
AUTOMATED MANAGED
CLOUD-PLATFORMS BASED ON
ENERGY POLICIES

by

MARWAH ALANSARI

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
May 2016

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

Delivering environmentally friendly services has become an important issue in Cloud Com-

puting due to awareness provided by governments and environmental conservation organ-

isations about the impact of electricity usage on carbon footprints. Cloud providers

and cloud consumers (organisations/enterprises) have their own defined green policies to

manage energy consumption at their data centres. At service management and execution

level, green policies can be mapped as energy management policies or management poli-

cies. These management policies are implemented using various strategic plans. Focusing

on the cloud consumers side, management policies are initialised by business managers

as a set of ‘if/then’ statements. Management policies can change regularly based on the

nature of the technical environment, changes in regulation, and business requirements.

The usage of low-level programming methods for executing management policies into a

cloud-platform automatically could be time-consuming and costly. Thus, we found that

there is a gap between the level of describing and implementing such policies in the cloud

platform. This thesis provides a method to bridge that gap by covering three main di-

mensions:

• To automatically execute management policies into a cloud-platform, we propose a

runtime policy-based architectural framework called MP-Framework. MP-Framework

is a generic architecture that would be useful for enforcing two different sets of low-

level and high-level energy management policies in the cloud platform.

• To simplify the expression of management policies at both the policy description

and the implementation levels, we propose a specification for formulating various

types of management policies that can be used by either rule languages or rule-

modelling languages. The proposed specification is based on the existing UML-Rule

Modelling Language (URML) meta-model which is utilised for designing a domain

specific language called CloudMPL.

• To identify the suitable energy cost saving policy from a set of suggested manage-

ment policies before a real implementation, we provide an off-line method based on

the modelling and the analysis of the executable management policies and cloud

platform using Coloured Petri-Nets (CPN). We suggest two methods for calculating

the cost of energy consumption and the cost of migrating virtual machines from the

produced energy management cloud architectural models.

To evaluate each method covered in this thesis, we used an Energy Management Case

Study for a private cloud scenario. The case study is implemented in a real cloud testbed

for demonstrating the applicability of the proposed MP-Framework and the suggested

specification. In addition, the case study is stimulated in a Coloured Petri Nets tool

called CPN Tool for evaluating the proposed modelling and analysis method.

Dedication

To my grandfather Dr. Nassir Abdulellah Alansari who inspired me through
his knowledge and education during his career in academe,

“ Since I was a child, I dreamt to be like you one day ”

To my loving parents, for their love, their motivation, their patience and
their support

To my brothers, for being always with me and for all positive power they
gave

To my family and my friends, for being supportive

To my supervisor Dr. Behzad Bordbar, for all the support he gave during
my research time

Acknowledgements

O Allah, I am very grateful for assisting me, directing me to the knowledge, and the

strength to continue. There have been long years in studies and research abroad away

from my family. They were years full of determination to achieve my goals. O Allah, I am

very grateful to you for lighting my path to reach these goals. My mother, my father and

my brothers were the second supportive power during my studies. Thank you for being

always with me, coping with me during my difficult moments and sharing my happiness in

my achievements. My supervisor Dr.Behzad Bordbar is one of my influences who believed

in my ideas and my determination. I am very grateful to my supervisor for his advice, his

passion in research, and his encouragement in learning. I am very thankful to Dr.Behzad

Bordbar for every discussions that we made to solve various research challenges and also

for dedicating his time to support us as PhD students. I am very thankful to my friends

specially (Wafa, Afnan, Abeer, Bayan, Nada, Randa and Fatema) for their support and

being with me during happiness and difficult times. Furthermore, I am very thankful to

my colleagues at the school of computer science as well as research collaborators. And

last but not least, again I am very thankful to Allah for assisting me to complete this

thesis with happiness, courage and confidence.

Contents

1 Introduction 1
1.1 Cloud Computing and Its Management 4
1.2 The Research Problem . 7
1.3 Research Contributions . 10
1.4 Publications . 12
1.5 Thesis Outline . 12

2 Research Background and Related Work 15
2.1 Cloud Management Systems . 16

2.1.1 An Overview of the OpenNebula Cloud Management Toolkit 16
2.2 Drools Rule Engine and Drools Rule Language 19
2.3 An Overview of Petri-nets and Timed Petri-nets 22

2.3.1 The Description of Petri-nets . 23
2.3.2 Timed Petri-nets . 24

2.4 Coloured Petri-nets (CPNs) . 24
2.4.1 The Formalism of Coloured Petri-nets (CPN) 25
2.4.2 Markings in CPNs . 27
2.4.3 An Illustrated Example . 28
2.4.4 CPN ML Programming and CPN Tool 29
2.4.5 The Formalism of Timed Coloured Petri-nets 29

2.5 Integer Programming and Branch and Bound Algorithm 32
2.6 Types of Virtual Machine Migration for Management 33
2.7 The Classification of Automated Management Architectures in Large-Scale

Platforms . 34
2.7.1 Two-level Automatic Architectures Based on the Concept of Control

Theory . 35
2.7.2 Automatic Architectures Based on Heuristic Optimization Approaches 42
2.7.3 Architectures Based on a Rule-based System 44

2.8 The Rules Modelling Languages and URML Specification 47
2.8.1 The Specification of URML . 48

2.9 The Existing Domain-Specific Languages (DSLs) Designed for the Cloud . 49
2.9.1 DSLs Used in Cloud Environment 50

2.10 An Analytical Cost-Computing Method from Petri-nets 51
2.10.1 The Cost Calculation Method from Petri-nets 51
2.10.2 The Optimised Cost Calculation Methods 52

2.11 The Existing Petri-nets Models in Cloud 54
2.12 Chapter Summary . 55

3 MP-Framework for Automatically Managed Cloud Platform 57
3.1 The Description of Management Policy Framework (MP-Framework) . . . 58

3.1.1 The Architectural Design of MP-Framework 59
3.2 The Phases and the States of MP-Framework 61
3.3 The Implementation of MP-Framework Using OpenNebula and Drools . . 62

3.3.1 The Extension of OpenNebula Monitoring APIs 65
3.4 The Application of MP-Framework in a Case Study 68

3.4.1 The Description of the Energy Management Case Study 68
3.4.2 The Suggested Management Policies 70
3.4.3 Executing the Management Policies in OpenNebula and Drools Testbed 71
3.4.4 Results and Discussion . 73
3.4.5 The Response Time for the Policy-Rule Engine 78

3.5 A Brief Discussion . 82
3.6 Chapter Summary . 83

4 The Specification of Management Policies 85
4.1 The Generic Expression of the Rule Scheme Used in MP-Framework 86

4.1.1 The General Expression of Monitoring Rules 87
4.1.2 The General Expression of Management Rules 87

4.2 The Definition and the Process of Designing Management Policies 89
4.2.1 The Classification of Management Policies 93

4.3 The Management Policies Meta-Model for Executable Rule Language . . . 95
4.3.1 Conditions Meta-Model for a Management Policy 97
4.3.2 Policy Action Description . 100

4.4 The Usage of the Specification of Management Policies 101
4.4.1 Using Management Policies Specification in CloudMPL 102
4.4.2 Designing Transformation Rules from CloudMPL to Drools 102

4.5 The Application to the Energy Management Case Study 107
4.5.1 The Interpretation of CloudMPL Policies to Drools 109

4.6 Chapter Summary . 109

5 Modelling Management Policies and Cloud Platforms via Coloured Petri-
nets 113
5.1 Advanced Energy Management Case Study 115
5.2 The Formalism of Cloud Platform and Management Policies in Coloured

Petri-nets (CPNs) . 117
5.2.1 Modelling a Cloud-Platform in Coloured Petri-nets 119

5.2.2 The Formal CPNCloud Definition and Colour Sets Declarations . . . 120
5.2.3 Modelling Dynamic Behaviours of MP-Framework 121
5.2.4 Modelling Management Policies in CPN 125

5.3 Chapter Summary . 127

6 The Simulation-based Cost Calculation Method (SCCM) for Analysing
Management Policies 129
6.1 The Method for Calculating the Cost . 131
6.2 Evaluation of CPN Cloud Model and Simulation-based Cost Calculating

Method (SCCM) . 134
6.2.1 Simulating the Case Study with CPNCloud 134
6.2.2 The Results and Discussion . 135

6.3 Chapter Summary . 139

7 The Optimised Cost Calculation Method (OCCM) for Management
Policies Including Time-Intervals in a Modelled Cloud Platform 141
7.1 The Description of the Problem . 142
7.2 The Optimised Cost Calculation Method (OCCM) 144

7.2.1 Computing the Overall Cost in the Trace 144
7.2.2 Computing the Assigned Budget 146
7.2.3 A Special Case: Handling Traces with Loops 146
7.2.4 An Example Demonstrating a Loop Case 149

7.3 The Evaluation of the Proposed Method 149
7.3.1 The Sequence of Execution Graphs of the Generated Models 153
7.3.2 Results and Discussion . 153

7.4 Toward Finding the Optimal Energy Strategy 157
7.4.1 Obtaining the Optimal Thresholds 157
7.4.2 Using the Optimal Analysis Method 160
7.4.3 The Advantages and Disadvantages of Modelling and Analysis Ap-

proach . 160
7.5 Chapter Summary . 162

8 Conclusion and Future Work 163
8.1 Research Limitations . 166
8.2 Future Research . 167

A The Detailed Energy Consumption Results 169

B A Sample of Implementation of CPNCloud models in CPN Tool 171
B.1 The Used Colour Sets . 171
B.2 The A Sample of CPNCloud Model . 172

Bibliography 175

List of Figures

1.1 A cloud architecture for Infrastructure-as-a-Service (IaaS) deployment model
and some management aspects considered by cloud providers and cloud
consumers . 4

1.2 The gap of executing management policies in a cloud platform 7

2.1 A sample of a deployment architecture of OpenNebula to build a Private
Cloud as shown in [120, p.26] . 17

2.2 The components of OpenNebula main core (ONED) as presented in [105,
p.7] . 19

2.3 The architecture of the OO-Rete engine in Drools, extracted from Chapter
1 in [70] . 20

2.4 A sample of a rule for increasing the balance amount for a bank customer
expressed in Drools Rule Language extracted from Chapter 2 in [70] 21

2.5 An example of a Petri-net model executing parallel activities extracted
from [100] . 24

2.6 Modelling System A with Coloured Petri-net 28
2.7 Samples of ML syntax used in CPN Tool 30
2.8 The rules meta-model of UML-Rule Modelling Language (URML) as pre-

sented in [113] . 49

3.1 The architectural design of MP-Framework for executing Management Poli-
cies . 59

3.2 The phases and the run-time execution states of MP-Framework 61
3.3 The implementation of MP-Framework using OpenNebula [105] and Drools

[70] . 63
3.4 The overall average amount of Energy Consumption recorded in Open-

Nebula and Drools Testbed during the execution of Management Policies
mentioned in Table 3.1 for nine hours with nine repetitions 75

3.5 The average cost of SLA-violation caused by triggering migration-action
during the execution of management policies mentioned in Table 3.1 in
OpenNebula and Drools testbed for nine hours with nine repetitions 77

3.6 The total amount of energy consumption, the total cost of SLA-violation,
and the number of occurrences of management actions for each manage-
ment policy executed in OpenNebula and Drools Testbed after nine hours . 79

3.7 The results of the response time for the policy rule engine including (Drools-
Engine and Drools Planners) for all running management policies for nine-
hours . 81

4.1 UML activity diagram and Drools language for structuring a sample of
monitoring rules used in the case study mentioned in Chapter 3 88

4.2 UML activity diagram and Drools language for structuring a sample of
management rules used in the case study mentioned in Chapter 3 89

4.3 The phases and roles of designing management policies and integrating
them in MP-Framework inspired by the model of designing Business Rules
published by IBM in [10] . 90

4.4 The abstract UML meta-model for describing management policies 97
4.5 The meta-model for conditions (low-level and high-level conditions) of a

management policy in rule language (Drools and JRules) 98
4.6 The possible common rule language operator families for expressing a man-

agement policy . 100
4.7 Using mapping rules for mapping CloudMPL condition block to Drools

condition part for a policy . 105
4.8 Using mapping rules for mapping a CloudMPL action block to a Drools

action part for a policy . 107
4.9 A sample of CloudMPL (XText) for management policies used in the case

study . 108
4.10 The generated Drools rules from CloudMPL policies 110

5.1 The case study description with possible implementation for Policy A or
Policy B . 115

5.2 The class diagram of a cloud platform with a management policy similar
to the one presented in Figure 5.1 . 118

5.3 Modelling monitoring behaviour in p ∈ PHost with two options to occur . . 123
5.4 Modelling migration behaviour in CPNCloud before and after firing tmigration

between two hosts with different states . 124
5.5 Modelling time-based policy as a guard function in tmigration transition . . 126

6.1 The average of Estimated Energy Consumption for both Policy A and
Policy B during 24 hours . 135

6.2 The average of Energy Costs for Policy A and Policy B during 24 hours . . 136
6.3 The average of Transmission Cost for Policy A and Policy B during 24 hours138
6.4 The total estimated energy consumption, energy cost, and transmission

cost for executed management policies during 24 hours 139

7.1 A sample of a reachability graph (left-side) and a sample of a trace ex-
tracted (right-side) . 142

7.2 An example of a trace with a loop . 147
7.3 Demonstrating the loop case using a trace of execution from CPNCloud of

Policy A . 150
7.4 The graphs of sequence of execution for Coloured Petri Net models for

Policy A and Policy B . 152
7.5 The optimal energy consumption cost for 18 traces from the sequence of

execution graphs . 154
7.6 The optimal overall cost for 18 traces from the sequence of execution graphs155
7.7 A comparison between the two methods of calculating the cost energy con-

sumption in traces . 156
7.8 Extracting the optimal thresholds for the optimal Management Policy . . . 158

A.1 The average amount of Energy Consumption at each Node in OpenNebula
and Drools Testbed during the execution of Management Policy A for nine
hours . 169

A.2 The average amount of Energy Consumption at each Node during the ex-
ecuting of Management Policy B in OpenNebula and Drools Testbed for
nine hours . 170

A.3 The average amount of Energy Consumption at each node during the ex-
ecuting of Management Policy C in OpenNebula and Drools Testbed for
nine hours . 170

A.4 The average amount of Energy Consumption at each node during the exeuc-
tion of Management Policy D in OpenNebula and Drools Testbed for nine
hours . 170

B.1 A sample of the declaration of the colour set of Cloud Platform and Policies
used in CPN Tool . 171

B.2 A sample of CPNCloud model used in CPN Tool for three hosting nodes . . 172
B.3 A sample of one of CPNCloud model used in CPN Tool used for the case

study explained in Chapter 6 . 173
B.4 A sample of one of the implemented time-based policy in CPN Tool 173
B.5 The ML functions for the load generator used in CPNCloud model 173
B.6 The ML function for the power model used in CPNCloud model 174

List of Tables

3.1 The Suggested Management Policies Executed in OpenNebula and Drools
Testbed and Demonstrating an Automatic Management in Energy Man-
agement Case Study . 70

3.2 Different Virtual Machine Images Used in OpenNebula and Drools Testbed 71

4.1 The Syntax for Conditional Expressions for a Management Policy 97
4.2 Examples of Operations Used by Cloud Manager Instance in a Management

Policy Described in Drools Used in Case Study in Chapters 3 and 5 101
4.3 Mapping Generic Syntax and Keywords for a Policy in CloudMPL to Drools103
4.4 Mapping CloudMPL Conditions to Drools Conditions Using CloudMPL

Specification [19] and Table 4.3 in Section4.3 104

5.1 Declarations of Colour Sets in Σcloud . 122

7.1 A Rules Set Template for Expressing Time-based Rules For Both Policy A
and Policy B . 151

CHAPTER 1

Introduction

Delivering environmentally friendly services has become an important issue in Cloud Com-

puting. Awareness of the significance of developing energy-aware services has increased

due to the encouragement of governments and environmental conservation organisations

focussed on the impact of electricity usage on carbon footprints. Over the past ten years,

there has been a movement towards measuring the amount of electricity consumed by

data centres and IT services [101, 129]. According to figures published in a report for US

Congress in 2006 on the energy efficiency of servers and data centres in the United States

[31], data centres consumed approximately 61 billion kilowatt-hours (kwh) at this time.

These figures have risen significantly since this report. Compared to figures published in

[31], recent statistical figures which were published in 2014 by the NRDC and Anthesis

[129], show that nearly 95% of existing data centre segments in the United States (includ-

ing small, medium, corporate and multi-tenant data centres) are on average not energy

efficient [129].

Here, we draw attention to the figures obtained by Hyper-Scale Cloud Computing data

1

centres [129]. Cloud computing data centres consumed nearly 3.3 billion kwh/y from a

total of 76.4 billion kwh/y of energy consumed by data centres in the United States [129].

As a percentage, cloud data centres consumed approximately 4% of the total amount of

electricity used in this country [129]. Based on the figures in [129], it is estimated that

the amount of energy consumption will decrease by 38% by 2020 if data centres become

energy-efficient on a global scale and apply techniques to reduce energy consumption

[129]. In European data centres, it is projected that if energy-efficiency strategies and

action plans are applied, the total electricity usage in data centres will be reduced by 20%

by 2020 [2]. The previously mentioned figures reveal that the high usage of electricity is

one of the sources of increasing levels CO2 and greenhouse gas emissions [2]. Therefore,

the need to solve the challenges involved in the design, development and deployment

of energy-aware management for cloud resources and services has received considerable

attention from the Cloud Computing community.

In Cloud Computing, cloud providers and cloud consumers fulfil two interacting roles.

Cloud providers tend to have massive data centres, which might be geographically dis-

tributed. Employing recommendations for designing energy-efficient data centres, as sug-

gested in [2, 129], cloud providers can generate and implement their own green policy at

various levels in data centres [101]. At the services execution level, green policies can be

mapped as energy management policies implemented using various dynamic algorithms.

One example of the implementation of green policies targets the control of energy con-

sumption via the design of energy-aware resource allocations, as in [35, 59, 101]. Another

example of the implementation of energy management policies aims to manage the vir-

tualisation layer by developing middleware. This controls the migration and placement

operations of virtual machines, as described in [24, 26, 66, 95, 133]. Green policies can be

implemented by focussing on the facilities provided in the data centres and the installation

of energy-efficient equipment, as suggested in [79, 101, 129]. For example, the appropriate

2

distribution of cooling and heating within a data centre building can reduce the amount

of consumed energy, as recommended in [101].

It is necessary to manage the amount of energy consumption at cloud consumer data

centres to increase the credibility of their response to environmental issues. Therefore,

the cloud consumers (organisations/enterprises) can contribute to the reduction of energy

usage for their cloud platform by assigning energy management policies. The importance

of using such policies for cloud consumers, as the recommendations found in [2, 129] spec-

ify, is that it will decrease the amount of CO2 emissions produced by IT-infrastructure.

An example of a suggested recommendation is employing physical servers with a virtuali-

sation layer, which can help to decrease the number of servers used in a data centre [129].

Another example of an energy-efficient plan in the data centre is outsourcing computing

services using public cloud providers [101]. Therefore, cloud consumers have their own

energy management policies that are generated by business managers. However, the cloud

consumers might face the problem of implementing the energy management policies into

a cloud-platform automatically. This is because of the existing gap between the levels

of description and implementation of management policies. In this research context, we

refer to energy management policies as management policies.

To sum up, both cloud providers and cloud consumers have their own defined man-

agement policies that are implemented via their own strategic plans. By focussing on the

cloud consumer side, this thesis addresses the following problems: (a) defining a specifica-

tion for formulating management policies into an executable form for an infrastructure-as-

a-service (IaaS) cloud model; (b) the automatic execution of the described management

policies in the cloud-platform; and (c) identification of the potential energy management

policy that would be executed in the cloud-platform and would save energy-cost.

This chapter is organised as follows: Section 1.1 explains the paradigm of Cloud Com-

puting and highlights some of the existing research on automatic management. Section

3

Figure 1.1 – A cloud architecture for Infrastructure-as-a-Service (IaaS) deployment model
and some management aspects considered by cloud providers and cloud con-
sumers

1.2 discusses the research problem in detail. In Section 1.3, briefly we present our con-

tributions. Section 1.4 lists the documents that we published during the progress of this

research. Finally, the structure of the thesis is presented in Section 1.5.

1.1 Cloud Computing and Its Management

Cloud Computing is defined by Foster et al. as “a large-scale distributed computing

paradigm that is driven by economies of scale, in which a pool of abstracted, virtualised,

dynamically-scalable, managed computing power, storage, platforms, and services are de-

livered on demand to external customers over the Internet” [54]. From this definition, it is

evident that services are delivered using highly scalable and reliable mechanisms, regard-

less of their geographical locations [34]. In the cloud business model concept, services are

provided through cloud providers. The cloud providers initiate service provision to cloud

consumers after assigning service-level agreements (SLAs). Establishing such a business

concept distinguishes Cloud Computing technology from other distributed systems, such

4

as Grid Computing and Utility Computing [54].

According to Foster et al., a typical cloud architecture model is organised into layers,

namely fabric, unified resources, platform and application layers [54]. The fabric layer

includes hardware components of the cloud data centres, such as servers, network and

storage. The unified resource implements the virtualisation technique. Virtualisation

allows multiple instances of either similar or different Operating Systems to be run on a

single host, which assists in increasing server utilisation level [134] (see Figure 1.1 for the

actual representation of both the fabric and unified resource layers). The platform layer

consists of middleware that manages and handles the delivering of cloud services; in some

research, this is referred to as a cloud management system. Finally, the application layer

is the cloud service that is delivered to cloud consumers [54].

There are three basic deployment models for the cloud, namely the private cloud,

public cloud, and hybrid cloud [101]. A cloud-platform is known as a private cloud both

the physical resources and the virtualisation layer are within the scope of the organisation

[101]. Meanwhile, a public cloud involves vendors’ provision of their service publicly using

either short-term or long-term contracts [101], such as providers of Amazon services [21].

A hybrid cloud deployment model combines both the private cloud, and public cloud [101].

Those cloud deployment models can be managed via a cloud management system.

A cloud manager or cloud management system is responsible for performing differ-

ent automatic management functionalities. Practically, HP Helion Eucalyptus [67], and

OpenNebula [105] are examples of existing cloud management systems used to construct

various dynamic management frameworks in a cloud infrastructure. Automatic man-

agement is essential for ensuring the on-demand availability of resources and deployed

services. As shown in Figure 1.1, a number of management factors have been considered

in various studies of automatic management in Cloud Computing. One of these is the

problem of resource provisioning, which is addressed by developing algorithms described

5

in [97, 111, 133] to allocate, place and deploy virtual machines to physical hosts and ser-

vices to cloud consumers. Another type of management research is shown in [22, 93, 103];

these studies tackle the issue of ensuring the availability of cloud services in cloud infras-

tructure after provisioning resources. Such research proposed mechanisms to monitor and

evaluate quality-of-Service (QoS) for the provided services [22, 93, 103].

Any delivered cloud service results from a process of assigning Service Level Agree-

ments (SLAs), which are contracts established between cloud providers and cloud con-

sumers . Therefore, the problems of managing SLAs and monitoring their metrics must

be addressed via dynamic and automatic management in the cloud community. There

are some existing frameworks for automating the negotiation and establishment of SLAs,

as in [39]; moreover, frameworks for dynamically managing and monitoring violations in

SLAs have been suggested in [50, 91]. Furthermore, research has covered other elements,

such as the consideration of security [27, 44] and management failure [62].

This thesis addresses some of the challenges of managing energy consumption. Such

management is based upon applying plans that would save energy usage and energy cost.

Examples of such plans are live migration of virtual machines or services, reconfiguration

of resources provided for running services and switching-off of idle hosts or those that have

low utilisation levels for a long period [92]. Some of the existing architectures of a cloud

manager for energy management share a similar theme. Such architecture is organised

in two levels of controllers, namely a global controller and a set of local controllers. The

global controller makes decision affecting the overall amount of energy consumption for

the environment. In contrast, local controllers apply management actions on a small

scale targeting the hosting node level (a detailed investigation of the state of the art of

automatic architectures, particularly energy-efficient ones, is presented in Section 2.7 in

Chapter 2).

6

Figure 1.2 – The gap of executing management policies in a cloud platform

1.2 The Research Problem

Before elaborating on the research problem, let us consider a cloud platform, as shown

in Figure 1.2; such a platform is managed by a Cloud Manager, such as OpenNebula,

which is a cloud management system [105, 120]. As presented in Figure 1.2, cloud busi-

ness managers or non-technical users have a management objective. In our research, we

consider the amount of energy consumption governed by the cloud infrastructure and the

control of SLA violations to a minimal level as a management objective. This objective

is applied to the cloud platform as a long-term goal.

To practically apply the specified management objective in a cloud platform, such as

that shown in Figure 1.2, the management objective is expressed in the form of man-

agement policies during the design stage. Such management policies must be executed

automatically in the cloud platform. One of the possible solutions is a manual develop-

ment process. Here, the development team manually converts the expressed management

policies to executable ones. This is achieved by implementing the policies using low-level

programming methods. Such methods are applied to one of the suggested automatic man-

7

agement architectures used in previous studies, such as those proposed in [35, 91, 92].

The development team uses the policy description and low-level application programming

interfaces (APIs) provided, which deal with the cloud platform. Then, they implement

the policy via designing a system that uses the monitoring-decision making-acting cycle

[26]. An object-oriented strategy pattern [55] can be used to encode the management poli-

cies. Next, a controller software component can be used to select a specified management

strategy and its execution time according to the description defined in the management

policy. The controller can interact with a number of software components to monitor the

cloud platform parameters and execute actions.

At the current stage in cloud management systems, particularly OpenNebula [105],

some management operations are accomplished manually, which require human inter-

vention. For instance, a Cloud Operator triggers live migration action to move virtual

machines among physical nodes in OpenNebula [105, 120] with objective to manage the

running infrastructure. The manual approaches for triggering management actions are

not beneficial for the current architectural design of a cloud management system.

Manual methods do not scale to handling enormous running services in a cloud plat-

form or the complexity of the described management policies. We would like to point out

that management policies are expressed according to a defined set of business, financial

or environmental requirements. Based on previous research on automatic management

[26, 35, 92], the requirements for identification of a management policy are directly related

only to low-level parameters. Such parameters can be measured in a cloud infrastructure,

such as through resource consumption for the running service, or SLA metrics such as

the violation level and energy consumption [26, 35, 92]. Therefore, it is possible to con-

struct a management policy to automatically manage energy consumption in the cloud

infrastructure based on low-level parameters using any proposed automatic management

architecture, as explained in Section 2.7.

8

There is another set of unmeasured elements or logical constraints required in the cloud

platform that might be found in management policies. Such parameters or constraints

have received less attention in the existing research on automatic management. In our

research context, we refer to these constraints as a high-level policy. High-level parameters

are those related to an organisational perspective [79]. Examples of high-level parameters

are the time and the location of a cloud service. Such metrics follow the regulations and

environmental constraints defined by cloud business managers (or non-technical users).

To elaborate, cloud business managers can define a high-level policy that governs the

execution of cloud services during peak and off-peak times. In addition, the managers

can define another type of high-level policy that would control the movement of their cloud

services across multiple geographically distributed data centres based on an energy cost-

saving location. Thus, for a management policy related to combinational parameters (low-

level and high-level), the existing automatic energy management architectures must be

modified to cope with the multi-level parameters that might be found in the management

policy.

There is another dimension related to the characteristics of the defined management

policies and the cloud platform. Management policies can change regularly. This implies

that any set of defined policies can be modified or extended. The continuous changing of

such policies is based on the nature of the technical environment and changes in regulation

and business requirements. Furthermore, the alteration of the management policy is

also based on the nature of the cloud environment, which is considered dynamic and of

massive size [81]. Therefore, the cloud platform might include different types of events

that require the management policy to be extended to form a new set of policies. Thus,

if the automatic system for enforcing management policies is designed using low-level

programming methods or patterns, as explained above, the time and cost required for

software development and maintenance may increase. As a result, employing a cloud

9

management system with a method that can automatically execute management policies

in a less complex manner is essential.

To summarise, we found that there is a gap between the level of describing policies and

the conversion of such policies to be implemented in the cloud platform. The emergence

of this situation is a consequence of the following issues:

1. There is no generic architectural framework for automatically enforcing specified

energy management policies on a cloud platform;

2. A methodology is lacking to specify how to use lower-level APIs provided by a cloud

management system, such as OpenNebula APIs [105, 120] and integrate them to

build an energy-saving cloud platform;

3. There is no specification to design a declarative language where energy-management

policies can be written to reduce the development and modification process of such

policies;

4. There is no methodology for evaluating the potential executable energy management

policies before real implementation on a cloud platform.

1.3 Research Contributions

The novel contribution of this research is enabling the dynamic energy efficient man-

agement concept on a cloud platform via the analogy of management policies and the

automatic execution of such defined policies. By automatic execution, we mean that a

management action is triggered automatically as a result of analysis of a predefined set

of monitored parameters suggested in the policies. Therefore, we summarise our contri-

butions as follows:

1. To bridge the gap between the level of describing the management policies and the

level of implementing them, we propose a policy-based architectural framework for

automatically triggering a set of management actions into a cloud platform with

10

the purpose of reducing the amount of energy consumption and energy cost. The

framework targets the IaaS cloud model, where a cloud provider advertises comput-

ing or storage as a service. The purpose of using this framework is to automate the

management process in a cloud infrastructure consisting of a set of running virtual

machines and physical nodes. The policy-based framework is designed to be plugged

into the interfaces of any cloud management system;

2. To simplify the expression of management policies at both the policy description and

the implementation levels, we propose a specification for formulating various types

of management policies that can be used by either rule languages or rule-modelling

languages. In addition, we design a conceptual mapping to transform management

policies described in a high-level language into executable management policies in

rule language; and

3. Since our research is a part of providing automatic management on a cloud platform

while considering energy efficiency aspects, it is necessary to have a methodology to

assess the suggested management policies before a real execution takes place in the

cloud environment in terms of saving energy costs. Our methodology for evaluating

policies involves two elements. The first is modelling both management policies

and a cloud-platform using Coloured Petri-nets (CPNs) [71], whilst the second is

analysing costs associated with the modelled policies using two methods to calculate

costs. In this research, the proposed off-line modelling and analysis method can

allow the cloud consumer to gain knowledge about estimating the energy costs of

potential policies.

From the summarised contributions, this thesis aims to solve an energy management

issue described in the form of policies. Cloud developers will have detailed guidelines

employed with specifications for designing an architecture that can be used to build auto-

matic management that governs energy consumption on a cloud platform. Furthermore,

11

cloud administrators or developers can use the suggested off-line modelling and analytical

methods in this research to evaluate the energy cost of running various set of management

policies before implementation.

1.4 Publications

Four conference papers have been published during the development of this thesis, as

listed below.

1. Alansari, M. and Bordbar, B. (2013). ‘An architectural framework for enforcing

energy management policies in cloud’. In 2013 IEEE Sixth International Conference

on Cloud Computing, pages 717-724.

2. Alansari, M. and Bordbar, B. (2014). ‘Modelling and analysis of migration policies

for autonomic management of energy consumption in cloud via petri-nets’. In 2014

International Conference on Cloud and Autonomic Computing, pages 121-130.

3. Alansari M., Almeida, A., Bencomo, N. and Bordbar, B. (2015). ‘CloudMPL: a do-

main specific language for describing management policies for an autonomic cloud

infrastructure’s’. In Proceedings of the 5th International Conference on Cloud Com-

puting and Services, pages 451-462.

4. Alansari M. and Bordbar, B. (2016). ‘An off-line analytical approach to identify

suitable management policies for autonomic cloud architecture’. In Proceedings of

the 6th International Conference on Cloud Computing and Services, pages 232-239.

1.5 Thesis Outline

The remainder of the thesis is structured as follows: Chapter 2 gives an overview of the

technologies and theoretical elements required to understand each contribution made in

this thesis. Furthermore, it reviews related work to each contribution. Chapter 3 ex-

plains the architectural Management Policy Framework (MP-Framework), the theoretical

12

aspects of developing the framework and its implementation in a real cloud platform in

detail. The specifications for the management policies used by both rule language and

domain-specific language (DSL) are explained in Chapter 4. Chapter 5 outlines the the-

oretical concept of modelling an Automated Managed Cloud Platform and management

policies via Coloured Petri-nets (CPN). Chapter 6 explains the proposed Simulation-based

Cost Calculation Method (SCCM) from the generated CPN models for a cloud platform.

An extension of the SCCM method is discussed in Chapter 7. Finally, Chapter 8 comprises

the conclusion of the thesis and a discussion of research limitations and future research.

13

14

CHAPTER 2

Research Background and Related Work

Various technologies and theoretical approaches have been analysed to solve the challenges

addressed in this thesis. Designing an automated cloud platform for management energy

consumption is the first aspect covered in this thesis. Therefore, this chapter provides

an overview of the selected technologies related to cloud management systems and rule-

based systems. Furthermore, we provide a review of the existing automatic management

architectures used for large-scale systems. The review of such architectures is required to

explain the Management Policy Framework presented in Chapter 3.

The second contribution of this thesis is proposing specifications for describing man-

agement policies using both a domain language and an executable rule language, which

are described in Chapter 4. Therefore, this chapter includes an overview of the exist-

ing specifications of modelling rules. In addition, the chapter investigates the existing

domain-specific languages (DSLs) designed for cloud platforms.

The third contribution of the thesis is concerned with the theoretical aspect of mod-

elling an automated manageable cloud platform and management policies for energy con-

sumption. Therefore, this chapter offers detailed background about Petri-net and coloured

Petri-net modelling. Furthermore, this chapter includes an investigation into the current

15

existing methods for cost analysis from Petri-net models. This background is required to

clarify the modelling aspect and analysis method covered in Chapter 5, Chapter 6 and

Chapter 7.

2.1 Cloud Management Systems

Cloud data centres naturally tend to deliver a vast amount of services to a large number

of users. Thus, manual management in such an environment is difficult and does not

scale to handle a larger number of services. As a result, a number of cloud management

systems, such as HP Helion Eucalyptus [67], OpenNebula [105, 120], and oVirt [106],

have been developed to include automatic functionalities such as service deployment,

configuration, management, scheduling, and service termination. Such cloud management

systems can govern heterogeneous cloud environments by offering several drivers suited

to operate with various hypervisors. For example, OpenNebula [105] has multiple drivers

connected to three different hypervisors which are Xen [106], KVM [84], and Vmware [14].

