memory. To quantify the e↵ect of the data

processing, specifically with respect to fusion simulations, isotopes within close proximity

to the plasma of the ITER model were analysed. The selected isotopes are listed below,

and their purpose within a fusion reactor are given in Table 2.1:

• 1H

• 16O

• 52Cr

• 56Fe

• 63Cu

• 90Zr

• 184W
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At fusion energies of 14.1 MeV, scattering reactions are most probable. Figure 3.11 shows

the proportion of elastic and inelastic scattering cross sections with respect to the other

possible channels.

Figure 3.11: Interaction cross-sections shown as a fraction of the total for each fusion relevant isotope
at 14.1 MeV. In all cases elastic scattering (red) is the largest contributor to the total. The inelastic
scattering data (orange) are the sum of all inelastic levels and the remaining data are the sum of all other
contributors.

For the relevant isotopes, Figure 3.12 shows the elastic scattering angular distributions

on a polar plot. The elongated distributions correspond to a forward biased, and highly

anisotropic distribution typically associated with high mass and high energy. These reac-

tions are the most a↵ected by the processing methods described in Section 3.2.2.

Though the scattering reactions for seven di↵erent fusion relevant isotopes are considered

as part of this work, the detailed analysis of 56Fe will be used for demonstration purposes

in Chapter 4. This is a very well known and well studied isotope; it is a major component

of steels in nuclear facilities and has been the subject of many years of experimentation

and validation. The nuclear data files produced for 56Fe are considered the best case in

terms of original data, i.e. non-traditional materials such as 63Cu are less well determined.
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Figure 3.12: Polar plot of cumulative elastic scattering distributions for the fusion relevant isotopes
at 14.1 MeV. An elongated distribution, such as 184W implies highly anisotropic scattering; whereas the
wider distributions, such as 1H, implies closely isotropic scattering.

3.3.1 Simple Monte-Carlo

Traditional Monte-Carlo radiation transport codes such as MCNP are very strict in their

input requirements, and limited in the potential output. It is non-trivial to encourage

general purpose codes to provide the necessary information to properly investigate the

e↵ects of using di↵erent sampling schema for angular distributions. The Turnip Monte-

Carlo code was developed as part of this work to study the sampling regimes without

the complexities of geometry, variance reduction and transport. Swede-Mash produces

processed binary files that are Turnip compatible, from the same ENDF libraries that are

used (after processing with NJOY) in MCNP. The sampling mechanisms employed by
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MCNP for current formats are replicated within Turnip, whilst allowing for higher levels

of flexibility and additional sampling methods such as functional data. Figure 3.13 shows

how the functional, histogram and tabulated formats are sampled.

Figure 3.13: Schematic of the three sampling regimes implemented in Turnip. A cumulative probability
distribution is shown with respect to scattering cosine, µ. For a random number ⇠, sampled uniformly
between 0 and 1, the sampled scattered cosine, µ

s

is calculated from the cumulative distribution. The
three formats, from left to right, are functional (black), histogram (green) and tabulated (red). Further
details of the sampling schemes are given in Table 3.4. Figure is adapted from [73].

For the original, or functional data, the solution for µ is found iteratively, within a toler-

ance of 10�5. The average number of calculations required is equal to L log2 (10
5), where

L is the order of the polynomial to be calculated. For example, a 4th order polynomial, 67

calculations are required on average and for a 12th order, 200 are required. For histogram

data, only two calculations are ever required; one to locate the bin and the other to dis-

tribute the value of µ between the bin limits. Tabulated data requires a binary search

of the points followed by an additional calculation to distribute µ between the linearly

interpolated points. This equates to an average of log2 (M) + 1 calculations, where M is

the number of tabulated points. For 100 tabulated points, this requires an average of 8

calculations. Table 3.4 summarises the three di↵erent sampling regimes.
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Table 3.4: Summary of sampling schemes of angular data for the equal-probability histogram, tabulated
and functional formats with respect to ⇠ sampled between 0 and 1.

Functional Histogram Tabulated

Binary search of
polynomial of order L
for solution P (µ) = ⇠
within a tolerance of
10�5, where

P (µ) =
LP
l=0

a
l

µl

Bin k of K selected
based on k = bK⇠c. µ
calculated by:
µ = µ

k,L

+ (K⇠ �
k)(µ

k,U

� µ
k,L

)

Binary search for
channel m of M such
that P (µ

m

, L) 6 ⇠ <
P (µ

m,U

). Linearly
interpolate between
µ
m

, L and µ
m

, U to solve
for µ.

Average number of
calculations to solve:
L log2(10

5)

Absolute number of
calculations to solve: 2

Average number of
calculations to solve:
log2(M) + 1

The simplified flow diagram for Turnip can be seen in Figure 3.14, the user defines the

isotope, reaction channel, sampling type, number of forced events, number of histories

and initial neutron energy.

Figure 3.14: Generalised flow diagram for Turnip. The isotope, ISO, reaction channel, MT , sampling
type, TY PE, and number of forced scatters, FSC are initialised. The databases are built and the Monte-
Carlo routine is run for NPS source particles. The resulting tallies for angular and energy distributions
are output at the end of the run, along with any computational run data. For Turnip, the Monte-Carlo
routine follows the process as shown in Figure 3.15.

For each history, the neutron will undergo the specified number of forced events. As an

example, two elastic scatters were forced with 56Fe(n,el) at 14.1 MeV. All neutrons are

born with the same energy and are mono-directional, it will sample the scattered cosine

from the nearest data set to 14.1 MeV. The energy loss is calculated using Equation

2.1.4 and the direction vector calculated from Equation 2.1.1-2.1.3. The database will be
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searched for the next closest energy entry to the updated energy and the scattering cosine

sampled again. The final energy and direction are histogrammed for the output. This

Monte-Carlo routine, without transport can be seen in Figure 3.15.

Turnip not only outputs the event data, but it also outputs the memory requirements for

the files and built database sizes, and the time requirements for the di↵erent sections of

the code, i.e the database set-up times, and Monte-Carlo loop. With the combination of

computational and accuracy metrics, the overall value of each format can be quantified.

It should be noted that the computational e�ciency, whilst important, is considered to

be of lower overall value than the accuracy of data representation.
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Figure 3.15: Monte-Carlo routine within Turnip, expansion from Figure 3.14. For NPS source parti-
cles, the angular distributions are sampled from the databases and the particle properties are updated.
FSC determines the number of forced scatters requested, if this is greater than one, the particle is not
transported in space but undergoes subsequent direction and energy changes based on the sampling of
angular distributions. The event and exit particle properties are tallied. The stages highlighted in yellow
correspond to the sampling of the di↵erent angular formats.
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3.3.2 Full Monte-Carlo, basic geometries

To properly determine the implications of using the di↵erent data processing formats on a

larger scale simulation, an increase in complexity is required. It is still necessary to retain

complete control over the input data, so Turnip was altered to include transport. By using

the original code as a base, transport through simple, known geometries was implemented.

Further additions include the ability to sample multiple reaction channels and materials

and several di↵erent source options. By increasing the complexity of the Monte-Carlo

simulation to accommodate a more physical scenario, the clarity of the output data will

be reduced. The implementation of geometry tracking, multiple reaction channels and

materials will reduce the sampling of each distribution, potentially blurring the e↵ects

from di↵erent data formats. However, the level of control and flexibility required with

respect to input data and sampling is retained. The flow diagram for the transport based

Monte-Carlo routine can be seen in Figure 3.16, and replicates many of the techniques

implemented in MCNP.

To validate the behaviour of Turnip, and to extrapolate the results to a more general

Monte-Carlo code, equivalent geometries were constructed in MCNP. There are three main

di↵erences between the codes: data files, non-analogue transport and reaction channels.

MCNP will accept the NJOY processed ACE files, whereas Turnip requires data files

produced with Swede-Mash. MCNP will implement variance reduction techniques by

default, but Turnip only transports neutrons through analogue methods. MCNP will

sample from all available reaction channels, whereas Turnip will sample from elastic and

discrete level inelastic only.

For a fair comparison, all possible non-analogue components were turned o↵ within MCNP

and both codes sampled from the 32 equal-probability histogram format. The MCNP data

files were processed with the most recent version of NJOY, NJOY2012 for use in MCNP5.

MCNP will tally neutron currents through surfaces, but this will include contributions
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Figure 3.16: Flow diagram for the updated Turnip Monte-Carlo routine, this is closely related to the
flow diagram in Figure 3.15, but with the inclusion of spatial transport throughout simple geometries,
multiple reaction channel sampling and multiple material sampling. The stage highlighted in yellow
corresponds to the sampling of the di↵erent angular formats. Figure 3.15 shows this stage in detail and
is not repeated here.
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from reaction channels that are not currently available in Turnip. To avoid this problem,

all MCNP and Turnip simulations were required to produce an additional output file

containing all particle histories and events (PTRAC files). From here, the MCNP output

was filtered to exclude all reaction channels not implemented within Turnip. Both codes

are then tallied in the same way, by counting the number of crossings at each surface and

energy. The output files produced from MCNP required parsing into a similar format

as Turnip for tallying purposes. This was achieved using an additional code known as

Parsnip3. This was developed as part of this work, and has since been released as an open

source tool within the wider MCNP community [74].

Benchmarking with simple geometries, prior to increasing the complexity, is to determine

how comparable the two codes are, and validate the processing capabilities of Swede-

Mash in comparison to NJOY. By showing that MCNP and Turnip are comparable when

presented with the same format of di↵erential data, the potential implications of using

non-standard formats can be inferred from their behaviour in Turnip.

Slab

A slab of isotopic, unit density material was created within Turnip and MCNP for each

isotope. The source was defined as a mono-directional beam of 14.1 MeV neutrons, in-

cident on the front face of the slab at (0,0,0). Additional surfaces were added to the

volume to measure the energy dependent neutron current with respect to depth in the

slab. To ensure that the results were comparable between codes and isotopes, the spac-

ing of these surfaces was set to be in units of mean free path (MFP). This is calcu-

lated as 1/(⌃(n,el)(14.1MeV) + ⌃(n, n1⇤)(14.1MeV)) for Turnip, where ⌃(14.1MeV) =

N
D

�(14.1MeV) is the macroscopic cross-section for each interaction type. The imple-

mented sections were equivalent to a thin film (0.125 mean free paths), up to a thick slab

(5 mean free paths). The example geometry can be seen in Figure 3.17.

3Parsnip is not an acronym, though it is a parser so the name is somewhat related.
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Figure 3.17: Schematic for the slab geometry run with Turnip and MCNP, dimensions shown in red
are measured in terms of mean free paths. For each isotope at unit mass density, the mean free path of
14.1 MeV neutrons in the slab was calculated and used to set the slab thickness. The source used here
is a mono-directional, mono-energetic beam of neutrons, incident on the front face of the slab at (0,0,0).

With reference to Equation 2.1.7, the spacing of the tally surfaces gives a range of expected

interaction percentages between 12 and 99%, i.e. after 5 mean free paths only 1% of

the beam should remain unreacted and the rest will have sampled from the processed

di↵erential distributions at least once. Given the width of the slab is 2 mean free paths,

there is a high probability that neutrons will scatter out of the volume after a single

event, and hence the neutron currents will reflect the input format. Turnip simulations

were run with the standard MCNP data formats and additional alternatives. MCNP

simulations were run with the 32 equal-probability histogram format, with the mean free

path calculated as 1/⌃
total

(14.1MeV) for each isotope.
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Sphere

A simple sphere, of isotopic, unit density material was simulated for each of the individual

isotopes. An isotropic neutron source with an energy of 14.1 MeV, was placed at the centre

of the sphere. Several concentric spherical surfaces were inserted for tallying, from which

the neutron current throughout the volume was measured. Figure 3.18 shows the simple

geometry used.

Figure 3.18: Schematic for the spherical simulation run with Turnip and MCNP, radial distances shown
in red are measured in mean free paths. For each isotope at unit mass density, the mean free path of
14.1 MeV neutrons was calculated and used to set the shell radii. An isotropic, 14.1 MeV neutron source
was placed at the origin. The region beyond the external bounding surface is set to be void, where no
neutrons will be tracked.

Radii range from 0.125 mean free paths to 5 mean free paths. This was implemented in

both Turnip and MCNP, and run with the same data formats as the slab geometry. The

spherical geometry will demonstrate the di↵erences due to data format over many scatters;

the neutrons are born at the centre of the sphere and must pass through a minimum of 5
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mean free paths of material before it can escape. There is a 1% chance that neutrons will

have not interacted at the point at which they terminate. The remaining 99% will have

scattered at least once, but the low escape probability of the geometry means that many

consecutive scatters are likely.

3.3.3 Real-world MCNP simulations

To determine how real-world simulations are a↵ected by the data format of di↵erential

data, two models, both widely used within the fusion community, have been chosen. The

first model is the port-plug mock-up as seen in Figure 3.19 and is one of the standard

ITER benchmark studies [75].

