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ABSTRACT 

Despite improvements in early diagnosis and prevention, late stage breast cancer is 

often incurable due to metastasis, tumour relapse, resistance and incomplete response 

to treatments. Metabolic reprogramming has been recognised as a critical element for 

cancer cells to grow under hostile conditions and this is likely to contribute towards 

resistance against chemotherapeutics. This thesis therefore aimed at deciphering the 

metabolic phenotype of residual breast cancer which survived docetaxel treatment, in 

vitro and in vivo, quantifying polar metabolite levels and conducting pathway tracing 

and metabolic flux analysis using stable isotope (13C) labelled tracers. 

In vitro residual cells presented a hypermetabolic phenotype characterised by 

significant accumulation of essential and non-essential amino acids, together with an 

elicited Warburg effect and an increased antioxidant response based on glutathione 

production, while in growth arrest. A method to carry out in vivo tracer-based metabolic 

studies was successfully developed using a breast cancer mouse model. Although the 

metabolite accumulation outlined in vitro was not observed in vivo, a protective 

phenotype against oxidative stress was supported by increased flux through the 

oxidative branch of the pentose phosphate pathway.    

In conclusion, this thesis demonstrated that metabolic phenotyping is a valid approach 

to uncover key metabolic alterations in residual tumours both in vitro and in vivo, and 

could be further exploited to design personalised treatments aimed at restoring 

sensitivity to therapies. 
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 General Introduction 

1.1 CANCER AND METABOLISM 

1.1.1 Hallmarks of tumours 

At the beginning of the 21st century cancer remains a significant threat to human life, 

with 161,823 deaths for cancer in UK in 2012 (Cancer Research UK). 

In 2000, Hanahan and Weinberg identified common traits in all types of human cancers 

that can be grouped into six hallmarks. They further reviewed and expanded this in 

2011, and postulated the following hallmarks of cancer: “self-sufficiency in growth 

signals, insensitivity to antigrowth signals, resisting cell death, limitless replicative 

potential, sustained angiogenesis, tissue invasion and metastasis, reprogramming 

energy metabolism and avoiding immune destruction” (Hanahan and Weinberg, 2000, 

Hanahan and Weinberg, 2011). Despite the high heterogeneity of human cancer 

progression, these hallmarks represent a common end-point arising through different 

steps from predisposing characteristics such as genomic instability, due to mutations 

in tumour suppressors (caretakers) and oncogenes (gatekeepers) (Hanahan and 

Weinberg, 2000), and inflammatory state (Hanahan and Weinberg, 2011). The eight 

hallmarks of tumour are described below: 

1. “Self-sufficiency in growth signals”. While normal cells require stimulation 

from exogenous growth and survival factors in order to grow, tumour cells are 

able of autocrine growth factor (GF) stimulation by producing their own growth 

factors, or carry somatic mutations that result in permanent signalling even in 

the absence of these factors, accompanied by GF receptors overexpression, or 

hyper-activated downstream signalling molecules (Hanahan and Weinberg, 

2011). In recent years, a new mechanism emerged where the tumour 
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microenvironment participates in providing growth factors to stimulate cancer 

cell growth (Cheng et al., 2008).  

2. “Insensitivity to antigrowth signals”. In order to maintain normal tissue 

homeostasis, cells are kept in a quiescent state if needed, via antiproliferative 

signals that block the progression of the cell cycle. The control over cancer cell 

proliferation is mainly operated by tumour suppressors. These proteins are 

inactivated or lost in many cancers allowing them to hyper-proliferate and form 

the malignant mass. When cells are cultured in vitro, another proliferation 

inhibition signal is provided through cell-cell contact, which triggers various 

receptors and adhesion molecules signalling. Again, this “contact inhibition” 

effect is lost in cancer cells.    

3. “Resisting cell death”. Apoptosis and autophagy are programmed cell death 

processes that act to counterbalance cell growth inducing cell death when 

abnormalities are sensed. These processes therefore represent important 

obstacles for uncontrolled cellular proliferation, requiring cancer cells to acquire 

the ability to avoid them as part of their development.  

4. “Limitless replicative potential”. The presence of the three hallmarks 

described above would not be useful if malignant cells were able to replicate for 

a limited number of doublings, as occurs in normal cells. In fact, tumour cells 

are able to avoid telomeres (the ends of chromosomes) shortening via 

enhanced telomerase activity, acquiring replicative immortality. 

5. “Sustained angiogenesis”. Blood vessels are important carriers of oxygen 

and nutrients. For this reason cells cannot survive further than 100-200 µm from 

this blood supply (Helmlinger et al., 1997). To try to avoid this, cancer cells 
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undergo a so called “angiogenic switch” starting from the early stages of tumour 

mass formation (1-2 mm3), where new vessels are produced to allow tumour 

progression. However, these vessels are often dysfunctional, which results in 

the microenvironments of low oxygen (hypoxia) forming, which further drives 

malignant progression. 

6. “Tissue invasion and metastasis”. Almost all types of cancer are 

characterised by the ability to invade adjacent tissues and to metastasise to 

distant sites, often undergoing an epithelial-to-mesenchymal transition (EMT) 

process, following signalling from the tumour microenvironment. Once it 

reaches a distal site, malignant cells need to colonize and adapt to the new 

environment in order to form the metastatic tumour. This ability is the main 

cause of human cancer deaths. 

7. “Reprogramming energy metabolism”. In order to sustain the need for 

continuous proliferation and growth, cancer cells need to adjust their 

metabolism accordingly. This hallmark will be discussed in detail in the following 

sections.   

8. “Evading immune destruction”. The immune system, cytotoxic T 

Lymphocytes and natural killer cells in particular, is responsible of an antitumour 

response that recognises and eliminates cancer cells. However, some cancer 

cells are able to evade the immune surveillance and killing capacity by 

suppressing immune system activity (Yang et al., 2010). Moreover, leukocytes 

(macrophages, mast cells, neutrophils, T and B lymphocytes in particular) can 

also be tumour-promoters, producing various growth factors, chemokines and 

cytokines.  
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1.1.2 Metabolic alterations in cancer  

One of the emerging cancer hallmarks presented by Hanahan and Weinberg in their 

2011 review was the reprogramming of energy metabolism. This apparently new 

concept has its foundation in studies conducted by Otto Warburg in the 1920s, during 

which he observed that tumour cells produce lactate from glucose even in the presence 

of O2 (normoxic conditions), a phenotype termed “aerobic glycolysis” (Warburg, 1923). 

This phenotype is now called the Warburg effect, and it is considered a major feature 

of the metabolic adaptation of cancer cells. The aerobic glycolysis by itself is not a 

mechanism specific for cancer cells, in fact all eukaryotic cells are able to produce 

adenosine triphosphate (ATP) by glycolysis as well as by oxidative phosphorylation 

(OXPHOS) in mitochondria. What is unique is the consequent production of high level 

of lactate, that create an acidic microenvironment (Tennant et al., 2009). Considering 

that glycolysis is a more inefficient energy production pathway compared with 

OXPHOS (2 mole of ATP versus 36 mole of ATP per mole of glucose), tumour cells 

need to considerably increase the rate of glycolysis, in order to sustain rapid 

proliferation (Tennant et al., 2009). This requires an increased glucose uptake, which 

has been also exploited as a clinical marker for tumour detection through the use of 

18F-deoxyglucose positron emission tomography (FDG-PET) (Strauss, 1997).  

Therefore, the choice of tumour cells of glycolysis over OXPHOS cannot be explained 

in terms of ATP production, but in terms of production of glycolytic intermediates. These 

are then employed as substrates for many important biosynthetic pathways involved 

in the production of macromolecules (e.g. the pentose phosphate pathway (PPP), 

lipids and nucleotide synthesis) (Vander Heiden et al., 2009) aimed at biomass 

accumulation, and maintenance of the redox state (Cantor and Sabatini, 2012). 
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Warburg originally hypothesised that mitochondrial dysfunction was at the centre of the 

aerobic glycolytic phenotype (Warburg et al., 1927). Consistent with this, some 

inherited mutations in the mitochondrial metabolic machinery have more recently been 

shown to drive the Warburg effect in specific cancer syndromes, providing a basis for 

Warburg’s original hypothesis, albeit in rare tumours. Loss-of-function germline 

mutations in two tricarboxylic acid (TCA) cycle enzymes have been shown to lead to 

cancer - succinate dehydrogenase (SDH) mutations, which lead to 

pheochromocytomas, paragangliomas and renal cell cancers (Baysal et al., 2000, 

Gimm et al., 2000), and fumarate hydratase (FH) mutations, which lead to Hereditary 

Leiomyomatosis and Renal Cell Cancer (HLRCC) (Koppenol WH, 2011, Tomlinson et 

al., 2002). These two enzymes were therefore the first described ‘metabolic’ tumour 

suppressors, and directly result in the Warburg effect through mitochondrial 

dysfunction (Gottlieb and Tomlinson, 2005). In addition, a further TCA cycle enzyme, 

the nicotinamide adenine dinucleotide phosphate (NADP+)-dependent isocitrate 

dehydrogenase 2 (IDH2) as well as its cytosolic isozyme, IDH1 (Bayley and Devilee, 

2010) was shown to be an early mutation in some cases of acute myeloid leukaemia 

(AML) (Green and Beer, 2010) and glioblastomas (Yan et al., 2009). It has been 

demonstrated that mutated IDH is not able to oxidise and decarboxylate the TCA cycle 

intermediate isocitrate to produce α-ketoglutarate (α-KG) (Yan et al., 2009). In these 

cells α-KG levels are therefore lower, resulting in the stabilisation of the hypoxia-

induced transcription factor, hypoxia-inducible factor 1 (HIF1), and promotion of 

“pseudo-hypoxia” (Bayley and Devilee, 2010). Dang et al. demonstrated that IDH1 

mutations confer a new enzymatic activity, that is the ability to convert α-KG in 2-

hydroxyglutarate (2-HG) via NADPH-dependent reduction. Interestingly, 2-HG levels 
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have been found elevated in tumour samples, correlating with reactive oxygen species 

(ROS) levels and favouring tumourigenesis (Dang et al., 2009), identifying IDH1 as an 

oncogene. However, it has been noted that mitochondrial dysfunction is not generally 

apparent in most tumours exhibiting the Warburg effect, suggesting that other 

mechanisms are generally at work (Koppenol et al., 2011). In this case, it has been 

shown that activation of proto-oncogenes can directly lead to an aerobic glycolytic 

phenotype.  

c-MYC 

The most direct link between an overexpressed oncogene and altered glucose 

metabolism is illustrated by the oncogenic transcription factor c-MYC which regulates 

cell proliferation, differentiation and apoptosis (Evan and Littlewood, 1993, Packham 

and Cleveland, 1995) and in particular, it activates most glycolytic genes and glucose 

transporters, supporting the glycolytic phenotype. Among all the c-MYC targets, one in 

particular plays an important role: lactate dehydrogenase A (LDH-A), an enzyme which 

converts pyruvate to lactate (Figure 1.1) and is therefore highly involved in the 

regulation of the Warburg effect in cancer cells (Shim et al., 1997). MYC also favours 

the alternative splicing of the ATP-producing pyruvate kinase (PK) enzyme, favouring 

the expression of the PKM2 isoform (David et al., 2010), which is normally expressed 

in embryonic development and it has been found to be upregulated in tumour tissues 

(Eigenbrodt et al., 1992, Christofk et al., 2008a). The switch from the PKM1 (isoform 

expressed in adult, non-proliferating tissues) to the embryonic (and proliferating cell) 

isoform M2, could be explained by the ultimate goal of cancer cells: proliferation and 

growth (Christofk et al., 2008a, Mazurek et al., 1997, Ye et al., 2012). A possible 

mechanism of regulation of PKM2 activity has been proposed, which involves binding 
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of peptidyl phospho-tyrosine residues to PKM2, linking its activity directly with 

oncogenic activity of signalling pathways such as AKT. The binding of phosphorylated 

residues to PKM2 catalyses the release of its allosteric activator, fructose-1,6-

bisphosphate (FBP), and the consequent inhibition of the enzymatic activity (Christofk 

et al., 2008b). Reduced PKM2 activity in tumour cells leads to the accumulation of the 

upstream glycolytic intermediates, which will be channelled to anabolic processes, 

providing tumour cells with the precursors necessary to sustain cell growth and 

proliferation (Figure 1.1) (Ye et al., 2012). A further mechanism of regulation involves 

ROS, which inactivates PKM2, contributing to anabolic mechanisms and anti-oxidant 

production through diversion of glucose carbons into the PPP. The consequent 

NADPH production is responsible for boosting the cellular antioxidant activity via 

glutathione activation (Figure 1.1) (Dang, 2012). Finally, c-MYC is also involved in 

glutamine metabolism (favouring glutaminolysis) (Wise et al., 2008), fatty acid 

synthesis (Morrish et al., 2009) and serine/glycine metabolism, underlining the 

involvement of this oncogene in controlling cell growth and proliferation (Dang, 2012). 

AKT 

Another oncogene able to sustain the Warburg effect in tumour cells, is AKT, which is 

activated by PI3K as part of the PI3K/AKT pathway, triggered by tyrosine kinase 

receptors bound to grow factors when nutrients are available. PTEN is a tumour 

suppressor that antagonises PI3K through the de-phosphorylation of the membrane-

bound phosphoinositol-3,4,5-trisphosphate required for AKT activity. AKT activates 

two glycolytic enzymes - hexokinase-2 and phosphofructokinase (PFK1 and PFK2) - 

and recruits glucose transporters to the cell surface (GLUT1), enhancing glycolysis 

(Elstrom et al., 2004). Moreover, this oncogene makes a broader contribution to cancer 



 

9 
 

 General Introduction 

metabolic reprogramming, stimulating de novo fatty acids synthesis through ATP 

citrate lyase (ACL) phosphorylation (Berwick et al., 2002), and increasing protein 

synthesis activating the mechanistic (previously known as mammalian) target of 

rapamycin complex 1 (mTORC1) (Laplante and Sabatini, 2012). 

mTOR 

The serine/threonine kinase mTOR is the catalytic domain of two complexes – 

mTORC1 and mTORC2. The former in particular plays a pivotal role in controlling cell 

growth based on nutrient availability (Efeyan et al., 2012). The availability of free amino 

acids in the cytosol is particularly important for maintaining cellular homeostasis: their 

requirement for de novo protein synthesis means that a cell cannot alter its phenotype 

without investing in new protein synthesis. Their abundance is sensed by the 

mTORC1: a number of amino acids – especially glutamine - activates this kinase, 

which shuts down autophagy and drives cellular growth (Efeyan et al., 2012), also 

inducing initiation of translation via S6K1 and eIF4E-BP1 phosphorylation and 

activation (Wu et al., 2005). While in starvation conditions, where concentrations of 

amino acids in the cytosol drop, mTORC1 is inhibited, cell growth arrested and 

autophagy activated to replenish missing nutrients (Kroemer et al., 2010).  

AMPK 

One of the pivotal tumour-associated driver of metabolic transformation during 

metabolic stresses, such as nutrient deprivation and hypoxia, is AMP-activated protein 

kinase (AMPK). It responds to changes in the ATP:ADP:AMP ratio by shutting down 

energy-consuming pathways such as fatty acids synthesis (Carling et al., 1987), and 

mTORC-mediated protein synthesis (Gwinn et al., 2008) while increasing energy-

producing processes.      
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P53 

P53 is a transcription factor that acts as a tumour suppressor and in some cases an 

oncogene, and its importance in counteracting tumour development is also highlighted 

by the fact that around 50% of all human cancer present a mutated or deleted p53 

gene (Liu et al., 2015). Besides its well-known pro-apoptotic and cell-cycle arrest role, 

p53 has recently been discovered to participate in metabolic control (Shen et al., 2012), 

decreasing glycolytic metabolism through the activation of the TP53-induced glycolysis 

and apoptosis regulator (TIGAR) (Lee et al., 2014). Blocking PFK-1 activity, TIGAR 

causes an accumulation of the upstream fructose-6-phosphate which is consequently 

channelled into the PPP, supporting a proliferative and antioxidant cellular response 

(Lee et al., 2014). However, when p53 activity is lost, cellular proliferation can still be 

promoted, this time through control over another glycolytic enzyme – the 

phosphoglycerate mutase 1 (PGAM1). In the absence of p53, PGAM1 increases the 

conversion of 3-phosphoglycerate (3-PG) to 2-phosphoglycerate, reducing the 

availability of the PPP-inhibitor 3-PG. Moreover, this metabolite also participates in 

serine biosynthesis further supporting nucleotide production (Hitosugi et al., 2012). 

P53 control over glycolysis is also exerted directly on glucose transporters (GLUT1 

and GLUT4) decreasing the entry of glucose into the cell (Schwartzenberg-Bar-Yoseph 

et al., 2004). P53 metabolic control is not limited to glycolysis, but there are evidences 

showing its control over OXPHOS through cytochrome c oxidase 2 activation (Matoba 

et al., 2006) and glutaminase 2 (GLS2) activation (Hu et al., 2010). Interestingly, p53 

and AMPK exert positive stimulation between each other, favouring mTORC1 inhibition 

following DNA damage detection and de novo fatty acids synthesis inhibition (Feng et 

al., 2007).  



 

11 
 

 General Introduction 

Other examples of oncogenes supporting the Warburg effect are K-RAS, which 

stimulates glucose uptake, and SRC, which upregulates glycolytic enzymes (Flier et 

al., 1987) and can stabilise HIF1α (Jiang et al., 1997). 

Mutations in metabolic enzymes can result in the acquisition of oncogenic features as 

described above for SDH, FH, IDH1 and IDH2, creating a strong link between 

metabolic alterations and tumourigenesis (Dang, 2012). Another example is given by 

the enzyme phosphoglycerate dehydrogenase (PHGDH) whose elevated expression 

mediates diversion of glucose carbons from glycolysis to increased serine biosynthesis 

(Locasale et al., 2011), permitting increased rates of proliferation.  

Even though the Warburg effect is now commonly seen as a major metabolic 

phenotype in cancer cells, this mechanism alone is not sufficient to sustain cell growth 

(Koppenol et al., 2011), considering for example the central role of lipid synthesis for 

cancer cell growth. Moreover, given that most of the glucose is consumed upstream of 

the TCA cycle, the functional mitochondria of most proliferating tumour cells need to 

be fuelled by nutrients other than glucose, e.g. through so-called anaplerotic pathways 

that allow the continuous production of TCA cycle intermediates used for anabolic 

reactions. Glutamine, the most abundant amino acid in the plasma, represents an 

important anaplerotic nutrient for the Krebs cycle in cancer cells. Through oxidation in 

the TCA cycle (glutaminolysis), it provides cancer cells with ATP, NADPH, anabolic 

carbons and nitrogen for redox maintenance, nucleotide and lipid synthesis, therefore 

supplying the building blocks for cell replication (DeBerardinis et al., 2007, Gaglio et 

al., 2011). However, cancer cells with defective mitochondria are unable to use this 

oxidative pathway. Mullen at al. recently showed that these cells support their growth 

via an alternative pathway: known as reductive carboxylation. In this reaction, α-
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ketoglutarate derived from glutamine is reductively carboxylated through isocitrate to 

form citrate, providing the substrates for lipid synthesis. This reductive pathway is 

mediated by IDH1 or 2 (although IDH1 is a cytosolic enzyme, therefore removing the 

pathway from this organelle), acting in a reverse reaction compared to the oxidative 

pathway (Mullen et al., 2012).  

Glutamine is also essential for glutathione (GSH) production, hence it plays an 

important role in helping tumour cells to resist the oxidative stress produced in the 

hostile environment of the tumour (DeBerardinis and Cheng, 2010). Moreover, the role 

of glutamine in directly regulating cell signalling has been demonstrated, such as 

through its involvement in controlling cell growth via the mTOR described above 

(DeBerardinis and Cheng, 2010).  

The TCA cycle can also be fuelled by glucose-dependent anaplerosis involving 

pyruvate carboxylase (PC) activity, which converts glycolysis-derived pyruvate directly 

into oxaloacetate (Cheng et al., 2011), thus avoiding entry of nutrients via pyruvate 

dehydrogenase (PDH) which is regulated by many factors (e.g. pyruvate 

dehydrogenase kinases, PDKs). PC activity has recently been shown to be 

fundamental in SDHB-deficient tumours, where a blocked TCA cycle does not allow 

intermediates and ATP production via the classical route. Therefore, in these cells PC 

supports a positive regulation of glycolytic flux, and consequently an increased 

glycolysis-derived ATP production through decreasing pyruvate availability (Cardaci et 

al., 2015).    
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Figure 1.1. Glycolytic pathway in tumours.  

Glucose is catabolised in tumours through aerobic glycolysis (the Warburg effect) leading to 

the production of lactate via lactate dehydrogenase A (LDHA) activity. However, the 

expression of the M2 isoform of pyruvate kinase (PKM2) can decrease the conversion of 

phosphoenolpyruvate (PEP) to pyruvate, favouring the channelling of the upstream glycolytic 

intermediates into proliferation-prone pathways, such as the pentose phosphate pathway. 

Abbreviations: F1,6BP, fructose-1,6-bisphosphate; F6P, fructose-6-phosphate; G1P, glucose-

1-phosphate; G6P, glucose-6-phosphate; G6PD, glucose-6-phosphate dehydrogenase; GSH, 

glutathione; PEP, phosphoenolpyruvate; PFK, phosphofructokinase; ROS, reactive oxygen 

species. Adapted from (Schulze and Harris, 2012).       
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1.1.2.1 Tumour microenvironment and metabolic adaptations 

Tumours cannot be fully understood if one does not consider that they are complex 

tissues, composed not only of cancer cells forming the parenchyma, but also by non-

mutated cells organised into the stroma, immune cells and tumour vasculature, 

altogether creating the so-called tumour microenvironment (Hanahan and Weinberg, 

2000, Hanahan and Weinberg, 2011). The interaction between the tumour cells and 

the stroma contributes to the multistep progression of cancer, characterised by an 

initial stage of normal stromal cells recruitment by cancer cells, which then stimulate 

the development of the malignant phenotype, eventually supporting invasion and 

metastasis (Hanahan and Weinberg, 2011). In most solid tumours, the 

microenvironment is ‘hostile’, characterised by a number of stresses such as low 

oxygen levels (hypoxia), increased ROS (Fiaschi and Chiarugi, 2012), nutrient 

depletion and build-up of toxic cellular waste products due to their rapid and 

uncontrolled growth surrounded by an aberrant neovasculature (Bergers and 

Benjamin, 2003). Cancer cells need to adapt to this environment through 

reprogramming of their energy metabolism, in order to be able to survive and proliferate 

in such an environment. In particular, the presence of hypoxia renders cells more 

invasive and resistant to therapies (Harris, 2002). The metabolic adaptation to hypoxia 

is mainly driven by HIF1, a heterodimeric transcription factor that upregulates the 

expression of most glycolytic enzymes (e.g. hexokinase 1/2, LDH-A, GLUT1/3) in order 

to support increased glycolytic metabolism (Semenza, 2009). HIF1 also regulates a 

key enzyme that inhibits oxidation of pyruvate, PDK1, which phosphorylates and 

inactivates PDH, decreasing the oxidative decarboxylation of pyruvate to acetyl CoA 

(Kim et al., 2006). This happens in parallel with the upregulation of LDH-A, therefore 
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favouring the conversion of pyruvate into lactate. As a consequence, production of high 

levels of lactate creates an acidic environment promoting tumour invasion (Semenza, 

2013). The presence of acidosis also applies a selective pressure, given that cells that 

are not able to adapt to these unfavourable conditions will undergo apoptosis (Justus 

et al., 2015). HIF1-dependent inhibition of pyruvate oxidation consequently results in 

inhibition of glucose-derived fatty acid synthesis, making cells more dependent on 

glutamine metabolism, specifically reductive carboxylation of this amino acid, for their 

synthesis (Metallo et al., 2012, Wise et al., 2011). Moreover, decreased pyruvate 

oxidation in hypoxia also ensures decreased ROS production, although the full process 

is not yet understood (Justus et al., 2015). Another member of the HIF family – HIF2 – 

has shown involvement in the adaptation process to hypoxia, mainly controlling VEGF 

expression (Krieg et al., 2000), particularly in vivo (Wiesener et al., 2003). However, 

HIF2 predominantly drives changes in response to prolonged (chronic) hypoxia, while 

HIF1 is responsible for adaptations to acute hypoxia (Loboda et al., 2012, Holmquist-

Mengelbier et al., 2006). While HIF1 is ubiquitously expressed, HIF2 shows a non-

ubiquitous, cell-specific localisation, being expressed in endothelial cells, in tumour-

associated macrophages (Talks et al., 2000), and in the cytoplasm of mouse embryo 

fibroblasts even in normoxic conditions (Park et al., 2003). Moreover, HIF2 expression 

has been correlated with decreased breast cancer patient survival and increased 

distant recurrence (Helczynska et al., 2008), supporting its contribution to tumour 

development and malignancy. There are also a number of HIF-independent 

mechanisms of adaptation to hypoxia, an example being the activation of AMPK in 

these conditions, which stimulates macroautophagy (Papandreou et al., 2008), and 

inhibits mTOR activity, in order to reduce energy consumption (Liu et al., 2006). 
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Nutrient abundance and oxygen availability are not homogenous throughout the whole 

tumour mass, but constitute a gradient based on the proximity of the region to a 

functional blood vessel. As a consequence, the tumour is composed of cells with 

different metabolic profiles based on their localisation within the same environment. In 

particular, it was recently shown that glycolytic cells that produce and secrete lactate 

via the Warburg effect maintain a symbiotic relationship with aerobic cells that uptake 

and utilise that lactate as the main energy substrate for their oxidative metabolism 

(Sonveaux et al., 2008). This relationship is therefore glucose sparing, permitting a 

larger tumour size than would be possible in its absence. Lactate, and the 

monocarboxylate transporters, MCT1 and 4, have a central role in this symbiotic 

metabolism (Sonveaux et al., 2008, De Saedeleer et al., 2014, Draoui et al., 2014). 

The idea evolved into the “two-compartment tumour metabolism” model more recently, 

which describes how  cancer-associated fibroblasts (CAFs) perform glycolytic 

metabolism to fuel the neighbouring epithelial cancer cells oxidative metabolism 

(Salem et al., 2012). Therefore, the catabolic tumour microenvironment provides 

autophagy/mitophagy-derived nutrients to the anabolic epithelial component of 

cancers to offer metabolic support to tumour growth (Carito et al., 2012, Salem et al., 

2012).  

Despite the perception of many common traits in cancer cell metabolic reprogramming, 

one has to bear in mind that cancers are highly heterogeneous (Cantor and Sabatini, 

2012), making patient stratification and personalised treatments necessary (Kalia, 

2015). However, the discovery of the metabolic intra-tumour heterogeneity described 

above, on top of the longer-known genetic and protein expression heterogeneity 

(Marusyk and Polyak, 2010), has the potential to radically influence diagnostic 
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procedures and therapeutic approaches (Sun and Yu, 2015), given that different 

regions of the same tumour could lead to opposite metabolic profiles, and therefore to 

the choice of unsuccessful therapies.  

 

1.2 BREAST CANCER 

1.2.1 Epidemiology and subtypes 

Breast cancer is the most common cancer in the UK, accounting for 49,900 cases in 

women in 2011, while more than 1.68 million women were diagnosed worldwide in 

2012 (Cancer Research UK). 

There are two types of risk factors: those that can be controlled, and those that cannot. 

The former includes being overweight, lack of physical activity, alcohol consumption, 

nulliparity, high age at first birth, and use of exogenous hormones (like oestrogen and 

progesterone), while uncontrolled risk factors include age (increased incidence after 

40), younger age at menarche, race (higher incidence in White women), family history, 

genetic factors, medical history, duration of breastfeeding and late menopause 

(Mahoney et al., 2008, Barnard et al., 2015). Interestingly, the incidence rate of breast 

cancer is higher in developed countries (71.7/100,000) compared to poorer countries 

(29.3/100,000) (Ferlay et al., 2010). This underlines the influence of lifestyle, and in 

particular of specific aspects of western world lifestyle, such as having fewer children, 

higher obesity, and use of oral contraceptives (Porter, 2008). Recently, it has been 

pointed out that the above described risk factors can have different associations with 

each breast cancer subtype, while family history is the only factor affecting all subtypes 
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(luminal A, luminal B, HER2-overexpressing, triple negative, all described later) 

(Barnard et al., 2015).  