Our research deals with management using OpenNebula; therefore, the remainder of this

section provides a detailed overview of OpenNebula and its architecture.

2.1.1 An Overview of the OpenNebula Cloud Management Toolkit

OpenNebula [105, 120] is a flexible toolkit that allows users to establish and to manage

cloud services and virtualised environments [105]. The OpenNebula platform is enriched

with a number of features that assist both cloud consumers and cloud operators. Open-

Nebula provides cloud consumers with flexible methods to access the virtualised platform,

and to control and monitor their services using a web-based front-end module [105]. Cloud

operators can deploy, configure, and manage both the cloud infrastructure and the vir-

tualised environment using either a simple Unix-command line interface or a web-based

front-end [105]. Furthermore, the OpenNebula solution is empowered with extensible Ap-

16

Figure 2.1 – A sample of a deployment architecture of OpenNebula to build a Private
Cloud as shown in [120, p.26]

plication Programme Interfaces (APIs) that allow cloud operators to build customisable

features suited to their configured platform [105].

The OpenNebula solution is scalable and supports multiple deployment models. Open-

Nebula can be utilised to control a large-scale platform consisting of up to 500 virtualised

nodes. In addition, OpenNebula can be used to establish three different cloud deployment

models: private, public, and hybrid models [120]. This can be achieved by configuring a

suitable local driver for controlling the virtualised environment and also configuring the

external driver for launching and administrating pay-as-you-go services such as Amazon

EC2 [21]. An example of a deployment architecture that utilises OpenNebula is the es-

tablishment of a private cloud model, which is the implementation of a testbed used in

the Energy Management Case Study explained in Chapter 3.

Figure 2.1 depicts a typical usage of OpenNebula. OpenNebula consists of a global

manager component, which is called the ONED management daemon and is deployed on

the front-end node. The ONED daemon controls a set of worker physical nodes, which

are known as cluster nodes. Each cluster node runs a hypervisor that deploys virtual

machines images. The communication drivers in the ONED daemon implement a Secure

Shell (SSH) network protocol for securing the data transmission amongst cluster nodes. In

17

addition, the ONED daemon uses an image repository to make the virtual machine images

accessible for deployment and re-configuration. The architecture of OpenNebula can be

scaled by organising the deployment architecture into a hierarchical structure [120].

The Architecture of the Core of OpenNebula

The flexibility provided by OpenNebula resulted from creating the ONED daemon which

offers fixable features and a well-defined structure [120]. As shown in Figure 2.2 any con-

figured ONED node is organised into three layers, each of which has a set of components.

The layers are the drivers, the core, and the tools [120]. The drivers are designed to access

a remote host for transferring, or deploying and running, or monitoring virtual machines.

OpenNebula offers three types of drivers: Transfer Drivers, Virtual Machine Drivers and

Information Drivers. The Transfer Drivers control the disk images on the current storage

system (shared or non-shared file system). The Virtual Machine Drivers are hypervisor-

specific components that are used for managing the deployed virtual machine instances

on hosts. The final set of drivers are the Information Drivers, which collect the current

status of virtual machine instances and hosts [120].

The core layer contains the brain of OpenNebula, which is written in highly optimised

C++ code. The core layer consists of three separate managers for controlling data centre

modules, which are virtual machine managers, physical host managers and virtualised

network managers. Those managers communicate with remote drivers via the request

manager which implements XML-RPC as inter-process communication protocol. This

effective design for both hosts and virtual machine managers allows OpenNebula to govern

up to 500 server hosts and up to 16,000 virtual machine instances [120]. OpenNebula

Host Managers can be used to build hierarchical large-scale data centres. In addition, the

core contains shared storage which can be used to locate the configuration and virtual

machines’ description files. Furthermore, the shared storage can be used to store the

18

collected monitoring information, which can be either a simple SQLite database or a

replicated MySQL database. In order to support interoperability, the core has a set of

customisable APIs which can support Java and Ruby. In addition, the core is enhanced

with a hook system which is implemented to give users the ability to execute customised

scripts and configure a predefined set of events [120]. The tools layer includes a scheduler

module and command line interfaces. The scheduler module can be configured to run

allocation algorithms for the deployment of virtual machine images to available physical

hosting nodes in the cloud-platform. The existence of such components simplifies the

usability and the accessibility of OpenNebula for both cloud administrators and end-users

[105].

Figure 2.2 – The components of OpenNebula main core (ONED) as presented in [105, p.7]

2.2 Drools Rule Engine and Drools Rule Language

Drools [11] is a production rule system, which is a type of rule-based engine. The Drools

Inference Engine is implemented using the enhanced version of the Rete algorithm for

supporting Object Oriented Patterns [70]. Charles Forgy [53] introduced the Rete algo-

19

Figure 2.3 – The architecture of the OO-Rete engine in Drools, extracted from Chapter 1
in [70]

rithm, which is an efficient pattern-matching algorithm designed for comparing a large set

of patterns to a large set of objects [53]. The Rete algorithm was specially developed to

be used in the interpreters of production systems [53]. The algorithm represents rules as

an acyclic graph to form a Rete network and provides a pattern-matching process [53, 70].

The Architecture of Rule Based System in Drools

Figure 2.3 presents a detailed description of the functionality of the rule-based system

implemented in Drools. As illustrated in Figure 2.3, the Drools Rule Engine requires

the inclusion of two types of memory, namely production memory and working memory.

Production memory is a type of long-term memory in which rules are stored. Production

memory is fixed during the run-time of the rule engine. Working memory is a type of

short-term memory which contains facts that need to be evaluated by the inference engine.

Facts are object models or the instances that contain attributes that illustrate a domain

data for an application. During the run-time, the values of facts may change. As a result,

the Rete algorithm has a strategy for triggering the changes in the values of the facts and

performs a fast comparison process using the Rete network. The objective is to find the

correct rules that can be fired by the agenda [53, 70]. The agenda is the place where a

rule that has become an active rule is stored to be executed. The agenda uses a conflict-

20

Figure 2.4 – A sample of a rule for increasing the balance amount for a bank customer
expressed in Drools Rule Language extracted from Chapter 2 in [70]

resolution methodology for ordering the execution of active rules [53]. More information

on the basics of the Rete algorithm can be found in [48].

The Drools Tool [11] has an editor for authoring rules. The editor allows the rule

developer to write a set of rules in a language called Drools Rule Language (DRL) and

stores them into DRL format. DRL is a rule language developed by JBoss based on the

Java programming language. The Drools Rules Language allows rules to be specified as

a rule-set consisting of a number of conditions followed by a set of sequential actions in

which the rule-set is expressed in the following format:

when (condition statements) then (action statements)

To present the basic block of a rule written in Drools Rule Language, Figure 2.4

illustrates an example of a rule which increases the balance amount for a credit card. Any

rule written in Drools should be enclosed between the keyword < rule > and < end >.

The keyword < when > is an indication for the condition part of a rule whereas the

keyword < then > is an indication for defining the action part of the rule. Drools Rule

Language requires a data-domain model for writing conditions. In the illustrated example

in Figure 2.4, the data-domain model consists of AccountPeriod, Account and CashFlow

21

classes.

In Figure 2.4, the condition part consists of three compositional conditional statements.

The statement “ap : AccountPeriod()” means assigning to a new object ap the extracted

value of an object of type “AccountPeriod()”. Whilst, the statement “acc : Account(

$accountNo : accountNo)” for an object “Account” means to get the value of an attribute

“accountNo” and assign it to a new defined object called “$accountNo”. The account is

stored in a defined object called “acc”. The previously mentioned statements perform the

job of selection statement as found in a database. The final statement in Figure 2.4 is

a compositional statement which selects the amount “$amount” from “CashFlow” which

is assigned to a valid account number [70]. On the other hand, in Figure 2.4, the action

part is an update of the balance in the “acc” object with the value found in the selected

“$amount” object. Therefore, the outcome of this rule is to increase the balance for all

valid accounts [70].

In DRL, the action part can include a single statement or a number of statements.

Furthermore, the action part in Drools Rule Language allows the execution of a set of

statements written in Java code [20].

2.3 An Overview of Petri-nets and Timed Petri-nets

Throughout this thesis, we examined the problem of evaluating an automated cloud plat-

form executing a number of Management Policies before executing them in a real platform.

Chapter 5, Chapter 6 and Chapter 7 cover this problem. In this section and the remaining

sections, we provide an overview about Petri-nets, in particular coloured Petri-nets.

Petri-nets (PNs) are graphical and mathematical tools that can be used for modelling

and analysis of a wide range of systems [100]. Murata [100] noted that Petri-nets offer

a promising method for describing and studying systems that are characterised by cer-

tain features, namely systems that are concurrent, asynchronous, distributed, parallel,

22

non-deterministic, and stochastic [100]. In general, a Petri-nets model consists of a finite

set of Places and Transitions which are connected by a finite set of arcs [47]. Therefore,

in Petri-net tools, a system model is visually displayed to simplify its representation.

Furthermore, in Petri-net models, tokens are applied for imitating the dynamic and con-

current behaviours of modelled systems [100]. Since Petri-nets are basically mathematical

tools, the movement of tokens in Petri-net models can be controlled and governed using

algebraic equations [100].

Petri-nets were introduced by A. C. Petri in 1962 for synchronising communicating

automata. Afterwards, Petri-nets were extended to various versions which are employed

with more definitions and capabilities to describe different and complex models [47]. The

varieties in Petri-net families allow a system designer to study and validate qualitative and

quantitative properties for the modelled system [47]. Some examples of Petri-net versions

are place-transition Petri-nets, Timed Petri-nets, Priced Timed Petri-nets, Stochastic

Petri-nets, and Coloured Petri-nets [47]. Since this thesis focuses on Coloured Petri-

nets and Timed Petri-nets, we provide a definition and formulation of those types in the

sections below.

2.3.1 The Description of Petri-nets

A Petri-net is a special type of bipartite directed graph consisting of three main elements,

which are places, transitions, and directed arcs. The directed arcs connect places to tran-

sitions and transitions to places. Visually, places are represented by circles and transitions

as bars [138]. Figure 2.5 provides an example of a Petri-net. In Figure 2.5, the Petri-net

model consists of five places and four transitions. Two transitions are labelled with Par

Begin and Par End. Par Begin indicates the start of execution of the parallel activities,

which both start from P1 and P2. The Par End where the end of the execution of the

parallel activities is reached and the tokens are placed in P5.

23

Figure 2.5 – An example of a Petri-net model executing parallel activities extracted from
[100]

2.3.2 Timed Petri-nets

Timed Petri-nets are extended version of Petri-nets which associate a time with firing

transitions and assign an age for a token. Diaz in [47] offered a simplified definition for

timed Petri-nets:

Definition 1 A classical timed Petri-net as defined in [47] is four tuples (P, T,A, I) [47]

where:

P is a set of places, T is a set of transitions, and A ⊆ (P × T) ∪ (T × P) is a set

of arcs. I is time interval functions, which can be associated with any transition t ∈ T

in the Petri-net. The time interval function is bounded with minimum and maximum

rational values in which I(t) = [min,max] and restricted to be 0 6 min 6 max. The

max might be infinite. For a transition t, the smallest of these times is called the earlier

static date of firing t and is denoted as Min(t). The largest one can be referred to as the

later static date of firing t and is denoted as Max(t) [47].

2.4 Coloured Petri-nets (CPNs)

A coloured Petri-nets (CPNs) as defined in [71, 73, 74] is “a graphical language for con-

structing models of concurrent systems and analysing their properties” [74]. A coloured

24

Petri-net is a modelling language that integrates the features of both Petri-nets and func-

tional programming [74]. The CPN tool is empowered with graphical notions and a dec-

laration of complex sets which make it easier to model complex and concurrent systems.

Furthermore, CPNs use a programming language called CPN ML which was developed

on the basis of the Standard ML functional programming language [74]. Standard ML

is a language which mainly was developed for theorem proving [96, 108]. The CPN ML

language is used to provide either primitive or complex declarations for data types. In

addition, the language is used to build functions that manipulate the values which are

stored into the CPN tokens. As a result, CPNs can be applied to model and verify

dynamic behaviours for complex and distributed applications [71, 73, 74].

In a CPN, a token may have a complex data type as in programming languages.

In addition, in a CPN model, each place has a correspondent data type. As a result,

specifying a place with a data type restricts the types of the tokens that the place may

receive [37]. Furthermore, CPN transitions process the values of the received tokens

and create new ones, which can be from different data types. In a CPN, data types

can be abstract or have a hierarchical structure. As a result, complex data types can

be defined for places and tokens to describe complex structure. Hence, using CPNs can

produce a concise model for systems [73]. The following section provides the mathematical

description of CPNs.

2.4.1 The Formalism of Coloured Petri-nets (CPN)

Before presenting the mathematical syntax of CPNs, we briefly explain the definition of

a multiset in a CPN. The multiset is composed of expressions that use the markings,

steps, and occurrence of transitions in CPNs [71, 74]. Formally, Jensen and Kristensen

[74] defined CPN multisets as below:

25

Definition 2 Let S = s1, s2, s3, . . . be a non-empty set. A multiset over S is a function

m : S → N that maps each element s ∈ S into a non-negative integer m(s) ∈ N called the

number of appearances of s in m. A multiset m can be written as a sum [74]:

++∑
s∈S

m(s)′s = m(s1)′s1 + +m(s2)′s2 + +m(s3)′s3 + + . . .

An example of the expression of a multiset is the multiset mB that represents the colour

set NOXData such that the type of NOXData is the product of INT and String which

is written in CPN syntax as colset NOXDATA = productNO ∗DATA; [74]

mB = 1′(1, ”COL”) + +3′(2, ”OUR”) + +2′(3, ”ED”)[74]

To elaborate the previously mentioned expression, mB is a multiset which has a one colour

set of value (1, ”COL”) , three colour sets of (2, ”OUR”) and two colour sets of (3, ”ED”).

In the expression of multiset, the symbol ++ means concatenation. In Section 2.4.3, there

is an example which explains multiset in detail.

Mathematically, CPNs are described according to Jensen and Kristensen [74] as:

Definition 3 A non-hierarchical Coloured Petri-Net (CPN) is a nine-tuple CPN =

(P, T,A,Σ, V, C,G,E, I) where :

P is a finite set of places and T is a finite set of transitions such that P ∩T = ∅. Places

and Transitions are connected via a set of directed arcs denoted as A ⊆ (P×T)∪(T×P).

Σ is a finite set of non-empty colour sets. V is a finite set of typed variables such

that Type[v] ∈ Σ which can be used on an arc expression to bind values. C : P → Σ

is a colour set function that assigns a colour set to each place. In CPNs, a guard

26

has a guard function that assigns G : T → EXPRv to each transitions t such that

Type[G(t)] = Bool, i.e. a Boolean value. E : A → EXPRv is an arc expression

function that assigns an arc expression to each arc a such that Type[E(a) = C(p)MS],

where p is the place connected to the arc a. Examples of arc expressions that might

be found in CPN models are (vara > 10) and (varb > 5 andalso varb 6 20). In CPN,

I : P → EXPR0 is an initialisation function that assigns an initialisation expression

to each p [74].

2.4.2 Markings in CPNs

In CPNs, a marking M consists of a combination of a mapped place pi into a multiset

of values M(pi) such that tokens in a place pi represent each individual element in the

multiset M(pi) [71, 74]. It is necessary that a multiset of tokens in a place pi should

have a similar type to the place pi [71, 74]. The markings will be clarified via examples

explained in Subsection 2.4.3. Semantically, the concepts related to markings in CPNs

are described as follows:

Definition 4 For a CPN = (P, T,A,Σ, V, C,G,E, I) both a marking and the initial

marking are defined as:

1. “A marking is a function M that maps each place p ∈ P into a multiset of tokens

M(p) ∈ C(p)MS. C(p)MS is the notion of multiset of tokens in a place p in a CPN

model.

2. The initial marking M0 is defined by M0(p) = I(p) for all p ∈ P where I(p) is

an initialisation function of a place p in a CPN model” [74]

27

Figure 2.6 – Modelling System A with Coloured Petri-net

2.4.3 An Illustrated Example

To illustrate the CPN modelling concept, we provide the following example which is

captured in Figure 2.6. Figure 2.6 illustrates a model of a CPN for System A, which

performs calculations. In Figure 2.6, Place A has six tokens, one token with a value of

2, two tokens with values of 5, and three tokens with values of 15. In contrast, Place B

has only one token with a value of 2, and Place C has no token. After the first execution

for this model, the number of tokens at each place changes to be five tokens in Place A,

one token in Place B, and one token in Place C. To illustrate an example of a multiset

based on Definition 2 using Figure 2.6, the multiset which presents the values of the initial

marking M0:

mA + + mB + + mC = 1′2 + + 2′5 + + 3′15 + + 1′2 + +∅

28

However, for marking M1 the values of the multisets change as follows:

mA + + mB + + mC = 1′2 + + 2′5 + + 2′15 + + 1′5 + + 1′2

With each iteration, the number of tokens and their values will be changed. All possible

values that each place can have are captured in a set of traces of execution. More examples

presenting the functionalities and the capabilities for modelling with CPNs can be found

in [71, 73, 74] and as well as on the official CPN website [5].

2.4.4 CPN ML Programming and CPN Tool

A CPN can be created using the CPN ML tool, which was developed by the CPN Group at

Aarhus University [5]. The CPN programming environment uses the SML/NJ program-

ming environment and extends it with constructs for defining colour sets and declaring

variables [71, 74]. In addition, CPN ML allows users to write functions which can be used

as arc expressions and guards in the CPN model. Furthermore, the CPN ML environment

applies the concept of multisets and functions for the manipulation of multisets [71, 74].

Figure 2.7 captures some sample ML syntax used in the CPN ML tool. ML declarations

for colour sets and variables are at the left hand side of the figure. A colour set is declared

using the keyword “colset”. For example, “colset Load=INT” declares a colour set called

“Load” which is of type integer. The right hand side of the figure provides a sample ML

recursive function which returns the minimum load value from a list of type “Loads”.

2.4.5 The Formalism of Timed Coloured Petri-nets

To make CPN useful for testing the performance of a system and for supporting an

accurate analysis, CPN has been extended to include the time concept [72]. A CPN

model can be transferred using the CPN Tool [5] to a timed CPN model by initialising a

global clock, which can be continuous or discrete [72], ages as stated in [74] or time-stamps

29

Figure 2.7 – Samples of ML syntax used in CPN Tool

for tokens [72] and waiting time (or delays, as they are called in the timed PN definition)

for firing some or all defined transitions in the CPN model (See Chapter 5 in [72] and

Chapter 11 in [74]).

The values for both the global clock and timestamps of tokens are presented as a set

of time values belonging to T . T is a set of non-negative integers which is declared in the

CPN tool as type TIME [74]. The description of the syntax of timed coloured Petri-nets is

similar to the definition of untimed coloured Petri-nets mentioned in Definition 6. Jensen

and Kristensen [74] stated:

Definition 5 A timed non-hierarchical coloured Petri-net is a nine-tuple

CPNT = (P, T,A,Σ, V, C,G,E, I) [74] where:

P is a finite set of places and T is a finite set of transitions such that P ∩T = ∅. Places

and transitions are connected via a set of directed arcs denoted as A ⊆ (P ×T)∪(T ×P).

Σ is a finite set of non-empty colour sets which can be either timed or untimed. V is

a finite set of typed variables such that Type[v] ∈ Σ which can be used on an arc

expression to bind values. C : P → Σ is a colour set function that assigns a colour

set to each place such that if C(p) is timed, a place p is said to be a timed place. In

30

CPNs, a guard has a guard function that assigns G : T → EXPRv to each transition

t such that Type[G(t)] = Bool, i.e. a boolean value. E : A → EXPRv is an arc

expression function that assigns an arc expression to each arc a such that it can be

either Type[E(a) = C(p)MS] if p is untimed or Type[E(a) = C(p)TMS] if p is timed, where

p is the place connected to the arc a. I : P → EXPR0 is an initialisation function

that assigns an initialisation expression to each p such that Type[I(p)] = C(p)MS if p is

untimed or Type[I(p)] = C(p)TMS if p is timed [74].

Similar to the marking definition for CPNs explained in Subsection 2.4.1, the concepts

of markings and initial markings in timed CPNs are specified as follows:

Definition 6 For a CPNT = (P, T,A,Σ, V, C,G,E, I) both a marking and the initial

marking are defined as:

1. “A marking is a function M that maps each place p ∈ P into a multiset of tokens

such that

• M(p) ∈ C(p)MS in case p is untimed. C(p)MS is the notion of multiset of

tokens in a place p

• M(p) ∈ C(p)TMS in case p is timed. C(p)TMS is the notion of multiset of

timed tokens in a timed place p

2. A timed marking is a pair (M, t∗) where M is a marking and t∗ ∈ T is the value

of the global clock. The global clock is a time assigned for a CPN model, or in other

words the simulation time of the CPN model.

3. The initial timed marking is the pair (M0, 0) such that M0(p) = I(p) for all

p ∈ P” [74].

The formal definition for timed CPNs can also be found in [72] but we chose the formal

definition stated in [74] since it uses notions similar to the one we applied in this thesis.

31

2.5 Integer Programming and Branch and Bound Al-

gorithm

Linear Programming (LP) problems involve searching for an optimal value of an objective

function. The optimal value can be either the minimum or the maximum. In the objective

function, the decision variables are subject to a defined set of constraint equations. In LP,

the decision variables must be non-negative. Similarly, Integer Programming (IP) prob-

lems are also concerned with finding the optimal value, but the decision variables defined

in the objective function and the constraints are non-negative integers [29]. Therefore,

an IP problem is defined as “ any decision problem with an objective to be maximised

or minimised in which decision variables must be discrete values” [118]. Formally, the

integer optimisation is defined as follows:

z =
∑
j∈N

cjxj (1)

subject to:

gi(x1, x2, . . . , xm) {6,=,>} bi , xj > 0

Equation 1 is an objective function that can be either minimised or maximised. cj is a

coefficient and xj is a decision variable. gi is a constraint function where i = {1, 2, . . . , n}

and j = {1, 2, 3, . . . ,m}.

The IP problem can be solved using a branch and bound algorithm. The branch and

bound approach is based on the following concepts:

1. Branching: Partitioning the continuous space into sub-problems for eliminating

continuous spaces that do not include feasible solutions. From partitioning, we

get subsets of optimal integer points that define a feasible solution of the original

problem [118].

32

2. Bounding: Ranking or enumerating the obtained integer points extracted from the

branching method [118].

The algorithm deals with continuous space which systematically subdivides the linear

programming feasible region resulting in the creation of an enumeration tree and then

makes assessments using the defined constraints based upon these subdivisions in order

to round the feasible decision variables to be integer points. In the branch and bound

approach, the number of sub-problems may grow exponentially [29] (more details about

the algorithm can be found in [29] and in [118]). Excel Solver solves IP problems using

the branch and bound combined with Simplex [8]. Simplex is an algorithm which is used

to solve LP problems [117]. We used Excel Solver to find the integer points that provided

us with the minimum energy consumption cost, which will be explained in Chapter 7.

2.6 Types of Virtual Machine Migration for Manage-

ment

This thesis primarily deals with management energy consumption through triggering vir-

tual machine migration action. In this section, we provide an overview of migration in

a virtualised environment. Dynamic migration is the action of moving a virtual machine

from one host to another while the virtual machine is executing. Dynamic migration has

two types, which are live-migration and stop/resume migration. During the live-migration

procedure, the memory of the migrating virtual machine is copied to the destination host

without stopping its execution iteratively [88]. The virtual machine’s execution is halted

only to perform the final synchronisation, which is around 60−300 ms at the configuration

of data centres before beginning the running at the destination [88]. Live-migration gives

the illusion that the virtual machine does not stop [88]. Live-migration is one of the func-

tionalities that is embedded in a virtual machine manager (VMM) or cloud management

33

system. For example, OpenNebula offers both types of virtual machine migration [120].

Live-migration is different from stop/resume migration. In a stop/resume migration

process, the virtual machine is required to stop before migrating to a destination host. The

migrated virtual machine continues its execution after it is completely and successfully

transmitted to the destination [88]. Stop/resume migration is beneficial for migrating

virtual machines that execute critical jobs, which might be sensitive to losing data during

transmission time.

2.7 The Classification of Automated Management Ar-

chitectures in Large-Scale Platforms

One of the contributions of this thesis is the design of an automated framework for man-

agement in a cloud platform considering management objectives assigned by the cloud

provider, which will be discussed in both Chapter 3 and Chapter 4. Therefore, before

discussing our management framework, we will provide a survey of the existing research in

designing automatic architectures for managing and re-allocating resources in a large-scale

platform which includes a distributed environment, a cloud platform, and a virtualised

environment. Those architectures have an influence on how to develop our architecture

which will be explained in Chapter 3.

The existing automatic architectures are classified into three groups based on the essen-

tial technique applied in each of the reviewed studies. The existing classified architectures

are: two-level automatic architectures based on utilising the concept of control theory,

automatic architectures based on heuristic approaches, and automatic architectures based

on rule-based systems. The following subsections provide overviews of research related to

each category.

34

2.7.1 Two-level Automatic Architectures Based on the Concept

of Control Theory

The first type of automatic management architecture includes those that employ the

concept of using control theory in designing an autonomic system or a self-managed system

suggested in [135]. The suggested automatic architecture in [135] includes a number of

components which are sensors, actuators or effectors, and a controller. Sensors are used

to collect the control inputs which are parameters a controller needs to determine the

state of the target system. The actuators or effectors are the components that apply the

desired output in order to make the system reach the target objective. The controller is

the main component that uses a dynamic model based on the received input and other

entities that define the state of the self-managed system. The state of such a system can

be computed by using either the concept of Utility-Function as applied in [63, 97, 121, 124]

or the dynamic models used for describing the behaviour of the target system as suggested

in [41, 58, 61, 111, 131].

A utility function is an objective function that assigns the state of the independent

components of the target system to real scalar values which are expressed in a suitable unit

[124]. The state of the system is expressed as a vector of attributes which are provided

either directly by measurement instruments or by synthesised components plugged into

the running system [124]. The usage of the utility function should be combined with

optimisation techniques in order to provide a feasible solution [124]. Applying a utility

function combined with the concept of control theory is one of the methods used for

building autonomic systems [124]. The following section discusses the existing automatic

architectures that use the concept of control theory based on utility functions.

35

Two-level Automatic Architectures Based on Utility Function

The usage of utility functions in large-scale and distributed systems is implemented for

designing architecture of automatic managed systems. Examples of large-scale systems

that employ a utility function are the distributed autonomic environment as proposed in

[124] and cloud platforms as suggested in [58, 63, 97, 121]. Distributed autonomic envi-

ronments share similar characteristics with cloud platforms, which have a large number

of components that work independently in a heterogeneous platform. Therefore, we will

first explain the work in [124] before explaining the applicability of utility function in

cloud platforms.

In [124], Walsh et al. proposed a two-level architecture that uses two types of utility

functions for managing a set of independent autonomic components. The automatic

management aims at optimising the computational resource allocation for running various

distributed applications’ environments. An example of the distributed environment is

running different web-based applications published in a cluster of web servers [124]. Two

utility functions are defined by Walsh et al. which are service-utility and resource-utility

functions. The service-utility functions are implemented locally at the application level,

whereas the resource-utility functions are applied globally at the system level. The service-

level function determines the business value to the user of the running service. In contrast,

the resource-level utility function specifies the amount of computational resource allocated

to run an application based on values of resource demand [124].

The approach of Walsh et al. is considered to be a two-level centralised architecture

which can be applied in a distributed environment such as cloud platforms. In Walsh

et al.’s architecture [124], the separation techniques for multiple environments and using

two different utility functions allows the implementation of such an architecture into

heterogeneous and complex environments such as a cloud infrastructure. The introduction

36

of a level of abstraction applied in Walsh et al.’s [124] automatic architecture simplifies the

modification of the design of the resource arbiter. All the complex functionality applied

in the architecture is hidden from the higher level and handled by a local manager which

is configured at the application level [124].

Similar to the adaptation of the utility function applied in [97], the application of utility

functions has become more mature and enhanced to be suited to cloud platforms. The

implementation in a cloud environment considers various management aspects which are

business, technical, and environmental. In [97], a utility function is used for designing a

resource manager for automatically allocating various types of resources using a feedback

control loop as described in [77]. The main objective is satisfying the quality of service and

increasing the resource utilisation. The utility function is modelled to consider the total

shared resources (CPU , memory, network, and disk) of a virtual machine. Furthermore,

the utility function includes a performance model of the running virtual machines which

is mapped as measuring the response time for the submitted jobs (see the utility model

in [97]).

In [97], the proposed architecture of automatic architecture is organised to use a differ-

ent set of managers that implement a feedback control loop to control the level of resources

provided to a set of running virtual machines. Each resource manager is applied to adjust

resource utilisation among independently running virtual machines by maximising of the

utility of each running virtual machine. The designed controller considers the summation

of both shared resources and the response time of each virtual machine. The summation

is used to determine virtual machines that have the highest utility function which are

arranged in descending order [97] or placement into available hosts. The architecture

proposed in [97] can provide flexibility at the node level. However, at the resource level,

the architecture is complex and does not provide flexibility to support heterogeneous

platforms.

37

In [121], there is a proposal for an architecture for a cloud manager that will automat-

ically manage the provisioning and the placement of virtual machines. The automated

manager is designed to consider several properties, namely the performance of the running

application, SLA specifications, and both resource exploitation and operational costs. The

architecture consists of two layers associated with two decision modules: an Application

Decision Module and a Global Decision Module. The Application Decision Module uses

an analytical performance model to analyse application response time based on long-term

observation. In addition, the Application Decision Module consists of two levels of utility

functions which are related to service-level and resource-level. Using measured perfor-

mance information and SLA requirements, the Application Decision Module optimises

the number of used virtual machines and the amount of the required resources by em-

ploying a constraint programming method [121]. Conversely, the Global Decision Module

makes decisions related to allocating the correct set of virtual machines to each running

application. In addition, the Global Decision Module packs the running virtual machines

on physical machines via applying live-migrate action in order to reduce the number of

running hosts. Therefore, the global controller solves two problems, which are referred to

as VM Provisioning and VM Packing in [121].

The framework suggested by Van et al. in [121] has some shared properties with

the autonomic architecture proposed by Walsh et al. in [124], which was previously ex-

plained. The similarities are in using two-level controllers which are application-specific

and resource-specific managers. The application manager functionality measures the cur-

rent resource usage and adjusts it based on the current application demands as in [124].

However, in [121], the application level uses two types of utility function compared to

[124] which applied service-utility function only at the application level. We noticed that

the suggested framework by Van et al. in [124] handles multiple problems which are val-

idated through simulation. However, applying such a framework in real cloud platforms

38

can become insufficient unless a single controller considers solving only one problem, such

as the resource provisioning problem, rather than multiple problems. Furthermore, based

on our experience with OpenNebula [105], completing the live-migration actions requires

time which might increase to minutes. As a result, the global manager in [121] might

introduce a performance issue if it is applied in real cloud platforms such as OpenNebula

[105]. This is because the framework allows repeated triggering of live-migration actions

for multiple virtual machines simultaneously, which has an effect on the quality-of-service

of applications. This issue will be discussed in Chapter 3. Therefore, the automatic archi-

tecture proposed in [121] is complex in performing multiple operations randomly triggered

in real cloud platforms. Thus, Van et al.’s automatic manager architecture [121] can only

be useful for creating an off-line management plan.

In [61], Gueyoung et al. presented a centralised multi-level automatic management

architecture for re-allocating migrated virtual machines. The techniques are based on

using off-line modelling combined with an online prediction workload model to collect

the information that is necessary for reallocating actions. Furthermore, the approach

applies a multi-level adaptation hierarchy and scalable heuristic optimisation techniques

based on re-allocating the migrated virtual machines. The main objective is to control the

virtualised environment using cost, performance, and power consumption models. The

introduction of the use of off-line modelling which can be profiled is a helpful method for

evaluating long-term reallocation plans that depend on finding the average workload peak

time [61].

Two-level Automatic Architectures Based on Dynamic Models

Gmach et al. in [58] provided a centralised resource management system which is capa-

ble of automatically organising a shared pool of servers. Like the previously mentioned

architectures, the centralised resource manager in [58] is organised into levels. The local

39

controller implements a feedback control loop which periodically measures the workload

capacity. As with previous approaches, the local controller, which was specifically named

in [58] as Workload Management Service, operates at the application environment level.

On the top of the local controller, a system global controller is responsible for placing

and deploying the correct set of virtual machines according to the data collected from the

local controllers. In [58], the main objective is to keep the operating server numbers in

line with workload demands for running services. This can be achieved by designing a

workload adjuster which prioritises the received workload using a Supervise SLA Compli-

ance associated with each running virtual machine. The local controller is implemented

using various policies for adjusting assigned resources. These policies are explained in

detail in [58].

In [58], there is a claim that this approach can control the energy consumption at the

data centre, which can be accomplished by analysing historical workload traces for the

various implemented policies using simulators. The outcome from applying such analyti-

cal models endows the global controller of the architecture with an ability to predict the

workload peak time and to update the hosting routing resource allocation table [58]. It

was found that the centralised architecture suggested in [58] can be applied for designing

dynamic resource management that prioritises SLA parameters. Despite the introduction

of SLA compliance and the use of the historical workload analytical model, this approach

fails to provide the dynamic models used by the main controller, which makes the archi-

tecture more complex to be implemented in the management cases that are considered in

this research.

In [41], Cunha et al. developed an automatic management resource capacity frame-

work. The framework was described as a multi-tier performance model combined with a

service-level pricing model and an optimisation model. The optimisation model is used

to adjust the resource usage among applications. The framework runs at periodic times,

40

where the measurement information is collected to forecast the expected workload on

the system. The performance analysis is presented by transforming the measured per-

formance metrics such as the response time to an estimated analytical model based on a

queuing model. The optimisation is achieved based on current capacity information and

the estimated performance model. The problem is formulated as mathematical models.

The interesting aspect of this approach is the attempt to use performance models and

workload prediction for automatic management [41].