Figure 3.19: Top image shows the schematic of the port-plug y-z and x-y planes, with dimensions
(red) given in cm. The bottom image shows the MCNP geometry, with additional surfaces introduced at
intervals for tallying. The physical representation remains identical [75]. Note that additional features
on the lower image are artefacts of the MCNP plotting utility and not the geometry.

This is typically used to calculate the shut-down dose after di↵erent simulated operational

modes, and for variable lengths of irradiation time. Examples of its use can be found in

[76] and [77]. The model is run with MCNP and a distributed neutron source. The

resulting energy dependent neutron flux throughout the geometry is calculated. For shut-
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down dose calculations these data are passed to an inventory code, such as FISPACT-II

[78], where the activation due to the neutron flux is determined. The resulting gamma

flux profile is inserted back into the original MCNP geometry and is run to determine the

secondary particle behaviour. Between the two codes, a shut-down dose can be calculated

at various cooling times. The port-plug model is a natural progression from the spheres

and slabs, as the geometry is relatively simple and only contains two di↵erent materials.

The second model is a segment of the DEMO tokamak, which is used for the testing of

di↵erent tritium breeding scenarios and is shown in Figure 3.20.

Figure 3.20: Segment (22.5�) of the proposed DEMO design [79]. The tritium breeding blanket modules
surround the D-shaped plasma, and are split into 5 individual segments. This provides a spatial distribu-
tion of tritium production within the model. The sum of all blanket reaction rates is used to calculate the
total tritium production. Each module has been numbered for clarity and the three modules highlighted
(black dashed boxes) are used additionally to measure the net neutron current and other reaction rates.
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The neutrons within the model are generated by a parametric plasma source, resulting in

a range of energies, directions and spatial distribution. The neutron flux is determined

within the di↵erent blanket modules and is subsequently used to calculate reaction rates

for tritium production in each module. For a known level of tritium consumption and

neutron flux, the breeding ratio can be calculated globally [80]. Table 3.5 shows the

source parameters associated with the toroidal plasma neutron source. Each neutron is

born within the plasma at 14.1 MeV, but will interact with the surrounding plasma, hence

the energy will be distributed when it reaches the plasma facing components.

Table 3.5: Parameters for the plasma based neutron source in the DEMO model. The location of each
source neutron was determined by the plasma density and the direction sampled as an isotropic emission.

Parameter Value

Major radius (m) 9.00
Minor radius (m) 2.25
Triangularity 0.33
Peaking factor 1.30
Elongation 1.66
Energy (MeV) 14.10

These models are too complex in geometry, source definition and output requirements

to be easily replicated in Turnip. The simulations were run with MCNP only, with the

two allowed data formats. To obtain additional information from the di↵erent sampling

mechanisms, the energy dependent neutron current was tallied at stages throughout both

models and several reaction rates calculated. Based on these results, it is possible to

determine the sensitivity of the models to the currently available formats, and infer the

e↵ect of alternative data formats based on the simple benchmarking in Turnip.
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Chapter 4

Results

To demonstrate the e↵ect of pre-processing angular distributions within the context of

fusion neutronics, 56Fe will be used as the exemplar case. Each stage of the analysis will

be shown in detail, with comparisons where necessary. The e↵ect of pre-processing on the

remaining fusion relevant isotopes is presented as a summary of the same analyses. These

cases are used to study the sampling process in detail, but are not physical. The results

from the port-plug benchmark and DEMO models are presented to demonstrate the e↵ect

of data format on real-world simulations currently used within the fusion community.

4.1 56Fe example

The ENDF data file for 56Fe was taken from the ENDF/B-VII.1 data library. This library

is considered the industry standard, general-purpose library. For fusion the most common

neutron energy within close proximity to the plasma is 14.1 MeV, the following analyses

are performed on the 56Fe(n,el) data set closest to this value. Even though this is one of

the best evaluated materials, the closest angular distribution is at 13.57 MeV.

4.1.1 Point-wise

The ENDF file was passed to Swede-Mash to parse and extract the cross-sections and dif-

ferential cross-sections associated with the elastic scattering reaction. The cross-sections
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were directly output to Turnip compatible files. The di↵erential data with respect to

angle were primarily processed into the MCNP standard 32 equal-probability histogram

format. Figure 4.1 shows the original and processed distributions for the fusion relevant

56Fe(n,el) reaction channel, with an incident neutron of 14.1 MeV alongside the fission

relevant natC(n,el) reaction channel at 2.0 MeV.

Figure 4.1: Elastic scattering distributions for the fission reaction, natC(n,el) at 2.0 MeV (blue) and
the fusion reaction 56Fe(n,el) at 14.1 MeV (red). The normalised probability, F (µ) is given on a log scale
as a function of the scattering cosine, µ, in the centre-of-mass frame. Processed distributions are shown
with the dashed lines. The feature at µ = 0.4 in the 56Fe distribution is significantly overestimated by the
processed format, though over the bin the average di↵erence is zero. Inset shows the forward scattering
region on a linear scale. Data for natC and 56Fe are taken from the ENDF-B/VII.1 library [81]

The distribution for 56Fe at fusion energies is highly featured, with a distinct forward

bias. The natC reaction channel is closely isotropic by comparison. The overlaid processed

distributions at these energies show the locations at which the original distributions are

mis-represented. In 56Fe the low-probability back-scattering region is crudely discretised

by the processed format, most notably the region around µ = 0.4. The original forward-

scattering region is smooth, with a high rate of change and is converted into a step function

that continually over and under samples the original (with an average di↵erence of zero).

For natC, the isotropy and lack of features results in a close representation to the original.
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The coe�cient of variation for these angular distributions were calculated to be 11.0%

and 0.6% respectively. Table 4.1 presents the accuracy metrics used within this analysis.

Table 4.1: Point-wise results of the fission and fusion reaction channels presented in Figure 4.1.

Reaction channel � C
v

(%)

natC(n,el) 2.0 MeV -0.012 0.6
56Fe(n,el) 14.1 MeV -0.265 11.0

The C
v

represents the variation of di↵erences between the original and processed forms.

For 56Fe the maximum di↵erence is reach -0.265, or 53.0% if normalised. For natC the

maximum di↵erence is -0.012, or 2.4%. It is worth noting, that within MCNP simulations,

a statistical error of 10.0% or higher is considered to be questionable, below 10.0% the

simulation result is generally considered reliable depending on the application [23, p1-

7]. Ideally simulations will achieve a much lower level of statistical uncertainty, and

higher level of convergence as a result, where di↵erences in the pre-processing may become

apparent.

The C
v

analysis was performed on each of the elastic scattering distributions within the

56Fe ENDF file. Figure 4.2 demonstrates how the C
v

varies over the entire energy range

covered by the distributions. At low energy (10�5�2.5 MeV), the data density is far higher

than the remainder of the file; of the 375 energy entries, 348 are below 2.5 MeV (93%) and

only 27 exist between 2.5 and 20.0 MeV (7%). The low energy distributions show some

variation between isotropic and slightly featured resulting in fluctuations within the C
v

,

i.e. featured distributions result in a higher C
v

than closely isotropic ones. Between 2.5

MeV and 15.0 MeV the C
v

is well behaved, tending to a constant value (11% for histogram

format, 1% for tabulated by design). Above 15.0 MeV, there is a step change in C
v

due

to the increase in forward bias and additional features appearing in the distribution.
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Figure 4.2: Top plot shows C
v

as a function of energy for 56Fe elastic scattering reaction for the accepted
MCNP formats, 32 equal-probability histogram (red) and optimised tabulated data (blue). Bottom plots
show original (un-processed) distributions with respect to energy and scattering cosine, coloured by the
C

v

associated with the processed format.
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Up to this point, only single elastic scatters have been considered. Figure 4.3 shows the

potential scattering distributions for two consecutive elastic events in 56Fe, with an initial

neutron energy of 14.1 MeV when sampled from the unprocessed and 32 equal-probability

histogram format. The maximum energy loss from one scatter is less than the di↵erence

in energy to the next distribution, so there is a high probability that within a radiation

transport simulation the same distribution will be sampled for further scatters. Compar-

ing the histogram format to the functional format shows the point of largest di↵erence at

µ1 = µ2 = 0.4. This is consistent with the distributions in Figure 4.1, where the region

of low probability at µ = 0.4 is over estimated by the 32 equal-probability histogram

format. At its worst point, the histogram format is 9 times that of the functional, though

the absolute value is small. It is not possible to visualise further consequential scattering

events with this method so a simple Monte-Carlo model is used to simulate further events.

112



Figure 4.3: Probability of scattering into µ1 followed by µ2 for the original format (top) and the
processed 32 bin histogram (middle). The di↵erence between the two surfaces are shown in the bottom
plots. The area of greatest di↵erence corresponds to µ1 = µ2 = 0.4.
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4.1.2 Turnip

The processed data from Swede-Mash was input to Turnip. Monte-Carlo simulations

were performed to first validate the data files produced by Swede-Mash and the ability of

Turnip to sample the various angular distributions.

Forced scatters, current formats

Within Turnip, a single scatter in 56Fe at 14.1 MeV was forced for an increasing number

of source neutrons, sampling from the functional, 32 bin histogram and optimised tabu-

lated formats. The exit cosines were scored after a single event to reconstruct the input

distribution in 100 equally spaced µ bins. The scored behaviour is shown in Figure 4.4 for

102 � 105 source neutrons. At low numbers of source neutrons (below 104), the di↵erent

formats are indistinct, and converge on to the expected distributions by 105 histories.

Figure 4.4: Plots show the scored exit angles with µ for an increasing number of source neutrons, after
one forced elastic scatter in 56Fe at 14.1 MeV. The top row shows the unprocessed, functional data, the
middle shows the 32 equal-probability histogram and the bottom row shows the optimised tabulated
data. The input distributions are shown on each plot with the black dashed line.
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Figure 4.5 shows the calculated C
v

for the histogram and tabulated formats as compared

to the functional output distribution.

Figure 4.5: Calculated C
v

with respect to the number of source neutrons (NPS log scale) for the
distributions shown in Figure 4.4. These are calculated between the 32 bin histogram or optimised
tabulated formats, compared to the equivalent functional distributions. Lines between points are shown
to guide the eye only. Black dashed lines correspond to the expected C

v

as calculated from the point-wise
analysis.

Within errors, the histogram and tabulated formats are indistinct until a minimum of 105

source neutrons. After this point, the histogram and tabulated distributions converge to

the expected values of 11% and 1% respectively. This suggests that for these distributions,

they must be sampled a minimum of 105 times to be able to see the e↵ect of implementing

alternative data formats. If the distributions are not fully populated within a radiation

transport simulation, the statistical uncertainty will reduce the possibility of seeing any

variations.

Turnip has several modes of operation, it is possible to force a fixed number of scatters

sampled from the angular distributions in three dimensions. In this case a 14.1 MeV source

neutron is forced to interact at the origin, with a positive direction along the z-axis. It

undergoes the angular change in the lab frame due to the sampled µ in the centre-of-

mass frame and the energy is altered according to Equation 2.1.4. The particle is not
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transported between collisions to generate statistics on the sampling process without the

added complexities of a physical system. If one forced scatter is requested, the particle

is then transported to the surface of an arbitrary sphere where its energy and exit angle

are scored in the lab frame. Figure 4.6 presents the data for 56Fe, with varying numbers

of forced scatters for the processed formats.

Figure 4.6: For a number of forced scatters, sampled from the 32 bin histogram (top row) and optimised
tabulated (bottom row), the exit position is plotted on an arbitrary sphere. Colours denote the point
density, where there is a large variation in colour, there is a large variation in the scattered distributions.
For the cases where there is little colour variation, such as after 10 scatters, there is a relatively even
distribution of points over the surface. Areas of low density as seen at the poles is an artefact of the
conversion from µ to ✓. Figure 4.7 plots these data with respect to µ.

The positions are plotted on the surface of the problem sphere and are coloured by the

density of points. For one scatter it is possible to see the slight di↵erence between the

32 histogram and optimised tabulated data. The histogram data has clear bands cor-

responding to the histogram bins, while tabulated data has a much smoother transition

between regions of high and low probability. There is a visual di↵erence between the two

corresponding to the µ = 0.4 region. After two scatters the di↵erence between the formats

has visibly reduced. After 10 scatters the resulting distributions for both formats result

in isotropic distributions in µ.
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For multiple scatters sampling from the 32 equal-probability histogram and optimised

tabulated data, the scattering cosines in the lab frame were tallied. The resulting proba-

bility distributions can be seen in Figure 4.7. In conjunction with Figure 4.6 there are no

obvious di↵erences in the lab frame angular distributions after multiple scatters.

Figure 4.7: Sampled data from Turnip for 1, 2 and 10 forced scatters with respect to the lab frame
cosine, µ

lab

for 105 source neutrons. The top figure shows the resultant distributions for the 32 equal-
probability histogram (H), the bottom figure shows the distributions for the optimised tabulated data
(T).
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Figure 4.8 shows the variation of C
v

with the number of forced scatters. For each scatter,

the resulting lab frame distribution of the functional data was considered to be the ideal

case and compared to the equivalent distribution from the processed data.

