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ABSTRACT 

Chapter I-1 

Quantitative genetics model of autotetraploid species is crucial for functional and evolutionary 

genomic analyses. However, compared with diploids, quantitative genetics study of 

autotetraploids lags far behind. I used orthogonal contrast scales to construct a genetics model 

for studying epistasis between genes in autotetraploid species, one very important statistical part 

to link the genotype of quantitative trait loci (QTL) to the corresponding phenotype. Here I 

established models for both one locus and two loci followed by a variety of allelic frequency 

distributions. I illustrated this genetics model for analysing QTL in a F2 family of autotetraploid 

population under autotetrasomic inheritance and in a random mating equilibrium population. I 

also established a method for estimating genetic effects in linkage disequilibrium autotetraploid 

population. The simulation study showed the feasibility of a practical implementation of this 

method, detailed the procedure of the analysis, demonstrated the reliability in the parameter 

estimation, and discussed its utility and potential problems. 

 

Chapter I-2 

Insights into the relationship between phenotypic variation and genetic variation for the 

quantitative traits are helpful for improving selective breeding programmes in agriculturally and 

economically important plants and animals. To increase the speed of breeding in the world’s 



 
 

 
 

third most important crop, cultivated potato, a likelihood-based method of QTL interval 

mapping is developed for autotetraploid species in a full-sib family, which considers multivalent 

meiotic pairing of homologous chromosomes. Here I considered all the observed genotypes of 

genetic markers at both sides of the interval by using a Markov chain model, which would 

effectively improve the QTL mapping precision and resolution. The simulation study showed 

the reliability of this method as a practical implementation in analysis for autotetraploids with 

both bivalent pairing and quadrivalent pairing during meiosis. 

 

Chapter II-1 

Both theoretical and experimental evidence have suggested that recombination frequency would 

be increased in autotetraploids compared with their parental diploids. In almost all organisms, 

crossover interference is likely to play an important role in determining the frequency and 

patterns of recombination along chromosomes. To investigate into the underlying process of 

crossover in autotetraploids, a Chi-square model and novel statistical method is developed to 

explore crossover interference with properly accounts for the essential features of segregation 

and recombination under tetrasomic inheritance. The simulation studies were performed to 

confirm the accuracy of the maximum likelihood estimates of the model parameters, and a small 

data set of autotetraploid yeast was presented to apply the method. A significant decrease in the 

strength of crossover interference was found on one chromosome among the tested three 

chromosomes after polyploidization, suggesting a new hypothesis worthy of further 

investigation that the increase of recombination frequency after polyploidization would partly 

due to the decrease in the strength of crossover interference. 



 
 

 
 

Chapter II-2 

Taking advantages of the technology of next generation sequencing, it is possible to obtain 

dense genetic marker data from products of meiosis. To estimate crossover rate from the 

observed marker genotypic data in autotetraploids, a statistical method is proposed using 

genotype data called from the intensely distributed SNP markers. Here a yeast data set was 

presented to apply this method and an overall increase in the crossover rate was found after 

polyploidization.
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1.1. Over all introduction to polyploids  

Polyploidization, the simultaneously duplication of the whole genome, widely occurs in the 

evolution of eukaryotes, especially for flowering plant species. It was estimated that all 

angiosperms have experienced at least once a state of polyploidy during the evolutionary history 

(Jiao 2011). Exploring the evolutionary significance of polyploidy remains a mystery and 

challenging job. It was thought that the tempo of evolution for a trait may not only be 

determined by the rate of environmental change but also depended on the form and extent of 

genetic variability present within the population (Fisher R.A. 1930) and the reason for 

widespread polyploidy may be due to polyploidization and the subsequent evolution are an 

extremely dynamic process, leading to faster evolution or in more novel directions than related 

diploid species (Soltis 2000). Generally, polyploidization has been recognized as an important 

driving force in the evolutionary history of plants (Otto and Whitton 2000; Soltis and Soltis 

2000; Blanc and Wolfe 2004; Chen 2007; Otto S.P. 2007; Christian 2010).  Under these views, 

we may consider that polyploidization of a genome could have profound long-term effects on 

genetic diversity and promotes adaptive evolutionary change. However, the direct effect on 

evolutionary success of polyploidy is still insufficiently known (Clausen 1945; Stebbins 1971; 

Grant 1981; Levin 2002; Comai 2005; Soltis and Soltis 2009). To address this fundamental 

question, mechanism underpinning the genetic changes should be explained by further 

investigation.  

Besides playing as evolutionary important role in many species, polyploidy presents in several 

economically important species, like crops and aquacultural animals. For example, cultivated 

potato, an autotetraploid crop, is now known as the world’s third most important food crop, 
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ranking just after rice and wheat. It is anticipated that the world’s population will increase from 

current 6.9 billion to 9.6 billion, requiring about 50% increase in agricultural production by 

2050 (United Nation 2012). This raises tremendous and serious challenges to the existing food 

resources. Given natural land and water resource are already used intensely for agriculture 

production, while potato requires much less land to grow for substantially higher production 

yield compared to other major crop, it is thus recognized as the food for future (Bovell-

Benjamin 2007). Improving potato production and its potential in human food system requires 

multidisciplinary, integrated research and activities. Most agronomic trait including yield, 

quality, abiotic and biotic resistance targeted in crop breeding programs are quantitative traits 

whose phenotypic variation shares common features, polygenic control and environmental 

modification. Understanding polygenic architecture underlying quantitative traits is essential to 

improve efficiency of any breeding program of these traits.  

In contrast to diploid species, progress in statistical genetics analysis in polyploid species has 

been hampered far behind due to the much more complicated inheritance which indicates the 

inappropriateness of applying the theory and methods of quantitative genetics analysis for 

diploids directly in the analysis for polyploids. In the work presented here, I attempt to 

accelerate progress in this challenging area in autotetraploid species not only because that 

autotetraploid, as a simple polyploidy form, is a good starting point to investigate into to study 

the evolutionary role played by polyploidization, but also for the reason that  economically 

important cultivated potato is autotetraploids. 
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1.1.1. Allopolyploids and autopolyploids 

Polyploid species are those holding more than two complete sets of chromosomes, prevalently 

recognized as three categories: allopolyploids, autopolyploids and segmental allopolyploids 

(Stebbins 1947). Allopolyploids, with chromosomes derived from hybridization between 

genetically distinct parents, is similar to diploids in terms of chromosome pairing and 

segregation pattern during meiosis. For example, triticale, the first successful man-made cereal 

grass crop, is allohexaploids, four sets of chromosomes from wheat (Triticum turgidum) and two 

sets of chromosomes from rye (Secale cereale) (Mergoum 2009). Thus allopolyploids 

predominantly form bivalents of paired chromosomes during meiosis (Jackson 1982; Ramsey 

2002). Linkage analysis in strict allopolyploids can be more successful due to disomic 

inheritance by directly applying principle and method for diploids into allopolyploids. By 

contrast, autopolyploids, arising from doubling genome or fusion of two unreduced gametes, 

display much more complicated polysomic inheritance in which each homolog can pair with any 

other homolog during meiosis, like cultivated potato (Consortium The Potato Genome 

Sequencing 2011). Segmental allopolyploids consist of more than two partially differentiated 

genomes and much cytogenetic evidence indicates that homologous chromosomes may 

segregate due to a mixture of bivalent and quadrivalent pairing. It was observed that in 

autotetraploid Saccharomyces cerevsiae, homologs were mostly formed as bivalent pairing at 

pachytene, the stage when chromosomal crossover occurs, and sometimes formed quadrivalents 

by switching pairing partners (Loidl 1995). However, trivalents, quadrivalents and univalents 

have also been observed in potato with low frequencies (Swaminathan 1953). It should be 

stressed that autopolyploids forming only bivalents is different from behaviour in allopolyploids, 
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which have more than two sets of homologous chromosomes to be randomly paired during 

meiosis. Polysomic inheritance is regularly considered as a diagnostic trait to differentiate 

autopolyploids from allopolyploids (Soltis 1993; Jackson 1996; Landergott 2006; Stift 2008).  

For a long time, researchers have paid little attention to the evolutionary advantages of 

autopolyploids. Compared with allopolyploids, autopolyploids were conventionally believed to 

be evolutionary disadvantages due to multivalent formation during meiosis. It was suggested 

that multivalent formation may lead to meiotic irregularities and reduced fertility (Clausen 1945; 

Stebbins 1971). However, it was estimated by Ramsey (1998) that the frequency of 

autopolyploid formation is higher than that of allopolyploids. The frequently occurrence 

discovered in natural autopolyploids suggest that genome multiplication may play a significant 

role in the evolutionary history (Soltis 2000). Christian (2010) proposed that the evolutionary 

advantages of autopolyploids mainly rely on two traits, namely genic redundancy and polysomic 

inheritance. For example, although the speed of selection would be slowed down in 

autopolyploids, effective population size would be increased and inbreeding depression would 

be reduced in the short-term evolution. It has been found that genic redundancy and polysomic 

inheritance seem to decline in long term, as only the transient evolutionary stage in the lifespan. 

Autopolyploids would restore disomic inheritance and accumulate adaptive genetic variation 

under genic redundancy (Christian 2010). Therefore, genetic analysis, taking the key features of 

polysomic inheritance into account, is essential for solving many open questions remained with 

respect to the evolution of autopolyploids. 
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1.1.2. Dynamic changes caused by polyploidization 

Polyploidization is one of the most dramatic mutations by adding a complete set of 

chromosomes to the genome (Otto 2007). Because of the significant role played by 

polyploidization in the plant evolution, polyploidy has been the focus of great interest and 

studied lasting more than eighty years. Some evidence shows that polyploidy genomes would 

experience highly dynamic restructuring and reorganization of gene expression (Doyle 2008; 

Leitch 2008). Diverse aspects of polyploidy have been investigated, from external phenotypic 

effects of polyploids to genetic consequences of polyploidy evolution, facilitated by the 

dramatically development of molecular techniques. It was reported that polyploidization would 

commonly and universally increase cell size, which may affect the rate of metabolic process by 

altering the surface to volume ratio (Cavalier-Smith T. 1978, Levin DA 1983). Consequently, 

growth rate, overall size and shape could also be changed accordingly. Additionally, 

polyploidization has some effects on gene expression and organ structure and function, such as 

reproduction systems (Stebbins GL. 1980), and ecological and physiology tolerances of 

polyploids was found to be broader than their related diploids (Levin DA 1983; Lokki J. and 

Saura A. 1980). What’s more, genomic investigations have revealed extensive genetic and 

epigenetic changes associated with polyploidy and the potential selective advantages to the 

polyploidy state (Otto SP and Whitton J 2000; Stupar 2007). All these indicate that genome 

structure and function of polyploids may differ markedly from that of their diploid relatives. 

Thus, it is inappropriate to roughly approximate genetic analysis of a polyploidy from that of its 

diploid relatives. 
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1.1.3. The challenges of modelling tetrasomic inheritance 

Studies that facilitated dissection of the genetic architecture underlying genetic variation of 

complex and quantitative traits have been routine analysis in almost all important diploid species. 

In sharp contrast, corresponding studies in polyploids are far behind this level of progress for the 

much more complicated pattern of gene segregation and recombination than that in diploids. 

Tetrasomic linkage analysis has been one of the most challenging topics in theoretical and 

applied genetics since the pioneering works of quantitative geneticists including J.B.S. Haldane 

(1930), K. Mather (1935, 1936) and R. Fisher (1947).  

Firstly, autotetraploids undergo tetrasomic inheritance in which each homologous chromosome 

can pair with each any other homologous chromosomes during meiosis. Much cytogenetic 

evidence demonstrated that homologous chromosomes would segregate either in bivalent 

pairing, quadrivalent pairing or a mixture of the two during meiosis. The essential features of 

bivalent chromosome pairing and quadrivalent chromosome pairing will be discussed in the next 

session (1.1.4). Due to the multivalent pairing, the up limit value of recombination frequency 

between two loci is 0.75 in autotetraploid species (Luo et al, 2006). 

Secondly, multivalent pairing of homologous chromosomes during meiosis may cause sister 

chromatids to enter into the same gamete, the well-known phenomenon of double reduction in 

tetrasomic inheritance, resulting in systematic segregation distortion. Study by Luo et al (2006) 

showed that the coefficient of double reduction can reach to 0.25 at most. 

Finally, multiple alleles at a locus of polyploids cause a substantially wider range of genotypic 

segregation. For example, consider one locus in diploids, at most two gametes with different 
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genotypes can be generated by an individual. However, in autotetraploids, at most 10 gametes 

with different genotypes can be generated by an individual if all the alleles are distinct with each 

other. As the number of loci increase, the distance between maximum number of gamete 

genotypes between diploids and autotetraploids would increase exponentially. Due to the 

existence of multiple alleles, there are no fully informative genetic markers in autotetraploids. A 

simple one-to-one relationship between observed genotyping data and genotypes in 

autotetraploids is usually difficult to obtain. For example, when considering two alleles (A1 and 

A2) segregate at locus in an autotetraploid population, the relationship between marker 

phenotypes (i.e. “marker phenotype” refers to the observed genotype throughout this thesis) and 

genotypes can be shown in Table 1.1 (Modified from Luo et al 2000).  Taking into account the  

Table 1.1. Relationship between marker phenotypes and genotypes at a single locus. 

Phenotypic record Corresponding genotypes 

Gel-band 1 Gel-band 2 

1 0 (A1 O O O), (A1 A1 O O), (A1 A1 A1 O), (A1 A1 A1 A1) 

0 1 (A2 O O O), (A2 A2 O O), (A2 A2 A2 O), (A2 A2 A2 A2) 

1 1 (A1 A2 A2 A2), (A1 A2 A2 O), (A1 A2 O O), 

(A1 A1 A2 A2), (A1 A1 A2 O), (A1 A1 A1 A2) 

 

Alleles A1 and A2 are revealed as the presence of PCR products indicated by gel-band 1 and gel-band 

2 respectively. 1 or 0 is used to indicate the presence or absence of corresponding gel-band. O 

denotes a null allele. 
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possibility of null alleles (indicated by failure of the PCR primers to anneal to the relevant DNA 

templates), it can be seen from Table 1.1 that there may be 4, 4 or 6 corresponding genotypes in 

three different phenotype categories. 

 

1.1.4. Bivalent pairing and quadrivalent pairing 

Autotetraploids undergo tetrasomic inheritance in which each homologous chromosome can pair 

with any other homologous chromosomes during meiosis and segregate either in bivalent, 

quadrivalent pairing or a mixture of the two.  

The simplest model of chromosome pairing and segregation may have the full complement of 

bivalents as shown in Figure 1.1. Homologous chromosomes are randomly paired to create 

bivalent pairs and recombination only occurs between the two chromosomes of each bivalent 

pair which is similar to diploids. Then one recombined chromosome from each pair enters into 

the gamete. Autotetraploids with bivalent pairing therefore share some common features with 

diploids. For example, the upper limit value of recombination frequency is 0.5, sister chromatid 

will not enter into the same gamete and the relationship between recombination frequency and 

genetic distance is the same as that in diploids. 
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Figure 1.1.  Chromosome segregation during bivalent meiosis of an autotetraploid 

species. 

 

Here four colours (red, green, yellow and purple) represent four different sets of homologous 

chromosomes of an autotetraploid individual. Chromosomes are randomly paired to create three 

possible bivalent pairs patterns and recombination occurs only

between the two chromosomes of each bivalent pair. Consequently, one recombined chromosome 

from each of the two pairing bundle enters and forms the diploid gamete. 
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One of the most important features of autotetrasomic inheritance is the phenomenon of double 

reduction due to quadrivalent pairing, in which sister chromatids can migrate to the same 

gametes during meiosis. Double reduction plays a significant role in the evolution of 

autotetraploid genomes. It was demonstrated that double reduction could enhance the ability to 

eliminate deleterious alleles even at low levels and contribute more to inbreeding depression 

(Butruille and Boiteus 2000). The probability of this meiotic event is defined as the coefficient 

of double reduction, which depends on the recombination frequency between the locus and its 

centromere and on the frequency of multivalent formation. Historially (Mather 1935; Bailey 

1961; Ronfort 1998; Butruille and Boiteus 2000), a maximum value of 1/6 was cited for the 

coefficient of double reduction. However, it has been shown in Luo et al (2005) that the upper 

limit of the coefficient of double reduction is, in fact ¼, a value that is reached when 

recombination frequency takes its upper bound value of ¾. The limiting recombination 

frequency under quadrivalent pairing during meiosis was demonstrated to be ¾ by Sved (Sved 

1964). Figure 1.2 illustrates how double reduction takes place during quadrivalent meiosis in an 

autotetraploid species. 
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Figure 1. 2. Segregation patterns of loci A and B during quadrivalent meiosis of an 

autotetraploid species. 

 

Here four colours (red, green, purple, yellow) represent the four homologous chromosomes of an 

autotetraploid individual. Locus A has no crossover with the centromere and undergoes path Z with 

no double reduction. Crossover occurs between locus B and the centromere. It is equally likely for 

chromosomes to undergo path Y with no double reduction or path Z with double reduction. Gametes 

derived from a double reduction event are marked with an asterisk. The figure was modified from 

Wu et al (2001). 
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1.1.5. Statistical framework for autotetrasomic linkage analysis 

As a theoretically challenging topic in the history of statistical genetics, the study of genetic 

linkage analysis in autotetraploids was pioneered by the quantitative geneticist K. Mather in the 

year of 1935 (Mather, 1935). However, the majority of research work was built on the 

assumptions of bivalent pairing of homologous chromosomes during tetrasomic meiosis. 

Although these methods could significantly reduce challenges in modelling of linkage analysis 

and decrease the degrees of complexity of the data analysis in autotetraploids, they ignored 

some key features of tetrasomic inheritance and were impractical in experimental data analysis. 

Some studies even use the corresponding related diploid as an approximation to the polyploidy 

case (Bonierbale et al. 1988, Gebhardt et al. 1989). Another commonly used strategy to 

construct linkage maps in polyploids has been the use of single-dose dominant marker, such as 

AFLPs and RAPDs (Wu et al., 1992; da Silva et al., 1993; Grattapaglia and Sederoff, 1994; 

Ukoskit and Thompson, 1997; Brouwer and Osborn, 1999; Hoarau et al., 2001; Barcaccia et al., 

2003; Ghislain et al., 2004; Cervantes-Flores et al., 2008). Single-dose dominant markers are 

present in only one parent in a single copy (i.e. parental genotypes AOOO × OOOO), so only 

half of the gametes will contain the marker during gametogenesis. Recombination can therefore 

be analysed as for a diploid species if two such markers are present in a coupling phase.  

To establish general theory for linkage analysis with polysomic inheritance, it is necessary to 

predict parental genotypes from phenotypes which are essential for distinguishing recombinant 

and parental genotypic classes. In this respect, Luo et al (2000) developed a method for 

predicting the genotypes of two parental individuals at a co-dominant or dominant marker locus 
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on the basis of the parental and offspring phenotypes scored at that locus in segregation 

autotetraploid populations. 

This was followed by the development of methodology for constructing genetic linkage maps of 

co-dominant or dominant markers under the assumption of random bivalent pairing of four 

homologous chromosomes during meiosis (Luo et al., 2001). In order to integrate multivalent 

pairing and double reduction events into linkage analysis in autotetraploids, Wu et al (2001) 

proposed a statistical method by assuming that all four alleles segregating at each of two loci are 

all different in both parents. In this case, they could directly resolve both double reduction and 

recombination from the offspring populations.  However, this assumption is unrealistic in 

practice since parental lines that match these requirements are extremely rare. Subsequently, this 

method did not properly solve major problems in statistical modelling of real data. 

A well- developed theoretical basis for tetrasomic linkage analysis was later developed by Luo 

et al (2004) that took account of the major complexities of autotetrasomic inheritance including 

mixed bivalent and quadrivalent pairing in meiosis and the phenomena of double reduction. For 

the first time, this study was successfully in working out the distribution of two-locus genotypes 

in outbred population, in terms of the coefficient of double reduction and recombination 

frequency. This statistical method provided the analytical tools for predicting the maximum 

likelihood estimates (MLEs) of parameters of both double reduction and recombination 

frequency and testing their significance. Subsequently, Luo et al. elaborated the tetrasomic 

linkage analysis and demonstrated its efficacy through the construction of genetic marker 

linkage maps from an outbred segregation population of autotetraploid potato (Solanum 

tuberosum) (Luo et al., 2006). 
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To improve precision and accuracy of constructing linkage map of autotetraploid species, Leach 

et al (2010) proposed a hidden Markov chain based approach for multilocus linkage analysis in 

autotetraploids. This method significantly improved the accuracy and precision of parameters 

estimation, compared with the two-locus linkage analysis method proposed by Luo et al (2004). 

In addition, this multi-locus method provided a way to directly calculate the likelihood for any 

given linkage map and mapping population in autotetraploids, which made significant propress 

in statistical inference of linkage order and linkage phase (Leach et al, 2010). 

 

1.2. Aims of the project 

The project aims to address a challenging task to provide the novel theory and methods that 

enable QTL mapping in autotetraploids to be carried out on a rigorous theoretical basis and 

establish statistical methods for inferring recombination interference in both diploids and 

autotetraploids. The thesis reports four sub-projects which I conducted in the past four years. 

Part I-1 

Quantitative genetics model of autotetraploid species is crucial for functional and evolutionary 

analyses of quantitative genetic variation. I implemented orthogonal contrast scales to construct 

a genetics model for quantifying various genetic effects of QTL under tetrasomic inheritance 

and decomposing quantitative genetic variation into orthogonal variance components. I 

established models for both one locus and two loci followed by a variety of allelic frequency 

distributions. I illustrated these genetics models by quantifying various genetic effects from a F2 



Overall Introduction: Genetic architecture of autotetraploid species 

Page 15 of 267 
 

family of autotetraploid population and in a random mating equilibrium population under 

autotetrasomic inheritance. I also established a method for estimating genetic effects in linkage 

disequilibrium autotetraploid populations. The simulation studies were presented to show the 

feasibility of a practical implementation of this method, detailed the procedure of the analysis, 

demonstrated the reliability in the parameter estimation, and discussed its utility and potential 

problems. 

Part I-2 

A starting point to unveil the genetic mechanisms controlling quantitative traits is to map the 

genes affecting the traits (i.e. mapping quantitative trait loci or QTL). Theory and methods have 

been well established for mapping QTL in diploid species and QTL analysis has become a 

routine practice in all important diploid plant and animal species as well as in humans. However, 

the study of statistical genetics of autotetraploid species is still in its infancy largely because the 

inheritance of polyploids, especially autopolyploids, is much more complicated in comparison to 

diploids. Based on the quantitative genetics model of autotetraploid species, I developed a 

method to map the genes affecting the traits onto the genome (i.e. mapping QTL). I developed 

an interval QTL mapping method for a segregation population derived from crossing two 

outbred autotetraploid parents, in which we considered all the possible parental QTL genotypes 

and linkage phases. Since genetic markers in autotetraploids are usually not fully informative, I 

considered use of multi-locus marker information in a Hidden Markov Chain model to improve 

the efficiency of parameter estimation. To investigate properties of this statistical analysis, a 

simulation study was performed to assess this approach and to investigate the effects of 

population size, parental genotypes and locations of QTL on the chromosome, and showed the 
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reliability of this method as a practical implementation in analysis for autotetraploids with both 

bivalent pairing and quadrivalent pairing during meiosis. 

 

Part II-1 

Recombination interference (RI) refers to the phenomenon in genetic recombination that 

simultaneous recombination in closely nearby chromosomal intervals occurs much less 

frequently than would be expected under independence of the recombination events across the 

intervals. Based on the work of inferring crossover interference in diploids by McPeek and Zhao 

(1995), I proposed a novel statistical method for inferring crossover interference in 

autotetraploid species which taking proper account for tetrasomic inheritance. I demonstrated 

the model’s statistical properties by simulation studies and illustrate application of our model 

using phenotype datasets of three linked fluorescent marker loci scored from a large segregating 

population of autotetraploid budding yeast S. cerevisiae. A significant decrease in the strength of 

crossover interference was found on one chromosome among the tested three chromosomes after 

polyploidization. 

 

Part II-2 

To investigate into the change in crossover events after genome duplication in Saccharomyces 

cerevisiae, a new statistical method was proposed to predict crossover rate based on whole 

genome sequencing data from tetrads of autotetraploid meiosis. In addition, we demonstrated 
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utility of the method by implementing it to analyse genotype dataset collected from the intensely 

distributed SNP markers based on next generation sequencing approach. Statistical comparison 

was made to all four spores derived from meiosis between diploid and its related autotetraploid 

Saccharomyces cerevisiae. An increase in the overall crossover rate was found after 

polyploidization in the real data analysis  
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Chapter I-1: Orthogonal contrast based models for quantitative 

genetic analysis in autotetraploid species 

1.1. Overview 

The quantitative genetic model which links genetic effects of genes or genotypes at quantitative 

trait loci to phenotype of quantitative traits is the basis for any quantitative genetic analysis. The 

theory and methods for modelling and analysing quantitative genetic effects have been well 

established and routinely practised in diploid species (Falconer 1996), whilst such study in 

polyploids, like autotetraploids, is still in its infancy mainly because of the complexity of 

polysomic inheritance aforementioned.  

Kempthorne (1955) was probably the first in proposing statistical models for quantitative 

genetic effects in tetraploids, and formulated effects of tetraploid genotypes in randomly mating 

populations by simply extending the quantitative genetic model in diploids. In particular, the 

model involves a total of 15 parameters for genetic effects of segregating alleles and their 

successively higher orders of interaction at single locus (Kempthorne 1955, 1957).  To simplify 

the Kempthorne’s model, Li (1957) worked on a bi-allelic model and proposed regression of 

genetic values of genotypes onto the corresponding frequencies in a random mating tetraploid 

population (Li 1957). The successive linear regression model allows genetic variance at a single 

locus to be presented by four major components. Mather (1982) extended their concept of 

additive and dominance effects of diploid quantitative genetics to define these effects in 

tetraploid populations. Obviously, any quantitative genetic model and its analysis rely on 
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distribution of QTL genotypes in the population under study, and the genotypic distribution in 

an autotetraploid population replies on the coefficient of double reduction. Having noted these, 

Kilick (1971) explored the influence of double reduction on the Mather tetraploid additive and 

dominance model through its influence on frequencies of genotypes in segregating populations 

from crossing two inbred tetraploid parents. By integrating the additive and dominance model 

proposed by Mather and Jinks and the idea of Li, Wright (1979) presented the genetic value at 

single locus as a polynomial of order n, which is the level of ploidy, and the genetic variances 

were presented as the so called differential coefficients, which was in fact derivatives of the 

polynomial with respect to the allelic frequency (Wright 1979).  

All of the models reviewed above are directly or indirectly extended from the classical diploid                                                                                                                                

of their diploid counterparts. In contrast to the classical quantitative genetic model, Cockerham 

(1954) pioneered in attempting desirable statistical properties to quantitative genetic models in 

diploids and in turn, to the model based quantitative genetic analyses (Cockerham 1954). He 

developed the quantitative genetic model using the principle of orthogonal linear comparison, 

which enables phenotypic variation of a quantitative trait to be partitioned into independent 

components (Cockerham 1954). Zeng et al conducted comprehensive exploitation of statistical 

properties of the orthogonal contrast model in several major quantitative genetic analyses 

including estimation of additive, dominance and epistatic effects, partition of genetic variance 

components and mapping QTL (Kao 2002; Zeng 2005; Wang 2006). Although involving much 

more sophisticated algebraic formulation, the orthogonal model shows several key advantageous 

properties over the standard quantitative genetic models including the Kempthorne’s and Mather 

and Jink’s models. The orthogonality of the model ensures that estimate of one model parameter 

is independent of estimates of other parameters in the model and that the variance-covariance 
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matrix of quantitative genetic effects is diagonal, i.e. there is no genetic covariance between the 

different genetic effect parameters. These statistical properties confer quantitative genetic 

analyses the robustness to different settings of model parameters.  