Considering the strong link between stage at diagnosis and survival (Elmore et al., 

2005), enhancements in early stage detection are of vital importance to decrease the 

morbidity and overall mortality (Youlden et al., 2012). To reach this aim, improvements 

in diagnostic imaging and in screening approaches are required (Moulder and 

Hortobagyi, 2008). National screening programmes exist in different countries; for 

example in the UK women between the ages of 47-73 are subjected to mammography-

based screening every 3 years (Health & Social Care Information Centre). However, 

the high heterogeneity of breast cancer needs to be considered in order to achieve 

personalised screening tailored to individual risk factors. In particular, breast density 

(determined by the proportion of fat and fibroglandular tissue), emerged to be a risk 

factor that should be used to discriminate between the use of mammography or 

alternative screening approaches such as magnetic resonance imaging (MRI) and 

sonography. This is because high-density breast tissue, such as found in younger 

women, does not allow good visibility through mammography decreasing its sensitivity 

as an early detection approach (Gucalp et al., 2014). As a result of the improvement 

of screening approaches, the percentage of breast cancer detected at an early stage 

has increased in developed countries. This early diagnosis has led to an increase in 

breast cancer survivors over the last decade, favouring a relative survival rate of 88% 

at five years after diagnosis (Soerjomataram et al., 2008, Youlden et al., 2012). 

However, it has also resulted in the significant issue of overdiagnosis: specifically the 

detection of tumours that could have remained benign throughout the whole lifetime 

(Gunsoy et al., 2014). For this reason, the effectiveness of mammographic screening 
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is still controversial (Gunsoy et al., 2014). In contrast to the above-described situation, 

developing countries do not show the same survival rate. Many aspects of healthcare 

in these countries contribute to this challenge, such as reduced availability of screening 

programmes (therefore presentation at a more advanced stage at diagnosis), low 

levels of awareness, poor infrastructure and inadequate expertise (Agarwal et al., 

2009). 

Breast cancer can be classified into two subtypes based on the anatomical localisation 

of the rising tumour: ductal, which is the most common, arising from the cells lining the 

ducts of the breast, and forming glandular structures (Korkola et al., 2003); and lobular, 

that originates in the cells lining the lobules or lobes of the breast. Both can be invasive 

or in situ. In the case of ductal origin, when these abnormal cells have not started to 

invade the basal membrane of the ducts, it is defined ductal carcinoma in situ (DCIS) 

(Wellings and Jensen, 1973): this accounts for about 20% of breast cancers and results 

in a good prognosis (Van Cleef et al., 2014). However, it can evolve into the invasive 

subtype, previously known as ductal carcinoma, and now called No Special Type 

(NST), which accounts for about 80% of all invasive breast tumours (Korkola et al., 

2003). The lobular subtype instead, is defined lobular carcinoma in situ (LCIS) when 

not invasive, and it is less common than the ductal subtype (around 11% of cases). 

However, it can be the precursor of the invasive lobular cancer (ILC) which represents 

the 15% of all invasive cancers (Korkola et al., 2003). This subtype consists of small 

atypical cells, able to rapidly invade the adjacent stroma following loss of E-cadherin 

(Mastracci et al., 2005). In this way, this type of tumour will not form an easily 

detectable mass (by physical exam or mammography). Thus, it is usually detected 

when the tumour is already at a more advanced stage (Wasif et al., 2010). At the 
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molecular level, most of the lobular tumours are hormone receptor-positive: Oestrogen 

Receptor (ER, 70-92%) and Progesterone Receptor (PR, 63-67%) positive (Zhao et 

al., 2004), while fewer ductal tumours are hormone receptor-positive (Korhonen et al., 

2004).  

The use of immunohistochemistry first, of gene expression arrays later, and of genomic 

approaches most recently (Sonnenblick et al., 2014), has made it clear that breast 

cancer is a highly heterogeneous disease, both inter-tumour and intra-tumour 

(Skibinski and Kuperwasser, 2015), that therefore needs a wider classification for a 

more precise diagnosis, and more specific treatment approaches.  

Based on tumour histology and molecular pattern, five different biological subtypes of 

breast cancer can be identified: luminal A, luminal B, Human Epidermal Growth Factor 

Receptor 2 (HER2) overexpressing, basal-like, and claudin-low (Perou et al., 2000, 

Sorlie et al., 2001, Herschkowitz et al., 2007). The majority are luminal subtype (luminal 

A and B), accounting for 75-80% of breast cancer cases (Perou et al., 2000). The 

subtype A can be distinguished from the subtype B accordingly to the ER expression: 

the highly expressing subtype A with good prognosis, and the lower expressing 

subtype B with poorer prognosis (Sorlie et al., 2001). Moreover, they can be separated 

accordingly to Ki67 (a marker of cell proliferation) expression levels (Murase et al., 

2014). Recently, a clinical study has proposed another marker to distinguish these two 

subtypes: the PR expression level. Indeed, luminal subtype B exhibits a significantly 

lower PR expression level than subtype A, probably due to a lack of intratumoural 

estradiol, which is known to upregulate PR (Murase et al., 2014). Recently, a further 

subtype defined as “triple positive” has been identified for cancers positive for ER, PR 

and HER2 expression (Vici et al., 2015). The luminal subtypes present a lobular origin 
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in most cases (Korhonen et al., 2004), and they are characterised by a much better 

prognosis, compared to non-luminal tumours (Phipps et al., 2008). The HER2 (also 

called NEU, ERBB2 and p185) overexpressing subtype represents 15-20% of all 

breast cancer tumours (Musolino et al., 2012), and are usually ER- and PR- (Perou et 

al., 2000). HER2 is a member of cell-surface epidermal growth factor receptors, the 

overexpression of which is related to a more aggressive, highly proliferative phenotype 

of breast cancer, with decreased disease-free survival (Musolino et al., 2012, Slamon 

et al., 1987). In most cases, this subtype is detected in invasive ductal carcinomas and 

very infrequently in benign breast hyperplasia (Allred et al., 1992).  

The basal-like tumours, also known as triple-negative tumours, are the rarest subtype 

accounting for 10-15% of all cases (Cleator et al., 2007). They are characterised by 

the absence of all the three most common markers, such as ER, PR, and HER2 (Perou 

et al., 2000, Lin et al., 2012b). This subset arises especially in young and 

premenopausal women, and it is predominant in African American and Hispanic White 

women (Phipps et al., 2008). It is also associated with a more advanced cancer, 

showing characteristics like high proliferative rate and central necrosis, contributing to 

worse survival outcome and poorer prognosis due to high rate of distant relapses, 

especially in brain or lung (Lin et al., 2012b), with a median survival of only one year 

among these patients (Lin et al., 2008). The triple-negative subtype is linked to family 

history and in particular to Breast Cancer, early onset 1 (BRCA1) mutations (Foulkes 

et al., 2003). Interestingly, it is not associated with increased risk of lymph node 

positivity, which represents the most important prognostic indicator, the lymph nodes 

being the most common site of metastasis in patients with invasive breast cancer (Lin 

et al., 2012a).  
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The more recently-discovered claudin-low subtype shows high expression of 

mesenchymal markers (i.e. vimentin), together with low expression of luminal, cell-cell 

adhesion and junctions genes (i.e. Claudin 3, 4, 7, Occludin and E-cadherin) 

(Herschkowitz et al., 2007). It accounts for a small fraction of breast tumours (12-14%), 

and shares similarities with the basal-like subtype given the absence of the three 

hormone receptors expression. Patients with this tumour type generally have a poor 

prognosis (Prat and Perou, 2011).  

Breast cancer tumourigenesis arises from a multistep acquisition of different genetic 

or genomic alterations, including changes in copy number, acquisition of single 

nucleotide polymorphisms (SNPs), as well as loss and gain of function mutations 

(Dankort and Muller, 2000, Curtis et al., 2012). The order in which the alterations are 

acquired varies among tumours, and this determines the different tumour phenotypes 

(Skibinski and Kuperwasser, 2015). All three of these mutational types are found in 

breast tumours: e.g. amplification of both the Epithelial Growth Factor Receptor 

(EGFR) and HER2 as well as mutations (SNPs) in BRCA1&2 tumour suppressor genes 

being regularly observed (Venkitaraman, 2002). Moreover, Curtis et al. showed the 

association between copy number aberrations (CNAs) in the genome, and expression 

of genes leading to breast cancer, with the identification of ten novel subgroups (Curtis 

et al., 2012). 

While most of breast cancers derive from somatic mutations (so called “sporadic” 

cancers), five to seven percent are early onset and arise from germline mutations, 

being therefore defined as hereditary breast cancer (Melchor and Benitez, 2013). 

BRCA1 and 2 are the most frequently found mutations in familial breast cancers (FBC), 

responsible for 25% cases (Melchor and Benitez, 2013). These two tumour 
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suppressors are involved in different functions, such as DNA repair and recombination, 

cell cycle control and transcription (Venkitaraman, 2002). Their mutation in human cells 

leads to altered chromosomal structure, therefore predisposing to carcinogenesis 

(Tirkkonen et al., 1997). 5% of FBC are the result of mutations in high susceptibility 

genes such as TP53, PTEN, STK11, and CDH1, and another 5% by moderate 

susceptibility genes among which there are ATM, CHEK2, RAD50, RAD51B/C/D. Low 

susceptibility genes explain a further 14%, while 51% cases are still caused by 

unknown mutations (Melchor and Benitez, 2013). Recently, genome wide association 

studies (GWAS) allowed the identification of around 90 genomic loci associated with 

the risk of familial breast cancer, accounting for a further 14% of these tumours (Fachal 

and Dunning, 2015). 

1.2.2 Breast cancer treatment  

After diagnosis of breast cancer, the treatment protocol is carefully chosen based on 

several tumour characteristics including disease TNM stage (Tumour size, Nodal 

involvement, presence of Metastasis), receptor status (mainly determined by 

immunohistochemistry), molecular subtype and tumour grade (Bossuyt et al., 2015).  

The first approach for early stage diagnosed breast cancer usually consists of surgical 

resection of the primary mass, followed by radiotherapy or systemic adjuvant therapy, 

to reduce the risk of local recurrence or distant metastasis respectively (Gucalp et al., 

2014, Hassan et al., 2010). The adjuvant chemotherapy mainly consists of 

anthracycline-based treatment, moreover in recent years, the addition of taxanes 

demonstrated a higher recurrence-free survival (Alken and Kelly, 2013). Until few years 

ago, surgical treatment consisted of radical mastectomy, while more recently this 
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approach is being most often replaced with breast conserving surgery (BCS). Many 

trials demonstrated that BCS does not decrease the overall survival, compared to total 

mastectomy (Clarke et al., 2005). Furthermore, it provides a better cosmetic outcome, 

which is important for the acceptance of the disease among women (Margenthaler, 

2011). The main risk with BCS is the presence of positive margins, that require further 

surgical intervention in order to avoid local recurrence (Gucalp et al., 2014).  

Locally advanced breast cancer is instead treated with neoadjuvant systemic 

chemotherapy, which includes anthracyclines (i.e. doxorubicin) and taxanes (i.e. 

docetaxel) (Yalcin, 2013), a strategy which reduces the risk of recurrence by 30-50% 

(Moulder and Hortobagyi, 2008). This approach is often used prior to surgery in order 

to reduce tumour dimensions and render it more easily operable (Zardavas and 

Piccart, 2015). To date, the combination of these two classes of drugs offers the best 

clinical outcome, not further improved by addiction of other compounds (Zardavas and 

Piccart, 2015), and showing the highest responses for basal-like and HER2-enriched 

breast cancer subtypes (Prat and Perou, 2011).   

Anthracyclines and taxanes are also used to treat metastatic breast cancer, although 

their use in this way is mainly palliative, as advanced disease is still incurable and has 

low survival rates (2-years median survival) (Moulder and Hortobagyi, 2008, Hassan 

et al., 2010).  

Given the interconnection between increased risk of cancer in diabetic patients (Tsilidis 

et al., 2015) and the elevated insulin levels as a breast cancer risk factor (Ferroni et 

al., 2015), the efficacy of the antidiabetic drug metformin in systemic breast cancer 

treatment and prevention has been recently investigated (Vona-Davis and Rose, 2012, 

Hatoum and McGowan, 2015, Luo et al., 2014). In vitro studies showed great efficacy 
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in treating breast cancer cell lines of various subtypes with metformin, either as 

monotherapy or in combination with other established breast cancer treatment drugs 

(Ma et al., 2014, Liu et al., 2012). However, results in vivo are still contradictory. Most 

of the clinical studies are retrospective and while some of them demonstrated a 

decreased breast cancer risk and mortality in diabetic patients using metformin, others 

did not. This drug has also shown capacity to decrease androgen and oestrogen 

circulating levels. Consequently its diabetes-independent activity against breast 

cancer is now being investigated (Hatoum and McGowan, 2015).    

In order to overcome the high heterogeneity of breast cancers, to improve outcomes 

and patient survival, it is necessary to move toward a more personalised medicine, that 

could help to predict response to therapy, frequently based on molecular profiles 

(Gucalp et al., 2014, Perou et al., 2000). Patient tailored therapies could be achieved 

through the discovery of biomarkers in order to predict individual response or 

resistance to treatment (Di Leo et al., 2015). Biomarkers can be classified in diagnostic, 

prognostic, treatment and prevention (Kalia, 2015). Two ongoing trials will probably 

determine the guidelines for more personalised treatment in the near future: TAILORX 

(Trial Assigning IndividuaLized Options for Treatment [Rx]) and MINDACT (Microarray 

In Node negative Disease may Avoid ChemoTherapy) (Di Leo et al., 2015).  

Two of the most important biomarkers for breast cancer are ER and PR. Hormonal 

therapies (also known as selective oestrogen response modulators –SERMs-) such as 

tamoxifen and raloxifene are aimed at blocking specific hormones’ signalling. They are 

suggested for luminal breast cancers (in particular subtype A, ER+ in premenopausal 

women) as first-line treatments, showing great efficacy (Abdulkareem and Zurmi, 

2012), while for postmenopausal women the preferred treatment involves an 
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aromatase inhibitor (i.e. letrozole) (Di Leo et al., 2015). Recently, the SOFT 

(Suppression of Ovarian Function Trial) phase III trial demonstrated that young 

premenopausal women with hormone receptor positive (HR+) early breast cancer 

could take advantage of co-treatment with tamoxifen and ovarian suppression, 

resulting in reduced risk of recurrence, and secondary invasive cancer (Francis et al., 

2015). The same type of patients were included in another phase III trial, the TEXT 

(Tamoxifen and Exemestane Trial), where they demonstrated better disease-free 

survival following the treatment with the aromatase inhibitor exemestane (previously 

suggested only for postmenopausal women) together with pharmacological ovarian 

suppression (Pagani et al., 2014). Moreover, patients with HR+ metastatic breast 

cancer are often treated with hormonal therapies. However, some cases of ER+ breast 

cancers are characterised by de novo resistance or develop resistance after an initial 

response period (Jerusalem et al., 2015, Abdulkareem and Zurmi, 2012). In order to 

overcome endocrine resistance, new and more targeted drugs are currently being 

tested. The mTOR inhibitor everolimus for instance, used in combination with 

endocrine therapy, appears to have the best outcome, even in previously refractory 

metastatic breast tumours (Jerusalem et al., 2015, Yardley et al., 2013). In fact, the 

hyperactivation of the mTOR signalling pathway has been previously linked to 

endocrine therapy resistance (deGraffenried et al., 2004). Besides its positive effects, 

few adverse events were registered after its use (Fedele et al., 2015). Being such a 

central metabolic controller, its inhibition will negatively affect several mTOR-controlled 

metabolic processes such as cellular proliferation, translation initiation and autophagy 

inhibition (Efeyan et al., 2012, Laplante and Sabatini, 2012) as described in section 

1.1.2. Unfortunately, its decreased activity also leads to AMPK activation, which 
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supports tumour growth and most likely tumour cell resistance to mTOR-inhibitors 

(Dowling et al., 2010, Faivre et al., 2006). 

The overexpression of HER2 is also considered a biomarker, whose presence 

determines the efficacy of the humanised monoclonal antibody trastuzumab 

(Herceptin), directed against the extracellular juxtamembrane domain of HER2 

(Moulder and Hortobagyi, 2008, Phipps et al., 2008). When trastuzumab is used in 

combination with conventional chemotherapy, it demonstrates even greater survival 

benefit (Moulder and Hortobagyi, 2008, Zardavas and Piccart, 2015), even in 

metastatic breast cancer patients (Wong and Hurvitz, 2014). One of the few known 

disadvantages of Herceptin is the cardiac toxicity developed independently of drug 

dose (Sandoo et al., 2015). Despite the above mentioned positive aspects, around 

50% of patients do not respond to trastuzumab due to resistance (Wong and Hurvitz, 

2014). In recent years, the outcome of HER2 positive metastatic breast cancer has 

greatly improved, also thanks to new therapeutic agents. Pertuzumab, which is another 

recombinant humanized monoclonal antibody that, binding to the extracellular 

dimerization subdomain of HER2, inhibits its pro-proliferation downstream signalling 

(Baselga et al., 2012), and ado-trastuzumab emtansine, which derives from the 

conjugation of the monoclonal antibody trastuzumab to the microtubule inhibitory agent 

DM-1 (Verma et al., 2012). Another class of drugs is the intracellular tyrosine kinase 

inhibitors (TKIs, lapatinib and neratinib), that act by binding the intracellular 

phosphorylation domain, therefore blocking the receptor signalling and induction of 

cellular proliferation (Zhu and Verma, 2015, Hojjat-Farsangi, 2014). The main 

disadvantage of TKIs is their little specificity, causing the inhibition of several off-target 

tyrosine kinases (Hojjat-Farsangi, 2014). This would in turn affect metabolic pathways 
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controlled by those tyrosine kinases, as recently shown for the TKIs used for chronic 

myeloid leukemia (Breccia et al., 2014). Although lapatinib presents a high tyrosine 

kinase specificity, it has been shown to induce hepatotoxicity due to the metabolites 

formed during lapatinib elimination process (Castellino et al., 2012).    

Specific treatment guidelines are still lacking for triple-negative tumours, due to the 

absence of specific targets (Cleator et al., 2007). However, patients appear to derive 

the major benefits from adjuvant chemotherapy (Lin et al., 2012a). 

Targeted therapy approaches have made recent advances given a series of new 

targets such as fibroblast growth factor (FGF), tyrosine kinases, insulin-like growth 

factor, hepatocyte growth factor and c-MET (Santarpia et al., 2012), mutated PI3K, 

deleted PTEN, mutated AKT, cyclin D kinases (CDKs), histone deacetylase (HDAC), 

and deficient DNA repair capacity. The latter in particular has been exploited to 

enhance chemotherapy efficacy using poly(ADP-ribose) polymerase (PARP) inhibitors 

in breast cancer patients with BRCA1/BRCA2 mutations (Tutt et al., 2010). Another 

targeted agent is the antibody bevacizumab (Avastin), directed against vascular 

endothelial growth factor A (VEGF-A), therefore inhibiting tumour angiogenesis 

(Moulder and Hortobagyi, 2008).  

Besides classical intra-tumoural targets, new efforts have been made to consider 

possible targets in the tumour microenvironment (Di Leo et al., 2015) given its 

contribution to breast tumourigenesis (Tlsty, 2001). First of all, the so-called 

immunotherapies aimed at enhancing the innate immune response anticancer activity; 

moreover, drugs targeting tumour necrosis factor-related apoptosis inducing ligand 

(TRAIL) pathway and matrix metalloproteinases (MMPs) (Di Leo et al., 2015). Other 

targets could be (Nwabo Kamdje et al., 2014):  
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- CAFs, given their ability in promoting tumour growth via autophagy and 

senescence;  

- NOTCH, which mediates CAF-induced cancer cell growth and survival, and 

promotes resistance to therapies, especially for HER2-targeted treatments. One 

of the most active class of drugs is γ-secretase inhibitors and the R04929097 

compound has recently entered clinical evaluation.  

- tumour-associated macrophages (TAMs), which often infiltrate triple-negative 

breast cancer microenvironment and contribute to chemoresistance and 

tumourigenesis. 

One of the main side effects of both systemic and targeted therapies is cardiotoxicity. 

In response to this issue, Sharp et al. pointed out the high potential of stem cells in 

regenerating cardiac tissue, although pre-clinical and clinical studies investigating the 

effect of an intramyocardial injection of stem cells derived from the bone marrow, found 

different results dependent on factors including the injection site. Moreover, 

mesenchymal stem cells injected percutaneously showed promising outcomes (Hare 

et al., 2012, Karantalis et al., 2014). New hope in the field was given by the discovery 

of cardiac-derived stem cells with their capacity of cardiac regeneration manifested in 

the clinical setting (Sharp and George, 2014).   

1.2.2.1 Docetaxel 

Docetaxel (registered as Taxotere in 1992, Tax) is a semisynthetic taxoid derived from 

the needles of Taxus baccata (Tankanow, 1998, Cortes and Pazdur, 1995). After 

showing cytotoxicity against various cancer cell lines, it has been demonstrated that 

its anticancer activity derives from the anti-mitotic effect due to stabilisation of 

polymerised microtubules (Cortes and Pazdur, 1995) through binding to the β-tubulin 
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subunit (Tankanow, 1998). As a consequence, cell proliferation is blocked (Herbst and 

Khuri, 2003), leading to various effects such as mitotic catastrophe (Morse et al., 2005), 

apoptosis induction and angiogenesis inhibition (Herbst and Khuri, 2003). Given the 

promising in vitro results, clinical trials started to evaluate docetaxel in vivo anticancer 

activity (Cortes and Pazdur, 1995), where efficacy against breast, lung, prostate, head 

and neck, gastric and ovarian cancer emerged (Herbst and Khuri, 2003). It was 

approved in 1996 as second line treatment for locally advanced or metastatic breast 

cancer, showing additional efficacy in tumours shown to be resistant to alternative 

therapies (especially to anthracyclines) (Alken and Kelly, 2013, Binder, 2013). 

Moreover, the combination of docetaxel with other chemotherapeutic agents (i.e. 

sequential administration of doxorubicin, docetaxel, 

cyclophosphamide/methotrexate/fluorouracil) in the adjuvant treatment for early breast 

cancer registered an improvement for recurrence-free survival (Alken and Kelly, 2013). 

The main concern about docetaxel administration is the appearance of the side effects 

such as neutropenia, hypersensitivity reactions and fluid retention syndrome, although 

pre-treatments are available that limit those (de Weger et al., 2014). The 

hypersensitivity in particular seems to be linked to the solvent used to vehicle the drug, 

therefore new taxane formulations are currently being explored to overcome this side 

effect (Yared and Tkaczuk, 2012, Roy et al., 2014). Interestingly, docetaxel has not 

been shown to induce cardiotoxicity.    

1.2.3 Breast cancer resistance to treatments  

In recent years, advances in breast cancer treatment and in early detection 

approaches have contributed to a decrease in breast cancer-related mortality. 
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However, it still represents the second most common cause of female cancer death in 

the UK, with 11,600 death registered in 2012 (Cancer Research UK) underlining the 

need for further investigations. Mortality is mainly due to recurrence of the disease after 

initial regression, or primary resistant tumours leading to absent or incomplete 

response (Gucalp et al., 2014). The metastatic recidive cancer often presents different 

features compared to the primary, therefore it most likely loses sensitivity to previously 

effective drugs, requiring a new estimation of the optimal therapy (Di Leo et al., 2015). 

1.2.3.1 Resistance to docetaxel and residual tumours 

Despite being one of the most useful drugs in the treatment of metastatic breast 

cancer, around half of the patients present resistance to docetaxel, rendering this 

therapy unsuccessful. This therefore leads to early mortality given the absence of valid 

alternatives. Identifying patients in advance that are most likely to develop resistance, 

or discovering ways to overcome resistance and to restore sensitivity are therefore 

central points for future research on breast cancer. Various possible mechanisms of 

resistance to docetaxel have emerged, the most common being described below 

(Murray et al., 2012): 

- over-expression of proteins responsible of drug efflux, such as P-glycoprotein; 

- expression of specific β-tubulin isotypes, i.e. class III, or mutated β-tubulin; 

- over-expression of the anti-apoptotic Bcl-2; 

- HER2 over-expression that leads to blocked apoptosis via CDK1 inhibition; 

- microRNA-452 upregulation (Hu et al., 2014); 

However, these data are mainly obtained in vitro, while demonstration in vivo is still 

controversial (Murray et al., 2012). Identification of global gene signatures instead 
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represents the most promising approach offering a closer perspective of the clinical 

situation, as single genetic biomarkers are often not representative of the complex 

ensemble of drug targets. Gene expression profiling of patient’s breast cancer tissue 

can also be useful to predict response to docetaxel allowing a more personalised 

treatment approach. In fact, Iwao-Koizumi et al. highlighted a correlation between 

genes responsible of cellular redox homeostasis and docetaxel resistance (Iwao-

Koizumi et al., 2005). Also Chang et al. identified a number of genes differentially 

expressed between sensitive and resistant tumours prior to treatment, with, among 

others, genes linked to cell cycle and RNA transcription being overexpressed in 

resistant tumours (Chang et al., 2005). 

An initially responsive tumour can later evolve into recurrent cancer if the response to 

the treatment was incomplete and a portion of the tumour was able to survive. This 

portion is often represented by single cells therefore clinically undetectable until they 

restart growth (Ignatiadis and Reinholz, 2011). Interestingly, specific breast cancer 

subtypes are more likely to manifest residual tumour, such as the luminal A after 

neoadjuvant chemotherapy (Viale, 2013), while triple negative and HER2+ breast 

cancers have the smallest risk (Yang et al., 2015). Creighton at al., demonstrated how 

residual tumour cell populations after docetaxel treatment harbour tumour-initiating 

capacity (Creighton et al., 2009) and therefore have the potential of being the source 

of cancer recurrence.     

1.2.4 Breast cancer metabolism 

As stated above, solid tumours need to rearrange their metabolism in order to be able 

to cope with the unfavourable conditions of the tumour microenvironment, and breast 

cancer is no exception (Allinen et al., 2004). In fact, hypoxic areas are present in one 
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third of breast tumours, contributing to metabolic reprogramming and to the 

development of resistance to treatments (Vaupel et al., 2002, Ward et al., 2013). There 

is much evidence supporting the presence of a Warburg effect in breast cancer cells, 

even though the molecular bases for this effect are not well understood (Robey et al., 

2008). Robey at al., have demonstrated that the aerobic glycolytic phenotype in breast 

cancer cell lines is associated with stabilisation of HIF1α and activation of c-Myc 

(Robey et al., 2008). Moreover, HIF1α overexpression has been demonstrated to be a 

prognostic factor, associated with poor prognosis for advanced-stage breast cancer 

(Schindl et al., 2002). Recent work has highlighted changes in mitochondrial structure 

and function in breast cancer. Electron microscopy studies observed a correlation 

between ultra-structural mitochondrial abnormalities (round-shape and reduced 

mitochondrial surface) and a reduction of OXPHOS in breast cancer (Putignani et al., 

2012), while gene expression analyses in breast cancer cells confirmed a decreased 

expression and activity of mitochondrial OXPHOS subunits (complex III in particular), 

especially in metastatic breast cancer cell lines (Owens et al., 2011). All this evidence 

clearly supports Warburg’s theory. Furthermore, the correlation between type 2 

diabetes and increased risk of breast cancer highlights the importance of glucose 

metabolism deregulation in the pathogenesis of this disease (Ferroni et al., 2015). 