Figure 4.8: Calculated C
v

as a function of forced scatters for 56Fe(n,el) at 14.1 MeV (red) and natC(n,el)
at 2.0 MeV (blue), as sampled from the 32 equal-probability histogram format. Inset shows the behaviour
of the maximum di↵erence as a function of forced scatters. The dashed lines are fitted to the form
a exp (�bN

s

) + c [82].

The 32 equal-probability histogram has an initial C
v

of 11.0%, which reduces to approx-

imately 1.0% after 4 scatters. Beyond 4 scatters the C
v

drops below the statistical limit

on each tallied bin (1.0% Poisson error). The distributions in lab frame angle show no

significant di↵erences after multiple, statistically identical events. Each distribution in µ

corresponds to a similar distribution in energy. To determine the e↵ect of these di↵erent

formats on the energy spectra, multiple scatters were forced and the resulting exit en-

ergy distributions calculated. Figure 4.9 shows the energy distributions for tabulated and

histogram data for up to 9 scatters. The features associated with the di↵erent formats

remain distinct for the first 5 scatters. After 5 scatters, the features begin to merge and

the di↵erences between the histogram and tabulated formats are reduced.
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Figure 4.9: Resulting energy distributions for 1-9 forced scatters in Turnip. Top figure shows the data for
the optimised tabulated format, and the bottom figure shows the equivalent for the 32 equal-probability
bin histogram [T.W. Leadbeater, private communication].
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Figure 4.10 shows the comparison of the 32 equal-probability histogram and optimised

tabulated formats for multiple scatters with respect to the functional format. The op-

timised tabulated results are identical to the functional data within errors. Histogram

data shows clear di↵erences in comparison to the functional data. For one scatter, the

maximum di↵erence is a 203% over-estimate by the histogram format, for two scatters

this reduces to 103%. By 9 scatters the maximum over-estimate is 13%.

Figure 4.10: Comparison of energy distributions for 1, 2 and 10 scatters. The top plot shows the
probability distribution for the 32 equal-probability histogram data and the middle shows the optimised
tabulated data with respect to exit energy. The bottom plot shows the comparison of these scattered
distributions with the equivalent for functional data. Dashed lines correspond to the histogram to func-
tional comparison. Solid lines correspond to the tabulated to functional comparison, and are close to 1,
so cannot be seen individually.
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Figure 4.11 shows the calculated C
v

with respect to the number of scatters for the en-

ergy spectra in each case. The resulting processed distributions are compared to the

unprocessed functional energy distributions. A single scatter has a C
v

of 10.4 ± 1.3%,

this remains constant within errors until after 5 scatters where the C
v

is reduced. By 10

scatters, the C
v

reduced to 6.7±0.6%. The initial scatter has the sharp forward scattering

peak at 14.1 MeV, which shifts to lower energies with consecutive scatters and the asso-

ciated energy loss. The other features, such as the µ = 0.4 region of over representation

by the histogram format, remain visible even after 10 scatters.

Figure 4.11: Calculated C
v

with respect to the number of forced scatters. The values for 32 equal-
probability histogram (red) and optimised tabulated formats (blue) are calculated with respect to the
functional equivalent.

Figure 4.12 shows the variation of the energy distribution associated with the tabulated

data for 1-90 forced scatters. The initial scatter always occurs at 14.1 MeV, and subse-

quent scatters at correspondingly lower energies. The original, asymmetric distribution

tends to a symmetric distribution for a large number of forced events.
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Figure 4.12: Resulting energy distribution from Turnip simulations with 1-90 forced scatters, sampled
from the optimised tabulated data set with 109 source neutrons. The distributions lose features with
increasing numbers of scatters, tending to the closely symmetric distribution at 40 scatters. For further
scatters, the shape of the distribution remains the same, but the peak shifts to correspondingly lower
energies. This behaviour is replicated for all other formats for a large number of forced scatters [T.W.
Leadbeater, private communication].

The resulting energy spectra are more sensitive to the pre-processing format after multi-

ple events when compared to the lab frame angular distributions. With reference to the

angular distributions in Figures 4.7, the features associated with each format are indis-

cernible after two forced scatters. When the equivalent energy spectra are considered in

4.10, there is still a noticeable di↵erence due to the input formats after 10 scatters. The

rate of blurring, or loss of features, with respect to forced scatters is greater in the output

angular distributions than the associated energy spectra, suggesting that energy spectra

are more sensitive.

Forced scatters, alternative formats

The previous section showed the propagation of the two known pre-processing formats

for a forced number of scatters. This section looks at the e↵ect of using variations of

current formats on the computational metrics associated with a simulation. The 56Fe

122



elastic scattering data were processed with Swede-Mash to produce Turnip data files as

described in Section 3.2.2. Formats range from a single histogram bin (isotropic in µ), up

to 512 histogram bins. An equivalent number of tabulated formats were also produced.

For each data set the C
v

of the point-wise distribution was calculated within Swede-Mash.

Turnip was then used to determine the computational runtime and memory requirements

associated with each format. Figure 4.13 shows the variation of C
v

with respect to energy

for the histogram and tabulated data, for the 1-512 bins or channels.

Figure 4.13: Calculated C
v

values for the alternative histogram and tabulated formats. Plots show the
C

v

as a function of energy for all of the elastic scattering distributions within the 56Fe ENDF file. The
di↵erent colours represent the number of histogram bins (left) or tabulated channels (right).

The C
v

increases with incident energy, which is consistent to the forward bias and highly

featured back-scattering region associated with these distributions. Increasing the number

of histogram bins or tabulated channels reduces the C
v

.

For the first four distributions shown (1-8 bins/channels), the spacing between consecutive

C
v

distributions is larger for histogram data than tabulated, i.e. initially increasing the

number of bins in the histogram format results in a larger reduction in C
v

than increasing

the number of tabulated channels. This e↵ect is most obvious above 3.0 MeV. Equal-

probability histogram µ limits are set based on the requirement that each bin must have

an equal area and are calculated from the functional format, i.e. the location of the µ
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value is closely linked to the original distribution and no normalisation is required. The

µ values for the tabulated data are spaced evenly in ✓, where ✓ = arccosµ, i.e. they are

arbitrarily set. The probability value associated with this µ calculated from the original,

functional distribution and normalised to give an integral value of 1.0 over the µ range.

This results in certain features, particularly in the extreme forward and back-scattering

regions, being underestimated. Figure 4.14 shows the unprocessed and processed distri-

butions for 56Fe(n,el) reaction channel at 14.1 MeV for 1-4 bins or channels. After 4

channels, the tabulated µ values are more likely to coincide with a feature within the

distribution and hence provide a better overall representation.

Figure 4.14: Angular distributions of 56Fe(n,el) reaction channel at 14.1 MeV for variations on the
histogram format (top) and tabulated format (bottom). In both cases, the unprocessed, functional form
is represented with the black line. The µ limits for histogram data are determined from the integral of the
functional form. The µ values associated with the tabulated data are equally spaced in ✓, and probability
values are normalised to give a total area of 1.0 for sampling. This results in an underestimate of the
forward scattering region and a poor representation of the back-scatter features.
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The C
v

values for the tabulated format with 8-512 channels show a larger gradient than

the histogram for an increasing number of points, i.e. the reduction in C
v

with respect to

an increased number of channels/bins is greater for tabulated format than the histogram

format. This e↵ect is largely due to the di↵erent interpolation methods, where the linear

interpolation between points can better represent regions with a high rate of change

compared to the histogram. The energy averaged C
v

values were calculated for each

format, and can be seen in Figure 4.15. If a limit of 1.0% average C
v

were to be placed

on the file, histogram format would require an average of 128 equal probability bins

and tabulated data with linear interpolation would require an average of 32 channels.

Low-energy distributions require fewer bins/channels to achieve the set precision and

high-energy, anisotropic distributions require more.

Figure 4.15: Figure shows the file averaged C
v

as a function of bins/channels for the two data types.
Histogram data (red) are consistently higher in C

v

than tabulated data (blue) with linear interpolation.
Dashed lines correspond to a fit of the form aN b, this represents the histogram behaviour well for
all calculated values and is proportional to N�1. Tabulated data does not follow this form until after 4
channels, the reasons are described within the text. From 8-512 channels the tabulated C

v

is proportional
to N�2
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Figure 4.16 shows the C
v

, time and database size as a function of the number of bin-

s/channels for the distribution associated with an incident neutron of 14.1 MeV. All com-

putational metrics are normalised by the result for the 32 equal-probability histogram

format. This removes the variation between files where the number of energy entries

vary and any computational di↵erences between systems and methods. The normalised

runtime and database size show the potential gains or losses with respect to the industry

standard format. The runtime for tabulated and histogram formats behave as expected

from Figure 3.13 and the discussion in Section 3.3.1. The histogram runtime is indepen-

dent of the number of bins, whereas sampling from tabulated data increases linearly with

the number of channels. The database sizes increase linearly with the number of points

for both formats. For a 1.0% C
v

on the 14.1 MeV elastic scattering distribution in 56Fe,

the requirements for each format are marked on the figure and the corresponding compu-

tational metrics calculated from this value. To achieve this level of accuracy, histogram

format requires 428 bins and tabulated format requires 100 channels. There is no change

in sampling time for the histogram format, but optimised tabulated data results in a 1.14

times increase. The memory requirement would increase in both cases, 13 times larger

for the optimised histogram data and 3 times larger for the optimised tabulated data.
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Figure 4.16: Combined data for point-wise analysis and Turnip runtime data. Analytical C
v

values
are calculated for 1-512 equal-probability histogram bins, and 1-512 tabulated channels. Runtime and
database size are normalised by the current 32 equal-probability histogram format. Given a 1.0% C

v

tolerance, the expected gains/losses in runtime and database size are shown with the dashed lines [73].
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Slab geometry

The previous Monte-Carlo simulations demonstrate the use of identical event sampling

to study how data formats a↵ect the simulation in the Lagrangian system. In a practical

radiation transport scenario, various Eulerian quantities are of interest such as particle

currents, energy spectra and doses. The implementation of transport, geometry and mul-

tiple reaction types within Turnip enabled the study of the e↵ects of data pre-processing

on these quantities. The currently available reaction channels are elastic (MT2) and

inelastic (MT51) collisions of neutrons in simple geometries.

A solid, unit-density block of 56Fe, with dimensions of 2 MFP square and 5 MFP deep was

created with intermediate tallying surfaces as shown in Figure 3.17 (Section 3.3.2). These

simulations were run with 107 mono-energetic and mono-directional source neutrons. Each

14.1 MeV neutron was incident upon the front face of the block at (0,0,0), with direction

vector [0,0,1].

Several di↵erent data formats were trialled as shown in Table 4.2. These distributions

were chosen to demonstrate the best, worst, intermediate and current scenarios.

Table 4.2: Tested formats for the slab and sphere geometries. The C
v

values shown correspond to the
comparison of the various processed formats to the functional form for the 56Fe(n,el) reaction channel at
14.1 MeV.

Format C
v

(%) Comments

32 histogram 11.1 MCNP legacy method
Opt. tabulated 1.0 MCNP new method
Functional 0.0 Exact representation of input, best case
1 histogram 318.1 Isotropic in µ, worst case
8 histogram 41.2 Intermediate case
1 tabulated 297.7 Linear in µ, worst case
8 tabulated 119.2 Intermediate case

Section 4.1.2 showed that for a large number of scatters, regardless of the input format,

the final energy and angular distributions in the lab frame tend to the equivalent of an

isotropic distribution in µ. The severely degraded distributions, of one bin/channel, were
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chosen to demonstrate the worst possible case in terms of accuracy, but the best case in

terms of memory requirements.

Figure 4.17 shows the integrated surface currents mapped onto the slab geometry for the

three tested histogram formats. The 32-equal probability histogram data are representa-

tive of the functional and optimised tabulated formats. The 8 equal-probability histogram

is representative of the 8 channel tabulated format and the one bin histogram results are

closely replicated with the one channel tabulated.

Figure 4.17: Total number of surface crossings per source neutron mapped as colour on to the slab
geometry. The first plot shows the integrated values for the 32 equal-probability histogram format, the
second for the 8 bin histogram and the third for the isotropic, one bin histogram.

Figure 4.18 shows the total number of surface crossings in the forward direction with

respect to depth in the slab. Both of the MCNP formats are identical to the functional

values within statistical errors. The 8 bin histogram and 8 channel tabulated formats

agree with the functional values, within 1.0%, up to one mean free path. Past this point,

the histogram underestimates the functional values by a maximum of 4.4% at 5 mean

free paths and the tabulated data underestimates by a maximum of 30.4% at 5 mean free

paths. The equal-probability format better represents the forward bias for this number

of bins/channels (as also demonstrated within the calculated C
v

values in Table 4.2),

resulting in a smaller deviation from the functional values. The one bin histogram and
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one channel tabulated formats under predict the functional values by 88.2% and 83.1%

respectively at 5 mean free paths.