This sub-project presents novel tetrasomic quantitative genetic models for nature and artificially 

designed populations of autotetraploid species. The models account properly for the essential 

features of tetrasomic inheritance at the quantitative trait loci and their statistical properties and 

utilities in modelling real datasets are exploited by intensive computer simulations.  

 

1.2. Introduction to orthogonal contrasts 

ANOVA (Analysis of variance) is well known as a powerful tool and widely used to compare 

several treatment means in biological research field. In such statistical tests, the null hypothesis 

is that the T true means are all equal ( 0 1 2: TH      ). Thus we would accept the 

alternative hypothesis if the F test is significant, where merely reflect at least one mean is 

different from the others. However, it could not tell which mean(s) is/are different. Further 

comparisons can be carried out by further decomposing the treatment sum of square (SST) to 

provide additional statistical test to answer planned questions. For this purpose, the orthogonal 

contrast has been historically proposed to answer specific research questions of interest and to 

compare mixed effects, both fixed effects and random effects (Scheffé 1959; Winer 1971; Steel 

and Torrie 1981; Mead 1988; Hinkelmann and Kempthorne 1994; Kuehl 2000). With a planned 

test, the orthogonal contrast scales are designed based on a priori knowledge, either on 
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biological considerations or on the results of preliminary investigations. It is not only a simple 

and efficient way to analyse experimental data, but also an alternative way to do statistical 

analysis on data without a definite structure (Nogueira 2004). 

In statistics, a contrast is a linear combination of two or more variables (genetic effects here) 

whose coefficients add up to zero (Casella 2008). For instance, let 1, , tx x be a set of variables 

and 1, , ta a  be known constants. The expression 
1

t

i ii
a x

  is a linear combination and it is 

called contrast if
1

0
t

ii
a


 . Furthermore, two contrasts, 

1

t

i ii
a x

  and
1

t

i ii
b x

 , are orthogonal 

if 
1

0
t

i ii
a b


 . A set of linear combinations must satisfy the following two mathematical 

constrains so to be in orthogonal contrasts: 

(1). The sum of the coefficients in each linear contrast must sum to zero, and 

(2). The sum of the products of the corresponding coefficients in any two contrasts must be 

equal to zero. 

In ANOVA, the total sum of square (TSS) could be perfectly divided into two parts (the 

treatment SS (SST) and the error SS (SSE)) due to the fact that they are mathematically 

orthogonal to each other. Their relationship can be expressed as 

TSS SST SSE             (I-1.1) 

In an analogous way, orthogonal contrasts provide a way to partition SST into as many 

independent comparisons as the degree of freedom for treatments in the ANOVA, each having 
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one degree of freedom. The pair-wise orthogonality as defined above ensures that the variance 

of the contrasts, equal to the weighted sum of the variances, will be uncorrelated, proceeding to 

minimize the Type I error rate (Howell 2010).    

 

1.2.1. Orthogonal contrast based genetic model in diploids 

It was first discovered by Mendel early in the year of 1865 that epistasis existed among genes 

controlling quantitative traits. Epistasis has been historically difficult to discern and 

insufficiently discussed in many theoretical and statistical issue (Brim 1961; Lee 1968; Stuber 

1971; Stuber 1992; Cheverud 1995; Doebley 1995; Cockerham 1996; Kao 1999; Goodnight 

2000; Zeng 2000). Following Fisher (1918), Cockerham introduced the principle of orthogonal 

contrasts to partition the epistatic variance into components in diploids (Cockerham 1954). He 

partitioned the genetic variance contributed by two genes into eight independent components by 

orthogonal contrast scales. Anderson and Kempthorne proposed a specific simplified model for 

a F2 population based on orthogonal partitioning, called the F2-metric model (Anderson 1954). 

In this model, additive effect was defined as half of the difference between the two homozygote 

genotypic values which is the same as that in the traditional method (Falconer 1996). However, 

dominance effect, defined as the difference between the mean of homozygote genotypic values 

and the heterozygote genotypic value, was scaled to zero for allelic frequency (Anderson 1954). 

Therefore, this F2-metric model is no more defined only based on genotypic values but also 

based on allelic frequencies. To provide a better way to model QTL in a segregating population, 

Zeng et al made a justification for the general two-allele model based on orthogonal contrast 
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scales (Zeng 2005). Zeng et al also conducted a comprehensive exploitation of statistical 

property of the general orthogonal model in mapping epistatic genes in both linkage equilibrium 

and disequilibrium population (Kao 2002; Zeng 2005; Wang 2006). Orthogonality ensures 

consistency in the definition of genetic effects with multiple loci and independence between 

different effects and variance components, which make Cockerham’s model outperform all the 

others in modelling and mapping QTLs (Zeng 2005). In the following, I present development of 

quantitative genetic models for autotetraploid species following the principles of the orthogonal 

contrast linear model. 

 

1.3. Theoretical models and analysis for autotetraploids 

1.3.1. One locus model  

I first consider segregation of two alleles (A and a) at a single locus in an autotetraploid 

population. Frequency of the allele A in the population is denoted by p and the coefficient of 

double reduction at the locus by . There are a total of 5 possible genotypes at the bi-allelic 

locus. Frequency of the ith genotype, Aia4-i, is denoted by fi with i = 0, 1, …, 4, indicating the 

number of A allele involved in the genotype. 

I define here the phenotypic effect (i.e. trait value) for an individual through a regression model 

of allelic effects  

1 1 2 2 3 3 4 4P G x x x x                                     (I-1.2) 
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where P is the phenotypic effect, G is the genotypic effect,  is the population mean, and i  (i = 

1, …, 4 ) are accordingly monogenic, digenic, trigenic and quadrigenic genetic effects of the 

QTL, and xi (i=1, …, 4) are the corresponding genetic-effect design variables, and   is a random 

variable following a normal distribution with zero mean.  

In a natural autotetraploid population, genotypic frequencies vary across different loci in the 

genome and are usually not in Hardy-Weinberg equilibrium (Luo 2000). According to the basic 

principle of orthogonal comparison of linear statistical models (Wang 2006, Zeng 2005), I 

propose here general orthogonal scales  i ijW   (i=1,…,4; j=0,…,4) listed in Table I-1.1 for 

the genetic effects (summarised in Table I-1.2) in the model (I-1.2).  In the orthogonal scale 

vectors, 
ij  must satisfy  
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u f f f f

   


    
 

2.   2 0,1,...,4j j   

 2, 1 2 2, 1

4

20

4

2 10

2 1 1,2,3

0

0

j j j

j jj

j j jj

j

f

f

  



 

 






   






 





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      3.   3 0,1,...,4j j   

 3, 1 3 3, 1 3, 2

4

30

4

3 10

4

3 20

3 3 1 2,3

0

0

0

j j j j

j jj

j j jj

j j jj

j

f

f

f

   



 

 

  







     

















 

4.   4 0,1,...,4j j   

44 43 42 41 40

4

40

4

4 10

4

4 20

4

4 30

4 6 4 1

0

0

0

0

j jj

j j jj

j j jj

j j jj

f

f

f

f

    



 

 

 









    




 

















  

Incorporating them into the model (I-1.2) and replacing the genetic-effect design variables ix  by 

0

1

2

3

4

i

i

i i

i

i

if G is aaaa

if G is Aaaa

x if G is AAaa

if G is AAAa

if G is AAAA















 




  (i = 1,2,…,4)  

I derive a matrix form of the orthogonal model for the QTL effects in form of 
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10 20 30 400

11 21 31 411 1

12 22 32 422 2

13 23 33 433 3

14 24 34 444 4

1

1

1

1

1

A A A

G

G

G S EG

G

G

    

    

    

    

    

    
    
    
      
    
    
        

                                             (I-1.3)           

The genetic effects of the QTL genotypes can be calculated from  

1
A A AE S G                                                                                                        (I-1.4) 

 

Table I-1.1. The orthogonal contrast scales for one biallelic locus (general model) 

 Genotype aaaa Aaaa AAaa AAAa AAAA 

 Frequency 0f  1f  2f  3f  4f  

 G 0G  1G  2G  3G  4G  

1  1W  10  11  12  13  14  

2  2W  20  21  22  23  24  

3  3W  30  31  32  33  34  

4  4W  40  41  42  43  44  

 

G’s and f’s denote the genotypic values and genotypic frequencies for the five 

genotypes. i (i=1,2,…,4) are the monogenic, digenic, trigenic and quandrigenic 

genetic effects respectively. ij jW  (i=1,…,4; j=0,1,…,4) is the scale component 

of genotype i for the j contrast. 
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Table I-1.2. Definition of genetic parameters for two loci model 

Scales Parameter definition Notation  Scales Parameter definition Notation 

0W  Mean    
13W  Digenicmonogenic effect of loci A and B 

2 1
I 

 

1W  Monogenic effect of locus A 
1   

14W  Digenicdigenic effect of loci A and B 
2 2

I 
 

2W  Digenic effect of locus A 
2  15W  Digenic trigenic effect of loci A and B 

2 3
I 

 

3W  Trigenic effect of locus A 
3  16W  Digenicquadrigenic effect of loci A and B 

2 4
I 

 

4W  Quadrigenic effect of locus A 
4  17W  Trigenicmonogenic effect of loci A and B 

3 1
I 

 

5W  Monogenic effect of locus B 
1  18W  Trigenicdigenic effect of loci A and B 

3 2
I 

 

6W  Digenic effect of locus B 
2  19W  Trigenic trigenic effect of loci A and B 

3 3
I 

 

7W  Trigenic effect of locus B 
3  20W  Trigenicquadrigenic effect of loci A and B 

3 4
I 

 

8W  Quadrigenic effect of locus B 
4  21W  Quadrigenicmonogenic effect of loci A and B 

4 1
I 

 

9W  Monogenicmonogenic effect of loci A and B 
1 1

I   
22W  Quadrigenicdigenic effect of loci A and B 

4 2
I 

 

10W  Monogenicdigenic effect of loci A and B 
1 2

I   
23W  Quadrigenic trigenic effect of loci A and B 

4 3
I 

 

11W  Monogenic trigenic effect of loci A and B 
1 3

I   
24W  Quadrigenicquadrigenic effect of loci A and B 

4 4
I   

12W  Monogenicquadrigenic effect of loci A and B 
1 4

I      
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Accordingly total genetic variance GV , contributed by segregation of alleles at the QTL, can be 

partitioned into four independent components. Each variance component is contributed by its 

own relevant genetic parameters as 

 
 

 

2
4

02

4 2

0

1,2,..., 4
j j tj

j

t

j tj
j

f G
t

f










 



                           (I-1.5) 

In the following section, we characterize the model (I-1.2) in two populations with two specified 

genetic structures. 

 

1.3.1.1. Model for F2 populations 

In an F2 population created from crossing two parental lines with genotypes AAAA and aaaa, 

frequencies of the offspring genotypes can be expressed in term of  , the coefficient of double 

reduction at the QTL, as, 2

0 (1 2 ) / 36f   , 1 2(1 )(1 2 ) / 9f     , 2 [3 4 (1 )]/ 6f     , 

3 2(1 )(1 2 ) / 9f      and 4 (1f  
 

22 ) / 36 . With these, the genotypic values GA = (G0 G1 

G2 G3 G4)
T can be presented in a matrix form  of  

         

         

       

         

         

2

2

1

2

2

2 3

42

1 2 5 2 3 2 1 3 1 4 4 3 12 2

1 1 1 4 6 1 2 6 1 2 4 4 3 24 2

1 0 1 2 3 0 1 2 1 12 2

1 1 1 4 6 1 2 6 1 2 4 4 3 24 2

1 2 5 2 3 2 1 3 1 4 4 3 12 2

A A AG S E

     


      

   

     


     

        
   
          
   
         
   
          
          
 
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The genetic values can be calculated from 1
A A AE S G  where  

           

       

  

 

  

 

 
 

  

 

  

 

2 22

2

1

1 2 36 2 1 2 1 9 4 4 3 6 2 1 2 1 9 1 2 36

1 2 12 1 3 0 1 3 1 2 12

4 4 31 2 5 2 1 4 1 1 4 1 1 2 5 2

12 2 3 2 2 2 3 2 12 2

1 2 1 0 1 1 2

1 4 6 4 1

A
S

       

   

        

    



       

   

        


    



 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

1.3.1.2. Model for randomly matting populations  

We once worked out the equilibrium distribution of genotypes at a multi-allelic locus in 

randomly mating autotetraploid populations (Luo 2006). In the present context, the probability 

distribution of genotypes at a biallelic locus in randomly matting populations is presented by 

2
2 2 2

0 2

(1 )
9 12 (1 )(1 ) 4(1 ) (1 )

(2 )

p
f p p   




           

 
2

1 2

4(1 ) (1 )
6 4(1 )(1 )

(2 )

p p
f p


 



 
   


          

2 2

2 2

6 (1 )
3 2 (1 ) 4(1 ) (1 )

(2 )

p p
f p p   




       

  

 
2

3 2

4(1 ) (1 )
6 4(1 )

(2 )

p p
f p


 



 
  


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2
2 2 2

4 2
9 12 (1 ) 4(1 )

(2 )

p
f p p   


      

      

Details of deriving this distribution can be found in our previous study (Luo 2006). It can be 

shown that 4

0
1jj

f


 . In the above, allele frequency of A is denoted by p  and the coefficient 

of double reduction at the locus is denoted by . For simplicity but without loss of generality, 

the difference in frequency between alleles A and a is denoted as s (  1 2 1s p p p     ). If 

the populations are in the Hardy- Weinberg equilibrium, I worked out the orthogonal contrast 

scales for the biallelic quantitative genetic model in the random-mating equilibrium population 

as listed below  

1. For monogenic effects 

10

11

1 12

13

14

2 2

1 2

2

1 2

2 2

s

s

x s

s

s











  


  


  
  


 

 

2. For digenic effects 
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 
   

     

  

     

 
   

2

20

2

2 2 2

21

2

2 2 2

222

2

2 2 2

23

2

2

24

2

2

2

3 1
1 2

3
2 1 2 3 1 2 2

2

1
3 1 3 4

3
2 1 2 3 1 2 2

2

3 1
1 2

where 2 5 2

s
s s s

m

s s s s s s
m

s sx
m

s s s s s s
m

s
s s s

m

m

  

  

  

  

  

 

 
       




          

         



          

 

       


  

 

3. For trigenic effects 

      

     

     

     

  

3 3 2 2 3 22

30 22
3

4 4 3 2 3 4 3 2

31
2 4 2 4 3 2 4 3 2

3

2 2

3 32

3

2 7 8 4 3 3 4 81 1

3 2 5 1 1

4 7 10 20 8 10 10 3 20 201

2 6 3 9 18 2 2 7 4 7 2 3 1

1 2 1

s s s s s ss

m s s s s

s s s s s s s ss

m s s s s s s s s s s s

s s
x

m

 




 


 

 


         
 
      
 

         
 
              
 

  
       

     

     

      

     

2 2 2 2

4 4 3 2 3 4 3 2

33 2 4 2 4 3 2 4 3 2
3

3 3 2 2 3 22

34 22
3

4 2 2 1

4 7 10 20 8 10 10 3 20 201

2 6 3 9 18 2 2 7 4 7 2 3 1

2 7 8 4 3 3 4 81 1

3 2 5 1 1

s s s

s s s s s s s ss

m s s s s s s s s s s s

s s s s s ss

m s s s s

 

 


 

 




     
 

         
 
              
 

         

      
 

       3 2 2 2 2 2

3where 2 5 4 9 8 3 5 1m s s s s   

























         
 
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4. For quadrigenic effects 

       

   
   

    

       

   

22 2 2 2 2

40

4

3 3 2 2 3 2

2

41 23
4

2
2 2 2 2 2

424

4

3 3

2

43

4

1
1 1 2 1 2 2 1

2 2 4 3 3 2 21
1 2 1

3 2 1 1

1
1 1 4 2 2 1

1
1 2 1

s s s s s s
m

s s s s s s
s s s

m s s s s

s s s sx
m

s
s s s

m

    

 
 



   


 

              

                           

          

      

   

    

       

         

2 2 3 2

23

22 2 2 2 2

44

4

2 3 2 2 2 2 2

4

2 2 4 3 3 2 2

3 2 1 1

1
1 1 2 1 2 2 1

where 4 2 4 3 8 3 5 1

s s s s s

s s s s

s s s s s s
m

m s s s s





    

   












                        

               

         
 

 

In the same formulation, the quantitative genetic model is fully characterized as
A A AG S E  and 

1

A A AE S G . AS and 1

AS  are detailed as. 
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Here  
2

1 2m   , 2

2 2 5 2m     ,        2 2 2 2 3 2

3 2 1 3 5 9 8 5 4m s s s s            
 

 and  
2

4 4 2m    

       3 2 2 2 2 24 3 8 3 5 1s s s s         
 

. s is denoted as p q , with p , q  as the frequency of allele A and allele a at the 

locus respectively.  is the coefficient of double reduction of locus A.   
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1.3.2. Two loci model 

In this session, the one locus method described above is extended to two bi-allelic loci, A and B, 

in an autotetraploid population with a specified genetic structure. There will be twenty-five 

possible genotypes at the two loci (without accounting for linkage phase). A general form of a 

two-locus tetraploid genotype may be presented as    4 4i ji jAa B b  with 0,1,...,4i  for the 

number of allele A and 0,1,...,4j  for the number of allele B in the genotype. The genotypic 

value and frequency of the genotype are denoted by 
ijG  and ijf , and .if and .if ( 0,1,...,4i  ) are the 

marginal frequency of genotypes at locus A and locus B. Frequencies of the allele A and B in the 

population are denoted by Ap  and Bp , and the coefficients of double reduction at locus A and 

locus B are denoted by  and   respectively. A liner model for the phenotypic value is 

comprised of genic effects at each of the two loci, epistatic effects of genes at the two loci and a 

random variable, and is fully characterized by a total of twenty-five parameters in form of  

1 1 1 1 1 2 1 2

1 3 1 3 1 4 1 4 2 1 2 1 2 2 2 2 2 3 2 3 2 4 2 4 3 1 3 1

3 2 3 2 3 3 3 3 3 4 3 4

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

        

        

ij ijP G x x x x y y y y I w I w

I w I w I w I w I w I w I w

I w I w I w

       

                           

           

                      

      

  
4 1 4 1 4 2 4 2 4 3 4 3 4 4 4 4

I w I w I w I w                   

                                                                                                                                                          

   (I-1.6) 

where Pij is the phenotypic effect, Gij is the genotypic effect,   is the population mean, i  (or 

i ) (i = 1, …, 4 ) are accordingly monogenic, digenic, trigenic and quadrigenic genetic effects at 

locus A (or B), and ix  (or iy ) (i=1, …, 4) are design variables for the corresponding genetic-
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effects. i jI  are epistasis between the effects i  and j  (i=1,…,4; j=1,…,4). Table I-1.2 (On 

page 31) lists detailed descriptions of the parameters.   is a normal residual variable. 

In a similar but algebraically more tedious way, we derived the orthogonal contrast scales for the 

two-locus tetrasomic model under two different scenarios of mutual dependency of genotypic 

distribution at the two loci: linkage equilibrium and linkage disequilibrium. 

 

1.3.2.1. Model for linkage equilibrium population 

When alleles at the two loci model are in linkage equilibrium in the population under question, 

the probability of a joint genotype at the two loci equals the product of probabilities of 

genotypes at each locus, i.e.  . .  , 0,1,...,4ij i jf f f i j   , the design variables for the genetic-

effects in the Equation (I-1.6) can be written as   

0 0

1 1

2 2

3 3

4 4

  and     1,2,3,4

i A i B

i A i B

i i A i i B

i A i B

i A i B

if G is aaaa if G is bbbb

if G is Aaaa if G is Bbbb

x if G is AAaa y if G is BBbb i
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if G is AAAA if G is BBBB

 

 

 

 

 

 
 
  
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 
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   , 1,2,3,4
i j i jw x y i j      

Here
ij and

ij  (i =0,1,…,4; j=1,2,…,4) are the orthogonal contrast scales calculated separately 

according to the way for the bi-allelic one locus model as listed in Table I-1.3.  
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Table I-1.3. The orthogonal contrast scales for locus A and locus B 

Locus A 

Genotype aaaa Aaaa AAaa AAAa AAAA 

Frequency 0.f  1.f  2.f  3.f  4.f  

G 0.G  1.G  2.G  3.G  4.G  

1  
1W  10  11  12  13  14  

2  
2W  20  21  22  23  24  

3  
3W  30  31  32  33  34  

4  
4W  40  41  42  43  44  

 

Locus B 

Genotype bbbb Bbbb BBbb BBBb BBBB 

Frequency .0f  .1f  .2f  .3f  .4f  

G .0G  .1G  .2G  .3G  .4G  

1  
1V  10  11  12  13  14  

2  
2V  20  21  22  23  24  

3  
3V  30  31  32  33  34  

4  
4V  40  41  42  43  44  

 

.iG ( .iG  ) and .if ( .if  ) (i = 0, 1,…, 4) denote the genotypic values and genotypic frequencies for the five 

genotypes of  locus A (locus B). i ( i  ) (i=1, 2,…, 4) are the monogenic, digenic, trigenic and 

quadrigenic effects for locus A (locus B) respectively. Here  i ijW  and  i ijV   (i=1,…,4; j=0, …,4), 

the orthogonal contrast scales calculated separately via the general bi-allelic one locus model, are the 

scale component of genotype i for the j contrast. 
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A matrix form of the model can thus be written as 

  AB AB AB A B ABG S E S S E                           (I-1.7) 

    1 1 1

AB AB AB A B ABE S G S S G     
 

             (I-1.8) 

Here 00 04 44( )T
ABG G G G , 1 1 4 41 4 1 4(    )T

ABE I I         and ‘  ’ stands for the 

Kronecker product. The product AS  BS  needs to have some columns to be rearranged to match 

change in dimension of ABE . 1

ABS   is equal to the Kronecker product of  1

AS  and  1

BS   with some 

rows that need to be rearranged correspondingly. Then the total genetic variance, GV , 

contributed by the two loci, can be partitioned into twenty-four independent variance 

components. Each of the variance components is involved only with its own genetic parameter. 

The t-th component can be written as  

 
 
 

2

,2

2

,

,  1,2,..., 24
ij ij tij

i j

t

ij tij
i j

f G w
t

f w
  




                                     (I-1.9) 

where tij tw W  (t=1,2,…,8) is the scale component of genotype ij for the tth contrast. 1W , 2W , 

3W  and 4W ( 5W , 6W , 7W  and 8W ) are the orthogonal contrast for monogenic, digenic, trigenic 

and quadrigenic effects of locus A (locus B). tW  (t=9, …, 24) are the orthogonal contrast for the 

interaction effect between loci A and B, as shown in Table I-1.2 (On page 31). For simplicity 

but without loss of generality, we illustrate the model and analysis with a specific 2F  population, 

in which double reduction rate are set to be zero at both the loci for algebraic simplicity below 
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1.3.2.1.1. The orthogonal contrasts for a bi-allelic two loci model in 

an F2 population. 

Here 0, 0   , assuming linkage equilibrium between locus A and locus B. The genetic-

effect design matrix for two loci, ABS , is a Kronecker product ( ) of two one-locus design 

matrices, AS and BS , with some columns rearranged to conform the order in ABE . 1

ABS  is a 

Kronecker product of  1

AS  and  1

BS   with some rows rearranged correspondingly 

 AB A B AB AB ABG S S E S E   ,           

1 2 5 3 2 3 1 8

1 1 1 6 1 6 1 16

1 0 1 3 0 1 24

1 1 1 6 1 6 1 16

1 2 5 3 2 3 1 8

A BS S

  
 
  
 
   
 
  
 
 
 

 

   1 1 1

AB AB AB A B ABE S G S S G     
 

,             1 1

1 36 2 9 1 2 2 9 1 36

1 12 1 3 0 1 3 1 12

5 24 1 6 3 4 1 6 5 24

1 2 1 0 1 1 2

1 4 6 4 1

A BS S 

 
 
  
 
   
 
  
 
   
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with detailed as
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In fact, this can be done when a and b not equal to zero. But the form will be much tedious. 

 

1.3.2.2. Model for linkage disequilibrium population 

When alleles at the two loci are segregating in linkage disequilibrium in the population under 

study, co-variation rises between genetic effects in Equation (I-1.6). Let  and   be the 

coefficients of double reduction at loci A and B (locus A is assumed to be closer to the 

centromere than locus B), and r be recombination frequency between the loci. It has been 

demonstrated in Luo et al (2004) that the three genetic parameters are related each other in form 

of  

   
2

3 4 2 3 2 9r r r     
 

                                                                        (I-1.10) 

The genetic effects, which are not independent to each other, are partial regression coefficients 

in the regression model (I-1.6). So according to Equation (I-1.6), the covariance between 

genotypic value and genetic-effect design variables (taking 1x  for example) can be calculated as 

follows 

         
     

4 4

4 4

1 1 1 1 1 2 2 1 4 4 1

1 1 2 2 1 4 4 1

cov , cov , cov , cov , ... cov ,

0 var cov , ... cov ,

G x x x x x x I x y x

x x x I x y x
 

 

  

 

    

    
      (I-1.11) 

Similarly, all the other genetic-effect design variables can be written in the form as Equation (I-

1.11).  
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It can be shown that these covariances between genotypic value and genetic-effect design 

variables can be written into matrix notation for estimation of genetic effects, 

     
1

24 1 24 24 24 1ABP V COV


  
 , where ABP  is an vector of the twenty-four different genetic effects. 

V is an asymptotic variance-covariance matrix with variances appearing along the diagonal and 

covariance appearing in the off-diagonal elements. COV is a matrix of covariances between 

genetic value and the twenty-four genetic-effect design variable. I worked out these matrices in 

an explicit form as follows. 

Firstly we calculated orthogonal contrast scales, 
ijA and

ijB  (i=0,1,…,4; j=1,2,…,4), for loci A 

and B   separately via the general bi-allelic one locus model as shown in the table below.  

Locus A 

Genotype aaaa Aaaa AAaa AAAa AAAA 

Frequency 0.f  1.f  2.f  3.f  4.f  

G 0.G  1.G  2.G  3.G  4.G  

1  
1AW  41A  31A  21A  11A  01A  

2  
2AW  42A  32A  22A  12A  02A  

3  
3AW  43A  33A  23A  13A  03A  

4  
4AW  44A  34A  24A  14A  04A  

 

Locus B 

Genotype bbbb Bbbb BBbb BBBb BBBB 

Frequency .0f  .1f  .2f  .3f  .4f  

G .0G  .1G  .2G  .3G  .4G  

1  
1BW  41B  31B  21B  11B  01B  

2  
2BW  42B  32B  22B  12B  02B  
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3  
3BW  43B  33B  23B  13B  03B  

4  
4BW  44B  34B  24B  14B  04B  

 

Then the genetic-effect design variables ix and iy  (i = 1,…, 4) are calculated as 

4 4

3 3

2 2

1 1

0 0

  and     1,2,3,4

i i

i i

i i i i

i i

i i

A if A is AAAA B if B is BBBB

A if A is AAAa B if B is BBBb

x A if A is AAaa y B if B is BBbb i

A if A is Aaaa B if B is Bbbb

A if A is aaaa B if B is bbbb

 
 
  

   
 
 
  

 

The genetic effects can be estimated as follows 
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     
1

24 1 24 24 24 1ABP V COV


  
   

         

1 1

1 2

1 3

1 4

2 1

2 2

2 3

2 4

3 1

3 2

3 3

3 4

4 1

4 2

4 3

4 4

1 1 2 1 4 1 1 1 4 1
1

2

3

4

1

2

3

4

, , , , ,var cov ... cov cov ... ... cov covx x x x x x y x y x x

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

         

 
           

1 1 1 1 4 1 2 1 1 3 1 1 4 1

3 4

4 4 1 4 4 4 1 1 4 1 4 4 2 1

, , , ,

,

, , , , ,

... ... cov cov ... ... ... cov ... ... ... cov ... ... ...