Many metabolic pathways other than glycolysis have been shown to be altered in 

breast cancers as recently reviewed (Mishra and Ambs, 2015). Interestingly, glutamine 

has been shown to cover a central role in breast cancer tumour survival, as confirmed 

by the anti-tumour effects of glutamine deprivation or glutaminase inhibition (Gross et 

al., 2014, Timmerman et al., 2013). Moreover, nucleotide synthesis relies on serine 

pathway, which is often upregulated in breast cancer through PHGDH amplification 
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(Possemato et al., 2011). Another key process is represented by lipid metabolism, in 

fact de novo fatty acids and phospholipids synthesis is fundamental to sustain cancer 

cell growth and membrane biogenesis (Hilvo et al., 2011, Menendez and Lupu, 2007). 

The metabolite signature given by the ensemble of the different metabolic alterations 

has also been shown to contribute to breast cancer subtypes differentiation, although 

this not always agrees with the gene-expression based separation (Mishra and Ambs, 

2015). The increasing interest in the role of metabolites in breast cancer progression 

has led to the identification of several “oncometabolites”, such as oncogenic 

metabolites that can represent therapeutic targets, diagnostic and prognostic 

biomarkers (Mishra and Ambs, 2015). Alterations in key metabolic genes are often at 

the origin of these metabolic adaptations. For example, 40-50% of luminal breast 

tumours have mutated genes of the PI3K-Akt-mTOR pathway, while mutations in TP53 

are typical of basal-like and HER2-overexpressing tumours (Cancer Genome Atlas 

Network, 2012).     

1.2.5 Models of breast cancer 

Breast cancer is known to be a highly heterogeneous disease (Perou et al., 2000, 

Skibinski and Kuperwasser, 2015), being characterised by many different subtypes 

with different clinical outcomes. For this reason, finding an in vitro or pre-clinical model 

that closely resembles the human disease is often challenging (Holliday and Speirs, 

2011, Vargo-Gogola and Rosen, 2007). At the same time, working with patients or with 

patient-derived primary cells also presents disadvantages, such as the need of ethical 

consent, the availability of a limited amount of sample and the limited lifespan before 

senescence (Burdall et al., 2003). Issues that can be overcome working with 

established cell lines and pre-clinical models. 
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1.2.5.1 In vitro: MCF-7 breast cancer cell line 

MCF-7 (Michigan Cancer Foundation-7) is one of the most popular breast cancer cell 

line for research, obtained from a pleural effusion of a patient with metastatic breast 

adenocarcinoma (Levenson and Jordan, 1997). These cells are a useful tool for 

research, as they are thought to retain several characteristics of differentiated 

mammary epithelium. MCF-7 cells are both PR and ER positive and their growth is 

therefore sensitive to these hormones (Pratt and Pollak, 1993). In fact, treatment with 

the anti-oestrogen tamoxifen significantly decreases MCF-7 cell proliferation (Pratt and 

Pollak, 1993). This cell line, which does not overexpress HER2 (Bacus et al., 1990), 

represents closely the luminal subtype of human breast cancer (Levenson and Jordan, 

1997) from a molecular point of view. This aspect is particularly relevant for the purpose 

of this thesis, given that luminal tumours have been shown to often develop residual 

disease after neo-adjuvant chemotherapy (Viale, 2013). Moreover, MCF-7 cells ability 

to undergo apoptosis led to the definition of this cell line as an excellent model to 

investigate chemoresistance in vitro (Simstein et al., 2003).  

1.2.5.2 In vivo: MMTV-PyMT mouse model of breast cancer 

The mouse mammary tumour virus-polyoma middle T antigen (MMTV-PyMT) 

represents a transgenic mouse model of breast cancer that reflects the complexity of 

human breast tumours well (Lin et al., 2003). In this model, the oncoprotein polyoma 

virus middle T antigen is under the control of the mouse mammary tumour virus long 

terminal repeat (LTR) which is therefore able to initiate tumourigenesis specifically in 

the mammary epithelium (Lin et al., 2003, Guy et al., 1992), following the activation of 

a series of downstream signalling proteins such as PP2A, Src, Shc, Ras and PI3K 
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(Dankort and Muller, 2000, Fluck and Schaffhausen, 2009). Such a model allows 

obtaining the desired genetic alterations only in the tissue of interest, avoiding the 

systemic effects that a constitutively expressed mutated gene can induce (Bockamp et 

al., 2002). Tumour progression then occurs in four stages that closely resemble the 

multistep progression of breast tumours observed in humans (Figure 1.2): hyperplasia, 

by 4 weeks of age; adenoma; early carcinoma, between 8 to 12 weeks of age; late 

carcinoma, at around 14 weeks of age, often accompanied by pulmonary metastases 

(Guy et al., 1992, Lin et al., 2003). The development of metastases makes this mouse 

model one of the few able to progress through more advanced and terminal stages, 

whilst most of the existing models mainly represent early stages of progression (Van 

Dyke and Jacks, 2002). Besides the morphological similarities, the MMTV-PyMT 

mouse model also shares the same biomarkers of poor prognosis, such as ER and PR 

loss, overexpression of ErbB2/Neu and cyclin D1, and altered expression of integrin-β 

(Figure 1.2) (Lin et al., 2003). The gene expression profiling of the mouse mammary 

tumour tissue revealed similarities with the human luminal subtype, making this model 

a good parallel with the above-described in vitro model, for studying residual breast 

tumours. It also showed conserved expression patterns with the human tissue, and a 

high degree of within-model homogeneity (Lim et al., 2010, Herschkowitz et al., 2007). 

Moreover, the spontaneous development of the mammary tumour inside the tissue of 

interest in immunocompetent mice ensures the fundamental communication with the 

microenvironment, therefore representing a pre-clinical model that closely resembles 

the human disease (Richmond and Su, 2008). Overall, the 100% tumour incidence 

(Guy et al., 1992), the parallelism with the human luminal breast cancer subtype and 
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the tumour growth within its organ-specific microenvironment supported the choice of 

the MMTV-PyMT mouse model for the purpose of this study.     

 

 

 

Figure 1.2. Mammary tumour development in the MMTV-PyMT mouse model of breast 

cancer. 

The oncoprotein middle T antigen induces the spontaneous formation of the mammary tumour 

in the MMTV-PyMT mouse model of breast cancer. Tumour progression goes through four 

stages, such as hyperplasia, adenoma, early carcinoma and late carcinoma, which resemble 

the progression of the human disease, both from a morphological and a biomarker point of 

view. Abbreviations: ER, Oestrogen Receptor; H&E, Haematoxylin and eosine; PR, 

Progesterone Receptor. Figure taken from (Lin et al., 2003)  
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1.3 APPROACHES TO DECIPHER CANCER METABOLISM 

1.3.1 Tools for metabolic analyses   

Metabolism derives its name from the Greek metabolé (= change) indicating the 

enzyme-driven chemical conversion of metabolites, which are defined as low 

molecular weight organic and inorganic compounds produced through catabolic and 

anabolic reactions. They constitute, together with genes, transcripts and proteins, all 

the building blocks of biological systems (Dunn et al., 2011). Hence, in order to study 

metabolism one needs to identify and quantify metabolites and metabolic reactions. 

Any alterations in each of the biological components (gene, RNA and protein), as well 

as changes in the environment, are reflected downstream in the metabolic 

compartment, therefore the analysis of metabolism represents the most complete and 

up-to-date readout of a phenotype (Dunn et al., 2011). With the addition of cancer 

metabolism reprogramming as one of the fundamental cancer hallmarks by Hanahan 

and Weinberg (Hanahan and Weinberg, 2011), advances have been made also in the 

analytical technologies used to analyse metabolism, such as Nuclear Magnetic 

Resonance (NMR) spectroscopy and mass spectrometry (MS) (Pan and Raftery, 2007, 

Dunn et al., 2011). In the context of screening a large panel of all metabolites present 

in a system (the metabolome), it is often called metabolomics (Dunn et al., 2011, Liu 

et al., 2011). One can choose two different types of workflow, based on the aim of the 

experiment: targeted studies and metabolic profiling. Metabolic profiling consists of an 

untargeted analysis (hundreds or thousands of metabolites) with no a priori information 

about the composition of the sample, allowing a hypothesis-generating analysis of the 

dataset (Dunn et al., 2011). On the contrary, targeted studies look at a specific number 
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of functionally related metabolites. In this case, the studies are carried out to test a 

previously formulated hypothesis on metabolites already known (Dunn et al., 2011).  

1.3.1.1 NMR spectroscopy  

NMR spectroscopy is a powerful technique that offers high reproducibility and the 

possibility of quantifying metabolites, together with the identification of individual 

constituents of a metabolite mixture, requiring minimal sample preparation (Griffin and 

Shockcor, 2004, Dunn et al., 2011). Moreover, the sample does not interact directly 

with the instrument avoiding any sample alteration or damage (Dunn et al., 2011). 

However, NMR spectroscopy is a relatively insensitive technique, especially when 

compared to MS, and requires a high concentration of metabolites to reach a reliable 

detection and quantification (Dunn et al., 2011, Pan and Raftery, 2007). The simplest 

NMR acquisition method is the one-dimensional (1D) 1H spectrum (Claudino et al., 

2007), although this type of spectrum derived from a complex mixture is often highly 

crowded making the correct identification of a compound difficult. Recently, great 

improvements in sensitivity and resolution have been achieved, in part with two-

dimensional (2D) methods such as HSQC (Heteronuclear Single Quantum 

Correlation), TOCSY (Total Correlation Spectroscopy) and JRES (J-resolved) (Keun 

et al., 2002, Viant, 2003, Ludwig and Viant, 2010), providing a greater dispersion of 

the signals by adding a second dimension. Sensitivity is also increased in part thanks 

to the introduction of cryoprobes, that greatly improved the signal to noise (Keun et al., 

2002, Dunn et al., 2011). 
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1.3.1.2 Mass spectrometry 

The most often used MS instruments for metabolomics studies are time-of-flight (TOF), 

quadrupole and hybrid MS (Dunn et al., 2011). Usually the detection step is preceded 

by a chromatographic separation of the metabolites that can be performed by gas and 

liquid chromatography (GC and LC respectively), and capillary electrophoresis (CE). 

While GC-MS is limited to volatile compounds, LC and CE are characterised by a 

broader applicability (Pan and Raftery, 2007). Compared to NMR spectroscopy, MS 

has some inherent advantages, such as high sensitivity, fast-scanning times, high 

mass resolutions, mass accuracy, and the possibility to identify metabolites. At the 

same time there are some disadvantages: reproducibility is not great because of the 

physical interaction between the sample and the instrument, that can cause alterations 

of responses (Dunn et al., 2011). This methodology is mainly applied to targeted 

studies where the use of standards help the identification and quantification of 

metabolites in the sample, while it is more difficult to obtain an automated and high-

throughput identification necessary for metabolic profiling studies (Dunn et al., 2011). 

Recently, untargeted analysis has been taken with the application of high-resolution 

mass spectrometry (HRMS) (Liu et al., 2014). Moreover, reversed-phase- (RP) and 

hydrophilic interaction liquid chromatography- (HILIC) ultra-performance liquid 

chromatography- (UPLC) -MS techniques have been recently successfully combined 

for the untargeted metabolic profiling of diseased cardiac tissue (Vorkas et al., 2015). 

1.3.2 Tools for metabolic flux analysis  

The steady-state quantification of the cellular metabolite concentration is only a static 

measure that often does not correctly reflect the metabolic alterations happening in the 
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system and that provides little information on underlying metabolic mechanisms. 

Metabolic flux analysis (MFA) instead, offers a highly dynamic measure of metabolites 

at different time points (Wiechert, 2001), helping to understand which alterations are 

causing a disease (Walther et al., 2012). Although the classical approach to studying 

pathway fluxes has been through the use of radioactive labelled metabolites (e.g. 3H, 

14C) (Liedtke et al., 1992, Giroix et al., 2002, Nishimura and Kimura, 1965), the use of 

stable isotopes, i.e. 13C and 15N, is now more popular (Dunn et al., 2011). The 

commonly-used 13C stable isotope is particularly useful due to the non-labile nature of 

carbons in eukaryotic organic molecules and the prevalence of carbon-containing 

metabolites in our cells (Wiechert, 2001, Hiller and Metallo, 2013, Lane et al., 2009, 

Lane et al., 2011). In order to obtain flux information, cells or tissues are exposed to a 

nutrient (i.e. glucose) that is enriched in one or more heavy, non-radioactive atoms, 

and the resulting metabolites into which the isotope is incorporated are analysed. 

These data from this kind of study can be used to estimate intracellular fluxes and map 

out pathways used (Wiechert, 2001, Metallo et al., 2009). When the analysis of the 

different isotopomers is combined into a metabolic profiling approach, this is better 

defined as Stable Isotope-Resolved Metabolomics (SIRM) (Lane et al., 2011). The 

importance of the choice of the tracer most suitable for the research purpose has been 

highlighted by Metallo et al., given that this would determine which pathways one will 

be able to decipher. Interestingly, their approach evidenced [1,2-13C]glucose as the 

best tracer for central carbon metabolism (Metallo et al., 2009). Afterwards, Crown et 

al. proposed a new computational concept for the selection of optimal 13C-tracers 

termed elementary metabolite units (EMU) decomposition and suggested that 

[2,3,4,5,6-13C]glucose can be used to probe the oxidative branch of the PPP (oxPPP) 
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and [3,4-13C]glucose for elucidating flux via PC (Crown et al., 2012). 2D 1H-13C-HSQC 

NMR spectra can provide information on site-specific label incorporation into a range 

of metabolites and hence on the metabolic pathway usage based on the analysis of 

the different 13C-isotopomers arising from the use of the labelled tracer by cellular 

metabolic pathways (Szyperski et al., 1996, Günther et al., 2015). In fact, the analysis 

of multiplet patterns visible in 2D 1H-13C-HSQC spectra arising from the 1Jcc coupling 

spin-spin coupling of adjacent 13C-atoms provides unique and site-specific information 

about which carbons are labelled in a certain molecule (Szyperski et al., 1999). CHx-

CHx structures have a typical coupling constant of 42-48 Herz (Hz), while CHx-COOH 

fragments demonstrate a coupling constant of 50-60 Hz (Figure 1.3), making them 

reasonably simple to differentiate between, given a high enough spectral resolution. 

HSQC spectra benefit from an increased sensitivity compared to the previously used 

1D directly observed 13C NMR spectra, owing to the acquisition of protons, although at 

the expense of long measuring times, as the incremented 13C-dimension needs to be 

sampled with a large number of increments in order to resolve 1JCC couplings in the 

order of 30Hz. 13C-MFA can also be carried out using MS data where the presence of 

13C atoms introduces a shift in the mass compared to the unlabelled metabolite; the 

different isotopomers of a molecule are usually indicated as m+n (n= number of 

different labelled carbons). The analysis of the isotopomer distribution as a 

consequence of metabolic conversion of a labelled precursor has been termed Mass 

Isotopomer Distribution Analysis (MIDA) and provides a readout of metabolic pathway 

usage (Ahmed et al., 2013). As previously mentioned, [1,2-13C]glucose has been 

identified as the most reliable probe for central carbon metabolism (Metallo et al., 

2009), therefore it has been chosen as the preferred tracer throughout this thesis. 
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Specific isotopomer patterns arisen following this 13C-labelled substrate catabolism in 

the cell can be recognised via NMR spectroscopy as illustrated in Figure 1.4. Once 

[1,2-13C]glucose is transported into the cell, it is metabolised through glycolysis, 

producing the end-product [2,3-13C]pyruvate, which is then reduced to [2,3-13C]lactate 

by the LDH enzyme, or converted to [2,3-13C]alanine by the alanine aminotransferase 

(AAT) enzyme (Figure 1.4A). Glycolytic intermediates can also be used to fuel other 

important biosynthetic pathways, for example [2,3-13C]dihydroxyacetone phosphate is 

converted to [2,3-13C]glycerol-3-phosphate (Figure 1.4A) involved in lipid synthesis. 

[2,3-13C]pyruvate can be further oxidised into the TCA cycle after being converted to 

[1,2-13C]acetyl CoA by the PDH enzyme (Figure 1.4B). This labelled acetyl CoA is then 

condensed with the oxaloacetate to produce [4,5-13C]citrate, subsequently 

metabolised in [4,5-13C]isocitrate, [4,5-13C]α-ketoglutarate, [1,2-13C]/[3,4-13C]succinate 

(being a symmetric molecule, these two isotopomers are identical), [1,2-13C]/[3,4-

13C]fumarate, [1,2-13C]/[3,4-13C]malate and [1,2-13C]/[3,4-13C]oxaloacetate (Figure 

1.4B). TCA cycle intermediates can also be employed as anabolic precursors for 

different biosynthetic pathways. In fact, amino acids such as glutamate and aspartate 

are produced from α-ketoglutarate and oxaloacetate respectively. In the case of 

glutamate, different isotopomers are easily detected based on the number of rounds 

in the TCA cycle. For instance, [4,5-13C]α-ketoglutarate in the first round is converted 

to [4,5-13C]glutamate, while the second round can give rise to [1,2,4,5-13C]glutamate, 

[3,4,5-13C]glutamate and [3-13C]glutamate depending on labelled or unlabelled 

pyruvate being used (Figure 1.4B). All these glutamate isotopomers can be aminated 

to produce labelled glutamine (Figure 1.4B). An alternative entry-point of [2,3-

13C]pyruvate into the TCA cycle is represented by its carboxylation to [2,3-
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13C]oxaloacetate by the PC enzyme (Figure 1.4C), which, condensed with unlabelled 

acetyl CoA, gives rise to [2,3-13C]citrate, [2,3-13C]isocitrate, [2,3-13C]α-ketoglutarate, 

while succinate, fumarate and malate are the same as before. [2,3-13C]oxaloacetate 

and [2,3-13C]α-ketoglutarate are then converted to [2,3-13C]aspartate and [2,3-

13C]glutamate respectively (Figure 1.4C). An alternative pathway that uses glycolytic 

intermediates is the PPP. As soon as labelled glucose is phosphorylated to [1,2-

13C]glucose-6-phosphate, this metabolite can be diverted into the oxidative branch of 

the PPP where it is oxidised to [1,2-13C]6-phosphogluconate, further decarboxylated 

to [1-13C]ribulose-5-phosphate (Figure 1.4D). The following steps belong to the non-

oxidative branch of the PPP, where a series of reactions lead to the production of [1-

13C]ribose-5-phosphate, that is used in nucleotide synthesis, and [1-13C]fructose-6-

phosphate and unlabelled glyceraldehyde-3-phosphate that are glycolytic 

intermediates. If [1-13C]fructose-6-phosphate is then further metabolised in the 

glycolysis, it will result in the production of [3-13C]pyruvate, [3-13C]alanine and [3-

13C]lactate (Figure 1.4D).                  
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Figure 1.3. Multiplet patterns derived from adjacent 13C atoms. 

Adjacent 13C atoms in a molecule result in typical scalar coupling constants (Jcc) that give 

information on the fragment structure and on the precise position of the 13C-labelled atom. CHx-

CHx fragments have a typical coupling constant of 42-48 Hz, while a 50-60 Hz coupling is 

typical for CHx-COOH fragments. Figure taken from (Günther et al., 2015). 
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Figure 1.4. 13C isotopomer patterns following [1,2-13C]glucose catabolism.  

Illustration showing schematic [1,2-13C]glucose catabolism through glycolysis (A), TCA cycle 

via PDH activity (B), TCA cycle via PC activity (C), and PPP (D), arising in different metabolite 

isotopomers detectable by NMR spectroscopy. Abbreviations: 6PGDH, 6-phosphogluconate 

dehydrogenase; AAT, alanine aminotransferase; DHAP, dihydroxyacetone phosphate; GAP, 

glyceraldehyde-3-phosphate; F6P, fructose-6-phosphate; G6P, glucose-6-phosphate; LDH, 

lactate dehydrogenase; PDH, pyruvate dehydrogenase; PC, pyruvate carboxylase; PPP, 

pentose phosphate pathway; R5P, ribose-5-phosphate; Ru5P, Ribulose-5-phosphate; Xu5P, 

xilulose-5-phosphate.   
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1.3.2.1 13C-MFA in cancer cells 

In vitro 13C-MFA studies aimed at understanding cancer metabolism have been 

conducted mainly on cancer cell lines, such as melanoma (Scott et al., 2011), renal 

cancer (Metallo et al., 2012, Mullen et al., 2012), pancreatic ductal adenocarcinoma 

(Lee et al., 2004), glioblastoma (Wise et al., 2011), and leukemia (Miccheli et al., 2006, 

Boren et al., 2001) cells. 

Among the wide plethora of in vitro 13C-MFA studies, we will narrow down the focus to 

few studies conducted on breast cancer cells, being this type of tumour the main focus 

of this thesis. As described in section 1.2.4, previous studies have demonstrated a link 

between metabolic reprogramming and breast cancer. One tracer-based investigation 

of central carbon metabolism using [U-13C]glucose evidenced increased flux through 

most of the central pathways (i.e. PPP, TCA cycle, proline and glutathione synthesis) 

in order to support cellular transformation (Richardson et al., 2008), while increased 

glycolytic flux was observed in H-ras transformed breast cancer cells occuring already 

in early stages of tumour progression (Zheng et al., 2015). 13C-MFA has also been 

exploited to unravel the mechanisms underpinning estradiol-induced breast cancer cell 

growth, involving increased flux through biosynthetic pathways as a consequence of 

increased glucose and glutamine consumption (Forbes et al., 2006). Despite the 

studies cited above, the application of 13C-MFA to investigate breast cancer 

metabolism is still poor. 

1.3.2.2 In vivo 13C-MFA  

Despite the great utility of the in vitro models to investigate basic mechanisms of 

cellular metabolism, they do not mimic real tissue complexity and physiology, requiring 
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the introduction of in vivo models (i.e. animals and humans). However, the 

experimental setup for flux analysis in animals is more complex and the degree of 

experimentally controllable conditions more limited (Metallo and Vander Heiden, 

2013). For instance, while feeding cells in vitro with labelled substrates only requires 

the addition of a 13C-labelled tracer in the growth medium, the administration of labelled 

tracers in vivo is much more challenging. In fact, the protocol for the administration of 

metabolic precursors such as glucose requires optimisation for each in vivo model and 

for the tissue of interest in order to observe label incorporation into a meaningful pool 

of metabolites. Ayala et al., addressed this issue suggesting methods for standardised 

procedures in mice, focusing in particular on the parameters one needs to take care of 

when investigating glucose metabolism, as potential source of inter-animal variability: 

animal-strain, age, sex, diet, use of anaesthesia, dark/light cycles, fasting and route of 

glucose administration (Ayala et al., 2010). The latter is of particular interest for the 

purpose of this thesis. Two main ways of administering substances exist: the enteral 

or the parenteral routes (Turner et al., 2011). When the administration is given directly 

to the digestive system (enteral), substances can be altered and digested by the juices 

and the enzymes in the stomach and absorption can be influenced as well depending 

on food presents in the stomach (Shimizu, 2004). Moreover, glucose administration 

via oral route would induce an incretin hormone response that causes insulin release 

(Ayala et al., 2010). This method therefore represents the least recommended for 

metabolic studies. Parenteral routes instead are reached using either injections (mainly 

sub-cutaneous, intraperitoneal and intravenous routes) or infusions (Shimizu, 2004, 

Turner et al., 2011). The incretin response in fact can be avoided when glucose is 

administered via either intraperitoneal (i.p.) or intravenous (i.v.) injection 
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(Andrikopoulos et al., 2008, Ahren et al., 2008). However, i.p. injection has inherent 

risks, e.g. the piercing of visceral organs (Arioli and Rossi, 1970), although it is less 

technically demanding compared to the i.v. injection route, especially when working 

with small laboratory animals (Wong et al., 2011). Mice represent the preferred model 

for most in vivo studies, but there are still very few reports showing the application of 

labelled tracers in humans (Lane et al., 2009, Fan et al., 2009, Maher et al., 2012).  

The application of 13C-MFA on pre-clinical models led to interesting discoveries about 

the metabolic phenotype of various type of cancers. In particular, PC activity emerged 

as a unique trait for human lung cancer compared to normal lung tissue (Fan et al., 

2011). Furthermore, the fate of glucose and glutamine in liver cancer has been shown 

to depend upon the expression of Myc and MET (Yuneva et al., 2012). Another 

interesting study showed active mitochondrial oxidative phosphorylation in human 

glioblastoma (Marin-Valencia et al., 2012). The high potential of the 13C-MFA approach 

in uncovering in vivo metabolic alterations should therefore be further exploited.    
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1.4 AIM OF THE THESIS 

It is increasingly clear that cancer presents altered metabolism under many different 

aspects, giving a strong rationale for the investigation of cancer cell metabolism as a 

readout of cellular phenotype (Cantor and Sabatini, 2012, Dang, 2012). The overall 

aim of this thesis was to study the metabolic phenotype of residual cells in a breast 

cancer cell line and a breast cancer mouse model, after docetaxel treatment. The 

approach used in this thesis can be defined as “targeted”, looking specifically at the 

polar fraction of cellular metabolic extracts (Dunn et al., 2011). Beyond a standard 

approach of quantifying metabolite levels, a tracer-based approach was used where 

[1,2-13C]glucose was given as a metabolic precursor (13C-metabolic flux analysis, 13C-

MFA).  

The objectives of this thesis were the following: 

- to establish an in vitro model of residual breast cancer after docetaxel treatment, 

- to establish an in vivo model of residual mouse mammary tumour after 

docetaxel treatment, 

- to conduct an in vitro and in vivo quantification of the polar metabolites in the 

residual breast tumour after docetaxel treatment, 

- to investigate pathway usage in a breast cancer cell line using 13C-MFA, 

- to develop a method for the administration of 13C-labelled glucose to a mouse 

model, aimed at investigating metabolic pathways used in residual mouse 

mammary tumours, using 13C-MFA and gene expression analysis, 

- to explore in vitro the ability of residual breast cancer cells to result in tumour 

relapse     
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2.1 BREAST CANCER CELL LINE MODEL 

The MCF-7 breast cancer cell line (ATCC) was maintained in high glucose Dulbecco’s 

Modified Eagle Medium (DMEM, HyClone), supplemented with 10% fetal bovine serum 

(HyClone) and L-glutamine (2 mM, HyClone). The cells were cultured in a humidified 

incubator at 37 ˚C and 5% CO2 and routinely passaged using a standard procedure: 

after media removal, adherent cells were washed with warm 1X Phosphate buffered 

saline, pH 7.4 (PBS, HyClone) and incubated with 0.05% Trypsin-EDTA in PBS (Gibco) 

at 37 °C. When the cells were completely detached from the dish, as assessed using 

light microscopy, trypsin was inactivated adding at least three volumes of complete 

media before sub-culturing the cells at a seeding density optimal for the experiment to 

be performed.  

For cell growth in hypoxic conditions, cells were allowed to attach to the plate before 

being transferred to an H35 Hypoxystation (Don Whitley Scientific) at 37 °C in a 

humidified atmosphere of 1% O2, 5% CO2, balance N2.   

Cells were routinely tested for mycoplasma infection using the kit EZ-PCR (Biological 

Industries). 

 

2.2 IN VITRO DOCETAXEL TREATMENT OF MCF-7 BREAST 

CANCER CELLS 

2.2.1 Determining the optimal concentration of docetaxel   

To determine the concentration of drug that resulted in 50% cell killing, MCF-7 cells 

were seeded in a 12-well plate at 3 x 104 cells per well, in normoxic or hypoxic 

conditions.  
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Docetaxel (Sigma) was dissolved in DMSO (Fisher Scientific) to make a 1 mM stock 

solution subsequently diluted in normal media to reach the treatment concentrations of 

10, 50, 100 and 500 nM. Cells were also left untreated as control. Four hours post-

treatment, Tax-containing medium was removed from the cells and replaced with fresh 

complete DMEM. Cell viability was determined 24 and 48 hours post-treatment via 

Sulforhodamine B colorimetric assay (SRB assay, see 2.2.4). 

2.2.2 Time-course of docetaxel effect on MCF-7 cell growth 

To monitor the drug effect over five days, MCF-7 cells were seeded at 3 x 104 cells per 

well onto a 6-well plate, treated in triplicate for 4 hours with the Tax concentration of 

10 nM, or left in DMEM as control, in normoxia and in hypoxia. Afterwards, the 

treatment was replaced with fresh normal DMEM and cells left to grow. Cell growth 

was evaluated using an SRB assay at 24, 48, 72, 96 and 120 hours post treatment 

removal. 