Figure 4.18: Total number of surface crossing events in the forward direction, per source neutron, with
respect to depth in the slab geometry. The lefthand figures show the values for functional (F), 32 equal-
probability histogram (32 H), 8 equal-probability histogram, optimised tabulated (Op. T) and 8 channel
tabulated (8 T). The top plot shows the number of crossings in the forward direction per source and the
bottom plot shows the comparison of processed (G) results with the exact, functional form (E) for each
surface. The righthand figures show the same quantities for the functional (F), one bin histogram (1 H)
and one channel tabulated (1 T) formats.

The two MCNP specific formats, and even the 8 bin histogram give a close representation

of the functional data with respect to integral values. The one bin/channel formats

and 8 channel tabulated representation significantly underestimate the number of surface

crossings when compared to the functional data.
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The cause of these di↵erences are better understood with reference to Figure 4.19. This

figure shows the tracks for the first 100 source neutrons throughout the geometry. For the

32 and 8 equal-probability histogram formats, the tracks diverge with depth but maintain

an overall forward direction, with few back scattering events. The one bin histogram

format shows a more isotropic distribution, with many surface crossing events between

0 and 2 mean free paths, but few beyond this point. All sampled µ values are equally

probable, so there is a lower probability that neutrons will scatter in the forward direction

and a higher probability that it will scatter out of the sides when compared to the other

formats. Any events exiting through the bounding planes of the slab are terminated,

if they exit through the x- and y-planes they will not be tallied and hence reduce the

statistics.

Figure 4.19: First 100 neutron tracks in the slab geometry. Points are coloured according to event type,
surface crossing (black), nuclear collision (green) and termination (red). Top row shows the first 100 tracks
sampled from the 32 equal-probability histogram, middle row is sampled from the 8 bin histogram and
the bottom row shows the 1 bin histogram.
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The di↵erences between the two MCNP formats do not become overly apparent until

the surface current is considered as a function of energy. The energy dependent, forward

currents for 100 energy bins between 10.0 MeV and 14.1 MeV can be seen in Figure

4.20 for one mean free path. These are shown alongside the input distributions and the

comparison with respect to the functional results.

Figure 4.20: Three figures show the comparison of energy dependent surface currents in the slab at
one mean free path. The first column corresponds to the current MCNP formats, the second shows the
intermediate 8 bin/channel format data and the third column shows the severely degraded data formats.
In all three figures the top plots compare the processed formats (G) to the unprocessed, functional format
(E), and the middle plots show the number of surface crossings as a function of energy for the various
formats. The bottom plots show the expected energy distributions from a 14.1 MeV source neutron, as
calculated from the input data, for elastic (13.1-14.1 MeV, solid lines) and first level inelastic (12.7-13.2
MeV, dashed lines).

The 32 equal-probability histogram over-estimates the 13.6 MeV region (µ = 0.4) by

240±21%. This is close to the maximum di↵erence in the input distributions (280%). For

the given energy bins, the di↵erence between optimised tabulated data and the original

functional form is indiscernible. The 8 bin and channel formats result in a maximum
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overestimate of 280 ± 18% and 260 ± 11% respectively. The severely degraded one bin

and channel formats overestimate the functional by 2550± 420% and 2010± 120% at the

worst points.

Within the energy spectra for all formats, the number of surface crossings between 13.2

and 13.6 MeV is much lower than expected from the input distributions. This is an

artefact from the geometry, where a scatter of �1 < µ < 0 will remove a source neutron

from the beam, where it may escape through the x- and y-planes without being scored

further. The behaviour is most pronounced within the severely degraded one bin/channel

formats.

All tested formats show the feature in the energy distribution between 12.7 and 13.2 MeV

to varying degrees. This corresponds to the range of exit energies for a neutron after a

first-level, inelastic scatter in 56Fe at 14.1 MeV.

For the 100 energy bins, the C
v

was calculated for all formats as a function of depth, as

compared to the functional equivalent and is shown in Figure 4.21. Up to 1 MFP, the

C
v

increases with depth. This is due to the increasing number of scatters and reduction

in unreacted beam. The C
v

tends to a constant level, within errors, past two mean free

paths and the values are given in Table 4.3.

This suggests that, should a similar simulation be run to the same level of convergence,

using processed data could result in an additional uncertainty of up to 1.9% in the MCNP

formats, or up to 247.5% for the alternative formats. The observed di↵erences in the

energy spectra could have far reaching consequences in terms of moderation, tritium

breeding and activation analyses.
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Figure 4.21: Calculated C
v

as a function of depth for the slab geometry calculated from the energy
spectra. The top plot shows the C

v

for the 32 equal-probability histogram and optimised tabulated
formats compared to the functional equivalent at each surface. The middle plot shows the C

v

for the 8
bin histogram and 8 channel tabulated formats. The bottom plot shows the C

v

for the one bin histogram
and one channel tabulated. Dashed lines are to guide the eye only. From 0.125 to 1 MFP, the number of
scatters increases and as a result the C

v

increases. From 1 to 5 MFP the C
v

tends to a constant level.
The calculated errors on the C

v

are determined from the propagation of the statistical uncertainty from
each bin.

Table 4.3: Calculated C
v

for each format in the slab geometry when compared to the functional energy
spectra at each surface. Values are given for the region between 2 and 5 mean free paths, where the C

v

reaches an approximate constant value

Format Final C
v

(%)

32 histogram 1.9± 0.4
8 histogram 18.3± 3.5
1 histogram 247.5± 48.4
Opt. tabulated 0.5± 0.1
8 tabulated 115.0± 24.4
1 tabulated 235.2± 46.3
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Validation and comparison

To justify the use of the tools developed specifically for nuclear data sampling analyses,

they must be validated against a well trusted, industry standard. In this case MCNP is

considered to be the trusted case based on NJOY processed data libraries and is compared

to the Swede-Mash and Turnip combination. There are some di↵erences between the two

that need to be addressed before the comparison. Turnip was run with the elastic and

first level inelastic reaction channels only. MCNP will sample all available cross-sections

within the ENDF file and so neutrons will have a correspondingly shorter mean free path

in the same density material. This means that the mean free path of neutrons is not the

same in Turnip and MCNP, so the geometry dimensions were altered accordingly. The

additional reaction channels include neutron multiplication and the remaining inelastic

levels in the case of 56Fe, so the energy dependent surface current is expected to vary

below 12.7 MeV (this is the lower energy limit from a single, first-level inelastic scatter).

Turnip operates strictly as an analogue Monte-Carlo, whereas MCNP has certain variance

reduction techniques implemented by default. Implicit capture was turned o↵ in MCNP

to allow the comparison to Turnip. To ensure consistency of tallied results, PTRAC files

associated with each MCNP simulation were produced. These files contain the interaction

data for every event and an equivalent was produced from the Turnip simulations. The

MCNP produced PTRAC files were parsed using Parsnip [74] and then tallied in the same

manner as Turnip. Figure 4.22 shows the scaled, energy dependent Turnip and MCNP

surface current tallies. Both tallies are given in terms of number per source neutron,

but an additional scaling factor was applied to the Turnip data to remove systematic

di↵erences between the two codes. This scaling factor was calculated as the integral of

the MCNP tally over the Turnip tally for each surface.
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Figure 4.22: The left figure shows the scaled, energy dependent surface currents in the forward direction
throughout the slab geometry. Both simulations were run with the 32 equal-probability histogram format
data. Turnip values are shown in red, and the MCNP in blue. Both exhibit the forward bias and features
expected from the first elastic scatter at 14.1 MeV, as well as the feature from the first inelastic level
(12.7-13.2 MeV). Right figure shows the comparison of the Turnip values (T), as normalised by the
MCNP values (M) for energies between 12.5 MeV and 14.1 MeV. A baseline is set to one to show the
under or over estimate of Turnip with respect to MCNP. Shaded bars represent the statistical uncertainty
associated with the distributions.

Within the range of one elastic scatter and the first inelastic scatter, MCNP and Turnip

surface currents contain the same features at the same energies. Regions of low proba-

bility, and large statistical uncertainty within MCNP are overestimated by Turnip, most

noticeably at lower energies (<12.5 MeV). In all cases Turnip tallies a larger integral value

than MCNP for the same number of source neutrons. This is the result of the limited

number of reaction channels currently implemented within Turnip. MCNP will termi-

nate neutrons if they undergo capture reactions, and any captured neutron is unable to
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contribute further to any tallies. MCNP will also sample from the additional reaction

channels. MCNP tallies were derived from the PTRAC file rather than the inbuilt tallies.

This allowed contributions from elastic and first level inelastic events to be tallied only, at

the cost of statistics. This region is of low probability, so the fractional di↵erence between

the two is large, but the absolute contribution is small. Figure 4.23 shows the number of

events of each type, per source neutron with respect to the exit energy from the reactions

within MCNP.

Figure 4.23: Top plot shows the number of events of each type per source over the entire slab geometry
based on 14.1 MeV neutrons incident on 56Fe. The abscissa shows the exit energy of the neutron, i.e. after
the collision kinematics have occurred. The bottom plot shows the fraction of Turnip reaction channels
(elastic and first inelastic) with respect to the total within MCNP. Exit energies above 12.0 MeV are
due to elastic and first inelastic levels only in 56Fe. Below 12.0 MeV the number of neutrons resulting
from other reaction types increases. These are predominantly threshold reactions (further inelastic and
multiplication), so for a 14.1 MeV neutron the maximum exit energy is dependent on the Q-value of the
reaction.

The number of elastic scatters is continuous in the energy range shown, where all initial

collisions occur at 14.1 MeV. The exit energy of neutrons after a single, first-level inelas-

tic collision have a maximum value of 13.2 MeV. The other reaction channels include the

remaining discrete level inelastic scatters, continuum inelastic scatters and neutron mul-
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tiplication. These are all threshold reactions, hence the exit energy from these combined

events has a maximum of 12.0 MeV. It is worth noting that within Figure 4.23, there

is an increased contribution to elastic events below 11.4 MeV compared to the surface

current tallies in Figure 4.22. The resulting neutrons produced from the other reaction

channels continue to interact within the slab. These neutrons have a maximum energy of

12.0 MeV causing a low energy increase in event rate. These scattering events resulting

from anything other than elastic and first level inelastic are discarded in the comparison

of Turnip to MCNP.

The event rate of each interaction type with respect to depth in the slab was measured

and is shown in Figure 4.24. These event rates are integrated over all energy values and

given in units of interactions per source neutron. Throughout the volume, elastic scatter

is consistently the most common reaction channel. Fewer events are recorded within the

first few segments of the slab due to the reduced volumes of the segments, i.e. 0.125 MFP

deep in the first segments and 1.0 MFP deep in the final segment. This agrees with the

surface currents and worsening statistics with depth in the slab (Figure 4.22).

Figure 4.24: Event rate of reaction channels in 56Fe with respect to depth in slab geometry. Integral
values are calculated for each volume and normalised per source. Throughout the geometry, elastic and
first-level inelastic reactions contribute between 68 and 76% of the total number of events.
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Spherical geometry

The same analyses were performed with the spherical geometry as with the slab geometry.

All 107 source neutrons are born at the origin of the sphere with an energy of 14.1 MeV

and an isotropic angular distribution. The main di↵erence between the geometries is that

all source neutrons are contained. The only way in which they can escape and terminate

is through a minimum of 5 mean free paths of material and all neutrons will score on each

surface at least once. Figure 4.25 shows the total surface currents through the tallying

spheres for the three variations of the histogram formats. These are representative of

the remaining formats, where 32 bin, optimised tabulated and functional data all exhibit

similar integral behaviour, as with the 8 bin/channel formats and one bin/channel formats.

There are no obvious di↵erences between the 32 bin and 8 bin histogram formats, but the

one bin histogram exhibits very di↵erent behaviour.

Figure 4.25: The total surface current over each spherical surface is coloured according to the number
of surface crossings per source. Results shown for the 32 bin, 8 bin and 1 bin histogram distributions.
All surfaces within the sphere have more than one crossing per source, with the exception of the external
bounding surface. All neutrons leaving this surface terminated and are unable to return. One bin
histogram sampling exhibits the greatest number of surface crossings, whereas the 32 and 8 bin are
similarly behaved.
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Figure 4.26 shows the comparison of integral values for all formats with respect to radius in

the sphere geometry. There are no di↵erences in the total surface crossings for functional,

32 equal-probability histogram and optimised tabulated formats within errors.

Figure 4.26: The total number of surface crossings for each format as a function of radius are shown in
the top figures. The bottom figures show the processed result (G) as a fraction of the functional result
(E). Left figure shows the distributions most closely replicating the functional result, whereas the right
figure shows the three worst formats. Surfaces show an increase in crossings with radius up to 3 mean
free paths due to the increase in surface area. Past this point neutrons are able to escape the geometry.