In [83], Kusic et al. proposed an automatic architecture which implements a type of

control theory called limited look-ahead control. The design is organised into multi-level

controllers for resource provisioning in a virtualised environment. The controlling problem

is decomposed into a set of smaller sub-problems and solved in a cooperative fashion

by multiple controllers [83]. The level of controllers provides two types of information,

which are virtual machines performance and power information for physical nodes. Each

controller implements limited look-ahead control to predict and to determine management

actions over a short slot time period (more details about the models used are found in

[83]). In [83], the suggested approach is suitable for an architecture using a rule set or

utility function for triggering a set of management actions. Although the introduction

of limited overhead is novel in this approach, it is a complex model which is difficult to

apply in practice.

In [111], the authors attempted to design an automatic management architecture for

provisioning cloud resources to applications. The objective was to maximise the QOS for

applications with respect to budget constraints. They defined a set of adaptive parameters

used by an application. Those parameters are the input for a centralised manager that

uses a feedback control loop to reallocate resources. The feedback loop controller uses

a defined resource cost model, the virtual machine resource model (CPU and memory),

and an analytical performance model [111]. The controller design is well-defined, and it

41

can be useful for reactive automatic management systems using simplified performance

model parameters. It is centralised and uses static scheduling.

Wood et al. proposed a centralised automatic architecture utilising a feedback control

loop based on two strategies [131]. The purpose of the architecture is to dynamically

control the triggering of migration of virtual machines. In [131], the authors introduced

a novel Black-box and Grey-box of instrumenting strategies for monitoring and describ-

ing the resources-utilisation model [131]. The main objective of using the Black-box

strategy is to monitor resource utilisation by observing the external behaviour of virtual

machines with no attention to either application type or any dependencies of the virtual

machine’s hosting environment [131]. The suggested Black-box strategy can collect suffi-

cient resource usage data to determine a detection of migration alarm [131]. However, the

resource usage details provided by applying the Grey-box strategy presents more accurate

data than the Black-box one, but the latter approach reduces the monitoring time inter-

vals and the system overhead [131]. In [131], the feedback controller aims at detecting the

migrated virtual machine by using the profiled information provided from the instruments

and applying prediction techniques. The migrated machines are re-allocated using greedy

heuristics [131].

2.7.2 Automatic Architectures Based on Heuristic Optimization

Approaches

The second type of reviewed architectures are those that use heuristic approaches to help

trigger a management action in a cloud platform. In this classification, Jing and Fortes

proposed a two-level architecture for managing the mappings of the correct workloads

to potential VMs as well as VMs to physical resources [76]. The VMs placing problem

was formulated as a multi-objective optimisation problem which considers simultaneously

minimising total resource wastage, power consumption, and thermal dissipation costs [76].

42

The placement optimisation problem is solved using an improved genetic algorithm with

fuzzy multi-objective evaluation. The usage of a fuzzy logic approach is to provide an

efficient search by resolving possibly conflicting objectives [76].

The proposed architecture is similar to the previously explained two-level architec-

tures. The local controller which is assigned to each running virtual machine is located

at the application level. The global controller runs using defined monitored parameters

related to both the virtualised environment and the data centre level [76]. The monitored

parameters are profiled for generating both suitable power and temperature models. The

functionality of the global controller is to generate a new virtual machine placement and

migration scheme [76] by implementing the Modified Genetic Algorithm. The local con-

troller uses fuzzy logic-based modelling approaches to adaptively model the relationship

between workloads and virtual machine resource demands [76]. In [76], the evaluation

is done through a prototype demonstration which provides an estimation for resource

demands responding to dynamically changing workloads [76].

The algorithm can be used to work with static resources requirement information or

dynamic information. If static information is used, the system uses only instrument and

usage profiles for creating resource usage information. In contrast, providing dynamic

information requires the definition of a local controller that is used to periodically monitor

information which is missing in the architecture suggested in [76]. However, we think that

the algorithm can be beneficial for creating an off-line plan for migrating or placing virtual

machines in order to reduce system overhead, but the suggested algorithm needs to be

combined with a method for modelling performance for each running virtual machine.

Similar to the approach suggested in [76], a suggestion to use an ant colony optimisation

algorithm to reduce the number of running hosts in order to reduce energy cost at a

virtualised data centre was presented in [51]. The authors mapped the migration problem

as a classical bin packing problem [25] with an objective of minimising the operational cost

43

to fully utilise servers [51]. The use of an ant colony in this context needs to be combined

with a multi-objective problem rather than a single one to be effective. Otherwise, a

heuristic algorithm should be used because it is easy to implement and would be beneficial

in practice. It is necessary for a data centre operator to maximise the profit which makes

it too important to consider application requirements or higher level demands.

2.7.3 Architectures Based on a Rule-based System

The third existing automatic architectures are the architectures that employ rule-based

systems for triggering various types of actions applied in a cloud platform, a virtualised

environment, or a service-oriented architecture. Applying rule-based approaches is an

effective component in designing an automated architecture in cloud platforms. The

development of such architecture is found in [26, 91, 92].

In [91], there is a proposal to use a knowledge-based system in automatic management

in cloud computing. The goal from the proposed architecture is to prevent the violation

of SLAs. The implementation of a knowledge-based system is accomplished mainly by

using case-based reasoning (CBR) combined with a rule-based system. In [91], the role of

a rule-based system is to receive some measurable metrics important to the executed SLA

assigned to the running virtual machines. These retrieved parameters are compared with

a set of specified threat thresholds which are used to determine the state of the virtualised

environment. The rule-based system would trigger the CBR system. The CBR system,

using the measurable values of the SLA over a specified time interval, attempts to select a

new case which has the highest utility function. Based on the case, the new reactive action

can be selected and applied to the cloud system. Afterwards, the system is supposed to

monitor the parameter again in order to evaluate the selected action after execution [91].

In [91], a rule-based system is used only to determine the state of the system whereas the

main selected management action is decided using CBR. The architecture is executed in

44

the monitor-analysis-plan-execute cycle. The approach suggested in [91] can be beneficial

for achieving long-term management goals. However, the application of CBR is time-

consuming for achieving short-term management as covered in this research.

The rule-based approach in [91] is enhanced in both [26] and in [92] to include either

simple rules or default logic rules. The rule-based system is also used to trigger a set of

reconfiguration or adaptation actions. In [92], the proper management action is identified

based on defining the current state of the system and selecting the best policy model the

virtual machine should apply. In contrast, in [26], the rule-based system uses simple rules

based only on resource consumption to trigger virtual machine migration actions. Then,

an allocation algorithm, which can be First-fit, RoundRobin, or Monto-Carlo, is used to

reallocate migrated virtual machines [26].

The usage of a rule-based system in both [26] and in [92] has some similarities to the

approach in my work, which is discussed in Chapter 3. However, the rules considered are

low-level, neglecting high-level elements such as time, location, and SLAs. Furthermore,

the rule-scheme provided in [92] is complex in its structure and does not have an effective

data-domain model as we outlined in Chapter 4. Thus, it is concluded that the rule scheme

suggested in [92] cannot be executed in architectures running in a real cloud platform due

to the lack of a defined, well-presented architecture for the proposed system. Furthermore,

the approach has an apparent misconception in the application of rules and rule-engine

in performing autonomic management.

In [122], Vaquero et al. proposed an automatic architecture for reconfigurable cloud

applications at run-time. The architecture is based on a customised rule-engine which

enables the execution of a set of rules to govern the application behaviour. Application

providers can update application behavioural policies during run-time, such as adapting

new load conditions. The OVF description domain model language for virtualisation,

which is composed of vocabulary descriptions for VirtualMachine, HardwareComponent,

45

Service, VirtualDataCenter, etc., has been used for representing the domain knowledge

that is to be used by the engine. Furthermore, the Semantic Web Rule Language (SWRL)

is used to enable an easy definition of high-level policies for defining application behaviour

on top of the static. It is argued that the architecture performance is based on the per-

formance of the rule-engine [122]. The architecture does not provide a description of the

types of policy or how rules can be expressed in the policy. The usage of the OVF domain

description language can increase the probability of policies among various cloud-based

applications. This architecture is different from the architecture presented in Chapter 3

since the generic architecture uses a rule-engine that controls the monitoring side and the

management side. In addition, a classification for rules used in the architecture has been

provided.

The rule-based system is a part of the automatic architecture applied in a service-

oriented environment which has some similar aspects to a cloud platform in terms of

an increase in dynamism as well as its complexity in the interaction among its running

components or services [81]. In [114], Rosenberg and Dustdar developed an automatic

architecture for business brokers in a service-oriented platform. The architecture is based

on the deployment of various rule-engines. This approach provides a service layer interface

for accessing and executing business rules from various knowledge bases. Furthermore,

the business rule brokering layer allows heterogeneous rule engines to be encapsulated

and used. Various rule-engines can be plugged in using the adapter pattern [116]. The

rule-based knowledge is a web service which can be accessed remotely [114].

46

2.8 The Rules Modelling Languages and URML Spec-

ification

The second contribution of this thesis is to develop a specification for describing manage-

ment policies in an executable rule language such as the Drools Language [11], which is

explained in Chapter 4. As a result, this section includes an overview of some existing rule

modelling languages and the specifications of the UML-based Rule Modelling Language

(URML).

Rules can be described in a simplified manner by using modelling languages com-

bined with a well-defined transformation methodology. There are a number of modelling

languages for describing rules. Some of these languages are Semantics of Business Vo-

cabulary and Business Rules (SBVR) [4], Simple Rule Mark-up Language (SRML) [4],

UML-based Rule Modelling Language (URML) [112], and Business Process Modelling

Notation (BPMN) [3].

SBVR is a language that attempts to provide a definition of a standardised rule mod-

elling vocabulary [4]. SBVR presents a vocabulary that is intended to become a standard

upon which many grammars can be based for specifying rules. SRML is also a descriptive

language which can represent rule models but with a limited vocabulary [6]. On the other

hand, URML [112, 90] is a graphical representation for rules, which supports modelling

domain vocabularies (i.e., ontologies) and various types of rules. In URML, a rule is rep-

resented as a circle with identifiers, a condition arrow, and a conditioned model element.

One benefit of URML is that rules can be translated to an event-condition-action rule

structure [112].

In [46], there is an attempt to use BPMN, which is a graphical modelling language

proposed by OMG [4]. BPMN is a collection of graphical representations that can be used

47

to describe a business process. BPMN is used in [46] to provide a high-level graphical

description for simple rule patterns. The objective is to simplify the expression of the

rules used in business applications. The transformation of the graphical representation

for rules in BPMN is accomplished by generating a methodology for mapping to Drools

Rule Language [46].

All the presented languages can be used to provide a high-level description for the

rules applied in the generic architecture MP-Framework explained in Chapter 3. How-

ever, URML was selected for defining the specification of management policies discussed

in Chapter 4. Therefore, the following subsection explains the abstract specification of

URML.

2.8.1 The Specification of URML

REWERSE (Rule Modelling and Markup group) [112] has published a meta-model of

the URML language which classifies various types of rules that can be formulated to be

executed with rule-engines such as Drools [11]. Figure 2.8 presents the structure of a

rule in URML which can also be applied to a rule language. In this research, we are

concerned only with the condition objectVariables as shown in Figure 2.8. Furthermore,

the specification of production rules was also selected. Other rules existing in the models

are beyond the scope of this research. It can be seen in Figure 2.8 shows that a production

rule can consist of one or more conditions, zero or one post conditions, and one action

ActionEventExpression which includes the statements of a rule action part. In URML,

any formulated rule should be related to one or two ObjectiveVariable.

48

Figure 2.8 – The rules meta-model of UML-Rule Modelling Language (URML) as pre-
sented in [113]

2.9 The Existing Domain-Specific Languages (DSLs)

Designed for the Cloud

A part of the second contribution covered in this thesis is related to designing a Domain-

Specific Language (DSL) called CloudMPL for describing management policies during the

design phase. Chapter 4 describes the language. In this section, we provide an overview

of the existing domain-specific languages used in cloud platforms. DSLs provide special

features in terms of the expressiveness and simplicity compared with general-purpose

programming languages [94]. Using DSLs has several advantages. They can speed up the

development time since the language is designed to be used in a specific environment. In

addition, the language can assist in reducing the amount of domain and programming

expertise required [94]. Furthermore, the domain language is extensible and machine-

readable which allows users to build auto-code generation tools in order to reduce the

development time [94]. To accomplish these features provided by DSLs, designing such

languages requires experience in both domain knowledge and language development.

49

2.9.1 DSLs Used in Cloud Environment

Extensive research has proposed many DSLs for automating the deployment of applica-

tions into a cloud environment. One of these languages is Crawl, which is a part of the

Cloud Crawler environment proposed for automating the execution of application per-

formance tests in Infrastructure-as-a-Service (IaaS) used by cloud application developers

[42]. Crawl is a declarative and extensible DSL to provide a high-level specification that

captures all the important technical information for executing application performance

tests [42]. Instances of this information are the configuration parameters and the quantity

of the resources allocated to application components [42]. The language’s textual notion

is described via YAML. Furthermore, the language allows the use of XML and JSON to

define new specifications of test scenarios [42].

Neptune is another DSL designed to automate the configuration and deployment of

High Performance Computing (HPC) applications executed in the cloud [32]. The ob-

jective of Neptune is to provide portability and flexibility to the developers of HPC [32].

Neptune is a meta-programming extension of the Ruby programming language with the

flexibility to run a large number of Ruby’s libraries which are designed to communicate

with a cloud infrastructure [32]. Neptune programs allow users to write Ruby scripting

code. In addition, Neptune programs can also be used in Ruby programs using Neptune

keywords. Neptune programs are composed of one or more invocations for jobs to be

processed in cloud services [32]. The language is integrated to run in AppScale, which is

an open-source cloud environment that uses Google App Engine APIs [32].

Pim4Cloud DSL is a platform-independent model for cloud-based applications which

is designed using a component-based approach [30]. A cloud application-designer models

the application by using Pim4Cloud DSL. Meanwhile, at the other side, the available

resources for the modelled application are specified by the cloud provider [30]. Pim4Cloud

50

has an interpreter which is used to match the assigned resources to the application’s

requirements. Pim4Cloud DSL is implemented into Scala, which includes different sets

of codes for modelling different topologies for cloud applications [30]. The syntax of

the Pim4Cloud DSL starts by defining the application as an abstract class which can

factorise the shared entities. Each application topology can extend the abstract class.

The Pim4Cloud DSL platform supports a static analysis for the modelled application and

also allows the deployment of cloud components to be reused [30].

2.10 An Analytical Cost-Computing Method from

Petri-nets

In Chapter 6 and Chapter 7, we propose two methods for computing the cost from the

proposed CPN models for a cloud platform executing management policies. To develop

such methods, we investigated the existing research on computing costs from Petri-nets.

These include simple and optimal cost calculations from various Petri-nets which will be

explained in the following sections.

2.10.1 The Cost Calculation Method from Petri-nets

The main cost analysis method which will be discussed in Chapter 6 is based on the

method proposed for calculating the cost through Priced Timed Petri-nets (PTPNs) and

Priced Petri-nets (PPNs). PTPNs have integer ages which represent the token creating

time. Furthermore, transition arcs are assigned with time-intervals restricting the ages

of the consumed and produced tokens. In [23], both PTPNs and PPNs are associated

with multidimensional costs for discrete transitions and places in the models. In [16, 17],

the discrete transitions are the ones that are triggered without time restriction. In both

PTPNs and PPNs, the cost of discrete transitions is based on the assigned cost vector

51

to the fired discrete transition. A PTPN has extra cost assigned to the timed transition

which depends on the cost of the marking in trace σ [23].

From a trace σ that has the following format:

σ := M0−→M1−→M2 . . .−→Mn

Such σ consists of a set of markings and includes discrete and timed transitions. In σ, the

cost of triggering a discrete transition tdisi
is defined as Cost(Mi

tdisi−→ Mi+1) := C(tdisi
).

Whilst the cost of triggering a timed transition ttimedi
is defined as Cost(Mi

ttimedi−→ Mi+1) :=∑
p∈P M(p)| ∗C(p). Thus, the overall cost of a trace σ is the sum of all the computed cost

of transitions which is defined as ∑n−1
i=0 Cost(Mi−→Mi+1) [16, 17, 23].

In Chapter 6, we applied the previously explained method for calculating the cost

and proposed alternatives suitable for the generated Coloured Petri-nets model for an

automatic cloud platform (see Chapter 6).

2.10.2 The Optimised Cost Calculation Methods

Throughout our research, we needed to compute the optimal cost from traces of execution

in CPN models of cloud platform. Therefore, a survey about computing optimal costs in

Petri-nets models was required. The research provided in [16] and [17] was concerned not

only with cost computation, but also with computing the minimal cost in both Priced

Timed Petri-nets (PTPNs) and Timed Petri-nets (TPNs). They claimed that the minimal

reachable cost may not exist for unbounded PTPNs and TPNs. Nevertheless, the minimal

cost is computable for non-negative cost values if the problem is transformed to a cost

threshold problem. The reachability graph is bounded with a set of final markings Mf ∈ F

and a vector of thresholds variables v ∈ V . Then, using the formula expressed in Section

2.10.1 such that the sum of cost values in a trace σ should be Cost(σ) 6 [V]. As a result,

52

we concluded that the optimal cost can be computed in a PTPN if it becomes bounded,

contains a set of reachable final markings, and also is associated with cost threshold

variables. However, there is no such algorithm provided in [16] or [17] for retrieving the

optimal cost from the markings, since their work only proves the existence of minimal

cost using a reachability graph.

In [85], the problem of computing of the optimal cost was investigated from a different

perspective. The objective was to develop an algorithm for computing the least cost

plan for firing a transition sequence in a labelled Petri-net. The authors considered the

reachability graph which is generated from firing labelled tasks as a trellis diagram with k

length sequence [85]. The least cost planning is estimated by using a recursive algorithm.

In [85], the reachability graph is transformed to a trellis graph. The trellis graph is a

type of a state graph, which is a tool for the representation of finite state machines as

ordered nodes based on the time occurrence of the state ([128], p.156). The algorithm

developed by Li and Hadjicotis in [85] computes the cost at each node in the trellis

graph at level i. Then, the node that has the least cost is determined at level i [85]. In

[136], the recursive algorithm proposed in [85] was modified to find the least cost resource

consumption sequence. The modified algorithm looks at transitions that have zero-cost

which can be found in some Petri-net models [136].

The recursive algorithm proposed in [85] can be useful to compute the minimal cost in

some Petri-net models. However, the algorithm would not be suitable for computing the

minimum cost from the reachability graph generated from the CPN cloud models. The

reason is that our CPN cloud model is a dynamic platform which does not have fixed

cost values along the markings. In other words, if there is a marking Ma which has the

lowest cost at leveli, this does not mean that the next followed marking at leveli+1 has

the lowest value. Therefore, in our case, we have to compute the cost along the whole set

of traces of the execution in the reachability graph in order to extract the traces which

53

include the minimum total cost [85].

Similar to the least cost recursive algorithm, [45] developed a search-based algorithm

for finding firing sequences from the initial state to the final state for a timed Petri-net

model. For that algorithm, there is an assumption that a partially generated reachability

graph is provided. The search process is guided by a heuristic function, which is based on

firing count vectors of the state equation for predicting the total cost. Since this heuristic

search exploits linear characteristics of the state equation, which contains sufficient global

information; it can efficiently generate a near-optimal or optimal solution. However, we

cannot use the heuristic search to find the optimal cost for the same reason that prevented

us from using the recursive algorithm. Nevertheless, based on the study in [45], it was

observed that the cost values in our model formulate a linear programming feature (this

will be explained in Chapter 7).

2.11 The Existing Petri-nets Models in Cloud

Petri-nets and their extensions have been used in [87] and in [68] for modelling various

aspects in cloud. Classical Petri-nets is proposed for modelling a charge model for In-

frastructure as a Service used by a cloud provider [87]. Classical Petri-nets is extended

to include a cost-profit function (CPPN). Both cost and profit are assigned as real fixed

numbers, which are applied to transitions. Cost value is computed before firing a tran-

sition whereas profit is calculated after firing a transition. A cloud provider charges the

users based on analysis of the convertibility graph. The method of analysis depends on

counting the number of activities occurring during the renting session.

On the other hand, Deterministic Stochastic Petri-nets (DSPN) is proposed in [68].

Chen and Vandenberg modelled a reconfigurable protocol stack for a control system in

the cloud. In the suggested model, DSPNs are used for analysis of the performance for an

Ethernet network in the cloud when various configurations are applied. In the model, the

54

places are mapped as network entities while protocol behaviour is modelled as transitions.

Our work is different from the work in [87, 68]. We used CPN models for analysing which

policy is suitable in terms of energy and migration costs as covered in Chapter 4, Chapter

6 and Chapter 7. Thus, our work is based on analysis and assesses policies for migration

behaviour before implementation.

2.12 Chapter Summary

In this chapter, we provided a background for technological methods and theoretical

aspects used to address the three challenges solved in this thesis. Furthermore, we also

covered reviews about the existing related works, which are essential for Chapters 3, 4,

5, 6 and 7. The reviews mainly related to automatic management architectures in large-

scale systems, the specification of rules-modelling languages, the existing domain-specific

languages in cloud platforms, some of the existing cost-analysis methods used in Petri-nets

models, and the current Petri-net models for cloud platforms.

55

56

CHAPTER 3

MP-Framework for Automatically Managed Cloud

Platform

Management policies, which are expressed by cloud managers or non-technical users, are

high-level. The continuous change in policies is based on the nature of the technical en-

vironment and changes in regulations and business requirements that the management

policies might be applied to. As a result, as stated in the introduction, there is a gap

between the level of describing management policies and executing them in an auto-

matic manner. Although the previous research in developing autonomic architecture, as

mentioned in Section 2.7 in Chapter 2, can be applied to automatically executing the

expressed management policies, the software development and maintainability for such

architectures are costly and time-consuming. This is due to the frequent modification

of such policies. Therefore, another solution to bridge that gap is to design a generic

architectural framework for executing management policies which is easily structured and

uses enhanced technologies in its implementation. Hence, in this chapter, we explain the

design of our proposed MP-Framework in detail. The MP-Framework is implemented

to become an automatic controller that can be easily plugged in and executed with any

57

cloud management system such as OpenNebula.

3.1 The Description of Management Policy Frame-

work (MP-Framework)

Management Policy Framework (MP-Framework) is a generic framework for automati-

cally triggering a management action into a cloud platform by executing various sets of

management policies. These management policies are formulated as rule-sets which are

enforced by a rule-engine that implements the Rete algorithm [49]. Examples of possible

management actions would be triggering a live-migration action for the over-loaded vir-

tual machine; notifying a cloud manager of the current status of energy consumption, or

requesting to perform a management strategy to keep the amount of energy consumed by

the nodes of the cloud platform within specified boundaries. Those management exam-

ples are extracted from our Management Energy Consumption Case Study that will be

explained in Section 3.4 in this chapter.

The design of MP-Framework is considered to be generic, fine-grained, and easy to

configure. Conceptually, the architecture of the framework is inspired by the design of

self-managing systems that utilise control theory [135] combined with a rule-based system.

These types of self-managing systems have essential components, namely a controller, a

sensor, and an actuator or effector (for more information about using control theory in

a self-managing system, see Section 2.7 in Chapter 2). Moreover, using a rule-based

system in designing MP-Framework led to construct the framework as a fine-grained

independent component. This fact becomes clear in the following section when we explain

the components of the framework in depth. Therefore, producing such features allows the

framework to be easily integrated with interfaces of any cloud management system such

as OpenNebula [105]. Thus, MP-Framework can be help to solve an energy management

58

Figure 3.1 – The architectural design of MP-Framework for executing Management Policies

problem in a cloud platform automatically. For example, MP-Framework can be used

to manage energy consumption via migrating virtual machines, which is the case study

covered in this thesis.

3.1.1 The Architectural Design of MP-Framework

Figure 3.1 illustrates the architectural design of MP-Framework which is used directly to

launch management actions by triggering the satisfied management policy. The architec-

ture consists of a policy rule-engine, sensors, actuators, and a decision-making or support-

ive component. These components should be interacting with a cloud manager through

probing and management event interfaces. The policy rule-engine is the controller of the

MP-Framework which is responsible for triggering management actions after analysing

the monitored parameters provided through the sensors of the framework. The design

of the policy rule-engine and its functionality are explained in more detail in Section 2.2

in Chapter 2. The management action selected by the policy rule-engine is executed by

a Cloud Manager that is the main part of the cloud management system. As shown in

Figure 3.1, the Cloud Manager interacts with a number of cloud components and has its

own probing components for collecting the monitored parameters, such as resource usage,

59

SLA-violation rate, and energy consumption from cloud nodes and running virtual ma-

chines at each cloud node. In addition, the Cloud Manager has its own event system that

is also responsible for triggering the action which is received from the policy rule-engine

(see Figure 3.1).

As presented in Figure 3.1, the communication between the policy rule-engine and the

Cloud Manager is accomplished by interacting with two different components, which are

a sensor and an actuator. Directly, the sensor is interlinked with the APIs of the cloud

manager through probing interfaces. The sensor of the framework is responsible for re-

questing monitored parameters that are used for applying management policy periodically.

In turn, the actuator has different types of interfaces which are called management-event

interfaces. The management-event interfaces include set management action APIs of the

Cloud Manager. The management actions APIs should directly execute the required

management action, which is received as a message from the policy rule-engine.

As seen in Figure 3.1, the MP-Framework has also an extra component which is referred

to as a decision-making or a supportive component. This additional component employs

the policy rule-engine with an enhanced functionality for making decisions. Optionally,

the supportive element can be configured to run search-based algorithms to provide the

policy rule-engine with allocation solutions. For example, the supportive component can

be set with the first-fit algorithm [64] to provide a re-allocation scheme for the migrated

virtual machine which is configured in the case study explained in Section 3.4. Eventually,

it is noticeable that MP-Framework has a centralised architecture due to the usage of a

policy rule-engine that implements the Rete algorithm for object-oriented patterns. At

the current stage, the implementation of a rule-based system such as Drools [70] has a

centralised structure. This structure allows only one interaction with the Cloud Manager

to take place at a time. However, enhancing MP-Framework to support a triggering action

in a decentralised architecture will be discussed as a future work in Chapter 8. To make

60

Figure 3.2 – The phases and the run-time execution states of MP-Framework

the MP-Framework perform automatic management, it should be executed in phases and

across a set of states. These states are explained in the following section.

3.2 The Phases and the States of MP-Framework

The MP-Framework is executed in four cyclic states: Requesting, Updating, Analysis, and

Invocation, which are presented in Figure 3.2. These specified states occur in two phases,

which are the Monitoring Phase and the Management Phase. The execution of MP-

Framework starts with the Monitoring Phase. During the Monitoring Phase, the

policy rule-engine sends a request message to the sensor to provide the rule-engine with

appropriate monitored parameters. During this period, MP-Framework is considered to

be in the Requesting Phase. During the Requesting State, MP-Framework uses different

types of rule-sets which are referred to as monitoring rules (see Subsection 4.1.1 in Chapter

4 for the definition of the monitoring rules and a sample of this scheme). The sensor of

the framework sends a message to a Cloud Manager requesting the recent values of the

monitored parameters such as resource usage and energy consumption. When the Cloud

Manager receives the message, it uses its own probes to collect the required data and send

them back to the sensor.

When the recent values of the required parameters are received, the state of MP-

Framework changes to the Updating State. During the Updating Phase, no rule-sets

61

are used. The sensor loads the recent values as a fact into the policy rule-engine. The

rule-engine uses other types of rule-sets which are called the management rule-set or

management policy (see Subsection 4.1.2 in Chapter 4 for a definition of these rules and

a sample of this scheme). At the end of the Updating State, the framework will be in the

Management Phase.

The Management Phase begins with the Analysis State. During the Analysis State,

the rule-engine uses both the management rule-set and the recent updated values of the

facts to perform the analysis process. The objective of the analysis process is to determine

the status of the running cloud component and to find the stored management policy that

should be activated. At the end of the Analysis Phase, the selected policy is loaded into

the agenda for activation. If there exists an activated policy, the framework enters the

Invocation Phase. Otherwise, the Invocation State is skipped, and the Requesting State

begins again.

During the Invocation State, the agenda begins executing the action part of the ac-

tivated policy. At the end of this state, the actuator should send action messages to

the Cloud Manager. The end of the Invocation State is an indication to end the Man-

agement Phase. As a result, the Monitoring Phase starts again after a specified waiting

time-window which is provided during the initialisation state of MP-Framework.

3.3 The Implementation of MP-Framework Using Open-

Nebula and Drools

The implementation of the architecture was done in two stages. The first stage involved

building a cloud platform and configuring OpenNebula [105]. The designed cloud plat-

form was built to include three physical nodes: a combination of two laptops and one

desktop. The laptops were a Samsung and a Sony VAIO, both of which had similar sys-

62

Figure 3.3 – The implementation of MP-Framework using OpenNebula [105] and Drools
[70]

tem properties including a 2.4 GHz Intel(R)Core(i5) processor and 6 GB Memory. The

system properties of the desktop were a 2.2 GHz Intel Core 2 Duo processor(vPro) and

4 GB Memory. All the three physical nodes ran Ubuntu version 11.0 and used KVM as a

virtualisation technology. All three nodes are connected using a TP-LINK TL-SG1005D

5-port Gigabit Switch.

To complete the implementation of a private cloud platform, we configured the Open-

Nebula management system. This was achieved by deploying and running the Open-

Nebula client on each physical node. The OpenNebula Client controls running virtual

machines by interacting with the deployed KVM manager. Due to the limited resources,

we deployed the ONED daemon as the cloud manager on the Sony laptop. ONED re-

motely interacts with cloud nodes via Remote Procedure Call (RPC) interfaces. By using

this configuration, our cloud platform testbed is considered to be a private cloud. The

purpose of this cloud platform is to provide an infrastructure-as-a-service by deploying

virtual machines used for processing computational jobs for the end-users who will possess

these images during the validation of their service-level agreements (SLAs).

63

The MP-Framework was developed using Drools technology [20, 70]. In Drools, the

domain data model and the implementation of the engine are based on an object-oriented

framework; as a result, there is a simplicity in representing the formulated rules and

data using Java classes. Furthermore, Drools can easily interact with the OpenNebula

manager. Since OpenNebula uses RPC calls, we needed only to write simple wrappers to

parse the sent/received RPC to/from Drools.

We developed the supportive component using Drools Planner (see Chapter 8 in [20]

or Chapter 7 in [70]). Drools Planner is a library which is used to solve planning problems

[20]. Since the objective with our framework is to migrate the overloaded virtual machines

to other physical nodes, the planner assists in providing a reallocation scheme for the

migrated virtual machine to the available running hosts. We configured the planner to

use first-fit decreasing [64]. The planner is used if the management policy contains a

statement invoking the supportive component, which is similar to the scheme captured

in Section 4.1 in Chapter 4. Otherwise, if the supportive component is not used, the

reallocation is done based on a scheduling algorithm configured in the ONED daemon on

the OpenNebula side.

The final stage of the implementation is to develop both the sensor and the actuator.

The sensor of the framework is developed as a software component which launches pe-

riodic requests. In our research scope, this component requests an update for values of

three monitored parameters: resource usage, energy consumption, and migration viola-

tion rate. However, other types of monitored parameters can be added and configured

by extending the monitoring APIs provided by the cloud management system. In this

research, the implemented sensor uses two types of OpenNebula monitoring APIs which

are built-in and extended monitoring OpenNebula APIs. The built-in monitoring APIs

are configured to collect the values of resource consumption, whilst the values of energy

consumption and migration SLA-violation rate (which are required in the case study and

64

will be explained in Section 3.4) are gathered using the extended monitoring OpenNebula

APIs. The following subsection will provide a detailed description of the implementation

of the extended monitoring APIs.

The implemented sensor also uses an XML parser to parse the retrieved data from

the RPC message and send data in XML-format to be loaded into the rule-engine. The

operation of the sensor component is controlled by Drools, which uses a rule-scheme

similar to the scheme presented in Section 4.1 in Chapter 4.

On the other hand, the actuator is implemented as a software component which also

sends the activated management action as a request. The actuator deals with management

action APIs, which are triggered when management messages are launched from the Drools

engine to be received by the OpenNebula manager. Furthermore, the actuator also uses

a parser to parse the management messages received from Drools and encapsulates the

messages in RPC format before directly sending them to the OpenNebula manager. The

actuator should trigger the OpenNebula migration APIs.

3.3.1 The Extension of OpenNebula Monitoring APIs

The case study used in this research depends on the values of energy consumption and

migration SLA-violation rate which cannot be provided directly via built-in OpenNebula

monitoring APIs. Therefore, we extended the OpenNebula monitoring component to

include two extra monitoring features that would be suitable for the case study explained

in Section 3.4.

Implementing Migration SLA-Violation Rate Monitoring APl

The Case Study expressed in Section 3.4 allows the running virtual machine to migrate

among the cloud nodes of the implemented testbed. Since the migration of a virtual

machine might cause a delay in delivering services [35], SLA-violation might occur. As

65

a result, we extended the OpenNebula monitor to compute the violation rate associated

with each migrated virtual machine. The computation of the violation is based on imple-

menting the following model, which is applied to each running virtual machine at each

running host in the cloud platform.

For each VMi running at each Host j:

V iolationRateMigration =
∑

MigrationT ime× Price(SLA V iolationmin) (1)

The migration time represents the time for migrating a virtual machine from the source

host to the destination host. The value of migration time is computed using the following

equation:

MigrationT ime = VMimage size

Bandwidthavailable
+ VMTimeStartup (2)

The first part of Equation 2 is extracted from the violation model proposed in [35].

Here, VMTimeStartup represents the time required for resuming the operation of the

migrated virtual machine on the destination host. This value is computed when the

acknowledgement message for the arrival migrated VM to the destination is received.

Returning to Equation 1, the parameter Price(SLA V iolationmin) represents the value

of the minimum penalty price that the cloud provider would pay in the event of SLA-

violation. We assigned the automatic triggering live-migration action to result in a vio-

lation in SLA due to the time for migration. This will have an impact on meeting the

requirements of delivering services to the cloud consumer. As a result, we assigned that

each migration of a virtual machine should use the minimum penalty price in order to

prevent the occurrence of multiple migrations of the same virtual machine.