... ...

... cov

var cov ... ... cov cov ... ... cov cov ...

y x x y x x y x x y x x y

x x

x x y x y x x y x x y x x y    
               

 

4 3 1 4 4 1

1 1 1 1 4 1 1 1 1 1 4 1 2 1 1 3 1 1 4 1

3 4

, ,

, , , , , , ,

,

... ... cov ... ... ... cov ... ... ...

var cov ... cov cov ... ... cov cov ... ... ... cov ... ... ... cov ... ... ...

... ...

... cov

x x y x x y

y y y y y y x y y x y y x y y x y y x y

y y

           
           

 

4 4 1 1 4 1 4 4 2 1 4 3 1 4 4 1

1 1 1 1 1 2 1 1 1 4 1 1 2 1 1 1 3 1 1 1 4 1

1 2

, , , , ,

, , , , ,

var cov ... ... cov cov ... ... ... cov ... ... ... cov ... ... ...

var cov ... cov cov ... ... ... cov ... ... ... cov ... ... ...

var ...

y y x y y x y y x y y x y y x y

x y x y x y x y x y x y x y x y x y x y x y

x y

 
   

 

 
 

 
 

1 3 1 4

1 4 1 4 2 1

2 1

2 4 3 1

3 1

3 4 4 1

4 1

,

,

,

,

... cov

var cov

var ...

... ...

... ...

... cov

var ...

... ...

... ...

... cov

var .

x y x y

x y x y x y

x y

x y x y

x y

x y x y

x y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

2

3

4

1

2

3

4

1 1

1 2

1 3

1 4

2 1

2 2

2 3

2

1
cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

..

... ...

... ...

...

G x

G x

G x

G x

G y

G y

G y

G y

G x y

G x y

G x y

G x y

G x y

G x y

G x y

G x y





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

4

3 1

3 2

3 3

3 4

4 1

4 2

4 3

4 4

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

cov ,

G x y

G x y

G x y

G x y

G x y

G x y

G x y

G x y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

V is a 2424 asymptotic variance- covariance matrix of the variance of the genetic-effect design variables which appear along the diagonal and 

the covariance appear in the off-diagonal elements. The inverse of this matrix,
1V 
, is known as the concentration matrix or precision matrix. 

Details of the calculation of these variances and covariance are shown as follows         
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       
4

22 2

.

0

var 1,2,3,4i i i ji j

j

x E x E x A f i


        

       
4

22 2

.

0

var 1,2,3,4i i i ji j

j

y E y E y B f i


        

       
4 4 4 42

2 2 2 2 2

0 0 0 0

var , 1,2,3,4i j i j i j mi nj mn mi nj mn

m n m n

x y E x y E x y A B f A B f i j
   

 
       

 
   

     cov , cov , 0 1,2,3,4i j i jx x y y i j     

         
4 4

0 0

cov , , 1,2,3,4i j i j i j mi nj mn

m n

x y E x y E x E y A B f i j
 

     

         
4 4

2 2

0 0

cov , , 1,2,3,4i i j i j i i j mi nj mn

m n

x x y E x y E x E x y A B f i j
 

     

         
4 4

2 2

0 0

cov , , 1,2,3,4i j i j i i j i mj ni mn

m n

y x y E x y E y E x y A B f i j
 

     

         
4 4 4

.

0 0 0

cov , , , 1,2,3,4i j k i j k i j k si mj nk mn s

m n s

x x y E x x y E x E x y A A B f f i j k and i j
  

    
 

         
4 4 4

.

0 0 0

cov , , , 1,2,3,4i j k i j k i j k si mj nk mn s

m n s

y x y E y x y E y E x y B A B f f i j k and i k
  

    

 

       

 
4 4 4 4 4 4 4 4

0 0 0 0 0 0 0 0

cov ,

, , , 1,2,3,4

i j k l i j k l i j k l

mi nj sk tl mn st mi nj mn mk nl mn

m n s t m n m n

x y x y E x y x y E x y E x y

A B A B f f A B f A B f i j k l andij kl
       

 

   
      

   
  
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           

 

4

0

4

4 4 4
0

.

0 0 0.

cov , |

1,2,3,4

i i i i mi i mi

m

mn mn

n
m mi mi mn mn

m m nm

G x E Gx E G E x E x A E G x A

f G

f A A f G i
f





  

    

  




 

 

           

 

4

0

4

4 4 4
0

.

0 0 0.

cov , |

1,2,3,4

i i i i ni i ni

n

mn mn

m
n ni ni mn mn

n m nn

G y E Gy E G E y E y B E G y B

f G

f B B f G i
f





  

    

  




 

 

       

   

 

4 4 4 4 4 4

0 0 0 0 0 0

4 4 4 4 4 4

0 0 0 0 0 0

cov ,

, | ,

, 1,2,3,4

i j i j i j

i mi j nj i mi j nj mn mn mi nj mn

m n m n m n

mi nj mn mn mn mn mi nj mn

m n m n m n

G x y E Gx y E G E x y

E x A y B E G x A y B f G A B f

A B f G f G A B f i j

     

     

 

  
        

  

  
    

  

  

  

 

 

1.3.2.3. Estimation of genetic parameters in a reduced model 

Because of limited sample size, it is probably in practice that not all the genotypes would appear 

in sufficient counts in the sample, especially when a two locus model is considered. Statistically, 

this will lead to singularity of the linear model and thus not all the genetic parameters are 

estimable. To tackle this problem, I proposed to estimate the parameters in a reduced model by 

being focused on main effects in the models. Here main effects refer to genic effects at each of 

the two loci, excluding the epistasis effects.  
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No matter the population is in linkage equilibrium or not, the genotypic value can be converted 

into the following matrix notation, 

11 12 1,251 1

21 22 2,252 2

25,1 25,2 25,2525 2525 1 25 125 25

x x xG p

x x xG p
G X P

x x xG p
 

    
    
        
    
    

    

    (I-1.12) 

Here  
4 3 4 400 01 43 44 1 2, , , , , , , , ,

TT
G G G G G P I I           

However, according to the theoretical genotypic frequency distribution, some genotype may 

unlikely exist in offspring population with limited population size. So we should estimate 

genetic parameters in a reduced model. Assuming there would be only r genotypes existing in 

offspring, the model can be reduced into 

' ' ''
111 12 1,251

' ' ''
221 22 2,25' '2

' ' ''
25,1 ,1 ,25 25 11 25

25

r r rr r r

px x xG

px x xG
G X P r

px x xG
 

    
    
         
    
    

        

   (I-1.13) 

This linear model is not full rank and not all the parameters ip  are estimatable. So we reduce the 

model into one of full rank. Firstly, 
'X can be divided into two parts,  '

1X  and '

2X  . Let '

1X  

consist of r linearly independent columns from 
'X and let '

2X  consist of the remaining columns. 
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' ' ' ' ' '

11 12 1 1, 1 1, 2 1,25

' ' ' ' ' '

21 22 2 2, 1 2, 2 2,25' ' '

1 2

' ' ' ' ' '

1 2 , 1 , 2 25,25
25

r r r

r r r

r r rr r r r r
r

x x x x x x

x x x x x x
X X X

x x x x x x

 

 

 


 
 
 

     
 
 
  

   (I-1.14) 

Let ' '

2 1X X A , '

2X  being linearly dependent on '

1X , then Equation (I-1.13) can be written as 

 

 

' ' '

1

1, 1 1, 2 1,25

2, 1 2, 2 2,25'

1 25 1

, 1 , 2 ,25
25

,

1 0 0

0 1 0

0 0 1

r rr r

r r

r r

r r

r r r r r
r

G X P X I A P

a a a

a a a
X P

a a a



 

 



 


 



    

 
 
 

    
 
 
  

   (I-1.15) 

with 
 

' 1 '

1 225r r
A X X

 
  . 

By calculating  ,r rI A P  first, Equation (I-1.15) can be rewritten as 

 

25

1 1

1

25

2 2' ' '
11 11

25

1 1

,

i i

i r

i i

i rr rr r r r r

r ri i

i r r

p a p

p a p
G X I A P X

p a p

 

   

  

 

 
 

 
 

               
 
 
 
  







                                           (I-1.16) 
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And then 

  

25

1 1

1

25

12 2 ' '
1 1 1

25

1 1

i i

i r

i i

i r
r r r

r ri i

i r r

p a p

p a p
X G

p a p

 



 
 

  



 
 

 
 

          
 
 
 
  







                                                                    (I-1.17) 

So the genetic parameters can be estimated jointly in the form of Equation (I-1.17).   

  

1.4. Simulation study and analysis 

I carried out an intensive simulation study to test reliability of the theoretical models presented 

above to model phenotype of quantitative traits in autotetraploid populations and to explore 

statistical properties of the statistical methods developed here for estimating the model 

parameters. The simulation program mimics gametogensis of an autotetraploid genotype and 

generation of a zygote. Segregation and recombination of alleles at the loci of interest were 

simulated under a strict tetrasomic inheritance model. Although the simulation program was 

flexible to simulate any numbers of linked or unlinked loci for any given values of the 

coefficient of double reduction and recombination frequency, we considered here F2 populations 

from crossing two parents which were divergent at a single or two loci for a demonstration 

purpose. As long as an offspring genotype at the simulated locus or loci was generated, 

phenotype of the offspring was determined as sum of genotypic value calculated from the 
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correspondingly simulated genetic model (I-1.2) or (I-1.6), depending on the number of loci 

considered, and a random variable sampled from a normal distribution 2(0, )N  . The residual 

variance was defined by a prior given phenotypic variance of the trait in question and 

heritability of the QTL. Thus, phenotype of the offspring population can be modelled as a mixed 

normal distribution with m = 5 or 25 component distributions, each corresponding to a genotype 

at the QTL, as given by   

   2

1

; , ; ,
m

m i i i

i

F x m f g x G 


                         (I-1.18) 

Where the form of model parameter vector, 
2

1 1( )m m mf f G G    and genotypic frequency, 

if  (i=1,…,m) which depends on double reduction and/or recombination parameters. 

 2; ,i ig x    stands for the probability density function of normal distribution with mean i  

and variance 
2 .  

To calculate estimates of the genetic effect parameters, we first calculated the mean for each 

QTL genotype from the offspring population. This is equivalent to estimating means of a finite 

mixture of component distributions. We considered here the scenario that QTL genotypes of the 

offspring individuals were unknown but the coefficient of double reduction at the QTL was 

known or can be estimated from other source of information, for instance the data of genotypes 

of genetic markers at the nearby QTL region using the methods we developed before (Luo 2000). 

Thus, the parameter estimation can be formulated as analysis of a finite mixture of normal 

distributions with known proportions, 
1, ,f  

mf  , through implementing the EM (Expectation 
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and Maximization) algorithm (Dempster 1977). The EM algorithm involves iterating the E-step 

that calculates the conditional probability of the ith individual having the jth QTL genotype, i.e. 

 

 

2

2

1

; ,

; ,

j j i j j

ij m

k k i k k
k

f g x G

f g x G










                       (I-1.19) 

and the M-step that calculates the maximum likelihood estimates (MLEs) of the model 

parameters given the conditional probabilities from the above E step from the following formula 

1 1

ˆ /
n n

j ij i ij
i i

G x 
 

                                                                                            (I-1.20)

2 2

1 1

ˆˆ ( )
n m

ij i j
i j

x G n 
 

                                                                                               (I-1.21) 

 

1.4.1. One-locus analysis 

This simulation model considered a bi-allelic quantitative trait locus, AQ , with two alleles, 

segregating in an 2F  population from crossing a pair of parental autotetraploids with genotypes 

AAAA and aaaa. In simulating allele segregation at the QTL, I set the coefficient of double 

reduction to be 0.0 or 0.15. Segregation at the simulated QTL contributed 10% of phenotypic 

variance of the trait in the population. All genetic effects at the QTL were set to be 1.0 and 

residual variance was determined accordingly. To better estimate genetic parameters from such 

mixture normal distributions, I simulated some genetic markers along the QTL which is 
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assumed to be closer to centromere to make if more informative. The detailed set of simulated 

values was listed in Table I-1.4.  

 

Table I-1.4. Simulation parameters of the coefficient of double reduction at QTL and 

recombination frequencies between QTL and 4 linked marker loci and the corresponding 

parental genotypes and genetic effects used to simulate the populations 

Locus r 
Parental genotype 

Simulated 

parameters 

 Theoretical value 

P1 P2  α=0.00 α=0.15 

       2.896 3.252 

QTL 0.00 AAaa AAaa   1.000 G4 5.458 5.215 

L1 0.05 M1M2M3M3 M1M5M6M7 1  1.000 G3 1.938 1.787 

L2 0.10 M1M2M2M4 M5M2M2M6 2  1.000 G2 0.708 0.622 

L3 0.15 M1M1M3M4 M3M5M6M7 3  1.000 G1 0.271 0.221 

L4 0.20 M4M2M3M4 M5M6M6M8 4  1.000 G0 0.125 0.082 

 

Markers were located on the same side of the QTL which is closer to centromere. Offspring population 

were generated under autotetrasomic inheritance with double reduction rate α equal to 0.00 or 0.15.  

Offspring population size was 500 and heritability was assumed to be 0.1. Alleles listed in the same 

column had the same linkage phase. 
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I generated offspring individuals under autotetrasomic inheritance (the coefficient of double 

reduction was denoted as a = 0.0 or 0.15) for each case, assuming its meiosis was all 

quadrivalent pairing of homologous chromosomes. The orthogonal contrast scales can be 

obtained according to the theoretical genotypic frequencies distribution for given parental 

genotypes and the coefficient of double reduction by using the one-locus F2 population model as 

developed in Section 1.3.1.1. To explore the effects caused by double reduction on the 

estimation of the genetic parameters, the estimation procedure was carried out in two different 

ways: taking double reduction into account when calculating the orthogonal contrasts of linear 

model, and ignoring double reduction when doing the parameters estimation. The simulation 

results are shown in Table I-1.5. 

Table I-1.5 tabulates the means and standard errors of the estimated genetic parameters 

compared with the true genetic parameters based on 100 repeated simulations. This simulation 

was designed to investigate the effects of double reduction, which is the most important feature 

of autotetrasomic inheritance, on the reliability of the model to estimate genetic parameters. It 

can be seen from Table I-1.5 that the genetic parameters were predicted adequately with low 

heritability when taking double reduction into account, while estimation of the genetic effects 

without consideration of double reduction performed poorer comparatively. From the estimates 

of heritability in Table I-1.5, it can be found that overestimate of the coefficient of double 

reduction would result in overestimating in genetic variance and vice versa. We can conclude 

that taking account of double reduction and accurate estimation of the coefficient of double 

reduction is important in estimation of genetic parameters in autotetraploids. 
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Table I-1.5.  Means and standard errors of the parameter estimates based on 100 repeated simulations of a single QTL model. 

Offspring data generated with double reduction rate α=0.00 

True values Estimates a Estimates b Estimates c Estimates d 

  1.000   0.997 (0.013)  1.014 (0.013)  1.037 (0.013)  1.061 (0.013)  

1  1.000 V1 0.667 1.024 (0.017)  0.699 1.003 (0.017) 0.738 0.997 (0.017) 0.795 0.997 (0.017) 0.861 

2  1.000 V2 0.222 1.057 (0.033) 0.248 1.033 (0.033) 0.267 1.023 (0.033) 0.293 1.018 (0.033) 0.322 

3  1.000 V3 0.037 0.809 (0.087) 0.024 0.789 (0.085) 0.027 0.786 (0.085) 0.030 0.786 (0.085) 0.033 

4  1.000 V4 0.003 0.663 (0.251) 0.002 0.570 (0.265) 0.001 0.553 (0.272) 0.001 0.545 (0.279) 0.001 

  2.892   2.875 (0.009)  2.875 (0.009)  2.875 (0.009)  2.875 (0.009)  

h2 0.100   0.105  0.111  0.119  0.128  

Offspring data generated with double reduction rate α=0.15 

Simulated Parameters Estimates d Estimates a Estimates c Estimates e 

  1.000   1.008 (0.017)  0.977 (0.017)  0.986 (0.016)  1.031 (0.017)  

1  1.000 V1 0.867 0.992 (0.018) 0.853 1.063 (0.023) 0.753 0.996 (0.019) 0.794 0.994 (0.018) 0.922 

2  1.000 V2 0.311 1.031 (0.027) 0.330 1.114 (0.032) 0.276 1.041 (0.028) 0.303 1.027 (0.026) 0.361 

3  1.000 V3 0.053 1.077 (0.081) 0.062 1.074 (0.097) 0.043 1.077 (0.083) 0.056 1.078 (0.080) 0.067 

4  1.000 V4 0.004 1.329 (0.364) 0.007 1.540 (0.404) 0.008 1.303 (0.371) 0.006 1.355 (0.361) 0.007 

  3.333   3.304 (0.010)  3.308 (0.010)  3.303 (0.010)  3.304 (0.010)  

h2 0.100   0.103  0.090  0.096  0.111  
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Here   is the population mean and and i  (i = 1, …, 4 ) are accordingly monogenic, digenic, trigenic and quadrigenic genetic effects 

of the QTL.  is a random variable and h2 is the heritability. V1, V2, V3 and V4 represent monogenic, digenic,trigenic and quadrigenic 

genetic variance components, respectively. The estimation procedure was carried out in ways as follows: 

a – estimates obtained when α=0.00;     b – estimates obtained when α=0.05;     c – estimates obtained when α=0.10; 

d – estimates obtained when α=0.15;     e – estimates obtained when α=0.20 
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1.4.2. Two-locus analysis 

We simulated a 2F  population of 300 individuals generated from crossing two autotetraploid 

parental genotypes, AAAA/BBBB and aaaa/bbbb, respectively. A simulated quantitative trait was 

controlled by two linked QTLs with a recombination frequency r = 0.2, and the coefficient of 

double reduction was a = 0.10 at the QTL A, implying that the coefficient of double reduction at 

the QTL B was    
2

3 4 2 3 2 9r r r     
 

 = 0.1693 (Luo 2004). All the genetic parameters 

as listed in Table I-1.2 (on page 31) are set to be 1.0. The simulation mimicked gametogenesis 

of an autotetraploid individual with all quadrivalent pairing of homologous chromosomes during 

meiosis, which meant that recombination can occur between two non-sister chromatids. QTL A 

and B were obviously in linkage disequilibrium in the 2F  population, thus the genetic effects can 

be calculated as developed in Section 1.3.2.2. Phenotype of an offspring individual was 

generated as sum of the corresponding genotypic value and a randomly generated number from 

a normal distribution with mean zero and variance, which was adjusted for a simulated 

heritability of 0.1 for the quantitative trait.  

Theoretically, there are twenty-five different genotypes (without consideration of linkage phase) 

in the current simulated offspring populations. However, due to the limited population, some 

genotypes at the QTLs may not appear with sufficient counts in the segregation population. In 

this case, not all the genetic parameters are estimable. I first calculated the theoretical genotypic 

frequencies of the twenty-five different genotypes by a computer-based algorithm (Luo et al, 

2004). Based on the theoretical genotype distribution, it can be anticipated that some of these 

genotypes may be present in a small number (e.g. less than 5) among the total 300 offspring 
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individuals. Of all the possible genotypes, thirteen were expected to be present in the number 

greater than 5, namely 
00G , 

01G , 
10G , 

11G , 
12G , 

21G , 
22G , 

23G , 
32G , 

33G , 
34G , 

43G  and 
44G . By 

using method in Section 1.3.2.3, the twenty-five genetic parameters can be reduced into thirteen 

as shown in part (i) of Table I-1.6. The newly defined parameters ( 0,ip i  1, ,12) can be 

expressed linearly in terms of original genetic parameters, with 0p highlighted the effect of 

population mean, 1 4p p  highlighted monogentic, digenic, trigenic and quadrigenic genetic 

effects at locus A,  5 8p p  highlighted monogentic, digenic, trigenic and quadrigenic genetic 

effects at locus B and  9 12p p highlighted epistasis between the effects 1  and  1, ,4i i  . 

Especially, when the residual epistatic effects were small enough, the parameters ip can well 

reflect the main genetic effects which we interest in this way. Table I-1.6 also summarized the 

means and stand error of the estimated parameter, ( 0,ip i  1, ,12)  compared with the true 

value based on 100 repeated simulations. It can be seen from Table I-1.6 that the parameters 

were adequately estimated with small population size of 300 and low heritability of 0.1.  In the 

current study, most of the main genetic effects could be detected theoretically. However, some 

of them (e.g. monogenic effect at Locus A reflected by 1p , epistatic effects reflected by 10p and 

11p ) could not be well detected due to large residual epistatic effects and corresponding 

weighted value. 
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Table I-1.6. Estimation of genetic parameters in linkage disequilibrium population by the bi-allelic two loci 2F  population 

model 

     (i). the genetic parameters in a reduced model 

1 1
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     (ii). estimation result by the bi-allelic two loci model 

 0p  1p  2p  3p  4p  5p  6p  7p  8p  9p  10p  11p  12p  

True 1.142 0.090 3.492 1.049 7.119 2.943 0.357 7.960 3.882 0.634 0.047 0.030 -13.100 

Estimates 1.074 0.092 3.388 1.015 6.964 2.914 0.418 7.931 3.872 0.618 0.030 0.029 -13.104 

s.e. 0.321 0.003 0.069 0.025 0.095 0.023 0.062 0.083 0.047 0.011 0.016 0.006 0.174 

 

All the original genetic parameters were assumed to be 1.0, including the mean. The 2F population of size of 300 were simulated 

under tetrasomic inheritance with the coefficient of double reduction locus A being set to 0.1 and recombination frequency between 

locus A and locus B being 0.2. The heritability here was 0.1 and simulated replicates were 100. 
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1.5. Discussion 

Considerable advancement has been made recently in the genetic linkage analysis with 

autotetrasomic inheritance, providing theory and tools for genetic map construction (Luo et al. 

2000, 2004, 2006; Leach et al. 2010). These methods also provided ways to calculate the 

conditional probability distribution of genotypes at any location along the chromosome given 

the parental and offspring marker phenotypes at its linked genetic markers, achieving a step 

forward for QTL analysis. However, as another key part of QTL analysis, progress in the study 

of quantitative genetics of autotetraploids is emergent in the era of genomic genetics. 

In this chapter, I have succeeded in extending Cockerham’s orthogonal contrast based 

quantitative model for diploid species to autotetraploid species and establishing a quantitative 

genetics model for analysing QTL effects and epistasis by using orthogonal contrast scales with 

two alleles in autotetraploid species. Although less comprehensive in their representation of 

natural populations, two allele models do have the advantage that they can be expressed in terms 

of relatively few parameters which deal with genetic phenomena at the level of gene rather than 

the populations, thus allowing more fundamental analysis. This quantitative genetic model has 

taken the existence of epistasis into account and decomposed the genotypic value at the QTLs 

into monogenic, digenic, trigenic, quadrigenic and epistatic effects. Under the assumption that 

there is only two-locus epistasis for pairs of loci, the property of orthogonality ensures that the 

monogenic, digenic, trigenic, quadrigenic and epistatic effects can be estimated independently 

for any number of loci. In practice, a quantitative trait is usually controlled by more than one 

QTL and the number of QTLs seems to be always incorrectly identified in QTL mapping. Thus 
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it is very important to keep consistency in QTL effects estimation in a multi-locus setting, which 

is essential for the QTL analysis to be multi-locus comparable. This orthogonal contrast scales 

based quantitative genetics model ensures that genetic effects and genetic variance components 

are consistently estimated no matter how many QTLs get involved and can benefit the study of 

QTL mapping in autotetraploids. 

This quantitative genetic model is generally used for populations with different structures, like 

randomly-mating natural population or artificial designed 2F population illustrated here. 

Parameters estimation can be carried out under different levels of recombination frequency or 

coefficient of double reduction. This two-allele model largely decreases number of parameters 

used to describe the monogenic, digenic, trigenic, quadrigenic and epistatic genetic effects for 

QTL from 9408 by Kempthorne (1957) to 24 for two loci analysis. I also proposed methods for 

parameters estimation if the population was in linkage disequilibrium. This method provides a 

way to divide genetic variances into components explained by genetic effects and covariance 

between them in a linkage disequilibrium population. The variance components of genetic 

effects would correspond to those components in the linkage equilibrium population, while the 

components of covariance between genetic effects indicate the degree of disequilibrium in the 

population. However, there was over parameterization problem because of the small population 

size. Since the genetic effects could not be estimated in the full model in this case, I developed a 

reduced model to select a subset of statistically interested genetic effects.  

Simulation examples demonstrated the feasibility of estimation of genetic parameters using this 

orthogonal model and validated the adequacy of parameters estimation under various situations. 

This quantitative genetic model for genetic analysis based no orthogonal comparison of 
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genotypic values at one or two QTL can also extend to more loci via the similar procedures if 

not considering about three or more-locus epistasis but just two-locus epistasis for pairs of loci, 

making the theoretical and methodological foundation for genetic analysis in these evolutionary 

and agriculturally important species. 

In QTL mapping experiments, finite sample size would cause a practical problem in estimating 

the genetic effects, especially for autotetraploids. Some genotypes involving two or more loci 

would be observed rarely or not at all. Thus I selected a subset of statistically significant genetic 

effects in a reduced model and they could also be adequately estimated as shown in Table I-1.6. 
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Chapter I-2: Interval mapping of QTL in autotetraploid species 

2.1. Overview  

Phenotypic variation in morphology, behaviour, physiology is widely exists in natural 

populations and is partly due to underlying genetic variation from segregation of alleles at 

multiple interacting loci and sensitivity to the external environmental condition (Mackay 2009). 

To understand the relationship between such variation in phenotypes and genetic variation for 

quantitative traits is a great challenge in the modern genomics. Insights into this question are 

helpful for predicting disease susceptibility and providing individual therapeutic treatments, for 

increasing the speed of selective breeding programmes in agriculturally and economically 

important plants and animals. The principles of mapping QTLs that affect phenotypic variation 

by linked to polymorphic molecular marker loci with Mendelian segregation have been known 

since the early twentieth century. With the rapid development in discovering of abundant 

molecular marker and effective genotyping method, the field of mapping QTLs has been 

revolutionized since the landmark work by Lander and Botstein (Lander 1989). 

QTL mapping methods are well developed and widely used in diploid species nowadays. 