The 8 bin histogram format has a maximum di↵erence of 1.02 ± 0.01 at 3 mean free

paths, i.e. it overestimates the integral value by 2%. The 8 channel tabulated format

has a maximum di↵erence identical to the histogram equivalent within the given number

of significant figures. The overall trend of the integral surface current for 8 channel

tabulated data di↵ers to the other distributions. The maximum di↵erence still occurs at

3 mean free paths, but the distribution is biased towards the higher radii. The severely

degraded one bin histogram and one channel tabulated formats overestimate the surface

current within the main body of the sphere, with maximum di↵erences of 65 ± 1% and
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41± 1% respectively. At a radius of 5 mean free paths, all processed formats agree with

the functional data within errors. All neutrons born within the sphere eventually exit

through this bounding surface, beyond which they are terminated.

In all cases, the maximum number of surface crossings occurs at 3 mean free paths. At this

point, 71% of all source neutrons will have interacted. The maximum number of surface

crossings here is a balance of scattered neutrons as there is no direction information tallied.

Any neutrons which backscatter will likely pass through the previous surfaces at least one

more time. If the neutron then undergoes another collision, the change in direction could

cause additional surface crossings. Up to and including 3 mean free paths, there is a low

chance for the neutron to escape (5%). Between 4 and 5 mean free paths, the neutrons

have a much higher probability of leaving volume without further interactions reducing

the number of surface crossings.

The main sources of these di↵erences are demonstrated within the transport for the first

100 neutron tracks in Figure 4.27. The isotropic, or closely isotropic distributions have

a far larger number of nuclear events within the main body of the sphere, resulting in a

higher overall surface current. Distributions with a distinct forward bias have a higher

probability that a neutron will interact and continue in the forward direction where it

may escape.
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Figure 4.27: First 100 neutron tracks in the sphere geometry. Points are coloured according to event
type, surface crossing (black), nuclear collision (green) and termination (red). Top row shows the first 100
tracks sampled from the 32 equal-probability histogram, middle row is sampled from the 8 bin histogram
and the bottom row shows the 1 bin histogram.

For a radius of one mean free path, the energy dependent surface currents are shown

in Figure 4.28. The closed surfaces of the spherical geometry result in a lower escape

probability, so the neutrons are transported to lower energies than are seen in the slab

geometry (Figure 4.20). The statistics are improved at lower energies, but the features

associated with the first elastic and first-level inelastic scatters are less prominent. The

integral behaviour of the 8 channel tabulated distributions (Figure 4.26) is explained with

reference to its energy dependent behaviour. The region between 13.5 MeV and 13.9 MeV

overestimates the functional distribution by 285%. This suggests that a larger proportion

of neutrons are scattering into this region and hence the probability of multiple forward
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scatters, and escape, is higher. The back scattering probability is correspondingly lower,

so fewer neutrons will return through the preceding surfaces.

Figure 4.28: Three figures show the comparison of energy dependent surface currents in the sphere at
a radius of one mean free path. The first column corresponds to the current MCNP formats, the second
shows the intermediate 8 bin/channel format data and the third column shows the severely degraded
data formats. In all three figures the top plots compare the processed formats (G) to the unprocessed,
functional format (E), and the middle plots show the number of surface crossings as a function of energy
for the various formats. The bottom plots show the expected energy distributions from a 14.1 MeV source
neutron, as calculated from the input data, for elastic (13.1-14.1 MeV, solid lines) and first level inelastic
(12.7-13.2 MeV, dashed lines).

The C
v

of the resulting energy spectra for the di↵erent formats, with respect to the

functional tallies, can be seen in Figure 4.29. Optimised tabulated data has an overall

C
v

of zero, i.e. the distributions from functional and optimised tabulated formats are

identical within errors.
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Figure 4.29: Calculated C
v

as a function of radius for spherical geometry, as determined from the
energy dependent neutron currents. The surface with the maximum C

v

for each format varies, but all
show an initial increase with radius up to the maximum value followed by a decrease in C

v

by 5 mean
free paths.

The maximum and final C
v

values are given in Table 4.4. The calculated C
v

values

are reduced at 5 mean free paths due to each neutron crossing the surface once only at

termination. The optimised tabulated format best replicates the functional distributions,

followed by the 32-bin histogram format. There is no common scaling factor between

these C
v

values for the energy spectra and the C
v

calculated from the input distributions

(given in Table 4.2). However they do follow the general trend of a low C
v

from input

data corresponds to a low C
v

in energy spectra and vice versa.
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Table 4.4: Calculated C
v

for each format in the spherical geometry when compared to the functional
energy spectra at each surface. Values are given for the maximum, along with location, and the final C

v

at the bounding sphere (radius 5 mean free paths)

Format Maximum C
v

(%) Radius (MFP) Final C
v

(%)

32 histogram 5.4± 0.2 2 4.2± 0.2
8 histogram 28.5± 0.3 2 23.5± 0.3
1 histogram 1048.9± 1.0 4 774.5± 0.9
Opt. tabulated 0.2± 0.3 2 0.2± 0.2
8 tabulated 177.2± 0.9 1 88.6± 0.3
1 tabulated 614.4± 0.8 4 504.3± 0.7

Validation and Comparison

As with the slab geometry, the Turnip and MCNP energy distributions demonstrate the

same features at the expected energies. Figure 4.30 shows the scaled surface currents

for each of the surfaces within the sphere geometry. At small radii (< 1 MFP), the two

codes agree. At larger radii, Turnip overestimates the lower energy neutron current in

comparison to MCNP. This same e↵ect was seen in the slab data and is due to the lack

of capture and other reaction channels within Turnip. The reaction channels within the

MCNP simulation are the same as shown in Figure 4.23. The reduced statistics at low

energy in MCNP limits the degree to which the two codes can be compared as it alters

the scaling factor between the two.
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Figure 4.30: Normalised surface currents for Turnip (red) and MCNP (blue) are shown on the left for
increasing radii. At small radii, with few interactions the two closely match. The di↵erence increases with
depth. This is due to the Turnip results being skewed by an increased number of lower energy events.
MCNP results are lower in this region, with poor statistics due to the removal of capture reactions from
the tally. The figure on the right shows the comparison of the Turnip (T) energy spectra with respect
to the MCNP (M) energy spectra. A baseline is set at one and the shaded bars represent the statistical
uncertainty.

4.1.3 Summary

The presented results for the example material of 56Fe have demonstrated that the pre-

processing of angular distributions does impact upon the Monte-Carlo simulation results

at fusion energies. For the elastic scatter of neutrons at 14.1 MeV, the two MCNP

accepted formats, of 32 equal-probability histogram and optimised tabulated, di↵er from

the unprocessed distributions by 11.1% and 1.0% respectively. In general, this decreases

with energy. When propagated within a Monte-Carlo simulation with a forced number
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of scatters, the di↵erence in the lab frame angular distributions become negligible past

4 events. However, the di↵erences between the various formats remain visible within

the resulting energy spectra for multiple events. After 9 scatters, the legacy 32 equal-

probability histogram format is associated with a C
v

of 6.7%. In all cases, the optimised

tabulated format replicates the unprocessed distributions within statistical limits.

Variations upon the histogram and tabulated formats were tested to determine the e↵ect

upon simulation parameters. To achieve an accuracy optimised data set to be within 1.0%

of the original distribution, the 56Fe(n,el) reaction channel at 14.1 MeV would require a

13.4 times increase in the number of bins when compared to the current 32. For the

equivalent of optimised tabulated data, the memory requirement increases 3.1 times. In

both cases, an increased accuracy is at the cost of memory requirements, though the

computational cost in sampling time is negligible for the histogram format, but is 14%

larger for the tabulated format.

Several format variations were used to determine the sensitivity of full radiation transport

simulations to the pre-processing. Degraded histogram and tabulated formats were used

with the MCNP formats for comparison. The two MCNP formats showed little variation

within the integral quantities, but the di↵erences remained apparent when the energy

spectra were considered. At the worst case, the 32 equal-probability histogram format

di↵ered from the unprocessed equivalent by 5.4% within the spherical geometry. Of the

degraded formats, the 8 bin histogram was consistently better than the alternatives. The

maximum di↵erence between the integral values for the functional and 8 bin histogram

were 4.4% and 2.0% within the slab and sphere geometries. Within the energy spectra,

the di↵erences were more apparent with a C
v

of 28.5% as the worst case.

From these results it is clear that for 56Fe(n,el) at 14.1 MeV the integral quantities con-

sidered are insensitive to the two currently used MCNP formats. The discrepancies only

become apparent if the energy spectra are considered within the regions of greatest dif-
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ference. Degraded data formats a↵ect the integral and energy dependent quantities to

varying degrees, though there are some minimal savings in memory requirement and sam-

pling time.

4.2 Overview of multiple isotopes

The previous section demonstrated the e↵ect of pre-processing on 56Fe, predominantly

with respect to the elastic scattering reaction channel at 14.1 MeV. This section presents

an overview of the additional isotopes that are considered to be important for fusion

neutronics within the context of this work.

4.2.1 Point-wise

For the isotopes shown in Table 4.5, the unprocessed data was extracted with Swede-

Mash from the ENDF-B/VII.1 library, and the C
v

calculated between the unprocessed

functional distributions and the various processed formats. For histogram and tabulated

data the C
v

was calculated with the number of bins/channels as shown in Figure 4.31.

Table 4.5: Isotopes considered as part of this work. For each isotope the order of the polynomial for
the unprocessed distribution is given as a guide to distribution complexity. These values are given for the
elastic scatter of neutrons distribution energies closest to 14.1 MeV, note that none contain 14.1 MeV.
The C

v

is given for the legacy 32 equal-probability histogram format in comparison to the unprocessed
functional form.

Isotope Closest energy (MeV) Order of polynomial C
v

(%)

1H 14.0 8 < 1.0
16O 14.0 10 < 1.0
52Cr 14.2 18 12.8
56Fe 13.6 12 11.1
63Cu 14.5 14 12.7
90Zr 14.0 28 14.5
184W 14.0 34 20.0
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Figure 4.31: Calculated C
v

for the seven considered isotopes as a function of the number of bins or
channels. The top plot shows the values for the equal-probability histogram format and the bottom plot
shows the values for the tabulated format with linear interpolation. The grey bar shows the mean value
for all isotopes within one standard deviation. The vertical dashed line indicates the location of the
currently implemented 32 equal-probability histogram.

Higher mass isotopes are consistent with a higher C
v

due to the additional complexities

and features associated with the distributions. Very low mass isotopes, such as 1H are

naturally tending towards the isotropic, so do not often require more than one bin/channel

to produce a C
v

of zero.

Between 1 and 64 bins the histogram format has a larger gradient in C
v

than the tabulated

format with linear interpolation. After 64 channels the tabulated data results in a lower

C
v

with additional channels than the histogram format. The tabulated points are equally
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spaced in ✓, and their location is not optimised. Equal-probability histograms with few

bins are better at representing these distributions as the location of the bins is determined

based on the initial distribution, i.e. they are not arbitrarily set.

4.2.2 Turnip

The processed data for each of the isotopes given in Table 4.5 were used within Turnip

to determine the computational burden associated with the di↵erent data formats. These

same data sets were used within the radiation transport simulations of the slab and sphere

geometries.

Forced scatters

For each isotope, large numbers of identical, forced events were run to determine the

runtime and the built database sizes. Figure 4.32 shows the normalised values for C
v

,

runtime and database size with respect to the current 32 equal-probability histogram

format. The original functional data are an exact representation of the ENDF data, so

accuracy is gained. For the distributions associated with 1H, the behaviour of the C
v

is di↵erent from the others. The accuracy optimised formats (histogram and tabulated)

result in an increased C
v

. The C
v

associated with the 32 bin representation of this

distribution is 0.1%, so 32 bins are unnecessary to replicate this distribution within a 1.0%

C
v

limit. This closely isotropic distribution only requires 4 equal-probability histogram

bins or 1 tabulated channel to achieve this level of accuracy.
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Figure 4.32: Potential gains and losses in terms of accuracy (top), sampling time (middle) and database
size (bottom) for all tested isotopes and formats. The C

v

, runtime and database sizes are normalised by
the equivalent values for the 32 equal-probability histogram format. Any points below the black dashed
line are gains in accuracy/time/size. Any points above the line are losses in accuracy/time/size. Where
only one point is visible, the di↵erent isotopes have approximately the same value. Values correspond to
the sampling of the elastic scattering distributions closest in energy to 14.1 MeV. Figure adapted from
[73]

As expected from the 56Fe results, the accuracy of representation is compromised by

reducing the number of bins or channels for all isotopes. The 8 bin histogram has the

least impact on the C
v

, with an average of 3.6 ± 0.2 times the 32 bin histogram values.

The worst case is for the one histogram bin, with an average of 26.8 ± 1.0 times the 32

bin histogram C
v

.