66

Implementing Energy Consumption Monitoring API

In the case study, it was necessary to obtain the value of energy consumption. To do

so, we needed to have a hardware device plugged in to each node in the cloud platform

to measure energy consumption or use the energy measurement tool suggested in [102].

However, due to the lack of resources provided and our objective to test the applicability

of the framework in a real cloud platform, we built an energy consumption monitor that

estimates the amount of energy consumption by a server running in the testbed using

benchmark data. The implemented energy monitor is called Estimator Energy API.

The Estimator Energy API is based on using the benchmark results published by Stan-

dard Performance Evaluation Corporation (SPEC) [13]. SPEC is a non-profit organisation

that produces benchmark tools and allows hardware manufacturers to test and publish

their system performance [13]. We selected the published data for SPECpower ssj2008,

which are the results of Third Quarter 2012. We examined the hardware specification

closest to our platform configuration, namely the results published by HP data for multi-

node servers. The specification of HP data mimics the system properties of the nodes

used in our testbed (more information about SPECpower ssj2008 results can be found in

[13]). We designed a module that requests during each periodic time the workload of each

running virtual machine. Based on the current status of the workload value on each node

and using the benchmark results, we retrieved the average active power measured in watts

that matches the workload. Then, we assigned a random value to the retrieved average

active power. The obtained value would become an estimation of energy consumption for

a running node in the testbed which would be sent to the sensor of MP-Framework. This

extended energy consumption monitored API can be replaced with the suggested energy

management method suggested in [102] which depends on computing the amount of en-

ergy consumption of each running process in a virtual machine based on the workload of

a running application.

67

3.4 The Application of MP-Framework in a Case

Study

The management of energy consumption in cloud platforms using dynamic and adaptive

techniques has received considerable attention in research as in [24, 35, 95, 133]. Since the

objective of designing MP-Framework is to automate the triggering of any management

action, we applied the framework to demonstrate energy consumption management cases

that can be found in private cloud platforms. Our objective from having conducted

various experiments which include testing different set of Management Policies is a proof

of concept that the framework can be applied to govern both energy consumption and

the SLA-Violation rate in a real cloud platform. This will be explained in more detail in

the following sections. Nevertheless, a description of the case study in our research will

be presented in the following section.

3.4.1 The Description of the Energy Management Case Study

A cloud platform consists of hosting nodes and services. The services are VM images

belonging to cloud consumers of that platform. For that platform a number of proper-

ties are required to be managed automatically. One of these properties is for the daily

management of the energy consumption at each hosting node to be within certain values

with a condition that the overall amount of energy consumed by the OpenNebula testbed

is less than 5000 watts during the off-peak time. This objective can be accomplished,

for example, by specifying a management action which triggers “the live-migration for

running VMs”. The live-migration action is launched automatically when the energy con-

sumption value at a running host rises above the normal level which is between 100 watts

and 135 watts. In addition, there is also another property that should be considered,

which is the SLA-violation rate of the migrated virtual machine. This rate should also

68

be kept at a minimum, not exceeding an overall £7.0 for the whole platform during the

off-peak time.

Assumptions: We defined a number of assumptions for simplifying the implemen-

tation of the Energy Consumption Management Scenario. Firstly, we assumed that the

measurement of resource consumption for each physical host and running virtual machine

would be based on the average percentage of both CPU usage and memory usage. Sec-

ondly, the cloud platform uses the same virtualisation software. The objective is to reduce

the complexity of the virtual machine migration operation and to avoid software incom-

patibility issues. Therefore, the cloud platform used in the case study has a homogeneous

infrastructure. The final assumption is that there are no rules to restrict the migration

operation of virtual machines. This is to simplify our explanation and does not affect the

generality of our method.

The Required Monitored Parameters

Various monitored metrics are used as constraints for specifying the used management

policies. The defined monitored parameters which can be represented as an extension

of the fixed utilisation thresholds proposed in [35], are configured in the management

policies subjectively. In other words, the threshold values for monitored parameters will

be assigned by the cloud consumer during the design stage. Thus, the definition of each

monitored parameter is as follows:

1. Resource Consumption is the value of CPU usage and memory usage for each

single host in the cloud platform.

2. Energy Consumption is the amount of power consumption at each running server

in the cloud platform.

3. Migration SLA-Violation Rate is the degree of violation rate which is associated

with the VM as a result of triggering a migration action.

69

Suggested Policy Conditions For Each Running Host Management Actions

Management Policy A Energy-Consumption 6 100 watts or
Energy-Consumption > 135 watts

CPU-Usage 6 20% or CPU-Usage > 50%

Migrate a small-size Vir-
tual Machine to Normal-loaded
Hosts

Switch-off Lower-loaded that
do not run any Virtual Ma-
chines

Management Policy B Energy Consumption 6 100 watts or
Energy-Consumption > 135 watts

CPU Usage 6 20% or CPU Usage > 70%

Migrate if possible a small-
size Virtual Machine to any
available host

Management Policy C Energy Consumption 6 100 watts or

Energy-Consumption > 135 watts
CPU Usage > 50%

Migrate a small-size virtual
machine running on Lower-
loaded hosts to Normal-loaded
hosts

Management Policy D Energy Consumption 6 100 watts or
Energy-Consumption > 135 watts

CPU Usage 6 20% or CPU Usage > 50%

Migrate a small-size virtual
machine running to any
available hosts for CPU Usage
more than 50% and Change
VM image configuration to
use lower configuration for
CPU Usage less than 20%

Table 3.1 – The Suggested Management Policies Executed in OpenNebula and Drools
Testbed and Demonstrating an Automatic Management in Energy Manage-
ment Case Study

3.4.2 The Suggested Management Policies

In order to manage energy consumption, a set of management policies should be run

during the off-peak time. We extracted four different management rules from [26] and

[92] and modified these rules to be appropriate for execution in MP-Framework and to

match the requirements of the previously mentioned case study. Table 3.1 presents these

management policies. In Table 3.1, we have stated four types of policies. These policies

are Management Policy A, Management Policy B, Management Policy C and Manage-

ment Policy D. Each of these policies should trigger a different set of management actions.

These actions are Migration virtual machines, switching off idle hosts or reconfiguration

of services to use lower resources. The management actions are triggered as a response

to the continuous measurement of the amount of Energy Consumption and the level of

CPU Usage from the running cloud platform. Triggering management actions is based

70

CPU Memory Image Type
Group A 2 1GB Ubuntu 10.04Desktop.img
Group B 2 500MB Ubuntu 10.04Desktop.img

Table 3.2 – Different Virtual Machine Images Used in OpenNebula and Drools Testbed

on specifying which running hosts in cloud platform have either above or lower levels of

Energy Consumption within the allowed threshold values. In addition, the firing manage-

ment action also depends on keeping the amount of Energy Consumption and the level of

CPU Usage within defined normal thresholds. The defined normal thresholds for Energy

Consumption should be between 100 watts and 135 watts. Whilst the normal level of

CPU Usage varies as shown in Table 3.1. Each management policies defined in Table 3.1

is used to test each running physical hosing node in our cloud platform. For example,

Management Policy A states that If any running host in cloud-platform has an amount

of Energy Consumption either at most more than 135 watts or less than 100 watts and

that host is either overloaded or lower-loaded, then migrate any small size virtual machine

for that host to any available normal loaded host. Furthermore, switch off if possible the

lower-loaded hosts that have no running virtual machines.

3.4.3 Executing the Management Policies in OpenNebula and

Drools Testbed

Before executing each management policy suggested in Table 3.1, we configured the plat-

form to run a fixed number of virtual machines during the execution time for running the

management policies. The configured virtual machines belong to two different sets of VM

images, namely Group A and Group B virtual images. The overall number of running

virtual machines was 21. Table 3.2 presents the specification of the groups. Furthermore,

the total number of rules assigned to each management policy was 6 rules and the to-

tal number of facts inside each management policy was 33 objects. Each group of VM

71

images is configured to run stress [7, 57] during its execution time. Stress is a workload

generator tool for LINUX systems used to randomly change CPU, memory, I/O and disk

properties [7, 57]. The Stress tool generates the workloads by creating a number of worker

processes and terminating them randomly [7, 57]. As a result, the value of CPU usage for

each running virtual machine would vary when using the stress workload generator every

ten minutes of execution. We configured the stress load generator to assign a random

workload pattern to each running virtual machine during the execution of each manage-

ment policy. Furthermore, the generated workload pattern used during the execution of

Management Policy A is captured and used in the remaining management policies. Using

a similar workload pattern allows us to identify which executed management policy is

better in terms of having less energy consumption and a lower migration SLA-violation

rate.

During the execution of policies explained in Table 3.1, we aimed to ensure that all the

policies were running successfully and correctly in the OpenNebula and Drools testbed

for nine hours with nine repetitions. We conducted the execution for nine hours since

each management policy used in the case study should be applied during the off-peak

time. As a result, we intended to closely simulate the situation in real scenarios. Dur-

ing the execution, we examined whether MP-Framework has the ability to achieve this

energy management objective: [The overall Energy Consumption by OpenNebula and

Drools Testbed should be less than 5000 watts after nine-hours]. Moreover, during the

execution, we also observed the number of triggered management actions, whether VM

live-migration or reconfiguration actions, performed correctly by the OpenNebula and

Drools Testbed. Repeating each conducted experiment up to 100 times can provide con-

cise results. However, we tested our framework in a real cloud environment which was

a stable platform for nine-hours without stopping. Therefore, we repeated the execution

for each policy only nine times. We would expect that the results would not make an

72

unacceptable change when using the same configuration and using a similar number of

Management Policies. However, if the configurations are used for a large scale platform

with introduction to another set of policies, the results might change. This was beyond

the scope of the conducted experiment since our aim is a proof of concept for having a

framework that manages a platform using policies translated as rules. The results of the

execution are discussed in the following section.

3.4.4 Results and Discussion

Figures 3.4 and 3.5 present the overall average of the amount of energy consumption and

the cost of SLA-violation rate caused by triggering a live-migration action. We analysed

both figures to identify the executed management policy that made the OpenNebula and

Drools testbed successfully apply automatic management with the least energy consump-

tion during nine hours. Since the experiment was repeated nine times, the difference in

the obtained results from each execution was relativity small:5%-7.5%. Therefore, we

obtained the overall average of the all nine executions and present them in Figures 3.4

and 3.5. The following subsections will offer a detailed discussion of the results obtained.

In the figures, we focused on justifying why there was a difference in the amount of energy

consumption obtained from each executed policy. In addition, we also traced the cost of

SLA-Violation assoicated with each time the migration of virtual machine occurred in the

testbed.

Analysis the Results in Terms of Energy Consumption

Figure 3.4 presents the overall amount of energy consumption from running OpenNebula

and Drools testbed during the execution of each management policy mentioned in Table

3.1. Those figures are obtained after repeating nine times. As seen in Sub-Figure 3.4(a)

the overall amount of energy consumed while executing Management Policy A is between

300 watts and 400 watts. In particular, if we focused on the period from the fifth hour

73

of executing this policy until the end of the execution time, the overall energy consump-

tion remained steady at approximately 300 watts. As a result, when applying a set of

management actions such as the actions used in Management Policy A (see Table 3.1) as

well as having a platform receiving random workloads as explained in Subsection 3.4.3,

the amount of energy consumption remained within limited boundaries as presented in

Sub-Figure 3.4(a).

On the other hand, as shown in Sub-Figure 3.4(b) the overall average of energy con-

sumption at the running testbed during the execution of Management Policy B was 420

watts - 460 watts approximately. The amount of energy fluctuated considerably during

the nine hours. We noticed that a platform applying Management Policy B consumed

more energy than the one that implements Management Policy A. To justify that, Man-

agement Policy A allows the migration within thresholds which are between 50% and 20%

and also permits switching off idle hosts as a second action. These threshold values are

considerably less than the ones specified in Management Policy B.

Looking again to Sub-Figure 3.4(c), the overall average energy consumption in the

running testbed was stable throughout most of the hours of the execution. The stable

values were roughly between 407 watts and 410 watts between the second and the fifth

hour. However, the amount decreased to less than the values recorded in Sub-Figure

3.4(c) during the execution of similar hours. Management Policy C recorded lower energy

consumption values than Management Policy B because of the usage of a single threshold.

In contrast, Management Policy B allowed the migration action to be triggered when CPU

usage for each running host was either above or below the upper and the lower specified

values (see Table 3.1).

As shown in Table 3.1 Management Policy D has two types of management actions,

namely those triggering live-migration and resource reconfiguration actions. Triggering

two different management actions was reflected in the values of energy consumption,

74

which are shown in Sub-Figure 3.4(d). In Sub-Figure 3.4(d), the overall amount of energy

consumption began with 390 watts before the values increased. It is noticeable that

Management Policy D consumed slightly more energy than Management Policy C during

the execution of the second and the third hours. However, between the fifth hour and

the ninth hour of executing Management Policy D, the values of energy consumption

increased at a steady rate of about 400 watts.

(a) The values of Energy Consumption of Man-
agement Policy A

(b) The values of Energy Consumption of Man-
agement Policy B

(c) The values of Energy Consumption of Man-
agement Policy C

(d) The values of Energy Consumption of Man-
agement Policy D

Figure 3.4 – The overall average amount of Energy Consumption recorded in OpenNebula
and Drools Testbed during the execution of Management Policies mentioned
in Table 3.1 for nine hours with nine repetitions

75

Analysis the Results in Terms of the Cost of SLA-Violation

Executing management policies not only has an effect on the amount of energy con-

sumption but there is also a cost property associated with the frequent triggering of

live-migration actions. This cost property is the cost of SLA-violation caused by trig-

gering live-migration action which it is important to investigate in our research. There

is another cost property, triggering a reconfiguration action, which was ignored in our

research because it was applied only in Management Policy D. In addition, the reconfig-

uration management action was triggered only when the CPU-load was low. Therefore,

Figure 3.5 depicts the cost of SLA-violation resulting from the frequent triggering of live-

migration actions during the execution of management policies mentioned in Subsection

3.4.2.

As shown in Sub-Figure 3.5(a) the cost of SLA-violation in a platform that executes

Management Policy A caused by firing live-migration actions increased because that mi-

gration action occurred no more than twice in an hour. On the other hand, we noticed

that the SLA-violation rate caused by triggering a migration action in a platform exe-

cuting Management Policy B, which is presented in Sub-Figure 3.5(b), was lower than

the SLA-violation values of Management Policy A. Due to the increase in value of the

upper-bound of the specified threshold used in Management Policy B (see Table 3.1),

the number of live-migration actions in each hour was considerably lower than similar

triggered actions in Management Policy A. Thus, Management Policy B has a lower SLA-

violation rate than Management Policy A (for more details about the number of triggered

migration actions, see Sub-Figure 3.6(c)).

Similar to the reason for controlling the cost of SLA-violation values in Management

Policy B, the cost of SLA-violation rate recorded during the execution of Management

Policy C considerably increased at a rate close to the rate of Management Policy B. These

76

values were relatively lower than the values achieved by Management Policy A. Similar

to the figures presented obtained from Management Policy B and Management Policy C,

the values of the cost of SLA-violation for also Management Policy D were lower than

the cost of SLA-violation for Management Policy A (See Sub-Figures 3.5(c) and 3.5(d)).

This is due to the lower frequency of firing migration actions during the execution of

Management Policy C, which occurred only when the CPU usage was above 50%.

(a) The SLA-Violation Cost of Management
Policy A

(b) The SLA-Violation Cost of Management
Policy B

(c) The SLA-Violation Cost of Management
Policy C

(d) The SLA-Violation Cost of Management
Policy D

Figure 3.5 – The average cost of SLA-violation caused by triggering migration-action dur-
ing the execution of management policies mentioned in Table 3.1 in Open-
Nebula and Drools testbed for nine hours with nine repetitions

77

The Overall Analysis for the Results Obtained and The Response Time

Figure 3.6 shows the averages of the total amount of energy consumed, the total cost

of SLA-violation, and the number of successful occurrences of management action for

each of the demonstrated management policy after executing them for nine hours using

loads generated from Stress tool [7]. From Sub-Figure 3.6(a), it is clear that Management

Policy A had the lowest amount of energy consumption, whilst both Management Policy B

and Management Policy C had the highest amount of energy consumption. Management

Policy D had an energy consumption value which was less than the values of Management

Policy B and Management Policy C. However, this value was not less than the amount of

energy consumption of Management Policy A. These various energy consumption values

resulted from the use of different threshold values and triggering various management

actions.

Moreover, we computed the overall total costs of SLA-violation rates, which are shown

in Sub-Figure 3.6(b). As presented in this figure, the cost of the SLA-violation rate of

Management Policy A was the highest amongst the other management policies, which

all had similar SLA-violation costs. This result occurred because Management Policy A

had the highest number of migration actions with 13 (see Sub-Figure 3.6(c)). In contrast,

Management Policy D recorded the lowest number of live-migration actions with only 5

during its execution time. Management Policy B and Management Policy C had similar

live-migration actions with 9 times and 10 times, respectively.

3.4.5 The Response Time for the Policy-Rule Engine

The response times for the Drools rule engine and the Drools Planner, the main com-

ponents of the MP-Framework, were measured during the execution for 9 hours for each

running management policy. Since the rule engine has about three rules for each running

management policy, the pattern-matching time was measured, along with the time of ex-

78

(a) The total amount of Energy Con-
sumption

(b) The total cost of SLA-Violation

(c) The occurrence number of live-migration action for all executed
Management Policies

Figure 3.6 – The total amount of energy consumption, the total cost of SLA-violation,
and the number of occurrences of management actions for each management
policy executed in OpenNebula and Drools Testbed after nine hours

79

ecuting the first-fit algorithm implemented using Drools Solver. The detailed results for

the policy response time are presented in Figure 3.7. Figure 3.7(a) shows that over 9 hours

while the framework received similar inputs applied during experimental executions of all

management policies, the average for the overall time response of the policy rule engines

was between 30 and 37 milliseconds (ms). During the execution, the time increased in

relatively small patterns . The overall policy response time results from the accumulation

of the average response time records for executing Drools Planner and the Drools engine

over 9 hours.

As shown in Figure 3.7(a) the average response time for Drools Planner implementing

the First-Fit algorithm was between 19 ms and 21 ms. The values increased steadily

because of the increased number of virtual machines that should be migrated, which

needed to be allocated. In contrast, the response time of the rule engine was between

13 ms and 15 ms due to the fixed number of rules used for each running management

policy. Overall, the results for the response time of the policy-rule engine are presented in

Figure 3.7(b). At the end of the executions, the average response times of Drools Planner,

the rule engine and the policy-framework were approximately 20 ms, 14 ms and 34 ms,

respectively.

To summarise, based on the results obtained, MP-Framework is able to perform suc-

cessfully the automatic management of energy consumption. This was shown through

demonstrating various types of management policies (See Table 3.1). It was noticed that

the overall amount of energy consumption for each management policy was less than 5000

watts over nine hours. However, the amount of energy consumption could be changed

when various types of workloads are used. The average response time for the policy rule

engines for all tested management policies was 34 ms. Moreover, we noticed that the

migrating time for successfully moving a virtual machine between nodes is between 5

minutes and 7 minutes approximately. The delays for finishing the management action

80

(a) The Detailed Results Over 9 Hours

(b) The Average Response Time for The Policy-Rule
Engine

Figure 3.7 – The results of the response time for the policy rule engine including (Drools-
Engine and Drools Planners) for all running management policies for nine-
hours

81

were not because of the design of MP-Framework; rather, they depended on other factors

related to the implementation of MP-Framework such as the network speed, the size of the

virtual machine, and the cloud management system used. As a result, a virtual machine

that runs critical jobs or has a higher migrating rate should be restricted from multiple

migration actions. Therefore, it is preferable to define a set of logical constraints for the

running virtual machines which also can be specified in SLA before executing them and

running them in MP-Framework. Allowing this feature can contribute to reducing the

SLA-violation rate.

3.5 A Brief Discussion

In [126], the performance of Drools when deployed into one server running 1000 rules

was nearly 1.4 seconds. This value increases to 31.2 seconds when the number of rules is

100,000. OpenNebula, the cloud management system used in our research, can manage

up to 500 servers [105]. The response time of the MP-Framework could be affected by

the number of the servers used, the deployed virtual machines and the time for triggering

management actions. As mentioned in the previous section, the migration time of the

virtual machine in our testbed was 5 to 7 minutes. If we compare that time in the data

centre with highly efficient servers, as well as network communications, the migration

time might be reduced.

In this chapter, we showed that the framework governs a small-scale cloud platform.

However, for medium-sized cloud platforms, we suggest making an alteration to the

method of deployment of the MP-Framework. This would involve duplicating the frame-

work to be deployed to multiple cloud managers and separating cloud managers into clus-

ters for increasing the scalability of the framework. Then, a communication channel should

be opened between the deployed automatic controllers. All automatic controllers can exe-

cute either similar or different management policies based on the requirements of the data

82

centre. Furthermore, the deployed automatic controllers need to have global knowledge

about the overall data centre environment. Such an architecture deployment model opens

new challenges in transforming the MP-Framework to apply to semi-decentralised or fully

decentralised data centres. These challenges are beyond the scope of our research, and

one researcher in our team has started investigating issues of duplicating the policy-rule

engines. The focus in this thesis was on bridging the gap between the level of describing

management policies related to control energy and implementation of the policies. In

this section, we pointed out issues which might be found in large-scale data centres to

show that we are aware that possible modification might be required for integration of

the framework to make it executable for data centres with more than 500 or 1000 servers.

3.6 Chapter Summary

In this chapter, we proposed MP-Framework for triggering management actions into a

cloud platform automatically. MP-Framework implements management policies described

by cloud users during the design stage. The policy rule-engine is the main and most

important component used in designing the framework. To show that the design of

MP-Framework is applicable, the framework is implemented to govern the execution of

triggering a live-migration of virtual machines and a reconfiguration of assigned resources

for virtual machines. The implementation was used OpenNebula and Drools technologies

and was applied in the Management Energy Consumption Case Study.

The cloud users can use MP-Framework to create an automated cloud platform that

can do any automatic management scenario. Since MP-Framework depends on a policy

rule-engine for triggering actions, cloud domain experts should specify a management

policy that is mapped as a rule-set. In the next chapter, we will discuss the specification

of management policies in the rule language in more detail.

83

84

CHAPTER 4

The Specification of Management Policies

In Chapter 3, we presented a framework for creating an automated cloud platform for

energy management. The main aim was to provide the platform with the capability of

responding to current changes with an effective management action. The management

strategy executed in a cloud platform can be stored in a rule-based engine as a set of

management policies. At the current stage, the challenge is how this set of management

policies can be written as a rule-scheme using a rule language such as Drools. As a result,

there is a requirement to formulate a generic scheme for specifying the two different rule-

sets used in MP-Framework in the Drools Language.

Moreover, in our research context, management policies are an interpretation of a

management objective assigned by cloud domain experts. Therefore, another dimension

that is covered in this section is related to providing a method of describing management

policies during development phases. This method is concerned with describing manage-

ment policies at the authoring phase using a DSL and formulating the executable form of

management policy into a rule language at the implementation level.

As a consequence, in this chapter, we will discuss in detail the management poli-

cies by outlining a process of designing such policies before they become executable in

85

MP-Framework. Furthermore, we will explain the classification and specification of man-

agement policies into an executable rule-scheme. We used the produced specification in

designing management policies meta-model to develop a DSL called CloudMPL which

is used for describing management policies at an early stage. The process of designing

the language resulted from collaborating with researchers from Brazil and Aston Uni-

versity in Birmingham. Moreover, the specification of executable management policies

proposed in this chapter is also applied in generating a conceptual mapping of rules from

the CloudMPL to an executable rule language such as Drools. Both the specification of

management policies and CloudMPL are applied to the Energy Management Case Study

explained in Chapter 3 and Chapter 5.

4.1 The Generic Expression of the Rule Scheme Used

in MP-Framework

As explained in Chapter 3, MP-Framework requires rules to be written in a certain struc-

ture. Section 3.2 in Chapter 3 described how the framework runs into phases which are

monitoring and management phases. Each phase executes two different schemes written

in a rule language such as Drools Rule Language [70]. The first scheme consists of a set of

rules that are called monitoring rules. The functionality of the monitoring rules is to trig-

ger the sensor of MP-Framework periodically. The second scheme includes a set of rules

which are referred to as management rules or management rule-sets. The management

rule-set is essential and must be carefully designed and developed. The management

rules are those used by the policy rule-engine for executing the management action in

MP-Framework.

During our design, we concluded that the expression of both monitoring rules and

management rules are similar to production rules according to the specification of the

UML-based Rule Modelling Language (URML) [112, 113]. Therefore, we are going to

86

present a general expression for writing monitoring rules as well as management rules as

UML activity diagrams for clarifying the structure of rules and for easily mapping high-

level specified rules to a declarative rule-language, such as the Drools Language [70].

4.1.1 The General Expression of Monitoring Rules

A monitoring rule is a type of a production rule [112, 113] that triggers a set of action

expressions for updating the setting of the sensor of MP-Framework. The rule structure

of a monitoring rule includes definitions of event messages, which will be inserted as facts

into the policy rule-engine of MP-Framework. Event facts are used in the statements of

rule conditions; they state which parameters are required to be monitored by the sensor.

We refer to events as monitoring events. For example, an off-time peak message and

workload message can be considered as monitoring events in our Management Energy

Consumption case study.

Figure 4.1 shows a UML activity diagram followed by the rule language for expressing

a monitoring rule. We demonstrate one of the monitoring rules used in the Energy

Management Case Study explained in Section 3.4.1 in Chapter 3. The diagram starts

with a representation for monitoring events, which are an off-time peak message and a

workload message. A branch maps a rule condition statement to check the time and

workload values. The assertive arrow leads to the rule action part, which contains an

invocation message to tell us which state to monitor, how long monitoring will last, and

when to report the values to the policy rule-engine in MP-Framework.

4.1.2 The General Expression of Management Rules

A management rule is a kind of a production rule [112, 113] which consists of a set of

conditions and post conditions. The outcome from triggering the management rule is to

execute a set of action expressions (i.e. management actions in our research context) that

87

Figure 4.1 – UML activity diagram and Drools language for structuring a sample of mon-
itoring rules used in the case study mentioned in Chapter 3

change the state of the cloud platform. The condition statement of the management rule

uses the reported monitored data, which are denoted as required data, and constraint

values. An example of the required data are energy consumption, workload, and resource

consumption values.

Depicted in Figure 4.2 is a UML activity diagram and Drools Language representation

for one management rule expressed in Section 3.4.2 in Chapter 3. The rule starts by

using the required data, which are the energy consumption measured in watts and the

percentage of workload on hosts in the cloud platform. The assertive arrow leads to the

rule consequence part, which consists of two sequential invocation management actions,

which are VM migration and switching-off idle hosts. These messages are sent to the

actuator of MP-Framework (see Figure 4.2).

88

Figure 4.2 – UML activity diagram and Drools language for structuring a sample of man-
agement rules used in the case study mentioned in Chapter 3

4.2 The Definition and the Process of Designing Man-

agement Policies

Management policies are a set of compact statements which are expressed in the form of

“if/then” sentences. These combined statements should be executed together to achieve

a certain management objective assigned by cloud domain experts. Management policies

should be easily translated into rule-sets written in a rule language in order to be executed

in the proposed framework explained in Chapter 3 or similar frameworks as in [91] and

[92]. We refer to the executable rule-sets as Executable Management Policies and similar

policies written in “if/then” sentences as Expressed Management Policies. An example of

Executable Management Policies is the rule-set explained in Figure 4.2.

For designing management policies and deploying them as a set of Executable Man-

89

Figure 4.3 – The phases and roles of designing management policies and integrating them
in MP-Framework inspired by the model of designing Business Rules pub-
lished by IBM in [10]

agement Policies, there are a few steps which are defined and assigned to different roles.

These steps are inspired by the model proposed by IBM for designing and integrating

business rules using ILOG JRules Business Rule Management System [10]. A business

rule as defined by Ian Graham is “a compact, atomic, well-formed, declarative statement

about an aspect of a business that can be expressed in terms that can be directly related

to the business and its collaborators, using simple unambiguous language” [60]. An ex-

ample of a business rule is “ if the Cloud Physical Host is idle and the time is night then

Switch-Off Cloud Host”. This example follows one of the defined pattern of business rules

which is If X happens then do action Y [60].

In [10], the development of business rules involves a series of synchronised and cyclic

steps which are performed by various roles. The first grouped steps for designing business

rules are Authoring, Reviewing and Validating, which can be performed by business users

such as Business Analysts, System Architects, Business Managers and Administrators [10].

Whilst the second grouped phases are Integrating, Monitoring and Auditing, the expressed

business rules are accomplished by Developers [10]. We used previously mentioned steps

and roles for defining the process of designing management policies. From the definition

90

of management policies, we noticed that the forms of describing such policies, which are

‘if/then’ statements, are close to the specification of business rules as stated in [10]. Thus,

in Figure 4.3, we presented the phases and the possible roles for designing management

policies by integrating some elements from [10].

As shown in Figure 4.3, the process of designing management policies consists of three

stages: the definition of management objectives; designing management policies, and

deployment of executable management policies. Each stage of designing management

policies is assigned to a different role as shown in Figure 4.3. In our research context, we

refer to them as cloud domain experts who may have a little knowledge about a rule-based

system. The cloud domain experts can be Business Managers, or System Architects, or

Policy Managers (see Figure 4.3).

During the first step, which is the definition of management objectives, as shown

in Figure 4.3, cloud domain experts assign a set of management objectives or a single

management objective which can be achieved. An example of an objective would be as

follows:

• The daily amount of energy consumption by the running platform must not exceed

5000 watts, and the amount of overall SLA-violation produced by running all services

must not exceed £ 20.

The example above shows that the main objective is to keep both the amount of energy

consumption and SLA-violation to a minimum rate. After the management objectives are

defined, a series of synchronised and cyclic stages starts. At the authoring stage, cloud

domain experts describe a possible set of management policies using both the objective

definitions and the cloud platform domain model (the infrastructure of the cloud plat-

form). System Architects define the essential parameters required to be monitored and a

management action or a set of management actions that should be triggered (see Figure

4.3). Following that step, cloud-domain experts (System Architects or Policy Managers)

91

also formulate a set of management policies using the defined monitored parameter(s) and

management action(s). These policies can be written in simple plain English sentences

which are “if/then” sentences. As a result, the defined objective(s) become Expressed

Management Policies. To avoid any complexity that might be raised during the process

of authoring policies, note that cloud-domain experts might not be experts in rules and

rule-engines, but they should have a little knowledge about them. At the current step of

the research, cloud-domain experts would write policies in natural language. However, in

Section 4.4, we will discuss the design and the development of a DSL which can be used to

describe policies at the authoring stage. The designed DSL was a result of collaborating

with experts in design language(s).

During the management policies deployment step, the Expressed Management Poli-

cies, which were specified by cloud-domain experts, are encoded using an executable rule

language such as Drools Language [70] to generate Executable Management Policies. Rule

developers will take the role of mapping the written management policies in plain English

to a rule language using the management policies meta-model and the model of the cloud

platform which is referred to as the cloud platform domain model (both the management

policies meta-model and the cloud platform domain model will be explained in the follow-

ing sections). Following that step, developers integrate Executable Management Policies

into MP-Framework. In order to accomplish this step, we assume that MP-Framework is

created and configured to be running using any existing cloud-management system such

as OpenNebula [105] which was explained in detail in Chapter 3. After the policies are

executed in MP-Framework, the cloud platform is monitored and reviewed. The process

requires both cloud domain experts and developers to evaluate the effectiveness of using

the defined policies to reach the main management objectives assigned earlier. Therefore,

we made the synchronisation and the repetition arrows in Figure 4.3.

92

4.2.1 The Classification of Management Policies

In [79], Kipp et al. provide a classification for collective green measurements and metrics

used in a data centre. Particularly, such a classification is useful for building systems that

are energy-aware. For a data centre, management can be viewed using either technical

or organisational aspects or both. Management using technical parameters is related to

the level of data centre’s nodes and running applications such as (Resource Usage and

Energy Consumption)[79]. On the other hand, management using organizational metrics

considers economical, geographical and environmental aspects of the data centre [79].

Based on such a classification, we categorise the management policies which are related

to governing energy consumption in a cloud-platform at low and high levels. Such a divi-

sion targets different levels that might be found in the cloud platform. This classification

can simplify the representation of management policies at the authoring and the deploy-

ment stages. Furthermore, the classification can assist us in creating the UML meta-model

for describing a management policy which will be explained in the next section. Thus,

our automatic energy management meta-model is based on a review of the existing work

in a cloud-based automatic management architecture (see Chapter 2, Section 2.7); the

management rules specified in [26, 92] and the classification suggested in [79]. Before pre-

senting the meta-model for formulating management policies, an explanation of low-level

and high-level management policies is covered in the following subsections.

Low-level Management Policies

Low-level or constraint-based policies use threshold rule schemes similar to the one ex-

plained in Figure 4.2. Such policies create an automatic management in a cloud platform

which depends only on technical views. In other words, the measurable attributes of such

policies are directly related to the platform parameters. For instance, these parameters

can be resource usages such as CPU, memory, bandwidth, disk, and I/O, the cost of those

93

resources, SLA-violation rate, or the amount of workload [79]. For such policies, the con-

ditions of the policy can be composed of either a single or two threshold values which use

comparative expressions, as will be shown in Section 4.3.1. The threshold values for both

single and two threshold values can be assigned by cloud-domain experts. The possible

action that might be triggered can be any management action defined by cloud-domain

experts. An example of a management policy which uses only low-level attributes of the

cloud platform is as follows:

1. RuleSet 1:

When Violation Rate is High or CPU Usage is High or CPU Usage is Low

then Migrate Smallest VM Running in Host

This example is one of the advanced rule-sets used in the Energy Management Case Study

mentioned in Chapter 5 in Section 5.1.

High-level Management Policies

The second type of policies are high-level; they deal with management from an orga-

nizational perspective. Such a view can be directly related to cloud consumers or the

enterprises that own the cloud services. Executing services in a cloud-platform not only

has an economic impact (revenues and costs) on cloud users, but also has an environmen-

tal effect which is related to the amount of CO2 emission produced by data centres that

belong to a cloud consumer [79] (see the energy consumption figures of cloud-data centres

in [129]). In our research, we applied the automatic management to use only one metric

related to the organisational aspect. This metric is the impact on the cost of energy

consumption based on changes in the time-zone and the geographical location of running

services in the cloud platform. Such a metric will be used to formulate time-based and

location-based policies. However, the other organisational aspect mentioned in [79] such

as the economic view can follow a similar scheme using different measurable parameters

94

and sensor interfaces. Thus, high-level policies can be extend to include features that

are beneficial to the cloud consumers. For example, management policies that look at

management from the economic view would have an Executable Management Policy that

includes the concept of revenue or profit and uses a cost model for running services.