However, the corresponding methods for autotetraploids are still in the infancy stage for the 

much more complicated inheritance. Several reasons exist why theory and methods for QTL 

mapping in autotetraploids are far behind that in diploids. First, meiotic process in 

autotetraploids is quite different from that in diploids. Crossovers may occur between any two 

non-sister chromatids due to the formation of multivalent pairing of chromosomes during 
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meiosis. One of the most important features of autotetrasomic inheritance caused by 

quadrivalent pairing, double reduction, would result in segregation distortion in autotetrasomic 

linkage analysis. This feature implies that it is not appropriate to do QTL analysis in 

autotetraploids by remarkably reducing challenges in autotetrasomic inheritance under the 

assumption of bivalent pairing of homologous chromosomes during meiosis. This finding 

suggests a requirement to properly take account of the key features of gene segregation of 

autotetrasomic inheritance during QTL analysis. Second, the existence of multiplex alleles in 

autotetraploids would cause a substantially wider range of genotypic segregation. Since fully 

informative genetic markers are not available in autotetraploids, a smiple one-to-one relationhip 

between genotyping data and genotypes is usually difficult to obtain. The ideal marker loci 

selected for QTL mapping in auotetraploids should be highly polymorphic so as to be more 

informative. Thus theory and methods for QTL analysis in autotetraploids requires properly 

modelling the inheritance of multiplex alleles of the autotetraploids. Finally, by contrast with 

diploids, QTL parental genotypes and linkage phase between markers are unknown in practice 

in the autotetraploid mapping population. The general methods for identifying and mapping 

QTLs by linkage with markers are carried out based on crosses between lines that differ for the 

trait of interest. To achieve the maximum linkage disequilibrium between the loci in F1 

population, it is preferred that phenotypic increasing alleles should be homozygous in one 

parental line and phenotypic decreasing alleles should be homozygous in the other parental line. 

Homozygosity of QTLs in parental populations is likely to be met by divergent artificial 

selection for the trait of interest and subsequently inbreeding. In diploids, the parental inbred 

lines are commonly crossed to generate the F1 population and then either backcrossed to one 

parent, or inbred to produce the F2 population. Thus, QTL parental genotypes are known in 
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either the backcross design or the F2 design. However, in autotetraploids, QTL parental 

genotypes are hardly to be known for two reasons: firstly, homozygosity of QTL in parental 

lines is difficult to be achieved; secondly, no sharing of common marker alleles between two 

parents is practically impossible. As a consequence, autotetraploid breeding has remained 

empirical and genetically unsophisticated, particularly for those quantitative traits.                                                                                                                                                                                                                                               

Any QTL analysis can be divided into two statistically independent parts, namely genetics 

model and linkage analysis. For the first part, I have proposed an orthogonal based model for 

autotetraploids and was discussed in part I. This quantitative genetics model divided the 

genotypic value of an individual at the bi-allelic loci into monogenic, digenic, trigenic, 

quadrigenic and epistatic effects independently, which takes account properly the key features of 

autotetrasomic inheritance at the QTLs. For the second part, much effort has been made for 

linkage analysis and QTL mapping in autotetraploids facilitated by newly developed genotyping 

technologies, such as RAD sequencing (Baird 2008) and genotyping by sequencing (Elshire 

2011), and advances in development of the theory and statistical method (Hackett 1998; Hackett 

2001; Cao 2005; Hackett 2013).  However, all these works did not properly take account of 

tetrasomic inheritance, typically assuming only bivalent pairing during meiosis. To improve 

modelling of data from autotetraploid populations, Luo et al developed the theoretical basis for 

linkage analysis with genetic marker data from autotetraploid segregation population (Luo et al 

2000, 2004, 2006; Leach et al 2010). The theory takes properly account of several essential 

features of tetrasomic inheritance, under either bivalent pairing or quadrivalent paring, which 

has been used to construct markers linkage maps. This provides a useful start for QTL linkage 

analysis. However, from linkage analysis between markers to linkage analysis between markers 

and QTL, it is certainly not just a trivial extension. Besides the need to take properly account of 
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tetrasomic inheritance, this work would still face two main difficulties. First, the parental 

genotype of QTL is not observable, especially in the outbreeding tetraploid population. Second, 

linkage phase between marker alleles and QTL alleles is unknown in parents of most 

outbreeding auto tetraploid populations.  

In early studies, some authors used regression models to compare mean of the trait for different 

phenotypes at a single marker (Meyer 1998, Sills 1995). But all these method gave little insight 

into QTL individual effects and interaction. Hackett (2001) established an interval mapping 

method to test for the existence of a QTL at positions between markers. To combat the 

challenges of the incomplete parental configuration information, Cao (2005) proposed model 

selection-based interval-mapping method under an autopolyploid bivalent pairing framework. 

Later, with the development of new sequencing and genotyping technologies, researchers are 

able to obtain high density SNP genotype data for mapping population. Based on these advances, 

Hackett used a new type of genome information, namely the allele dosage, inferred from allele 

intensity ratios by using of SNP arrays, to further improved the interval mapping method using 

SNP dosage information for autotetraploids (Hackett 2013; Hackett 2014). However, these 

methods did not take tetrasomic inheritance into consideration by assuming chromosomes were 

paired at random to give two bivalents and crossing over was restricted to within each bivalent, 

which did not account properly for the essential features of tetrasomic in heritance. Thus these 

methods are not appropriate for linkage analysis and QTL analysis with real datasets.  

In this project, I proposed a likelihood-based method for mapping bi-allelic QTL in an outbred 

segregating population of an autotetraploid species. The method considers multivalent meiotic 

pairing of homologous chromosomes. I proposed an EM algorithm to estimate the model 
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parameters, including chromosomal location of QTL, QTL genetic effects, parental QTL 

genotypes and linkage phase between QTL and markers in parents. Simulation studies were 

carried out to investigate the performance of the method. 

 

2.2. Introduction to QTL mapping in diploids 

The principle of detecting and localizing QTLs is based on linkage disequilibrium between 

alleles at the QTL and alleles at the linked marker loci. If a QTL in closely linked to a marker 

locus, linkage disequilibrium will result in different mean values of the quantitative trait for 

individuals among different genotypes at marker locus. Thus the basic information required for 

mapping QTLs includes a linkage map of polymorphic marker loci that intensively distribute 

throughout the whole genome and variation for the quantitative trait within the study 

populations (Falconer 1996). With the rapid development of molecular technology, a variety of 

molecular markers can be chosen to construct the linkage map for QTL analysis, including 

simple sequence repeats (SSR), polymorphic insertions or deletions (indels) and single 

nucleotide polymorphisms (SNPs).  

 

2.2.1. Analysis of variance 

Studies of genetic mapping in diploids were pioneered early in twentieth century and succeeded 

to detect genetic linkage to the putative QTLs occasionally (Sax 1923; Rasmusson 1933; 

Thoday 1961; T anksley 1982; Edwards 1987). The simplest method of QTL mapping is 
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analysis of variance (ANOVA) at the marker loci. At each genotype marker, progeny may be 

classified into different groups according to their genotypes and compare mean value of 

phenotypes of these groups by F-statistic.  This method is quite simple and even does not require 

a linkage map of markers. QTL location is roughly denoted by the marker showing the largest 

difference between marker genotype groups (the largest F statistic). However, QTL effects 

would be usually underestimated because of the recombination between the marker and the QTL 

and the power of detection QTL would be greatly decreased when markers are sparsely mapped. 

Thus mapping of QTLs in such a way will not be systematic nor accurate because genome wide 

distributed genetic markers were not available at that time and the statistical methods used were 

limited in both power and accuracy.   

 

2.2.2. Interval mapping 

As restriction fragment length polymorphisms (RFLPs) were detected as genetic marker 

(Botstein 1980), several statistical methods had been proposed to systematically map major 

QTLs in various populations (Soller 1976; Weller 1986; Lander 1989). The interval mapping 

method proposed by Lander and Botstein was the landmark work and become the most popular 

method for QTL analysis. They improved the method from exploiting single genetic markers 

one-at-a-time to test the presence of QTL within a pair of markers interval, which significantly 

increased the power of detecting QTL and effectively decreased the number of individuals to be 

genotyped to obtain a reasonable power (Lander 1989). The basic idea to construct likelihood 

function for interval mapping lies in calculation of a putative QTL genotype probability 

distribution given genotypes at the nearest flanking markers and recombination frequencies 
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between them. Given a putative QTL at location z at a chromosome, likelihood of the model 

parameters given the marker and trait phenotype data was evaluated in term of likelihood ratio 

statistic given below: 

  



 
 

2

2

0 0

log

ˆ ˆPr , ,
log

ˆ ˆPr , ,

z z

LOD z likelihood ratio comparing the hypothesis of a QTL at position z versus

that of no QTL

observed data QTL at position z

observed data no QTL

 

 



 
 
 
 

 

Here ˆ
z  and 2ˆ

z  are the MLEs of means and variance of QTL genotypes, assuming a single 

QTL at position z. In the no QTL model, the phenotypes are assumed to be independent and 

identically normally distributed with mean 0 and variances 2

0 . The observed data includes the 

numbers of individuals and their phenotypes in each marker class. The LOD score indicates 

statistical significance for the presence of a QTL at the location z. The LOD score is calculated 

for varying locations of QTL along the chromosome and MLEs of z,  and 2 are values for 

which the LOD score is maximized. 

As the most popular method for single QTL analysis, interval mapping outperforms others 

mainly in three aspects. First, the profile of LOD score along the chromosome may provide 

information for the most likely position of QTL in the marker linkage map and allow inference 

of QTLs to be located between markers. Second, compared with ANOVA method, it largely 

enables estimation of QTL effects. Finally, interval mapping allows incomplete marker 

genotype data by changing location of the next available flanking marker (Lincoln 1992).  
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2.2.3. Multiple QTLs methods 

If multiple QTLs exist on a chromosome, detecting QTLs by the method of interval mapping 

would be seriously biased (Knott 1992; Martinez 1992). To increase reliability of QTL mapping 

for multiple linked QTLs, Zeng (1994) established a method named composite interval mapping 

(CIM), in which the test statistic is not affected by QTLs located outside a given test interval. 

This method utilized the property of partial regression analysis to improve resolution and 

accuracy of detecting QTLs. However, the key problem with CIM is the choice of suitable 

markers, which in the closest position to the true QTLs, to serve as covariates. Apparently, if we 

could find these, the QTL mapping problem had already been solved anyway. Another 

interesting method proposed is multiple interval mapping (MIM), which is an extension of 

interval mapping to multiple QTLs and consider interaction between QTLs (Kao 1999; Zeng 

1999). In the MIM model, genetic parameters are interpreted based on Cockerham’s model 

which introduced orthogonal contrast scales into genetics model, facilitating readily analysis and 

evaluation in genetic effects of individuals and epistasis between QTLs. This method uses 

multiple marker intervals to simultaneously search for QTLs, which largely improves QTL 

mapping power and precision. Besides linkage mapping studies, several other methods, 

including Bayesian approach and genetic algorithm, have been introduced into QTL mapping by 

genetic researchers (Hoeschele 1993; Satagopan 1996; Uimari 1997; Sillanpaa 1999; Carlborg 

2000). 
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2.3. A statistical framework of linkage analysis for autotetraploids 

Linkage analysis is a prerequisite for QTL mapping. Luo and his group have worked on the 

topic of linkage analysis for autotetraploids for more than ten years since 2000 (Luo 2000). The 

first step made by Luo et al was development of method for prediction of parental genotypes at a 

codominant or dominant marker locus based on phenotype score of parents and progenies at that 

locus (Luo 2000). This progress properly takes account of all aspects of the complexities and 

provides solid basis for further linkage analysis.   

Later Luo et al proposed a method for constructing linkage maps of molecular markers by 

assuming bivalent pairing of homologous chromosomes during meiosis of autotetraploids (Luo 

2001). To better model tetrasomic inheritance, a more matured statistical method was proposed 

by Luo et al who considered the essential features of autotetrasomic inheritance such as the 

occurrence of double reduction and mixed bivalent and quadrivalent pairing during meiosis (Luo 

2004). The general theory proposed a method to estimate the coefficient of double reduction and 

recombination frequency between two marker loci with tetrasomic inheritance. This work was 

able to calculate the probability distribution for the gamete modes in terms of the recombination 

frequency between the two marker loci and the coefficient of double reduction at the first 

marker locus. 

Subsequently, Luo et al elaborated the linkage analysis for autotetraploids and demonstrated its 

reliability by constructing genetic marker linkage maps from a mapping population of cultivated 

autotetraploid potato (Solanum tuberosum) with dominant and codominant markers (Luo 2006). 

However, these algorithms searched for optimal markers order and genetic distance between 

markers based on pairwise linkage analysis. The strategy to construct genetic linkage maps is to 
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calculate the recombination frequencies and LOD scores for all possible linkage phase for each 

pair of markers, and then use the MLE of recombination frequency and LOD scores for the most 

likely linkage phase to assemble the genetic markers into linkage map using the JoinMap 

software (Stam, 1993). This strategy has been demonstrated to have high level of reliability for 

populations of size 150 or more (Hackett 1998). 

To improve the reliability and efficiency of linkage map construction in autotetraploids, Leach 

et al (2010) proposed a statistical method for multi-locus linkage analysis using hidden Markov 

chain model that simultaneously utilized information from all partially informative markers 

along a chromosome. This study provided the way to calculate the conditional probability 

distribution of genotypes at any paired markers interval given the phenotypes of their linked 

genetic makers, facilitating further QTL analysis in autotetraploid species. 

 

2.4. Methods of interval mapping for autotetraploids 

2.4.1. Model notations 

The QTL mapping approach is developed for the first generation of segregation population 

derived by crossing two autotetraploid parents, P1 and P2, composed of n offspring individuals. 

The parents can have up to eight distinct alleles at each marker locus: they are represented by 

alleles 1, 2, 3, 4 from parent P1 and alleles 5, 6, 7, 8 from parent P2.  
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With a given order of m molecular markers, M1, M2, … , Mm, we denote matrix 1 1 1,..., ( )j

j mp p   

and 2 2 1,..., ( )j

j mp p  as two parental marker phenotype data for P1 and P2, and denote matrix

1,..., ( )j

i i j mo o   as marker phenotype data for the ith offspring individual. Here j (j=1, … , m) 

indicates the jth marker locus. Similarly, a marker genotype is denoted as  
11

1,...,

j

j m
g g


 , 

 2 2 1,...,

j

j m
g g




 
and  

1,...,

j

i i j m
z z


 , for the m markers for parents P1, P2 and the ith offspring 

individual, respectively. Let jr r  (j=1, 2, …, m-1) be the recombination frequency in the jth 

marker interval flanked by marker Mj and Mj+1, and j   (j=1,2,…, m) be the coefficient of 

double reduction at the jth marker locus.  Phenotypes 1

jp , 2

jp  and 
j

io  are denoted by 1×8 vectors 

(i.e. each locus may have up to eight different alleles coming from two parents) and we use 1/0 

to indicate the presence/absence of one particular allele. Genotypes
1

jg , 2

jg and 
j

iz are denoted by 

1×4 vectors and alleles appearring in the same vector column for different loci indicates that 

these alleles are linked on the same chromosome. In practice, we can only observe marker 

phenotype data directly from experiments. However, we can estimate the parameters of 

recombination frequencies and coefficient of double reduction and infer the most-likely parental 

genotypes and linkage phase between alleles at marker loci (Luo 2000, 2006). 

For a quantitative trait Y, we observe phenotypic value yi for the ith individual. Here we consider 

two alleles existing on the QTL, namely increasing phenotype allele, Q, and decreasing 

phenotype allele, q. Thus there are five different QTL genotypes as qqqq ,Qqqq , QQqq , QQQq  

and QQQQ . The genotypic values are denoted by  0,1,...,4iG i  , with i representing the 
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number of increasing phenotype alleles. The QTL genotypes of two parents P1 and P2  are 

denoted by 
1Pq and 

2Pq . 

To showing logical relationship between these model notations, all the model notations 

mentioned above are summarized in Table I-2.1. The notations highlighted with pink colour are 

the observed data in this study. The notations highlighted with yellow colours are unobservable 

in practice but can be inferred and estimated based on previous work (Luo et al 2000, 2004, 

2006; Leach et al 2010), so notations in yellow area are assumed to be known. Notations 

highlighted with both pink and yellow are input data in this model. The notations highlighted 

with green colour are not observable but will be used to identify and map QTL. Finally, the 

notations highlighted with blue colour are the parameters to be outputted in the model. 
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Table I-2.1. Notations used in interval mapping model for autotetraploids. 

 

Markers QTL                             

M1 M2 … Mj … Mm-1 Mm 
Phenotypic 

value 
Genotypes 

Genotypic 

value 

Parent P1 

Phenotype p1 
1

1p  2

1p  … 1

jp  … 
1

1

mp   
1

mp  

T1 

qqqq  
0G  

Genotype g1 
1

1g  2

1g  … 1

jg  … 
1

1

mg   
1

mg  Qqqq  
1G  

Parent P2 

Phenotype p2 
1

2p  2

2p  … 2

jp  … 
1

2

mp   
2

mp  

T2 

QQqq  
2G  

Genotype g2 
1

2g  2

2g  … 2

jg  … 
1

2

mg   
2

mg  QQQq  
3G  

The ith 

offspring 

individual 

Phenotype oi 
1

io  2

io  … 
j

io  … 
1m

io   m

io  

yi 

QQQQ  
4G  

Genotype zi 
1

iz  2

iz  … 
j

iz  … 
1m

iz   m

iz    

 
Parental genotypes 

1Pq  and 
2Pq  

Recombination  r1 r2 … rj … rm-1  

Chromosomal location 

(cM) 
QTLL  

Coefficient of double 

reduction ( ) 1  2  … j  … 1m   m  
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2.4.2. Modelling for a quantitative trait 

For simplicity but without loss of biological basis, we assume that there are two different alleles 

existing on the QTL, namely increasing phenotype allele, Q, and decreasing phenotype allele, q. 

As discussed in Chapter I-1. The phenotypic value of an autotetraploid individual i can be 

expressed as 

i QTLy G                (I-2.1) 

where
QTLG is the genotypic value of QTL genotype and   is a random variable following a 

normal distribution with mean of zero and variance of 
2 .  

QTLG is given by  

1 1 2 2 3 3 4 4 (4 ) ( 0,1,...,4)QTL j j j j j j jG G if the genotype of QTL is Q q j                

             (I-2.2) 

where  is the population mean, and i  (i = 1, …, 4 ) are accordingly monogenic, digenic, 

trigenic and quadrigenic genetic effects of the QTL, and ( 1,...,4; 0,1,...,4)ij i j    are the 

corresponding orthogonal contrast scales. 
ij variables are relevant to genotype frequencies of 

QTL as detailed in Chapter I-1. Genotype frequencies of QTL are unknown in practice, but can 

be expressed in terms of recombination frequencies between QTL and flanking markers given 

marker data and parental QTL genotypes, which I will discussed later in Section 2.4.4. 
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2.4.3. Interval mapping for autotetraploids 

Here we develop an interval mapping approach for fitting a single QTL in a full-sib family, 

considering one chromosome at a time. Since markers of autotetraploids are not fully 

informative, we need to use the information from all markers on a chromosome to calculate the 

conditional probabilities of genotypes at QTL given parental QTL/markers genotypes and 

linkage phase between them and markers phenotypes of offspring. Let 
kq  (k=0, 1, … , 4) be the 

set of possible QTL genotypes for the ith individual (i.e. QTL is assumed to be biallelic here, so 

there are five possible genotypes at QTL, as qqqq, Qqqq, QQqq, QQQq, QQQQ, for all 

individuals) and k represent the number of increasing phenotype allele. Let  1, ,jl j

i i jc C l L 

be the lth chromosome configuration of interval j flanked by markers Mj and Mj+1 for the ith 

offspring individual. Here chromosome configuration refers to flanking marker genotypes, 

flanking marker linkage phase and parental chromosomes from which marker alleles come. The 

conditional probability distribution of jl

ic can be calculated from three sources of information 

(Further discussed in Section 2.4.4): (1). Parental marker genotype data of the offspring i, 1g  and 

2g , and the parental chromosomes from which the marker alleles come; (2). j

iz  and 1j

iz  , the ith 

individual’s genotypes and phases at the flanking markers Mj and Mj+1; (3). Phenotype of 

markers on the same chromosome but excluding the flankging markers of the ith offspring 

individual. Then we can fit a QTL at location z in the jth interval and maximizing the likelihood 

for each location as a function of the QTL parameters ={ 1 , 2 , 3 }= {( , r , g1, g2 ), ( jr , 1jr ,

1

jg , 2

jg ,
1

1

jg 
,

1

2

jg 
, 

1Pq , 
2Pq ), ( ,

1 ,
2 ,

3 ,
4 , 2 )} . 1 is a set parameters assumed to be known 

(i.e. can be estimated from marker data by Luo et al. 2000, 2004, 2006), including the 
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coefficient of double reuduction at marker loci, the recombination frequencies between markers 

and parental genotypes on the markers. 2 is a set of known parameters relevant to the jth marker 

interval and parental QTL genotypes. jr indicates the recombination frequency in the jth marker 

interval and 1jr   indicates the recombination frequency between the marker Mj and the putative 

QTL in the jth interval. 1

jg , 2

jg ,
1

1

jg 
and 

1

2

jg 
 are parental marker genotypes  at two flanking 

markers of the jth interval. 3 is a set of parameters of genetic effects, with  is the population 

mean, and i  (i = 1, …, 4 ) are accordingly monogenic, digenic, trigenic and quadrigenic 

genetic effects of the QTL, and 2 indicate residual variance.  

The likelihood function of the trait phenotypic values, iy Y , and the offspring marker data,

( 1,..., )io O i n  , of the n offspring individuals is 

       

 

1 2 3 1 2 3 1 2 3

1 1

1 2 3

1

, Pr , , , Pr , , , Pr , ,

Pr , , ,

n n

i i i i i

i i

n

i i

i

L O Y o y y o o

y o

 



           

   

 


       (I-2.3) 

Here, 

   

     

4

1 2 3 1 2 3

0

4

1 2 3 1 2 3 1 2 3

Pr , , , Pr , , , , ,

, , , Pr , , , Pr , , ,

jl j
i i

jl j
i i

jl

i i i i k i

kc C

jl jl

i k k i i i

k oc C

y o y c q o

f y q q c c o





      

         

 

 
                       

               (I-2.4) 
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We can simplified Equation (I-2.4) by considering three aspects as follows: Fisrt, the trait 

phenotype values, yi , are only relevant to QTL genotypes, qk , and parameters of genetic effects 

 ,
1 ,

2 ,
3 ,

4  and residual variance 2 ;  Second, QTL genotype distribution given two 

flanking markers is independent of genotypes at the other markers on the chromosome; Third, 

jl

ic , configuration of chromosome interval flanked by markers Mj and Mj+1, is determined by the 

coefficient of double reduction, recombination frequencies, parental marker genotypes and 

offspring marker phenotypes. Thus Equation (I-2.4) can be rewritten as: 

       
4

1 2 3 3 2 1Pr , , , , Pr , Pr ,
jl j

i i

jl jl

i i i k k i i i

k oc C

y o f y q q c c o


             (I-2.5) 

Thus the likelihood function can be calculated as 

       
4

3 2 1

1

, , Pr , Pr ,
jl j

i i

n
jl jl

i k k i i i

k oi c C

L O Y f y q q c c o
 

          (I-2.6) 

The calculation of conditional probability  2Pr ,jl

k iq c  and  1Pr ,jl

i ic o  is discussed in the 

next Section 2.4.4.  The trait phenotypic value, yi,  is assumed to follow normal distribution, 

with 
kG and 

2 as the mean and variance for the kth QTL genotype.
 kG  can be expressed as a 

linear function of  genetic parameters (  ,
1 ,

2 ,
3 ,

4 ) in Equation (I-2.2). Then  

 
 

3 22

1
, exp

22

i k

i k

y G
f y q



 
   

 
                                                                         (I-2.7) 
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The maximum likelihood estimate of parameters 
kG and 

2 can be obtained by using EM 

algorithm (Dempster 1977). The E-step calculates the probability of the ith individual having the 

kth genotype on quantitative trait locus in the jth marker interval at the scanned location, 
,i qk

j  

 

   

     

   

, 1 2 3

1 2 3 1 2 3

3 2 1

4

3 2

0

Pr , , , ,

Pr , , , , Pr , , ,

, Pr , Pr ,

, Pr ,

i qk

jl j
i i

jl j
i i

j

k i i

jl jl

k i i i i

c C

jl jl

i k k i i i

jlc C
i k k i

k

q y o

q y c c o

f y q q c c o

f y q q c









   

      

  


 






                                                      (I-2.8) 

According to Bayes theorem,  1 2 3Pr , , , ,jl

k i iq y c     can be calculated as 

 
   

   

1 2 3 1 2 3

1 2 3 4

1 2 3 1 2 3

0

, , , , Pr , , ,
Pr , , , ,

, , , , Pr , , ,

jl jl

i k i k ijl

k i i
jl jl

i k i k i

k

f y q c q c
q y c

f y q c q c


     
   

     
    (I-2.9) 

Substituting by Equation (I-2.9), Equation (I-2.8) can be expressed by 

     

   
,

1 2 3 1 2 3 1 2 3

4

1 2 3 1 2 3

0

, , , , Pr , , , Pr , , ,

, , , , Pr , , ,
i qk

jl j
i i

jl jl jl

i k i k i i ij

jl jlc C
i k i k i

k

f y q c q c c o

f y q c q c






        


     



  (I-2.10) 

Since yi is only relevant to kq and 3 , kq  is only relevant to jl

ic and 2 , and jl

ic  is only relevant 

to io  and 1 , Equation (I-2.10) can be simplified as: 
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     

   
,

3 2 1

4

3 2

0

, Pr , Pr ,

, Pr ,
i qk

jl j
i i

jl jl

i k k i i ij

jlc C
i k k i

k

f y q q c c o

f y q q c






  


 



      (I-2.11) 

The M-step updates the estimates of the genetic parameters from 

, ,

1 1
i q i qk k

n n
j j

k i

i i

G y 
 

                  (I-2.12) 

 
,

^ 4
22

1 0
i qk

n
j

i k

i k

y G n 
 

                         (I-2.13) 

As the E and M steps are repeated iteratively following equation (I-2.11), (I-2.12) and (I-2.13), 

the likelihood function will increase and the parameters will converge to the MLEs, *

kG  and *2 . 

Then the likelihood ratio of locating the QTL at the site of 1jr recombination frequency away 

from its left marker locus Mj, is 

 
 
 

* *2

1 ** **2

, ,
log

, ,

k

j

L G O Y
LOD r

L G O Y





 
 
 
 

                             (I-2.14)  

where 

**

1

n

i

i

G y n


  

 
2

**2 **

1

n

i

i

y G n


   
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**G  and 
**2 are estimates of mean of all genotypes and residual variance under no QTL model. 

In the no QTL model, the phenotypes are assumed to be independent and identically normally 

distributed with mean G and variances
2 . The LOD score indicates statistical significance for 

the presence of a QTL at the location z with the jth marker interval, with recombination 

frequency of 
1jr  between the QTL and the jth marker. If every interval of each chromosome of 

the genome is scanned for the presence of QTL at all possible locations by the methods 

discussed above, a curve of LOD scores against the searched chromosomal locations will be 

obtained for every chromosome. 