With respect to sampling time, the functional format shows an increase for all isotopes,

with an average of 4.7± 0.9 times the 32 equal-probability histogram. Tabulated formats

show a slight increase in sampling time. The worst case of optimised tabulated data results
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in a 1.2 ± 0.1 times average increase in sampling time. No formats reduce the sampling

time, as equal probability histogram is the fastest format considered and is independent

of the number of bins.

Some saving can be made in database sizes for the functional and degraded formats.

One bin histogram and one channel tabulated result in an average database size 32 times

smaller than the current format. The implementation of 8 bin histogram and 8 channel

tabulated result in a database 4 times smaller. Functional data require a variable num-

ber of entries depending on the distribution complexity, but still results in an average

reduction of 2.7± 0.1.

Figure 4.33 shows the product of the normalised C
v

, time and size as a figure of merit for

the various formats, and Table 4.6 describes the meaning of the possible values.

Figure 4.33: The figure of merit is defined as the product of the normalised C
v

, time and size as shown
in Figure 4.32. Grey bars show the average for each format, within one standard deviation. A figure of
merit equal to one is associated with the current 32 equal-probability histogram.

Table 4.6: General meanings of the di↵erent values for the figure of merit.

Figure of Merit Meaning

< 1.0 Net gain of accuracy, time and/or precision
1.0 No overall change in accuracy, time and/or precision

> 1.0 Net loss of accuracy, time and/or precision
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These values should be used with caution, by combining all metrics within one single

number the results could be misleading, particularly with the functional case. Naturally

it is an identical representation of itself so by definition the C
v

is zero. This results in

a figure of merit equal to zero, but it is known that the computational time required to

sample from these distributions is far longer than with any of the other formats. These

values are dominated by the normalised C
v

and should be considered alongside Figure

4.32 as a guide to compare the various formats. Excluding the functional format, the

optimised tabulated data results in a net gain over the considered parameters for all

isotopes. The increased memory requirements and sampling time are compensated by the

gain in accuracy. One and 8 bin histograms show little variation from the current format.

The one tabulated channel results in a gain for 1H and 16O, but a loss for the remaining

isotopes. Optimised histogram increases the file sizes significantly, so the figure of merit

results in no change or a net loss depending on the isotope. Finally, the worst case is the

8 channel tabulated format. For all isotopes except 1H the increased C
v

and sampling

time are the largest contributors to the figure of merit.

For all previous stages of analysis, the optimised data formats were based on a 1.0%

C
v

limit. Figure 4.34 shows the computational consequences of optimising the angular

distributions to 0.1, 1.0 and 10.0%. Given the previous work on 56Fe, a C
v

around

10.0% produces noticeably di↵erent energy spectra when sampled, 1.0% results in slight

di↵erences and 0.1% is considered to have negligible e↵ects on simulation results. In an

ideal world, the pre-processing would be an invisible stage within the nuclear data cycle,

in the sense that the processed data would be indiscernible from the original. This is only

possible by using the original format, or pre-processing with a su�ciently low tolerance,

of 0.1% or below. This comes at a computational cost, so in reality the accuracy of

pre-processing must be balanced in accordance with the implementation of the formats.

Optimising the 1H data formats reduces the number data points required, which is prop-
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Figure 4.34: E↵ect of optimising histogram (left) and tabulated (right) angular distributions to within
a tolerance of 0.1%, 1.0% and 10.0% with each isotope. The top plots show the number of bins or
channels required to achieve the set tolerance (log scale). Baseline is set at 32 to show the variation with
respect to the 32 equal-probability histogram format. Functional data (black) are shown on all figures for
comparison. The number of coe�cients normalised by 32 bins are shown in the top plots for comparison
with the number of bins or channels. Middle plots show the database size, normalised by the value for 32
equal-probability bins and the the bottom plots show the normalised sampling time on a log scale. The
baseline on both of these plots is set equal to 1. Adapted from [73].

agated through to savings in memory. In all other cases, the optimised data formats

increase the memory requirement for the angular distributions. The number of bins/chan-

nels required is directly related to how complex the functional form is. The worst case of

184W is described by a 34th order polynomial, to optimise this requires 966, 301 or 95 tab-

ulated channels for a C
v

of 0.1%, 1.0% and 10.0% respectively. Histogram format requires

14,621, 1,143 or 93 bins for the same C
v

values. Optimisation of the equal-probability

histogram requires up to an order of magnitude more bins than channels in optimised

154



tabulated data. Functional data show a general reduction in file size, though higher mass

nuclei with highly featured angular distributions may require a polynomial of order 32 or

more.

Sampling time of the optimised histogram format is identical to the 32 bin case. Optimised

tabulated data results in a small increase in sampling time that is proportional log2 N ,

where N is the number of tabulated channels. Functional data results in the largest

sampling time up to 9 times that of the equal probability histogram. This increase is

linear with respect to the order of the polynomial. The sampling time requirement for

the di↵erent formats is consistent with the discussion in Section 3.3.1.

Simple Monte-Carlo with transport

Slab and sphere radiation transport simulations were run with all of the considered iso-

topes, with both elastic and first level inelastic reaction channels. The resulting C
v

from

the energy dependent surface currents can be seen in Figure 4.35 for the slab and 4.36 for

the sphere.

The same general trend can be seen from both sets of simulations. The C
v

from optimised

tabulated data is mostly limited by statistics. The C
v

for the 32 bin histogram is initially

high, particularly for high mass isotopes and is consistent with previous analyses, before

converging to an average of around 6% for both geometries. For the two MCNP specific

formats, the C
v

is larger in the slab geometry than the sphere. This variation is due to the

high escape probability of neutrons after a single collision in the slab. The distributions for

the initial scatter are echoed within the energy spectra, whereas in the spherical geometry

the multiple surface crossings reduce the overall di↵erence.
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Figure 4.35: Calculated C
v

as a function of depth for the fusion relevant isotopes in the slab geometry.
The four formats 32 bin histogram, accuracy optimised tabulated, one bin histogram and one channel
tabulated are shown. Grey bars show the mean value plus-minus one standard deviation.

The one bin histogram and one channel tabulated formats behave in the opposite sense.

The transport is greatly a↵ected by these degraded formats, the forward bias and featured

back scatter region are lost. Within the slab, neutrons interact multiple times within the

range of 0 to 1 mean free paths and escape, a reduced number of neutrons transport

deeper into the slab. Within the sphere, the reduced escape probability results in a much

higher density of surface crossings per source. Termination only occurs if the neutron

reaches the bounding sphere (radius 5 mean free paths). The initial di↵erence of the

distributions is large, so the transport is correspondingly di↵erent between the MCNP

and degraded data formats. This di↵erence is compounded with multiple events in the

case of comparing an isotropic to highly anisotropic system.
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Figure 4.36: C
v

as a function of radius for the seven di↵erent isotopes of interest. The four formats 32
bin histogram, accuracy optimised tabulated, one bin histogram and one channel tabulated are shown.
Grey bars show the mean value plus-minus one standard deviation.

Runtime parameters were extracted from the simulations to determine the e↵ect of the an-

gular distribution format on a less trivial situation than forced scatters without transport.

For each event Turnip must check the geometry for the location of the neutron, determine

the interaction material and reaction channel, sample the angular distributions, calculate

the outgoing neutron properties and transport it to the next interaction site. This con-

tinues until it is terminated through escape or energy cut-o↵. Figures 4.37 and 4.38 show

the runtime for the di↵erent isotopes and formats, in the slab and sphere geometries. The

data are given as the time per source, i.e. the total runtime, including database load

times and transport divided by the number of source neutrons. This measures an average

time per history.
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Figure 4.37: Runtime results for the slab geometry. For each isotope and data format, the runtime per
source was calculated. Simulations were run with 107 source neutrons with initial energy of 14.1 MeV.

When ignoring transport, histogram formats were the fastest to sample from regardless of

the number of bins. Within the slab, the forward biased formats (functional and MCNP

formats) are associated with the neutrons undergoing very few events before they escape

the geometry. The low number of events per history results in the expected runtime

behaviour of the functional data, i.e. it is the slowest format to sample, though the

e↵ect is reduced when considering transport. Sampling from these distributions takes the

longest time per source except for the case of 1H, where all formats result in the same

runtime within errors. All other formats are very similar in the average time per source.
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Figure 4.38: Runtime results for the sphere geometry. For each isotope and data format, the runtime
per source was calculated. Simulations were run with 107 source neutrons with initial energy of 14.1
MeV.

In the spherical geometry the e↵ects of the di↵erent formats become more distinct. For 5 of

the 7 tested isotopes, the time per source for one histogram bin was equal to or higher than

the functional data. When sampled from the one bin histogram data, interacting neutrons

will scatter isotropically. When the neutron is enclosed in a large body of material it

will scatter frequently within the volume increasing the overall runtime. Sampling from

the functional format resulted in the longest average time per source in 1H. Processed

distributions with a distinct forward bias (32 histogram, optimised tabulated) resulted in

very similar runtimes per source. In many cases, these formats resulted in lower runtimes

as the anisotropy increased the probability that neutrons would forward scatter and exit

the volume.

4.2.3 Summary

The isotope range considered within this section provides a representative sample of fusion

relevant materials and reaction channels in close proximity to the plasma. The number

of points required to optimise the processing of angular distributions is closely related to
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the neutron energy, mass of the interacting nuclei and the reaction channel considered.

Of the examples shown, the simplest case is 1H(n,el) at 14.1 MeV. This low mass is

associated with a closely isotropic angular distribution, even at fusion energies. Only one

tabulated channel with linear interpolation (or 4 equal-probability histogram bins) are

required to achieve a C
v

below 1.0%. The current 32 equal-probability histogram format is

excessive to achieve the required accuracy. The worst case is associated with the heaviest

nuclide considered within this work, 184W(n,el) at 14.1 MeV. The 32 equal-probability

bin histogram results in a C
v

of 20.0%. To optimise this within a 1.0% tolerance 301

tabulated channels or 1,143 histogram bins are required. The resulting increase upon

memory requirements is significant for this case.

Combining the accuracy, runtime and database metrics, the largest overall improvement

on the 32 equal-probability histogram is due to the accuracy optimised tabulated data.

This balances the improved accuracy, with a small increase in sampling time and database

size. If selecting a format based solely on accuracy, the unprocessed functional formats

would be best. This format reduces memory requirements, but the cost in computational

time is significant when considering forced scatters. The worst case of 184W was 9 times

slower than using the equal-probability histogram method.

When implemented within a radiation transport simulation, the geometry and isotope

determines the overall impact of each di↵erent format. Geometries such as the slab

have a high escape probability, and few interactions per source, so the di↵erences in the

resulting energy spectra closely replicate the di↵erences between the input formats. The

di↵erence in time for each format per source neutron is noticeably di↵erent. The worst

case shown was for 63Cu, where functional data resulted in a 1.4 times increase in runtime

in comparison to the 32 equal-probability bin format.

Within the spherical geometry, the escape probability is low, resulting in multiple events

per source prior to escape. For the 56Fe, 32 equal-probability case, an average of 4 collisions
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per source occur within the slab but 8 collisions per source occur in the sphere. As more

events are occurring within the sphere, a larger proportion of the total runtime is spent on

transport and geometry than the sampling of angular distributions. Severely degrading

the input data to one histogram bin makes the largest di↵erence to sampling time (and

accuracy). For the example of 56Fe, each source undergoes an average of 4 collisions in the

slab, but an average of 25 in the sphere. This not only reduces the overall computational

e�ciency, but reduces the degree to which the simulation is considered physical.

4.3 Real-world examples

Sections 4.1 and 4.2 demonstrated a small but noticeable e↵ect on the energy spectra

for varying levels of simulation complexity. Initial analyses considered the pure sampling

of the angular distributions without transport. The next stage considered the e↵ect of

the sampling with transport in simple spherical and slab geometries. For these cases

the e↵ect of using di↵erent angular formats was most clearly demonstrated in regions

were few scatters take place. Second order events, such as multiple scatters, have a

tendency to reduce the sensitivity of the simulation to data format. In real-world fusion

simulations, the models are far more complex than the control cases considered previously.

They consist of many cells, materials and energies so the phase space of the problem is

significantly larger. The port-plug benchmark is the next level of complexity, the geometry

is relatively basic and only two materials are used. Table 4.7 describes some of the model

parameters for each stage. The DEMO model described in Section 3.3.3 is one of the most

complex geometries currently used for fusion neutronics analyses, yet this only covers a

22.5� segment of the entire device. This section presents the results from running these

models with the two currently available MCNP formats; the legacy 32 equal-probability

histogram and the optimised, cumulative tabulated data.
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Table 4.7: MCNP model parameters for the simple and real-world models. Dimensions are given in units
of meters or mean free path depending on the model. Materials correspond to the various combination
of isotopes, for example steel or water. Isotopes are the individual components (and typically require
separate data files) used within the materials.