Similarly to the low-level policy, the conditions of the high-level policy might include

single or two thresholds. However, the expression of the conditions of such a policy will be

different and use operators different from the ones used in conditions of a low-level policy.

The differences will be clarified when the management policy meta-model is explained in

Section 4.3. The following management policy is an example of a time-based policy which

is extracted from the case study mentioned in Chapter 5 Section 5.1.

1. RuleSet 2: (Applied between Private Hosts)

When Private Host(x) can accept Migrated VM and Time is after 16.00 until 7.00

and Private Host(y) can migrate VM

then Allow only one VM to be migrated between Private Host(x) and Private Host(y)

every ∆time.

4.3 The Management Policies Meta-Model for Exe-

cutable Rule Language

One of the challenges is creating an UML meta-model for formulating management poli-

cies. This is because we want to have a model which is enriched with enough operators,

vocabularies, and expressions so that it can be used to formulate various sets of policies.

The produced UML meta-model for management policy is based on the existing meta-

model of URML [112]. The URML meta-model includes a specification for modelling

production rules which is one type of modelled rules [112]. We noticed that the rule

scheme generated from using the specification of production rules is close to the scheme

95

for the management rule shown in Figure 4.2. Thus, any management policy (low-level

and high-level policies) can be modelled as a production rule.

Figure 4.4 is an abstract meta-model for modelling a management policy. Each man-

agement policy should have a cloud platform domain model. The cloud platform domain

model in Figure 4.4 is the one used in the advanced Energy Management Case Study

explained in Section 5.2 in Chapter 5. This cloud platform domain model focuses on a

target host and its set of monitored parameters. The target host has a set of running

virtual machines which can be migrated during its life-cycle (for more explanation about

this domain model, see Section 5.2 in Chapter 5). As presented in Figure 4.4, any man-

agement policy is encoded as a special form of production rule (more information about

the productions rules can be found in [112] and [113]). These production rules follow a

defined specification for formulating both condition and action parts in a rule language

which can be applied to either Drools [70] or JRules [69]. Each production rule is com-

posed of a set of conditions and a set of actions. The condition part of the rule can have

none or more post conditions as well as a condition. This means that each management

policy must have at least one condition.

Conversely, the production rule must have an action expression. The action expres-

sion is a statement that would be executed if its conditions are satisfied. The action

expression can be of two types: InvocationActionExpr or AssignVariableExpr. The In-

vocationActionExpr is the statement that invokes an operation or a function. Here, the

InvocationActionExpr can use the operations of the cloud manager which are shown in

Figure 4.4. The AssignVariableExpr is a statement that would set the required variables

such as the values of monitored parameters with numerical or real values.

In the following sections, we will discuss the specification for formulating conditions

and action parts for a policy in an executable rule language. The specification includes

the meta-model for conditions, the classification for operators used in conditions, and a

96

Figure 4.4 – The abstract UML meta-model for describing management policies

Expression <property:> <operator:> <value expr:>
Constraints-1: monitorable prams Comparison DataTerm
Constraints-2: monitorable pram

status
Level Specification DataTerm

SelectTargetHost: id or name TargetHost Selection DataTerm
TargetHost Location: location Location DataTerm
TargetHostTime: current time status Time ObjectTerm

Table 4.1 – The Syntax for Conditional Expressions for a Management Policy

description of the actions used by a management policy.

4.3.1 Conditions Meta-Model for a Management Policy

Conditions for a management policy can be expressed through the meta-model presented

in Figure 4.5 which was inspired by the URML meta-model [112]. This meta-model

resulted from our classification for general rules used for management purposes in cloud

platforms mentioned in Section 4.2.1. Particularly, we used constraint-based policies,

time-based policies, and location-based policies.

In Figure 4.5, a single condition in a management policy is a Boolean expression

97

Figure 4.5 – The meta-model for conditions (low-level and high-level conditions) of a man-
agement policy in rule language (Drools and JRules)

which can be composed with other conditions by using composition operators. From

the URML rule meta-model [112], we extracted some elements for modelling various

conditions. These elements are Term, DataTerm, ObjectTerm, uml property, and Object

Variable [112].

In Figure 4.5, the conditional expressions are classified into five types. Each ex-

pression in the condition meta-model uses a property. The property is extracted from

the target host that is running in a cloud platform. In addition, each expression also

has a value expr which might be of the following types: Data Term, Object Term, or

uml property. Furthermore, suitable operators are grouped to match each conditional

expression type. Figure 4.6 presents the operators. Thus, referring to Figure 4.5 and

Figure 4.6, each conditional expression and its syntax are explained as follows:

1. ConstraintsExpr or Low-level Condition: a comparative condition used to

compare monitorable parameters against a specified threshold value or to specify

the status of the monitorable parameters. Examples of monitorable parameters are

CPU Usage, Violation Percentage and Energy Consumption. ConstraintsExpr has

two different syntaxes, which are presented in Table 4.1.

98

2. SelectTargetHostExpr: an identification expression, used to select a targeted

host. The SelectTargetHostExpr expression must be included in a management

policy. The expression syntax is shown in Table 4.1.

3. AssignVariableExpr: a selection expression, used to get values from some prop-

erties and to assign them to an object variable. This expression is an optional state-

ment, which can be used in a management policy for extracting variables which are

required by management APIs. The syntax for the expression is different from the

syntax for other expressions. It is as follows:

< operator : Assignment $ >< property : ObjectV ariable >

< operator : Assignment :>< property : ObjectTerm >

4. High-level Conditions: an extensible component that is used to formulate organisa-

tional conditions. In our research context, we extended the component to include two

types of expressions suitable for describing location and time conditions of running cloud

services. Such expressions are directly related to the Energy Consumption Case Study

used in this PhD thesis. The expressions are as follows:

(a) TargetHostLocationExpr: a location-based expression, used to specify the geo-

graphical location of a target host. Since a physical cloud host can be located at any

location around the world, the policy meta-model should allow an option for such

a restriction. This expression is optional in the policy based on the requirement.

The syntax for the expression is shown in Table 4.1, where its Data Term can be

either a String type or a GeoLocation which is an Enumeration type. An example

of TargetHostLocation is: location == GeoLocation.Asia.

(b) TargetHostTimeExpr: a time-based expression that specifies the time status at

a target host. Any target host in a cloud-platform has some operations to deal with

time expression.

These operations are IsTimeBetween(< Time Begin >,< Time End >), IsTime-

Less(< Time Literal >), and IsTimeAbove(< Time Literal >). Table 4.1 presents

99

Figure 4.6 – The possible common rule language operator families for expressing a man-
agement policy

the syntax for the time-based expression. The following expression is a simple ex-

pression for checking time status:

current time status== IsTimeBetween(16.00,23.00)

As shown in Figure 4.5, the entities used for describing both TargetHostLocationExpr

and TargetHostTimeExpr are extensible. Therefore, other high-level conditions can be

described after considering the requirements of management assigned by cloud domain

experts.

4.3.2 Policy Action Description

The action of a management policy in a rule language is expressed as an action expres-

sion. Action expressions can be either expressions for assigning values or expressions for

invocation actions. To simplify the transformation process in the future, we use only

invocation action expressions from the rule language, which is denoted as InvocationAc-

tionExpr in [112]. In any management policy, the invocation action expressions include

calls for management APIs/Operations specified in a cloud manager. The syntax used

for expressing InvocationActionExpr is:

CloudManager.Operation Name(parameters);

In this syntax, CloudManager represents the instance of a cloud manager which has a

100

< OperationName > < Parameters : Type >
Migrate Original: TargetHost
MigrateAlternativeHosts Original: TargetHost , Destination1:TargetHost,

Destination2: TargetHost
MigrateToLocation Original: TargetHost , LocationName: String
ReportingNoMigration Original: TargetHost
Calculate Original:TargetHost

Table 4.2 – Examples of Operations Used by Cloud Manager Instance in a Management
Policy Described in Drools Used in Case Study in Chapters 3 and 5

number of management operations. Here, we specified that each defined operation for

the CloudManager instance has a number of parameters which are necessary for the mi-

gration of virtual machines, reporting information and calculating service at the target

host side in a cloud-platform. Table 4.2 shows each defined operation and its related

parameters which are examples of operations are used in the Energy Management Case

Study described in Chapters 3 and 5. Nevertheless, it is an extensible model which allows

any management operation to be defined depending on specified management actions

configured in MP-Framework.

4.4 The Usage of the Specification of Management

Policies

The specification is used in two different domains. The first domain employs the speci-

fication for designing a DSL for authoring policies at the description level. The second

domain applies the specification for developing mapping rules from the designed DSL

at the policy authoring level to generate an executable management policy in the rule

language. The whole process was achieved by collaborating with Andre Almeida, a PhD

researcher at Federal Institute of Science of Education at Science and Technology in Par-

namirim in Brazil, and Nelly Bencomo, a Lecturer at the School of Computer Science at

Aston University in Birmingham. Together, we designed a language called CloudMPL.

101

The following section offers a brief description of CloudMPL, but more details about this

language can be found in [19].

4.4.1 Using Management Policies Specification in CloudMPL

Almeida and Bencomo proposed a DSL called CloudMPL. Its main objective is to be the

foundation of authoring management policies used by cloud-domain experts, who may

have little knowledge about formulating rules. CloudMPL can be applied instead of us-

ing plain English sentences to write a management policy during the authoring stage

[19]. CloudMPL is a textual language that was specifically designed to be used by cloud-

domain experts to describe management policies before translating them to an executable

rule language [19]. CloudMPL is enriched with domain vocabularies and expressive op-

erators for expressing conditions and action parts which were partially inspired by the

RELAX Language [130]. CloudMPL is tailored to the authoring of management policies

which will be executed in an Infrastructure-as-a-Service (IaaS) cloud model [19]. Almeida

and Bencomo designed the CloudMPL meta-model, its syntax, and its grammar using

our specification of management policies explained in previous sections. The current im-

plementation is available for download at http://www.dimap.ufrn.br/splmonitoring/

adaptmcloud/index.php. We applied the CloudMPL language to describe some of the

management policies used in the Energy Management Case Study, which will be explained

in Section 4.5.

4.4.2 Designing Transformation Rules from CloudMPL to Drools

The specification of management policies described in Section 4.3 and the CloudMPL

specification proposed by the collaborative group were used in developing the conceptual

mapping rules from CloudMPL into Drools. The objective was to build the foundation

for automatically generating an executable management policy from the policy author-

102

http://www.dimap.ufrn.br/splmonitoring/adaptmcloud/index.php
http://www.dimap.ufrn.br/splmonitoring/adaptmcloud/index.php

ing level. This step will be considered as a basic step for auto-generating higher-level

management policies, which will be a future research.

The transformation process required us to design a set of mapping rules from CloudMPL

to Drools for both conditions and action parts. To design these mapping rules, we used

the CloudMPL meta-model as well as its syntax and the Drools specification mentioned

in Section 4.3. Firstly, the mapping step began by presenting the mapping for the general

syntax for a management policy and keywords in both CloudMPL and Drools.

Table 4.3 shows the mapping of generic syntax and special keywords from CloudMPL to

Drools. It is noticeable from the generic syntax in Table 4.3 that any statement between

IF and THEN is mapped as conditions in Drools, which should be enclosed with the

target operator mentioned in Figure 4.6. Furthermore, any statement after THEN is

mapped as an action in Drools. The mapping of both conditions and actions requires

further explanation, which will appear in the following subsections.

Mapping Conditions

In CloudMPL, a condition block consists of one or more conditions. Therefore, any

condition in CloudMPL can be structured as an attribute, an operator and a value. The

attribute in CloudMPL is usually written before the CloudMPL operator. Whilst, the

CloudMPL Generic Syntax Drools Generic Syntax
POLICY < ID > → rule < ID >
IF → when
< CONDITIONS > < Host(Conditions) >
THEN
<
ACTION INV OCATION >

→ then < Actions >

{<
ACTION INV OCATION >
}

end

Table 4.3 – Mapping Generic Syntax and Keywords for a Policy in CloudMPL to Drools

103

CloudMPL Expression Drools Expression
<attribute:TIME> TargetHostTimeExpr
AFTER <value:threshold>
<attribute:TIME> TargetHostTimeExpr
BEFORE <value:threshold>
<attribute:TIME> BETWEEN TargetHostTimeExpr
< value: threshold a > TO
<value:threshold b>
IN <value:ID> SelectTargetHostExpr +
<value:location> TargetHostLocationExpr
<attribute:monitorable> FEW AS ConstraintsExpr-1
| MANY AS <value:threshold>
<attribute:monitorable>IS
<value:status>

ConstraintsExpr-2

Table 4.4 – Mapping CloudMPL Conditions to Drools Conditions Using CloudMPL Spec-
ification [19] and Table 4.3 in Section4.3

value is used after the CloudMPL operator. Thus, Table 4.4 shows the mapping for

conditions that apply the following mapping rules:

1. The dot operator < . > in CloudMPL is mapped as ‘==’ operator and <value:ID or

Name> is mapped as <value expr: DataTerm>.

2. After operator is mapped as ‘==’ combined with <ObjectTerm:IsTimeAbove> in Drools.

3. Before is mapped as ‘==’ combined with <ObjectTerm:IsTimeLess> in Drools.

4. BETWEEN,TO operator is mapped as ‘==’ combined with <ObjectTerm: IsTimeBe-

tween>.

5. < value: threshold > is mapped as <Time Literal> parameter for both IsTimeAbove and

IsTimeLess in Drools.

6. < value: threshold a > and <value:threshold b> are mapped as <Time Literal Begin>

and <Time Literal End> parameters for IsTimeBetween in Drools.

7. <attribute:Time> is mapped as <property: current time status>.

104

Figure 4.7 – Using mapping rules for mapping CloudMPL condition block to Drools con-
dition part for a policy

8. IN is mapped as ‘==’ operator and<value:location> is mapped as<value expr: DataTerm>

which can be either String or Enumeration.

9. FEW AS or MANY AS are mapped as Comparison operators.

10. <attribute:monitorable> is mapped as<property: monitorable parms> and<value: threshold>

is mapped as DataTerm.

11. IS operator is mapped as ‘==’ operator and <value:status> is mapped as <DataTerm:

Status>.

12. <attribute:monitorable> in IS expression is mapped as <property: monitoriable Parms

status>.

13. AND and OR is mapped as && and || operators in Drools.

To elaborate the mapping of a condition of a management policy, we provide a sam-

ple of conditions written in both CloudMPL and Drools in Figure 4.7. These condi-

tions express one of the management policies extracted from the Energy Management

of the Running Example presented in Section 4.5. In Figure 4.7, the first statement is

a CloudMPL expression for three conditions, which are Violation Percentage FEW AS

20, Energy Consumption MORE AS 2000, host1. These conditions are composed in

CloudMPL by the AND operator. The same figure also includes conditions expressed in

105

Drools which map CloudMPL conditions. In Figure 4.7, the arrows represent the types

of the mapping rules that can be applied.

Mapping Actions

In CloudMPL, any action statement is mapped as a call method for management opera-

tions in a policy expressed in Drools. The mapping rules for actions are:

1. Action < ID > in CloudMPL is mapped as the Name of the operation in CloudManager

(see Figure 4.8).

2. The parameters List, which includes a set of Parameter Expression, is mapped as the

operation parameters in CloudManager.

3. In CloudMPL, Parameter Expressions consists of < TypeID >. Type is mapped as either

< ObjectTerm > or < getObjectRef > in Operation. Whilst ID is the mapped as the

name of the parameter.

4. In CloudMPL , if Type is Host and it is the first parameter in the statement, then it is

mapped as the Original and its type is TargetHost in Drools.

5. Conversely, in CloudMPL, if Type is Host and is not the first parameter, then it is mapped

to be either Destination1 or Destination2 based on ordering parameters in Drools.

Figure 4.8 illustrates the application of the mapping rules for an action from CloudMPL

to Drools. The figure includes an operation defined in Table 4.2. The operation has three

parameters which are Host1, Host2 , and Host3. In Drools mapping, Action ID is mapped

as Migrate Alternative Host, whilst the first parameter is mapped as $host1. Both Host2

and Host3 are mapped as $host1.getHost2() and $host1.getHost3(), respectively.

The previously mentioned mapping rules for both conditions and actions parts will

be used to design an interpreter to automatically or semi-automatically generate Drools

106

Figure 4.8 – Using mapping rules for mapping a CloudMPL action block to a Drools action
part for a policy

codes for policies that would be executed into MP-Framework as explained in Chapter 3.

The Drools code generation will be a future project.

4.5 The Application to the Energy Management Case

Study

We applied CloudMPL to express a number of management policies extracted from the

Management Energy Consumption Case Study presented in Chapters 3 and 5. We took

some management policies encoded into Drools and used CloudMPL to write them. Figure

4.9 shows both CloudMPL declarations and CloudMPL policies for the case study, which

were implemented using XText [132].

Figure 4.9 shows that there are six policies expressed in CloudMPL which demonstrate

the usage of all operators suggested by the language. Policy 1 is a constraint-based policy,

which requires monitorable parameters and uses the CloudMPL operators FEW AS and

MANY AS. In turn, policy 2, policy 3, and policy 4 are composed of both time and

constraint expressions. Both policy 2 and policy 4 use the operator After, whereas policy

3 includes the ClodMPL time operator Between / To. The constraints operator used in

these policies is IS. Policy 5 has only a single time expression which uses the CloudMPL

time operator Before. The final policy, which is policy 6, contains a location expression

besides the time and constraint conditions. The location condition uses the CloudMPL

107

(a) CloudMPL Declarations (b) CloudMPL Expressions 1

(c) CloudMPL Expressions 2

Figure 4.9 – A sample of CloudMPL (XText) for management policies used in the case
study

108

operator IN.

4.5.1 The Interpretation of CloudMPL Policies to Drools

We applied the mapping process introduced in Section 4.4.2 to the policies of the case

study. Using the designed mapping rules explained in Section 4.4.2, we generated Drools

code manually. To test the mapping rules, Figure 4.10 presents a sample of Drools code

for policy 1, policy 3, policy 5, and policy 6, which are presented in two groups. The

important Drools operators used in the conditions are highlighted in blue.

Taking policy 3 as an example, this policy is mapped as a combination of Time and

Constraints 2 Expressions which are shown in the management policy conditions meta-

model mentioned in Section 4.3. The mapping for the condition part applies the rule

numbers 1, 4, 6, 7,11, 12 and 13 as explained in mapping conditions in Section 4.4.2. We

applied all rules proposed for mapping the action part expressed in Section 4.4.2. As a

result, policy 3 will have a rule code similar to these illustrated in Figure 4.10. We applied

this method is applied to all remaining CloudMPL policies captured in Figure 4.9.

4.6 Chapter Summary

In this chapter, we classified management policies into low-level and high-level. In ad-

dition, we provided a specification for formulating the executable form of these policies

in rule-language using URML specification. The generated specifications were applied

in designing the CloudMPL language and the mapping rules from CloudMPL to Drools.

CloudMPL is a DSL which aims at narrowing the existing gap between the specification of

the Expressed Management Policies in the policy authoring step and the implementation

of similar policies via a rule language. CloudMPL establishes a set of operators that deal

with several kinds of constraints, from ordinal through to time and location constraints,

that can be applied to a specific or a set of cloud resources. In addition, CloudMPL

109

(a) Drools Rules “Group 1”

(b) Drools Rules “Group 2”

Figure 4.10 – The generated Drools rules from CloudMPL policies

110

supports user-defined actions to deal with the consequences of conditions specified by

the managers of cloud computing infrastructure. The usage of both CloudMPL and the

automated approach, which is based on designing mapping rules between CloudMPL and

Drools, was illustrated with the help of an example related to the management of en-

ergy consumption by migrating virtual machines. Both the specification of management

policies and CloudMPL can be extended to include other types of high-level or low-level

parameters related to management energy in a data centre such as the one defined in [79].

By fully implementing both CloudMPL and the automated code-generation for creating

management policies, we can decrease the amount of time required in implementing such

policies which is considered as a future step. Due to the closeness of CloudMPL to natural

languages and its declarative nature, it is possible for the language to be used by cloud

domain experts for specifying policies.

Using both the MP-Framework and the specification of management policies covered in

this chapter, an Automated Managed Cloud Platform can be created. A cloud user

will have a platform that can be easily configured and integrated to operate with any cloud

management system such as OpenNebula. The integration requires developers to only

develop suitable interfaces for probing and triggering management actions. The challenge

was how management policies were designed and developed in a simple executable form in

a rule language. We tackled this challenge with the specification proposed in this chapter.

The other issue solved in this thesis is how to model the Automatically Managed Cloud

Platform executing management policies to evaluate the effectiveness of the designed

management policies before executing them in a real cloud platform. This challenge will

be discussed in the following chapters.

111

112

CHAPTER 5

Modelling Management Policies and Cloud Platforms

via Coloured Petri-nets

The cost values associated with triggering any management actions caused by the execu-

tion of management policies in a cloud platform can be unpredictable. As discussed in

Section 4.2.1 in Chapter 4, management policies can be in the form of either low-level,

high-level policies, or a combination of both. Low-level policies as constraint rule-sets

might involve the comparison of the values of variables with given threshold values. On

the other hand, both time-based and location-based rule-sets, which are considered as

high-level, are formed from Boolean constraints. As a result, management policies that

would run on an automatically managed cloud platform can be very complex and might

interact with each other.

Not only do the interactions and the complexity of management policies affect the cost

of triggering dynamic actions in a cloud platform, but the massive architecture of the

cloud environment could also be considered highly dynamic. The complexity of a cloud

platform is due to the usage of virtualisation technology [81]. In turn, the increases in the

dynamism of a cloud platform are caused by variability in the received workload and the

113

complexity in the underlying interaction between the components of the platform [81]. As

a result, triggering any management action resulting from running management policies

has an impact on certain cost values which might be crucial to cloud users. For example,

if the management policy triggers a migration action during its time execution, cost values

would include the energy consumption cost and the virtual machine migration cost. Thus,

there is a clear need to identify the most appropriate management policy from a set of

potential ones. Cloud-domain experts and rule developers can know the effect on the cost

of energy consumption of using various set of management policies using real observations

after implementing the policies to run in the cloud-platform. However, such a method

is time-consuming and increases the maintenance and the reviewing cycle of enforcing

management policies. Instead, we are looking to find a method for estimating costs of

implementing two different set of policies, such as p1, p2 before executing them in a real

cloud platform. Hence, the remaining chapters make a contribution in modelling and

analysing management policies that would run in MP-Framework or similar frameworks

such as those in [26] and [92].

The suggested modelling approach is applied by following a systematic strategy for

analysing run-time management policies. This can be accomplished by modelling both a

cloud platform with dynamic management behaviours and a run-time policy via CPNs.

An example of such behaviours is the monitoring and the management processes which

are the run-time phases found in MP-Framework. The generated CPN models can be

used to compute maximum and minimum costs associated with automatically triggering

a management action. Specifically, we investigate the effect of repeating the triggering

migration action of a virtual machine on both energy consumption cost and transmission

cost or migration cost. The modelling and the analysis strategy can be done before

implementing management policies in a real cloud platform.

In this chapter, we will explain the modelling concept of a cloud platform with dy-

114

Figure 5.1 – The case study description with possible implementation for Policy A or Pol-
icy B

namic migration behaviour and run-time policy using CPNs. We will provide a formal

mathematical definition for a cloud platform consisting of two dynamic behaviours: mon-

itoring and migration. Furthermore, we will present a method to model both low-level

and high-level policies in CPNs. The modelling concept was applied in an advanced En-

ergy Consumption Case Study using various types of management policies, which will be

presented in the following section.

5.1 Advanced Energy Management Case Study

This case study is an extension of the ones explained in Chapter 3. To clarify the Petri-net

formalism for both a cloud platform and a set of management policies, let us consider the

scenario presented in Figure 5.1.

Figure 5.1 shows the architecture for a platform containing four Private Hosts in dif-

ferent locations and one Public Host. Two Private Hosts are located in Europe whereas

the two remaining Hosts are in Asia. The Public Cloud is using Amazon instances, which

are located in the USA. All Hosts in the platform are connecting together. Furthermore,

115

a dynamic migration action for moving VM images is allowed among all Hosts. The

Cloud domain experts that own this architecture want to restrict the live-migration ac-

tion among hosts using two suggested policies, which are Policy A and Policy B. Policy A

is a Constraint-based Policy applied at each node in the cloud platform (see Figure 5.1),

whilst Policy B is a Constraint-based Policy applied at each node alongside a Time-based

Policy which is described later.

A Constraint-based Policy uses threshold values for some low-levels which are written

as rule-sets described as follows:

Constraint-based Policy:

1. RuleSet 1:

When Violation Rate is High or CPU Usage is High or CPU Usage is Low

then Migrate Smallest VM Running in Host

2. RuleSet 2:

When Violation Rate is Normal and CPU Usage is Normal

then Accept Migrated VM

Time-based Policy is based on using the node timestamps and migrating only during

off-peak time. The policy is explained as:

Time-based Policy

1. RuleSet 3: (Applied between Private Hosts)

(a) When Private Host(x) can accept Migrated VM and Time is after 16.00 until

7.00

and Private Host(y) can migrate VM

then

Allow only one VM to be migrated between Private Host(x) and Private Host(y)

every ∆time.

116

2. RuleSet 4:(Applied between Private Host and Public Host)

(a) When Public Host(x) can accept Migrated VM and Time is after 18.00 until

23.00 and Private Host(y) can Migrate

then

Allow VM to be Migrated to Public Host(x) every ∆time.

3. RuleSet 5: (Applied at Public Host)

(a) When Time is after 23.00 at Public Host(x)

then

Allow VM to be Migrated to Private Hosts from Public Host(x) every ∆time.

A cloud consumer or a cloud domain expert aims to know which Policy A or Policy B

is better in terms of Energy Saving before implementation.

5.2 The Formalism of Cloud Platform and Manage-

ment Policies in Coloured Petri-nets (CPNs)

Before explaining the formal method for modelling both cloud platform and management

policies in CPN, we created a class diagram that captures the necessary components of

a typical cloud environment similar to the one shown in Figure 5.1 to assist us during

the modelling process (see Figure 5.2). We developed the class diagram based on our

experience with the OpenNebula toolkit [105] and used a data model suited for constraint

rules suggested in [26] and [92].

Looking at Figure 5.2, a typical cloud-platform consists of three main components:

Host, VM images and SLA classes. The Host class is one of the cloud components

that run various VM instances. The Host class has a number of attributes used as

measurement parameters during the monitoring process. Examples of these parameters

are Total CPU Usage and Average Violation. The Total CPU Usage attribute represents

117

Figure 5.2 – The class diagram of a cloud platform with a management policy similar to
the one presented in Figure 5.1

the average of shared CPU use among running VM instances on the host. The Aver-

age Violation is a parameter that represents the percentage of violation in the amount of

resources provided for each running virtual machines on the host. The Host has threshold

parameters for both CPU Usage and Violation attributes. Furthermore, in Figure 5.2

each Host has a set of Current VMs and a Migrating VM. Migrating VM instance is a

representation of the selected VM image, which will be migrated to another host at timei.

In addition, the Host class has cost-related parameters and a location attribute, which

represents the geographical location for the host.

We assume that each running VM image in a cloud platform belongs to only one cloud

consumer. Thus, each running VM instance is associated with only one SLA and also

has a life cycle. The attribute life cycle of a virtual machine can have various states after

being assigned to a cloud user (see Figure 5.2). Here, we assume that the VM life cycle

118

is running because we model the live-migration behaviour (for more information about

the migration of VM, see Section 2.6 in Chapter 2). Each VM instance has a current

SLA with time-limits. Time-limits are computed after the deployment of the virtual

machine and assigned to a cloud consumer. Time limits are specified with two timestamp

attributes in the VM class, which are Start and Termination. For example, the start time

for VM1 is 7.00, and the termination time is 23.00. In Figure 5.2, the SLA class includes a

description of the agreed amount of resources. The agreed attribute represents the amount

of resources allowed to be consumed by a cloud consumer. SLAs are often agreed during

the contract establishment process. In addition, the SLA also has the currently provided

resources parameter, which is the amount of currently allocated resource to a VM image

during its execution time. Those attributes are based on the case study mentioned in

[26, 91, 92].

The Runtime Policy class contains a set of migration rules and methods for execut-

ing actions supposed to be performed by the rules. Actions in our context enforce the

migration behaviour among all running hosts.

5.2.1 Modelling a Cloud-Platform in Coloured Petri-nets

Since CPNs are designed for modelling concurrent systems [73, 74], a CPN is ideal for

modelling the cloud platform as well as run-time policies (see Sections 2.3 and 2.4 in

Chapter 2 for detail about Petri-nets). The dynamic migration behaviour which occurs

between hosts in a cloud can be modelled as transitions in a CPN. Each place p in a

CPN is modelled as the host of the platform which has three defined states: Monitoring

State, Permit Migration State and Accept Migration State. The Monitoring

State is an indication that the place Host is in the monitoring process. The Permit

Migration State is an indication that the place Host is allowing a virtual machine to be

migrated to another host, which is in the Accept Migration State. In turn, the Accept

119

Migration State is an indication that a place Host can accept a virtual machine from

hosts that are in the Permit Migration State. The token of moving virtual machine is

the one that is allowed to move across the CPN model of the cloud which is represented

as the Colour Set named VM, shown in Table 5.1.

Each place pi has two types of transitions: monitoring transition and migration tran-

sition. The monitoring transition is used to model the monitoring behaviour of the place

pi, which will be explained later. This transition has an arch to and from the same place.

In contrast, the migration transition is used to model the live-migration action which will

be from a place pi to another place pj.

5.2.2 The Formal CPNCloud Definition and Colour Sets Declara-

tions

Based on the CPN definition in Section 2.4.1 in Chapter 2, our CPN model is formally

denoted as a CPNCloud. The CPNCloud has the following elements:

CPNCloud = (PHosts, T, A,Σcloud, V, C,Gpolicy, E), where

1. PHosts consists of a finite set of running hosts with three possible states which are

Monitoring state, Permit Migration state and Accept Migration state.

2. T = TMonitoring ∪TMigration such that TMonitoring∩TMigration = ∅, where TMonitoring is

a finite set of monitoring transitions which are fired during the monitoring process

of MP-Framework. TMigration is a finite set of migration transitions between places

which are enabled during the management process of MP-Framework.

3. Σcloud Cloud contains of all colour sets (see Table 5.1 for more information about

the names and the declarations for colour sets in Σcloud and part of CPN ML in

Figure 5.2).

4. Gpolicy is a finite set of guards which represent modelling High-level Policy (more

120

details about the modelling policies will be explained in the following sections)

5. A, V, C, and E are the original CPN elements as explained in Section 2.4.1 in

Chapter 2.

5.2.3 Modelling Dynamic Behaviours of MP-Framework

The CPNCloud should mimic the functionality of MP-Framework. The functionality of

MP-Framework during both the Monitoring and Management phases is explained in Sec-

tion 3.2 in Chapter 3. This functionality is modelled into two dynamic behaviours: the

Monitoring and Management behaviours in CPNCloud.

Modelling the Monitoring Behaviour

In our modelling context, each place has to monitor then migrate depending on the values

of the monitored parameters. In CPNCloud, we can say that p has a monitoring state when

the values for both Permit Migration OUT and Accept Migrating IN are false (see Table

5.1). The monitoring process is done by firing ti ∈ TMonitoring at each host place with the

time delay denoted as @MonitoringTime. The time delay is specified as a guard at any

ti ∈ TMonitoring.

Figure 5.3 depicts a single transition representing a monitoring activity in a host to

describe changes in hosts’ colours after firing the transition. It begins with p place on the

top, which has four running virtual machines and host information. The Host information

includes CPU Usage, Violation Percentage, and other information which are shown as

numbers. Furthermore, p place also has Migrating VM, which is empty at the beginning

of each monitoring phase. When tmonitoring is enabled all the information is bound as a host

variable. The host is passed to the Monitoring(host) expression. The Monitoring(host)

expression is an ML function that implements measurement for vm parameters such as

CPU usage and Violation Percentage. Furthermore, the ML method also defines the state

121

Σ Name Attributes
lifeCycle with Pending—Run—Reboot—Start—Stop—Termination
status with High—Normal—Low
type Private—Public
Resources CPU Usage:INT

Memory Size:INT
Network:INT
Storage:INT

transmissionCost value:REAL
location Where:INT

NearTo:INT
SLA ID:INT

AllowedViolation:REAL
VM ID:INT

Start Time:Time
Termination Time:Time
Monitoring Time: Time
Violation Percentage: REAL
Migration History: list ID

Host ID:INT
VM NO:INT
HostType:TYPE
Total CPU Usage: REAL
Average Violation: REAL
Permit Migration OUT: BOOL
Accept Migrating IN: BOOL
Running Time: TIME
CPU Usage Thresholds:product REAL*REAL
Permit Violation Thresholds: REAL
Estimation ECost: REAL
Estimation EC: REAL
Pre Estimation EC:REAL
Cost Energy Per KW: REAL
Watt Per Usage: REAL

Table 5.1 – Declarations of Colour Sets in Σcloud

122

Figure 5.3 – Modelling monitoring behaviour in p ∈ PHost with two options to occur

for the host at the end of the monitoring phase.

At the end of executing the ML method, the state of a place can be either Permit

Migration or Accept Migration. When the value of the Permit Migration OUT colour

is true and the value of the Accept Migrating IN colour is false, then p has a Permit

Migration state. On the other hand, the state of p is Accept Migration when the value

of the Permit Migration OUT colour is false and the value of the Accept Migrating IN

colour is true. For example, we are using the scenario in Figure 5.3. If CPU Usage Status

is High and Violation Status is Normal, then the host has a Permit Migration state.

Thus, the Migrating VM colour set in the host place will have the information about the

selected VM for migration. Furthermore, in our modelled scenario in Figure 5.3, if the

CPU Usage State is Normal and the Violation State is Normal, then the state of the host

place is Accept Migrating. Thus, the Migrating VM colour set in the host place will be

empty.