2.2.3 Glutathione synthesis inhibition during docetaxel treatment 

To assess the efficacy of the inhibitor L-Buthionine-sulfoximine (BSO) in effectively 

reducing glutathione production, cells were seeded in 15-cm dishes at 3 x 106 cells per 

plate. A BSO (Sigma) 0.1 M stock solution was prepared in sterile distilled water, and 

diluted in DMEM immediately prior to cell treatment. One plate was treated with 1 mM 

BSO and one plate left untreated as control. Metabolites were extracted from cells (as 

described in 2.3.1) after 24 hours treatment, and the polar fraction was collected for 

analysis by NMR spectroscopy.  

To investigate the additive effect of BSO and Tax treatment, MCF-7 cells were seeded 

in 6-well plates at 3 x 104 cells per well in triplicate. The day after, three wells were 
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fixed with 4% Trichloroacetic acid (TCA, final concentration) and used as time-zero cell 

density. The other wells were treated with 10 nM Tax for 4 hours or left in normal 

DMEM as control. After docetaxel removal, treated cells were incubated with 1 mM, 

100 μM BSO or normal DMEM. Untreated cells were left in normal media or treated 

with 1 mM or 100 μM BSO only. All cells treated with 1 mM BSO were fixed after 24 

hours, while the remaining were fixed 48 hours post-initial treatment, and stained using 

the SRB assay. 

2.2.4 Sulforhodamine B colorimetric assay 

In order to assess cells remaining after an experimental treatment, the SRB assay was 

used, where the cellular protein content, bound to the SRB dye, can be used as a 

surrogate to measure cell number. Cells at the experimental endpoint were fixed 

adding cold 20% TCA (v/v, Sigma) to the media in the wells in order to obtain a final 

TCA concentration of 4%, and were left for 30 minutes at 4 °C. Subsequently, media 

with TCA was washed off the fixed cells with tap water, and the plates were left to dry 

at room temperature overnight. The staining was performed adding sufficient amounts 

of 0.4% SRB (w/v, Sigma) in 1% acetic acid (Fisher) to cover the well surface and 

leaving it for 10 minutes at room temperature. The SRB solution was removed and 

unbound SRB washed off with four washes with 1% acetic acid. Plates were then left 

to dry overnight and protein-bound SRB was dissolved in 50 mM Tris (pH 8.8). The 

absorbance for 200 µL of each well was measured in a 96 well plate using the 

FLUOstar Omega plate reader (BMG LABTECH) at 510 nm. The Tris-based 

solubilisation buffer alone was used as blank, in order to subtract the background 

absorbance from the experimental absorbance. The final sample absorbance value 
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was determined calculating the mean among the blank-corrected absorbances for 

each replicate.    

 

2.3 RESIDUAL MCF-7 CELL CHARACTERISATION POST-

DOCETAXEL TREATMENT 

2.3.1 Metabolic analysis 

For the metabolic analysis, MCF-7 cells were seeded at 1.2 x 106 cells for the control 

plate and at 5.5 x 106 for the treatment plate, one 15-cm dish per condition. Count 

plates were also seeded at the same time. The day after, cells were treated for 4 hours 

with 10 nM Tax or with normal DMEM as control, and left to recover for 48 hours in 

media after treatment removal. The morphology of residual and control cells was 

imaged using a Nikon ECLIPSE TS100 equipped with a QImaging Rolera-XR camera. 

Metabolites were then extracted from the media and cells using a 

methanol/chloroform/water protocol. 

Briefly, medium was removed, and an aliquot from each plate (1.2 mL) was quenched 

with an equal volume of methanol. Cells were washed with ice-cold 1X PBS, and 

quenched with 1.2 mL of ice-cold methanol (Fisher) before collection by scraping into 

pre-chilled 15-mL tubes (Greiner bio-one). An equal volume of chloroform (Scientific 

Laboratory Supplies) was added to all the samples, the extracts vigorously shaken at 

4 °C for 10 minutes and left on ice for 10 minutes. Finally, an equal volume of distilled 

water was added to the cell extracts and all the samples centrifuged at 1300 x g for 15 

minutes at 4 °C. Two distinct layers appeared at this stage, with a protein-containing 

interphase. 2 mL of cell extract- and 750 µL of media-derived upper polar phase was 
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collected into 2-mL tubes (Eppendorf) and dried at 2000 rpm using a Centrifuge for 

vacuum Concentrator (SCANVAC).  

2.3.2 Metabolic flux analysis 

To perform MFA, residual and control cells were cultured in glucose-free, phenol red-

free DMEM (Sigma) with the addition of 10 mM [1,2-13C]glucose (Sigma) or unlabelled 

glucose (Sigma) as control. After 6 hours of incubation, metabolites were extracted 

from the cells and the media following the protocol previously described (see 2.3.1). 

2.3.3 Establishment of residual clones 

Cells were seeded onto 6-well plates at 3 x 104 cells/well and treated the day after with 

10 nM Tax for four hours as previously described. After treatment removal, residual 

cells were left to recover in normal media until they resumed proliferation and were 

subsequently further expanded. The same experiment was performed three times and 

the regrowth cells were named Clone 1, Clone 2 and Clone 3. However, further 

experiments were carried out only on Clone 1 and Clone 2.   

2.3.4 Growth curves  

Cells were seeded in triplicate in 6-well plates at 3 x 104 cells per well. In order to 

determine growth parameters, cells were trypsinised and counted using a Neubauer 

chamber (Immune systems) daily for four days. Data from the exponential growth 

phase (between day 2 and day 4) were then used to calculate the population doubling 

time (dt) using the following formula (ATCC):  

Dt = t*ln2/ln(Cf/Ci) 
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Where t is the duration time; Cf is the final number of cells and Ci is the initial number 

of cells.  

2.3.5 Western blotting 

2.3.5.1 Sample preparation 

MCF-7 control (0.4 x 106/plate), 10 nM Tax treated (1.8 x 106/plate), Clone 1 and Clone 

2 (both 1 x 106/plate) cells were seeded onto 10-cm dishes and harvested after 48 

hours by scraping into 1 mL ice-cold RIPA buffer (50 mM Tris-HCl pH 8.0, 150 mM 

NaCl, 1% Triton X-100, 0.1% SDS, 0.5% sodium deoxycholate) with 1X Protease 

Inhibitor Cocktail (Sigma) and 10 mM NaF (Sigma). Complete cell lysis was achieved 

by incubation on ice for 30 minutes. Samples were centrifuged at 14000 x g for 15 

minutes at 4 °C and supernatants transferred to a new tube. Protein quantification was 

performed using Pierce bicinchoninic acid (BCA) Protein Assay kit (Thermo scientific). 

Briefly, an aliquot of each protein sample was diluted 1:4 in dH2O and 10 µL added to 

a well of a 96-well plate in triplicate before adding 200 µL of BCA working reagent 

(reagent A: reagent B, 50:1) to each well. The plate was then incubated at 37 °C for 

30 minutes, and the absorbance at 562 nm measured on the FLUOstar Omega plate 

reader (BMG LABTECH). Sample protein concentration was determined based on a 

Bovine Serum Albumin (BSA) standard curve. Lysates were then diluted to the 

required concentration in 2X Laemmli buffer (Sigma) and dH2O, and heated to 100 °C 

for 10 minutes.   
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2.3.5.2 Protein separation and transfer 

Size-based protein separation was performed through SDS PAGE (sodium dodecyl 

sulphate polyacrylamide gel electrophoresis), using the Mini-PROTEAN Tetra System 

(BIO-RAD). 10% resolving gels and 5% stacking gels were prepared following the 

Laemmli method (Laemmli, 1970). Once the gel apparatus was assembled, the tank 

was filled with 1X running buffer (25 mM Tris/192 mM Glycine/0.1 % SDS, Geneflow) 

and lysates loaded into wells within the stacking gel (9 - 15 µg of total protein/well) next 

to a molecular weight ladder. Samples migration was carried out at constant voltage: 

80V through the stacking gel, and then 100-150V until the migration front reached the 

bottom of the gel.   

Transfer onto a nitrocellulose blotting membrane (GE Healthcare) was performed 

using the Mini Trans-Blot Cell (BIO-RAD) in wet conditions. The assembled sandwich 

was immersed in 1X transfer buffer (20 mM Tris/150 mM Glycine with 20% methanol) 

and transfer allowed for 1 h 15 minutes at constant voltage (100V). 

2.3.5.3 Protein detection  

Non-specific binding of antibodies to the membrane was blocked by incubation with 

5% milk (non-fat skimmed milk powder, 5% w/v, Marvel) in PBST (1X PBS with 0.1% 

Tween-20) at room temperature for 1 hour on a rotating platform. Subsequently, the 

blocked membrane was incubated overnight at 4 °C with the specific primary antibody 

(see Table 2.1) diluted in 1% milk/PBST. After washing the membrane for 25 minutes 

in PBST, the relevant horseradish peroxidase (HRP)-conjugated secondary antibody 

(1:4000 in 1% milk/PBST, Cell Signalling) was added for 1 hour at room temperature 

with shaking. The membranes were then washed 3 times for 10 minutes each in PBST 
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before protein detection with ECL Prime Western Blotting Detection Reagent (GE 

Healthcare), onto Amersham Hyperfilm ECL (GE Healthcare). 

 

 

Antigen Dilution Secondary Supplier 

p70 S6K 1:1000 α-rabbit Cell Signalling 

Phospho-p70 S6K (Thr389) 1:1000 α-rabbit Cell Signalling 

β-actin 1:2000 α-mouse Sigma 

Table 2.1. List of primary antibodies used in this thesis. 

 

 

2.4 MMTV-PYMT: TRANSGENIC MOUSE MODEL OF BREAST 

CANCER 

MMTV-PyMT male mice on a FVB background were crossed to wild-type females to 

obtain heterozygous females to be used for the experiments, and heterozygous males 

for breeding purposes. Mice were group housed in temperature and humidity-

controlled rooms on a 12-hour light-dark cycle with access to normal chow and water 

ad libitum in accordance with the Animals (Scientific Procedures) Act (1986). All 

procedures were performed under Dr Daniel Tennant’s Project License number 

30/2881 and my Personal License number I5A5EFA78. Tumour burden was accessed 

by palpation starting when the female mice were 8 weeks of age. Upon sacrifice, 

tumour volumes were determined measuring the two axes using a digital caliper and 

calculated using the formula: D (long diameter) x d2 (short diameter) x 0.52 (Bai et al., 

2009). 
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2.4.1 Genotyping 

2.4.1.1 DNA extraction 

Mouse ear-clips were used to extract DNA in order to determine the mouse genotype. 

Briefly, biopsies were lysed for 3 hours at 65 °C in 200 µL TNES buffer (10 mM Tris 

pH 7.5, 400 mM NaCl, 100 mM EDTA, 0.6% SDS) and 15 µL Proteinase K (Promega, 

from 10 mg/mL stock solution). Protein precipitation was aided by adding 6 M NaCl to 

obtain a 1.2 M final concentration prior to centrifugation of the lysates at 14000 x g for 

15 minutes at 4 °C. Supernatants were transferred to clean 1.5 mL Eppendorf tubes 

and DNA precipitation was started adding two volumes of cold 100% ethanol (VWR 

chemicals) and mixing by inversion. Precipitated DNA was pelleted by centrifuging 

each sample at 14000 x g for 20 minutes at 4 °C. After removal of the supernatant, the 

DNA pellet was washed with 1 mL of 70% EtOH and centrifuged as above. The DNA 

pellet was then left to air-dry after ethanol removal, before being re-suspended in 50-

500 µL (depending on pellet size) of 10 mM Tris buffer, pH 8, and incubated overnight 

at 37 °C. Extracted DNA was then quantified using a NanoDrop spectrophotometer 

(Thermo Scientific).  

In some cases, the KAPA Express Extract kit (KAPA BIOSYSTEMS) was used for the 

DNA extraction. Briefly, each biopsy was lysed in 100 µL mix containing 2X KAPA 

Express Extract Buffer and 2U KAPA Express Extract Enzyme, at 75 °C for 40 minutes. 

The enzyme was inactivated at 95 °C for 5 minutes before spinning the extract down 

at 14000 x g for 1 minute. The DNA-containing supernatant could be used straightaway 

for PCR.    
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2.4.1.2 Amplification of the middle T antigen by PCR  

50 ng of isolated DNA were used in the PCR reaction to assess the presence of the 

middle T antigen. Amplification of this specific gene was performed using the following 

primers (IMR0384/0385): 

5’- GGA AGC AAG TAC TTC ACA AGG G -3’ 

5’- GGA AAG TCA CTA GGA GCA GGG -3’ 

The mastermix, set up on ice, contained 1X MyTaq Reaction buffer, 1 µM of the primer 

mix (IMR0384/0385) and 3.125 U of MyTaq DNA Polymerase (Bioline) in a 12 µL total 

reaction.  

When extracting the DNA using the KAPA Express Extract kit, 1 µL of sample was 

used for the PCR with the KAPA2G Robust HotStart kit (KAPA BIOSYSTEMS). The 

mastermix included 1X KAPA2G buffer A, 1.5 mM MgCl2, 1X KAPA Enhancer 1, 0.2 

mM each dNTP, 1 µM of the primer mix (IMR0384/0385) and 0.5 U KAPA2G Robust 

HotStart DNA Polymerase in a 25 µL total reaction. In both cases, the PCR was carried 

out under the following cycling conditions on a GeneAmp PCR System 9700 machine 

(Applied Biosystems): 

initial denaturation   95 °C   3 min 

denaturation    95 °C   15s 

annealing    64 °C   1 min    for 35 cycles 

extension    72 °C   1 min  

                     72 °C   2 min  

End     4 °C   ∞ 
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2.4.1.3 Detection of the PCR product by agarose gel 

The PCR products were subsequently visualised through agarose gel electrophoresis 

and the presence of the middle T antigen was identified with a 556 bp band in the gel. 

The 1.5% agarose gel was prepared by dissolving 0.75 g of agarose powder 

(Invitrogen) in 50 mL 1X TAE buffer (40 mM Tris acetate, 1 mM EDTA) and boiling it 

using a microwave. Once the agarose was dissolved, it was left to cool before the 

addition of ethidium bromide (0.5 µg/mL, Sigma) for the visualisation of DNA. The gel 

solution was then poured into a gel tray and allowed to polymerise with the appropriate 

comb to produce wells. Once set, the gel was placed in 1X TAE running buffer in a 

horizontal electrophoresis tank before 6 µL of PCR reaction and loading dye (3 µL of 

each PCR reaction, 1 µL of 6X loading dye (New England BioLabs) and 2 µL of ddH2O) 

were loaded into the wells. A 100 bp DNA ladder (Invitrogen) was loaded next to the 

samples in order to determine approximate PCR product size. The gel was run at 100V 

for about 45 minutes at constant voltage, and the bands visualised using a 312 nm UV 

lamp (Spectroline) connected to a EDAS 290 camera (Kodak).   

 

2.5 IN VIVO DOCETAXEL TREATMENT OF MOUSE MAMMARY 

TUMOUR 

Docetaxel treatment of mammary tumour was performed when the neoplasia was at 

the early carcinoma stage. Tax was freshly dissolved in polysorbate 80:ethanol (1:1, 

v/v) and diluted in 0.9% saline to 1 mg/ 100 µL prior to injection. The treatment 

schedule was chosen to mimic the clinical protocol applied to patients (Cancer 

Research UK, Korde et al., 2010). In fact, tumour-bearing females received two weekly 

doses of treatment, starting at 9 weeks of age, consisting in a single i.p. injection of 
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100 µL of Tax (35 mg/kg) or 100 µL of 0.9% saline as placebo per week. Mice were 

sacrificed via cervical dislocation at 11 weeks of age, one week after the last dose, 

mammary tumours were collected and flash-frozen in dry-ice for subsequent analysis. 

The cancer cells/tumour that survived and recovered from Tax treatment in vivo were 

defined as residual tumour. 

2.5.1 Gene expression analysis   

2.5.1.1 Extraction of total RNA  

Total RNA was extracted from a piece of each of four tumours from placebo and four 

from Tax-treated animals, using the RNeasy Mini kit (Qiagen). Briefly, 25 mg of each 

tumour was homogenised into 600 µL RLT buffer with β-Mercaptoethanol (Fisher 

Chemical, 10 µL/mL of RLT buffer) using a Precellys®24 instrument with 2 x 20 

seconds at 5000 rpm. The homogenate was then spun down at 19000 x g for 3 minutes 

and supernatant transferred to a 2-mL tube for RNA isolation. 

One volume of 70% ethanol was added to the sample, mixed and transferred to an 

RNeasy spin column. Samples were centrifuged for 15 seconds at 8000 x g and the 

flow-through discarded. The column was washed with 350 µL of buffer RW1 before 

sample treatment with 80 µL of Dnase I from the RNase-Free DNase set (Qiagen, 10 

µL in 70 µL buffer RDD) for 15 minutes at room temperature. The treatment was 

stopped applying another wash with 350 µL of buffer RW1. Columns were centrifuged 

as before and flow-through discarded, followed by two washes with 500 µL buffer RPE 

each time. After the last wash, the samples were centrifuged for 2 minutes at 8000 x 

g, and the column transferred to a new 2 mL collection tube and centrifuged for 1 

minutes at 13000 x g to ensure the removal of all residual buffer. Finally, isolated RNA 
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was eluted into a clean 1.5 mL Eppendorf tube using 30 µL of RNase-free water and 

RNA quality and quantity was determined as before. 

2.5.1.2 RNA sequencing  

The extracted total RNA was sent to Microsynth (Switzerland) to perform RNA 

sequencing. Firstly, the mouse tissue-derived total RNA was enriched for mRNA using 

a poly(A) tail-based method. Subsequently, a cDNA library was generated and 

sequenced using the Illumina NextSeq500 system. The reads were mapped to the 

UCSC mm10 reference sequence using TopHat, and counted using HTSeq (Anders 

et al., 2014). The differential gene expression analysis between the two conditions was 

carried out using the DESeq2 package performing Wald statistic. The p-values 

obtained were adjusted with the Benjamini & Hochberg test.   

 

2.5.2 In vivo metabolic analysis 

For metabolic analyses, mice were sacrificed and tumours collected and flash-frozen 

on dry-ice. Metabolite extracts were obtained from the frozen biopsies using a 

methanol/chloroform/water protocol. Tumours were homogenised into ice-cold 

methanol (1.7 mL/200 mg of tissue) using a Precellys®24 instrument with 2 x 20 

seconds at 5000 rpm. The homogenate was transferred to a 15 mL polypropylene tube 

(Greiner Bio-One) and an equal volume of chloroform added. The subsequent steps 

used were the same as for cell extracts (see 2.3.1). A 1.36 mL aliquot of polar 

metabolites was dried from each sample for subsequent NMR spectroscopy analysis. 
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2.5.3 In vivo [1,2-13C]glucose flux 

To determine the most suitable means by which to monitor glucose usage by the 

mouse mammary tumours, we needed to determine the best injection site and the best 

time point for tissue sampling.  

To compare different injection sites, mice were divided in two cohorts: one cohort 

received bolus i.v. injection, while the other received bolus i.p. injection, of 100 µL 1M 

unlabelled glucose in both cases. Mammary tumours were then collected 20 minutes 

post-glucose administration, extracted as above and metabolites identified and 

quantified by 1D-1H NMR spectroscopy (see 2.6.2).   

The sampling time point was evaluated administering a-100 µL i.p. injection of 1M [1,2-

13C]glucose to tumour-bearing mice and sacrificing them 10, 20, 30 or 45 minutes after 

injection. The percentage of [1,2-13C]glucose enrichment over time in the mammary 

tumour was then assessed using the 2D 1H-13C-HSQC improved spectra (see 2.6.2).     

Once the method had been established, it was possible to compare glucose 

metabolism between residual and untreated mammary tumours. One week following 

the second dose of Tax (or placebo) treatment, mice received 100 µL i.p. injection of 

1M [1,2-13C]glucose (Sigma) in 0.9% saline. Mice were then sacrificed 45 minutes 

(Tax-treated) or 30 minutes (placebo) post- labelled glucose injection by cervical 

dislocation. Mammary tumours were collected and flash-frozen in dry-ice, and 

underwent metabolites extraction as previously described (see 2.5.2). To analyse the 

13C incorporation, a 1.36 mL aliquot of each polar extract was dried for NMR analysis, 

and a 340 µL aliquot for GC-MS analysis. 
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2.5.4 GC-MS analysis 

The GC-MS analysis was carried out in collaboration with Professor Marta Cascante 

(University of Barcelona). 

Dried metabolites derived from residual or control mouse mammary tumours were re-

suspended in 50 µL of 2% methoxyamine–hydrogen chloride in pyridine (Sigma), used 

in prevention of multiple derivatives formation when silylation occurs in presence of 

enols, vortexed and shaken at 37 °C for 90 minutes. Samples were then derivatised 

adding 30 µL of N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide (MBTSTFA) + 1% 

tert-Butyldimethylchlorosilane (TBDMCS) (Sigma) and incubating them at 55 °C for 1 

hour. The derivatised polar metabolites were transferred to glass vials before being 

subjected to separation by gas chromatography on a 7890A System (Agilent 

Technologies) and then mass spectrometric detection of metabolites (5975C EI MSD 

with Triple-Axis detector [Agilent Technologies]). 1 µL of derivatised sample was 

injected into the GC-MS with a split ratio of 1:10 (sample:helium) and metabolites were 

separated through an HP-5MS column (Agilent Technologies). Samples were ionised 

by Electron Impact (EI) and detected in selected-ion monitoring (SIM) mode based on 

their different retention time by a TOF mass analyser. Each sample was analysed 

twice. The mass peaks visualised were manually integrated using the MSD 

ChemStation software (Agilent Technologies). Results were corrected for 13C natural 

abundance using an in-house macro.    
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2.6 NMR EXPERIMENTS 

2.6.1 Sample preparation  

Dried metabolites were re-suspended in 100 mM phosphate buffer (pH 7.0), 500 μM 

Trimethylsilyl propanoic acid (TMSP), 10% deuterium oxide (D2O) (60 µL for cells and 

mouse- derived metabolites and 550 µL for media-derived metabolites) for subsequent 

investigations via NMR spectroscopy. Samples were sonicated and vortexed to ensure 

efficient solubilisation of metabolites, before centrifugation at 13000 x g for 10 minutes. 

35 µL of resuspended metabolites were then transferred to a 1.7 mm NMR tube (Bruker 

Biospin) using a Gilson 215 Liquid handler robotic sample preparation system (Bruker 

Biospin). 

 

2.6.2 NMR experiments   

The sample-containing 1.7 mm NMR tubes were transferred to an automatic NMR 

sample-changing robot (SampleJet, Bruker Biospin). NMR data were acquired on a 

Bruker 600 MHz NMR spectrometer equipped with a 1.7mm cryogenic probe with z-

axis pulsed field gradients running the Topspin 3.2 software interface. 

Prior to acquisition, the spectrometer was locked on the D2O signal, the probe was 

tuned and matched for the relevant channels (1H and 13C) and shimmed using 

automated three-dimensional (3D) and 1D gradient-based TopShim procedures. All 

spectra were acquired at 300 K.  

For the in vitro study, 1D-1H and 2D 1H-13C-HSQC NMR spectra were collected with 

the following parameters: 
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- 1D-1H spectra were acquired with 256 scans, 32768 data points, 16 dummy 

scans to reach a steady-state, a 4 seconds delay 1 and 2.28 seconds acquisition 

time. The solvent resonance was suppressed either using NOESY-

presaturation (Wider et al., 1983) or excitation sculpting (Hwang and Shaka, 

1995). 

- HSQC spectra were acquired with 4096 data points in both dimensions, 8 

steady-state scans and 2 transients per increment. Coherence selection was 

performed using gradients with the echo/anti-echo method. Suppression of the 

solvent resonance was enhanced using presaturation during the interscan 

relaxation delay (1.5 sec). The spectral width in the proton dimension was 

13.0349 ppm, and 160 ppm in the carbon dimension. 

For the in vivo study, additional spectra were acquired.  

Besides the proton 1D spectra (as previously described for the in vitro work), an 

improved version of the 2D 1H-13C-HSQC spectra was acquired. In fact this was 

characterised by non-uniform sampling (NUS), acquired with 1024 data points in the 

direct dimension and 16384 data points in the indirect dimension (as a 30% sampling 

was performed, the number of actually acquired data points was 4915), 8 steady-state 

scans and 2 transients.   

 

 

2.6.3 NMR data analysis 

All NMR spectra were processed using the NMRLab software (Ludwig and Günther, 

2011). 
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1D-1H spectra 

The free induction decay (FID) for each spectrum was apodised using a 0.3 Hz 

exponential line broadening and then zero-filled up to 128k data points prior to Fourier 

transformation. The resulting NMR spectra were then manually phase corrected. 

Different spectra acquired at the same time were aligned and referenced using the 

TMSP signal, and baseline defects were corrected using a user defined linear-spline 

function (Ludwig and Günther, 2011). These processed spectra were then exported 

from NMRLab to Chenomx NMR suite 7.0 (Chenomx Inc., AB, Canada) where 

metabolites were assigned and quantified for each sample, using the TMSP 

concentration as a reference. The concentration (mM) of each assigned intracellular 

metabolite was determined, then converted to total nmol of metabolite and 

subsequently normalised by the total cell number in order to obtain a nmol/cell quantity. 

The formula used was the following:   

nmol/cell = ((mM*60 µL)*1.2)/ total number of cells 

where 60 µL is the amount of phosphate buffer used to resuspend the dried metabolites 

before acquisition of NMR spectra (see 2.6.1), and 1.2 is the factor to obtain the total 

nmol in the total polar fraction (from a total polar fraction of 2.4 mL 2 mL were analysed: 

2.4/2 = 1.2, see 2.3.1).  

The concentration (mM) of mouse mammary tumour-derived polar metabolites did not 

need further normalization as they were extracted from always the same amount of 

tissue.  

Whereas for the media, the concentration (mM) of each metabolite obtained with 

Chenomx was converted to nmol/1.2 mL using the following equation:  

nmol/1.2 mL = 3.2*(mM*550 µL) 
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where 1.2 mL is the volume of fresh or spent medium extracted for each sample, 550 

µL is the amount of NMR phosphate buffer used to resuspend the dried metabolites. 

The nmols in 550 µL are representative of a fraction of the total polar extract (from a 

2.4 mL of media-derived polar phase only a 750 µL-aliquot was analysed: 2.4/0.75 = 

3.2), it is therefore necessary to multiply the nmols by 3.2 to obtain the total nmols of 

polar metabolites extracted from the 1.2 mL aliquot of media. Once converted to the 

total nanomoles of metabolite in the fresh and spent medium (25 mL), it was possible 

to compare the initial nmols (nmoli) with the final nmols (nmolf) to determine uptake 

and secretion: ∆ nmol = nmolf - nmoli.  

If ∆>0 = metabolite excreted; If ∆<0 = metabolite uptaken. At last, the nmol difference 

was normalised by the total cell number to obtain ∆nmol/cell. 

 

2D 1H-13C-HSQC spectra 

HSQC spectra acquired from MCF-7-derived samples underwent the following steps: 

suppression of the water resonance was enhanced by a convolution filter on the FID 

prior to apodisation with a squared cosine window function, zero filling up to 1024 data 

points for the direct dimension prior to Fourier transformation. The indirect dimension 

was apodised using a squared cosine window function and the data was zero-filled to 

4096 data points before Fourier transformation. These 2D-NMR spectra were then 

manually phase corrected in both dimensions. Spectra were referenced on the alanine 

C(3) signal. Once processed, the metabolites in these HSQC spectra were assigned 

using the AssignTool in NMRLab (Ludwig and Günther, 2011), and the amount of 13C-

enrichment was calculated and obtained automatically through the HSQC report tool. 

Briefly, for each metabolite the peak intensities in the labelled spectra are divided by 
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the peak intensity in the unlabelled spectra to determine the 13C enrichment; in case 

of multiplets in the 13C-enriched spectra, all the peaks are added up to obtain the peak 

overall intensity. The taurine peak intensity was used for inter-experiments 

normalisation.   