Slab Sphere Plug DEMO

Cells 8 8 38 694
Materials 1 1 2 410
Isotopes 1 1 56 121
Dimensions 2mfp(h) 5mfp(h) 1m(h) 23m(h)

2mfp(w) 5mfp(w) 1m(w) 7m(w)
5mfp(d) 5mfp(d) 5m(d) 19m(d)

Source Mono-energetic, Mono-energetic, Mono-energetic, External parametric
mono-directional isotropic distributed plasma source

4.3.1 Port-plug benchmark

This model was run with 109 source neutrons, and all possible variance reduction tech-

niques were removed from the model. Surface currents were measured throughout the

first half of the model, in both the steel and combined steel and water cells. The surface

currents were measured on a coarse energy grid from 1.0 MeV to 20.0 MeV in 1.0 MeV

intervals. Figure 4.39 shows the energy dependent surface current in the positive direction

for the two data formats throughout the model. The data shown are for the inner volume

of steel and water up to 105 cm deep into the model. The overall behaviour of the surface

currents is similar to the steel sleeve. The statistics of the surface currents worsen with

depth in the slab. On the source facing surface (depth 0 cm), there is a di↵erence between

the two energy distributions that is larger than the statistical errors.
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Figure 4.39: Energy dependent surface currents within port-plug model for the 32-equal probability
histogram (red) and optimised tabulated formats (blue). Plots are grouped by the depth within the
model for the steel and water volume. The top figure of each group shows the number of surface crossings
per source within each energy bin, the bottom plots show the histogram data (H) as compared to the
tabulated format (T). Shading corresponds to the statistical uncertainty associated with the solid line.

The histogram underestimates the surface current in the region between 11.0 MeV and

12.0 MeV by 5.5%. This is mostly compensated by an overestimate in the 10.0 MeV

to 11.0 MeV region of 4.0%. The format of the angular distributions produces a small

shift in energy, but given the finite number of neutrons the overall variation is zero. As

the depth increases, the statistical uncertainty increases as more neutrons are escaping

the volume. In most cases, the statistical error is larger than the di↵erences between the

formats and so any deviations are masked within the errors. In some cases, the energy

bins are populated through a single event with a 100% statistical error.
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Figure 4.40 shows the calculated C
v

values from the energy dependent surface currents

at each surface. In this case, it is not possible to compare the results from the processed

formats with the unprocessed equivalent. From the previous analyses, the optimised tabu-

lated format is a close alternative to the unprocessed data, so these results are considered

to be the ideal case. The C
v

is calculated as a comparison between the 32 equal-probability

histogram with respect to the optimised tabulated data. The C
v

shows a general increase

with depth that was not seen in the previous studies.

Figure 4.40: Calculated C
v

between the energy dependent surface currents from the 32 equal-probability
histogram and optimised tabulated formats. The C

v

is calculated as a function of depth for the steel
sleeve, steel and water inner volume and the total across both cells. The left plot shows the C

v

with
respect to the depth in cm, but the plot on the right shows the C

v

with respect to depth in average mean
free paths.

The average mean free path of neutrons, as calculated within MCNP, is 2.1 ± 0.1 cm

within the steel sleeve and 3.0±0.1 cm in the steel-water mixture. The results in Sections

4.1.2 and 4.1.2 demonstrated that thicknesses greater than one mean free path show a
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reduced sensitivity to the input data format. The first 210 cm in this model equates to

100 mean free paths in steel, 70 mean free paths in the steel and water. Calculating a

weighted value for the combined volumes, the average mean free path of neutrons within

the geometry is 91 mean free paths. This model is up to 20 times larger than the slab

geometries previously considered. The first two surfaces behave as expected, with a low

C
v

around 0.2%. The third surface and beyond shows an overall increase in C
v

and

associated errors. At 210 cm, the calculated values for the steel, steel and water, and

total are 9.8 ± 7.6%, 19.9 ± 13.6% and 4.9 ± 3.6% respectively. These are greater than

zero, even when the large statistical errors are considered.

The steel and water C
v

values are consistently higher than the others, and when considered

as part of the total the C
v

is reduced. This is largely due to the geometry, any neutron

leaving the inner volume will have a high probability of entering the outer steel sleeve.

The curved surface is entirely enclosed by the steel sleeve, so it will also be visited by

neutrons leaving the inner surface of the sleeve. Any neutrons exiting the outer surface

of the steel sleeve will be terminated, so the e↵ect is less pronounced in this volume. The

cross-material transport has altered the energy spectra of the tallies and it is not possible

to quantify the contributions from each volume.

The original model, prior to the additions of surface current tallies, included a mesh based

tally covering the entire volume. Within each voxel, the track length of the neutrons

within the element is tallied, i.e. the contribution to the tally is proportional to how

far the neutron travels within the mesh component. Figure 4.41 shows the neutron flux

profiles based on the integral flux in each voxel alongside the relative error for the MCNP

histogram and tabulated formats.
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Figure 4.41: Integral tally results mapped over the port-plug model with the MCNP tabulated data.
The left figure shows the integral neutron flux throughout the volume. The right figure shows the relative
error for the same geometry. The 2-D plots show the values associated with the plane through the origin
(x=0, y=0 or z=0).

The neutron flux is highest at the surface closest to the source, and reduces to half by 22

cm. By 500 cm, very few neutrons are transported to this depth. Past a depth of 100 cm,

the relative error increases. The area worst a↵ected is close to the outer surface of the

steel sleeve. Any neutrons transported to that region have a high probability of escape,

hence reducing the available statistics.

For each element in depth, the C
v

was calculated based on the di↵erence between the

tabulated and histogram results for the energy dependent mesh tally and is shown in

Figure 4.42. The C
v

increases with depth up to 210 cm, where the volume of steel and

water ends. After 210 cm each neutron is scored in void or steel only and so tends to a

constant value. The statistics are poor past 210 cm, hence the large error on the C
v

, but

the lower limit varies between zero and 5.0%.
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Figure 4.42: Calculated C
v

for the comparison of the energy dependent histogram and tabulated mesh
tallies in the port-plug model. The change in behaviour at 210 cm coincides with the end of the steel and
water inner volume. Inset shows the first 100 cm in the slab, within errors the C

v

is always non-zero.

The accuracy of tally results is important, but in a commercial context the e�ciency of

the simulation is also a contributing factor. This simulation was parallelised, splitting the

source neutrons across seven separate threads to reduce the real-time of the simulation.

Table 4.8 shows the runtime parameters for the port-plug simulation.

Table 4.8: Computational metrics of the port-plug model for the two MCNP data formats. The library
size and the number of lines of data in the library, the number of collisions and total runtime are given.
Final column shows compares the histogram and tabulated formats.

32 histogram Opt. tabulated H/T

Size (MB) 1.342E+02 1.817E+02 0.739
Lines of data 1.184E+07 1.463E+07 0.809
Collisions 7.880E+09 7.874E+09 1.001
Runtime (min) 1.458E+04 1.487E+04 0.980
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Using the optimised tabulated data results in a loss of e�ciency in the computational

sense. The library size as stored in memory is 26% larger than with the histogram format

and the runtime is 2% longer. For this model, the tabulated format adds 5 hours on to the

total runtime, but with parallelisation on seven cores the real-time increase is 43 minutes.

4.3.2 DEMO

This model was run with 108 histories, with each source neutron sampled from the stan-

dard fusion parametric plasma source with the parameters shown in Table 3.5 (Section

3.3.3). This number of source neutrons is an order of magnitude higher than the typi-

cal number used for this model to compensate the removal of variance reduction. The

scale and complexity of the geometry and source definition results in high computational

runtimes severely limiting the number of source particles allowed and hence limiting the

statistics.

Section 3.3.3 described the model and highlighted the three modules used for in-depth

analysis of the neutron behaviour. The neutron current was tallied for each surface within

modules 3, 9 and 13 in 1.0 MeV bins between 1.0 MeV and 20.0 MeV. Figure 4.43 shows

the energy dependent neutron current for module 3 over each surface.

Each surface is described by the depth within the module, this is not the same as distance

from the source. Module 3 receives a high neutron flux from the plasma source due to its

location, modules 9 and 13 receive a lower neutron flux reducing the available statistics

in these modules. As with the port-plug benchmark, the area of largest di↵erence is in

the 10.0 MeV to 12.0 MeV region for the surface in closest proximity to the plasma.

An overestimate of the tabulated format by the histogram is 4% at the worst point, but

compensated for an underestimate on either side. At the next surface the di↵erence has

reduced to 2%.
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Figure 4.43: Energy dependent surface currents are given for breeder module 3 (see Figure 3.20) for
each segment. Each set of plots corresponds to one of the surfaces within the module, the depth in the
module is given in the top left corner. For each surface, the neutron current is given for the histogram
(red) and tabulated (blue) formats. The bottom plots compare the two.

For each surface within these three modules, the C
v

was calculated based on the compari-

son of energy dependent surface currents for the histogram and tabulated formats, and is

shown in Figure 4.44. As with the port-plug model, there is an overall increase in C
v

with

distance from the source. The added scale and complexity of the DEMO model means

the statistics are reduced and hence have a bigger impact on the tally result.
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Figure 4.44: Calculated C
v

comparing the energy dependent surface currents from the 32 equal-
probability histogram and optimised tabulated formats in the DEMO model. The C

v

is calculated
as a function of depth for breeder modules 3, 9 and 13. The left plot shows the C

v

with respect to the
depth in cm, and the plot on the right shows the C

v

with respect to depth in average mean free paths.

In all but a few cases, the two MCNP formats have a C
v

of zero within errors. The case

of highest C
v

and smallest error is within module 13 at a depth of 42 cm. The value

associated with this point is 3.9 ± 2.2%. The statistics are the limiting factor on this

analysis, and the spacing of the tally surfaces is equivalent to 3.8 times the average mean

free path. This means that many events will occur within each module and the surface

current on either side will be subject to contributions from second order e↵ects. To reduce

the spacing of these surfaces to one mean free path would be computationally expensive

and as such has not been altered.
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For each data format and module, the reaction rates were calculated for the tritium

breeding reaction in lithium. These integral values were insensitive to the pre-processing

of nuclear data within statistical limits. Figure 4.45 shows the tritium production rate

per source neutron within the breeder modules.

Figure 4.45: Tritium production rate (TPR) as calculated from the MCNP reaction rate tallies for each
breeder module and segment. The top two plots show the TPR for the 32 bin histogram and optimised
tabulated formats. The bottom plot shows the comparison of the two. Points are coloured by the module
number.

For each segment in the module, the tritium production rate was compared for the his-

togram and tabulated formats. The segments close to the plasma show no variation

between the formats, but there is an increase in variation with depth. This is largely

dominated by statistical errors, though some modules show an over/underestimate of 2%.

These values are summed to give the total tritium production rate per source neutron,

and is proportional to the tritium breeding ratio if the time dependent neutron flux and

tritium consumption are considered to be constant for both simulations. The di↵erences

in the total production rate, and hence tritium breeding ratio is 0.1±0.2%. Within errors
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the di↵erence is zero, so no clear di↵erences are apparent at the current level of statistical

precision.

Within this simulation, track length estimator tallies were set up to determine the neutron

flux passing through all of the breeder modules. The range of this tally covers the entire

energy space of the problem, from 10�10 MeV up to 19.5 MeV. Based on these energy

dependent flux tallies, the C
v

was calculated in each module for each segment. Again

these C
v

values were calculated comparing the 32 equal-probability histogram format to

the standard of optimised tabulated data and can be seen in Figure 4.46. There is an

obvious positive trend in C
v

with distance from the plasma, though the di↵erence is small.

At 70 cm, the C
v

is calculated to be 4.9 ± 3.0% in the worst case. The best case at 14

cm has a C
v

of 0.6 ± 0.1%. In all modules and surfaces, the di↵erence between the two

MCNP format is small, but not insignificant.

Figure 4.46: Calculated C
v

with depth in breeder modules comparing the 32 equal-probability histogram
to the optimised tabulated format for the energy dependent flux tallies. For each module, the values are
given for each segment.
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While the overall contribution from the di↵erent formats is small, the e↵ect on the com-

putational parameters are larger. Table 4.9 compares the memory and time requirements

for the DEMO model. Optimised tabulated data increases the memory requirement by

10% compared to the histogram format. The total runtime is increased by 5%, this results

in a total runtime increase of 19 hours. When run in parallel on seven cores, the real-time

di↵erence is closer to 3 hours.

Table 4.9: Computational parameters associated with the DEMO simulation. The library sizes are given
in terms of memory requirement and number of lines in the data files alongside the total computational
runtime. The final column compares the histogram (H) and tabulated (T) parameters.