123

Figure 5.4 – Modelling migration behaviour in CPNCloud before and after firing tmigration
between two hosts with different states

Modelling the Dynamic Migration Behaviour

CPNCloud models the migration behaviour as a management action at the end of each

monitoring cycle. The behaviour is modelled by moving the values of the Migrating VM

colour from a place with the Permit Migrating state to any place which has an Accept

Migrating state (see Figure 5.4 for a model of the complete behaviour).

Figure 5.4 shows the colour set values and status in both a place with the Permit

Migration state and a place with the Accept Migration state before and after the migra-

tion process. Looking at Sub-Figure 5.4.(a), the Migrating VM in a place with Permit

Migration has a value, which is vm2, whilst the Migrating VM colour in the other place

is empty. To fire the migration transition, the place with the Permit Migration state has

to send the value of the Migrating VM colour as well as the parameters required by the

high-level policy. At the opposite side, the place with the Accept Migrating state has to

send only the parameters which are required by the high-level policy.

Sub-Figure5.4.(b) captures the values of colour sets in a place with the Permit Migra-

124

tion state and a place with the Accept Migration state after completing the migration

process. After migration, the place with the Permit Migration state receives the Ack()

message which it leads to set the value the Permit Migration OUT to be false. As a

result, the place with the Permit Migration state will transfer the Life Cycle Status of

the Migrating VM in the Current VM list to Stop and remove it from the list. The Mi-

grating VM colour in the place will become empty. Meanwhile, the place with the Accept

Migration state receives the values of the Migrating VM colour set and the Transmission

Cost. At this place, the received Migrating VM colour set will be added to the Cur-

rent VM list colour and its Life Cycle Status will be changed from Pending to Running.

At the end of the migration stage, the state for both places will be transformed to the

Monitoring state. This means that the monitoring phase starts again.

5.2.4 Modelling Management Policies in CPN

As explained previously, the CPN model has to impose two types of Management policy,

namely low-level, and high-level (see Section 4.2.1 in Chapter 4 for more information

about the classification of Management Policies). In the class diagram in Figure 5.2,

there is a Run-time policy class. This class is where rule-sets for low-level and high-level

policies are defined.

Modelling Low-level Management Policy

Since the low-level policies such as Constraint rules are applied at the host level, we

modelled a low-level rule-set as a function written in CPN ML language called low-Level-

Rules. The Low-Level-Rules function is executed when t ∈ TMonitoring is fired. Figure

5.5 presents a sample of one of the Low-Level Rules expressed in the CPN ML function,

which is used to identify the state of CPU Usage on a host in the model.

125

Figure 5.5 – Modelling time-based policy as a guard function in tmigration transition

Modelling High-level Management Policy

In CPNCloud, any High-level policy is applied between any place with the Permit Migra-

tion state and any place with the Accept Migration state. As a result, the action part in a

high-level rule-set is modelled as the migration transition tmigration. Whilst any condition

in a high-level rule-set is described as a guard at any migration transition t ∈ TMigration.

These guards are denoted as Gpolicy.

Any ga ∈ Gpolicy consists of two or more conditions, which should be evaluated as true

(see Figure 5.5). Our proposed Run-time Policy consists of a set of conditions. These

conditions could be modelled as “if statements” in guards. Modelling rules as a set of

“if statements” in guards of CPNCloud would reduce the readability of the model and

might increase the errors in the model. This is because of the complex expression of

compositional conditions which can be found in the high-level Policy when the number

of Host places is increased. Therefore, we model each condition as a CPN ML function.

Each function can return either true or false but in order to execute the high-level Policy,

126

all used CPN ML functions in ga should be true. All conditions in the guard are separated

by either andalso or orelse CPN ML keywords used (see modelling a time-based Policy in

Figure 5.5).

5.3 Chapter Summary

In this chapter, we investigated the possibility of applying a model-based approach as a

modelling tool which will be used as a first step for assessing two different sets of manage-

ment policies. In this research context, we focused on studying the effect of triggering a

migration action when it is enforced using MP-Framework. By using CPN, we successfully

modelled a cloud platform with dynamic migration and policies related to control of such

behaviour. Any CPNCloud model consists of places as running hosts and migration tran-

sition between host places. Furthermore, low-level policies become a part of a monitoring

transition, which is applied to each host place. On the other hand, high-level policy is

modelled as a guard at each migration transition in the CPNCloud model. The generated

CPN model has become a graphical simulator for a cloud platform, which can assist in

analysing the costs of both energy and transmission related to migration policies before

implementation. Any generated CPNCloud model will be simulated to produce a finite set

of traces of execution. These traces should be analysed via the Cost Calculation Method

which will be explained in detail in the following chapters.

127

128

CHAPTER 6

The Simulation-based Cost Calculation Method

(SCCM) for Analysing Management Policies

The proposed CPNCloud model explained in the previous chapter can become a tool that

can be used to analyse management policies. The modelling approach will be an alterna-

tive for evaluating potential running policies either by observing their execution in a real

cloud platform or by testing them using existing cloud simulators such as CloudSim [36],

icanCloud[104] and GreenCloud [80]. Because the CPN tool is empowered with a simula-

tion for generating models and state graphs, the effect of system dynamic behaviours can

be studied in depth [73, 74, 75]. Literally, the CPN tool can generate traces of execution

that can form either the whole or partial reachability graph for the modelled system. Any

traces of execution of the CPN model contains states that show the occurrence of each

dynamic behaviour of the cloud platform [74, 75].

In our investigated case, we were concerned with computing the cost of triggering

migration actions from each produced trace. Therefore, we investigated two given sets

of such policies: p1, p2. For example, p1 is a constraint-based Policy and p2 includes

constraint-based as well as time-based Policies. How can we analyse and identify which

129

one is suitable in terms of energy savings? This can be achieved by applying the following

steps:

1. Model both p1, p2 as CPN models which generate CPNCloud models.

2. Run the simulator of each CPN Model and generate various execution paths.

3. Each produced execution path, the Cost Calculating Method, which will be ex-

plained in this chapter or expressed in Chapter 7, is applied to compute the cost

of both the energy consumption and the transmission of virtual machines along the

execution path.

4. Get the average of the computed cost values for each CPN model. Then, compare the

produced results produced from the cost calculation method which will be explained

later.

In this chapter, we will explain the Simulation-based Cost Calculating Method (SCCM)

used to compute costs from a single trace. The method is based on an application for

Cost Computing from Timed Petri-nets proposed by Abdulla and Mayr in [15, 16, 17]

which is modified to be applicable in a cloud platform that might trigger a number of

migration actions during the execution of a management policy. We did not model cloud

and policies using similar Petri-nets models suggested in [15, 16, 17]. These models are

Priced Timed Petri-net (PTPN) and Priced Petri-nets (PPN). The reason for not using

PTPN and PPN models is that these models have simple the expressions for describing

both tokens and places. A cloud platform has a complex structure and requires a model

allowing complex data-types to be defined. Furthermore, we have a set of policies, which

consist of logical constraints and would be difficult to model in simple PTPN or PPN

models.

Both the modelling aspect proposed in Chapter 5 and the SCCM are applied to evaluate

two sets of management policies to determine which one is better in term of saving energy.

130

6.1 The Method for Calculating the Cost

Any single trace of executions produced by the CPN model contains markings generated

from firing transitions in the model. Therefore, an execution trace extracted from any

CPNCloud contains the markings resulting from firing both monitoring and migration

transitions. To assess costs between two policies, we simulate the CPN model and extract

several traces of execution from each CPN model for policies run for 24 hours. Then, we

computed the cost across each trace. We can identify which traces have the maximum

and the minimum cost. Before explaining the Cost Calculating Method, we assume the

following:

1. The host type can be either Private or Public.

2. A host has a power model for estimating energy consumption. In our work, we

implemented the power model proposed by [26], but any alternative models can

be used. The value computed from the power model will be stored at the colour

#Estimation EC in a place. The formula for the power model is as follows:

Ei = min(Ei) + CPU Usagei ∗ (max(Ei)−min(Ei)) (1)

Where Ei is the amount of energy consumed in watt per hour unit by a host.

CPU Usagei is the average of shared CPU usage among virtual machines running

in the host. max(Ei) is the maximum amount of energy consumed by the host when

it has a maximum load; and min(Ei) is the minimum energy consumption by the

host when it is in the idle state [26].

3. Transmission cost is the cost of live-migration of a virtual machine between hosts

which depends on migration duration time and the cost of SLA-violation [35]. The

migration time is based on the total amount of memory used by the VM and the

131

available network bandwidth [35], which is computed as:

MigrationT ime = VMimage size

Bandwidthavailable
(2)

4. We simplify the calculation by assuming that there is no delay between hosts; there-

fore, we did not include in the transmission cost the cost of the delay. It is straight-

forward to add the delay cost and extend the cost model.

Based on these assumptions, the calculation method uses the approach for computing

cost from timed Petri-net proposed in [15, 16]. Therefore, for a given a trace of execution:

σ := M0
(t0,θ0)−→ M1

(t1,θ1)−→ M2 . . .
(tn−1,θn−1)−→ Mn

0 6 θ0 6 θ1 6 θ2 . . . 6 θn 6 24 (3)

We divided the cost in σ into two parts:

1. The cost when virtual machines are running on hosts denoted as ECost.

2. The cost of migrating a virtual machine from one host to another is denoted as

TCost.

We made a simplification in the model that each virtual machine is sent instanta-

neously but we can add the delay cost for future work. Suppose that both ECost(Mi)

and TCost(Mi) are known when a transition ti−1 at time θi−1 was fired. Therefore, there

are two cases at the markings Mi
(ti,θi)−→ Mi+1 when ti at time θi is fired:

Case 1: When ti is a monitoring transition. In this case the cost had already been calcu-

lated before θi−1 and stored at ECost(Mi). During the firing of a monitoring transition,

the amount of energy consumed during time period [θi−1, θi] on the basis of virtual ma-

chine loads is calculated and stored as a value in the colour #Estimation EC at a place

132

p. Thus, the cost of energy at the marking Mi+1 is as follows:

ECost(Mi+1) = ECost(Mi) +
∑

p∈PHost

#Estimation EC(p)× Price(p) (4)

Where the sum is taken by multiplying the amount of energy consumed stored #Estimation EC

at a place over period of [θi−1, θi] with local Price(p) for all hosts p ∈ PHost. The price of

the energy per watt is given by a cloud provider. Naturally, since no migration happens,

the cost of migration at Mi+1 is the same as Mi.

TCost(Mi+1) = TCost(Mi) (5)

Case 2: When ti is a migration transition. In this case, a virtual machine moves between

hosts. Therefore, the transmission cost at the marking Mi+1 is the value of TCost in

previous marking Mi added to the cost of transmitting a virtual machine.

TCost(Mi+1) = TCost(Mi) +MigrationT ime× Price(SLA V iolationmin) (6)

In whichMigrationT ime is computed using Equation 2 whereas the price of SLA violation

is the minimum price that should be paid. The value of the minimum price is specified

in the SLA.

Moreover, during the firing migration transition ti between the period of [θi−1, θi], the

ECost(Mi + 1) is calculated using Equation 4.

By applying this method, the costs of energy consumption, transmission cost and the

value of estimated energy consumption can be calculated along an execution path σ for

24 hours. Similarly, if we have a number of execution paths σ1, σ2, . . . , σn, we can apply

the cost calculation method proposed for σ at each one. Thus, the paths that have the

maximum and the minimum energy cost values can be identified.

133

6.2 Evaluation of CPN Cloud Model and Simulation-

based Cost Calculating Method (SCCM)

We evaluated both the modelling of CPNCloud and the Simulation-based Cost Calculation

Method (SCCM) using the advanced management energy consumption case study men-

tioned in Section 5.1 in Chapter 5, which involved a comparison between two different

Management Policies. The policies would be applied to a management system for five

cloud hosting nodes (See Section 5.1).

6.2.1 Simulating the Case Study with CPNCloud

We applied our proposed Petri-net model CPNCloud to generate two CPNCloud models for

the described management policies for the case study described in Section 5.1 in Chapter

5. One model implements Policy A whereas the other model uses Policy B. We configured

both models to have five places. These places represent the host nodes mentioned in

the case study (see Figure 5.1 in Chapter 5). Each host place except the Amazon place

has five virtual machines, whereas the Amazon place has only three virtual machines. In

both models, we created ML methods to randomly generate loads at virtual machines

which randomly change loads after triggering monitoring and migration transitions. It

is possible to replace the load generator ML method with other load generators such as

JMeter [119].

As explained in Section 6.1, some values required for calculation are stored in the

markings. These values are Estimated EC, Migration Time and Cost Energy Per Kwh

which is Price(p). We used the CPN ML function to compute and store the values at

the marking. We started the experiment by implementing only Policy A. We applied the

Constraint-rules at all five places. Then, we started the Petri-net simulator and analysed

the migration behaviour. We extracted the execution path and collected the data for 24

134

Figure 6.1 – The average of Estimated Energy Consumption for both Policy A and Policy
B during 24 hours

hours. We repeated the iteration nine times, and we computed the values of estimated

energy consumption, energy cost and transmission cost by applying the cost calculation

method at each path. Using the CPNCloud model for Policy B, we repeated similar steps

applied for analysing Policy A. The experiment was conducted on a Samsung laptop which

has a 2.40GHz Intel(R)Core(TM) processor and 6GB memory

6.2.2 The Results and Discussion

From all nine execution paths from both models, we calculated the averages for the

results obtained. We present the results for the averages as detailed in three graphs,

which are illustrated in Figures 6.1, 6.2, and 6.3. Furthermore, we present bar charts

that demonstrate the average of the total Energy Cost, Transmission Cost and Estimated

Energy Consumption from modelling both policies. From the obtained graphs from the

CPNCloud models, we can analyse whether Policy A or Policy B is more efficient in terms

of Energy saving.

Figure 6.1 illustrates the average Estimated Energy Consumption by hosts in the CPN

135

Figure 6.2 – The average of Energy Costs for Policy A and Policy B during 24 hours

models for 24 hours. Looking at the starting point for both executions, we notice that

both Path A and Path B have the same amount of energy consumption which is roughly

0.8 kwph. The reason is that both the Policy A model and the Policy B model have the

same number of virtual machines and similar loads at each place. However, in Path A, the

amount significantly grows until reaching 1.2 kwph during the peak-time, which is from

9.00 until 11.00. In contrast, Path B has stable Estimated Energy Consumption values,

which are about 0.8 kwph from 9.00 until 11.00. The increase in Energy Consumption

is because Policy A allows migration at any time when values of both CPU Usage and

Violation Rate exceed the allowed thresholds. Therefore, if the VM is moved to another

host, which suddenly has an increase in its loads, this might lead to an increase in Energy

Consumption. On the other hand, the migration is not permitted during peak-time in path

B; therefore, the amount of Estimated Energy Consumption does not increase relatively.

However, the average of Estimated Energy Consumption in Path B slightly grows between

15.00 and 17.00 because the policy allows migration after peak-time.

Figure 6.2 represents the Energy Cost for all the host places in the CPN models for

136

Policy A and Policy B. Looking at the starting point for both Policy A and Policy B

executions, we notice that both Path A and Path B have the same Energy cost which is

nearly £0.15. The reason is that both the Policy A model and the Policy B model have

the same number of virtual machines and similar loads at each place between 7.00 and

9.00. After that, we notice from the graph that the Average Cost of Energy for Path A

dramatically increases during peak-time. The reason for the increase in the cost value is

that Policy A allows a virtual machine to migrate with no time restriction. Therefore,

when the loads increase at any virtual machine in the model, the places that have the

highest loads will trigger migration. As a result, the virtual machines will be allowed to

move to places that might have energy costs higher than the previous places. Thus, the

average of energy costs at all places in the model might increase during peak-time. On the

other hand, looking at Path B, we notice that during peak-time the energy cost remains

steady because the policy does not permit migration during peak-time. However, the cost

grows after peak-time when migration is allowed. We notice that the Energy Cost of Path

B during off-peak time is relatively close to the values of Energy Cost for Path A due to

the increase in the migration times and the loads on virtual machines in both paths.

Figure 6.3 is the third graph that we produced from the model. The graph presents the

amount of transmission cost while executing Policy A and Policy B. We notice from the

graph that during peak-time Path B does not record any transmission cost until the end of

the peak-time period. This figure is opposite to Path A figures. During peak-time, Path A

has fluctuations in the transmission cost which continuously increase until reaching above

£1.2 before 1.00 and then dramatically decrease between 1.00 and 15.00 to record nearly

£0.5. The transmission cost at Path A after peak-time is decreasing which means that

the number of places that are in the Permit Migration state at that time is lower than

places in the same state during peak-time. We notice that transmission Cost figures for

both Path A and Path B during off-peak time are close. The reason is that both policies

137

Figure 6.3 – The average of Transmission Cost for Policy A and Policy B during 24 hours

A and B allow multiple migrations to any available host during off-peak times.

Figure 6.4 has two bar charts that show the total of Average energy consumption,

energy cost, and transmission cost after 24 hours from executing Policy A and Policy B.

From the chart, we can clearly see that the totals of energy consumption, energy cost,

and transmission cost for Policy B is less than the totals of these values for Policy A. The

reduction percentage that we might achieve in both energy consumption and energy cost

when the high-level policy is combined with the low-level policy is about 23.55% and 35%

respectively.

From the CPN Cloud modelling and analysis results, we determine that if cloud con-

sumers or cloud-domain experts allow dynamic migration using Policy A, which imple-

ments only the low-level policy, they might consume more energy and have higher costs

than using Policy B, which combines the low-level and high-level policies. Thus, the result

that we achieved from CPNs can assist cloud-domain experts to assess which policy is

suitable in terms of energy saving.

138

(a) The total amount of Estimated Energy
Consumtion for both Policy A and Policy
B

(b) The total Energy Cost and Transmission
Cost for both Policy A and Policy B

Figure 6.4 – The total estimated energy consumption, energy cost, and transmission cost
for executed management policies during 24 hours

6.3 Chapter Summary

In this chapter, we proposed a Simulation-based Cost Calculation Method (SCCM) for

computing the cost from a single trace generated from simulating CPNCloud model. We

applied the SCCM to compute the energy cost and migration cost associated with trig-

gering a migration action. The method is an application of a proposed cost calculation

from timed Petri-nets [15, 16]. By using the SCCM, we can obtain the total cost values

from a number of traces of execution generated from simulating CPNCloud models. The

outcome of the analysis approach is to provide an estimate for cost values for two different

management policies and to select the appropriate one before implementation. The appli-

cation of the suggested modelling and analysis approach in the Energy Management Case

Study allowed us to define which management policy was better in terms of cost savings.

In the next chapter, we will improve the SCCM to provide more accurate estimation by

looking at two different cases that we observed while applying the SCCM.

139

140

CHAPTER 7

The Optimised Cost Calculation Method (OCCM)

for Management Policies Including Time-Intervals in

a Modelled Cloud Platform

In Chapter 5, we proposed a model-based approach using coloured Petri-nets (CPNs) to

model both cloud platform and management policies. The proposed method is aimed

at defining a formal model for an automatic cloud platform which includes a migration

action as a dynamic action. The formal description model for both cloud platform and

management policy is denoted as CPNCloud. Each generated CPNCloud model is simulated

to produce a set of traces of execution for 24 hours. At each sampled trace, the cost

calculating method for computing the costs of both energy consumption and the migration

of a virtual machine is applied to assess two sets of management policies (see Chapter 6

for a detailed explanation of the method). We noticed that in some CPNCloud models

that used time-intervals to fire migration transitions, the traces of executions for such

models might have complex structures and might also include various loops. However,

the cost calculating method proposed in the previous chapter does not consider complex

141

Figure 7.1 – A sample of a reachability graph (left-side) and a sample of a trace extracted
(right-side)

cases.

Therefore, in this chapter, we extend our previous method to consider the time-intervals

by formulating a set of integer programming equations solved by the Simplex algorithm

which uses the Branch and Bound Method [8]. The purpose is to provide cost estimation

values which cover nearly all possible cases that might be found in a trace generated from

a CPNCloud model.

Furthermore, we solved the problem of including loop traces inside traces of execution.

This can be accomplished by proposing a theory which relates the migration cost to the

loop traces. The objective of this theory is to find the loop traces that would be discarded

during the process of the cost calculation. Hence, this chapter is an extension of the

Simulation-based Cost Calculation Method (SCCM) proposed in Chapter 6.

7.1 The Description of the Problem

To clarify the problem, which led to our extension of the previously proposed Cost Cal-

culation Method, let us consider a partially generated reachability graph produced from

142

a CPNCloud which is presented in Figure 7.1. In Figure 7.1, these traces represent the

possible execution during 24 hours which is generated using the CPN Tool [5]. Focusing

on the highlighted trace, any single trace can be described in a format as presented on

the right hand side of Figure 7.1. In a trace σ, the squares represent the markings which

can be either a marking resulting from triggering a monitoring transition or a marking

generated from firing a migration transition. These markings contain the computed cost

values for all running hosting nodes in a cloud platform. In addition, the trace σ also has

arrows which are annotated with (ti, θi). In this form, the notation θi represents the time

unit for firing a transition. Formally, the trace can be described as follows:

σ := M0
(t0,θ0)−→ M1

(t1,θ1)−→ M2
(t2,θ2)−→ . . .

(tn−1,θn−1)−→ Mn

0 6 θ0 6 θ1 6 θ2 . . . 6 θn−1 < 24 (1)

By applying the SCCM described in Chapter 6, we can obtain the estimated cost values

of Energy Consumption and Migration Costs. However, some CPNCloud models have

migration transitions restricted to time intervals, such as the model of the CPNCloud that

includes timed-based policies (examples of such models are explained in the case study in

Section 5.1 in Chapter 5 as well as the ones presented in Table 7.1). This means that in a

trace σ, a migration transition ti is fired with a time delay di which is between the allowed

time-interval [DMini, DMaxi]. The previous Cost Calculation Method relies on using a CPN

simulator to randomly select the time delay for firing a migration transition. However,

when using a time-interval [DMini, DMaxi] for firing a migration transition ti, there might

be a time delay di where the cost of energy consumption between the marking Mi and

Mi+1 could have minimum values. As a result, the SCCM proposed in Chapter 6, can be

extended to compute the minimum energy consumption cost between the markings. This

143

can be achieved by finding the optimal or near-optimal time delays for firing migration

actions in traces associated with time-intervals. The solution will be explained in the

following section.

7.2 The Optimised Cost Calculation Method (OCCM)

The solution starts by computing both cost values which can be Energy Cost and Mi-

gration Cost at each marking Mi in a trace σ using the second parts of both Equations

4 and 6 mentioned in Section 6.1 in Chapter 6. Then, we formulate a set of Integer

Programming equations for obtaining the minimum energy consumption cost.

7.2.1 Computing the Overall Cost in the Trace

Let us consider that the generated trace σ has the following format:

σ := M0
(t0,θ0)−−−→
d0

M1
(t1,θ1)−−−→
d1

M2
(t2,θ2)−−−→
d2

. . .Mn−l
(tn−1,θn−1)−−−−−−→

dn−1
Mn

0 6 θ0 6 θ1 6 θ2 . . . 6 θn−1 < 24 (2)

In which each Mi is a marking resulted from firing ti with a delay time unit di. Each Mi

happens at time θi. To compute the total cost in trace σ such that each ti is fired with

time delay di which has the minimum ECost(Mi) and an overall total cost which is less

than or equal to the daily assigned budget b, we define the following objective function:

OverallCost(σ) = Minimize(
n−1∑
i=0

di ∗ ECost(Mi) + TCost(ti)) (3)

subject to the following constraints:

144

• di ∗ ECost(Mi) + TCost(ti) 6 AllowedBudget

di =

DMini 6 di 6 DMaxi if the firing transition ti is a migration transition

@MonitoringT ime 6 24 if the firing transition ti is a monitoring transition

• θi+1 = di + θi 6 24

• θi , θi+1 , di > 0, θi < θi+1

• θ0 = 0 and θn = 24

Such that di, θi+1, θi are integers. In our solution, we consider computation for a day

(i.e., 24 hours). Yet, the computation can be easily adjusted for days, weeks or seasons.

AllowedBudget is the value of the maximum allowed assigned budget by a cloud do-

main expert for both Energy Consumption and Migration Cost. Its computation will be

explained in the following section. Both DMini and DMaxi are integer values extracted

from the management policy used to limit the variable di. The variable @Monitoring-

Time represents the delay-time unit for monitoring transitions which will be assigned in

a CPNCloud model before extracting the traces. θi is the time for firing the transitions in

a trace σ and θi+1 is the next time unit after firing a transition ti. In this method, we

assume that each fired monitoring transition has no cost. As a result, in Equation 3, the

obtained cost value for any monitoring transition will be equal to 0.

The value of OverallCost(σ) is obtained using Simplex Solver which uses the Branch

and Bound Method implemented in Excel [8]. The objective is to find the feasible integer

values for time-delay di, since the CPNCloud model considers discrete time rather than

continuous time. Using this algorithm, the total cost along σ can be computed by finding

the best time-delay di for firing each migration transition ti. In case the solver [8] does

not find a feasible solution in a trace σ, we assign for each di the value Dmini (a brief

description about Integer Programming and Branch and Bound Method is provided in

145

Section 2.5 in Chapter 2).

7.2.2 Computing the Assigned Budget

In Equation 3, the first constraint-equation restricts that the total cost at a marking Mi

should be less than or equal a value of the AllowedBudget. In our CPNCloud model, we

obtain this value by using the following Equation:

AllowedBudget =
n∑
a=1

xa +
m∑
b=1

yb (4)

such that:

• xa = is the maximum cost of energy consumption for hosta during 24 hours

• yb = is minimum amount of penalty caused by violating SLA

The value of each xa is obtained from the configuration of the cost of Energy Consumption

for a host which is based on the SPEC Benchmark results shown in [13]. On the other

hand, the value for each yb is extracted from the SLA Configuration for each running

Virtual Machine in the CPNCloud model.

7.2.3 A Special Case: Handling Traces with Loops

In the previous section, we mentioned a method of calculating the minimum cost for a

given finite trace σ. If a Petri-net results in a finite number of possible reachable markings,

the method suggested above would be sufficient for obtaining the minimum amount of

energy associated with a policy that has time intervals. In such cases, we need to obtain

the Integer Programming equations corresponding to all traces and use a solver for IP such

as the one in [8] on each trace to find the trace which has the minimum cost. However, it

is possible that some traces involve periodic behaviours which appear in these traces as

loops. As depicted in Figure 7.2, from the trace shown in the figure, infinite traces can

146

be obtained by repeating the loop involving the markings M2, M3, and M4.

Figure 7.2 – An example of a trace with a loop

It is possible for each given number of iterations of the loop to obtain a trace and

apply the method of the previous section to calculate the minimum cost. The trace would

repeat the markings involved in the loop. Clearly, the length of the traces can increase

as we can include an arbitrary number of repetitions of each loop. At first glance, it

might be the case that we need to identify the minimum cost over an infinite number of

traces. However, with each iteration on a loop, there are costs associated with the traces.

This is because the migration of the virtual machine accumulates cost. For a sufficiently

large number of migration costs, the trace will be large enough to be discarded from the

calculation, when we are looking for a solution with a minimum cost.

Lemma 1 Assume that σ is a trace of execution such that σ has a loop. i.e. σ has the

following sub-sequence:

λ = Mk−1
(tk−1,θk−1)−−−−−−→

dk−1
Mk

(tk,θk)−−−→
dk

Mk+1 . . .
(tl−1,θl−1)−−−−−−→

dl−1
Ml

such that Ml = Mk−1 and Cost(σ) > N × LoopCost(λ) in which N is the number of

repetitions of the sequence (∗) and LoopCost(λ) = ∑l
i=k TCost(ti)

Sketch of The Proof: The amount of energy associated with λ consists of the amount

of energy consumed by running virtual machines at all hosts in CPNCloud model. We

mean that the cost at Mi where k− 1 6 i 6 l− 1 plus the cost of the migration when the

transitions tk−1, tk, . . . , tl−1 are fired. LoopCost(λ) = ∑l
i=k TCost(ti) captures only the

147

cost migration. If there are N repetitions of the loop, we end up with N × LoopCost(λ)

with at least the cost associated with the migration for N iterations of the loop.

Theorem 1 Assume L represents the set of all loops with at least one migration transition

with a non-negative cost. Suppose Cmin = min{LoopCost(λ)|λ ∈ L} repeating the smallest

value for all the cost of migration within a loop. Suppose that σs is an arbitrary finite

trace of execution starting from the initial marking and executing for 24 hours. If q is the

smallest number that q × Cmin > TCost(σs), then the minimum cost will be

Min{Cost(σ)|σ is a trace with at most q repetitions of each loop} (5)

Proof 1 For any trace σ with more than q repetitions of a loop L, the cost of σ will be

greater than or equal to Cost(σs). Hence, traces will be discarded as these will result in a

minimum cost of energy.

Using the above theorem, we need to calculate the minimum cost with the help of a

finite number of traces. As a result, if any graph resulting from the CPNCloud model

consists of a set of traces including loops, a finite set of traces executing the loops should

be generated. This can be achieved by repeating the loops N repetitions. Then, the

cost is computed using the Optimised Method explained in Section 7.2. In addition, the

cost of migration for traces with loops should be considered. We stop computing the

cost for traces consisting of loops when the cost values become greater than the cost of a

trace with the smallest repetition number for the loop sequence. The following example

will demonstrate the implication on the values of migration cost in a trace with a loop

sequence.

148

7.2.4 An Example Demonstrating a Loop Case

Figure 7.3 demonstrates an example of the loop case in a trace extracted from the graph of

Policy A mentioned in Section 7.3 (see the graph in Figure 7.4(a)). Figure 7.3(a) presents

the cost values of both Migration Cost and Overall Cost in a trace σ1 with and without

the execution of loop sub-traces. From the generated loop traces, the Cost Calculation

Method explained previously is applied to these traces. From the result, the optimal total

cost values for traces with loops are more than similar traces with zero repetition for

the loops, due to the increase in the cost of migration for loop traces. As a result, it is

preferable to discard these traces before the calculation.

By applying the theorem explained previously, a detailed analysis about the changes

in the values of Migration Cost, denoted as TCost(σ1) during 24 hours is presented in

Figure 7.3(a). In Figure 7.3(b), the value of TCost(σZero) increases when the migration

is allowed until it reaches 7.5 after 24 hours execution. One the other hand, the values

for both TCost(σOnce) and TCost(σTwice), which are traces allowing the execution of

loops, increase to reach 10.9 and 14.3, respectively. In this case, it is noticeable that the

migration costs for the loop traces are more than a trace without the execution of the

loop. As a result, these loop traces will be discarded from the calculation.

7.3 The Evaluation of the Proposed Method

We evaluated the proposed solution by analysing and comparing the CPNCloud model for

the same case study described in Section 5.1 in Chapter 6 but using a different set of

management policies, which are presented in Table 7.1 .

We used the CPN tool [74] to generate CPN models for all tested policies mentioned

in Table 7.1. Then, we created a set of sequence of executions for each model. During the

process of generating the sequence graphs using the ML function in the CPN tool, we also

149

(a) Comparing the overall cost values between traces with no execution of loops
and with loops execution

(b) The values of TCost(σi) during the execution of 24 hours with 0 , 1 ,2
repetition(s) for a loop trace

Figure 7.3 – Demonstrating the loop case using a trace of execution from CPNCloud of
Policy A

150

Time-based Policy A

• RuleSet 1: (Applied between Private Hosts)
– When Private Host(x) can accept Migrated VM and Time is after

10.00 and Private Host(y) can migrate VM
then
Allow only one VM to be migrated between Private Host(x) and
Private Host(y) every ∆time.

• RuleSet 2:(Applied between Private Host and Public Host)
– When Public Host(x) can accept Migrated VM and Time is after

10.00 and Private Host(y) can Migrate
then
Allow VM to be Migrated to Public Host(x) every ∆time.

• RuleSet 3: (Applied at Public Host)
– When Time is after 10.00 at Public Host(x)

then
Allow VM to be Migrated to Private Hosts from Public Host(x)
every ∆time.

Time-based Policy B

• RuleSet 4: (Applied between Private Hosts)
– When Private Host(x) can accept Migrated VM and Time is be-

tween 16.00 and 7.00 and Private Host(y) can migrate VM
then
Allow only one VM to be migrated between Private Host(x) and
Private Host(y) every ∆time.

• RuleSet 5:(Applied between Private Host and Public Host)
– When Public Host(x) can accept Migrated VM and Time is be-

tween 16.00 and 23.00 and Private Host(y) can Migrate
then
Allow VM to be Migrated to Public Host(x) every ∆time.

• RuleSet 6: (Applied at Public Host)
– When Time is after 23.00 at Public Host(x)

then
Allow VM to be Migrated to Private Hosts from Public Host(x)
every ∆time.

Table 7.1 – A Rules Set Template for Expressing Time-based Rules For Both Policy A and
Policy B

computed the cost of energy consumption and the migration cost which are associated

with the markings. After that, integer programming equations were formulated and solved

using the Microsoft Excel Solver [8]. Both the modelling and analysis processes were done

on a Samsung laptop which has 2.40GHz Intel(R) Core(TM) processor and 6GB memory.

151

(a) Policy A: random time-intervals

(b) Policy B: fixed time-intervals

Figure 7.4 – The graphs of sequence of execution for Coloured Petri Net models for Policy
A and Policy B

152

7.3.1 The Sequence of Execution Graphs of the Generated Mod-

els

We used the CPN tool to create the models for Policy A and Policy B. The workload for

the models was simulated to be generated randomly using the ML function. Figure 7.4

shows the traces of execution graphs for the models. In all graphs, the values inside the

markings are the cost of energy consumption for four private hosts. The time intervals

which applied at each migration transition are located at the edges between the markings.

We notice that the graph in Figure 7.4(a) has two traces containing loop traces. For the

loop traces, we applied the theorem explained in Subsection 7.2.3. We noticed that the

overall cost values for each of the traces with loops are higher than similar traces without

executing the loop sub-traces. This is an example of a case when we discard all the loop

traces generated in the graph of Policy A.