 

2D 1H-13C-HSQC (with NUS) 

These NMR spectra were processed to 1024 points in the direct dimension and 16384 

points in the indirect dimension using the mddnmr/nmrpipe software (Delaglio et al., 

1995, Orekhov and Jaravine, 2011) to reconstruct the 2D spectrum using a 

compressed sensing algorithm. Subsequently, they were phased using the NMRPipe 

software (Delaglio et al., 1995) and the phased spectra were opened in NMRLab where 

they were again referenced on alanine, and analysed. 

For each peak, the multiplets were analysed with a quantum mechanical spin system 

simulation using the C++ and python based PyGamma NMR simulation library (Smith 

et al., 1994); once all the peaks of the metabolite of interest were simulated and fitted, 

a self-consistent approach was used to extract the 13C isotopomers from the 

information in the HSQC spectra.  

 

2.7 STATISTICAL ANALYSIS 

When the number of replicates was higher than three, data normality distribution was 

tested by Kolmogorov-Smirnov test using GraphPad 5.0d software. Results are 

expressed as mean ± standard error of the mean (SEM) except for data shown in box-

and-whiskers where the median is calculated instead, and in scatter dot-plot where 

results are expressed as mean ± standard deviation (SD). Unpaired, two-tailed 
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student’s t test with 95% confidence intervals was used to compare groups using 

GraphPad 5.0d software. The p-values obtained using the Wald test on the differential 

gene expression analysis, were adjusted with the Benjamini & Hochberg test. In all 

cases, p-values < 0.05 were considered statistically significant.  
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3.1 INTRODUCTION 

Improvements in early-stage detection and introduction of new therapies have 

contributed to the reduction in breast cancer mortality in recent years (Broeders et al., 

2012, Gunsoy et al., 2014). Nevertheless, this type of tumour still represents the 

second most common cause of cancer-related death in women in the UK (2012). 

Among the various possible therapeutic approaches for breast cancer, taxane-based 

treatment represents one of the most effective (Valero et al., 1995, Alken and Kelly, 

2013), involving mainly the anti-microtubule agents paclitaxel and docetaxel, either as 

single agents or in combination with other drugs (Moulder and Hortobagyi, 2008, Kim 

et al., 2014, Zardavas and Piccart, 2015). The semisynthetic taxoid docetaxel, 

approved in 1996, represented the preferential second line treatment for locally 

advanced or metastatic breast cancer (Yalcin, 2013, Hassan et al., 2010). However, 

many patients do not reach complete remission of the disease or develop resistance 

to the drug (Chang et al., 2005), leading to the presence of residual breast cancer. In 

particular, it has been shown that the tumour that remains after docetaxel treatment is 

enriched in cells presenting tumour-initiating markers (Creighton et al., 2009). 

Therefore, this subpopulation of the original tumour represents a possible source of 

cancer relapse. Recurrence, together with resistance to therapy and metastasis, are 

the main factors contributing to cancer patient mortality. For these reasons, preventing 

the development of these situations is of seminal importance for increasing patient 

survival. In order to be able to do that, it is necessary to understand the biological 

advantage exploited by the breast tumour cells to survive docetaxel treatment. A 

number of in vitro studies have outlined the possible mechanisms of resistance to 

docetaxel, most of which include alterations in gene expression levels (Chang et al., 
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2003, Chang et al., 2005, Korde et al., 2010, Tan et al., 2012, Ghanbari et al., 2014, 

Hu et al., 2014, Iwao-Koizumi et al., 2005). However, to our knowledge, none have 

examined at residual cell metabolism post-docetaxel. It is already well known that 

cancer cells undergo metabolic adaptations in order to survive and proliferate despite 

many adverse conditions during tumour growth (Tennant et al., 2009, Griffin and 

Shockcor, 2004, Ward and Thompson, 2012). These adaptations are mediated by 

changes in the metabolome, described as the sum of all the metabolites within a cell, 

which represents the most dynamic cellular component; able to respond to the 

requirements of the cell at any given time. This means that any alterations in the 

genome, proteome or microenvironment that requires a change in phenotype must be 

supported by a metabolic shift in order to occur.  

Given all these premises, the in vitro metabolic response of residual breast cancer cells 

that survived docetaxel treatment will be investigated. This chapter will therefore be 

focused on the in vitro model, the MCF-7 breast cancer cell line, which is a well-

established model of ER+ breast adenocarcinoma (Brooks et al., 1973, Levenson and 

Jordan, 1997, Holliday and Speirs, 2011), sharing markers with the luminal subtype A 

of human breast cancer (Holliday and Speirs, 2011).  
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3.2 MCF-7 RESPONSE TO DOCETAXEL TREATMENT 

3.2.1 Determining the optimal concentration of docetaxel 

The purpose of this study was to investigate residual breast cancer cells after Tax 

treatment. Hence, it was important to apply a drug concentration that did not cause 

death of all the cells used in the experiment, but allowed the survival of some of the 

original cell population, defined as residual cells (TAX). Therefore, was necessary to 

identify the concentration of docetaxel able to kill 50% of the cells in culture. In order 

to determine the MCF-7 dose-response to Tax treatment, cells were treated for 4 hours 

in normoxia (21% oxygen) and hypoxia (1% oxygen) with a range of drug 

concentrations from 10 nM to 500 nM (Morse et al., 2005, Sanli et al., 2002). The 

cytotoxicity effect was evaluated via SRB assay (see 2.2.4) at 24 and 48 hours post 

treatment removal, normalising the absorbance of the treated cells with the 

absorbance of the untreated control cells (Figure 3.1). We found that 10 nM Tax 

represented the concentration at which  50% viable cells remained in culture 48 hours 

post treatment removal, and was therefore defined as the optimal concentration for our 

purposes. Interestingly, no differences in cell viability were noted between normoxic 

and hypoxic treatment.  
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Figure 3.1. 10 nM is the Tax concentration able to kill 50% of the MCF-7 breast cancer 

cells in culture.  

Graph representing MCF-7 breast cancer cells viability 24 and 48 hours following Tax 

treatment with 10, 50, 100 and 500 nM, in normoxia (21%) and hypoxia (1%), relative to 

normoxic and hypoxic untreated cells, determined through SRB assay. Data shown are 

average of four experiments ± SEM. 10 nM is the Tax concentration able to kill 50% of the cells 

in culture, 48 hours post treatment removal. 

 

3.2.2 Docetaxel time-course 

The mechanism of action of docetaxel is through the stabilisation of polymerised 

microtubules therefore blocking cell division and proliferation (Herbst and Khuri, 2003, 

Cortes and Pazdur, 1995, Tankanow, 1998). In order to investigate if this is a long-

term effect on the MCF-7 cells, we performed a time-course experiment to detect the 

proliferation behaviour of the cells several days after treatment. Cells were treated with 

the previously determined optimal Tax concentration (10 nM) or left untreated as 

control, in normoxia and hypoxia. Cell density was evaluated via SRB assay 24, 48, 

72, 96, 120 hours post treatment removal (Figure 3.2). As expected, MCF-7 control 

cells proliferated less in hypoxia than in normoxia. The Tax treated cells did not show 

increase in cell number between the first and the fifth day post treatment. Given the 
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presence of dead cells in the media during these days (see Figure 3.3B and C), it is 

possible to infer that the stable protein content evidenced by SRB could derive from a 

balance between few cells proliferating and cells dying. However, the major part of 

these cells underwent a cell cycle arrest, in accordance with the Tax mechanism of 

action. Moreover, this experiment did not show any evidence of differential activity of 

the drug on cells under normoxia and hypoxia (as well as in section 3.2.1). For this 

reason, the subsequent in vitro experiments have been conducted in normoxic 

conditions only. 

 

 

 

Figure 3.2. Tax inhibits MCF-7 cells proliferation for several days.  

Curves showing MCF-7 cell density in normoxia and in hypoxia 24, 48, 72, 96 and 120 

hours post Tax treatment with the 10 nM drug concentration. Results are average of 

three independent experiments ± SEM, each value is relative to the 24 hours normoxic 

control. After four hours incubation with Tax, MCF-7 cells arrest their proliferation at 

least for the duration of the time-course experiment (five days).   
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3.3 RESIDUAL BREAST CANCER CELLS METABOLIC PHENOTYPE 

3.3.1 Residual cells morphology 

The MCF-7 breast cancer cells present an epithelial-like phenotype, characterized by 

polygonal cells in tight contact with each other, with well-defined boundaries (Figure 

3.3A). Following treatment with Tax, cell morphology was altered: cells flattened, 

boundaries were less visible, and nuclei contained large inclusions that could be 

considered as multiple micronuclei (Figure 3.3B-C). These characteristics are 

suggestive of induction of Tax-mediated senescence as previously described (Ewald 

et al., 2010) and mitotic catastrophe (Morse et al., 2005, Portugal et al., 2010).   
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Figure 3.3. Tax induces changes in MCF-7 cells morphology.  

Phase contrast images showing morphology of untreated MCF-7 cells (CTRL, A) and 

residual cells 48 hours after Tax treatment removal (TAX, B and C). Magnification: 

20X. Dead floating cells are visible in the media (B and C). B) The star indicates a large 

flattened senescent-like cell; C) the arrow points at large cells with multiple inclusions 

similar to micronuclei that underwent mitotic catastrophe.  
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3.3.2 Residual cells metabolic analysis 

As the purpose of this thesis is to investigate the metabolic phenotype of the cells able 

to survive docetaxel treatment, MCF-7 cells were treated with 10 nM Tax for 4 hours, 

and the residual cells underwent metabolic analysis 48 hours post treatment removal, 

compared to the untreated cells (CTRL). The polar fractions of the metabolic extracts 

derived from six replicates for each condition have been analysed by 1D-1H NMR 

spectroscopy. After data processing, assignment and quantification of metabolites in 

each spectrum was performed using Chenomx, which uses the TMSP signal as 

reference for metabolite quantification. The assignment process led to the identification 

of 21 metabolites in each spectrum.  

The metabolite quantification revealed statistically significant differences between 

CTRL and Tax-treated residual cells as listed in Table 3.1. Among these metabolites, 

particular interest is driven by the essential (Figure 3.4A) and non-essential amino 

acids (Figure 3.4B), as well as glycolysis-derived metabolites (Figure 3.4C), which are 

more abundant in the residual cells. Accumulation of two other interesting metabolites, 

the phospholipid-precursor glycero-phosphocholine and the antioxidant glutathione 

(Figure 3.4D), characterised these breast cancer residual cells. Moreover, the 

concentration of a number of other metabolites was not altered between the two 

conditions, such as aspartate (p=0.0510), phosphorylcholine (p=0.4037), fumarate 

(p=0.2359) and taurine (p=0.0933). 
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Metabolite CTRL TAX P value 

Alanine 8.470e-006 ± 1.145e-006 2.443e-005 ± 2.621e-006 0.0014 

Creatine phosphate 3.539e-006 ± 5.581e-007 6.462e-006 ± 8.268e-007 0.019 

Glutamate 2.125e-005 ± 1.848e-006 3.741e-005 ± 4.555e-006 0.0167 

Glutathione 5.551e-006 ± 7.462e-007 9.953e-006 ± 8.651e-007 0.0039 

Glycerophosphocholine 6.379e-006 ± 1.032e-006 1.242e-005 ± 2.052e-006 0.0338 

Glycine 2.005e-005 ± 2.481e-006 4.017e-005 ± 4.321e-006 0.005 

Isoleucine 6.405e-006 ± 7.287e-007 1.333e-005 ± 1.398e-006 0.0032 

Lactate 2.298e-005 ± 2.242e-006 7.309e-005 ± 1.246e-005 0.0108 

Leucine 5.290e-006 ± 6.131e-007 1.217e-005 ± 1.463e-006 0.0049 

Phenylalanine 3.678e-006 ± 4.325e-007 9.164e-006 ± 1.014e-006 0.0025 

Threonine 1.591e-005 ± 1.464e-006 3.684e-005 ± 4.065e-006 0.0029 

Tryptophan 9.918e-007 ± 1.187e-007 2.553e-006 ± 2.739e-007 0.002 

Tyrosine 5.143e-006 ± 4.886e-007 1.305e-005 ± 1.605e-006 0.0053 

Valine 7.499e-006 ± 8.383e-007 1.711e-005 ± 1.865e-006 0.0033 

 

Table 3.1. Metabolites more abundant in residual cells.  

List of metabolites whose concentration changed significantly between CTRL and 

residual cells post-Tax treatment (TAX). Values are represented as nmol/cell mean ± 

SEM. P value < 0.05 are considered statistically significant.  
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Figure 3.4. Metabolites more abundant in residual cells.  

Histograms representing the quantification of metabolites (in nmol/cell) within residual 

(TAX) or untreated (CTRL) cells polar metabolic extracts, obtained analysing the 1D-

proton NMR spectra. Each value is normalised based on total cell number. Statistics 

is based on six replicates each condition (p<0.05), and presented as mean ± SEM. A) 

essential amino acids, B) non-essential amino acids, C) glycolysis-derived metabolites, 

D) phospholipid-precursor glycerol-phosphocholine and antioxidant glutathione were 

more abundant in the residual cells post Tax treatment. 
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3.3.3 Residual cell media metabolic analysis 

In order to evaluate differences in uptake or secretion of metabolite between the 

untreated and the residual cells, a metabolic analysis of the growth media was 

performed. Medium that had been incubated with cells, as well as fresh medium for 

comparison underwent extraction of polar metabolites and was subsequently 

subjected to metabolite identification and quantification through NMR spectroscopy as 

described above.  

Particular attention was focused on the essential amino acids given their intracellular 

accumulation in the residual breast cancer cells post Tax treatment (Figure 3.4A). The 

analysis of the media evidenced the uptake of similar amount of isoleucine and valine, 

and secretion of methionine, phenylalanine, threonine and tryptophan in both 

conditions (Figure 3.5A). Leucine shows an opposite behaviour between control and 

residual cells, however the high variability between the 3 replicates meant that these 

results did not reach statistical significance. In terms of non-essential amino acids, 

glutamine was the only one consumed, while arginine, glycine, serine and tyrosine 

were excreted, but again control and residual cells behaved in the same way (Figure 

3.5B). The glycolysis-derived metabolites alanine and lactate accumulated into the 

media in both conditions, but to a higher extent in the residual cells (Figure 3.5C). 

However, only alanine reached statistical significance (p=0.0040), while lactate did not 

(p=0.0931).  
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Figure 3.5. Metabolites uptaken and secreted in the media.  

Histograms representing the variation between initial and final nmol of polar 

metabolites per cell (∆ nmol/cell) in the media of residual cells (TAX) compared to 

untreated (CTRL) cells. Metabolites with ∆>0 are secreted, while with ∆<0 are uptaken 

from the media. Statistics is based on three replicates each condition (p<0.05), results 

are show as mean ±SEM. A) essential amino acids, B) non-essential amino acids and 

C) glycolysis-derived metabolites. Alanine is significantly more abundant in the residual 

cell media. 
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3.3.4 Residual cell 13C-MFA 

The quantification of intracellular metabolites offers information on the total metabolite 

pool in a biological system at a specific time. However, this approach does not unravel 

the metabolic pathways involved in the production or consumption of a certain 

metabolite. 13C-labelled molecules are employed as metabolic substrates that allow 

tracing of downstream metabolic pathways involved in their consumption. Given the 

importance of glucose and central carbon metabolism in malignant adaptations for 

tumour survival (Koppenol et al., 2011), MCF-7 breast cancer control and residual cells 

were fed with [1,2-13C]glucose (Metallo et al., 2009) for 6 hours. 

After intracellular polar metabolites extraction, 13C isotope incorporation was identified 

and quantified on the 2D 1H-13C-HSQC NMR spectra (see 2.6.2 and 2.6.3), which allow 

the determination of the specific intramolecular position of the 13C nuclei (Wiechert, 

2001). The metabolite assignments of these spectra were conducted using a library in 

NMRLab, and label enrichment into the individual carbon atoms was calculated 

comparing the signal intensity in the spectra derived from samples incubated with [1,2-

13C]glucose to the signal intensity in those derived from 13C- natural abundance 

(unlabelled glucose-incubated) samples. In this way, the percentage of 13C enrichment 

in a specific carbon can be obtained relative to its natural abundance. Further 

information on the metabolic pathway usage is possible to extract from the 13C 

isotopomers present in the cell extract, which can be identified through the analysis of 

coupling patterns derived from the spin - spin coupling (Jcc coupling) of adjacent 13C-

atoms as described in section 1.3.2. The possible difference in cell number among 

different samples was accounted normalizing in each sample the intensities of all the 
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metabolites to the intensity of taurine. This analysis was conducted on three replicates 

for control and four replicates for residual cells. 

The 13C enrichment into each labelled carbon was therefore compared between 

residual (TAX) and untreated (CTRL) cells (Figure 3.6). Starting from the [1,2-

13C]glucose substrate, the downstream glycolytic end-product lactate and alanine 

showed high 13C incorporation into carbon 2 and 3, therefore leading to the formation 

of [2,3-13C]lactate and [2,3-13C]alanine isotopomers (Figure 3.6A). While alanine had 

similar incorporation levels in both conditions, lactate showed a slight increase in the 

residual cells, although not statistically significant. This would suggest no differences 

in the relative 13C enrichment between the two conditions, however the metabolite 

quantification already suggested an increased glycolytic flux in Tax-treated cells 

(Figure 3.4C). Consistent with this, the isotopomer [2,3-13C]glycerol-3-phosphate, 

derived from the glycolytic intermediate dihydroxyacetone phosphate, was produced 

to a higher extent by the residual cells (carbon 2 p=0.0422, carbon 3 p=0.0045, Figure 

3.6A). As a lipid precursor, glycerol-3-phosphate may support residual cells anabolism 

and membrane synthesis. However, it is necessary to point out that the natural 

abundance signal of these carbons was very weak, which may result in an 

overestimation of the label incorporation. Furthermore, both conditions demonstrated 

the coexistence of glycolysis and oxidative mitochondrial metabolism of glucose, as 

evidenced by the incorporation of labelled carbons into TCA cycle-derived metabolites 

such as glutamate, aspartate and malate. Glutamate showed predominant 

incorporation into carbon 4  in both conditions (Figure 3.6B), which gets labelled 

directly after the oxidation of [2,3-13C]pyruvate to [1,2-13C]acetyl CoA (not detected) by 

the PDH enzyme during the first round of the TCA cycle, leading to the production of 
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the [4,5-13C]glutamate isotopomer (Figure 1.4B). Label was also present into C(2) and 

C(3) of glutamate (Figure 3.6B) as a consequence of the activity of pyruvate 

carboxylase – an alternative entry point of glucose into the mitochondria – for the 

biosynthesis of the [2,3-13C]glutamate isotopomer. Interestingly, the incorporation of 

13C nuclei from glucose into C(3) was significantly higher in the residual cells-derived 

glutamate (p=0.0475) (Figure 3.6B), which may indicate that these cells use multiple 

TCA cycle rounds (Figure 1.4B). These results highlighted the central role of glutamate 

as a substrate for the biosynthesis of many metabolites in this breast cancer cells. In 

fact, a fraction of 13C-labelled glutamate was employed in the synthesis of glutamine, 

as evidences by the detection of the [2,3-13C] and [4,5-13C]glutamine isotopomers in 

both conditions, although to an higher extent in the Tax treated cells (C(2) p=0.0399; 

C(3) p=0.0005; C(4) p=0.0109) (Figure 3.6B). It was also used as a precursor for the 

synthesis of the anti-oxidant glutathione, as confirmed by the 13C enrichment into C(4) 

in both conditions (Figure 3.6B) as part of the [4,5-13C]glutathione isotopomer. Despite 

similar enrichment levels, the metabolite quantification had already evidenced a bigger 

glutathione pool in the residual cells (Figure 3.4D). However, the [4,5-

13C]pyroglutamate isotopomer was only observed in the Tax-treated cells (Figure 

3.6B). Being pyroglutamate part of the glutathione degradation pathway, this result 

may represent increased glutathione turnover in the residual cells. Unfortunately, 

pyroglutamate was absent in one CTRL sample, therefore statistical tests could not be 

performed on two values. Glutamate was also required for the synthesis of the non-

essential amino acid proline, which is observed to be labelled in both C(4)&(5) (Figure 

3.6B). Although there appears to be a trend towards increased 13C incorporation in the 

residual cell’s proline, the difference is not significant. Keeping on tracing the 13C atoms 
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fate in the TCA cycle, it is possible to identify the [3,4-13C]malate isotopomer (Figure 

3.6C). The abundance of this metabolite is usually very low, therefore the natural 

abundance-derived signal in the HSQC spectra is very weak making it difficult to 

properly quantify the enrichment. Moreover, 13C label incorporation into aspartate was 

observed, mainly as the [2,3-13C]aspartate isotopomer (Figure 3.6C), which can only 

be obtained through PC activity (Figure 3.7), at a similar rate in the two conditions. The 

presence of the isotopomers described above is consistent with ongoing glucose 

metabolism using both oxidative and non-oxidative mitochondrial pathways in both 

CTRL and the residual cell population. Using the 13C-MFA approach we were therefore 

able to trace the metabolic pathways involved in the catabolism of [1,2-13C]glucose in 

the MCF-7 cells, such as glycolysis, TCA cycle, glutathione synthesis, 

glycerophospholipid synthesis and non-essential amino acids production.  
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Figure 3.6. Relative 13C isotope enrichment into glucose-derived metabolites. 

Histograms showing 13C incorporation into specific residual (TAX) and untreated 

(CTRL) cell metabolite’s carbons, after 6 hours incubation with [1,2-13C]glucose, 

relative to natural abundance. The red line represents the 13C isotope natural 

abundance (here approximated with 1%). Analysis derived from 1H-13C-HSQC NMR 

spectra, three replicates for CTRL and four for TAX (p< 0.05). A) glycolysis-derived; B) 

glutamate-derived and C) TCA cycle-derived metabolites.   
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Figure 3.7. [2,3-13C]aspartate production via pyruvate carboxylase activity.  

Illustration showing 13C atoms transition between the substrate [1,2-13C]glucose and 

the product [2,3-13C]aspartate via pyruvate carboxylase-dependent conversion of 

pyruvate into oxaloacetate. Abbreviations: PC, pyruvate carboxylase; AST, aspartate 

transaminase.   
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3.3.5 Residual cell media 13C-MFA 

During the 6 hours incubation period in which the cells are exposed to [1,2-13C]glucose, 

dynamic exchange of nutrients and metabolic products with the extracellular 

environment occurs. In order to collect this type of information, 13C-MFA was also 

conducted on the conditioned media collected at the endpoint of the experiment, as 

described in Materials and methods (see 2.3.1, 2.3.2). Unfortunately, the taurine 

signal, which was used as a normaliser in the previous cell flux analysis, was not 

detected in the spectra derived from the media samples. Consequently, the metabolite 

intensities were normalized using threonine signals, given that this metabolite was 

demonstrated not to be affected by treatment (see 3.3.3 and Figure 3.5A). A number 

of 13C labelled metabolites were detected in the media samples, indicative of them 

having been produced from glucose (Figure 3.8). Among the metabolites identified 

during the analysis, 13C-incorporation into lactate and alanine was observed at 

significant levels, indicative of a highly active glycolytic metabolism in both treated and 

untreated cells. In particular, the major lactate isotopomer identified was found to be 

[2,3-13C]lactate, which would be predicted as the result of simple glycolytic metabolism 

of glucose. This isotopomer was found to be equally present in both conditions (Figure 

3.8A). The equivalent isotopomer of alanine, [2,3-13C]alanine, was also observed in 

both control and residual cells (Figure 3.8A). However, the signal derived from alanine 

C(2) was weak in most of the samples, and entirely undetectable in one replicate. At 

the same time, the C(3) position was still labelled in these samples, from which we 

inferred the presence of the alternative [3-13C]alanine isotopomer in the media of both 

conditions. This isotopomer would be predicted to be formed from the involvement of 

the oxidative branch of the pentose phosphate pathway in the metabolism of glucose. 
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This not only suggests the induction of the oxPPP in these cells, but that the metabolic 

intermediates derived from this pathway were used preferentially in the synthesis of 

alanine, rather than lactate. Other metabolites not identified in the 1D-1H NMR 

spectrum during the metabolic analysis of intracellular metabolites presented label 

incorporation: a-fructose and b-fructose (Figure 3.8A), along with the remaining [1,2-

13C]glucose (Figure 3.8B). Unfortunately, the experimental variation in fructose 

labelling percentage within different samples was high, making it difficult to draw 

meaningful conclusions. The presence of [1,2-13C]glucose in the media at the 

experimental endpoint confirms the availability of the labelled tracer throughout the 

whole experiment.  
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Figure 3.8. Relative 13C isotope enrichment into media-derived metabolites.  

Histograms showing 13C incorporation (relative to natural abundance) into specific 

metabolite’s carbons in the media of residual cells (TAX), compared to untreated cells 

(CTRL), after 6 hours incubation with [1,2-13C]glucose. The red line represents the 13C 

isotope natural abundance (here approximated with 1%). Analysis derived from 1H-

13C-HSQC NMR spectra, three replicates for CTRL and four for TAX (p< 0.05). A) 

glucose-derived metabolites secreted in the media; B) left-over of [1,2-13C]glucose 

used to feed the cells. 
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3.3.6 Glutathione role in residual cell survival 

The metabolic analysis of the intracellular metabolites extracted from control and 

residual cells highlighted, among others, an increase in glutathione concentration per 

cell in the residual breast cancer cells (Figure 3.4D). Moreover, from the 13C isotope 

incorporation into glutathione C(4) (Figure 3.6B) it is possible to infer the metabolic 

pathway leading to its synthesis following the administration of the metabolic substrate 

[1,2-13C]glucose: through the formation of [4,5-13C]glutamate, which is subsequently 

used in the production of [4,5-13C]glutathione. Although the relative 13C enrichment of 

C(4) does not differ between the two conditions, one can assume a higher absolute 

amount of labelled glutathione given the presence of a bigger glutathione pool in the 

residual cells (Figure 3.4D). Glutathione is a well-known intracellular antioxidant 

(Meister, 1983) that has a fundamental role in cancer cell survival (Arrick and Nathan, 

1984, Cazenave et al., 1989). We therefore hypothesised that glutathione production 

was fundamental to breast cancer cell survival after Tax treatment. To investigate this, 

MCF-7 cells were treated with BSO, a glutathione-synthesis inhibitor (Ali-Osman et al., 

1996, Ford et al., 1991, O'Dwyer et al., 1992) as described in section 2.2.3. First, it 

was necessary to prove the efficacy of BSO in decreasing glutathione synthesis. 

Therefore, MCF-7 cells were treated with BSO and subsequently the intracellular 

concentration of glutathione compared to that of untreated cells was quantified using 

a 1D-1H NMR spectrum. BSO was observed to efficiently decrease the concentration 

of glutathione in cells (Figure 3.9). Once established, we investigated whether 

treatment with BSO after Tax incubation would improve the killing effect. As shown in 

Figure 3.10, the treatment with BSO for 24 or 48 hours following Tax treatment did not 

show additive effects and did not significantly improve Tax killing effect, suggesting 
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that glutathione synthesis is not required for survival of cells directly post-Tax 

treatment.  

 

Figure 3.9. Glutathione-synthesis inhibition.  

Histograms showing intracellular glutathione concentration (mM) in MCF-7 untreated 

(CTRL) cells and treated with BSO. Quantification obtained analysing the 1D-1H NMR 

spectrum with Chenomx. BSO treatment inhibits glutathione synthesis causing a 

decrease in glutathione concentration compared to untreated cells. Values are 

normalized on total cell number.  

 

 

Figure 3.10. Additive effect of BSO and Tax on MCF-7 cells survival. 