32 histogram Op. tabulated H/T

Size (MB) 9.024E+02 1.008E+03 0.895
Lines of data 2.491E+07 2.668E+07 0.933
Collisions 1.036E+10 1.036E+10 1.000
Runtime (min) 2.173E+04 2.286E+04 0.951

4.3.3 Summary

Investigating the e↵ect of the pre-processing of angular data on real-world models is

non-trivial given the limitations of MCNP and its accepted formats. There is a general

correlation that the 32 equal-probability histogram and optimised tabulated formats result

in a small, but quantifiable di↵erences in energy spectra. The scale of the models involved

severely limits the precision with which the consequences can be studied. The models

were far larger in size than the control cases, for example the steel-water component in

the port-plug model was 70 average mean free paths whereas the slab geometry had a

maximum depth of 5 mean free paths. There were additional interactions between volumes

of di↵erent materials, constructed of multiple isotopes and all available reaction paths

contributed to the tallies. These may be the factors which contribute to the di↵erences

seen deep within the simulation results, but without improving the statistics it is not

possible to determine the true source of these di↵erences. As expected from the control
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cases of spheres and slabs, the di↵erence on integral values, such as the reaction rates for

tritium breeding were insensitive to the format of the angular distributions.

For the port-plug benchmark and DEMO models, there was a computational cost to using

the more accurate, optimised tabulated format. The memory requirements increased by

4% and 10% for the port-plug and DEMO model. This memory will be unavailable for use

within the transport, and may be a contributor to the slower runtimes. The percentage

di↵erence in runtime was small (2% port-plug or 5% DEMO), but for models of this size

it can result in a 5 or 19 hour increase in total computational time. If these models were

to be run with additional source neutrons, the di↵erence would increase accordingly.
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Chapter 5

Discussion and Conclusions

The work contributing to this thesis has highlighted problem areas for the pre-processing

stage within the nuclear data cycle. Prior to this the, e↵ect of discretising the angular

distributions had never been quantified for fusion neutronics. Legacy methods are appro-

priate for legacy applications, so this stage has been overlooked in many error propagation

analyses. These methods must be used with caution when applied to fusion. The analy-

ses were performed on the combination of NJOY processed data for use in the radiation

transport code MCNP.

On a distribution-by-distribution basis, the legacy, 32 equal-probability histogram rep-

resentation can cause significant di↵erences between processed and unprocessed data for

the fusion relevant reaction channels considered. The largest observed di↵erence was 20%

for the 184W(n,el) reaction channel at 14.1 MeV. The equivalent fission reaction chan-

nels are better replicated with this format, with a di↵erence of less than 1%. The lower

average energy of the fission scenario typically relates to a closely isotropic distribution.

However, at fusion energies the distributions tend to be extremely forward biased, with

a low-probability but highly featured back scatter region. The 32 equal-probability bin

format is a crude representation for these angular distributions.

The recently introduced alternative format for MCNP calculations is to use tabulated
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cumulative distributions. These provide a far better representation of the unprocessed

data, in comparison to the 32 equal-probability histogram format, as demonstrated within

this work.

When propagated through multiple events, via Monte-Carlo sampling, the observed vari-

ations in the lab frame angular distributions tend to a constant level, i.e. isotropic in

µ. The number of scatters required to reach this point is dependent upon how poor the

processed distribution is in comparison to the original, as quantified with the C
v

. A sin-

gle scatter event retains the features associated with the tabulated and histogram format

which far exceeds the statistical errors of the simulation. For the reaction channels con-

sidered the lab frame angular distributions were largely insensitive to input format after

4 consecutive scatters and tend to the isotropic case for both formats. This suggests that

the format of the di↵erential cross-sections contributes little to the simulation error, in

this sense, for large problems with dimensions greater than 4 mean free paths. Caution

should be used when using formatted data for problems with dimensions smaller than 4

mean free paths, provided the simulation is run with su�cient source neutrons to ensure

convergence. In these cases, the simulation error should include the additional contri-

bution from the pre-processing of nuclear data if the legacy method is used. The tools

and methods developed as part of this work provide a rigorous basis for quantifying and

propagating these errors.

The lab frame angular distributions quickly converge to an isotropic system, but the

associated energy distributions continue to demonstrate di↵erences after multiple events.

These distributions retain some the di↵erences associated with the first scatter that are

not obscured by multiple events. By 10 forced elastic scatters in 56Fe, the 32 equal-

probability histogram resulted in an overall di↵erence of 7% compared to sampling from

the original function. For large numbers of forced events (> 40 scatters), the resulting

energies tend to a Gaussian distribution that is replicated with both input formats. This
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suggests that di↵erences will be observed in the energy spectra if the geometry is less than

40 mean free paths in any one dimension. Furthermore this suggests that for extremely

large geometries, or transport after many scatters, the angular distributions could be

simplified to a uniform distribution that is memory e�cient and fast to sample.

Di↵erences could only be observed in these Monte-Carlo simulations if the problem had

been run to convergence, with an associated statistical error below 1.0%. In this case

the entire phase space of the input distributions are sampled. If the problem is not run

with a su�cient number of samples, the di↵erences are obscured by the large statistical

uncertainties.

The development of a dedicated set of pre-processing and Monte-Carlo codes for nuclear

data sampling analyses allowed the investigation into alternative data formats. These

included the unprocessed, functional form, and variations upon the current histogram

and tabulated formats. Functional data did not produce results that were significantly

di↵erent in accuracy to the optimised, cumulative tabulated format. The di↵erences were

more apparent in terms of the computational parameters of the simulation, with func-

tional sampling impractically slow to implement for high order Legendre polynomials.

Functional format reduces the overall memory requirement compared to both MCNP for-

mats. In comparison to the current histogram case, the sampling time per event increased

by approximately one order of magnitude. Severely degraded data formats, such as the

case of isotropic scatter and one channel tabulated data, were very poor representations of

the original distributions. However, after many forced events the lab-frame angular distri-

butions were identical to the current MCNP formats. The energy spectra also exhibited

the same tendency to form a Gaussian distribution after many events.

A figure of merit was constructed to assess the balance between accuracy, sampling time

and memory requirements. In comparison to the legacy, 32 equal-probability histogram

case the optimised tabulated format results in an overall improvement. The sampling
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time is fractionally longer, and the file sizes larger, but the gain in accuracy of data

representation dominates the figure of merit.

Basic radiation transport simulations were performed with the various formats, the MCNP

specific and alternatives. The transport of neutrons within slab and sphere geometries

was less sensitive to the data format than the forced events. The addition of geometry

components and multiple reaction channels reduces the probability that any particular

distribution will be sampled. This reduction in statistics essentially blurs the di↵erences

which would otherwise have been observed. The two MCNP specific formats demonstrated

a di↵erence between the energy spectra, though the di↵erences were less apparent over

large distances (or equivalently, many scatters). The severely degraded formats altered

the neutron transport su�ciently that the tallied quantities and energy spectra were up

to an order of magnitude di↵erent when compared to the other formats. The savings in

sampling time and memory requirement are not enough to justify the use of these formats

in fusion simulations.

The model complexity was increased again to fusion specific models that are used regularly

within the community. The phase space covered by these models in terms of the size,

number of geometry elements, number of materials and energy is huge in comparison

to the control cases. Due to this significant increase in complexity, the variations seen

between the cumulative tabulated data and the legacy 32 equal-probability histogram

are far smaller than seen in the control cases. The reduced statistics are the limiting

factor in quantifying the di↵erences due to the input format. At the current level of

statistical precision, some small variations are seen in the energy spectra, but overall

these simulations appear to be insensitive to the data format of the angular distributions.

Integral values such as total neutron flux and reaction rates are insensitive to the MCNP

specific formats of the di↵erential cross-sections. In the considered cases, the observed

di↵erences were of the same scale as the statistical uncertainty. To confirm this, an
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increased number of histories, and hence runtime, would be required. This suggests that

past simulations run with the legacy data format are su�ciently accurate within statistical

errors. In current and future simulations it would be recommended to implement the

optimised tabulated format as standard, provided the increase in computational time is

acceptable.

5.1 Further work

To build upon the foundations of this thesis, there are natural progressions to further

evaluate the consequences of nuclear data pre-processing. The first would be to further

develop Swede-Mash to parse the remaining reaction channels within the ENDF files, and

to then implement these within Turnip. This would include capture and multiplication

reactions. This would provide a better basis for comparing the Turnip results with MCNP,

and improve the ability to extrapolate the Turnip results to a full radiation transport

Monte-Carlo simulation.

The second would be to run the real-world models to a higher level of convergence than

the standard case. This will be computationally expensive but will confirm how each

of the data formats a↵ect the transport, without statistical uncertainties obscuring the

potential di↵erences. In the future computation is likely to become more e�cient and

less expensive, suggesting that models may be run to the level of precision where these

di↵erences will become apparent.

It is uncommon for large models to be run without variance reduction. It would be

interesting to investigate whether the the e↵ects become more or less pronounced with

increasing levels of variance reduction. This will help to improve the statistics in the

regions of interest, and potentially clarify the di↵erences in data format in these regions.

Alternatively it may increase the contribution of second order events, reducing the overall

ability to identify clear di↵erences due to the pre-processing methods.
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The full scale models considered within this work are widely used within the fusion com-

munity, but may not be the ideal case to investigate the true e↵ect of pre-processing.

The cases where these di↵erences may become more apparent is in the field of nuclear

metrology. The simulation of experimental set-ups for the measurement of integral and

di↵erential cross-sections have a much higher probability of highlighting the di↵erences.

Some suitable benchmarks are available within the SINBAD database, though the quality

of these vary and can only be applied in certain cases. To really test the e↵ect of angular

distributions on simulation results, an experimental benchmark must be created with this

purpose in mind.

Throughout this thesis, the C
v

has been used as the metric to measure how well one

distribution represents another. To aid in the propagation of pre-processing errors for the

wider community, it would be useful to build a database containing the C
v

for all isotopes,

reaction channels and energies based on the di↵erent pre-processing formalisms. This

lookup table would provide the typical radiation transport user with an understanding of

how physical or unphysical the simulation results may be based on the choice of data pre-

processing. By making this information accessible, it will encourage users to become more

aware of the consequences of their choices in data library and to ask questions about how

it is processed. A natural progression would then be to include dynamic measurement of

the sampling statistics of each distribution at runtime. Used in combination with the C
v

,

this would allow for a quantitative measurement of data quality similar to the statistical

tests built in to current Monte-Carlo radiation transport codes.

5.2 Key points and recommendations

• On a distribution-by-distribution basis, the legacy pre-processing formalisms result

in di↵erences up to 20% for fusion relevant reaction channels.

• Monte-Carlo sampling of the distributions for a forced number of events showed
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that the resulting lab frame angular distributions were insensitive to the input data

format after 4 scatters.

• After multiple forced events, the resulting energy distributions retain some of the

di↵erences associated with the input format. The energy distributions are sensitive

to the data format until approximately 40 scatters, where the distributions tend to

a Gaussian shape.

• The integral values, i.e. total neutron flux, reaction rates, are insensitive to the two

MCNP specific data formats.

• The di↵erences are only apparent if the sampled distributions are fully populated

and problem is run to convergence with statistical errors below 1.0%.

• Testing alternative data formats showed no significant improvements to the overall

simulation. Degraded data formats altered the physics su�ciently that the savings

in runtime and memory were irrelevant. The exact functional format showed no

significant di↵erence when compared to the cumulative tabulated format, other

than an unacceptable increase in runtime.

• Increased model complexity tends to suggest a lower sensitivity to the format of

the angular distributions. A large phase space results in fewer samples of the same

distribution. If the distributions are not fully populated, the di↵erences are not

apparent within the simulation output.

• Real-world models such as the port-plug benchmark and DEMO segment are mostly

insensitive to the data format when they are run to the current levels of statistical

precision.

The field of nuclear data is severely underrepresented within the nuclear community, it

forms the basis of all nuclear simulations and is taken for granted by many end users.
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The importance of high quality nuclear data cannot be stressed enough as the accuracy of

the results are dependent on the accuracy of the data, i.e. garbage in, garbage out. Too

many radiation transport users are unaware of where their data libraries come from, or

the processing methods applied. Awareness within the community must be increased, so

users can make an informed choice of data library and processing method that best suits

the end application.

Within the field of fusion neutronics many of the currently used data libraries are not of a

high enough standard. The materials are non-standard and little experimental data exist,

particularly at fusion energies. This work has highlighted the areas in which the pre-

processing stage of the nuclear data cycle can impact upon simulation results. This stage

degrades the data as given in the evaluated files to varying degrees; but if the original data

are not truly representative of the physics involved then pre-processing only succeeds at

worsening the situation. The current MCNP formats are acceptable representations of the

angular distributions given in the ENDF files, but the cumulative tabulated distributions

provide a closer representation of the unprocessed data at the cost of computational

e�ciency. If computational e�ciency is the priority, and the model is su�ciently large,

the equal-probability histogram format is close enough to the original distribution to not

significantly alter the transport. There is no need to implement complex alternatives to

improve the accuracy of representation, when the unprocessed distributions are lacking

in many cases.

The priority in nuclear data for fusion neutronics needs to be the furthering of experi-

mental campaigns to bridge the gaps in current knowledge. This will naturally result in

more complete data libraries over time. Only when these libraries are complete, and are

an accurate depiction of the physics, will the e↵ects of pre-processing become important.
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