 

2.4.4. Calculation of QTL genotype probabilities distribution   

In the previous section, I demonstrate the way to construct likelihood function in this model and 

establish an EM algorithm to estimate model parameters. To calculate the likelihood function 

and conditional probabilities of QTL genotypes, 
,i qk

j , two terms as mentioned in the previous 

Section 2.4.3,  2Pr ,jl

k iq c   and  1Pr ,jl

i ic o  , need to be calculated first. In this section, I will 

discuss the methods to carry out these calculations in details as follows. 
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2.4.4.1. The conditional probability of the chromosome 

configuration jl

ic  of interval j flanked by markers Mj and Mj+1 for 

the ith offspring individual, given the marker phenotypes of the ith 

offspring individual and parental marker genotypes and linkage 

phase between them,  1Pr ,jl

i ic o   

Given j

io and 1j

io  , the ith individual’s phenotypes at two flanking markers Mj and Mj+1,  we can 

work out all the possible genotype and linkage phase configuration at these two marker loci, Mj 

and Mj+1, taking origins of marker alleles into consideration (i.e. consider parental chromosomes 

from which marker alleles come). We denote j

iL as the total number of possible chromosome 

configuration of marker interval j for the offspring individual i. For clarity,  1,...,jl j

i ic l L  can 

be expressed into a gamete configuration / 1,..., ;a bjl jl j

i i a aia b l L  1,..., j

b bil L  where ajl

ia  and 

bjl

ib  indicate gametes that make up of the offspring zygote. The jl

ic expressed in terms of ajl

ia and 

bjl

ib is detailed as 1 1 1/j j j

i i ic a b , 2 1 2/j j j

i i ic a b , …, 1 /
j j

bi bijL jLj

i i ic a b , ( 1) 2 1/
j

bij L j j

i i ic a b

 , …, 

/
j j j
i ai bijL jL jL

i i ic a b . Thus  1j

bi a bl L l l    and  j j j

i ai biL L L . Accordingly, the ith individual’s 

genotypes of chromosome configuration  1,...,jl j

i ic l L  at two flanking markers of interval j , 

, 1,j l j l

i iz z   1,..., j

il L , can be expressed by gametes genotypes that make up the offspring zygote 

as  , 1, , 1,
/a a b bj l j l j l j l

ai ai bi biz z z z
    1,..., ;j

a ail L 1,..., j

b bil L , respectively.  Here , 1,a aj l j l

ai aiz z
 are 

gamete genotypes of marker configuration ajl

ia  at two flanking markers of interval j, and 
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, 1,b bj l j l

bi biz z
 are another gamete genotypes of marker configuration bjl

ib  at two flanking markers of 

interval j. Then the conditional probability  1Pr , ( 1, )
i

jl

i jc o l L   can be expressed as  

     , 1, , 1,

1 1 1Pr , Pr / , Pr / ,a b a a b bjl jl j l j l j l j ljl

i i i i i ai ai bi bi ic o a b o z z z z o
 

         (I-2.15) 

where 1 = { , r , g1, g2},  are the coefficient of double reduction at marker loci, r are 

recombination frequencies between markers, and g1, g2 are the parental genotypes at the marker 

loci.  Since gametes are randomly unioned to generate offspring, the probability of zygote can 

be calculated as products of the probabilities of two gamtes as 

         , 1, , 1,

1 1 1 1 1Pr , Pr , Pr , Pr , Pr ,a b a a b bjl jl j l j l j l j ljl

i i i i i i ai ai i bi bi ic o a o b o z z o z z o
 

      

                                (I-2.16) 

According to Bayes theorem, the conditional probability distribution of gamete genotypes at 

makers Mj and Mj+1 can be calculated as 

 
   

   

, 1, , 1,1 2

1 1, 1,

1

, 1, , 1,1 2

1 1

1

Pr Pr ,
Pr ,

Pr Pr ,

a a a a

a a

j
ai

a a a a

a

j l j l j l j lm

ai ai i i i ai aij l j l

ai ai i L
j l j l j l j lm

ai ai i i i ai ai

l

z z o o o z z
z z o

z z o o o z z

 



 



 
 

 

       (I-2.17) 

Since the genotype distributions of markers at the left side of marker Mj given marker genotype 

of  Mj is independent  of marker genotype of Mj+1 and vice versa,  Equation (I-2.17) can be 

calculated by 
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 

     

     

, 1,

1

, 1, , 1,1 2 1 2

1 1 1

, 1, , 1,1 2 1 2

1 1 1

1

Pr ,

Pr Pr , Pr ,

Pr Pr , Pr ,

a a

a a a a

j
ai

a a a a

a

j l j l

ai ai i

j l j l j l j lj j j m

ai ai i i i ai i i i ai

L
j l j l j l j lj j j m

ai ai i i i ai i i i ai

l

z z o

z z o o o z o o o z

z z o o o z o o o z



  

  





  


  

     (I-2.18) 

To calculate Equation (I-2.18), we have first to carry out the probability distribution of gamete 

genotypes at two linked loci from a bivalent or quadrivalent meiosis of autotetraploid species. 

Under bivalent pairing, the element  , 1,

1Pr /a aj l j l

ai aiz z


  in Equation (I-2.18) can be calculated 

by classifying the gametes generated from an bivalent meiosis into four modes of gamete 

formation according to the occurrence of recombination events. For simplicity, but without loss 

of generality, a general presentation for an autotetraploid genotype at two linked marker loci can 

be 1 1 2 2 3 3 4 4/ / /A B A B A B A B , indicating that Ai and Bi (i=1,2,3,4) are linked on the same 

chromosome. Let r be the recombination frequency between these two loci. During bivalent 

meiosis, four homologous chromosomes of an autotetraploid species is assumed to randomly  

form two pairs of bivalents with an equal chance of 1/3, and then recombination event occurs 

only within each paired bivalent. Table I-2.2 summarizes the probability distribution of two-

locus gamete genotypes from a bivalent meiosis of autotetraploid species. Then 

 , 1,

1Pr /a aj l j l

ai aiz z


  is worked out in the last column of Table I-2.2, depending on which 

gamete mode , 1,
/a aj l j l

ai aiz z
 belong to.  

 

 



Part I: Theory and methods for QTL analysis in autotetraploids                                                 Chapter I-2 

 

Page 95 of 267 
 

Table I-2.2. Probability distribution of the gamete genotypes at two linked loci from a 

bivalent meiosis of autotetraploid species 

Gamete mode 

(1 , , , 4i j k l  ) 
Frequency 

Recombination 

events 

Probabilities 

Modes Gametes 

i i j jA B A B  4 0  
2

1 3r   
2

1 12r  

i i j lA B A B  4 1  1 3r r   1 12r r  

i k j jA B A B  4 1  1 3r r   1 12r r  

i k j lA B A B  4 2 2 3r  2 12r  

The number in the third column denotes the number of recombinant chromosomes in the gametes. 

 

Under quadrivalent pairing, Luo et al. (2004) has classified the two-loucs gametes generated 

from a quadrivalent meiosis into eleven modes according to the occurrence of double reduction 

and recombination events during the process of gamete formation and carried out the 

corresponding probability distribution of gamete genotypes at two linked loci as detailed in 

Table I-2.3 (Table and annotation reproduced from Luo et al 2004).  , 1,

1Pr /a aj l j l

ai aiz z


 is  

worked out in terms of the coefficient of double reduction at locus Mj and the recombination 

frequency between marker Mj and Mj+1  as detailed in the last column of Table I-2.3, depending 

on which gamete mode , 1,
/a aj l j l

ai aiz z
 belong to.  
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Table I-2.3. Probability distribution of the modes of gamete formation and gamete genotypes at two linked loci from a 

quadrivalent meiosis of autotetraploid species (Table and annotation reproduced from Luo et al 2004) 

Gamete mode 

(1 , , , 4i j k l  ) 
Frequency 

Double reduction and 

recombination events 

Probabilities 

Modes Gametes 

i i i iA B A B  4 A and B (0)  
2

1 r    
2

27 1 108r   

i j i jA B A B  12 A and B (12) 2 3r  
23 108r  

i i i jA B A B  12 A (1)  2 1r r    18 1 108r r   

i j i kA B A B  12 A (2) 22 3r  26 108r  

i i j iA B A B  12 B (1)    2 1 1 3r r      6 1 1 108r r   

i j k jA B A B  12 B (2)   22 1 9r    22 1 108r  

i i j jA B A B  6 — (0)   
2

1 1 r     
2

18 1 1 108r   

i i j kA B A B  24 — (1)    4 1 1 3r r      6 1 1 108r r   

i j j iA B A B  6 — (2)   21 9r    22 1 108r  

i j j kA B A B  24 — (2)   24 1 9r    22 1 108r  

i j k lA B A B  12 — (2)   22 1 9r    22 1 108r  

The number in parentheses denotes the number of recombinant chromosomes in the gametes; —means that neither loci A nor B 

involves double reduction;  and r represent the coefficient of double reduction at locus A and the recombination frequency between 

locus A and B. 
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The next step to calculate the right,  1,1 2

1Pr ,aj lj j m

i i i aio o o z
    and the left, 

 ,1 2

1Pr ,aj lj

i i i aio o o z   conditional probabilities defined in Equation (I-2.18) is readily solved 

by Leach et al (2010). Leach et al. (2010) proposed a method using “the Markov property of 

genotype distribution at linked loci, i.e., genotype of an individual at marker Mk given its 

genotype at  Mk-1 or Mk+1 is independent of genotype at any other marker loci”.  

Similarly, the conditional probability distribution of another gamete genotypes at makers Mj and 

Mj+1 can be calculated as 

 

     

     

, 1,

1

, 1, , 1,1 2 1 2

1 1 1

, 1, , 1,1 2 1 2

1 1 1

1

Pr ,

Pr Pr , Pr ,

Pr Pr , Pr ,

b b

b b b b

j
bi

b b b b

b

j l j l

bi bi i

j l j l j l j lj j j m

bi bi i i i bi i i i bi

L
j l j l j l j lj j j m

bi bi i i i bi i i i bi

l

z z o

z z o o o z o o o z

z z o o o z o o o z



  

  





  


  

       (I-2.19) 

Finally, substituting by Equation (I-2.18) and (I-2.19), the conditional probability  1Pr ,
i

jl

ic o   

in Equation (I-2.16) can be calculated as 

     

     

     

, 1, , 1,

1 1 1

, 1, , 1,1 2 1 2

1 1 1

, 1, , 1,1 2 1 2

1 1 1

Pr , Pr , Pr ,

Pr Pr , Pr ,

Pr Pr , Pr ,

a a b b

a a a a

a a a a

j l j l j l j ljl

i i ai ai i bi bi i

j l j l j l j lj j j m

ai ai i i i ai i i i ai

j l j l j l j lj j j m

ai ai i i i ai i i i ai

l

c o z z o z z o

z z o o o z o o o z

z z o o o z o o o z

 

  

  

   

  


  

     

     

1

, 1, , 1,1 2 1 2

1 1 1

, 1, , 1,1 2 1 2

1 1 1

1

Pr Pr , Pr ,

Pr Pr , Pr ,

j
ai

a

b b b b

j
bi

b b b b

b

L

j l j l j l j lj j j m

bi bi i i i bi i i i bi

L
j l j l j l j lj j j m

bi bi i i i bi i i i bi

l

z z o o o z o o o z

z z o o o z o o o z



  

  



  

  





   (I-2.20) 

where  1 1j

bi a bl L l l L     and j j

ai biL L L  . 
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2.4.4.2. The conditional probability of the QTL genotype, given the 

chromosome configuration, jl

ic ,  2Pr ,jl

k iq c   

Given the chromosome configuration
jl

ic , we can identify possible QTL genotype and calculate 

their probability distribution for a putative QTL location along the chromosome. If a QTL, 

denoted as Q, locates in the jth interval with flanking marker Mj and Mj+1, recombination 

frequencies between Mj and Q, Mj+1 and Q, Mj and Mj+1 are denoted as rj1, rj2 and rj, respectively, 

which satisfy 1 2 1 22j j j j jr r r r r   for bivalent pairing and  1 2 1 24 3j j j j jr r r r r    for 

quadrivalent pairing under the assumption of absence of recombination interference. The 

demonstration of relationship between rj1, rj2 and rj for bivalent pairing or quadrivalent pairing 

can be verified as follows: 

Under bivalent pairing, we consider three linked loci A, B and C in autotetraploid species shown 

in Figure I-2.1. For simplicity, but without loss of generalilty, four duplicated homologous 

chromosomes are paired to create two bivalent pairs as: chromosome 1 is paired with 

chromosome 2 and chromosome 3 is paired with chromosome 4. Recombination event may 

occur only within each bivalent pair. We denote r’1, r’2 and r’12 as recombination frequencies in 

interval AB, BC and AC for the first bivalent pair, and r’’1, r’’2 and r’’12 as recombination 

frequencies in interval AB, BC and AC for the second bivalent pair. The average recombination 

frequencies in interval AB, BC and AC are represented by r1, r2 and r12. In each bivalent pair, 

behavious of crossover events is the same as that in diploids, thus recombination frequencies 

satisfy the relationship as 12 1 2 1 2' ' ' 2 ' 'r r r r r    and 12 1 2 1 2'' '' '' 2 '' ''r r r r r   . Then the average 

recombination frequency between marker A and C, r12 , can be calculated by 
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Figure I-2.1. Diagrammatic illustration of recombination events in the three-locus 

linkage model for autotetraploid species under bivalent pairing 

 

Here the eight blue lines represent duplicated homologous chromosome in autotetraploids. Under 

bivalent pairing during meiosis, chromosomes are paired to create two bivalent pairs (i.e. here 

chromosome 1 is paired with chromosome 2 and chromosome 3 is paired with chromosome 4). 
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   

   

12 12 12 1 2 1 2 1 2 1 2

1 1 2 2 1 2 1 2

1 1
' '' ' ' 2 ' ' '' '' 2 '' ''

2 2

1 1 1 1
' '' ' '' 2 ' ' '' ''

2 2 2 2

r r r r r r r r r r r

r r r r r r r r

       

 
      

 

    (I-2.21) 

Since it is assumed that recombination frequencies are the same between two bivalent pairs (i.e., 

1 1' ''r r , 2 2' ''r r and 12 12' ''r r ), we have 

 1 1 1

1
' ''

2
r r r            (I-2.22) 

 2 2 2

1
' ''

2
r r r            (I-2.23) 

   1 2 1 1 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 1
2 2 ' '' ' ''

2 2

1 1 1 1
2 ' ' ' '' '' ' '' ''

4 4 4 4

1 1 1 1
2 ' ' ' '' '' '' '' ''

4 4 4 4

1 1
2 ' ' '' ''

2 2

r r r r r r

r r r r r r r r

r r r r r r r r

r r r r

    

 
    

 

 
    

 

 
  

 

      (I-2.24) 

Substituting by Equation (I-2.22), (I-2.23) and (I-2.24), Equation (I-2.21) can calculated by 

12 1 2 1 22r r r rr                        (I-2.25) 
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Under quadrivalent pairing, we consider three linked loci A, B and C in autotetraploid species 

shown in Figure I-2.1. We denote r1, r2 and r12 as recombination frequencies in interval AB, BC 

and AC, respectively. Assuming that crossovers take place randomly between four chromosomes 

and there is no recombination interference, we can deduce the relationship between r1, r2 and r12 

as follows. In Figure I-2.1, the eight strands represent eight chromatids of autotetraploids with 

three loci A, B and C. 
iA  (

iB , 
iC ) (i=1, … , 4) indicate four different  alleles on the four 

chromosomes, respectively. To calculate the recombination frequency, r12, is equivalent to 

calculate the probability that allele 
1A on strand 1 will not be on the same chromosome of allele 

1C after recombination for simplified interpretation.  If there is no recombination between allele 

1A  and allele 
1B on strand 1, then recombination event between allele 

1A and 
1C would happen 

only if 
1B recombine to

2C , 
3C  or 

4C on the remaining six strands. In this situation, the 

probability that allele
1A will not be on the same chromosome of 

1C  on strand 1 is  1 21 r r .   If 

recombination happens between allele 
1A  and allele 

1B on strand 1, for example 
1A  on strand 1 is 

connected to 
2B on strand 3 in Figure I-2.1, to ensure recombination event occuring between 

1A

and 
1C on strand 1, two of the possible six recombination events for strand 1 in the second 

interval BC should not happen as shown as dotted red line in Figure I-2.1, or it will restore the 

connection between 
1A and 

1C on strand 1. In this situation, the probability that 
1A on strand 1 

will not link to 
1C  is  1 21 3r r . So we can calculate the probability that

1A on strand 1 will not 

link to 
1C after recombination as    1 2 1 21 3 1r r r r   .Then we have the relationship between 

r12, r1 and r2 as follows, 
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   12 1 2 1 2 1 2 1 21 3 1 4 3r r r r r r r rr                                                        (I-2.21) 

where 2r can be solved for a known 
jr  and a given 1r  as 

12 1
2

11 4 3

r r
r

r





                                                                                                                          (I-2.22) 

Figure I-2.2. Diagrammatic illustration of recombination events in the three-locus 

linkage model for autotetraploid species under quadrivalent pairing 

 

Here the eight blue lines represent duplicated homologous chromosomes in autotetraploids, with markers 

A, B and C locating along the chromosome. The red lines indicate recombination events occurring 

between non-homologous chromsomes. 
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Given the relationship of recombination frequencies along three loci, we can proceed to 

calculate conditional probability distribution of QTL genotypes, qk, given chromosome 

configuration, 
jl

ic . Since the conditional probability distribution of QTL genotypes, qk, is 

independent of other marker genotypes given the genotypes at its flanking markers, we have 

   , 1, , 1,

2 2Pr , Pr / ,a a b bj l j l j l j ljl

k i k ai ai bi biq c q z z z z
 

         (I-2.23) 

where 2 ={ jr , 1jr , 1

jg , 2

jg ,
1

1

jg 
,

1

2

jg 
, 

1Pq , 
2Pq }, jr  is the recombination frequency in marker 

interval j, 1jr  is the recombination frequency between the marker Mj and the QTL, 1

jg , 2

jg ,
1

1

jg 
,

1

2

jg 
 are parental genotypes at the marker Mj and Mj+1. 

The gamete genotypes at two flanking markers of interval j can be classified into 4 or 11 modes 

according to the occurrence of double reduction and recombination events under bivalent pairing 

or quadrivalent pairing, as detailed in Table I-2.2 or Table I-2.3. For a QTL within the jth 

interval, I classified the marker-QTL-marker configuration of each mode of gamete into 5 

modes according to the recombination events. There may be up to 4 recombinaiton events 

occuring between the marker and QTL alleles in the diploid gamete of an autotetraploid 

individual. Figure I-2.3 shows the four possible positions of recombination events and lists all 

the possible combinations of recombination events. For example, if there is two recombination 

events occurring within the marker-QTL-marker configuration, there will be six possible 

combinations of recombination events occurring, detailed as: recombination events take place at 

position ① and ②, position ① and ③, position ① and ④, position ② and ④, position ② 

and ③, or postion ③ and ④. 
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Figure I-2.3. Recombination events in marker-QTL-marker configuration in a gamete for 

autotetraploids 

 

No. of recombination 

events 

No. of 

combinations 
Possible combination of recombination events 

0 1 No recombination 

1 4 ①; ②; ③; ④ 

2 6 ①②; ①③; ①④; ②④; ②③; ③④ 

3 4 ①②③; ①②④; ①③④; ②③④ 

4 1 ①②③④ 

 

Here the two blue lines represent two chromosomes in a gamete of autotetraploids with a QTL locating 

between two flanking markers. Recombination events may occur within interval ①, ②, ③ and ④.  
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Based on the classification of two-locus gametes as detailed in Table I-2.2 and Table I-2.3, I 

further divided marker-QTL-marker configuration of gametes according to the number of 

recombination events in Table I-2.4 and Table I-2.5 under bivalent pairing or quadrivalent 

pairing. For example, we consider the first two-locus gamete mode, i i i iA B A B (with probability 

of  
2

121 r  ), in Table I-2.3 under quadrivalent pairing. Let   be the coefficient of double 

reduction at locus A, 1r , 2r and 12r  be the recombination frequencies between locus A and QTL, 

QTL and locus B, and locus A and locus B. For a QTL within the interval AB, I worked out the 

possible marker-QTL-marker configuration according to recombination events one by one: Fisrt, 

considering no recombination events occur within the interval, there will be only one possible 

marker-QTL-marker configuration, i i i i i iAQ B AQ B , with probability of    
2 2

1 21 1r r   . And 

the conditional probability of the marker-QTL-marker configuration given the flanking marker 

genotypes is calculated by             
2 2 2 2 2 2

1 2 12 1 2 121 1 1 1 1 1r r r r r r        . Given a 

particular two-locus gamete i i i iA B A B , the frequency of three-locus gametes with configuration 

of i i i i i iAQ B AQ B  is 1 and  the conditional probability of a particular three-locus gamete with 

configuration of i i i i i iAQ B AQ B  given flanking marker genotypes is      
2 2 2

1 2 121 1 1r r r   ; 

Second, considering only one recombination event occurring, there will be no such marker-

QTL-marker configurion; Third, considering two recombination events taking place, there is one 

possible marker-QTL-marker configuration (i.e., two recombination events take place at 

positions ①, ③ or ②, ④ and the outcome configurations are the same), i i i i j iAQ B AQ B , with 

probability of    1 1 2 22 1 1 3r r r r   . And the conditional probability of the marker-QTL-

marker configuration given the flanking marker genotypes is      
2

1 1 2 2 122 1 1 3 1r r r r r   . 
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Given a particular two-locus gamete i i i iA B A B , the frequency of three-locus gametes with 

configuration i i i i j iAQ B AQ B  is 6 (i.e., 
jQ  may present any of the two chromosome with any of 

the other three alleles) and the conditional probability of a particular three-locus gamete with 

configuration of i i i i j iAQ B AQ B  given flanking marker genotypes is equal to 

     
2

1 1 2 2 121 1 9 1r r r r r   ; Fourth, considering three recombination events occurring, there 

will be no such marker-QTL-marker configurion; Fifth, considering four recombination events 

occurring, there are two possible marker-QTL-marker configurations, namely i j i i j iAQ B AQ B  

and i j i i k iAQ B AQ B , with probability of 2 2

1 2 27r r and 2 2

1 22 27r r , respectively. Given a 

particular two-locus gamete i i i iA B A B , the frequencies of three-locus gametes with 

configuration of 
i j i i j iAQ B AQ B  and 

i j i i k iAQ B AQ B are 3 and 6. Accordingly,  the conditional 

probability of a particular three-locus gamete with configuration of 
i j i i j iAQ B AQ B  or 

i j i i k iAQ B AQ B  given flanking marker genotypes is  
22 2

1 2 1281 1r r r . Similary, I worked out all 

the marker-QTL-marker configurations in this way and calculated the conditional probability 

distributions of gamete genotype at QTL given flanking marker genotypes as listed in the last 

column of Table I-2.4 or Table I-2.5 under bivalent pairing or quadrivalent pairing. 

Let , 1,a aj l j l

ai a aiz q z
 or , 1,b bj l j l

bi b biz q z
  denote gamete genotypes at marker Mj, QTL and marker Mj+1. 

The conditional probabilities,  , 1,

2Pr ,a aj l j l

a ai aiq z z


 and  , 1,

2Pr ,b bj l j l

b bi biq z z


 , have been 

worked out in  the last column of Table I-2.4 or Table I-2.5 under bivalent pairing or 

quadrivalent pairing, as explained above. By assuming random union of gametes to generate 
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offspring zygote, the conditional probability distribution of QTL genotypes, qk, given flanking 

marker genotypes in Equation (I-2.23), can be calculated by 

     , 1, , 1,

2 2 2

/

Pr , Pr , Pr ,a a b b

a b k

j l j l j l j ljl

k i a ai ai b bi bi

q q q

q c q z z q z z
 



           (I-2.24) 

Here /a b kq q q  represents the QTL zygote consisted of gametes aq and bq  has the genotype 

kq . 



Part I: Theory and methods for QTL analysis in autotetraploids                                                 Chapter I-2 

 

Page 108 of 267 
 

Table I-2.4. Conditional probability distribution of marker-QTL-marker gamete modes and gametic genotypes given two flanking 

genotypes from a bivalent meiosis of autotetraploid species 

Gamete modes of 

flanking markers 

(1 , , , 4i j k l  ) 

Recombination 

events 

Marker-QTL-

marker 

configuration 

Probability Frequency 
Conditional probability of 

marker-QTL-marker gametes  

i i

j j

A B

A B
 

0 
i i i

j j j

AQ B

A Q B
    

2 2

1 21 1 3r r   1      
2 2 2

1 2 121 1 1r r r    

1 - - - - 

2 

i k i

j j j

AQ B

A Q B
    1 1 2 21 1 3r r r r   1      

2

1 1 2 2 121 1 1r r r r r    

i i i

j l j

AQ B

A Q B
    1 1 2 21 1 3r r r r   1      

2

1 1 2 2 121 1 1r r r r r    

3 - - - - 

4 
i k i

j l j

AQ B

A Q B
 2 2

1 2 3r r  1  
22 2

1 2 121r r r  

Total    
2

121 3r   
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i i

j l

A B

A B
 

0 - - - - 

1 

i i i

j l l

AQ B

A Q B
   

2

1 1 21 1 3r r r   1     
2

1 1 2 12 121 1 1r r r r r    

i i i

j j l

AQ B

A Q B
    

2

1 2 21 1 3r r r   1      
2

1 2 2 12 121 1 1r r r r r    

2 - - - - 

3 

i k i

j j l

AQ B

A Q B
   2

1 1 21 3r r r  1    2

1 1 2 12 121 1r r r r r   

i k i

j l l

AQ B

A Q B
  2

1 2 21 3r r r  1    2

1 2 2 12 121 1r r r r r   

4 - - - - 

Total    12 121 3r r   

 

i k

j j

A B

A B
 

0 - - - - 

1 
i k k

j j j

AQ B

A Q B
   

2

1 1 21 1 3r r r   1     
2

1 1 2 12 121 1 1r r r r r    
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i i k

j j j

AQ B

A Q B
    

2

1 2 21 1 3r r r   1      
2

1 2 2 12 121 1 1r r r r r    

2 - - - - 

3 

i k k

j l j

AQ B

A Q B
  2

1 2 21 3r r r  1    2

1 2 2 12 121 1r r r r r   

i i k

j l j

AQ B

A Q B
   2

1 1 21 3r r r  1    2

1 1 2 12 121 1r r r r r   

4 - - - - 

Total    12 121 3r r   

 

i k

j l

A B

A B
 

0 - - - - 

1 - - - - 

2 

i k k

j l l

AQ B

A Q B
  

22

1 21 3r r  1  
22 2

1 2 121r r r  

i k k

j j l

AQ B

A Q B
    1 1 2 21 1 3r r r r   1     2

1 1 2 2 121 1r r r r r   
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i i k

j l l

AQ B

A Q B
    1 1 2 21 1 3r r r r   1     2

1 1 2 2 121 1r r r r r   

i i k

j j l

AQ B

A Q B
  

2 2

1 21 3r r  1  
2 2 2

1 2 121 r r r  

3 - - - - 

4 - - - - 

Total   
2

12 3r   
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Table I-2.5. Conditional probability distribution of marker-QTL-marker gamete modes and gametic genotypes given two flanking 

marker genotypes from a quadrivalent meiosis of autotetraploid species 

Gamete 

modes of 

flanking 

markers 

1 , , , 4i j k l 

 

Recombination 

events 

Possible marker-QTL-

marker configuration 
Probability Frequency 

Conditional probability of marker-QTL-marker gametes 

Modes Gametes 

i i

i i

A B

A B
 

0 
i i i

i i i

AQ B

AQ B
    

2 2

1 21 1r r    1 
   

 

2 2

1 2

2

12

1 1

1

r r

r

 


 

   

 

2 2

1 2

2

12

1 1

1

r r

r

 


 

1 - - - - - 

2 
i i i

i j i

AQ B

AQ B
    1 1 2 2

2
1 1

3
r r r r    6 

   

 
1 1 2 2

2

12

2 1 1

3 1

r r r r

r

 


 

   

 
1 1 2 2

2

12

1 1

9 1

r r r r

r

 


 