7.3.2 Results and Discussion

From the graphs shown in Figure 7.4, there are 18 traces generated from the graphs of

Policy A and Policy B. We applied the Cost Calculation Method explained in Section 7.2

to all generated traces. We obtained the minimum cost of Energy Consumption, Total

Migration Cost and Optimal Overall Cost at each generated trace for all the graphs. To

compare both Energy Consumption and The Overall Cost for all the policies, we selected

18 traces from each generated graph ignoring all the loop traces. The detailed results

produced from the analysis method are displayed in Figure 7.5 and Figure 7.6.

Figure 7.5 illustrates the Optimal Energy Consumption Cost for 18 traces generated

from each of the traces of execution graphs presented in Figure 7.4. Generally, the figures

show that each trace for Policy B has an Optimised Energy Consumption Cost value which

is less than the traces in Policy A, since Policy A allows the migration to be triggered at

153

Figure 7.5 – The optimal energy consumption cost for 18 traces from the sequence of
execution graphs

any time using random time intervals. In contrast, the migration action in Policy B is

restricted to the off-peak time which is from 16:00 until 21:00 mapped as [8-24] in some

of the traces of the graph of Policy B (see Figure7.4(b)) .

From Figure 7.5, we can analyse the cost of each trace for each policy individually. For

instance, we can see that trace σ18 has the lowest Optimised Energy Consumption Cost

among traces of Policy A. Whilst trace σ7 has the least Optimised Energy Consumption

Cost among the traces of Policy B which is nearly 0.26. In addition, we can notice that

some traces of Policy A have nearly the same cost values which are reasonably high such

as σ17, σ5, σ4 and σ3. Conversely, if we look at traces of Policy B, we can also notice some

fluctuation in Energy Cost values. Trace σ12 has the highest cost among other traces in

Policy B.

Figure 7.6 presents the Optimal Overall Cost after accumulating the Migration Cost

values of each trace to its Optimised Energy Consumption Cost. We found that there were

changes in cost values since some traces required the triggering of migration transitions

which means their migration costs were high. As a result, the figures for each trace of

154

Figure 7.6 – The optimal overall cost for 18 traces from the sequence of execution graphs

execution for both Policy A and Policy B are roughly similar. The average of the Optimal

Overall Cost value for both Policy A and Policy B was approximately £9.0.

To summarise, the analysis of the results using the OCCM for calculating the cost

traces generated from the CPN models of Policy A and Policy B revealed that Policy B

has the Optimised Energy Consumption Cost, but has an Overall Cost value close to the

Overall Cost value of Policy A. Thus, restricting the firing of the migration action to be

only allowed during off-peak periods, which is applied in Policy B, might save the cost

of Energy Consumption, but the migration cost should be considered as an important

factor. As a result, in a CPNCloud model, the migration in Policy B should be applied to

places which have the lowest Migration Cost.

Comparing the OCCM Method with the Previous Method

To study the effectiveness of the proposed method on the computed cost values, we

compared this method with SCCM. For all traces of both Policy A and Policy B graphs, we

applied the previously proposed method explained in Chapter 6. During this process, we

ignored the Migration Cost values computed from both methods because these values are

155

Figure 7.7 – A comparison between the two methods of calculating the cost energy con-
sumption in traces

fixed. Instead, we focused on the computed Energy Consumption Cost values from both

methods. We found that the OCCM proposed in this Chapter provides a better estimation

of Energy Consumption Cost than the SCCM mentioned in Chapter 6 when time-delays

are considered (see Figure 7.7). Figure 7.7 presents the effect on the estimation of Energy

Consumption Cost in all traces generated from both the SCCM and the OCCM. Clearly,

the OCCM produces averages of Energy Consumption Cost for both Policy A and Policy B

which are lower than the values given by the SCCM. The differences in the average rate in

cost values for Policy A and Policy B are similar, about 0.3 and 0.2, respectively. Thus,

we can summarise that the OCCM is more accurate in estimating the cost of Energy

Consumption which can be suitable for analysing some types of management policies.

These management policies are the those that include time-intervals for firing migration

actions in a CPNCloud model. However, if the objective is to speed up the process of

calculating the cost, or if time delays are not of much concern to cloud domain experts,

then the SCCM can be applicable in such types of management policies.

156

7.4 Toward Finding the Optimal Energy Strategy

As explained in Section 4.2.1, management policies are low-level, or high-level, or com-

bination of both. CPNCloud models and the Cost Calculation methods covered in this

thesis aim at evaluating the expected to be implemented policies. Using the suggested

method cloud domain experts and rule developers will estimate the cost of running poli-

cies. At the current stage, the proposed analysis methods in both Chapter 6 and Chapter

7 are too far away to be used for finding the optimal policies. However, in this section,

we suggested a method which might allow the tool be beneficial for fining the Optimal

Management Policies in future. This can be done based on having many previously tested

Management Policies which are implemented using the CPNCloud models. Literally, such

policies run using a set of required threshold values. Currently, these threshold values

are assigned subjectively. The thresholds used in our examples are Energy Consumption

and CPU Usage. Nevertheless, depending on the management requirements, which are

specified by cloud domain experts on earlier design stage, other types of thresholds can be

defined. We noticed that obtaining a new optimal Management Policy requires extracting

optimal threshold values after modelling and testing various set of Management Policies.

This will be explained in the following section.

7.4.1 Obtaining the Optimal Thresholds

Let us denote to the Optimal Management Policy as OptPolicy. The previous policies

belong to a set of P = p1, p2, . . . , pn (See Figure 7.8(a)). Each pi ∈ P has a matrix Thi of

size m×2 for a general representation. Here, this matrix represents the lower and the up-

per bound for both Energy Consumption and CPU Usage thresholds which is of size 2×2.

To find the Optimal Policy OptPolicy which will be solved using Equation 3, firstly

157

(a) Constructing Lower-bound & Upper-bound threshods-matrices

(b) Getting the optimal thresholds

Figure 7.8 – Extracting the optimal thresholds for the optimal Management Policy

158

we should find the optimal thresholds Zopt for such policy.

Zopt = (Min X,Max Y) (6)

Such that Min X and Max Y are the vectors of size m. Those vectors result from ap-

plying a search optimal method applied to two thresholds matrices which are X and Y .

As shown in Figure 7.8(b) X is the matrix that includes the lower-bound values tested in

previous modelled Management Policies which is of size m × n. Whilst Y is the matrix

containing the values of all the upper bound of the previous tested policies which is also

m × n (See Figure 7.8(a) for constructing both X and Y matrices). Our objective is to

get Zopt which is the concatenation matrix that represents the optimal thresholds matrix

for the potential Management Policies. Firstly, we optimise the lower-bound matrix X to

get all possible minimum values which is the first part in Equation 6 on the right hand

side. The minimum part is subject to the following constraints:

• aj 6 xi 6 bj. aj is the lowest value of lower bound of the tested thresholdj value

among the previously tested policies and bj is the highest value of the lower bound

of the tested thresholdj for the previously modelled policies.

On the other hand, the second part of Equation 6 is solved by optimising the upper

thresholds matrix for getting the maximum values which will be subject to the following

constraints:

• cj 6 yi 6 dj. cj is the lowest value of upper bound of the tested thresholdj value

among the previously tested policies and dj is the highest value of upper bound of

the tested thresholdj for the previously modelled policies.

Equation 6 has the properties of linear programming which can be solved using Modified

Simplex or any multi objective optimisation algorithm. This requires an investigation of a

159

suitable optimisation algorithm which can be a future objective. We want to refer that the

optimal policy can be found or not which is based on having adequate previously tested

Management Policies. In cases where the optimal policies cannot be found, we can only

depend on using the CPNCloud model for evaluating the currently executed Management

Policies.

7.4.2 Using the Optimal Analysis Method

After selecting the possible optimal thresholds as explained in previous section, the opti-

mal Energy strategy can be obtained using our modelling and analysis method suggested

in Section 7.2. The optimality is based on the assigned thresholds given at each suggested

management policy. After the thresholds which are related to the Energy Consumption

and Resources parameters have been defined, the CPNCloud model for the suggested op-

timal management policy is created. For the created new model, the analysis method

suggested in Section 7.2 is applied. The outcome of the method is the overall cost value

for both Energy Cost and Migration Cost which should be compared with other estimated

cost values obtained for previously applied policies if the new derived policy is the optimal

policy.

7.4.3 The Advantages and Disadvantages of Modelling and Anal-

ysis Approach

As explained in Chapter 4 that Management policies are classified with two levels. Man-

agement Policies can be used to solve various types of management problems that require

triggering a set of management actions. We designed an extensible meta-model which can

be defined by cloud domain experts based on their own specified management require-

ments. For example, the model that can be used to address management objective de-

pends on the business model suggested by cloud domain experts. However, our modelling

160

process is restricted to management actions that require the migration for applications,

services, virtual machines and physical nodes. Nevertheless, any management objective

such as a reconfiguration for services, which can be done inside the physical host, can be

covered and studied using the analysis method suggested in Chapter 6.

One of the advantages of using our modelling approach is related to mathematical

formalism. The formalism is simple and enriched with features as well as an adequate

information for modelling a cloud-platform. The characteristic of such a platform is

composed of a manager that should trigger various sets of management actions. An

other advantage of our modelling approach is related to the cost calculation method.

Both methods suggested in Chapter 6 and Chapter 7 are for evaluating various set of

predefined Management Policies. Our method is an analytical approach which covers

all possible options and configurations that can be found. In contrast to other existing

approaches discussed in Section 2.7 in Chapter 2, such evaluation methods are based on

a simulation which might miss some existing options. Furthermore, it should be noted

that our analysis technique is based on mathematical formalism which can be extended

to model various types of monitoring parameters. This can only be accomplished by

describing the measurement method inside ML-function applied in to CPNCloud tool.

Opposite to existing approaches, cost calculation is based on random selected thresholds.

As a result, our approach provides a deep analysis for cost assoicated with triggering

management actions.

We want to point out that our proposed modelling and analysis tool requires learning

and background about modelling and Petri-nets which can be considered as a drawback.

Furthermore, compared to optimisation approaches suggested in Chapter 2 in Section

2.7, our method is limited to a platform that should trigger management actions and

should require in corporation of other nodes. Therefore, the modelling concept should be

understood in order to apply different types of management objective for using various

161

domain of management policies as introduced at the beginning of Chapter 7. In the

following chapter, the limitations of the suggested modelling and the analysis methods

are discussed.

7.5 Chapter Summary

Management policies that would be executed in a cloud platform can be assessed in terms

of energy cost saving before execution via CPNs. By using the SCCM and the OCCM

suggested in this chapter, the estimated energy consumption and the migration costs can

be obtained. The OCCM provides a deep analysis for both cost values which are extracted

from the traces of the execution graph of CPNCloud models. The method uses a set of

integer programming equations which are solved via the simplex algorithm with Branch

and Bound Method provided in Excel Solver. The objective is to find traces which have

minimum energy cost values and the best time for firing migration actions during 24 hours.

CPNs can be powerful tools for modelling and analysing autonomic cloud platforms and

management policies. Both the Simulation-based and the Optimised Cost Calculation

methods will allow cloud domain experts to study the effect of executing a policy in a

CPNCloud on cost values before implementing them in a real platform.

162

CHAPTER 8

Conclusion and Future Work

The efficient management of energy consumption is one of the methods that assists the

data centres’ owners to reduce the electricity usage of their data centres. The implication

of applying such a method might result in the reduction of CO2 emissions [31]. Due to the

motivation toward designing energy-efficient data centres, both cloud providers and cloud

consumers (organisation or enterprises) have green policies, and have their own strategic

plan for implementing such policies which can follow the suggested recommendations

as in [2, 101, 129]. One type of green policy is an energy management policy, which

is related to managing running services in data centres. In our research context, we

refer to “energy management policies” as “management policies”. Cloud providers have

their own implementations and algorithms for management of their services considering

energy consumption. On the other hand, cloud consumers would like to have a method

that allows them to describe and implement their “management policies” automatically.

Thus, the objective of this PhD thesis is to bridge the gab between the level of describing

and implementing for these types of policy.

Throughout this PhD thesis, we studied management policies as a concept for automat-

163

ically governing energy consumption and energy cost in a cloud environment. Management

policies originate from a management objective established by cloud domain experts. The

executable forms of specified management policies trigger management actions automati-

cally when they are implemented into MP-Framework. The architecture MP-Framework

is based on using a policy-based engine. The framework can be configured with any cloud

management system via developing the correct connecting wrappers. To illustrate the ap-

plicability of MP-Framework, we applied the framework to an Energy Management Case

study for a private cloud scenario implemented in Drools [11] and OpenNebula [105].

We classified management policies into low-level and high-level policies. Chapter 4

presented the design specification that can be applied to formulate various types of man-

agement policies. Originally, this specification was based on the specification of the UML-

Rule Modelling Language (URML). Using the specification discussed in Chapter 4, both

the expressible and the executable forms of management policies can be formulated. The

specification that we proposed are used to design the CloudMPL language, which is a

domain-specific language consisting of textual expressions. The purpose of CloudMPL

is to describe management policies during the early design stages. Furthermore, the

proposed specification was utilised to develop a set of mapping rules from CloudMPL to

Drools. The purpose of designing such mapping rules was to build the foundation of code-

generation from the description level to the implementation level during the development

of management policy.

Due to the size and dynamics of the cloud platform, we noticed that the interactions

of the executable management policies may be very complex during execution in a real

cloud platform. Therefore, we saw a need to create a method for assessing the cost of

executing various sets of management policies before their implementation in the platform.

Hence, in Chapter 5, both cloud platform and management policies are modelled using

Coloured Petri-nets (CPNs). The modelling approach that we suggested considering the

164

case of cloud platform allows a live migration action for a virtual machine among a set of

available hosts. The novel achievement in Chapter 5 is the ability to create a modelling

tool for such a cloud platform. The structure of the cloud platform results in interactions

with complex components. Such components have massive amount of information that

must be included in the cloud models. Therefore, CPN was a suitable modelling language

that can handle the complex structure of the cloud platform and management policies.

Each generated CPNCloud model presents a cloud platform and the potential management

policy in a convenient manner as well as in a clear abstract form.

Using CPNCloud models, we were able either to simulate or to generate a set of traces

of executions. From each set of traces produced, we managed to compute the cost values

using two proposed methods for cost calculation. Those approaches are the Simulation-

based Cost Calculation (SCCM) and the Optimised Cost Calculation (OCCM) methods.

Using the overall cost values obtained from SCCM or OCCM methods, cloud domain

experts and rule developers are able to estimate energy consumption and migration costs

of various sets of management policies before real implementation into a cloud platform.

In our thesis, we are concerned about the energy consumption cost and the migration

cost. However, any cost model can be encoded in CPNCloud models and computed using

the suggested cost calculation methods.

In conclusion, management policies can be described in either expressed or executable

forms using the specification proposed in Chapter 4. Furthermore, the executable form of

management policies can be directly executed in a cloud platform using MP-Framework.

Due to the complex interactions that might arise during the execution of the management

policies, Chapters 5, 6 and 7 suggest CPN modelling and analysis methods. Both the cloud

platform and management policies can be assessed in terms of energy savings. Although

the concept of management policies is covered in various aspects in this research, this

study has some limitations which will be explained in the following section.

165

8.1 Research Limitations

MP-Framework is designed to be run with a cloud management system that has a cen-

tralised architecture such as OpenNebula. Referring to the challenges briefly discussed in

Section 3.5 in Chapter 3, the MP-Framework is limited to the scope of small scale data

centres. For medium and large size data centres, the framework can be duplicated as ex-

plained in Chapter 3. In addition, in our thesis, we built the foundation for transforming

a management policy written at description level to the implementation level using the

designed mapping rules from CloudMPL to Drools. Since the full CloudMPL tool should

be finished by CloudMPL designers, the transformation is not complete. Furthermore, the

CPNCloud model is related to the proposed MP-Framework. Because of the centralised

architecture that MP-Framework may applied to, CPNCloud is used to evaluate a cloud

platform that has a centralised architecture.

The scalability of the CPNCloud model is important. Since our modelling and analysis

approach is applied to a centralised cloud architecture, the model is limited to configure a

certain number of operating nodes. Any increase in the number of nodes in the model, the

graphical representation of whole model will be become complex and difficult to manage.

This requires an enhancement in the formalism of CPNCloud model to include various

architecture types as will be explained in the following section. Another interesting angle

is related to the scalability of the proposed analysis method. As shown in Chapter 6 and

Chapter 7, the proposed cost calculation methods are used to estimate the cost values for

days, months and years. From our observation that the produced traces which include

a large window size, such as months or years, are larger than the ones produced for

days. The appearance of such an issue might have an effect on the speed of the process

of analysis. Due to the research time, we did not cover the applicability of the cost

calculation method to include a larger window size. It requires having more tests to judge

166

the best analysis speed for obtaining the cost values from the models which is considered

a limitation. Such a limitation can be addressed in future, as will be explained in the

following section.

8.2 Future Research

The objective of designing MP-Framework was to create a system that can be easily inte-

grated and configured into a cloud platform (as explained in Chapter 3). MP-Framework

can be enhanced with some components that provide flexibility in scaling to a semi-

decentralised or decentralised environment. Therefore, a recommended path for future

research is to explore organising the policy-rule engine in a hierarchical model or employ-

ing MP-Framework with multi-agent system [52] capabilities.

The existing solutions for cloud management such as HP Helion Eucalyptus [67], and

OpenNebula [105] can be deployed into cloud data centres using various deployment

models suggested by IT operators. Another possible project would study the adaptation of

MP-Framework for management energy consumption to various deployment architectures

for OpenNebula in data centres.

The transformation process from the CloudMPL language to Drools, which was dis-

cussed in Chapter 4, can be fully implemented by creating a tool that allows a cloud

domain expert to write a set of management policies in CloudMPL. Then, a suitable

Drools code is produced automatically. To do so, a programmer must use the designed

CloudMPL mapping rules discussed in Section 4.4.2 in Chapter 4. Thus, designing full

packaging tools for authoring CloudMPL and publishing management policies written in

Drools are recommended aspects for future study. The existence of such tools will reduce

the development and maintenance time for designing management policies.

Another interesting direction for future investigation is to empower CPN models for

a cloud platform with complex features. Such features will allow the models to match

167

the decentralised architecture of a cloud platform. Future researchers might explore the

concept of Hierarchical Coloured Petri-Nets [74]. Furthermore, the cost estimation values,

which are obtained from both the proposed cost calculation methods suggested in Chapter

6 and Chapter 7, can be used as input values for the executable MP-Framework. There-

fore, using values generated from an off-line model can improve MP-Framework with a

self-management feature, which also has a potential for future work.

To address the scalability of CPNCloud model, CPN modelling tool is employed with

the concept of Hierarchical Coloured Petri-Nets [74] as mentioned previously. The model

will become scalable if the places and the inner transitions are hidden inside inner models.

Applying the Hierarchical Coloured Petri-Nets [74] would also improve the visual repre-

sentation of the model. As a future step, it requires extending the main formalism of

CPNCloud to include the Hierarchical Modelling concept. Another dimension related to

improving the scalability of our approach is to enhance the Optimised Cost Calculation

method explained in Chapter 7. The enhancement objective is to reduce the number of

markings that might be found in a single trace generated after executing the model. The

reduction in the number of the markings will make the cost calculation method explained

in Chapter 7 have a larger window size such as months and years. We are planning to

investigate the concept Marking Encapsulating. The idea is to combine the calculation for

a smaller window size (days) in a single marking. The larger window size will be the main

marking in the method. This concept can also be applied to the hierarchical modified

models. Such ideas are worthy investigating as in future research designed to tackle the

scalability problems for our proposed modelling approach.

168

APPENDIX A

The Detailed Energy Consumption Results

The following is a detailed representation for the amount of Energy consumed by each node

in OpenNebula and Drools Platform used during testing Management Policies mentioned

in Table 3.1 in Chapter 3.

(a) The Energy Consum-
tion at Node 1

(b) The Energy Consum-
tion at Node 2

(c) The Energy Consumtion
at Node 3

Figure A.1 – The average amount of Energy Consumption at each Node in OpenNebula
and Drools Testbed during the execution of Management Policy A for nine
hours

169

(a) The Energy Consum-
tion at Node 1

(b) The Energy Consum-
tion at Node 2

(c) The Energy Consumtion
at Node 3

Figure A.2 – The average amount of Energy Consumption at each Node during the exe-
cuting of Management Policy B in OpenNebula and Drools Testbed for nine
hours

(a) The Energy Consum-
tion at Node 1

(b) The Energy Consum-
tion at Node 2

(c) The Energy Consumtion
at Node 3

Figure A.3 – The average amount of Energy Consumption at each node during the exe-
cuting of Management Policy C in OpenNebula and Drools Testbed for nine
hours

(a) The Energy Consum-
tion at Node 1

(b) The Energy Consum-
tion at Node 2

(c) The Energy Consumtion
at Node 3

Figure A.4 – The average amount of Energy Consumption at each node during the exeuc-
tion of Management Policy D in OpenNebula and Drools Testbed for nine
hours

170

APPENDIX B

A Sample of Implementation of CPNCloud models in

CPN Tool

B.1 The Used Colour Sets

Figure B.1 – A sample of the declaration of the colour set of Cloud Platform and Policies
used in CPN Tool

171

B.2 The A Sample of CPNCloud Model

Figure B.2 – A sample of CPNCloud model used in CPN Tool for three hosting nodes

In Figure B.2, the green squares represent the initial markings. The high-level policies

are the guards written above the migration transitions. The values above the arcs or the

arrows are the information of the migrated virtual machine as well as the required values

to change the state of hosts before and after moving virtual machines.

172

Figure B.3 – A sample of one of CPNCloud model used in CPN Tool used for the case
study explained in Chapter 6

Figure B.4 – A sample of one of the implemented time-based policy in CPN Tool

Figure B.5 – The ML functions for the load generator used in CPNCloud model

173

Figure B.6 – The ML function for the power model used in CPNCloud model

174

Bibliography

[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I. and Zaharia, M. (2010). ’A view of cloud
computing’. volume 53, pages 50–58, New York, NY, USA. ACM. No citations.

[2] Telecommunication Standarization Sector of ITU. (2012). Methodology for energy
consumption and greenhouse gas emissions impact assessment of information and
communication technologies in organizations . [Online] Available from: http://
www.itu.int/rec/T-REC-L.1420-201202-I/en.[Accessed: 7th December 2015]. 2
citations in sections 1 and 8.

[3] Object Management Group (OMG) (2008). Business process model and nota-
tion. [Online] Available from: http://www.omg.org/bpmn/index.htm.[Accessed:
17th September 2015]. One citation in section 2.8.

[4] Object Management Group (OMG) (2008). Semantics of business vocabulary and
business rules specification SBVBR. [Online] Available from: http://www.omg.org/
spec/SBVR/1.0/PDF/.[Accessed: 17th September 2015]. One citation in section 2.8.

[5] CPN Group (2010). CPN Tools. [Online] Available from: http://cpntools.org/,
[Accessed: 28th September 2015]. 4 citations in sections 2.4.3, 2.4.4, 2.4.5, and 7.1.

[6] RuleML Wiki (2012). Simple rule markUp language SRML. [Online] Available from:
http://ruleml.org/.[Accessed: 17th September 2015]. One citation in section 2.8.

[7] Stress Project Team (2014). Stress. [Online] Available from: http://people.
seas.harvard.edu/˜apw/stress/.[Accessed: 18th September 2012]. 2 citations in
sections 3.4.3 and 3.4.4.

[8] FrontlineSolvers (2015). EXCEL SOLVER - integer programming. [Online] Available
from: http://www.solver.com/excel-solver-integer-programming, [Accessed:
12th October 2015]. 5 citations in sections 2.5, 7, 7.2.1, 7.2.3, and 7.3.

175

http://www.itu.int/rec/T-REC-L.1420-201202-I/en
http://www.itu.int/rec/T-REC-L.1420-201202-I/en
http://www.omg.org/bpmn/index.htm
http://www.omg.org/spec/SBVR/1.0/PDF/
http://www.omg.org/spec/SBVR/1.0/PDF/
http://cpntools.org/
http://ruleml.org/
http://people.seas.harvard.edu/~apw/stress/
http://people.seas.harvard.edu/~apw/stress/
http://www.solver.com/excel-solver-integer-programming

[9] GUROPI Optimization (2015). Mixed-Integer Programming (MIP) - a primer
on the basics. [Online] Available from: http://www.gurobi.com/resources/
getting-started/mip-basics, [Accessed: 25th September 2015]. No citations.

[10] IBM Knowledge Centre (2015). Introducing ILOG JRules BRMS. [Online] Available
from: http://www-01.ibm.com/support/knowledgecenter/SS6MTS_7.1.1/com.
ibm.websphere.ilog.jrules.doc/Content/Business_Rules/Documentation/
_pubskel/JRules/ps_JRules_Global7.html, [Accessed: 12th October 2015]. 3
citations in sections (document), 4.3, and 4.2.

[11] Jboss Community (2015). Drools. [Online] Available from: http://www.drools.
org/.[Accessed: 17th September 2015]. 5 citations in sections 2.2, 2.2, 2.8, 2.8.1,
and 8.

[12] Linux Foundation Collaborative Projects (2015). Xen Project. [Online] Available
from: http://www.xenproject.org/, [Accessed: 17th September 2015]. No cita-
tions.

[13] Standard Performance Evaluation Corporation (2015). SPECpower ssj2008
Results. [Online] Available from: https://www.spec.org/power_ssj2008/
results/.[Accessed: 10th October 2012]. 2 citations in sections 3.3.1 and 7.2.2.

[14] VMWare Community (2015). VMWare. [Online] Available from: http://www.
vmware.com/, [Accessed: 17th September 2015]. One citation in section 2.1.

[15] Abdulla, P. A. and Mayr, R. (2012). ‘Petri nets with time and cost’. pages 9–24. 3
citations in sections 6, 6.1, and 6.3.

[16] Abdulla, P.A. and Mayr, R. (2009). ‘Minimal cost reachability/coverability in priced
timed petri nets’. In Luca de Alfaro, editor, Foundations of Software Science and
Computational Structures, volume 5504 of Lecture Notes in Computer Science, pages
348–363. Springer Berlin Heidelberg. 6 citations in sections 2.10.1, 2.10.1, 2.10.2, 6,
6.1, and 6.3.

[17] Abdulla, P.A and Mayr, R. (2011). ‘Computing optimal coverability costs in priced
timed petri nets’. In 2011 26th Annual IEEE Symposium on Logic in Computer
Science (LICS), pages 399–408, June. 4 citations in sections 2.10.1, 2.10.1, 2.10.2,
and 6.

[18] Akshat,V., Kumar,G., Koller,R. and Sen, A. (2011). ‘CosMig: modeling the im-
pact of reconfiguration in a cloud’. In 2011 IEEE 19th International Symposium

176

http://www.gurobi.com/resources/getting-started/mip-basics
http://www.gurobi.com/resources/getting-started/mip-basics
http://www-01.ibm.com/support/knowledgecenter/SS6MTS_7.1.1/com.ibm.websphere.ilog.jrules.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global7.html
http://www-01.ibm.com/support/knowledgecenter/SS6MTS_7.1.1/com.ibm.websphere.ilog.jrules.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global7.html
http://www-01.ibm.com/support/knowledgecenter/SS6MTS_7.1.1/com.ibm.websphere.ilog.jrules.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global7.html
http://www.drools.org/
http://www.drools.org/
http://www.xenproject.org/
https://www.spec.org/power_ssj2008/results/
https://www.spec.org/power_ssj2008/results/
http://www.vmware.com/
http://www.vmware.com/

on Modeling, Analysis Simulation of Computer and Telecommunication Systems
(MASCOTS), pages 3–11, July. No citations.

[19] Almeida A. Bencomo N. Alansari, M. and B. Bordbar. ’CloudMPL: A Domain
Specific Language For Describing Management Policies For An Autonomic Cloud
Infrastructure’. In The Fifth International Conference On Cloud Computing and
Services Science, Lisbon, Portugal, 2015. SCITEPRESS. 4 citations in sections
(document), 4.4, 4.4.1, and 4.4.

[20] Amador, L. (2012). Drools Developer’s Cookbook. Packt Publishing Ltd. 2 citations
in sections 2.2 and 3.3.

[21] Amazon Company (2015). Amazon web services. [Online] Available from: https:
//aws.amazon.com/?nc2=h_lg, [Accessed: 17th September 2015]. 2 citations in
sections 1.1 and 2.1.1.

[22] Ayad, A. and Dippel, U. (2010) . ‘Agent-based monitoring of virtual machines’. In
2010 International Symposium in Information Technology (ITSim), volume 1, pages
1–6, June. One citation in section 1.1.

[23] Behrmann,G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J. and
Vaandrager, F. (2001). ‘Minimum cost reachability for priced time automata’. In
M. Di Benedetto and A. Sangiovanni-Vincentelli, editors, Hybrid Systems: Com-
putation and Control, volume 2034 of Lecture Notes in Computer Science, pages
147–161. Springer Berlin Heidelberg. 2 citations in sections 2.10.1 and 2.10.1.

[24] Bo, L., Jianxin,L., Jinpeng,H. Wo,T., Qin,L. and Zhong, L. (2009). ‘EnaCloud:
an energy-saving application live placement approach for cloud computing environ-
ments’. In IEEE International Conference on Cloud Computing, pages 17–24. Ieee.
2 citations in sections 1 and 3.4.

[25] Board, J.A. (1990). Transputer Research and Applications, 2: NATUG-2, Pro-
ceedings of the Second Conference of the North American Transputer Users Group,
October 18-19, 1989, Durham, NC. Number no. 3 in Transputer and Occam Engi-
neering Systems. IOS Press. One citation in section 2.7.2.

[26] Borgetto, D., Maurer, M., Da-Costa, G., Pierson, J.M and Brandic, I. (2012).
‘Energy-efficient and SLA-aware management of IaaS clouds’. In Proceedings of
the 3rd International Conference on Future Energy Systems: Where Energy, Com-
puting and Communication Meet, e-Energy ’12, pages 25:1–25:10, New York, NY,
USA. ACM. 10 citations in sections 1, 1.2, 2.7.3, 3.4.2, 4.2.1, 5, 5.2, 5.2, 2, and 2.

177

https://aws.amazon.com/?nc2=h_lg
https://aws.amazon.com/?nc2=h_lg

[27] Bousquet, A. and Briffaut, J. and Toinard, C. (2014). ‘An autonomous Cloud man-
agement system for in-depth security’. In 2014 IEEE 3rd International Conference
on Cloud Networking (CloudNet), pages 368–374, Oct. One citation in section 1.1.

[28] Bo,Z., Yizhi,Q, Tao, M. and Peng,L. (2011). ‘Optimization of consuming resource
problem based on reachability graph of petri nets’. In 2011 30th Chinese Control
Conference (CCC), pages 1745–1748, July. No citations.

[29] Bradley,S., Hax,A. and Magnanti,T. (1977). Applied Mathematical Programming.
Addison-Wesley. 2 citations in sections 2.5 and 2.5.

[30] Brandtzæg, E. and Parastoo,M. and Mosser, S. (2012). ‘Towards a domain-specific
language to deploy applications in the clouds’. In The Third International Con-
ference on Cloud Computing, GRIDs, and Virtualization. Cloud Computing 2012,,
pages 213–218. One citation in section 2.9.1.

[31] Brown,R. (2008). Report to Congress on Server and Data Center Energy Effi-
ciency:Public Law 109-431. [Online] Available from: https://ses.lbl.gov/sites/
all/files/pdf_1.pdf.[Accessed: 7th November 2015]. 2 citations in sections 1
and 8.

[32] Bunch, C., Chohan, N., Krintz, C. and Shams, K. (2011). ‘Neptune: a domain
specific language for deploying HPC software on cloud platforms’. In Proceedings of
the 2Nd International Workshop on Scientific Cloud Computing, ScienceCloud ’11,
pages 59–68, New York, NY, USA. ACM. One citation in section 2.9.1.

[33] Buyya, R., Broberg, J. and Goscinski, A.M. (2010). Cloud Computing: Principles
and Paradigms, volume 87 of Wiley Series on Parallel and Distributed Computing.
John Wiley & Sons. No citations.

[34] Buyya, R., Chee S.Y. and Venugopal, S. (2008). ‘Market-oriented cloud computing:
vision, hype, and reality for delivering IT services as computing utilities’. In 10th
IEEE International Conference on High Performance Computing and Communica-
tions,2008. HPCC ’08., pages 5–13, Sept. One citation in section 1.1.

[35] Buyya,R. and Beloglazov, A. (2010). ‘Adaptive threshold-based approach for
energy-efficient consolidation of virtual machines in cloud data centers’. In Pro-
ceedings of the 8th International Workshop on Middleware for Grids, Clouds and
e-Science. ACM. 7 citations in sections 1, 1.2, 3.3.1, 3.3.1, 3.4, 3.4.1, and 3.

[36] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F. and Buyya, R. (2011).

178

https://ses.lbl.gov/sites/all/files/pdf_1.pdf
https://ses.lbl.gov/sites/all/files/pdf_1.pdf

’CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms’. Software: Practice and Expe-
rience, 41(1):23–50. One citation in section 6.

[37] Callou, G., Maciel, Ermeson C. , Nogueira, B. and Tavares, E. (2008). ‘A coloured
petri net based approach for estimating execution time and energy consumption
in embedded systems’. In Proceedings of the 21st Annual Symposium on Integrated
Circuits and System Design, SBCCI ’08, pages 134–139, New York, NY, USA. ACM.
One citation in section 2.4.

[38] Chandrakantha, L. (2008). Using Excel Solver in Optimization Problems. Mathe-
matics and Computer Science Department, New York. No citations.

[39] Chhetri, M.B. and Quoc Bao Vo and Kowalczyk, R. (2012). ‘Policy-based automa-
tion of SLA establishment for cloud computing services’. In 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages
164–171, May. One citation in section 1.1.

[40] Cirstea,H., Kirchner, C., Moossen, M. and Moreau, P. (2004). Production Systems
and Rete Algorithm Formalisation. Contrat A04-R-546 —— cirstea04d. Rapport de
contrat. [Online] Available from: https://hal.inria.fr/inria-00099850/file/
A04-R-546.pdf, [Accessed: 29th September 2015]. No citations.