Graphs showing treated (Tax, Tax + BSO, BSO) and untreated (CTRL) MCF-7 cell 

density at 48 hours relative to the zero time point cell density. The addiction of BSO 

after Tax treatment does not potentiate Tax killing effect. Values are mean of six 

replicates ± SEM.     
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3.3.7 Residual cell regrowth 

The interest in characterizing the metabolic phenotype of the residual cells is mainly 

because of their potential for leading to tumour recurrence, which is the main cause of 

patient death. Li et al., developed an in vitro recurrence model showing that residual 

breast cancer cells resume proliferation forming recurrence colonies (Li et al., 

2014).The residual breast cancer cells analysed so far, taken at 48 hours post-

treatment withdrawal, are not proliferating as evidenced by the time-course 

experiment, and this was true until the fifth day post-Tax removal (Figure 3.2). In order 

to unveil the time-point at which the residual cells in this model start to regrow, the 

same time-course experiment was carried out checking for regrowth beyond the fifth 

day, looking at the following time points: day 5, 7, 9, 11, 13 and 15 (respectively 120, 

144, 168, 192, 216, 240 hours, Figure 3.11). It was not possible to obtain data for the 

control untreated cells after day 5 as they became confluent in the well of a 6-well 

plate. On the contrary, Tax-treated cells did not show increase in cell density between 

five and fifteen days post treatment (Figure 3.11). However, checking the cells under 

the microscope, it was possible to see small clones of cells starting to regrow. It was 

therefore clear that the SRB assay was not sensitive enough to capture the growth of 

few cells only. For this reason, the experiment was repeated for the same time points, 

performing only SRB staining instead of measuring the optical density in order to 

visualise the regrowth (Figure 3.12). In fact, between day 9 and day 15 small clones of 

regrowth are visible confirming the hypothesised ability of these residual cells to 

overcome the proliferation arrest leading to breast cancer cell recurrence.   
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Figure 3.11. Residual cell regrowth time-course.  

Curves showing SRB absorbance values for untreated (CTRL) and residual cells (TAX) 

120, 144, 168, 192, 216 and 240 hours post-Tax treatment withdrawal. Values are 

mean of three replicates ± SEM. Residual cells do not show increase in cell number 

for the whole length of the experiment.  

 

 

Figure 3.12. Residual cell regrowth staining.  

Pictures showing SRB staining of untreated MCF-7 cells (CTRL) at day 5, and residual 

breast cancer cells (TAX) at day 5, 7, 9, 11, 13 and 15 post-Tax removal. From day 9 

it is possible to visualize more cells stained by the SRB indicative of residual cell 

regrowth.   
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3.3.8 Clone 1 and 2 metabolic analysis 

Once it was established that residual cells were able to escape docetaxel-mediated 

growth arrest and to restart growing, two clones that regrew were produced as 

described in 2.3.3, and maintained in culture in order to assess their metabolic 

phenotype. These cells were named respectively clone 1 and clone 2. Growth curves 

over four days were performed for the two clones and for the untreated MCF-7 cells as 

shown in Figure 3.13. These three population of cells had different doubling times 

between day 2 and day 4 (see 2.3.4), being 29.29 h for clone 2 and 30.6 h for untreated 

MCF-7, while clone 1 had a faster doubling time of 25.68 h. However, the main 

differences are visible in the lag phase of the growth curves, in fact clone 1 requires a 

longer time before starting the exponential growth, while clone 2 starts earlier 

compared to control MCF-7. These MCF-7 subclones therefore present altered growth 

after resuming docetaxel-induced cell cycle arrest. In order to understand if these 

clones derived from residual cells retain characteristics of the original untreated MCF-

7 cells after they restart proliferating, metabolic analyses were performed on both 

clones. Firstly, investigation of the steady-state metabolic phenotype showed that 

essential amino acids, such as isoleucine, leucine, phenylalanine, tryptophan and 

valine were significantly more abundant in both clones than in untreated MCF-7 cells 

(Figure 3.14A), similar to what was seen in the residual cells. Among the non-essential 

amino acids, tyrosine was significantly more present in both clones, while glycine 

increase reached statistical significance only in clone 2 (Figure 3.14B). It is worth 

noting that the glycolysis-derived alanine and lactate were present at a similar level in 

all these cell types (Figure 3.14C). Due to this shift in amino acid metabolism and cell 

growth both in the residual cells and in the regrowth clones, we decided to investigate 
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mTOR activity in all these cells: a central kinase in the co-ordination of cell growth and 

metabolism. 

 

 

 

 

 

Figure 3.13. Growth curves.  

MCF-7, clone 1 and clone 2 cells were seeded at 3x104 cell/well and number of cell 

was counted every day for four days. Results are shown as mean of three experiments 

± SEM. Both clones showed differences in the lag growth phase compare to the control 

MCF-7. 
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Figure 3.14. Clone 1 and clone 2 metabolic analysis.  

Histograms representing the quantification (nmol/cell) of essential (A), non-essential 

(B) amino acids and glycolysis-derived metabolites (C) in untreated (CTRL) MCF-7 

cells, clone 1 and clone 2 metabolic extracts, obtained analysing the 1D-1H NMR 

spectra with Chenomx. Each value is normalised based on total cell number. Statistics 

is based on six replicates for CTRL, and three replicates for each clone. Values are 

presented as mean ± SEM (p<0.05). Most of the amino acids identified are more 

abundant in the regrowth clones.  
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3.3.9 mTOR activity in MCF-7, residual cells and regrowth clones 

mTOR is a serine/threonine protein kinase known to be involved in processes such as 

cell growth, proliferation (Dowling et al., 2010) and cell metabolism, with particular 

involvement in the sensing and control of intracellular amino acids (Zheng et al., 2014, 

Efeyan et al., 2012). As results had shown the accumulation of essential and non-

essential amino acids in both residual cells and outgrowing clones, it was important to 

define the mTOR status in these cells. mTOR activity can be assessed through the 

phosphorylation of a target protein, S6 kinase (S6K) (Wu et al., 2005). This was 

investigated using western blotting, which showed that mTOR activity decreased in the 

residual cells following Tax treatment (Figure 3.15). However, both clones present an 

increased amount of total S6K, while its phosphorylated form is present only in clone 

1. Therefore, mTOR activity is not a prerogative for cell survival to docetaxel treatment.   

 

Figure 3.15. mTOR activity.  

Image showing western blot bands for phospho-S6K, total S6K protein and β-actin 

obtained analysing untreated MCF-7 (CTRL), residual cells (TAX), clone 1 and clone 

2 protein extracts via SDS-PAGE and western blot. The presence of phospho-S6K is 

indicative of mTOR activity, which is decreased in residual cells post Tax treatment 

and in clone 2 cells.  
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3.3.10 Clone 2 13C-MFA 

In the previous section, it emerged that, although restoring its proliferation ability, clone 

2 maintains low mTOR activity despite the intracellular accumulation of essential amino 

acids (Figure 3.14A). In order to obtain more detailed information regarding its 

metabolic phenotype, clone 2 cells were incubated with [1,2-13C]glucose for six hours 

and metabolic flux analysis performed as previously described. The non-essential 

amino acids glycine and tyrosine, although more abundant in the regrowth clones than 

the untreated MCF-7, did not show 13C incorporation, therefore it is possible to exclude 

their de novo biosynthesis. This suggests that the increased concentrations are due to 

increased uptake of these amino acids through plasma membrane transport, or 

increased degradation of intracellular proteins. Due to the selective increase of amino 

acids observed (Figure 3.14), the former is most likely. The clone 2-derived metabolites 

that gained 13C enrichment are shown in Figure 3.16. Overall, the label incorporation 

into those intracellular metabolites detected was very similar between control MCF-7 

cells and clone 2. The only metabolite showing statistically significant higher 

enrichment in clone 2 samples compared to untreated MCF-7 samples, was glutamate. 

In particular, there is a higher enrichment in [1,2-13C] and [2,3-13C]glutamate, 

suggestive of increased anabolic use of the TCA cycle. However, further work is 

necessary to confirm this phenotype.   
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Figure 3.16. Clone 2 13C-MFA.  

Histograms showing relative 13C enrichment into specific metabolites extracted from 

clone 2 cells, compared to untreated MCF-7 cells (CTRL). The red line represents the 

13C isotope natural abundance (here approximated with 1%). Analysis derived from 

1H-13C-HSQC NMR spectra; values are plotted as mean of three replicates ± SEM. 

Glutamate is the only one showing statistically significantly higher 13C enrichment for 

clone 2 (p<0.05).   



 

106 
 

 In vitro characterisation of residual breast cancer cells after docetaxel treatment 

3.4 DISCUSSION 

Since its introduction in 1996, docetaxel has shown great efficacy against advanced 

and metastatic breast cancer (Cortes and Pazdur, 1995, Tankanow, 1998, Valero et 

al., 1995, Binder, 2013). In order to fully exploit its potential, it is fundamental to 

understand the mechanisms underlying incomplete remission and resistance to 

docetaxel treatment, which represent leading causes of cancer patient mortality 

(Chang et al., 2005, Creighton et al., 2009). In fact, it has been shown by Creighton et 

al. that residual breast cancer cells are likely to be the source of tumour relapse, 

presenting the characteristics of tumour-initiating cells (Creighton et al., 2009). 

In recent years, the interconnected nature of the metabolic phenotype and genetic 

alterations in cancer have become clearer. One can hypothesise therefore that through 

the analysis of cellular metabolism, one obtains the best readout of the tumour 

metabolic phenotype. Given that, the aim of this thesis is to characterise the metabolic 

phenotype of the residual breast cancer cells: i.e. those that survived docetaxel 

treatment. This chapter focused on the in vitro experiments conducted on the MCF-7 

breast cancer cell line, which maintains luminal A adenocarcinoma characteristics 

(Holliday and Speirs, 2011, Levenson and Jordan, 1997).  

First of all, it was necessary to determine the concentration of docetaxel to be used for 

our purposes. We found that 10 nM was the optimal concentration for this cell line, 

therefore used for all the subsequent in vitro experiments. Moreover, in this thesis cells 

were treated for a short time only (4 hours) in order to avoid the induction of genomic 

or proteomic alterations that a long-term treatment could favour (Li et al., 2014), as 

well as to more accurately recapitulate the exposure of breast tumour cells in patients 

to this drug (compared with 24-48 hours incubations often used in vitro). Given that 
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solid tumour hypoxia is one of the main factors responsible for resistance and 

treatment failure (Ward et al., 2013, Milani and Harris, 2008, Zeng et al., 2015), MCF-

7 cells were treated both under normoxic and hypoxic conditions. However, docetaxel 

killing efficacy did not show differences between the two conditions for this breast 

cancer cell line. These results are in contrast with some studies showing that the MCF-

7 cells are more sensitive to Tax killing effects when cultured in hypoxic conditions 

(Strese et al., 2013) due to Tax-dependent inhibition of HIF1α (Escuin et al., 2005).  

It has been demonstrated in the literature that mitotic catastrophe is the main 

mechanism of cell death caused by Tax in breast cancer cell lines (Morse et al., 2005) 

following aberrant mitosis as a consequence of the anti-microtubule action of this drug. 

Interestingly, the morphological alterations observed in the MCF-7 residual cells show 

similarities with some of the features of human residual cancer such as enlarged nuclei 

and condensed chromatin (Viale, 2013). However, the time-course experiment shows 

that this taxane causes a stable cell growth arrest for several days post-treatment. The 

viable and non-proliferative state makes these residual cells comparable to the 

circulating and disseminated cancer cells found in patients, often responsible for 

metastatic breast cancer (Ignatiadis and Reinholz, 2011). In fact, if they do not undergo 

cell death, they could bypass cell cycle arrest leading to aberrant mitosis and 

aneuploidy (Bayet-Robert et al., 2010). They would also be likely to be entirely resistant 

to any further chemotherapeutic approaches that target cells in cycle, such as 

nucleotide mimetics and DNA damaging agents. It should be pointed out that the 

results of the time-course experiment were obtained through SRB assay, which is able 

to detect the cellular protein content, whereas DAPI or Ki67 staining would give 

information on the actual proliferative state of these cells. Characterizing the metabolic 
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phenotype of these residual cells is therefore vital in order to unveil the mechanisms 

that allow their survival to docetaxel treatment and design new therapies that target 

this.   

Residual cells were obtained after treating MCF-7 cells with 10 nM Tax for 4 hours and 

leaving them to recover for 48 hours. This approach allows the study of metabolic 

effects in the cells that survived treatment that were not directly due to the drug. 

Subsequently, we performed an in vitro targeted metabolic analysis on these breast 

cancer residual cells, examining the polar fraction of metabolic extracts. Results are 

summarised and illustrated in Figure 3.17. Interestingly, the metabolic analysis 

evidenced intracellular accumulation of a certain class of metabolites in residual cells 

compared to the untreated MCF-7, including essential and non-essential amino acids, 

glycolysis-derived metabolites, phospholipid precursors and antioxidants. These are 

very intriguing results given that these residual cells are not proliferating, as evidenced 

by the time-course experiment. Furthermore, as cells are not able to synthesise 

essential amino acids (by definition), their accumulation in the residual cells could only 

result from increased uptake from the media or higher intracellular protein breakdown. 

However, the increase in non-essential amino acids and central carbon metabolites 

could also derive from higher cellular biosynthesis, besides extracellular uptake and 

intracellular macromolecules degradation. It is worth noticing that the concentrations 

of all the amino acids identified were strongly affected, resulting in highly significant p 

values. One possible explanation is the involvement of a process called 

macropinocytosis, a means by which cells uptake nutrients from the extracellular 

environment; in this way, proteins can be internalized from the media and degraded 

intracellularly to obtain free amino acids (Commisso et al., 2013).  
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Some of these metabolites, such as glutathione, lactate, alanine, threonine and 

glycerophosphocholine, have previously been shown to decrease in response to 

docetaxel treatment (Bayet-Robert et al., 2010). Thus, their increased levels in residual 

cells resemble treatment failure and potential malignancy of the survived cells.  

The analysis of spent media and pathway tracing could help to better understand the 

origin of these metabolites’ accumulation. Surprisingly, metabolic analysis of the media 

did not identify differences in the extracellular uptake of amino acids between the two 

conditions. This suggests that the residual cells intracellular accumulation of essential 

amino acids cannot be explained by increased extracellular uptake but it is more likely 

due to intracellular protein breakdown, although this would need to be further verified. 

Less straightforward is the explanation for tyrosine, as this is a semi-essential amino 

acid, being synthesised only from the intracellular oxidation of the essential amino acid 

phenylalanine. The increased intracellular phenylalanine concentration therefore 

allows accumulation of tyrosine in the residual cells. One could also infer that tyrosine 

is then consumed intracellularly in the residual cells, given that the secretion of both 

amino acids in the media does not show differences with control cells. The increase in 

non-essential amino acids and central carbon metabolite steady state could be also 

explained by a higher de novo biosynthesis by the cells. We wished to test this 

hypothesis through the use of stable isotope tracer analysis. Hence, cells were fed with 

a labelled metabolic precursor, [1,2-13C]glucose, and residual and untreated cell 

metabolites were analysed after a 6 hours flux. As would be expected, glucose was 

metabolised by the MCF-7 cells and downstream metabolites showed 13C enrichment. 

A difference in production rate was identified only for glycerol-3-phosphate, glutamine, 

and glutamate C(3). It is noteworthy that, even though glutamine was normally 
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provided in the culture media, residual breast cancer cells needed to further produce 

this amino acid from glutamate. The importance of glutamine as an alternative carbon 

source for cancer cells is becoming increasingly clear (Gaglio et al., 2011, Alberghina 

and Gaglio, 2014, DeBerardinis et al., 2007), it would therefore be appealing to 

investigate further the role of this amino acid in the breast cancer residual cell 

metabolism. It is important to underline that the 13C-MFA results show the relative 

quantification of the 13C enrichment, comparing it to the natural abundance of the same 

molecule. If the absolute quantification of these metabolites is taken into account, the 

higher intracellular abundance of alanine, lactate, glutamate and glutathione 

determines the presence of a bigger 13C labelled pool of these metabolites produced 

by the residual cells. In particular, the increased aerobic production of lactate suggests 

the induction of the Warburg effect, which may have a pivotal role in the residual cell 

survival. In fact, LDH-A has previously been shown to be a useful target to overcome 

resistance to paclitaxel in breast cancer cells (Zhou et al., 2010). It is therefore possible 

to infer that the breast cancer cells that survived docetaxel treatment, which are in 

growth arrest at the time of the experiment, are significantly more metabolically active 

than the control MCF-7. This is also supported by the label incorporation observed in 

glutamate C(3), which indicates multiple TCA cycle rounds. These features could be 

explained by a therapy-induced senescent phenotype (Ewald et al., 2010, Collado and 

Serrano, 2010), which has been shown to demonstrate exploitable metabolic 

alterations (Dorr et al., 2013). Interestingly, a considerable fraction of labelled 

glutamate appears to be used in glutathione production, as suggested from the 

labelling enrichment in glutathione C(4), subsequently catabolised to pyroglutamate 

(van der Werf and Meister, 1975). Although the relative enrichment is similar between 
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control and treated cells, the metabolic analysis evidenced the presence of a bigger 

glutathione pool in the residual cells. Glutathione is an important cellular antioxidant, 

particularly useful to cancer cells to fight the high ROS production in order to survive 

despite the oxidative stress (Arrick and Nathan, 1984, Meister, 1983, Sullivan and 

Chandel, 2014). Moreover, it has been previously shown that increased expression of 

glutathione-related genes correlates with resistance to docetaxel in patients (Iwao-

Koizumi et al., 2005).  Whereas a gene expression analysis conducted by Korde et al., 

highlighted the increased expression of genes implied in reactive oxygen species 

metabolism in patients resistant to docetaxel and capecitabine treatment (Korde et al., 

2010). Hence, it is possible to speculate that the production of this antioxidant molecule 

mediates the escape from Tax killing by the residual cells (Arrick and Nathan, 1984, 

Cazenave et al., 1989). To test this, docetaxel treatment was followed by BSO 

treatment to induce glutathione depletion via synthesis inhibition, and verify if this 

results in higher breast cancer cells killing (Ford et al., 1991, O'Dwyer et al., 1992, Ali-

Osman et al., 1996). However, there was no additive effect between the two drugs 

suggesting that glutathione synthesis is not a key process in residual cells survival after 

docetaxel treatment. As BSO was applied only after removing docetaxel, it must be 

considered that glutathione synthesis could be triggered early at the beginning of the 

treatment, being therefore able to accumulate prior to BSO administration. In this case, 

a co-treatment with the two drugs could provide a better outcome.   

To complete the characterization of the metabolic phenotype of residual and untreated 

MCF-7 breast cancer cells, the conditioned media was also used for 13C-MFA following 

the 6 hours flux experiment. Among the metabolites shown to be excreted in Figure 

3.5, alanine and lactate proved to be produced from glucose due to 13C isotope 
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incorporation. Again, although the relative enrichment is similar between the two 

conditions, when the higher concentration of these metabolites was taken into account, 

the pool of labelled lactate and alanine is consequently bigger in the residual cells 

conditioned media, although statistical significance is reached only for alanine. The 

secretion of lactate is known to contribute to the acidification of the extracellular 

microenvironment, facilitating tumour cell spreading and metastasis (Hirschhaeuser et 

al., 2011). This feature could support the idea that the residual cells are potentially 

more malignant than the primary tumour. The non-essential amino acid alanine 

presents a higher intracellular and extracellular concentration in the residual cells 

providing a further source of pyruvate, on top of being possibly employed in protein 

synthesis.     

Overall, these breast cancer residual cells present a hypermetabolic phenotype, the 

aim of which is not supporting continued cell proliferation. This feature is in accordance 

with few recent studies showing that the metastatic capacity is developed in breast 

cancer in parallel with a decreased proliferation ability (Waldman et al., 2013, Jerby et 

al., 2012), a phenomenon known as “go or grow” (Giese et al., 1996). In this scenario, 

residual cells would carry on anabolic processes to support the production of key 

metabolites such as lactate, exemplified with the Warburg effect (Koppenol et al., 

2011), and amino acids aimed at the biosynthesis of antioxidant molecules such as 

glutathione. 

Residual cells represent a threat to cancer patient survival given their ability to resume 

proliferation and to support cancer relapse (Li et al., 2014, Creighton et al., 2009). It 

was therefore intriguing to determine whether the residual breast cancer cells used in 

the present study were able to restart cell growth. In fact, this study was able to show 
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that those cells that survived treatment were able to escape the induced senescent 

phenotype and resume proliferation around 9 days post-docetaxel withdrawal. At this 

point, it was interesting to characterise the metabolic phenotype of these cells 

responsible of tumour recurrence, in order to possibly identify features that could be 

targeted in a therapeutic approach. Two clones of regrowth were therefore established, 

named clone 1 and clone 2, and underwent metabolic analysis as previously 

described. Interestingly, the metabolic analysis underlined again the importance of 

essential amino acids, being more abundant in the regrowth clones, while a possible 

marker of malignancy such as lactate was the same as the untreated MCF-7. These 

results could be interpreted again through the “go or grow” behaviour: after resuming 

proliferation, the cells must use their transformed metabolism to build biomass to 

sustain cell growth. More information regarding this second aspect can be obtained 

through 13C-MFA. 

Most of the results presented so far highlighted an intracellular accumulation of 

essential and non-essential amino acids, therefore it would be interesting to 

understand to which extent they are fundamental for the survival of residual cells 

investigating the pathways which are known to be responsive to amino acids 

availability. The PI3K/Akt/mTOR pathway is known to respond to nutrient availability 

and growth factors, therefore controlling cell survival and proliferation (Paplomata and 

O'Regan, 2014); moreover, it has been shown to be involved in breast cancer 

resistance to therapy (Paplomata and O'Regan, 2013). In particular, mTOR is a 

serine/threonine protein kinase that acts phosphorylating and activating the p70-S6K 

ribosomal protein to stimulate initiation of translation (Wu et al., 2005).  mTOR activity 

is regulated, among others, by the presence of amino acids (Efeyan et al., 2012). The 
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inhibition of mTOR in conditions of energetic demand has been shown to stimulates 

autophagy activation, which restores the intracellular amino acid levels which would in 

turn activate mTOR to sustain proliferation (Efeyan et al., 2012). This could well explain 

the metabolic phenotype observed by our analysis. In fact, the non-proliferative 

residual cells present a decreased mTOR activity compared to the control cells (Figure 

3.15), which could be due to cellular stress conditions (Laplante and Sabatini, 2012) 

following docetaxel treatment. The induction of the autophagic process would then lead 

to the intracellular accumulation of amino acids seen in the residual cells. Furthermore, 

the feedback control over the mTOR complex could reactivate the protein kinase 

resulting in the recovery of residual cell proliferation as it happened for the regrowth 

clones. However, this is not true for both clones given that clone 2 does not show S6K 

activation by mTOR. This result is particularly intriguing since clone 2 cells, besides 

being able to proliferate, are characterized by an accumulation of essential amino acids 

as evidenced by the metabolic analysis, even though they do not recover mTOR 

activity. To further elucidate clone 2 metabolic phenotype, the pathways used in central 

catabolic and anabolic processes were mapped out performing 13C-MFA. The [1,2-

13C]glucose substrate was observed to be metabolised using the same pathways as 

control MCF-7 cells, meaning that these clones of tumour recurrence held 

characteristics of the primary tumour from which they derived. However, clone 2 cells 

present a higher production of [1,2-13C] and [2,3-13C] isotopomers of glutamate, 

derived from multiple TCA cycles and PC activity respectively. Recently, breast cancer 

has been shown to overexpress PC, and in particular its expression level positively 

correlates with malignant behaviour, such as higher invasiveness and metastatic 

potential (Phannasil et al., 2015). Therefore, we could infer that regrowth clone 2 
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presents a more malignant phenotype compared to control MCF-7 and residual breast 

cancer cells.    

In conclusion, some of the breast cancer cells treated with the anti-microtubule agent 

docetaxel are able to survive, although entering a cell-cycle arrest condition. 

Nevertheless, the survived cells, defined as residual, exhibit a hypermetabolic 

phenotype, mainly characterized by amino acid accumulation, and higher 13C 

enrichment in central carbon derived metabolites, that altogether offer the metabolic 

advantage for survival and tumour repopulation. As future studies, it would be 

interesting to investigate the treatment sensitivity of the recurrent clones of breast 

cancer originated from the docetaxel residual cells, either using the same treatment 

strategy, or exploring new therapeutic approaches, targeting for example the amino 

acids metabolism. However, any parallelism between this in vitro model and the 

recurrent tumours in humans should be carefully drawn, given the absence of 

communication between cells grown in monolayers and the tumour microenvironment 

typically surrounding human solid tumours. For these reasons, we wished to adopt a 

pre-clinical model for our metabolic investigations, as will be described in the next 

chapters.           
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Figure 3.17. In vitro metabolic phenotype of residual breast cancer cells.  

Residual breast cancer cells present intracellular accumulation of essential and non-

essential amino acids, central carbon metabolism metabolites, lipid precursors and 

anti-oxidant molecules, and extracellular accumulation of alanine, while in growth 

arrest, compared to untreated MCF-7. Administration of [1,2-13C]glucose allowed 

tracing of the main pathways such as glycolysis, pentose phosphate pathway, TCA 

cycle and reaction branching from those. Residual cells increased the rate of 

production of glycerol-3-phosphate (G3P), lactate, alanine, glutamine, glutathione and 

pyroglutamate. They also underwent multiple TCA cycle increasing the production of 

specifically the [3-13C]glutamate isotopomer. Metabolites are in boxes, while enzymes 

are without. Light and dark blue boxes indicate increased intracellular and extracellular 

metabolite concentration respectively. Green cue ball indicates the 13C atom. Green 

arrows indicate increased production rate, grey dotted lines transport across 

membranes and continuous lines pathways. Abbreviations: AAT, alanine 
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aminotransferase; Arg, arginine; Asp, aspartate; Gln, glutamine; Glu, glutamate; Gly, 

glycine; GPC, glycerophosphocholine; Ile, isoleucine; LDH, lactate dehydrogenase; 

Leu, leucine; Met, methionine; PC, pyruvate carboxylase; PCho, phosphorylcholine; 

PDH, pyruvate dehydrogenase; Phe, phenylalanine; Ser, serine; Thr, threonine; Try, 

tryptophan; Tyr, tyrosine; Val, valine.         
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4.1 INTRODUCTION 

A significant goal of cancer research is to improve treatments and to increase patient’s 

survival. Therefore, it is fundamental to be able to translate laboratory findings to 

cancer patients. While in vitro studies allow the best control of experimental conditions, 

they are not able to recapitulate the complex hostile environment that surrounds solid 

tumours in vivo. In particular, hypoxia is understood to strongly influence tumour 

progression and resistance to therapy (Allinen et al., 2004, Carito et al., 2012, Ward et 

al., 2013). For this reason, this study was implemented with an in vivo animal model, 

where the real tissue complexity and three-dimensionality is comparable to that of 

humans. The in vivo system used in this thesis is the transgenic mouse model of breast 

cancer, the MMTV-PyMT. The oncoprotein Middle T antigen is expressed specifically 

in the mammary epithelium, therefore limiting the development of genetic modifications 

to the tissue of interest (Guy et al., 1992). Moreover, the spontaneous tumourigenesis 

does not require the introduction of exogenous human cells, which would require the 

presence of immunocompromised mice. The mammary tumour developed by this 

model recapitulates well complexity (including the interaction with the stromal 

compartment) and stages of progression of human breast cancers (Lin et al., 2003) 

sharing morphological and molecular similarities with the luminal human subtype 

(Robles and Varticovski, 2008, Lim et al., 2010). For these reasons, this pre-clinical 

model represents a good parallel with the MCF-7 cell line (Herschkowitz et al., 2007, 

Lim et al., 2010), on top of being closer to humans than other mouse models. 

Interestingly, these tumours present a high inter-animal expression homogeneity that 

gives consistency to the model (Herschkowitz et al., 2007). In order to properly assess 

the metabolic phenotype of the mouse mammary tumours, it was necessary to optimise 
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the 13C-MFA technique for the model used in this thesis. Working on metabolism in 

vivo, great emphasis is put on the choice of the correct approach for substrate 

administration, so that the metabolism is not altered and at the same time, minimal 

stress possible is caused to the animal. The parenteral routes of administration involve 

two main approaches such as injection (mainly sub-cutaneous, intraperitoneal and 

intravenous routes), and infusions (Shimizu, 2004, Turner et al., 2011). In fact, a 

number of studies have employed 13C-labelled tracers to map metabolic pathways in 

vivo, in some cases performing an infusion of labelled substrate into the tail or jugular 

veins under total anaesthesia (Marin-Valencia et al., 2012, Bandsma et al., 2004, van 

Dijk et al., 2003, Meissner et al., 2011), and a bolus injection in other cases (Fan et al., 

2011, Yuneva et al., 2012, Hassel and Brathe, 2000, Lane et al., 2009, Beger et al., 

2009). However, it is necessary to consider that anaesthesia influences metabolism 

(Brown et al., 2005), and it was therefore chosen to avoid anaesthesia for this study. 