3 - - - - - 

4 
i j i

i j i

AQ B

AQ B
,

i j i

i k i

AQ B

AQ B
 2 2

1 2 9r r  3, 6  
22 2

1 2 129 1r r r   
22 2

1 2 1281 1r r r  

Total   
2

121 r      

 

i j

i j

A B

A B
 

0 - - - - - 
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1 - - - - - 

2 

i j j

i j j

AQ B

AQ B
  

22

1 21 3r r   1  
22 2

1 2 121r r r   
22 2

1 2 121r r r  

i i j

i j j

AQ B

AQ B
    1 1 2 2

2
1 1

3
r r r r    2 

   1 1 2 2

2

12

2 1 1r r r r

r

 
 

   1 1 2 2

2

12

1 1r r r r

r

 
 

i i j

i i j

AQ B

AQ B
  

2 2

1 21 3r r   1  
2 2 2

1 2 121 r r r   
2 2 2

1 2 121 r r r  

3 

i i j

i k j

AQ B

AQ B
   2

1 1 24 1 9r r r   4   2 2

1 1 2 124 1 3r r r r    2 2

1 1 2 121 3r r r r  

i j j

i k j

AQ B

AQ B
  2

1 2 24 1 9r r r   4  2 2

1 2 2 124 1 3r r r r   2 2

1 2 2 121 3r r r r  

 4 
i k j

i k j

AQ B

AQ B
,

i k j

i l j

AQ B

AQ B
 2 2

1 24 27r r  2, 2 
2 2 2

1 2 124 9r r r  2 2 2

1 2 129r r r  

Total  
2

12 3r     

 

i i

i j

A B

A B
 

0 - - - - - 
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1 

i i i

i j j

AQ B

AQ B
   

2

1 1 22 1 1r r r    1 
  

 

2

1 1 2

12 12

1 1

1

r r r

r r

 


 

  

 

2

1 1 2

12 12

1 1

1

r r r

r r

 


 

i i i

i i j

AQ B

AQ B
    

2

1 2 22 1 1r r r    1 
   

 

2

1 2 2

12 12

1 1

1

r r r

r r

 


 

   

 

2

1 2 2

12 12

1 1

1

r r r

r r

 


 

2 
i i i

i k j

AQ B

AQ B
    1 1 2 2

4
1 1

3
r r r r    2 

   

 
1 1 2 2

12 12

2 1 1

3 1

r r r r

r r

 


 

   

 
1 1 2 2

12 12

1 1

3 1

r r r r

r r

 


 

3 

i j i

i j j

AQ B

AQ B
, i k i

i j j

AQ B

AQ B
  2

1 2 22 1 3r r r   1, 2 
 

 

2

1 2 2

12 12

1

3 1

r r r

r r




 

 

 

2

1 2 2

12 12

1

9 1

r r r

r r




 

i j i

i i j

AQ B

AQ B
, i k i

i i j

AQ B

AQ B
   2

1 1 22 1 3r r r   1, 2 
 

 

2

1 1 2

12 12

1

3 1

r r r

r r




 

 

 

2

1 1 2

12 12

1

9 1

r r r

r r




 

4 

i k i

i k j

AQ B

AQ B
,

i j i

i k j

AQ B

AQ B
, 

i l i

i k j

AQ B

AQ B
 

2 2

1 24 9r r  2, 2, 2  2 2

1 2 12 122 9 1r r r r   2 2

1 2 12 1227 1r r r r  

Total   12 122 1r r      

 

 0 - - - - - 
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i j

i k

A B

A B
 1 - - - - - 

2 

i j j

i k k

AQ B

AQ B
  

22

1 22 1 3r r   1  
22 2

1 2 121r r r   
22 2

1 2 121r r r  

i j j

i i k

AQ B

AQ B
,

i i j

i k k

AQ B

AQ B
    1 1 2 2

4
1 1

3
r r r r    1, 1 

    2

1 1 2 2 122 1 1r r r r r 

 
    2

1 1 2 2 121 1r r r r r   

i i j

i i k

AQ B

AQ B
  

2 2

1 22 1 3r r   1  
2 2 2

1 2 121 r r r   
2 2 2

1 2 121 r r r  

3 

i k j

i k k

AQ B

AQ B
,

i l j

i k k

AQ B

AQ B
, 

i j j

i j k

AQ B

AQ B
,

i j j

i l k

AQ B

AQ B
 

 2

1 2 28 1 9r r r   
1, 1, 

1, 1 
 2 2

1 2 2 124 1 3r r r r   2 2

1 2 2 121 3r r r r  

i k j

i i k

AQ B

AQ B
,

i l j

i i k

AQ B

AQ B
 

i i j

i j k

AQ B

AQ B
,

i i j

i l k

AQ B

AQ B
 

  2

1 1 28 1 9r r r   
1, 1, 

1, 1 
  2 2

1 1 2 124 1 3r r r r    2 2

1 1 2 121 3r r r r  

4 
i k j

i j k

AQ B

AQ B
,

i k j

i l k

AQ B

AQ B
, 2 2

1 28 27r r  
1, 1, 

1, 1 

2 2 2

1 2 124 9r r r  2 2 2

1 2 129r r r  
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i l j

i j k

AQ B

AQ B
,

i l j

i l k

AQ B

AQ B
 

Total   
2

122 3r     

 

i i

j i

A B

A B
 

0 - - - - - 

1 

i i i

j i i

AQ B

A Q B
     

2

1 1 2

2
1 1 1

3
r r r    1 

  

 

2

1 1 2

12 12

1 1

1

r r r

r r

 


 

  

 

2

1 1 2

12 12

1 1

1

r r r

r r

 


 

i i i

j j i

AQ B

A Q B
     

2

1 2 2

2
1 1 1

3
r r r    1 

   

 

2

1 2 2

12 12

1 1

1

r r r

r r

 


 

   

 

2

1 2 2

12 12

1 1

1

r r r

r r

 


 

2 
i i i

j k i

AQ B

A Q B
      1 1 2 2

4
1 1 1

9
r r r r    2 

   

 
1 1 2 2

12 12

2 1 1

3 1

r r r r

r r

 


 

   

 
1 1 2 2

12 12

1 1

3 1

r r r r

r r

 


 

3 

i j i

j i i

AQ B

A Q B
, i k i

j i i

AQ B

A Q B
    2

1 2 22 1 1 9r r r   1, 2 
 

 

2

1 2 2

12 12

1

3 1

r r r

r r




 

 

 

2

1 2 2

12 12

1

9 1

r r r

r r




 

i j i

j j i

AQ B

A Q B
, i k i

j j i

AQ B

A Q B
     2

1 1 22 1 1 9r r r   1,2 
 

 

2

1 1 2

12 12

1

3 1

r r r

r r




 

 

 

2

1 1 2

12 12

1

9 1

r r r

r r




 

4 
i j i

j k i

AQ B

A Q B
, i k i

j k i

AQ B

A Q B
,   2 2

1 24 1 27r r  2, 2, 2  2 2

1 2 12 122 9 1r r r r   2 2

1 2 12 1227 1r r r r  
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i l i

j k i

AQ B

A Q B
 

Total     12 122 1 1 3r r      

 

i j

k j

A B

A B
 

0 - - - - - 

1 - - - - - 

2 

i j j

k j j

AQ B

A Q B
    

22

1 22 1 1 9r r   1  
22 2

1 2 121r r r   
22 2

1 2 121r r r  

i j j

k k j

AQ B

A Q B
,

i i j

k j j

AQ B

A Q B
      1 1 2 2

4
1 1 1

9
r r r r    1, 1 

   1 1 2 2

2

12

2 1 1r r r r

r

 
 

   1 1 2 2

2

12

1 1r r r r

r

 
 

i i j

k k j

AQ B

A Q B
   

2 2

1 22 1 1 9r r   1  
2 2 2

1 2 121 r r r   
2 2 2

1 2 121 r r r  

3 

i k j

k j j

AQ B

A Q B
,

i l j

k j j

AQ B

A Q B
, 

i j j

k i j

AQ B

A Q B
,

i j j

k l j

AQ B

A Q B
 

   2

1 2 28 1 1 27r r r   
1, 1, 

1, 1 
 2 2

1 2 2 124 1 3r r r r   2 2

1 2 2 121 3r r r r  

i k j

k k j

AQ B

A Q B
,     2

1 1 28 1 1 27r r r   
1, 1, 

1, 1 
  2 2

1 1 2 124 1 3r r r r    2 2

1 1 2 121 3r r r r  
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i l j

k k j

AQ B

A Q B
, 

i i j

k i j

AQ B

A Q B
,

i i j

k l j

AQ B

A Q B
 

4 

i k j

k l j

AQ B

A Q B
,

i l j

k i j

AQ B

A Q B
, 

i k j

k i j

AQ B

A Q B
,

i l j

k l j

AQ B

A Q B
 

  2 2

1 28 1 81r r  
1, 1, 

1, 1 

2 2 2

1 2 124 9r r r  2 2 2

1 2 129r r r  

Total    2

122 1 9r     

 

i i

j j

A B

A B
 

0 
i i i

j j j

AQ B

A Q B
    

22

1 21 1r r   1    
2 22

1 2 121 1r r r      
2 22

1 2 121 1r r r   

1 - - - - - 

2 

i j i

j j j

AQ B

A Q B
, i k i

j j j

AQ B

A Q B
, 

i i i

j i j

AQ B

A Q B
, i i i

j k j

AQ B

A Q B
 

     1 1 2 2

2
1 1 1

3
r r r r    

1, 2, 

1, 2 

   

 
1 1 2 2

2

12

2 1 1

3 1

r r r r

r

 


 

   

 
1 1 2 2

2

12

1 1

9 1

r r r r

r

 


 

3 - - - - - 
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4 

i j i

j i j

AQ B

A Q B
,

i j i

j k j

AQ B

A Q B
, 

i k i

j i j

AQ B

A Q B
, i k i

j k j

AQ B

A Q B
, 

i k i

j l j

AQ B

A Q B
 

  2 2

1 21 9r r  
1, 2, 2, 

2, 2 
 

22 2

1 2 129 1r r r   
22 2

1 2 1281 1r r r  

Total    
2

121 1 r      

 

i i

j k

A B

A B
 

0 - - - - - 

1 

i i i

j k k

AQ B

A Q B
     

2

1 1 2

4
1 1 1

3
r r r    1 

  

 

2

1 1 2

12 12

1 1

1

r r r

r r

 


 

  

 

2

1 1 2

12 12

1 1

1

r r r

r r

 


 

i i i

j j k

AQ B

A Q B
     

2

1 2 2

4
1 1 1

3
r r r    1 

   

 

2

1 2 2

12 12

1 1

1

r r r

r r

 


 

   

 

2

1 2 2

12 12

1 1

1

r r r

r r

 


 

2 
i i i

j i k

AQ B

A Q B
, i i i

j l k

AQ B

A Q B
      1 1 2 2

8
1 1 1

9
r r r r    1, 1 

   

 
1 1 2 2

12 12

2 1 1

3 1

r r r r

r r

 


 

   

 
1 1 2 2

12 12

1 1

3 1

r r r r

r r

 


 

3 i k i

j k k

AQ B

A Q B
,    2

1 2 24 1 1 9r r r   1, 1, 1 
 

 

2

1 2 2

12 12

1

3 1

r r r

r r




 

 

 

2

1 2 2

12 12

1

9 1

r r r

r r




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i j i

j k k

AQ B

A Q B
, i l i

j k k

AQ B

A Q B
 

i j i

j j k

AQ B

A Q B
, i k i

j j k

AQ B

A Q B
, 

i l i

j j k

AQ B

A Q B
 

    2

1 1 24 1 1 9r r r   1, 1, 1 
 

 

2

1 1 2

12 12

1

3 1

r r r

r r




 

 

 

2

1 1 2

12 12

1

9 1

r r r

r r




 

4 

i j i

j i k

AQ B

A Q B
, i k i

j i k

AQ B

A Q B
, 

i l i

j i k

AQ B

A Q B
,

i j i

j l k

AQ B

A Q B
, 

i k i

j l k

AQ B

A Q B
, i l i

j l k

AQ B

A Q B
 

  2 2

1 28 1 27r r  
1, 1, 1, 

1, 1, 1 
 2 2

1 2 12 122 9 1r r r r   2 2

1 2 12 1227 1r r r r  

Total     12 124 1 1 3r r      

 

i j

j i

A B

A B
 

0 - - - - - 

1 - - - - - 

2 
i j j

j i i

AQ B

A Q B
    

22

1 21 1 9r r   1  
22 2

1 2 121r r r   
22 2

1 2 121r r r  
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i j j

j j i

AQ B

A Q B
,

i i j

j i i

AQ B

A Q B
      1 1 2 2

2
1 1 1

9
r r r r    1, 1 

   1 1 2 2

2

12

2 1 1r r r r

r

 
 

   1 1 2 2

2

12

1 1r r r r

r

 
 

i i j

j j i

AQ B

A Q B
   

2 2

1 21 1 9r r   1  
2 2 2

1 2 121 r r r   
2 2 2

1 2 121 r r r  

3 

i k j

j i i

AQ B

A Q B
,

i j j

j k i

AQ B

A Q B
    2

1 2 24 1 1 27r r r   2, 2  2 2

1 2 2 124 1 3r r r r   2 2

1 2 2 121 3r r r r  

i k j

j j i

AQ B

A Q B
,

i i j

j k i

AQ B

A Q B
     2

1 1 24 1 1 27r r r   2, 2   2 2

1 1 2 124 1 3r r r r    2 2

1 1 2 121 3r r r r  

4 
i k j

j k i

AQ B

A Q B
,

i k j

j l i

AQ B

A Q B
   2 2

1 24 1 81r r  2, 2 
2 2 2

1 2 124 9r r r  2 2 2

1 2 129r r r  

Total    2

121 9r     

 

i j

j k

A B

A B
 

0 - - - - - 

1 - - - - - 

2 
i j j

j k k

AQ B

A Q B
    

22

1 24 1 1 9r r   1  
22 2

1 2 121r r r   
22 2

1 2 121r r r  
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i j j

j j k

AQ B

A Q B
, 

i i j

j k k

AQ B

A Q B
 

     1 1 2 2

8
1 1 1

9
r r r r    1, 1 

   1 1 2 2

2

12

2 1 1r r r r

r

 
 

   1 1 2 2

2

12

1 1r r r r

r

 
 

i i j

j j k

AQ B

A Q B
   

2 2

1 24 1 1 9r r   1  
2 2 2

1 2 121 r r r   
2 2 2

1 2 121 r r r  

3 

i k j

j k k

AQ B

A Q B
,

i l j

j k k

AQ B

A Q B
, 

i j j

j i k

AQ B

A Q B
,

i j j

j l k

AQ B

A Q B
 

   2

1 2 216 1 1 27r r r   
1, 1, 

1, 1 
 2 2

1 2 2 124 1 3r r r r   2 2

1 2 2 121 3r r r r  

i k j

j j k

AQ B

A Q B
,

i l j

j j k

AQ B

A Q B
, 

i i j

j i k

AQ B

A Q B
,

i i j

j l k

AQ B

A Q B
 

    2

1 1 216 1 1 27r r r   
1, 1, 

1, 1 
  2 2

1 1 2 124 1 3r r r r    2 2

1 1 2 121 3r r r r  

4 
i k j

j i k

AQ B

A Q B
,

i k j

j l k

AQ B

A Q B
,   2 2

1 216 1 81r r  
1, 1, 1, 

1 

2 2 2

1 2 124 9r r r  2 2 2

1 2 129r r r  
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i l j

j i k

AQ B

A Q B
,

i l j

j l k

AQ B

A Q B
 

Total     2

124 1 9r     

 

i j

k l

A B

A B
 

0 - - - - - 

1 - - - - - 

2 

i j j

k l l

AQ B

A Q B
    

22

1 22 1 1 9r r   1  
22 2
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2.4.5. Method with unknown parental genotypes on QTL 

In practice, it is usually that the parental genotypes of QTL and the linkage phase between a 

putative QTL and markers can’t be observed directly. For simplicity, but without loss of 

generality, QTL genotype of an autotetraploid individual can be presented by 1 2 3 4Q Q Q Q . In the 

biallelic model here, QTL on each chromosmome may carry allele Q or q. Since there are four 

homologous chromosomes in an autotetraploid individual, there are up to 24 QTL genotypes for 

each autotetraploid parent, taking linkage phases into consideration (i.e., ( 1,2,3,4)iQ i  may be 

Q or q). By crosses between two autotetraploid parents, P1 and P2, there will be up to 256 (24×24) 

possible combinations of parental genotypes at QTL. Since QTL genotypes are expected to 

segregated in the first generation of population derived by crossing two autotetraploid parents, it 

is impossible to be homozygotes at QTL for both parents.  Thus four crosses between two 

parents should be excluded, detailed as: QQQQ QQQQ , QQQQ qqqq , qqqq QQQQ and 

qqqq qqqq . Among the remaining 252 possible parental QTL genotype combinations, I use 

computer-intensive search method to find the most likely parental genotypes with the maximum 

LOD score at location z on the chromosome, by repeating the interval mapping method 

developed in Section 2.4.3. The maxium LOD score with predicted parental genotypes will be 

chosen as the final LOD score at location z.  
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2.4.6. Estimation of parameters of genetic effects 

In Section 2.4.3 I have discussed the method to obtain the MLEs of genotypic values of QTL. In 

this section, I will discuss how to estimate genetic effects to give some insight into QTL. For the 

one locus biallic model, the genotypic value can be expressed as  

1 1 2 2 3 3 4 4 ( 0,1,...,4)j j j j jG j                  (I-2.25) 

where  is the population mean, and i  (i = 1, …, 4 ) are accordingly monogenic, digenic, 

trigenic and quadrigenic genetic effects of the QTL. 
ij are the correspding orthogonal scales, 

which are determined by the theoretical probability distribution of QTL genotypes given 

parental genotypes.   

Let  0,1,...,4kf k  denote frequency of QTL with genotype 4k kQ q  . A general presentation for 

an autotetraploid genotype at QTL can be 1 2 3 4Q Q Q Q ,  with allele iQ   1,...,4i  can be Q or q. 

Under bivalent pairing, there are six different gametes produced by the autotetraploid parent and 

each gamete  1 , 4;i jQQ i j i j   is generated  with equal probability of 1/6. By random union 

between gametes, there are 36 different zygote with equal probability of 1/36. Then kf can be 

calculated by sorting these zygotes according to their genotypes and summing over the 

probabilities of zygote with the same genotype. 
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Under quadrivalent pairing, there are ten different gametes produced by the autotetraploid parent, 

including four double reduction gametes,  1 4i iQQ i  , and six non-double reduction gametes, 

 1 , 4;i jQQ i j i j   . The coefficient of double reduction rate at QTL, 
QTL , can be expressed 

in term of a function of the coefficient of double reduction at the flanking marker which is 

nearer to centromere,  , and recombination frequency between QTL and the marker as (Luo et 

al. 2004): 

   
2

3 4 2 3 2 9QTL r r r     
 

        (I-2.26) 

Thus the probability of each double reducntion gamete equals to 4QTL and the probability of 

each non-double reduction gamete equals to  1 6QTL . Assuming random union of these 

gametes, the 100 zygotes can be sorted into three different categories according to the number of 

double reduction gametes involved and their probabilities are given by 

 

 

2

2

1 36

1 24

16

QTL

QTL QTL

QTL

if no double reduction gametes involved

if no double reduction gametes involved

if no double reduction gametes involved



 



 








 

Then kf can be calculated by sorting these zygotes according to their genotypes and summing 

over the probabilities of zygote with the same genotype. 

Then orthogonal scales 
ij  can be worked out follow the method developed in Section 1.3.1 of 

Chapter I-1. The genetic effects can be then calculated by 
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   

   

   


    
    
    
    
    
    
        

       (I-2.27) 

where  * 0,1,...,4kG k   are MLEs of genotypic values of QTL, * is MLE of the population 

mean, and *

i  (i = 1, …, 4 ) are accordingly MLEs of monogenic, digenic, trigenic and 

quadrigenic genetic effects of the QTL. 

 

2.5. Simulation study 

A simulation study was implemented to investigate this approach of QTL mapping for 

autotetraploid species. The present simulation study considered a linkage group of 14 marker 

loci and a QTL located on a simulated chromosome. The simulation programs produced marker 

phenotypes and trait value from a full-sib family of individuals generated by crossing two 

genetically unrelated parental autotetraploids under tetrasomic inheritance with bivalent pairing 

and quadrivalent pairing, respectively. The simulated parental markers and QTL are listed in 

Table I-2.6. 
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Table I-2.6. Simulation parameters of the coefficient of double reduction at and 

recombination frequencies between 15 linked marker loci and QTL and parental 

genotypes used to simulate the mapping populations 

Locus α quadrivalent r 

dbivalent  

(cM) 

dquadrivalent 

(cM) 

Parental genotype 

P1 P2 

L1 0.050 0.00 0 0 M3M1M2M2 M4M3M5M0 

L2 0.100 0.10 11.16 10.73 M3M1M2M1 M2M3M3M1 

L3 0.137 0.10 22.31 21.47 M2M3M1M5 M1M3M1M2 

L4(QTL) 0.152 0.05 27.58 26.64 q q Q Q    q q Q Q    

L5 0.164 0.05 32.85 31.81 M0M2M3M1 M1M1M2M4 

L6 0.175 0.05 38.12 36.99 M2M1M1M0 M3M4M3M1 

L7 0.185 0.05 43.39 42.16 M4M0M1M5 M1M2M1M2 

L8 0.201 0.10 54.54 52.90 M2M0M1M1 M4M1M2M2 

L9 0.207 0.05 59.81 58.07 M2M2M4M2 M1M2M1M4 

L10 0.218 0.10 70.97 68.80 M4M4M2M5 M2M2M1M4 

L11 0.222 0.05 76.24 73.98 M1M5M4M5 M4M1M3M1 

L12 0.229 0.10 87.39 84.71 M3M4M5M5 M5M2M3M3 

L13 0.234 0.10 98.55 95.44 M2M1M3M3 M5M4M1M1 

L14 0.236 0.05 103.82 100.62 M4M1M4M2 M2M3M3M1 

L15 0.240 0.10 114.98 111.35 M3M5M5M1 M1M1M2M4 

 

Simulation parameters of the coefficient of double reduction (α for quadrivalent pairing) at and 

recombination frequencies (r) between 15 linked marker loci and QTL and parental genotypes at markers 

and QTL. Mi(i=1,…,5) represent five distinct alleles from two parent and M0 represent the null allele. 

Alleles listed in the same column are on the same chromosome. 
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For the QTL, the genetic parameters of genetic mean (  ), monogenic ( 1 ), digenic ( 2 ), 

trigenic ( 3 ) and quadrigenic effects ( 4 ) are assumed to be 500, 100, 60, 30 and 10, 

respectively. The mapping population size is 300 (mapping population size usually generated in 

practice) and heritability is 0.1 (with a low heritability to test the reliability of this method). 

Under the model parameters setting in Table I-2.6, the genetics model developed in Chapter I-1 

can be carried out as fallows. 

In the full-sib family created from crossing two parental lines with genotypes QQqq and QQqq. 

For bivalent pairing, frequencies of the offspring genotypes qqqq, Qqqq, QQqq, QQQq and 

QQQQ are 1/36, 2/9, 1/2, 2/9, and 1/36, respectively. For quadrivalent pairing, frequencies of 

the offspring genotypes can be expressed in term of , the coefficient of double reduction at the 

QTL, as 2

0 (1 2 ) / 36f   , 1 2(1 )(1 2 ) / 9f     , 2 [3 4 (1 )]/ 6f     , 

3 2(1 )(1 2 ) / 9f      and 2

4 (1 2 ) / 36f   .  With these, the genotypic values Gbivalent = (G4 G3 

G2 G1 G0)
T and Gquadrivalent = (G4 G3 G2 G1 G0)

T can be presented in a matrix form of 

1

2

3

4

1 2 5 3 2 3 1 8

1 1 1 6 1 6 1 16

1 0 1 3 0 1 24

1 1 1 6 1 6 1 16

1 2 5 3 2 3 1 8

bivalent b bG S E











  
  

 
  
    
  

    
      

                                                          (I-2.28) 

 

and 
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         

         

       

         

         

2

2

1

2

2

2 3

42

1 2 5 2 3 2 1 3 1 4 4 3 12 2

1 1 1 4 6 1 2 6 1 2 4 4 3 24 2

1 0 1 2 3 0 1 2 1 12 2

1 1 1 4 6 1 2 6 1 2 4 4 3 24 2

1 2 5 2 3 2 1 3 1 4 4 3 12 2

quadrivalent q qG S E

     


      

   

     


     

      
   
         
  
        
  
         
           
 








                                                    

                                                                       (I-2.29) 

The genetic values can be calculated from 1
b b bivalentE S G  and  1

q q bivalentE S G where  

 1

1 36 2 9 1 2 2 9 1 36

1 12 1 3 0 1 3 1 12

5 1 3 1 5

24 6 4 6 24

1 2 1 0 1 1 2

1 4 6 4 1

b
S



 



 

 

 
 
 
 
 

  
 
 
 
 
 

                    (I-2.30) 

and  

           

       

  

 

  

 

 
 

  

 

  

 

2 22

2

1

1 2 36 2 1 2 1 9 4 4 3 6 2 1 2 1 9 1 2 36

1 2 12 1 3 0 1 3 1 2 12

4 4 31 2 5 2 1 4 1 1 4 1 1 2 5 2

12 2 3 2 2 2 3 2 12 2

1 2 1 0 1 1 2

1 4 6 4 1

q
S

       

   

        

    



       

    

        


    

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

(I-2.31) 

for bivalent pairing and quadrivalent pairing, respectively. 
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Then the trait values for offspring individuals were carried out as genotypic values plus an 

environmental effect sampled from a normal distribution of  20,N  . The value of the residual 

variance 2  was calculated by 2 2 2 2

G Gh    , where 2h  is the desired heritability and 2

G  is 

the genetic variance. Based on the simulated parameters setting in Table I-2.6, we obtained a 

profile of LOD scores along the chromosome for two pairing pattern. Figure I-2.4 shows such a 

profile with population size of 300 and a heritability of 10%. The higher LOD score indicates 

the more likely QTL existing on the position along the scanned chromosome. The solid lines and 

dotted lines represent the profile of LOD scores estimated under bivalent and quadrivalent 

pairing, respectively. The blue lines indicate that statistical estimation is carried out without 

know of parental QTL genotypes and the red lines are obtained by re-estimating with the most 

likely parental QTL genotypes. We took the maximum of LOD scores as the most likely 

location of the QTL. When LOD scores were estimated with all possible parental QTL 

genotypes, we can see from Figure I-2.4 that there are other peaks (except the peak indicating 

the existing of true QTL) along the curves of LOD scores (indicated by red lines). However, it 

can be seen that the existence of the ghost QTL could be removed after the profile of LOD 

scores were re-estimated with the most likely parental QTL genotypes (indicated by bule lines). 

To detect a QTL, we need first to set a threshold for LOD scores, above which we declare the 

presence of a QTL. Simulations were run with a similar pattern to simulation setting in Table I-

2.6, but the phenotypic values of the trait were randomly shuffled among the offspring 

individuals. In this way, we can see how the LOD scores distribute under the null hypothesis of 

no QTL existing on the chromosome. We would declare that a QTL exist on the scanned 

location significantly (e.g. significance level is 0.05) when the corresponding observed LOD
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Figure I-2.4. Profile of LOD scores along the chromosome. 

  

The red curve is the profile of LOD scores estimated with unknown parental QTL genotypes and the blue 

curve is the profile of LOD scores re-estimated with the most likely parental QTL genotypes. The solid 

lines represent quadrivalent pairing and the dotted lines represent bivalent pairing. The purple straight 

line indicates the position of QTL. Population size is 300 and heritability is 0.1. 