[41] Cunha, I., Almeida, J., Almeida, V. and Santos, M. (2007). ‘Self-adaptive capacity
management for multi-tier virtualized environments’. In 2007 10th IFIP/IEEE In-
ternational Symposium on Integrated Network Management. IM ’07., pages 129–138.
2 citations in sections 2.7.1 and 2.7.1.

[42] Cunha, M., Mendonca, N. and Sampaio, A. (2013). ‘A declarative environment for
automatic performance evaluation in IaaS clouds’. In 2013 IEEE Sixth International
Conference on Cloud Computing (CLOUD), pages 285–292. One citation in section
2.9.1.

[43] Dantzig,G.B. and Thapa, M.N. (1997). Linear Programming 1: Introduction.
Springer-Verlag New York, Inc., Secaucus, NJ, USA. No citations.

[44] de Chaves, S.A., Westphall, C.B. and Lamin, F.R. (2010). ‘SLA perspective in
security management for Cloud Computing’. In 2010 Sixth International Conference
on Networking and Services (ICNS), pages 212–217, March. One citation in section
1.1.

179

https://hal.inria.fr/inria-00099850/file/A04-R-546.pdf
https://hal.inria.fr/inria-00099850/file/A04-R-546.pdf

[45] Der Jeng, M. and Chen, S. C. (1999). ‘Heuristic search based on Petri net structures
for FMS scheduling’. IEEE Transactions on Industry Applications, 35(1):196–202.
One citation in section 2.10.2.

[46] Di Bona, D., Lo Re,Aiello, G., Tamburo, A. and Alessi, M. (2011). ‘Methodology
for graphical modeling of business rules’. In 2011 UKSim 5th European Symposium
on Computer Modeling and Simulation, pages 102–106. Ieee. One citation in section
2.8.

[47] Diaz, M. (2009). Petri Nets: Fundamental models, Verification and Applications.
ISTE. Wiley. 4 citations in sections 2.3, 2.3.2, 1, and 2.3.2.

[48] Doorenbos, R.B. (1995). Production Matching for Large Learning Systems. PhD
thesis, Pittsburgh, PA, USA. UMI Order No. GAX95-22942. One citation in section
2.2.

[49] Durkin, J. (1994). Expert Systems: Design and Development. Macmillan. One
citation in section 3.1.

[50] Emeakaroha, V.C. and Brandic, I. and Maurer, M. and Dustdar, S. (2010). ‘Low
level metrics to high level SLAs - LoM2HiS framework: bridging the gap between
monitored metrics and SLA parameters in cloud environments’. In 2010 Interna-
tional Conference on High Performance Computing and Simulation (HPCS), pages
48–54, June. One citation in section 1.1.

[51] Feller, E. , Rilling, L. and Morin, C. (2011). ‘Energy-aware ant colony based work-
load placement in clouds’. In 2011 12th IEEE/ACM International Conference on-
Grid Computing (GRID), pages 26–33. One citation in section 2.7.2.

[52] Flores,M. and Roberto A. (1999). ‘Towards a standardization of multi-agent system
framework’. Crossroads, 5(4):18–24, June 1999. One citation in section 8.2.

[53] Forgy, C.L. (1982). ‘Rete : a fast algorithm for the many pattern/many object
pattern match problem’. Artificial Intelligence, 19:17–37. 2 citations in sections 2.2
and 2.2.

[54] Foster, I., Yong, Z., Raicu,I. and Shiyong L. (2008). ‘Cloud computing and grid
computing 360-degree compared’. In Grid Computing Environments Workshop,
2008. GCE ’08, volume 1, pages 1–10. IEEE. One citation in section 1.1.

[55] Freeman, E. , Robson, E. , Bates, B. and Sierra, K. (2004). Head First Design

180

Patterns. Head First Series. O’Reilly Media, Incorporated. One citation in section
1.2.

[56] Gat, E. (1998). Artificial Intelligence and Mobile Robots. chapter Three-layer Ar-
chitectures, pages 195–210. MIT Press, Cambridge, MA, USA, 1998. No citations.

[57] GITE, V. (2001). How to stress test cpu and memory (vm) on a linux and
unix with stress-ng. [Online] Available from: http://www.cyberciti.biz/
faq/stress-test-linux-unix-server-with-stress-ng/.[Accessed: 29th Jan-
uary 2015]. One citation in section 3.4.3.

[58] Gmach, D. , Rolia, J. and Cherkasova, L. (2009). ‘Satisfying service level objectices
in a self-managing resource pool’. In 2009. SASO ’09. Third IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, pages 243–253. 3 cita-
tions in sections 2.7.1, 2.7.1, and 2.7.1.

[59] Goiri, I., JuliaÌĂ, F., Nou, R., Berral, J.L., Guitart, J. and Torres, J. (2010).
‘Energy-aware scheduling in virtualized datacenters’. In 2010 IEEE International
Conference on Cluster Computing (CLUSTER), pages 58–67, Sept. One citation in
section 1.

[60] Graham, I. (2007). Business Rules Management and Service Oriented Architecture:
A Pattern Language. Wiley. One citation in section 4.2.

[61] Gueyoung J., Hiltunen, M.A., Joshi, K.R., Schlichting, R.D. and Pu, C. (2010).
‘Mistral: dynamically managing power, performance, and adaptation cost in cloud
infrastructures’. In 2010 IEEE 30th International Conference on Distributed Com-
puting Systems (ICDCS), pages 62–73. 2 citations in sections 2.7.1 and 2.7.1.

[62] Guitart, J., Macias, M., Djemame, K., Kirkham, T., Ming Jiang and Armstrong, D.
(2013). ‘Risk-driven proactive fault-tolerant operation of IaaS providers’. In 2013
IEEE 5th International Conference on Cloud Computing Technology and Science
(CloudCom), volume 1, pages 427–432, Dec. One citation in section 1.1.

[63] Haibo,M., Huaimin, W., Gang Y., Yangfan Z.,Dianxi S. and Lin,Y. (2010). ‘On-
line self-reconfiguration with performance guarantee for energy-efficient large-scale
cloud computing data centers’. In 2010 IEEE International Conference on Services
Computing (SCC), pages 514–521. 2 citations in sections 2.7.1 and 2.7.1.

[64] Hebborn, J. (2000). Decision Mathematics. Number v. 1 in Heinemann modular
mathematics for Edexcel AS and A-Level. Pearson Education. 2 citations in sections

181

http://www.cyberciti.biz/faq/stress-test-linux-unix-server-with-stress-ng/
http://www.cyberciti.biz/faq/stress-test-linux-unix-server-with-stress-ng/

3.1.1 and 3.3.

[65] Herbst, H., Knolmayer, G., Myrach, T. and Schlesinger, M. (1994). ‘The specifi-
cation of business rules: a comparison of selected methodologies’. In Proceedings
of the IFIP WG8.1 Working Conference on Methods and Associated Tools for the
Information Systems Life Cycle, pages 29–46, New York, NY, USA. Elsevier Science
Inc. No citations.

[66] Hien, N. V., Tran, F.D. and Menaud, J.-M. (2010). ‘performance and power manage-
ment for cloud infrastructures’. In 2010 IEEE 3rd International Conference onCloud
Computing (CLOUD), pages 329–336, July. One citation in section 1.

[67] HP Helion Eucalyptus (2015). Official documentation for Eucalyptus Cloud. [Online]
Available from: https://www.eucalyptus.com/docs/eucalyptus/4.1.2/index.
html, [Accessed: 17th September 2015]. 3 citations in sections 1.1, 2.1, and 8.2.

[68] Hui,C., Chunjie, Z., Yuanqing, Q., Vandenberg, A., Vasilakos, A.V. and Naixue,
X. (2010). ‘Petri net modeling of the reconfigurable protocol stack for cloud com-
puting control systems’. In 2010 IEEE Second International Conference on Cloud
Computing Technology and Science (CloudCom), pages 393–400, Nov. One citation
in section 2.11.

[69] IBM-ILOG (2007). ILOG JRules Techincal. [Online] Available from:http://
logic.stanford.edu/poem/externalpapers/iRules/WP-JRules50Strengths.
pdf.[Accessed: 8th November 2014]. One citation in section 4.3.

[70] Jboss.org (2015). Drools tools reference guide. [Online] Available from:
http://docs.jboss.org/drools/release/6.2.0.CR3/drools-docs/html/
index.html.[Accessed: 27th July 2015]. 11 citations in sections (document), 2.2,
2.3, 2.2, 2.4, 2.2, 3.1.1, 3.3, 4.1, 4.2, and 4.3.

[71] Jensen, K. (1992). Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. Number v. 1 in Monographs in Theoretical Computer Science. An
EATCS Series. Springer Berlin Heidelberg. 6 citations in sections 3, 2.4, 2.4.1, 2.4.2,
2.4.3, and 2.4.4.

[72] Jensen, K. (1995). Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. Number v. 2 in Monographs in Theoretical Computer Science. An
EATCS Series. Springer Berlin Heidelberg. 2 citations in sections 2.4.5 and 2.4.5.

[73] Jensen, K. (1997). ‘A brief introduction to coloured petri nets’. In Proceedings

182

https://www.eucalyptus.com/docs/eucalyptus/4.1.2/index.html
https://www.eucalyptus.com/docs/eucalyptus/4.1.2/index.html
http://logic.stanford.edu/poem/externalpapers/iRules/WP-JRules50Strengths.pdf
http://logic.stanford.edu/poem/externalpapers/iRules/WP-JRules50Strengths.pdf
http://logic.stanford.edu/poem/externalpapers/iRules/WP-JRules50Strengths.pdf
http://docs.jboss.org/drools/release/6.2.0.CR3/drools-docs/html/index.html
http://docs.jboss.org/drools/release/6.2.0.CR3/drools-docs/html/index.html

of the Third International Workshop on Tools and Algorithms for Construction and
Analysis of Systems, TACAS ’97, pages 203–208, London, UK, UK. Springer-Verlag.
4 citations in sections 2.4, 2.4.3, 5.2.1, and 6.

[74] Jensen, K. and Kristensen, L.M. (2009). Coloured Petri Nets: Modelling and Vali-
dation of Concurrent Systems. Springer. 19 citations in sections 2.4, 2.4.1, 2, 2.4.1,
1, 2.4.1, 2.4.2, 1, 2.4.3, 2.4.4, 2.4.5, 5, 2.4.5, 1, 2.4.5, 5.2.1, 6, 7.3, and 8.2.

[75] Jensen, K., Kristensen, L. and Wells, L. (2007). ‘Coloured petri nets and CPN
tools for modelling and validation of concurrent systems’. International Journal on
Software Tools for Technology Transfer, 9(3-4):213–254. One citation in section 6.

[76] Jing, X. and Fortes, J.A.B. (2010). ’Multi-objective virtual machine placement
in virtualized data center environments’. In Green Computing and Communica-
tions (GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber,
Physical and Social Computing (CPSCom), pages 179–188. One citation in section
2.7.2.

[77] Kalman,R. (1959). ‘On the general theory of control systems’. IRE Transactions
on Automatic Control, 4(3):110–110, 1959. One citation in section 2.7.1.

[78] Kecskemeti, G., Maurer, M., Brandic, I., Kertesz, A., Nemeth, Z. and Dustdar, S.
(2012). ‘Facilitating self-adaptable inter-cloud management’. In 2012 20th Euromi-
cro International Conference on Parallel, Distributed and Network-Based Processing
(PDP), pages 575–582. IEEE. No citations.

[79] Kipp,A. and Jiang, T., Fugini, M. and Salomie, I. (2012). ‘Layered Green Per-
formance Indicators’. Future Gener. Comput. Syst., 28(2):478–489. 6 citations in
sections 1, 1.2, 4.2.1, 4.2.1, 4.2.1, and 4.6.

[80] Kliazovich, D., Bouvry, P., Audzevich, Y. and Khan, S.U. (2010). ‘GreenCloud:
a packet-level simulator of energy-Aware cloud computing data centers’. In 2010
IEEE Global Telecommunications Conference (GLOBECOM 2010), pages 1–5. One
citation in section 6.

[81] Kounev, S., Brosig, F., Huber, N. and Reussner, R. (2010). ‘Towards Self-Aware
Performance and Resource Management in Modern Service-Oriented Systems’. In
2010 IEEE International Conference on Services Computing (SCC), pages 621–624.
3 citations in sections 1.2, 2.7.3, and 5.

[82] Kramer, J. and Magee, J. (2007). ‘Self-managed systems: an architectural chal-

183

lenge’. In 2007 Future of Software Engineering, FOSE ’07, pages 259–268, Wash-
ington, DC, USA, 2007. IEEE Computer Society. No citations.

[83] Kusic, D., Kephart, J.O., Hanson, J.E., Nagarajan, K., Guofei, J. (2008). ‘Power
and performance management of virtualized computing environments via lookahead
control’. In 2008 International Conference on Autonomic Computing. ICAC ’08.,
pages 3–12. One citation in section 2.7.1.

[84] KVM (2015). Kernel Virtual Machine. [Online] Available from: http://www.
linux-kvm.org, [Accessed: 17th September 2015]. One citation in section 2.1.

[85] Li, L. and Hadjicostis, C.N. (2011). ‘Least-cost planning sequence estimation in
labelled Petri nets’. Transactions of the Institute of Measurement and Control,
33(3-4):317–331. One citation in section 2.10.2.

[86] Li, M., Ye, F., Kim, M., Chen, H. and Lei, H. (2011). ‘A scalable and elastic pub-
lish/subscribe service’. In 2011 IEEE International Parallel Distributed Processing
Symposium (IPDPS), pages 1254–1265, May. No citations.

[87] Lirui, B., Tong, L., Xinjun, W. and Zhongwen, X. (2011). ‘Charging model research
of infrastructure layer in cloud computing based on cost-profit petri net’. In 2011
International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), pages 435–441, Oct. One citation in section 2.11.

[88] Liu, L., Wang, H., Liu, X., Jin, X., He, W.B., Wang, Q. B. and Chen, Y. (2009).
‘GreenCloud: a new architecture for green data center’. In Proceedings of the 6th
International Conference Industry Session on Autonomic Computing and Commu-
nications Industry Session, ICAC-INDST ’09, pages 29–38, New York, NY, USA.
ACM. One citation in section 2.6.

[89] Love,C. (2011). Metering and Monitoring Energy Use in Data Centres. [Online]
Available from: http://www.goodcampus.org/uploads/DOCS/148-Briefing_
Paper_12_(RECSO)_\discretionary{-}{}{}_Data_Centre_Metering_final.
pdf.[Accessed: 7th November 2015]. No citations.

[90] Lukichev, S., Giurca, A., Wagner, G., Gasevic, D. and Ribaric, M. (2007). ‘Us-
ing uml-based rules for web services modeling’. In 2007 IEEE 23rd International
Conference on Data Engineering Workshop, pages 290 –297, april. One citation in
section 2.8.

[91] Maurer, M. and Brandic, I. and Emeakaroha, V.C. and Dustdar, S. (2010). ‘Towards

184

http://www.linux-kvm.org
http://www.linux-kvm.org
http://www.goodcampus.org/uploads/DOCS/148-Briefing_Paper_12_(RECSO)_\discretionary {-}{}{}_Data_Centre_Metering_final.pdf
http://www.goodcampus.org/uploads/DOCS/148-Briefing_Paper_12_(RECSO)_\discretionary {-}{}{}_Data_Centre_Metering_final.pdf
http://www.goodcampus.org/uploads/DOCS/148-Briefing_Paper_12_(RECSO)_\discretionary {-}{}{}_Data_Centre_Metering_final.pdf

knowledge management in self-adaptable clouds’. In 6th World Congress on Services
(SERVICES-1),2010, pages 527–534, July. 5 citations in sections 1.1, 1.2, 2.7.3, 4.2,
and 5.2.

[92] Maurer, M., Brandic, I. and Sakellariou, R. (2013). ‘Adaptive resource configura-
tion for cloud infrastructure management’. Future Generation Computer Systems,
29(2):472–487. 9 citations in sections 1.1, 1.2, 2.7.3, 3.4.2, 4.2, 4.2.1, 5, 5.2, and 5.2.

[93] Mehrotra, R., Dubey, A., Abdelwahed, S. and Monceaux, W. (2011). ‘Large scale
monitoring and online analysis in a distributed virtualized environment’. In 2011
8th IEEE International Conference and Workshops on Engineering of Autonomic
and Autonomous Systems (EASe), pages 1–9, April. One citation in section 1.1.

[94] Mernik,M., Heering,J. and Sloane, A.M. (2005). ‘When and how to develop domain-
specific languages’. ACM Comput. Surv., 37(4):316–344. One citation in section 2.9.

[95] Mi,H., Wang,H., Yin, G., Zhou, Y., Shi, D. and Yuan, L. (2010). ‘Online self-
reconfiguration with performance guarantee for energy-efficient large-scale cloud
computing data centers’. In IEEE International Conference on Services Computing,
pages 514–521. Ieee. 2 citations in sections 1 and 3.4.

[96] Milner, R. (1997). The Definition of Standard ML: Revised. MIT Press. One citation
in section 2.4.

[97] Minarolli, D. and Freisleben, B. (2011). ‘Utility-driven allocation of multiple types
of resources to virtual machines in clouds’. In 2011 IEEE 13th Conference on
Commerce and Enterprise Computing (CEC), pages 137–144, Sept. 3 citations in
sections 1.1, 2.7.1, and 2.7.1.

[98] Ming,M., Jie,L. and Humphrey, M. (2010). ‘Cloud auto-scaling with deadline and
budget constraints’. In 11th IEEE/ACM International Conference on Grid Com-
puting (GRID), 2010, pages 41–48. No citations.

[99] Morťn, D., Vaquero, L.M. and Galťn, F. (2011). ‘Elastically ruling the cloud: spec-
ifying application’s behavior in federated clouds’. In 2011 IEEE 4th International
Conference on Cloud Computing, pages 89–96. Ieee. No citations.

[100] Murata, T. (1989). ‘Petri nets: properties, analysis and applications’. Proceedings
of the IEEE, 77(4):541–580, Apr. 3 citations in sections (document), 2.3, and 2.5.

[101] Murugesan, S. and Gangadharan, G. (2012). ‘Green Cloud Computing and Envi-

185

ronmental Sustainability’, page 432. Wiley-IEEE Press. 3 citations in sections 1,
1.1, and 8.

[102] Murwantara, I. M., Bordbar, B. and Minku, L. (2014). ‘Measuring energy consump-
tion for web service product configuration’. In Proceedings of the 16th International
Conference on Information Integration and Web-based Applications & Services,
iiWAS ’14, pages 224–228, New York, NY, USA, 2014. ACM. One citation in section
3.3.1.

[103] Nathuji,R., Kansal, A. and Ghaffarkhah, A. (2010). ‘Q-clouds: managing perfor-
mance interference effects for QoS-aware clouds’. In Proceedings of the 5th European
Conference on Computer Systems, EuroSys ’10, pages 237–250, New York, NY,
USA. ACM. One citation in section 1.1.

[104] Nunez, A., Castane, G.G., Vazquez-Poletti, J.L., Caminero, A.C., Carretero, J.
and Llorente, I.M. (2011). ‘Design of a flexible and scalable hypervisor module for
simulating cloud computing environments’. In International Symposium on Per-
formance Evaluation of Computer Telecommunication Systems (SPECTS), 2011,
pages 265–270. One citation in section 6.

[105] OpenNebula Community (2015). Opennebula: The open source toolkit for cloud
computing. [Online] Available from: http://www.opennebula.org.[Accessed: 15th

December 2012]. 17 citations in sections (document), 1.1, 1.2, 1.2, 2, 2.1, 2.1.1,
2.1.1, 2.2, 2.7.1, 3.1, 3.3, 3.5, 4.2, 5.2, 8, and 8.2.

[106] ovirt Community (2015). ovirt. [Online] Available from: http://www.ovirt.org/
Documentation, [Accessed: 17th September 2015]. One citation in section 2.1.

[107] Padala, P. , Shin, K.G. , Zhu, X. , Uysal, M., Wang, Z., Singhal, S. , Merchant, A.
and Salem, K. (2007). ‘Adaptive control of virtualized resources in utility computing
environments’. In 2007 Proceedings of the 2Nd ACM SIGOPS/EuroSys European
Conference on Computer Systems, EuroSys ’07, pages 289–302, New York, NY,
USA. ACM. No citations.

[108] Paulson, L.C. (1996). ML for the Working Programmer. Cambridge University
Press. One citation in section 2.4.

[109] Perez-Palacin, D., Mirandola, R. and Merseguer, J. (2011). ‘Enhancing a qos-based
self-adaptive framework with energy management capabilities’. In Proceedings of
the Joint ACM SIGSOFT Conference – QoSA and ACM SIGSOFT Symposium
– ISARCS on Quality of Software Architectures – QoSA and Architecting Critical

186

http://www.opennebula.org
http://www.ovirt.org/Documentation
http://www.ovirt.org/Documentation

Systems – ISARCS, QoSA-ISARCS ’11, pages 165–170, New York, NY, USA. ACM.
No citations.

[110] Pokharel,M. and Park, J.S. (2009). ‘Cloud computing: future solution for e-
Governance’. In Proceedings of the 3rd International Conference on Theory and
Practice of Electronic Governance, ICEGOV ’09, pages 409–410, New York, NY,
USA. ACM. No citations.

[111] Qian, Z. and Agrawal, G. (2012). ‘Resource provisioning with budget constraints
for adaptive applications in cloud environments’. IEEE Transactions on Services
Computing, 5(4):497–511. 3 citations in sections 1.1, 2.7.1, and 2.7.1.

[112] REWERSE (2008). UML-based Rule Modeling Language. [Online] Avail-
able from:http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=
URM.[Accessed: 11th October 2014]. 9 citations in sections 2.8, 2.8.1, 4.1,
4.1.1, 4.1.2, 4.3, 4.3.1, 4.3.1, and 4.3.2.

[113] REWERSE (2008). URML Meta Model. [Online] Available from:https://oxygen.
informatik.tu-cottbus.de/strelka/URML-Metamodel.htm.[Accessed: 11th Oc-
tober 2015]. 6 citations in sections (document), 2.8, 4.1, 4.1.1, 4.1.2, and 4.3.

[114] Rosenberg, F. and Dustdar, S. (2005). ‘Design and implementation of a service-
oriented business rules broker’. In Seventh IEEE International Conference on E-
Commerce Technology Workshops, pages 55–63. Ieee. One citation in section 2.7.3.

[115] Satoh, F. and Itakura, M. (2011). ‘Cloud-based infrastructure for managing and
analyzing environmental resources’. In 2011 Annual SRII Global Conference (SRII),
pages 325–334. No citations.

[116] Shalloway,A. and Trott,J. (2003). Design Patterns: Elements of Reusable Object-
Oriented Software with Applying Uml and Patterns:An Introduction to Object-
Oriented Analysis and Design and the Unified Process. Addison Wesley. One citation
in section 2.7.3.

[117] Spivey, W. A. (1963). ‘Linear Programming. an introduction ’. The Macmillan
Company, 7. One citation in section 2.5.

[118] Taha, H.A. and Schmidt, J.W. (2014). Integer Programming: Theory, Applica-
tions, and Computations. Operations Research and Industrial Engineering. Elsevier
Science, 2014. 4 citations in sections 2.5, 1, 2, and 2.5.

187

http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=URM
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=URM
https://oxygen.informatik.tu-cottbus.de/strelka/URML-Metamodel.htm
https://oxygen.informatik.tu-cottbus.de/strelka/URML-Metamodel.htm

[119] The Apache Software Foundation (2015). Apache JMeter. [Online] Available from:
http://jmeter.apache.org/, [Accessed: 29th September 2015]. One citation in
section 6.2.1.

[120] Toraldo, G. (2012). OpenNebula 3 Cloud Computing. PACKT Publishing Ltd. 10
citations in sections (document), 1.2, 1.2, 2, 2.1, 2.1.1, 2.1, 2.1.1, 2.1.1, and 2.6.

[121] Van,H.N., Tran, F.D. and Menaud, J.M. (2009). ‘SLA-aware virtual resource man-
agement for cloud infrastructures’. In 2009 Ninth IEEE International Conference
on Computer and Information Technology. CIT ’09, volume 1, pages 357–362. 2
citations in sections 2.7.1 and 2.7.1.

[122] Vaquero, L.M., Morán, D., Galán, F. and Alcaraz-Calero, J.M. (2012). ‘Towards
runtime reconfiguration of application control policies in the cloud’. Journal of
Network and Systems Management, 20(4):489–512, Aug. One citation in section
2.7.3.

[123] Verma, A., Ahuja, P. and Neogi, A. (2008). ‘pMapper: Power and migration cost
aware application placement in virtualized systems’. In Proceedings of the 9th ACM
International Conference on Middleware, Middleware ’08, pages 243–264, New York,
NY, USA. Springer-Verlag New York, Inc. No citations.

[124] Walsh, W.E., Tesauro, G., Kephart, J.O. and Das, R. (2004). ’Utility functions in
autonomic systems’. In 2004 Proceedings. International Conference on Autonomic
Computing, pages 70–77. 2 citations in sections 2.7.1 and 2.7.1.

[125] Wampler,J.F. and Newman, S.E. (1996). ‘Integer Programming’. The College Math-
ematics Journal, 27(2):95–100, 1996. No citations.

[126] Wang, J., Zhou, R., Li, J. and Wang, G. (2014). ‘A distributed uule engine based
on message-passing model to deal with big data. Lecture Notes on Software Engi-
neering, 2(3):275–281, 2014. One citation in section 3.5.

[127] Wei,C., Xiaoqiang,Q., Jun, W. and Tao, H. (2012). ‘A two-level virtual machine
self-reconfiguration mechanism for the cloud computing platforms’. In 2012 9th In-
ternational Conference onUbiquitous Intelligence Computing and 9th International
Conference on Autonomic Trusted Computing (UIC/ATC), pages 563–570, Sept.
No citations.

[128] Wesolowski, K. (2009). Introduction to Digital Communication Systems. Wiley.
One citation in section 2.10.2.

188

http://jmeter.apache.org/

[129] Whitney,J. and Pierre Delforge,P. (2014). Scaling Up Energy Efficiency
Across the Data Center Industry: Evaluating Key Drivers and Barriers,
August. [Online] Available from: https://www.nrdc.org/energy/files/
data-center-efficiency-assessment-IP.pdf.[Accessed: 7th November 2015]. 3
citations in sections 1, 4.2.1, and 8.

[130] Whittle,J., Sawyer, P., Bencomo, N., Cheng, B.H. and Bruel, J.M. (2010). ‘RELAX:
a language to address uncertainty in self-adaptive systems requirement’. Require-
ments Engineering, 15(2):177–196, 2010. One citation in section 4.4.1.

[131] Wood, T., Shenoy, P., Venkataramani, A. and Yousif, M.(2009). ‘Sandpiper: black-
box and gray-box resource management for virtual machines’. Computer Networks,
53(17):2923 – 2938. Virtualized Data Centers. 2 citations in sections 2.7.1 and 2.7.1.

[132] Xtext (2014). Xtext Textual Domain-specific Language (DSL). [Online] Available
from: http://www.eclipse.org/Xtext/ .[Accessed: 29th March 2014]. One cita-
tion in section 4.5.

[133] Xu, J. and Fortes, J. (2010). ‘Multi-objective virtual machine placement in virtual-
ized data center environments’. In IEEE/ACM Int’l Conference on Green Comput-
ing and Communications & Int’l Conference on Cyber, Physical and Social Com-
puting, pages 179–188. Ieee. 3 citations in sections 1, 1.1, and 3.4.

[134] Ye, K., Huang, D., Jiang, X., Chen, H. and Wu, S. (2010). ‘Virtual machine
based energy-efficient data center architecture for cloud computing: a Performance
perspective’. In Proceedings of the 2010 IEEE/ACM Int’L Conference on Green
Computing and Communications & Int’L Conference on Cyber, Physical and Social
Computing, GREENCOM-CPSCOM ’10, pages 171–178, Washington, DC, USA.
IEEE Computer Society. One citation in section 1.1.

[135] Yixin, D., Hellerstein, J.L., Parekh, S., Griffith, R., Kaiser, G. and Phung, D.
(2005). ‘Self-managing systems: a control theory foundation’. In 2005 12th IEEE
International Conference and Workshops on the Engineering of Computer-Based
Systems. ECBS ’05., pages 441–448. 2 citations in sections 2.7.1 and 3.1.

[136] Zhang, B., Qu, Y., Ma, T. and Li P. (2011). ‘Optimization of consuming resource
problem based on reachability graph of petri nets’. In 2011 30th Chinese Control
Conference (CCC), pages 1745–1748, July. One citation in section 2.10.2.

[137] Zhang, Q., Cheng, L. and Boutaba, R. (2010). ‘Cloud computing: state-of-the-art
and research challenges’. volume 1, pages 7–18. Springer-Verlag. No citations.

189

https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
http://www.eclipse.org/Xtext/

[138] Zurawski, R. and MengChu Z. (1994). ‘Petri nets and industrial applications: a
tutorial’. IEEE Transactions on Industrial Electronics, 41(6):567–583. One citation
in section 2.3.1.

190

	1 Introduction
	1.1 Cloud Computing and Its Management
	1.2 The Research Problem
	1.3 Research Contributions
	1.4 Publications
	1.5 Thesis Outline

	2 Research Background and Related Work
	2.1 Cloud Management Systems
	2.1.1 An Overview of the OpenNebula Cloud Management Toolkit

	2.2 Drools Rule Engine and Drools Rule Language
	2.3 An Overview of Petri-nets and Timed Petri-nets
	2.3.1 The Description of Petri-nets
	2.3.2 Timed Petri-nets

	2.4 Coloured Petri-nets (CPNs)
	2.4.1 The Formalism of Coloured Petri-nets (CPN)
	2.4.2 Markings in CPNs
	2.4.3 An Illustrated Example
	2.4.4 CPN ML Programming and CPN Tool
	2.4.5 The Formalism of Timed Coloured Petri-nets

	2.5 Integer Programming and Branch and Bound Algorithm
	2.6 Types of Virtual Machine Migration for Management
	2.7 The Classification of Automated Management Architectures in Large-Scale Platforms
	2.7.1 Two-level Automatic Architectures Based on the Concept of Control Theory
	2.7.2 Automatic Architectures Based on Heuristic Optimization Approaches
	2.7.3 Architectures Based on a Rule-based System

	2.8 The Rules Modelling Languages and URML Specification
	2.8.1 The Specification of URML

	2.9 The Existing Domain-Specific Languages (DSLs) Designed for the Cloud
	2.9.1 DSLs Used in Cloud Environment

	2.10 An Analytical Cost-Computing Method from Petri-nets
	2.10.1 The Cost Calculation Method from Petri-nets
	2.10.2 The Optimised Cost Calculation Methods

	2.11 The Existing Petri-nets Models in Cloud
	2.12 Chapter Summary

	3 MP-Framework for Automatically Managed Cloud Platform
	3.1 The Description of Management Policy Framework (MP-Framework)
	3.1.1 The Architectural Design of MP-Framework

	3.2 The Phases and the States of MP-Framework
	3.3 The Implementation of MP-Framework Using OpenNebula and Drools
	3.3.1 The Extension of OpenNebula Monitoring APIs

	3.4 The Application of MP-Framework in a Case Study
	3.4.1 The Description of the Energy Management Case Study
	3.4.2 The Suggested Management Policies
	3.4.3 Executing the Management Policies in OpenNebula and Drools Testbed
	3.4.4 Results and Discussion
	3.4.5 The Response Time for the Policy-Rule Engine

	3.5 A Brief Discussion
	3.6 Chapter Summary

	4 The Specification of Management Policies
	4.1 The Generic Expression of the Rule Scheme Used in MP-Framework
	4.1.1 The General Expression of Monitoring Rules
	4.1.2 The General Expression of Management Rules

	4.2 The Definition and the Process of Designing Management Policies
	4.2.1 The Classification of Management Policies

	4.3 The Management Policies Meta-Model for Executable Rule Language
	4.3.1 Conditions Meta-Model for a Management Policy
	4.3.2 Policy Action Description

	4.4 The Usage of the Specification of Management Policies
	4.4.1 Using Management Policies Specification in CloudMPL
	4.4.2 Designing Transformation Rules from CloudMPL to Drools

	4.5 The Application to the Energy Management Case Study
	4.5.1 The Interpretation of CloudMPL Policies to Drools

	4.6 Chapter Summary

	5 Modelling Management Policies and Cloud Platforms via Coloured Petri-nets
	5.1 Advanced Energy Management Case Study
	5.2 The Formalism of Cloud Platform and Management Policies in Coloured Petri-nets (CPNs)
	5.2.1 Modelling a Cloud-Platform in Coloured Petri-nets
	5.2.2 The Formal CPNCloud Definition and Colour Sets Declarations
	5.2.3 Modelling Dynamic Behaviours of MP-Framework
	5.2.4 Modelling Management Policies in CPN

	5.3 Chapter Summary

	6 The Simulation-based Cost Calculation Method (SCCM) for Analysing Management Policies
	6.1 The Method for Calculating the Cost
	6.2 Evaluation of CPN Cloud Model and Simulation-based Cost Calculating Method (SCCM)
	6.2.1 Simulating the Case Study with CPNCloud
	6.2.2 The Results and Discussion

	6.3 Chapter Summary

	7 The Optimised Cost Calculation Method (OCCM) for Management Policies Including Time-Intervals in a Modelled Cloud Platform
	7.1 The Description of the Problem
	7.2 The Optimised Cost Calculation Method (OCCM)
	7.2.1 Computing the Overall Cost in the Trace
	7.2.2 Computing the Assigned Budget
	7.2.3 A Special Case: Handling Traces with Loops
	7.2.4 An Example Demonstrating a Loop Case

	7.3 The Evaluation of the Proposed Method
	7.3.1 The Sequence of Execution Graphs of the Generated Models
	7.3.2 Results and Discussion

	7.4 Toward Finding the Optimal Energy Strategy
	7.4.1 Obtaining the Optimal Thresholds
	7.4.2 Using the Optimal Analysis Method
	7.4.3 The Advantages and Disadvantages of Modelling and Analysis Approach

	7.5 Chapter Summary

	8 Conclusion and Future Work
	8.1 Research Limitations
	8.2 Future Research

	A The Detailed Energy Consumption Results
	B A Sample of Implementation of CPNCloud models in CPN Tool
	B.1 The Used Colour Sets
	B.2 The A Sample of CPNCloud Model

	Bibliography