As for the injection approach, i.v. and i.p. routes both allow a rapid absorption of the 

tracer into the blood flow (Shimizu, 2004) ensuring the tracer delivery to the mammary 

tissue in a feasible time frame. This chapter illustrates the optimisation of the 

technique, first comparing i.p. and i.v. route of injection, then establishing the labelling 

time point which will allow subsequent investigations following [1,2-13C]glucose 

administration to the animal.  

 

 

 



 

121 
 

 In vivo 13C-MFA: method development 

4.2 INJECTION METHOD 

Substrates can be administered to the laboratory animal via multiple sites. In order to 

avoid anaesthesia, a bolus injection was the preferred method in this study. Among 

the different routes of injection possible, we chose to compare the i.p. and the i.v. 

routes. Tumour bearing mice were injected with natural abundance glucose via i.v., 

i.p., or did not receive any injection; subsequently, mice were sacrificed 20 minutes 

post injection, the tumour excised, the polar metabolites extracted and subjected to 

1D-1H NMR spectroscopy. In this way, metabolites were identified and quantified, in 

order to compare them among the different conditions, to determine the best injection 

method. This analysis led to the quantification of six metabolites for each condition, 

either linked to or independent from glucose metabolism (Figure 4.1). Overall, the 

concentrations after i.p. or i.v. did not change significantly from the control situation of 

mice which did not receive any injection. However, for most of the metabolites besides 

lactate, the i.v. approach shows a median skewed towards smaller concentration 

values than i.p. and control, suggesting metabolic perturbations induced as a response 

to this route of injection. Moreover, except for leucine, the dispersion of all the 

metabolite concentration values after i.v. injection is characterised by a bigger standard 

deviation than the i.p. (Table 4.1) evidencing a higher biological variability due to the 

i.v. approach. Therefore, the injection of glucose via the i.p. route in vivo appears to 

maintain a metabolic condition closer to the control tumour taken from mice that did 

not receive an injection, than the i.v., also ensuring higher reproducibility.  
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Figure 4.1. Comparison of injection sites.  

Whiskers showing concentration (mM) of metabolite in the mouse mammary tumour metabolic 

extracts obtained analysing the 1D-1H NMR spectra after unlabelled glucose intravenous (i.v.) 

or intraperitoneal (i.p.) bolus injection, compared to mice that did not receive any injection (ni). 

The median value is derived from three replicates for i.p. and i.v., and four replicates for ni. I.p. 

injection shows less variability than the i.v. and does not differ significantly from the control 

situation (ni).   

 

Metabolite SD 

 i.p. i.v. 

Alanine 0.4125 0.6267 

Glucose 0.06449 0.3368 

Glutamate 0.3555 0.7113 

Lactate 0.3422 1.946 

Leucine 0.05922 0.05248 

Valine 0.01827 

 

0.07393 

Table 4.1 Metabolite concentration variability across replicates.  

List of intra-tumoural metabolites assigned and standard deviation (SD) of the concentrations 

after i.p. and i.v. approach. All the metabolites besides leucine show a higher variability 

following i.v. injection compared to i.p. 
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4.3 LABELLING TIME POINT 

In order to be able to unravel the metabolic phenotype of the mammary tumour 

developed by this mouse model, 13C-MFA was applied to the in vivo model. The 

previous results indicated an intraperitoneal bolus injection of glucose as the optimal 

approach of those studied. As stable isotope-labelled metabolites will be used 

dynamically depending on their availability to the tumour tissue, the point at which the 

tissue is sampled is likely to determine the sensitivity and resolution of downstream 

analyses. To investigate this, tumour-bearing mice were injected i.p. with a solution 

containing 100 nmoles of [1,2-13C]glucose and sacrificed 10, 20, 30 or 45 minutes after 

injection, before excision of the tumour. The amount of labelled glucose in the 

mammary tumour was assessed over time through quantification of the percentage of 

[1,2-13C]glucose isotopomer performing multiplet analysis on the improved 2D 1H-13C-

HSQC spectra (see 2.6.3) and comparing it across the different time points (Figure 

4.2). The highest labelled glucose enrichment in the mammary tumour was reached 

10 minutes post injection. After this time, the amount of labelled glucose present 

decreased until very little was left in the tumour 45 minutes post injection (Figure 4.2), 

presumably due to glucose being metabolised by the mammary tumour, although we 

cannot rule out the contribution of alterations in the availability of glucose in the 

peripheral plasma over time. The 30-minute time-point showed the highest 

reproducibility with over 10% of [1,2-13C]glucose remaining in the tissue (Figure 4.2), 

and was therefore chosen as the best time point for our purposes.     
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Figure 4.2. 13C-glucose time-course in the mouse mammary tumour. 

[1,2-13C]glucose percentage was calculated from the improved 1H-13C-HSQC spectra obtained 

from mice sacrificed 10, 20, 30 or 45 minutes post injection. Plotted data are mean ± SEM of 

4 replicates for 10 and 30 minutes, and three replicates for 20 and 45 minutes. Maximum 

labelled glucose uptake into the mammary tumour is reached 10 minutes post injection, after 

which the enrichment progressively decreases reaching its minimum at 45 minutes. 30 minutes 

shows very little inter-animal variability, and represents a good compromise between the 

labelled glucose peak and the total consumption of it. 
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4.4 DISCUSSION 

A number of studies demonstrated the importance of the tumour microenvironment for 

cancer survival, growth and resistance to therapy in vivo (Allinen et al., 2004, Carito et 

al., 2012, Ward et al., 2013). The bi-dimensionality of the in vitro samples does not 

account for the real complexity of the tumour-environment system in vivo. For this 

reason, it is necessary to move a step towards the human tumours, and this can be 

achieved using animal models. In particular, in this thesis the MMTV-PyMT transgenic 

mouse model of breast cancer was used. This model spontaneously develops 

mammary tumours that resemble the human disease in many respects (Lin et al., 2003, 

Lim et al., 2010).  

The relevance of metabolic investigations to characterize tumour’s phenotype had 

been previously stressed (see 1.3.1). Moreover, the 13C-MFA approach represents a 

powerful tool not only for in vitro systems, but also for animal models and human 

patients (Maher et al., 2012), as it uses a stable isotope and therefore avoids the safety 

issues found with the 18F or 11C radioisotopes, also used in the clinic (Ho et al., 2014, 

Territo et al., 2015). However, in vivo studies using 13C-MFA are still in their infancy, 

and therefore standardisation of the methodological approach has not yet been done. 

Hence, this chapter illustrated the optimisation of the most suitable method to inject 

13C-labelled substrates in our in vivo model in order to achieve quantifiable 

incorporation of glucose into the tumour tissue.  

While many studies performed infusion of tracers, for our purposes it was necessary 

to avoid anaesthesia, which has been shown to alter metabolism (Kashiwagi et al., 

2015, Schallner et al., 2014, Ayala et al., 2010, Brown et al., 2005). In order to 

determine the most appropriate mode of delivery for the study, we analysed the effect 
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of a bolus of glucose on a number of intra-tumoural metabolite concentrations, 

administered either through the intravenous or intraperitoneal routes. Although no 

significant differences in concentrations were found between the two methods 

compared to control mice, the cohort that had received glucose via the i.v. route 

exhibited higher variability between replicates (Table 4.1). There is also a higher risk 

to the animal after i.v. injection due to both the technical demands of the method (e.g. 

accidental perivascular injection especially in small animals, septicaemia, embolism) 

(Turner et al., 2011), and the physiological effects of a bolus of glucose (given at a 

concentration of 1M). Previous studies identified the i.p. route as a valid alternative to 

the i.v. showing a slower but comparable distribution of the tracer into the blood stream 

first, and into the organs after (Wong et al., 2011). Moreover, i.p. requires a less 

invasive and stressful handling of the mouse, while the i.v. injection requires the animal 

to spend a longer time in the restraint tube causing stress to the mouse (Shimizu, 

2004). Overall, the i.p. injection was therefore found to be a more suitable.  

The calculation of the 13C-enrichment in the in vitro system required the production of 

two identical samples in parallel, one provided with 13C-labelled glucose and the other 

with unlabelled glucose, in order to calculate the 13C-enrichment compared to natural 

abundance. This method is however not ideal for in vivo applications as the variability 

between subjects leads to poor reproducibility. Therefore, it was not feasible to use the 

mouse injected with unlabelled glucose as a control for the calculation of the 13C-

enrichment. A different approach that has been developed by Dr. Christian Ludwig was 

used in this study, in which the relative 13C-enrichment into metabolites can be worked 

out using just the information of each NMR signal’s structure (multiplet analysis, see 

1.3.2 and 2.6.3) in the spectra derived from 13C-injected mice.   
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The bolus-injection approach does not result in or rely on isotopic steady-state labelling 

of the tissue or animal, which means that transient label enrichment in the intracellular 

metabolite pool was quantified instead (Noh et al., 2007, Wiechert and Noh, 2013). By 

excising the tumour at different time points after the injection, it is possible to construct 

a time-course of labelled glucose accumulation inside the mammary tumour. The 

highest enrichment was detectable 10 minutes after the injection, followed by a 

decrease in the percentage of labelled glucose inside the tumour, presumably due to 

its catabolism into downstream metabolites, although possible alterations in the 

availability of glucose in the peripheral plasma over time must also be considered. The 

decrease continued until almost no labelled tracer was left in the tissue 45 minutes 

post injection. In order to allow the build-up of enough downstream labelled metabolites 

30 minutes was chosen as the best time point to perform downstream metabolic 

analysis of the mammary tumour. The combination of the use of this time point and 

improved 1H-13C-HSQC spectra permitted an enhanced sensitivity over conventional 

NMR approaches and allowed good resolution of multiplet patterns.   

The development of this method was carried out on the assumption that the distribution 

of the labelled tracer into the mammary tissue would be homogenous. However, as 

mentioned in the introduction, it is already well known that solid tumours are 

characterised by hypoxic areas (Allinen et al., 2004, Vaupel and Mayer, 2007) where 

the blood supply is absent or very limited. This aspect could indeed influence the 

diffusion of labelled glucose into the tumour, creating areas where the labelled glucose 

is absent which would lead to wrong conclusions and a high variability among different 

tumours and different areas of the same tumour. In this case, the choice of the area of 
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interest should not be determined randomly, but it could be taken following the imaging 

of the labelled glucose distribution into the mammary tumour through PET.   
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5.1 INTRODUCTION 

The pivotal role of residual tumours in affecting cancer patient survival has already 

been addressed in the previous chapters. Moreover, the contribution of the tumour 

microenvironment for the fate of the cancerous mass (Allinen et al., 2004, Carito et al., 

2012, Ward et al., 2013, Iyengar et al., 2005) makes it necessary to study residual 

tumours in models that better resemble the human disease than the simplified in vitro 

experimental settings. 

Pre-clinical models represent a good compromise between in vitro and clinical studies 

(Lim et al., 2010). In particular, the MMTV-PyMT transgenic mouse model of breast 

cancer mimics human patient’s disease and progression to the aggressive, metastatic 

tumour well (Lin et al., 2003) and has therefore been chosen in this thesis as the in 

vivo model to study residual mammary tumours following docetaxel treatment. The 

mice used for this work underwent a docetaxel treatment schedule to mimic patient 

treatment, i.e. multiple cycles of chemotherapy with several days recovery between 

each cycle (Korde et al., 2010), after which residual tumours were available for 

investigations. Previous in vivo studies investigating docetaxel treatment of mammary 

tumours have concentrated on elucidating possible mechanisms of resistance (Tan et 

al., 2012), treatment efficacy (Morse et al., 2007), as well as gene expression pattern 

characterisation of residual tumours (Franci et al., 2013, Chang et al., 2005). Cancer 

cells remaining after treatment have been shown as a potential source of tumour 

relapse, exhibiting tumour-initiating features (Creighton et al., 2009). Moreover, they 

were shown to switch to a mesenchymal phenotype, expressing markers such as 

vimentin and metalloproteinase-2, increasing motility and invasive potential (Thiery 

and Sleeman, 2006), phenotype which is also thought to be more chemotherapy 
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resistant (Kajiyama et al., 2007). Other studies looked at biomarkers of tumour 

sensitivity or resistance to docetaxel in breast cancer patients, highlighting clear 

differences between the two categories, especially in the expression of genes 

controlling key processes such as cell cycle, DNA repair mechanisms and microtubule 

depolymerisation (Korde et al., 2010, Chang et al., 2003). Altogether, these lines of 

evidence support the malignant potential of the residual cancer, reinforcing the need 

for further investigation on the underlying mechanisms responsible. To our knowledge, 

there are no studies conducted in the MMTV-PyMT model looking at the metabolic 

phenotype of residual tumours, therefore this chapter will illustrate all our metabolic 

investigations on the residual mouse mammary tumours after docetaxel treatment.    
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5.2 TUMOUR VOLUMES 

Solid cancer treatment efficacy can be evaluated based on the reduction of tumour 

mass (Eisenhauer et al., 2009). Therefore, MMTV-PyMT tumour-bearing female mice 

were treated starting at 9 weeks of age with docetaxel (35 mg/kg) and tumour volumes 

were measured one week after the last dose of chemotherapy comparing them to 

control saline-injected mice (placebo). Tax-treated mammary tumours showed a highly 

significant reduction in volume, compared to control (Figure 5.1, p=0.0009). However, 

the reduction was not 100% but rather an incomplete response of mammary tumours 

to docetaxel in this experimental model leading to the survival of a small group of 

cancer cells, here termed residual tumour. This phenotype is highly similar to that 

observed in breast cancer patients. Moreover, the assessment of tumour dimensions 

resulted in a clear separation into two groups for the untreated mice (Figure 5.1) which 

could represent the existence of subclasses of these mouse mammary tumours.  

 

Figure 5.1. Tumour shrinkage after docetaxel treatment. 

MMTV-PyMT tumour-bearing female mice dosed with 35 mg/kg docetaxel (Tax) compared to 

untreated (placebo). Mammary tumours were measured using digital callipers a week after the 

last dose of treatment and showed a highly significant reduction in tumour volume (mm3) post 

Tax, compared to untreated tumours (p<0.001). The scatter dot-plot shows mean ± SD 

obtained from 18 replicates for placebo and 12 replicates for Tax.  
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5.3 GENE EXPRESSION ANALYSIS 

Gene expression patterns vary within a tumour depending on the microenvironment 

and acquisition of additional genetic mutations (Martinez et al., 2015, Cooper et al., 

2012, Gandellini et al., 2015). Chemotherapy and radiotherapy treatments are known 

to elicit changes in gene expression – either as part of the cell death or a survival 

response (Chang et al., 2003, Scherf et al., 2000). As the surviving cells after 

chemotherapy are likely to have survived due to upregulation of a specific set of 

survival pathways, analysis of the gene expression of these residual cells could provide 

some evidence of how they evade docetaxel-mediated cell death. 

In order to delineate the gene expression profile in the MMTV-PyMT mouse model, 

RNA was extracted from residual (TAX) and untreated (placebo) mammary tumours 

and RNA sequencing performed as described in section 2.5.1. The differential analysis 

between the two conditions evidenced only six genes differentially expressed with 

statistical significance (p<0.05) as listed in Table 5.1 and shown in Figure 5.2. Among 

those, five showed higher expression in the residual tumours, and only one, the RIKEN 

cDNA 2310057J18 gene, showed a decreased expression after treatment (Figure 5.2). 

Two of these genes have an unknown biological function, the RIKEN cDNA 

2310057J18 gene and Fer-1-like 4, while three of them present involvement with 

skeletal muscle tissue (Ankyrin repeat domain 23, Cardiomyopathy associated 5, Xin 

actin-binding repeat containing 1) (Miller et al., 2003, Sarparanta, 2008, Hawke et al., 

2007). Only one of them, the Mucin 4 (Muc4) gene, expresses a protein localised in 

epithelial cells (Rakha et al., 2005). The expression level of some of these genes, the 

Ankyrin repeat domain 23 and the Xin actin-binding repeat containing 1 in particular, 

is very low in the placebo-treated tumours (Figure 5.2). Overall, this is a very interesting 
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result, as it suggests that after treatment, the residual cells maintain an expression 

profile highly similar to that of the untreated tumours, and therefore treatment itself 

does not induce significant permanent alterations in gene expression. However, 

changes in metabolism can occur in the absence of gene expression changes, as 

pathway use can alter without the need for changes in enzyme expression. We 

therefore wished to investigate whether any changes in metabolism were elicited by 

docetaxel treatment in the cells that survived, despite the lack of transcriptional 

changes. 

 

 

 

Gene name Log2FoldChange PValue* 

Ankyrin repeat domain 23 -1.61868 0.02598 

RIKEN cDNA 2310057J18 gene 1.09026 0.01070 

Cardiomyopathy associated 5 -1.75184 0.00952 

Fer-1-like 4 -1.44800 0.00952 

Mucin 4 -1.56930 0.00952 

Xin actin-binding repeat containing 1 -2.66203 0.00952 

 

Table 5.1. Residual tumour gene expression analysis. 

List of genes differentially expressed between residual and placebo tumours with statistically 

significant P values, ordered from the smallest statistical power to the highest. *=Benjamini & 

Hochberg adjusted p-value. 
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Figure 5.2. Residual mammary tumour differential gene expression. 

Box-and-Whiskers showing the expression level of significantly (p<0.05) up or down-regulated 

genes in residual tumours (TAX) compared to placebo tumours obtained after RNA 

sequencing. The line in the middle of the box represents the median, calculated from four 

replicates each condition.     
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5.4 RESIDUAL TUMOUR METABOLIC ANALYSIS 

Any alteration of the cellular physiology is likely to be mirrored by changes in the 

composition and amount of cellular metabolites. In order to characterise the metabolic 

phenotype of the MMTV-PyMT-derived residual mammary tumours compared to the 

control group (placebo), tumours were harvested one week after the last dose of 

treatment and polar metabolites extracted (see 2.5.2). 1D-1H NMR spectra were then 

acquired and used for metabolite identification and quantification as described in 2.6.3. 

This analysis led to the assignments of 14 metabolites in each spectrum, most of which 

were essential and non-essential amino acids (Figure 5.3A-B), glycolysis-derived 

metabolites (Figure 5.3C) and choline-derived metabolites (Figure 5.3D). Most of them 

could also be identified in the previous analysis of in vitro grown cells. However, 

comparing each metabolite’s concentration in the residual tumours (TAX) with that in 

the untreated tumours (placebo), no significant differences emerged between the two 

conditions (Figure 5.3), contrary to our in vitro observations. Although these results 

could be understood as an unchanged tumour metabolism after treatment, a fine in 

vivo control of metabolites concentration that would quickly compensate for alterations 

should be taken into account. Moreover, the maintenance of the total metabolite pool 

could still be possible even in presence of alteration in the usage or production of 

metabolites. In order to test this hypothesis, and unravel the metabolic pathways 

involved, we performed stable isotope labelled tracer studies.    
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Figure 5.3. Mammary tumour-derived metabolite quantification. 

Histograms representing the quantification of metabolites (in mM) within residual (TAX) and 

untreated (placebo) mammary tumours metabolic extracts, obtained analysing the 1D-proton 

NMR spectra. Concentrations are normalised per mg of tissue extracted. Results are shown 

as mean ± SEM derived from four replicates for placebo and three replicates for TAX. No 

significant differences are identified in (A) essential, (B) non-essential amino acids, (C) 

glycolysis-derived and (D) choline-derived metabolites comparing residual and placebo 

tumours. Abbreviations: GPC, glycerophosphocholine; PCho, phosphorylcholine.  
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5.5 RESIDUAL TUMOUR 13C-MFA BY NMR 

5.5.1 Determining labelling time point 

30 minutes was previously defined as the best time point to sample the mouse 

mammary tumour after [1,2-13C]glucose i.p. injection (Figure 4.2). However, following 

docetaxel treatment tumour volume is drastically reduced (Figure 5.1) affecting the 

amount of glucose consumed in that time-frame by the residual tumour compared to 

the untreated one. Assuming a lower consumption given by the smaller number of 

cancer cells in the residual tumours, a longer time point was tested for those mice. In 

fact, at 45 minutes post injection, residual tumours (TAX) showed an intra-tumour [1,2-

13C]glucose availability similar to the placebo tumours at the 30 minutes time-point 

(Figure 5.4). These two time-points were therefore used for all the subsequent 

analyses in order to permit a fair comparison of metabolism between the two tumours. 

 

Figure 5.4. [1,2-13C]glucose enrichment in the mouse mammary tumour.  

Histograms show the percentage of the [1,2-13C]glucose isotopomer in the residual (TAX) or 

control (placebo) tumour 45 or 30 minutes after labelled glucose injection, respectively. The 

percentages were calculated via multiplet analysis in the 1H-13C-HSQC spectra and are shown 

as mean ± SEM of 4 replicates for placebo and three replicates for TAX. A longer time-point 

(45 minutes) is necessary for the residual tumour to reach a labelled glucose enrichment 

similar to the placebo tumour at 30 minutes post-injection. 
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5.5.2 Comparing 13C-MFA between residual and control tumours 

Tracer based metabolic analysis using 13C-labelled metabolic precursors (13C-MFA) is 

a powerful tool to analyse metabolic mechanisms of phenotypic change, and adds 

complementary information over the analysis of metabolite concentrations. The 

additional information from fluxes allows for the assignment of the use of individual 

pathways. 

Before harvesting the mammary tumours at the appropriate time point (described 

above in Figure 5.4), treated and untreated mice were injected i.p. with [1,2-

13C]glucose. Metabolites were extracted from residual and placebo-treated (control) 

mammary tumours for subsequent NMR spectroscopy analysis using HSQC spectra 

(see 2.6.2, 2.6.3), acquired with NUS to have sufficient resolution in the incremented 

dimension to see 13C-13C splittings in order to uniquely determine the isotopomer. The 

analysis of the percentage of the multiplet component for each labelled carbon in the 

identified metabolites allowed the simulation of the isotopomers present in the mixture 

(see 2.6.3). In this way, it was possible to trace the transition of the labelled carbons 

into different metabolites and to map the pathways by which the labelled glucose 

substrate was metabolised in the mouse mammary tumour tissue. Moreover, the 

relative abundance of each isotopomer was compared to uncover differences between 

Tax-treated residual and placebo-treated tumours. 13C incorporation was observed into 

metabolites characteristic of glucose use through glycolysis, such as lactate and 

alanine (Figure 5.5A). Although there are no significant differences in the percentage 

of [2,3-13C]lactate and [2,3-13C]alanine isotopomers observed in residual (TAX) and 

untreated (placebo) tumours, the contribution of the oxidative branch of the PPP to the 

production of these two metabolites (recognised from the 13C incorporation into C3-
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only; see Figure 1.4D), appeared decreased in the residual tumours (Figure 5.5A). 

However, only the percentage of [3-13C]alanine isotopomer was significantly reduced 

in the residual tumours (p=0.0367). 13C-labelled pyruvate (itself not detected in HSQC 

spectra) was observed to have entered the TCA cycle, as evidenced by the label 

incorporation into intermediates such as succinate and malate (Figure 5.5B), 

demonstrating active oxidative mitochondrial metabolism in both conditions. Being a 

symmetric molecule, succinate isotopomers are identical, therefore we conventionally 

identified them as [1,2-13C] or [3,4-13C] isotopomers, consequently resulting in the 

production of [1,2-13C] or [3,4-13C] malate (Figure 5.5B). These isotopomers were 

slightly less abundant in the residual tumours, although with low statistical significance. 

Some TCA cycle intermediates were also observed to be used as precursors for the 

production of other metabolites such as glutamate, glutamine and aspartate (Figure 

5.5B). The isotopomers predominantly present were [4,5-13C]glutamate, [4,5-

13C]glutamine, [1,2-13C] and [3,4-13C]aspartate (Figure 5.5B) produced in the first 

round of a cycle in which glycolysis-derived [2,3-13C]pyruvate is oxidised to acetyl CoA 

by the PDH enzyme before entering the TCA cycle. A second round of the cycle from 

labelled oxaloacetate resulted in the production of [1,2-13C]glutamate and [3-

13C]glutamate (Figure 5.5B); these molecules were then converted to [1,2-

13C]glutamine and [3-13C]glutamine respectively (Figure 5.5B). The [1,2-13C]glutamine 

isotopomer is a larger proportion of the total glutamine pool in the untreated tumours 

compared to the treated tumours, although the difference did not reach significance. 

PDH-mediated conversion of pyruvate to acetyl CoA is not the only entry point of 

pyruvate into the TCA cycle. In fact, [2,3-13C]glutamate, [2,3-13C]glutamine and [2,3-

13C]aspartate isotopomers were produced following the carboxylation of [2,3-
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13C]pyruvate by the PC enzyme to form oxaloacetate (see Figure 3.7). However, its 

contribution appeared similar between residual and untreated tumours.   
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Figure 5.5. Isotopomers derived from [1,2-13C]glucose metabolism by the mouse 

mammary tumour.   

Histograms representing the relative abundance of each isotopomer derived from the 

catabolism of the [1,2-13C]glucose substrate by the residual (TAX) and control (placebo) 

mammary tumours. Comparing the percentage of (A) glycolysis-derived metabolite and (B) 

TCA cycle-derived metabolite isotopomers, only [3-13C]alanine was significantly less produced 

in the residual tumours. Data are shown as mean ± SEM of 4 replicates for placebo and three 

replicates for TAX.  
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5.6 MIDA by GC-MS 

Mass spectrometry represents another analytical technique used to quantify the 

abundance of the different isotopomers in a metabolite pool after labelled substrate 

consumption. Moreover, this technique offers higher sensitivity than NMR 

spectroscopy, allowing the detection of very low abundance metabolites that could 

have been missed by the NMR spectroscopy-based metabolic analysis. Residual and 

control tumour-derived metabolites were analysed applying a GC-MS method (see 

2.5.4) optimised in particular for the detection of TCA cycle intermediates, on top of the 

more common glycolysis-derived metabolites. Subsequently, a mass isotopomer 

distribution analysis (MIDA) was performed for each metabolite assigned. The different 

mass isotopomers are identified by the m+n nomenclature, where n is the number of 

13C-labelled atoms present in the molecule. However, it is not possible to deduct the 

exact position of the labelled atom using the MS data only. The metabolism of the [1,2-

13C]glucose through glycolysis led to incorporation of two 13C atoms into pyruvate 

which was then rapidly converted to lactate and alanine, as evidenced by the very 

small fraction of m+2 pyruvate in contrast with a fairly high amount of m+2 alanine and 

lactate (Figure 5.6A). No differences were evidenced in this pathway for placebo and 

residual tumours, confirming the NMR analysis. The contribution of the oxidative PPP 

branch however, resulting in the production of m+1 pyruvate, was significantly higher 

in the residual tumours (p=0.0322, Figure 5.6A), but did not correspond to increased 

m+1 lactate and alanine, suggesting its consumption through the TCA cycle. In fact, 

Krebs cycle activity in these samples was confirmed by the identification of labelled 

citrate and malate (Figure 5.6B), in particular the single labelled malate species was 

slightly more abundant in the residual tumours. This was true also for the TCA cycle-
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derived m+1 aspartate and glutamate (Figure 5.6B), however none of these differences 

was of statistical significance. The m+2 isotopomer of pyruvate is the main nutrient 

source of the TCA cycle as confirmed by the production of m+2 citrate, malate, 

aspartate and glutamate (Figure 5.6B). Unfortunately, this analysis was conducted on 

four replicates for placebo and only two replicates for Tax-treated mice, therefore we 

did not have a sufficient number of replicates to reach a good statistical power. 