 

scores exceeds the 95% point of the LOD score distribution under the null hypothesis.  Under 

the simulation model in Table I-2.6, the threshold for LOD scores to declare a QTL is 3.79 (SE 

0.15) and 3.50 (SE 0.16) under bivalent pairing and quadrivalent pairing based on 100 replicates. 
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Table I-2.7 summarizes the estimates of genotypic values and residual vriance under both 

bivalent pairing and quadrivalent pairing with the parameters setting in Table I-2.6. For each 

study, the mean and standard errors and presented over 100 replicates. For a heritability, all the 

data set with or without known of parental QTL genotypes had LOD scores greater than the 

threshold of  3.79 under bivalent pairing and 3.50 under quadrivalent pairing. Thus the power of 

QTL detection was 1.00 in current simulation studies under both bivalent pairing model and 

quadrivalent pairing model. The row labelled Qgenotype is the proportion of correct prediction of 

the parental QTL genotypes. We can see that the parental QTL genotypes and and linkage 

phases have been correctly predicted in nearly half of these simulations under bivalent and 

quadrivalent pairing. The proportion was a little bit higher in the bivalent pairing model than 

that in quadrivalent pairing model. To investigate the mapping accuracy, I calculated the mean 

distance between the estimated most likely QTL location and the true QTL location in the row 

labled “Accuracy (CM)” in Table I-2.7. From the result, we can see both bivalent and 

quadrivalent methods predicted QTL location adequately with or without knowing parental QTL 

genotypes. Comparing with analysis with known parental QTL genotypes, the mapping 

accuracy and parameters estimation that without known of parental QTL genotypes are 

comparatively poorer but still in an acceptable range (i.e. average estimated location is within 5 

cM away from the true QTL location). In addition, the proportions of the simulations indicating 

a QTL within 10 cM away from the true QTL location are also shown in Table I-2.7. From these 

simulation studies, around 80% of predicted QTL positions were located within 10 cM away 

from the true QTL position with a small population size of 300 and a low heritability of 10%. 

This proportion in analysis with unknown parental QTL genotypes did not significantly 

decreased compared with analysis with known parental QTL genotypes. Again, this  
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Table I-2.7. Results of simulation studies for QTL mapping in autotetraploids 

Parameters True value 

Bivalent pairing  

True value 

Quadrivalent pairing 

Known parental 

QTL genotypes 

Unknown parental 

QTL genotypes 

Known parental 

QTL genotypes 

Unknown parental 

QTL genotypes 

G1 381.25 374.33 (7.96) 525.88 (22.14) 377.78 382.80 (8.70) 485.24 (23.68) 

G2 414.38 423.32 (3.75) 491.82 (11.36) 409.82 417.32 (3.82) 466.82 (11.52) 

G3 480.42 480.73 (2.18) 480.73 (2.89) 474.49 475.85 (2.31) 484.60 (4.54) 

G4 604.38 600.16 (3.45) 529.88 (8.93) 596.78 590.77 (3.82) 537.86 (8.84) 

G5 821.25 797.80 (13.19) 646.90 (23.58) 811.71 782.01 (8.00) 656.94 (24.04) 

  259.81 259.27 (1.14) 258.89 (1.13) 297.89 296.72 (1.23) 295.76 (1.25) 

Detection 

power 
- 1.00 1.00 - 1.00 1.00 

Qgenotype - - 0.48 - - 0.42 

Accuracy 

(cM) 
- 1.21 (0.94) 3.89 (1.50) - 2.11(1.46) 4.48 (1.83) 

Proportion in 

(±10 cM) 
- 0.82 0.80 - 0.79 0.75 

The heritability is 10% for simulation. Sample size of each mapping population is 300. Gi  (i=1,…,5) represents genotypic value for QTL with 

genotype Q(i-1)q(5-i).  is the normal residual variant. The simulation replicates is 100. 
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proportion was found slightly higher in bivalent pairing model than that in quadrivalent pairing 

model.  

From Table I-2.7, we can see that QTL mapping performance was comparatively better in 

bivalent pairing model than that in quadrivalent pairing model. However, in practice 

autotetraploids undergo tetrasomic inheritance in which homologous chromosomes segregate 

either in bivalent, quadrivalent pairing or a mixture of the two during meiosis, which means 

neither bivalent pairing method nor quadrivalent pairing method probably may not perform well 

in fitting experimental data. To investigate the robustness of different models, namely bivalent 

pairing model and quadrivalent pairing model, for fitting data generated under different pairing 

patterns, I simulated data with both bivalent and quadrivalent pairing and each was analysed 

using both bivalent method and quadrivalent method with known of parental QTL genotypes. 

For bivalent pairing data, the coefficient of double reduction was assumed to be zero on all the 

marker loci when using quadrivalent method. For quadrivalent pairing data, bivalent method 

was applied after screening data that were compatible with bivalent pairing, which would reduce 

sample size to about one half in current data sets as shown in Table I-2.8. Table I-2.8 

summarizes the estimates of genotypic values, residual variance, mapping accuracy. From the 

result we can see that performance of quadrivalent method was still good when analysing 

bivalent data, with estimation result similar to that analysed with bivalent method. On the 

contrary, bivalent method did poorly in modelling quadrivalent data. First, bivalent method has 

to discard individuals uncompatible with bivalent pairing due to the occurrence of double 

reduction under quadrivalent pairing. And then QTL detection power and mapping accuracy 

were significantly decreased in quadrivalent datasets using bivalent pairing method. 
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Table I-2.8. Comparison of two pairing pattern methods with two different datasets 

 
 Bivalent method Quadrivalent method 

True value Estimates Estimates 

Bivalent 

data 

G1 381.25 374.33 (7.96) 377.32 (7.37) 

G2 414.38 423.32 (3.75) 425.19 (3.80) 

G3 480.42 480.73 (2.18) 480.72 (2.12) 

G4 604.38 600.16 (3.45) 596.72 (3.36) 

G5 821.25 797.80 (13.19) 789.73 (12.17) 

  259.81 259.27 (1.14) 259.78 (1.12) 

Detection power 1.00 1.00 

Accuracy (cM) 1.21 (0.94) 1.80 (0.97) 

Proportion in (±10 cM) 0.82 0.79 

 

Quadrivalent 

data 

G1 377.78 356.14 (18.28) 382.80 (8.70) 

G2 409.82 414.11 (6.99) 417.32 (3.82) 

G3 474.49 484.11 (4.56) 475.85 (2.31) 

G4 596.78 606.36 (8.23) 590.77 (3.82) 

G5 811.71 761.31 (24.18) 782.01 (8.00) 

  297.89 289.85 (1.94) 296.72 (1.23) 

Proportion of discarded 

(%) 
56.99 (0.26) - 

Detection power 0.91 1.00 

Accuracy (cM) 10.44 (2.61) 2.11(1.46) 

Proportion in (±10 cM) 0.45 0.79 

   

The heritability is 10% for simulation. Sample size of each mapping population is 300. Gi  (i=1,…,5) 

represents genotypic value for QTL with genotype Q(i-1)q(5-i).  is the normal residual variant. The 

simulation replicates is 100. The row labled with proportion of discarded shows the mean and s.e. of  

proportion of data has been discarded when ‘bivalent method’ was used to analyse ‘quadrivalent data’. 
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To further investigate the reliability of this method in practical implementation, I simulated twelve 

linkage groups (i.e. for the twelve sets of chromosomes) of marker loci and two QTLs in an 

autotetraploid potato genome. The simulation programs produced marker phenotypes and trait 

value from a full-sib family of individuals generated by crossing two genetically unrelated 

parental autotetraploids under tetrasomic inheritance with quadrivalent pairing. The simulated 

parental markers in the twelve linkage groups and two QTLs (i.e. located on Chromosome 1 and 

3) are listed in Table I-2.9. 

 

Table I-2.9. Simulation parameters of the coefficient of double reduction at and 

recombination frequencies between the linked marker loci within the twelve linkage 

groups and two QTLs and parental genotypes used to simulate the whole autotetraploid 

potato genome for the mapping populations 

Chromosome 1 

Locus α quadrivalent r 

dquadrivalent 

(cM) 

Parental genotype 

P1 P2 

L1 0.050 0.00 0 M3M1M2M2 M4M3M5M0 

L2 0.100 0.10 10.73 M3M1M2M1 M2M3M3M1 

L3 0.137 0.10 21.47 M2M3M1M5 M1M3M1M2 

L4(QTL) 0.152 0.05 26.64 q q Q Q    q q Q Q    

L5 0.164 0.05 31.81 M0M2M3M1 M1M1M2M4 

L6 0.175 0.05 36.99 M2M1M1M0 M3M4M3M1 

L7 0.185 0.05 42.16 M4M0M1M5 M1M2M1M2 

L8 0.201 0.10 52.90 M2M0M1M1 M4M1M2M2 
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L9 0.207 0.05 58.07 M2M2M4M2 M1M2M1M4 

L10 0.218 0.10 68.80 M4M4M2M5 M2M2M1M4 

L11 0.222 0.05 73.98 M1M5M4M5 M4M1M3M1 

L12 0.229 0.10 84.71 M3M4M5M5 M5M2M3M3 

L13 0.234 0.10 95.44 M2M1M3M3 M5M4M1M1 

L14 0.236 0.05 100.62 M4M1M4M2 M2M3M3M1 

L15 0.240 0.10 111.35 M3M5M5M1 M1M1M2M4 

Chromosome 2 

L1 0.010 0.00 0.00 M4M1M2M3 M0M5M2M2 

L2 0.041 0.05 5.17 M5M2M0M1 M1M2M3M4 

L3 0.093 0.10 15.91 M2M2M1M3 M4M5M1M1 

L4 0.132 0.10 26.64 M2M3M1M2 M1M2M4M4 

L5 0.147 0.05 31.81 M4M4M3M1 M2M2M5M6 

L6 0.160 0.05 36.99 M1M1M2M3 M2M1M4M4 

L7 0.183 0.10 47.72 M4M1M1M3 M2M2M3M1 

L8 0.200 0.10 58.45 M1M2M2M3 M2M3M4M5 

L9 0.212 0.10 69.19 M1M2M4M3 M3M3M2M1 

L10 0.217 0.05 74.36 M5M1M1M2 M3M4M3M4 

L11 0.225 0.10 85.09 M2M2M4M3 M1M1M2M4 

Chromosome 3 

L1 0.020 0.00 0.00 M1M1M2M3 M2M3M4M4 

L2 0.050 0.05 5.17 M2M2M1M3 M1M1M2M4 

L3 0.100 0.10 15.91 M2M3M1M1 M1M5M2M3 

L4 0.137 0.10 26.64 M1M5M2M2 M3M4M1M1 

L5 0.152 0.05 31.81 M2M4M3M3 M1M1M2M3 

L6 0.176 0.10 42.55 M1M2M4M4 M3M3M2M4 

L7 0.194 0.10 53.28 M1M3M1M2 M2M4M5M1 

L8 0.202 0.05 58.45 M2M2M3M4 M1M1M2M5 
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L9 0.208 0.05 63.63 M1M2M1M3 M2M3M4M4 

L10 0.218 0.10 74.36 M3M3M2M1 M3M4M5M1 

L11 0.226 0.10 85.09 M1M2M5M6 M2M3M4M4 

L12 0.232 0.10 95.83 M2M3M4M4 M4M1M2M2 

L13(QTL) 0.234 0.05 101.00 q q Q Q    q q Q Q    

L14 0.236 0.05 106.17 M1M3M1M2 M2M4M5M1 

L15 0.240 0.10 116.91 M2M2M3M4 M1M1M2M5 

L16 0.242 0.10 127.64 M1M2M1M3 M2M3M4M4 

L17 0.243 0.05 132.81 M3M3M2M1 M3M4M5M1 

L18 0.245 0.10 143.55 M1M2M5M6 M2M3M4M4 

L19 0.246 0.05 148.72 M2M3M4M4 M4M1M2M2 

Chromosome 4 

L1 0.040 0.00 0.00 M1M1M2M3 M2M3M4M1 

L2 0.067 0.05 5.17 M2M3M1M1 M3M2M2M4 

L3 0.113 0.10 15.91 M2M4M5M5 M1M2M3M3 

L4 0.147 0.10 26.64 M1M3M1M2 M1M3M1M4 

L5 0.160 0.05 31.81 M5M2M3M0 M1M2M4M4 

L6 0.172 0.05 36.99 M3M2M2M1 M2M3M3M4 

L7 0.191 0.10 47.72 M1M2M5M5 M1M3M3M4 

L8 0.206 0.10 58.45 M1M1M2M3 M2M2M3M4 

L9 0.217 0.10 69.19 M2M3M4M5 M1M1M2M4 

L10 0.221 0.05 74.36 M1M1M3M4 M2M3M3M40.05 

Chromosome 5 

L1 0.050 0.00 0.00 M1M1M2M3 M2M3M2M4 

L2 0.076 0.05 5.17 M2M4M1M1 M2M3M4M5 

L3 0.119 0.10 15.91 M1M1M1M2 M3M2M2M4 

L4 0.152 0.10 26.64 M1M2M2M3 M2M4M4M3 

L5 0.176 0.10 37.37 M1M5M1M2 M2M3M3M4 
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L6 0.186 0.05 42.55 M1M2M1M5 M2M3M2M4 

L7 0.194 0.05 47.72 M2M3M3M1 M1M4M2M5 

L8 0.208 0.10 58.45 M3M2M2M1 M1M2M4M4 

L9 0.213 0.05 63.63 M4M5M1M1 M2M3M3M3 

L10 0.222 0.10 74.36 M1M2M3M3 M2M3M4M4 

L11 0.226 0.05 79.36 M2M1M2M5 M1M3M3M4 

L12 0.232 0.10 90.27 M1M2M1M3 M1M1M3M4 

Chromosome 6 

L1 0.030 0.00 0.00 M2M2M1M3 M0M1M3M4 

L2 0.085 0.10 10.73 M1M2M3M3 M2M3M1M4 

L3 0.126 0.10 21.47 M1M1M3M2 M2M2M4M5 

L4 0.142 0.05 26.64 M2M3M3M1 M1M2M1M3 

L5 0.169 0.10 37.37 M1M5M1M2 M2M3M3M4 

L6 0.189 0.10 48.10 M1M2M2M3 M1M3M4M4 

L7 0.204 0.10 58.84 M1M2M1M2 M3M4M1M2 

L8 0.210 0.05 64.01 M1M1M2M3 M4M5M5M1 

L9 0.220 0.10 74.74 M1M3M3M2 M3M4M2M2 

L10 0.227 0.10 85.48 M1M1M2M0 M3M4M4M5 

Chromosome 7 

L1 0.000 0.00 0.00 M3M4M4M5 M0M1M1M2 

L2 0.032 0.05 5.17 M2M3M3M5 M1M4M4M2 

L3 0.086 0.10 15.91 M1M0M3M4 M2M2M5M1 

L4 0.108 0.05 21.08 M3M3M2M1 M1M1M4M5 

L5 0.126 0.05 26.26 M2M4M4M3 M3M1M1M5 

L6 0.157 0.10 36.99 M1M1M2M3 M3M4M5M5 

L7 0.180 0.10 47.72 M1M3M4M5 M2M2M1M3 

L8 0.189 0.05 52.90 M1M2M3M3 M2M2M4M5 

L9 0.204 0.10 63.63 M0M1M1M3 M2M4M2M3 
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L10 0.216 0.10 74.36 M2M2M3M4 M2M1M5M4 

L11 0.220 0.05 79.54 M1M1M3M5 M2M4M2M5 

L12 0.224 0.05 84.71 M1M3M5M5 M2M2M4M5 

L13 0.227 0.05 89.88 M2M3M4M4 M1M2M1M5 

L14 0.233 0.10 100.62 M1M4M3M2 M5M1M1M2 

L15 0.237 0.10 111.35 M0M4M4M2 M1M3M1M5 

Chromosome 8 

L1 0.010 0.00 0.00 M3M1M3M2 M4M5M1M2 

L2 0.041 0.05 5.17 M1M1M0M3 M2M4M4M5 

L3 0.068 0.05 10.35 M2M3M1M4 M2M5M5M1 

L4 0.091 0.05 15.52 M0M1M2M2 M2M3M5M4 

L5 0.131 0.10 26.26 M2M5M4M4 M1M3M3M0 

L6 0.160 0.10 36.99 M2M3M4M1 M5M0M1M2 

L7 0.172 0.05 42.16 M3M3M4M5 M2M1M1M5 

L8 0.182 0.05 47.34 M2M1M3M1 M4M5M5M3 

L9 0.199 0.10 58.07 M2M2M3M5 M4M0M1M5 

L10 0.206 0.05 63.24 M3M4M4M5 M1M2M2M3 

L11 0.211 0.05 68.42 M4M0M1M2 M3M3M5M1 

Chromosome 9 

L1 0.020 0.00 0.00 M1M1M2M3 M4M5M2M1 

L2 0.077 0.10 10.73 M3M5M4M3 M1M1M2M3 

L3 0.100 0.05 15.91 M1M3M1M5 M4M3M2M2 

L4 0.137 0.10 26.64 M0M5M5M2 M1M3M4M4 

L5 0.165 0.10 37.37 M3M2M3M4 M1M2M1M0 

L6 0.186 0.10 48.10 M5M4M4M2 M3M2M3M1 

L7 0.194 0.05 53.28 M1M1M3M4 M1M2M2M5 

L8 0.208 0.10 64.10 M3M2M1M4 M5M5M1M3 

Chromosome 10 
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L1 0.050 0.00 0.00 M2M3M3M5 M1M1M4M2 

L2 0.076 0.05 5.17 M1M0M3M4 M2M2M5M1 

L3 0.098 0.05 10.35 M3M1M3M2 M4M1M5M2 

L4 0.136 0.10 21.08 M1M1M4M5 M2M3M2M1 

L5 0.151 0.05 26.26 M0M4M1M2 M3M5M1M2 

L6 0.163 0.05 31.43 M1M1M3M4 M2M5M1M2 

L7 0.185 0.10 42.16 M3M4M1M2 M2M2M5M1 

L8 0.201 0.10 52.90 M3M3M4M2 M3M5M1M2 

L9 0.207 0.05 58.07 M1M2M2M4 M3M3M1M5 

L10 0.213 0.05 63.24 M1M3M1M4 M5M2M0M1 

L11 0.218 0.05 68.42 M2M3M2M1 M4M4M1M0 

L12 0.226 0.10 79.15 M1M1M3M5 M2M2M1M4 

Chromosome 11 

L1 0.010 0.00 0.00 M1M2M1M3 M3M4M2M2 

L2 0.041 0.05 5.17 M0M2M2M1 M3M4M5M1 

L3 0.093 0.10 15.91 M1M1M2M5 M3M4M4M2 

L4 0.132 0.10 26.64 M2M1M1M3 M3M4M5M5 

L5 0.161 0.10 37.37 M3M3M2M5 M0M4M1M1 

L6 0.173 0.05 42.55 M3M4M2M2 M1M2M1M3 

L7 0.192 0.10 53.28 M3M5M1M1 M0M1M4M2 

L8 0.206 0.10 64.01 M1M3M1M4 M5M2M0M1 

L9 0.217 0.10 74.74 M5M2M1M0 M3M4M4M2 

L10 0.225 0.10 85.48 M1M2M4M4 M3M3M5M0 

Chromosome 12 

L1 0.020 0.00 0.00 M2M1M3M4 M3M3M5M0 

L2 0.050 0.05 5.17 M4M2M5M1 M1M2M3M3 

L3 0.075 0.05 10.35 M1M1M2M5 M3M4M4M1 

L4 0.098 0.05 15.52 M3M4M3M2 M1M1M5M0 
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L5 0.136 0.10 26.26 M0M4M1M2 M3M5M1M1 

L6 0.164 0.10 36.99 M1M1M4M2 M3M2M2M1 

L7 0.175 0.05 42.16 M4M1M1M3 M2M5M2M1 

L8 0.185 0.05 47.34 M5M0M1M2 M3M4M4M1 

L9 0.193 0.05 52.51 M4M3M3M1 M0M2M2M5 

L10 0.207 0.10 63.24 M1M2M2M5 M4M3M3M1 

L11 0.213 0.05 68.42 M1M0M5M2 M3M4M3M1 

L12 0.218 0.05 73.59 M5M2M1M1 M4M3M3M1 

L13 0.222 0.05 78.77 M1M2M2M4 M5M3M3M4 

L14 0.229 0.10 89.50 M0M2M1M3 M4M4M0M5 

 

Simulation parameters of the coefficient of double reduction (α for quadrivalent pairing) at and 

recombination frequencies (r) between 15 linked marker loci and QTL and parental genotypes at markers 

and QTL. Mi(i=1,…,5) represent five distinct alleles from two parent and M0 represent the null allele. 

Alleles listed in the same column are on the same chromosome. 

For each QTL, the genetic parameters of genetic mean (  ), monogenic ( 1 ), digenic ( 2 ), 

trigenic ( 3 ) and quadrigenic effects ( 4 ) are assumed to be 500, 100, 60, 30 and 10, 

respectively. Interaction effects between genetic effects of two QTLs are all assumed to be 1. 

These two QTLs are locating on two different chromosomes, thus we can assume they are in 

linkage equilibrium in the mapping population. The mapping population size is 300 and 

heritability of the two QTLs is 0.2. Based on the simulated parameters setting in Table I-2.9, I 

obtained a profile of LOD scores along the twelve chromosomes as shown in Figure I-2.5. Two 

QTLs were detected on Chromosome 1 and Chromosome 3, whose LOD scores exceeded the 

threshold of 5.78. It can be seen from Figure I-2.5 that the locations of QTLs were adequately 

predicted around the true QTL locations (26.64 cM at Chromosome 1 and 101.00 cM at 

Chromosome 3).  
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Figure I-2.5. Profile of LOD scores along the twelve chromosomes in the autotetraploid potato genome. 
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The true QTL are located on Chromosome 1 (26.64 cM) and Chromosome 3 (101.00 cM). Population size is 300 and heritability is 0.2.



Part I: Theory and methods for QTL analysis in autotetraploids                                                 Chapter I-2 

 

Page 146 of 267 
 

 

2.6. Discussion 

In this chapter of Part I, I proposed a theoretical model for interval mapping of QTL in a full-sib 

family of autotetraploids, which properly taking account for tetrasomic inheritance, including 

the key feature of double reduction and multiplex allele segregation. This method allows 

modelling and analysing data generated under bivalent paring or quadrivalent pairing of 

homologous chromosomes during meiosis in an autotetraploid individual. In addition, this 

method was designed to be generally applied to all kinds of marker genotyping data without any 

further modification. However, the current method has not taken the information of allele 

dosage into consideration, which could be obtained from genotyping technology by next 

generation gene sequencing. The adequacy of the method in estimating the model parameters 

and in mapping QTL was demonstrated by extensive simulation studies under both bivalent 

pairing and quadrivalent pairing models.  

I analysed extensive simulated datasets to show that the method of interval mapping in 

autotetraploids gives adequate estimates of model parameters and mapping accuracy under 

bivalent meiosis or quadrivalent meiosis. With a small population size of 300 and a low level of 

heritability of 0.1, both bivalent method and quadrivalent method were powerful to detect QTL 

with 100 percent over the 100 replicated simulations. As expected, the bivalent method had 

better performance in mapping accuracy in fitting the data generated under a bivalent pairing 

model compared with that of the quadrivalent method which introduces an additional parameter 

as the coefficient of double reduction. However, the quadrivalent method showed stronger 

robustness in fitting data generated under different pairing models.  On the one hand, the 
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bivalent method would collapse in fitting data generated under quadrivalent pairing model. 

From the simulation studies, we can see more one half of data generated under quadrivalent 

pairng did not fit bivalent pairing pattern and we have no alternative but to discarded them. This 

strategy would definitely cause loss of statistical power and loss of accuracy in parameter 

estimation. On the other hand, the quadrivalent method analysed data generated under bivalent 

pairing model with acceptable result both in statistical power and estimation accuracy. In the 

quadrivalent pairing model, the allele segregation distribution would be very close to that in the 

bivalent pairing model when the coefficients of double reduction on all the markers equal to 

zero. This explains why quadrivalent pairing model can still work well in fitting bivalent pairing 

data. From this aspect, this investigation indicates that quadrivalent method would outperform 

the bivalent method in modelling and analysing experimental data collected for QTL analysis in 

autotetraploids. In practice, it seems to be always the case that most autotetraploid species would 

undergo a mixture of bivalent pairing and quadrivalent pairing of homologous chromosomes 

during meiosis. Thus the bivalent method would be not applicable in the real data analysis, 

which would probably cause large bias in the parameters estimation, while the performance of 

quadrivalent method could be still satisfied. The quadrivalent method developed here modelled 

quadrivalent pairing of homologous chromosomes during meiosis and introduced the parameter 

of the coefficient of double reduction in the QTL mapping of autotetraploid species for the first 

time, acheiveing a step forward for QTL analysis in real dataset from autotetraploids. 

In the current simulation study, it is assumed that marker order and recombination frequencies 

between them were known without error, which may not be the situation for experimental data. 

However, the reconstruction methods based on autotetrasomic model can be used to construct 

genetic map with high consistency with the true marker genotype and order (Luo et al 2000, 
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2004, 2006; Leach et al 2010), which have provided a good basis for QTL analysis with 

experimental data. In addition, I integrated the Hidden Markov chain statistical method proposed 

by Leach et al (2010) to calculate the conditional probability distribution of QTL genotypes 

using all the genetic markers on the chromosome but not just two flanking markers, which 

would improve the informativeness in fitting a QTL. In practice, parental QTL genotypes and 

linkage phase between QTL and marker are usually unknown. We used a computer-intensive 

search method to find the most likely parental QTL genotypes among 252 possible parental 

genotypes and phases, which adequately in detecting and locating a QTL on the chrosome under 

bivalent pairing and quadrivalent pairing in autotetraploid species. Moreover, the statistical 

methodology described here for QTL mapping in autotetraploids can be fully extendible to any 

other experimental design and any types of genetic markers. The theoretical method developed 

in this thesis, which first taking quadrivalent pairing into consideration, would provide analytical 

tools to recent lauched genome projects in autotetraploids, such as cultivated potato and farmed 

salmon, and improve breeding efficiency for economically important autotetraploid species in 

both agriculture and aquaculture. 

From the simulation study of whole potato genome analysis, we can see that QTLs can be well 

detected by using this method when no or small amount of interactions existing between QTLs. 

However, if there are large amount of interactions between QTLs or QTLs are closely linked on 

the same chromosome, statistical inference of QTLs would be seriously biased. Thus 

simultaneously estimation of multiple QTLs would be appreciated by further efforts.  
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Chapter II-1: Statistical inference of crossover interference in both 

diploids and autotetraploids 

1.1. Overview 

The world is currently facing what is arguably its most serious challenge yet, to meet the 

demand for a sustainable food supply for its rapidly expanding population. A crucial goal to 

address this crisis is to develop tools for breeding of both diploid and polyploidy crops that are 

designed to fully realize selection response through the release of genetic variation that is 

currently “locked up” in crop plant genomes. This “release” of genetic variation occurs during 

the process of recombination between paired homologous chromosomes during meiosis. Pairing 

and recombination is essential for ensuring balanced chromosome segregation and enables 

generation of new combinations of chromosomes segments or alleles at different genetic loci, 

boosting genome variability. The genetic variation so created forms the most important basis 

both for natural selection that drives the evolution of species and also artificial selection that 

enables target alleles to be integrated into an elite line or strain in genetic breeding programs of 

domesticated animals or agricultural crops.  

Over the past decade it has emerged that chromosome pairing and synapsis, followed by 

recombination, as the key events in meiosis, are subject to highly stringent and complex control.  