 

 

 

Figure 5.6. MIDA of [1,2-13C]glucose-derived mammary tumour metabolites.  

Mammary tumour metabolites derived from [1,2-13C]glucose- injected treated (TAX) and 

control (placebo) mice were analysed by GC-MS (data acquired in collaboration with Marta 

Cascante at the University of Barcelona). Histograms showing the distribution and relative 

abundance of the different mass isotopomers (MID) relative to the total pool of A) glycolysis-

derived and B) TCA cycle-derived metabolites. Data are shown as mean ± SEM of four 

replicates for placebo and two replicates for TAX.    
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5.7 DISCUSSION 

The MMTV-PyMT mice have been used in this thesis to model the in vivo development 

of residual mammary tumours following the incomplete response of the tumours to the 

anti-microtubule agent docetaxel. The schedule used for these in vivo experiments 

consisted in two cycles of docetaxel treatment of tumour-bearing female mice starting 

at 9 weeks of age: at this age, mammary tumours, corresponding to early carcinoma 

stage (Lin et al., 2003), are palpable. The analysis of the residual mammary tumours 

instead, started one week after the last treatment. This approach allowed tumour cells 

to recover from the drug having enough time to metabolise and systemically eliminate 

the chemotherapy. Hence, as for the in vitro study, it was possible to investigate the 

residual mammary tumour phenotype excluding the short-term docetaxel-induced 

alterations. All results were compared to the untreated tumours derived from placebo-

injected mice. 

Firstly, tumour volumes were measured, which were significantly different between 

control and residual tumours, with docetaxel treatment causing large reductions in 

tumour size. It is important to note that the measurements were taken at the 

experimental endpoint, when the untreated tumour had developed a significant mass. 

Therefore, this result is interpreted as a reduced tumour volume due to treatment. In 

order to gain a better understanding of the metabolic changes occuring in the tumours 

in response to treatment, samples could be taken daily from the beginning of the 

treatment until the end of the experiment. At 9 weeks of age, the tumours are small 

and do not appear to increase in size during docetaxel treatment. This could mean the 

presence of a mixture of tumour cells, where a small fraction is dying, another fraction 

might be growing and other cells might be in growth arrest keeping the volume of the 
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mammary tumour quite constant. The presence of cells in growth arrest is in 

accordance to docetaxel anti-mitotic mode of action (Bayet-Robert et al., 2010) and 

also confirms what was observed in the in vitro results. Similarly, it would be appealing 

to determine when and if these cells were able to resume proliferation leading to cancer 

relapse. Moreover, two clear clusters of mammary tumours were observed in the 

placebo-treated mice, which may indicate the presence of different phenotypes, 

supporting the intra-tumoural heterogeneity typical of breast cancer (Skibinski and 

Kuperwasser, 2015, Martelotto et al., 2014). It would be interesting to investigate 

whether these two groups resulted in different sensitivity and response to the drug.  

Cancer treatment could induce transcriptional changes, as well as intrinsic pre-existing 

genetic alterations (due to the presence of the transgene) could determine sensitivity 

or resistance to chemotherapy, and both situations could be at the heart of the 

metabolic reprogramming observed in these tumours. We therefore wished to perform 

gene expression analysis through sequencing of the residual and control tumour-

derived mRNA. This analysis yielded only six genes significantly differentially 

expressed between residual and control tumours, possibly suggesting the need for a 

bigger number of samples of each condition given the high variability among different 

animals. Interestingly, these six genes were not previously linked to docetaxel residual 

mammary tumours. The only gene showing decreased expression in residual tumours 

was the RIKEN cDNA 2310057J18 gene whose biological function is still unknown. 

Among the genes predominantly expressed in the residual tumours, one has unknown 

biological function (Fer-1-like 4 gene), while the other four genes have been 

extensively described, although not in the context of cancer. The Ankyrin repeat 

domain 23 is part of the MARPs family (muscle ankyrin repeat proteins) mediating 
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interaction with titins in striated muscles (Miller et al., 2003). It is also known as DARP 

(diabetes-related ankyrin repeat protein), showing involvement with energy 

metabolism being more expressed in muscle (cardiac and skeletal) of insulin-resistant 

mice (Ikeda et al., 2003). The G2SBC database lists this gene as expressed in the 

mammary gland and in breast tumour, although there is no histological evidence of 

this. The Cardiomyopathy associated 5 gene expresses a protein also known as 

myospryn, localised in skeletal and cardiac muscles only (Sarparanta, 2008). It has 

been shown to be involved in the biogenesis of lysosome-related organelle complex, 

in protein kinase A signalling and titin-binding (Sarparanta, 2008) as well as the 

previous gene, playing an important role in muscle integrity maintenance. More 

recently, it has been shown to interact with and negatively regulate calcineurin activity, 

repressing muscle regeneration after injury (Kielbasa et al., 2011). The Xin actin-

binding repeat containing 1 adapter protein is localised at cell-cell junctions of striated 

muscles and is involved in muscle regeneration and actin cytoskeleton remodelling 

(Hawke et al., 2007). Interestingly, all of the three above-described genes’ present 

involvement with skeletal muscles and response to injuries. Given that they are 

significantly more expressed in the residual tumours, this might unveil an injury-like 

response to docetaxel treatment.  

The fifth gene with higher expression in the residual cells is Muc4, which is the only 

one previously shown to be expressed in breast cancer (Workman et al., 2009, Rakha 

et al., 2005) and in particular overexpressed in metastatic breast cancer (Workman et 

al., 2009). It belongs to the mucin family (Rakha et al., 2005) among which the Mucin 

1 gene expresses the well-known recurrent breast cancer serum biomarker CA 15-3 

(Lee et al., 2013). It is already well known how much ErbBs activation contribute to 
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tumour development, in particular ErbB2 activation induces loss of cell-cell adhesion 

during early steps of tumour formation (Carraway et al., 2005). Muc4 has been 

identified as the ErbB2 intra-membrane ligand (Carraway et al., 2002) able to 

potentiate ErbB2-ErbB3 activation, therefore favouring tumour progression (Kozloski 

et al., 2010). However, our gene expression analysis did not evidence ErbB2 

differential expression, therefore the Muc4 ErbB2-independent activity is more likely, 

as well as its anti-adhesion properties (Komatsu et al., 1997). This is further supported 

by its anti-apoptotic activity which inhibits the apoptosis response to cell detachment 

(Komatsu et al., 2001). Moreover, Muc4 overexpression has been shown to be 

responsible of immune-mediated tumour cell killing inhibition (Komatsu et al., 1999). 

Muc4 has been previously shown to be involved in chemoresistance in pancreatic 

cancer (Bafna et al., 2009), in melanoma cells (for paclitaxel, doxorubicin and 

vinblastine) (Hu et al., 2003) and in resistance to ER and HER2- targeted therapies in 

breast cancer (Chen et al., 2012). However, it is not known to be involved in resistance 

to docetaxel. Exploiting all the properties listed above, Muc4 mediates tumour 

progression, cell migration, invasiveness and resistance, therefore its higher 

expression in the residual tumours compared to the placebo-treated tumours could 

point to a more aggressive and malignant phenotype of these cells that survived 

docetaxel treatment.  

Despite the interesting speculations about the six differentially expressed genes, it is 

worth noting that they are very few compared to what would be expected from such 

analysis. In fact, similar studies performing gene expression analysis were able to 

identify a higher number of pathways upregulated in residual tumours, among which 

the Jak/Stat pathway and a number of histone methyltransferases (Franci et al., 2013), 
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as well as enrichment in claudin-low and tumour-initiating features (Creighton et al., 

2009). Interestingly, many of the features present in the residual tumour were not 

maintained in the relapsed one, which in turn showed a phenotype more similar to the 

primary tumour (Franci et al., 2013). This observation might support the hypothesis 

that the time point we used for the analysis of the residual mammary tumour was too 

late (one week after the last dose of treatment), leaving sufficient time to the tumour to 

potentially go back to a phenotype more similar to the primary tumour. This would 

explain the very few differences emerged between placebo and residual mammary 

tumours.   

Although few studies investigated docetaxel influence on gene expression in breast 

cancer (Chang et al., 2005, Creighton et al., 2009, Korde et al., 2010), no previous 

work has characterised the metabolic phenotype of the residual breast cancers after 

docetaxel treatment. To address this question, a targeted metabolic analysis was 

performed to compare metabolite concentrations between residual and untreated 

mammary tumours. The metabolites identified in these samples can be classified in 

three main groups, such as essential and non-essential amino acids, glycolysis-

derived and choline-metabolism related metabolites. Interestingly, unlike the cells, the 

mouse-derived metabolite quantification did not evidence any difference between Tax-

treated and placebo mice. This could be explained by a higher in vivo turn-over of 

metabolites to keep their total pool at a steady-state level. For this reason, a more 

detailed analysis of metabolic mechanisms, using stable-isotope labelled tracers was 

employed to unveil differences on the dynamic of metabolite production or 

consumption. Moreover, the choline-derived metabolite’s results are surprising: in fact, 

PCho has been previously shown to decrease after docetaxel treatment in vivo (Morse 
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et al., 2007), therefore used as a marker of treatment response. The maintenance of 

the cancer typical PCho signature in the residual tumours can therefore be a further 

confirmation of the incomplete response to docetaxel in these cancer cells.  However, 

the apparent disparity in results could also be a product of the system and time point 

used for analysis. The study by Morse et al., used sub-cutaneous xenografts of human 

breast cancer cell lines into immunocompromised mice – these tumours neither have 

the appropriate stroma, vasculature nor a chemotherapy-elicited immune response. In 

addition, the study was performed on tumour 2 and 4 days post-treatment, when the 

tumours are likely still responding directly to the toxic insult. Our data suggest that after 

this initial phase, the tumours return to a more ‘normal’ metabolism, rather than 

maintaining a chemotherapy-induced phenotype. 

Through injecting Tax- and placebo- treated mice with the [1,2-13C]glucose tracer, it 

has been possible to map metabolic pathways involved in the in vivo glucose substrate 

consumption by the mammary tumour tissue and to perform relative quantification of 

isotopomer abundance through MIDA and 13C-MFA using GC-MS and NMR 

spectroscopy respectively. These results are summarised in Figure 5.7. Analysis of the 

transition of the [1,2-13C]glucose–derived 13C atoms into downstream metabolites 

allowed the tracing of glycolysis, PPP and the TCA cycle. Moreover, the isotopomer 

patterns obtained through NMR analysis suggested the presence of three distinct pools 

of metabolites, that derived from the PDH activity (i.e. [4,5-13C]glutamate, [3,4-

13C]aspartate), PC activity (i.e. [2,3-13C]glutamate, [2,3-13C]aspartate), and that of the 

carbons that flowed through the oxPPP (i.e. [3-13C]alanine, [3-13C]lactate). The lower 

relative enrichment into the residual tumour derived- alanine and lactate might indicate 

either a reduced activity of the glycolytic pathway, or a different fate for the glycolysis-
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derived pyruvate. However, the only isotopomer showing significantly reduced relative 

abundance was [3-13C]alanine, suggesting a reduced activity of the AAT enzyme in the 

residual mammary tumours using this analytical method. However, the fact that steady-

state alanine concentrations did not change (Figure 5.3C), suggests that if activity of 

AAT is reduced, an alternative source of alanine must be available – either exogenous 

or from endogenous protein degradation (i.e. autophagy). 

GC-MS is a more sensitive technique than NMR spectroscopy and this allows the 

identification of low abundance metabolites such as pyruvate and some TCA cycle 

intermediates. Using this technique, one can only get information regarding the number 

of labelled atoms in a molecule, but not about the position. Therefore, a priori 

knowledge about metabolic pathways is necessary to be able to hypothesise the 

correct isotopomer. In contrast, the precise position of 13C incorporation can be worked 

out using NMR spectroscopy, making these two techniques complementary to obtain 

the most complete information on 13C atom incorporation into metabolites. In fact, using 

NMR spectroscopy we were able to assume the production of glycolysis-derived [2,3-

13C]pyruvate from the labelling pattern of the metabolites downstream of it. Use of GC-

MS instead allowed its detection, confirming the presence of the m+2 isotopomer. 

Moreover, the single labelled pyruvate (m+1) was also detected, being significantly 

more abundant in the residual tumours, underlying a higher contribution of the 

oxidative PPP branch (Figure 1.4D). An upregulation of this pathway may be linked to 

a higher need for antioxidant molecules in these Tax-treated residual tumours, given 

that NADPH is a central factor for glutathione production (Cantor and Sabatini, 2012, 

Dang, 2012). Moreover, increased glutathione synthesis was already observed for the 

in vitro model used in this thesis (Figure 3.17). Interestingly, the excess of m+1 
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pyruvate did not lead to neither single labelled lactate nor alanine accumulation in 

residual tumours, being the latter significantly less produced as seen from the lower 

abundance of the [3-13C]alanine isotopomer (Figure 5.5A). m+1 pyruvate could instead 

be consumed in the TCA cycle, as confirmed by the presence of single labelled malate, 

aspartate and glutamate, which tended to be more abundant in the residual tumours, 

in accordance with the m+1 pyruvate results. However, it should be noted that only two 

replicates were analysed for the Tax-treated mice, therefore they are not enough to 

run a statistical test. 

Residual tumour cells in patients have been demonstrated to be dormant for a long 

time, even years, before leading to cancer recurrence and in most cases patient 

mortality. It would be therefore interesting to investigate the recurrence capacity of the 

residual mammary tumours in the mouse model used for this thesis. The use of pre-

clinical models of residual tumours is fundamental to investigate all the biological 

aspects responsible for their survival to therapy and to ideally find a target to underpin 

their survival in order to prevent their progression to untreatable tumour relapse.  
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Figure 5.7. In vivo metabolic phenotype of residual mammary tumours. 

Residual and untreated mouse mammary tumours did not show significant differences in terms 

of intracellular metabolite concentration. [1,2-13C]glucose was injected to trace pathway usage 

in the mammary tumour via GC-MS and NMR spectroscopy. The complementary use of these 

two techniques led to the identification of distinct pools of metabolite, such as the one produced 

by simple glycolysis (dark-purple), by flowing through the oxidative branch of the pentose 

phosphate pathway (oxPPP, orange), as well as the one derived from pyruvate dehydrogenase 

(PDH, yellow) or from pyruvate carboxylase (PC, blue) activity. Moreover, the relative 

quantification of isotopomer abundances suggested increased contribution of the oxPPP 

(resulting in higher abundance of m+1 pyruvate) and decreased alanine aminotransferase 

(AAT) activity (resulting in lower percentage of [3-13C]alanine) in the residual mammary 

tumours. For simplification purposes, metabolites produced in the second round of the TCA 

cycle are not represented. Metabolites are in boxes, while enzymes are without. The 

metabolite’s structure is shown when identified using NMR spectroscopy, while cue ball 

structure indicates GC-MS-derived analysis. Green cue ball indicates the 13C atom. Green 

arrow highlights increased and red arrow decreased production rate in the residual tumours. 
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 Residual mammary tumour metabolic phenotype after docetaxel treatment in vivo 

Dotted lines stand for transport across membranes and continuous lines for pathways. 

Abbreviations: Asp, aspartate; Gln, glutamine; Glu, glutamate; Gly, glycine; GPC, 

glycerophosphocholine; LDH, lactate dehydrogenase; Leu, leucine; PCho, phosphorylcholine; 

Phe, phenylalanine; Thr, threonine; Try, tryptophan; Tyr, tyrosine; Val, valine.   
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GENERAL DISCUSSION   
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6.1 DISCUSSION 

Major efforts in breast cancer research have been focused on early diagnosis and 

prevention. However, survival of patients with breast cancer is hampered by the 

presence of primary or secondary resistance to treatments in the primary or relapsed 

tumour, and metastatic tumours are still incurable (Gucalp et al., 2014). We therefore 

sought to contribute to the field investigating on how to possibly improve the treatment 

of late stage breast cancer.  

In general, cancer research is moving more and more towards a personalised medicine 

that is designed to ensure higher treatment efficacy and reduced side-effects thanks 

to the use of specific biomarkers (Kalia, 2015). Recent studies have suggested that 

breast cancer may be one of the most heterogeneous tumour types (Skibinski and 

Kuperwasser, 2015), composed of many different subtypes identified using 

immunohistochemical markers, gene expression profiles (Perou et al., 2000, Sorlie et 

al., 2001), and more recently genomic (Curtis et al., 2012), genome-wide-association 

(Fachal and Dunning, 2015) and metabolomic studies (Claudino et al., 2007, Denkert 

et al., 2012). These subtypes are known to result in very different clinical outcomes 

and responses to therapies, requiring a new strategy in order to identify targeted drugs 

and provide the personalised medicine that has been promised.  

The presence of biomarkers such as ER, PR, and HER2 have guided the choice of 

specific promising breast cancer treatments using immune (Wong and Hurvitz, 2014) 

and hormonal therapy (Abdulkareem and Zurmi, 2012). However, although specific, 

these drugs are often effective only in 50% of the patients, highlighting the need of 

further research on the subject. When tumours are resistant to these specific 

treatments, or are identified to be at a late stage of progression, systemic 
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chemotherapy is applied where possible. To date, the best efficacy has been observed 

using taxane-based therapies (docetaxel), often in combination with anthracyclines 

(Alken and Kelly, 2013). In order to improve outcomes, efforts have been made in 

predicting tumour response to systemic therapies, for example by identifying patterns 

of gene expression correlated with resistance to docetaxel in breast cancer patients 

(Chang et al., 2003, Iwao-Koizumi et al., 2005). However, the single biggest threat to 

breast cancer patient survival is the incomplete response to drugs, which leaves the 

patient with residual disease that is often resistant to therapies and therefore the main 

cause of death (Ignatiadis and Reinholz, 2011, Dieci et al., 2013). 

Much of the field of cancer research has in recent years become interested in 

metabolism, as it has been known to be transformed in cancer for almost 100 years. 

This transformation is thought to be due to a number of both endogenous factors (e.g. 

genetic lesions in metabolic enzymes), or exogenous stimuli including adaptation to a 

hostile microenvironment (e.g. via biomass accumulation and redox control) (Koppenol 

et al., 2011, Cantor and Sabatini, 2012, Dang, 2012). The metabolome (the sum of all 

the metabolites present in a cell) represents the biological compartment downstream 

of the genome, transcriptome and proteome, that receives and interprets their inputs 

to dynamically respond to internal and environmental perturbations with the necessary 

functional and phenotypic changes. It therefore can be said to represent the most 

comprehensive readout of a cellular phenotype (Fiehn, 2001).  

In particular, breast cancer is known to undergo metabolic reprogramming, and the 

main alterations have been recently reviewed (Mishra and Ambs, 2015). Metabolic 

profiling of breast cancers can therefore be used to identify metabolic biomarkers and 

to differentiate between tumour subtypes (Denkert et al., 2012). Interestingly, the 
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breast tumour subtypes that were defined by a metabolic signature did not necessarily 

correspond to the well-known molecular subtypes, suggesting that the metabolic 

phenotyping could provide an overarching means by which treatment response and 

patient outcome are predicted (Mishra and Ambs, 2015).  

Importantly, this also questions whether the understanding of all the genetic subtypes 

is really necessary: as an example, enhanced cell proliferation could be instigated 

through a number of genetic lesions, but all of them have the end product of increasing 

nucleotide synthesis. 

Bearing all this in mind, the overall aim of this thesis was to investigate whether after 

docetaxel treatment, the metabolic phenotype of residual breast cancer presented key 

metabolic alterations that could be specifically exploited to restore sensitivity and 

induce residual tumour killing.     

It is important to make clear that the targeting cancer metabolism is not a new 

approach, but has been pursued since Warburg’s discovery of altered cancer 

metabolism in the early 20th Century (Tennant et al., 2010). However, until now 

metabolic drugs did not show great efficacy in clinical trials mainly due to off-target side 

effects or very high toxicity (Jones and Schulze, 2012). For example, the anti-diabetic 

drug metformin is being tested in breast cancer after promising in vitro results, but 

results in vivo were not clear due to a lack of consistency between studies (Hatoum 

and McGowan, 2015). This may support the idea that a thorough analysis of 

metabolism and a deep understanding of all the connections in the metabolic network 

are fundamental in order to pinpoint the key pathways that could specifically be 

targeted. In order to precisely define the metabolic phenotype of a biological system, 

the more classical approach of metabolite identification and quantification needs to be 
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complemented with information about metabolic pathway usage that can be derived 

from metabolic fluxes.  

Briefly, this thesis used the MCF-7 breast cancer cell line and the MMTV-PyMT mouse 

model of breast cancer to establish an in vitro and in vivo model of residual breast 

cancer. Metabolite quantification via NMR spectroscopy, gene expression analysis (in 

vivo), and [1,2-13C]glucose based 13C-MFA via NMR spectroscopy and GC-MS (only 

in vivo) have allowed to characterise the in vitro and in vivo metabolic phenotype of 

residual breast tumour after docetaxel treatment. The definition of 13C-MFA has been 

used throughout the whole thesis, however we limited our analysis to the experimental 

side of it, mainly performing pathway tracing and relatively quantifying labelling 

enrichment into metabolites. The analysis of all the metabolic fluxes in a network would 

need the use of algorithms and computational approaches that could connect all the 

information about intracellular and extracellular metabolites concentration and flux 

kinetics of some detected reactions, in order to create a model that could predict all 

fluxes (Wiechert, 2001, Sauer, 2006).  

Interestingly, the residual cells in vitro were characterised by a docetaxel-induced 

growth arrest, during which cells were metabolically active resulting in increased 

glycolysis, accumulation of amino acids and increased antioxidant production.  

The growth arrest induced in vitro may resemble the initial quiescent state of human 

residual tumours during which their detection is particularly challenging (Ignatiadis and 

Reinholz, 2011). However, they can restart to grow and result in tumour relapse, which 

is usually characterised by altered morphology and sensitivity to drugs, probably due 

to the selection of a more malignant phenotype which survived the treatment of the 
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primary tumour (Ignatiadis and Reinholz, 2011, Creighton et al., 2009). Our in vitro 

model recapitulated this as after a period of ‘senescence’ the residual cells resumed 

proliferation and we were able to characterise the phenotype of the regrowth clones. 

Despite what was been suggested in the literature, these cells demonstrated a 

phenotype similar to that of the untreated breast cancer cells, except for some 

intracellular amino acid accumulation, and it would therefore be interesting to evaluate 

if these clones also retained sensitivity to docetaxel. We cannot however rule out 

alterations in metabolic pathways that could not be specifically studied by our analytical 

method (e.g. glutamine and lipid metabolism).  

The apparent discrepancy between what was expected from our interpretation of 

clinical observations and what we observed in our in vitro breast cancer model could 

be explained by the clear limitations of in vitro systems, where a two-dimensional layer 

of cancer cells cannot properly account for the complexity of the three-dimensional 

tumours in vivo. In fact, human tumours are highly interconnected with the 

microenvironment, the stromal component and the immune system (Fiaschi and 

Chiarugi, 2012).  

In order to address our scientific questions in a model that would more closely 

resemble the human disease, the MMTV-PyMT transgenic mouse model of breast 

cancer was used. 

The gene expression analysis of the residual mouse mammary tumours linked the 

upregulation of Muc4 with resistance to docetaxel treatment, pointing to a malignant 

phenotype of the residual tumours given its involvement in favouring cancer 

progression and metastasis (Komatsu et al., 2001, Workman et al., 2009). 

Interestingly, the amino acid and anti-oxidant accumulation detected in the in vitro 
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model was not evidenced in vivo, which may confirm the limitations of in vitro models. 

At the same time, the absence of clear separation between docetaxel-treated and 

untreated mammary tumour metabolism, as well as high similarities in gene 

expression, made us question whether the approach used was able to reveal existing 

differences. In fact, residual tumours left to grow for a further week after the last dose 

of treatment, are more likely to go back to the phenotype of the primary tumour, while 

residual tumours investigated straight after treatment may present an altered 

phenotype. However, it is also entirely possible that due to the interactions between 

the tumour cells and their environment in the in vivo model, we were not able to 

observe the amino acid and anti-oxidant accumulation as they could have been 

exchanged with this other compartment. Another explanation could refer to the intra-

tumoural heterogeneity observed in breast cancer (Sun and Yu, 2015, Martelotto et al., 

2014). If the same tumour mass is composed of cells with very different metabolism, 

the way the tumour is sampled becomes fundamental. Testing a small portion of the 

whole tumour might therefore have biased the analysis towards the phenotype of only 

that small group of cells. A better approach could consist in testing few samples from 

different areas of the same tumour. 

Given the non-hazardous nature of the 13C isotope (compared to the radioactive 14C 

isotope), the application of the 13C-MFA in vivo has been explored with promising 

results both in cancer patients (Maher et al., 2012, Fan et al., 2009) and in pre-clinical 

models (Fan et al., 2011, Binsl et al., 2010, Malloy et al., 1990). However, 

standardisation for these studies is still missing. Consequently, the first challenge to 

perform in vivo 13C-MFA was the optimisation of the [1,2-13C]glucose substrate 

administration to the mouse. One of the main aspects to be considered was that, 
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following a systemic distribution of glucose via the blood flow, it will be metabolised by 

other organs, e.g. the liver, which would then release labelled metabolites in the blood 

stream that could be subsequently used in the tissue of interest misrepresenting the 

pathway usage by the tumour. However, in our model, dynamic labelling information 

was collected (Wiechert and Noh, 2013) at a specific time-point after the i.p. injection 

of the [1,2-13C]glucose, rather than performing a long time infusion to reach an isotopic 

steady-state. The short time frame used in this approach therefore reduces the risk of 

contamination with labelled metabolites derived from organs other than the mammary 

tumour itself. The complementary use of NMR spectroscopy and GC-MS allowed the 

acquisition of more precise and detailed information on pathway usage to better 

uncover the alterations in the residual mammary tumours. In fact, an increased flux 

through the oxPPP was observed in the residual tumours, which may underlie a 

response to a post-therapy increase in ROS counteracted via NADPH-based 

glutathione production. Moreover, this phenotype would confirm the residual tumour 

response to oxidative stress already pointed out in the analysis of the in vitro residual 

breast cancer cells.   
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6.2 CONCLUSIONS AND FUTURE WORKS 

In conclusion, the objectives stated at the beginning of this thesis were fulfilled: 

-  In vitro and in vivo models of residual breast cancer after docetaxel treatment 

were successfully established,  

- Polar metabolites were quantified in vitro and in vivo using NMR spectroscopy  

- Pathways used in the metabolism of glucose were traced and relatively 

quantified applying 13C-MFA to a breast cancer cell line 

-  A method for the in vivo administration of 13C-labelled glucose to a mouse 

model was developed, 

- Residual mouse mammary tumour phenotype was characterised using gene 

expression analysis and 13C-MFA of pathways involved in 13C-labelled glucose 

metabolism, 

- In vitro residual breast cancer cells successfully resumed growth and formed 

clones of recurrent tumour. 

 

As future work, it would be interesting to target the hypermetabolic phenotype seen in 

the in vitro settings, to investigate whether this is a condition fundamental to mediate 

breast cancer cell survival to docetaxel. In particular, assuming that catabolic 

processes such as autophagy and micropinocytosis are responsible for the intracellular 

accumulation of essential amino acids, inhibitors of these mechanisms could be used, 

such as chloroquine, bafilomycin (Duffy et al., 2015) and 5-(N-ethyl-Nisopropyl) 

amiloride (EIPA, tested only in vitro) (Commisso et al., 2013). Moreover, it would be 

interesting to test the ability of in vivo residual mammary tumour to cause tumour 

recurrence, and eventually to test its sensitivity to docetaxel. Investigations of other 
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aspects of breast cancer metabolism should also be carried out, i.e. lipid metabolism, 

in order to identify targetable metabolic alterations.    

Tumour relapse and metastasis are common events that occur in many types of 

cancer, and their result is poor prognosis mainly due to insensitivity to previously 

effective chemotherapies. Metabolic reprogramming is also a hallmark found in all 

cancers studied thus far, therefore the characterisation of the metabolic phenotype to 

unravel specific metabolic targets in previously incurable residual cancers, is not only 

limited to the use of docetaxel and not limited to breast cancer, but could be applied to 

any type of tumour.     
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