It has been well established that a series of genes or proteins are involved in the process of 

synapsis and in the subsequent promotion or limitation of meiotic DNA double-strand breaks 

and crossovers (COs), thus influencing the frequency of meiotic recombination (Osman et al 
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2011). It has been established since the era of Thomas Morgan that recombination occurring at 

one chromosome site is not independent of the other recombination at nearby sites, which 

describes the well-known phenomenon of recombination interference (Sturtevant 1915, Muller 

1916). In almost all organisms, CO interference is likely to play an important role in 

determining the frequency and patterns of recombination along chromosomes (Drouaud et al 

2007). For example, extensive variation in recombination frequency between maize populations 

has been linked to variation in the strength of interference (Bauer et al 2013). However, 

remarkably little is known about the mechanisms of interference or about factors that affects its 

strength.  

In diploid meiosis, crossing over, the cytological organization of homologous chromosomes 

prior to recombination, takes place along the bundle of four chromatids and therefore 

recombination interference (RI) may be attributed to two types of interference: First, chromatid 

interference, where different pair of non-sister chromatids are not equally likely to be involved 

in the formation of crossovers; second, chiasmata interference, where the occurrence of one 

crossover event at a given position along the chromosomal bundle affects the chances of an 

additional crossover occurring in a nearby region (Stam 1979). There is sparse evidence of 

chromatid interference in the literature and it can only be detected if all four products of a single 

meiosis can be recovered, such as in the fungi Saccharomyces cerevisiae, Neurospora crassa 

and Asperqillus nidulans (Lindegren 1942; Strickland 1958; Hawthorne 1960) or in specific 

mutants of Arabidopsis (Copenhaver 1998).  Most work on RI has there focused on chiasma 

interference. RI can be measured in terms of the coefficient of coincidence in the form of 

 11 10 11 01 11/ ( )( )C r r r r r   , which is the ratio of the observed frequency of simultaneous 

recombination in two disjoint chromosomal regions over the expected frequency of 
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recombination in these regions under independence of recombination between the two regions 

(Sturtevant 1915; Muller 1916). Key for calculating the interference parameter is to estimate the 

frequency of double recombination, which is usually infeasible, if not impossible, in practice. 

Thus, this kind of RI analysis has been limited to those species such as yeast where gamete 

genotyping is practically feasible (Malkova et al 2004), or to species where sperm or pollen 

typing is possible.  

Statistically, the prediction of RI from zygotic genotype data requires modelling the 

mathematical relationship between the rate of crossover and frequency of recombination and 

hence the probabilistic distribution of crossover events along the chromatid bundle. Many 

different models have been proposed to model the crossover distribution in diploid species, 

including the count-location model proposed by Karlin and Liberman (1979), and the Poisson 

model proposed by Cox and Isham (1980), in which crossovers occur as a stationary Poisson 

point process. A hard core model proposed by Stoyan et al (1987) formulates crossover events 

as a stationary renewal process with renewal intervals distributed as a constant scaled 

exponential. By assuming the absence of chromatid interference, McPeek et al (1995) proposed 

a gamma model by generalizing the Poisson point process of crossovers to be a renewal process 

taking general gamma distributed intervals. In this the coincidence parameter was estimated 

together with other model parameters through a maximum likelihood method, which 

outperformed other rival methods in the fitting of multi-locus genotype data. To make the 

gamma model mathematically more tractable, Zhao et al (1995) proposed a Chi-square model in 

the form of ( )m

x oC C , which can be interpreted the model as the occurrence of a crossover event 

(
xC ) followed by a number m of non-crossover events (

oC ). Parameter, m therefore measures 

the intensity of crossover interference, with larger value indicating stronger interference. The 
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Chi-square model has an inherent property of mathematical tractability while retaining a strong 

biological basis (Foss et al. 1993). The stochastic process of crossovers along paired 

chromosomes may be considered as a renewal process whereby the distance between adjacent 

crossover events are independently drawn from a probability distribution, originally proposed by 

Mather (1936a, 1937) and further elaborated extensively in Owen (1950) and Carter and 

Robertson (1952). 

Based on the Chi-square model, I developed here a novel statistical method for recombination 

interference analysis with autotetraploid species. The method properly accounts for the essential 

features of segregation and recombination under tetrasomic inheritance. We tested reliability of 

the method and explored its statistical properties through an intensive computer simulation study. 

In addition, we demonstrated utility of the method by implementing it to model and analysed 

phenotype datasets of three linked fluorescent marker loci scored from a large segregating 

population of diploid and autotetraploid budding yeast S. cerevisiae. 

 

1.2. Methods of inferring crossover interference for zygote in 

diploids 

1.2.1. The Chi-square model 

The Chi-square model for crossovers has been historically of interest (Mather 1936, 1937; Owen 

1950; Carter and Robertson 1952) extensively. The Chi-square model can be represented in a 
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form of ( )m

x oC C  (Zhao 1995a), explained as that occurrence of crossover events (
xC ) along the 

paired chromosomes were separated by m consecutive non-crossover events (
oC ), where m 

measured the intensity of crossover interference. Both 
xC  and

oC  are termed as C events and are 

randomly distributed on the four-strand bundle of paired chromosomes in a diploid meiosis and 

the number of C events in any given chromosomal interval is assumed to follow a Poisson 

distribution. Secondly, the chi-square model assumes absence of chromatid interference, i.e. 

crossover may occur between any pair of non-sister chromatids with an equal chance. It is 

referred as “chi-square” model because the probability distribution of interexchange distances is 

a chi-square distribution with an even number of degrees of freedom (Lange et al. 1997).  

The Chi-square model, which was originally developed for diploid species, has two key features. 

First, it models the distribution of crossover and non-crossover event along paired chromosomal 

bundles without any limitation on the number of homologous chromosomes involved. Second, 

RI is modelled in terms of the distance between two consecutive crossover events. These basic 

features are not inherently specific to diploid genomes where the bundle involves four 

homologous chromosomes. Thus, the model can in principle be extended to autotetraploid 

species where the bundle may involve eight chromosomes. However, such an extension is not 

trivial autotetraploids may undergo tetrasomic inheritance and thus shows a much more 

complicated pattern of gene segregation and recombination when compared to disomic 

inheritance in diploids. Firstly, in autopolyploids, multivalent pairing of homologous 

chromosomes during meiosis may result in the well-known phenomenon of double reduction, in 

which sister chromatids enter into the same gamete (Mather 1936b), resulting in systematic 

allelic segregation distortion in comparison to disomic gene segregation and recombination. 
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Secondly, multiple alleles at individual loci of polyploids cause a substantially wider spectrum 

of genotypic segregation (Luo et al 2004). 

 

1.2.2. Assumption and notations 

We consider three marker loci, A, B and C, along the chromosome of a diploid species. Three 

parameters are needed to specify the three-locus model, m indicating the number of non-

crossovers (
oC ) between two crossovers (

xC ), and 1d  and 2d  being genetic distances of the first 

and second marker interval respectively. The genetic distances are defined as the expected 

number of crossovers occurring on a single chromatid within the given interval. In the Chi-

square model aforementioned, C events (including both Cx and Co) are assumed to be randomly 

distributed on the four-strand bundle, and the number of C events in any given chromosomal 

interval follows a Poisson distribution with a mean of y. Thus, the probability of s C events is 

equal to !y se y s . In absence of chromatid interference, each strand made up of the four-strand 

bundle has a chance of ½ to be involved in every crossover. Let 1p m   be the length of a 

complete set of C events, ( )m

x oC C . Each strand will be involved in an expected number of 

(2 )s p crossovers among s C events. According to the definition of genetic distance here, the 

average number of C events ( 1y  or 2y ) occurring within any given interval can be expressed in 

terms of genetic distance of the interval ( 1d  or 2d ), for example 1 12y pd  (or 2 22y pd ). For 

three marker loci, there are up to four different recombination configurations for each chromatid. 

We denoted one of the recombination configurations by a vector ( , )X i j  and the 
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corresponding probability of ( , )X i j  by xij, where i (or j) takes a value of 0 standing for non-

recombination or 1 for recombination that occurs in the first (or second) marker interval.  

 

1.2.3. Prediction of probability distribution of crossovers occurring 

within marker intervals 

In the following discussion, I suppose that markers are laid out from left to right, and the C 

events occur also from left to right. The chi-square model assumes that the C events resolve in 

sequence as 0 0 0 0x xC C C C C C  and that the process is stationary, so the first C event 

occurring in the first marker interval could be any one of the m+1 elements in  0

m

xC C , each of 

which occurs with an equal probability of 1 p .  

In each marker interval, the occurrence of k ( 1k  ) crossovers ( xC ) between two flanking 

markers might be the result of 2p  possible situations, depending on the number of 0C ’s  

between the first crossover 1

xC
 
and the left marker of the interval, L, and the number of 0C ’s 

between the last crossover k

xC  and the right marker of the interval,  R,  as illustrated in Figure 1. 

These p2 possible C events can be expressed as a p p matrix as follows: 
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             

             

       

       

1 1 1

0 0 0 0 0 0 0 0

1 1 11 1 1

0 0 0 0 0 0 0 0

1 1 1

0 0 0 0 0 0 0 0

1 1 1

0 0 0 0 0

m m m m m m mk k k

x x x x x x

m m m m m m mk k k

x x x x x x

k

m m m mk k k

x x x x x x

m m m mk k k

x x x x x x

C C C C C C C C C C C C C C

C C C C C C C C C C C C C C

M

C C C C C C C C C C C C C C

C C C C C C C C C C C

  

 








 p p











 

             (II-1.1) 

The matrix lists all possible C events given k crossovers occurring in the chromosomal interval.  

Within the marker interval, there are k–1 sets of  0

m

xC C ,  
xC  and a varying number of 0C

events between the left marker and the first 
xC  event (listed as column elements of the matrix) or 

between the last 
xC  event and the right marker (listed as row elements).  Thus, each element in 

this p p  matrix represents one possible C event sequence occurring in a marker interval, i.e. 

the (i, j)th element in the matrix for (p-i) 0C  events occurring between the first xC  and the left 

marker and (j-1)
 0C  events between the last xC  and the right marker. In the 

i

xC  stands for the ith 

(i = 1, 2, …, k) xC  in the chromosomal interval and  0

j
C  for j consecutive 0C events.  

 If there are no crossover events occurring in the marker interval, then the C events can only be 

0C  events varying in number from zero to m. We represent the corresponding matrix kM
 
as 0M  

for the special case of no crossovers in the form of: 
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 

 

0 0

1

0

0

0

m

m

p p

no C event C C

no C event C

M

C

no C event





 
 
 
 

  
 
 
 
          (II-1.2) 

It is assumed that the C events are randomly distributed along the chromosome and the number 

of C events within the interval follows Poisson distribution with the mean parameter 2y pd , 

thus the probabilities of C events listed in matrix Mk can be listed accordingly in matrix  kD y  

( 1k  ) in the form of: 

 

   

   

   

 

 

 

 

1 1 1 1

1

1

1 1 ! 1 ! 1 !

1 ! ! !

1 ! ! !

pk pk j pk p

y ijkpk i pk j i pk p i

k y p p

pk p pk j p pk p p

p p

y pk y pk j y pk p

D y e Qy pk i y pk j i y pk p i

y pk p y pk j p y pk p p

     

      



     



      
 
 
       
 
 
       

            

            (II-1.3) 

When k = 0, the probability matrix of no crossovers between markers corresponding to the C 

events listed in 0M can be expressed as: 

 

   

 

 

 

 

 

11 1 1

0

1 !1 1 ! 1 !

0

!0 0 !

!0 0

pi

y oijp ii i
y p p

p p

p p

y py y i

D y e Qy p iy i i

y p p

 

 







  
 
 
  
 
 
  

    (II-1.4) 
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Since the first C event in the first marker interval has an equal chance of being any one of the 

m+1 elements of  0

m

xC C with probability of 1 p , then the probability of k crossovers between 

markers A and B can be computed by summing over probabilities of all the p2 possibilities  as 

1 1

1 1

1
1

1
0

p p
ijk

y

i j

p p
oij

y

i j

Q if k
p

Q if k
p

 

 






 






        (II-1.5) 

 where ( )!ijk y pk j i

yQ e y pk j i     , which is the (i, j)th element in matrix  kD y  (Equation II-

1.3) , and 
( )!

0

y j i

oij

y

e y j i if i j
Q

if i j

   
 


  , the (i, j)th element in matrix  0D y  (Equation II-

1.4). 

We can represent the probability of k crossovers between markers A and B in matrix notation as 

 
1 1

1
'kI D y I

p
                 (II-1.6) 

where  
1

1 1
p

I


 . 

As demonstrated by Zhao (1995), the analysis formulated above can be extended from two 

markers to that with three markers A, B and C. We firstly noted that sum of elements in the jth 

(1 j p  ) column in the matrix Mk is the probability of the situation that k crossovers occurr 

between A and B followed by the (j-1) 0C  events (1 ≤ j ≤ p),  
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   
1 1

for 1 or 0
p p

j ijk oij

k y y

i i

p Q k Q k
 

    . Thus, the probability of k crossovers between the 

markers A and B can also be expressed as 

   1 2 11 1
' ... 'm

k k k kI D y I p p p I
p p

   

       (II-1.7)

 

In the three marker model, we formulate the probability of k1 and k2 crossovers in the first and 

second chromosomal intervals respectively. Because the probability that there are l 0C  ’s 

between marker B and the first xC  in the marker interval flanked by B and C is equivalent to the 

probability that the last C event between markers A and B is the (p-l-1)th C event after the last 

xC in the marker interval flanked by A and B, which is 
1

p l

kp  . Thus, the probability of k1 

crossovers occurring between markers A and B, and k2 crossovers between markers B and C is 

given by 

   2

1 2 1 22 2

1 1 1 1

1 1
1  or 0

p p p p
ljkp l p l olj

k y k y

l j l j

p Q k p Q k
p p

 

   

            (II-1.8) 

Equation (1.8) can be expressed in a matrix form as  

 
1 1 1 2

1 2

2

1
... ( ) 'p

k k k kp p p D y I
p

            (II-1.9) 

or in a general form of 

   
1 21 2

1
'k kI D y D y I

p
                     (II-1.10) 
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1.2.4. Prediction of probability distribution of recombination along 

a chromatid 

As mentioned before, if no crossover occurs between markers, no strand in the bundle will show 

any recombination in that interval, while the expected recombination frequency is ½ given 1k   

crossovers between two markers under the assumption of absence of chromatid interference as 

demonstrated below. 

In Figure II-1.1, solid lines in red and black represent two replicated chromosomes in diploids 

and blue forks in dotted lines indicate crossovers occurring between marker loci A and B. A1, A2 

and B1, B2 are marker alleles on loci A and B, respectively. Since there is no chromatid 

interference, chiasmata, the point where two homologous non-sister chromatids exchange 

genetic material during meiosis, is equally likely to involve in any two strands can lead to a 

crossover. Regarding only one of the A alleles, e.g. A1 on strand 1, the expected recombination 

frequency after i crossovers between marker A and marker B is equal to the probability that 

allele A1 is not linked to B1 on the same strand after i crossovers. Here the number of crossovers 

within this chromosome region is denoted as x and the number of crossover event involving 

strand 1 is denoted as y. The probability distribution of y is listed in Table II-1.1. 
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Figure II-1.1. Diagrammatic representation of crossovers occurring between marker A 

and B on the chromosome in diploids, showing a typical double crossing-over on strand 1. 

 

Here solid lines in red and black represent two replicated chromosomes in diploids and blue forks in 

dotted lines indicate crossovers occurring between marker loci A and B. 
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Table II-1.1. The probability distribution of y crossover events involving strand 1 with 

total x crossovers occurring in the chromosome region 

Chiasmata 

(x) 

Crossover (y) 

0 1 2 3 … i … 

0 1       

1 1/2 1/2      

2 1/4 1/2 1/4     

3 1/8 3/8 3/8 1/8    

        

i 
1

02i

i 
 
 

 
1

12i

i 
 
 

 
1

22i

i 
 
 

 
1

32i

i 
 
 

 … 
1

2i

i

i

 
 
 

  

        

 

 

As shown in Figure II-1.1, double crossover on strand 1 will restore the original relation of allele 

A1 and B1 and so will be non-recombination. Similarly triple crossover will give recombination, 

quadruple crossover no recombination and so on. Hence the expected frequency of 

recombination given i crossovers occurring between marker A and B, p, will be given by the 

summed frequencies of the single, triple, quintuple, etc. crossovers as, 



Part II: Theory and methods for analysis for crossovers during meiosis in autotetraploids       Chapter II-1 

Page 168 of 267 
 

1

1 3 22

1

1 3 3 12

i

i

i i i i
if i is odd

i i
p

i i i i
if i is even

i i

         
            

         
 

        
                     

                                  (II-1.11)  

When i odd, since  

1 3 2 1 3 2 0

2
1 3 2 1 3 2 0

i

i i i i i i i i

i i i i

i i i i i i i i

i i i i

                
                        

                 

                                                                   

                           (II-1.12) 

 it can be deduced that 
12

1 3 2

i
i i i i

i i

       
           

       
and the expected recombination 

frequency in Equation (1.1) is 12 2 1 2i ip   .  

When i even, according to the property of binomial coefficient, 
n

k

 
 

 
 

1 1

1

n n

k k

    
   

   
, the 

expected recombination frequency of Equation (1.1) can be rewrite as  

1

1 1 1 1 1 11

0 1 2 2 2 12

1 1
2

2 2

i

i

i

i i i i i i
p

i i



                  
                  

             

  

                                      (II-1.13) 

So as long as i ( 1i  ) crossover occurring between two loci, the expected recombination 

frequencies are all equal to 1/2. 
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Let ( )

0

ko  denote the probability of no recombination and ( )

1

ko  denote the probability of 

recombination given k crossovers occurring within the marker interval. It is clear that (0)

0 1o   , 

(0)

1 0o   and ( ) ( )

0 1 1 2k ko o   when 1k  . Let  1 2X i i  represent recombination configuration 

of a chromatid, with i1 = 1 or 0 indicating recombination or non-recombination between marker 

A and B along the chromatid and similarly i2 = 1 or 0 indicating recombination or non-

recombination between marker B and C. We denote 
 

1 2

1 2

( )k k

i i
O  for the probability of recombination 

configuration of a chromatid  1 2X i i  given that there are 1k  and 2k  crossovers in the first 

and second interval, respectively. Then xij, the probability of observing recombination 

configuration of a chromatid  1 2X i i , can be calculated as 

 

       

       

       

1 2

1 2 1 2

1 2

1 2

1 2 1 2

1 2

1 2

1 2 1 2

1 2

1 2

1 1 2 2

1 2

( )

,

1 2

1 2

1 2

1
'

1
'

1
'

k k

i i i i
k k

k k

i i k k

k k

k k

i i k k

k k

k k

i k i k

k k

x O

o o I D y D y I
p

I o o D y D y I
p

I o D y o D y I
p



    

 
     

 

 
   

 







 

                  (II-1.14) 

Define  

   

 

0

1

1

1 0
2

1 1
2

j s j j

s

j

s j j

s

D y D y when i

M
D y when i





  


 







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Then the probability of recombination configuration of a chromatid  1 2X i i  is 

1 2 1 2

1
'i ix I M M I

p
                        (II-1.15) 

where  
1

1 1
p

I


 . 

 

1.2.5. Prediction of probability distribution of marker phenotypes at 

three loci 

We consider a generic heterozygous genotype at three loci, i.e. 1 1 1 2 2 2A B C A B C  . Gametes to be 

generated from this individual can be divided into four categories according to the 

recombination events in the intervals. A general form for frequency of the gametic genotype i 

can be expressed as 

00 00 01 01 10 10 11 11

1 1

0 0

1 1 1 1

2 2 2 2

1

2

i i i i i

ist st

s t

G w x w x w x w x

w x
 

       

 

               (II-1.16)  

where istw is the number of gametes with recombination configuration   X s t within the ith 

gametic genotype category. By assuming random union between all possible gametes generated 

from two parents, a general form for the frequency of zygote genotype i can be carried out after 

sorting the zygotes according to their genotypes and be written as 
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1 1 1 1

, ' ' ' '

0 0 ' 0 ' 0

1

4
i i st s t st s t

s t s t

H z x x
   

                   (II-1.17) 

where 
, ' 'i st s tz  indicates the number of zygotes made up with the two gametes with recombination 

configuration   X s t  and  ' '  'X s t  within the ith zygotic genotype class. 

Probability of the it phenotype of the three markers among offspring can be readily derived by 

summing up the probabilities of those genotypes that are compatible to the same phenotype, and 

is expressed as   

1 1 1 1

, ' ' ' '

0 0 ' 0 ' 0

1

4
i g g st s t st s t

g i g i s t s t

f H z x x
     

                       (II-1.18) 

where 
, ' 'g st s tz  indicates the number of zygotes made up with the two gametes with 

recombination configuration   X s t  and  ' '  'X s t  within the gth zygotic genotype class. 

 

1.2.6. The maximum likelihood estimates of the model parameters 

In the model above, the unknown parameters are m, d1 and d2. The statistical analysis presented 

below predicts these model parameters based on the P1 and P2, the parental genotypes (i.e. 

parental genotypes could be predicted from phenotypes of parents and offspring), and 

 1 2, ,..., nO o o o , the phenotype records of a random sample of n offspring individuals from the 

parental lines. Let M be the number of phenotype categories in the offspring. We assume that the 
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phenotype of offspring is randomly sampled from a multinomial distribution with probability 

parameters given by  1,2,...,if i M . Then the likelihood function of the parameters 

 1 2, ,m d d    has a form of  

    1 2

1 2 1 2 1 2

1 2

, , | Pr | , , Mn n n

M

M

n
L P P O O P P f f f

n n n

 
     

                  (II-1.19)
 

Where ( 1,2, , )in i M  is the number of individuals within the ith phenotype class. Logarithm 

of the likelihood in  

    
1 1 1 1

1 2 , ' ' ' '

1 1 0 0 ' 0 ' 0

log , , | ln ln
M M

i i i g st s t st s t

i i g i s t s t

L P P O n f n z x x
      

 
    

 
                  (II-1.20)

 

where 
, ' 'i st s tz  indicates the number of zygotes made up with the two gametes with recombination 

configuration   X s t  and  ' '  'X s t  within the ith zygotic genotype class. stx and ' 's tx  can be 

calculated according to From equation (II-1.14) as follows 

 

2 3 2 3 21 2 1 2 1
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
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where ( )!ijk y pk j i

yQ e y pk j i     and 
( )!

0

y j i

oij

y

e y j i if i j
Q

if i j

   
 


  . 

Let k

sta  denote the conditional probability of recombination configuration   X s t  along the 

three marker loci given k crossovers occurring in the marker interval A and B, thus when 1k   

 

 

2 3 2 3 21 2

1 2 2

3 2 1 2

2 3 21 2

1 2

3 2 1 2
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11 01
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  
   

  

 

 

 

when k = 0, it can only resolve in non-recombinant in the marker interval flanked by A and B, 

then 

 

 

 

2 3 2 3 21 2

1 2 2

3 2 1 2

2 3 21 2

1 2

3 2 1 2

0

00

1 1 1 1

0

01

1 1 1 1

1 1

2

1 1

2

p p p
oj j j j koj j

y y y

j j j k

p p p
j j koj j

y y

j j j k

a Q Q Q
p

a Q Q
p

   

   

  
  

  

  
  

  

 

 

 

Similarly, let k

stb  denote the conditional probability of recombination configuration   X s t  

along the three marker loci given k crossovers occurring in the marker interval B and C, thus 

when 1k   
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when k = 0, it can only resolve in non-recombinant in the marker interval flanked by B and C, 

then 
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Because m takes non-negative integer values, we propose here an EM algorithm to calculate the 

MLE of the model parameters d1 and d2 at any given value of m, and determine the MLE of all 

three parameters by searching for the maximum of the likelihood profiles at every given value of 

m. In the EM algorithm, the expectation (E) step calculates the conditional probability of a total 

of k crossovers within the first marker interval in the offspring with the ith phenotype, ik , given 

the model parameters, which can be formulated as    

1 1 1 1
' '

, ' ' ' '

' 0 0 0 ' 0 ' 0

1

4

0, ' 0 ' 0, '

k
k k k

ik g st s t st s t i

k g i s t s t

z a a f

if s k can not be and if s k can not be k

 

     

 
  

 

 

 
                 (II-1.21) 

and also the conditional probability of a total of l crossovers within the second marker interval  

among the offspring with the ith phenotype,  il , which is given by 
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 
                  (II-1.22) 

Since each strand made up of the four-strand bundle has a chance of ½ to be involved in each 

crossover in diploids, the M step updates the estimates of the genetic distances, which are 

defined as the expected number of crossovers occurring on a single chromatid within that 

interval, from 

'

1

1 1

1
2

2

M

i ik

i k

d n k n
 

 
  

 
                        (II-1.23) 

'

2

1 1

1
2

2

M

i ik

i k

d n k n
 

 
  

 
                        (II-1.24) 

The likelihood function increases as the E step and M step repeated and the parameter estimates 

converge to the MLEs conditional for a given integer value of parameter, m. We then infer the 

most likely index of crossover interference, m, as that maximies the likelihood function.  

                                                                                                                                                                                                  

1.3. Methods of inferring crossover interference for zygote in 

autotetraploids 

The Chi-square model, which was originally developed for diploid species, has actually two key 

features. First, it models distribution of crossover and non-crossover events along paired 
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chromosomal bundles without any limitation on the number of homologous chromosomes 

pairing to constitute the bundles. Second, recombination interference is modelled in term of 

distance between two consecutive crossover events. Obviously, these basic features are not only 

inherently specific to diploids. Thus, we propose here to extend basic idea of the Chi-square 

model to autotetraploids by properly accounting for the essential features of gene segregation 

and recombination in meiosis of the complicated species. 

In meiosis of autotetraploids, homologous chromosomes may pair into two different patterns as 

mentioned before, bivalent pairing and quadrivalent pairing. In the former, four chromosomes 

are randomly paired into two pairs, each making up of two homologous chromosomes, and 

crossovers occur only between the paired chromosomes. Thus, under bivalent pairing, tetraploid 

genes show the disomic inheritance like diploids. While homologous chromosomes pair together 

forming a quadrivalent pair, the crossover may occur between any pair of the homologous 

chromosomes. When recombination occurs between the centromere and a marker locus, 

duplicated sister chromatids at the marker locus may enter the same gamete during meiosis. This 

is the phenomenon of so called double reduction, which is the key feature of the tetrasomic 

inheritance of autotetraploids.   

In the autotetraploid chi-square model, we consider three marker loci, A, B and C, along the 

chromosome of an autotetraploid species. Four parameters are needed to specify the three-loccus 

model, m indicating the number of non-crossovers (
oC ) between two crossovers (

xC ),  being 

the coefficient of double reduction, and 1d  and 2d  being genetic distances of the first and second 

marker interval respectively. To make the analysis of recombination interference comparable 
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between diploids and autotetraploids, genetic distance is also defined as the expected number of 

crossovers occurring on a single chromatid within the given interval.  

 

1.3.1. Prediction of probability distribution of crossover occurring 

within marker intervals,  1 2 1 2Pr , , ,k k m d d  

Firstly of all, it is necessary to find a proper probability distribution to describe crossover events 

occurring along the chromosomes. As mentioned before, the Chi-square model proposed by 

Zhao et al (1995) models distribution of crossover and non-crossover events along paired 

chromosomal bundles without any limitation on the number of homologous chromosomes 

pairing to constitute the bundles. Thus I can apply the basic principle of chi-square model to 

model crossover events distribution along chromosomes in auotetraploids as follows. 

In the absence of chromatid interference, each strand made up of the four-strand bundle during 

meiosis has an equal chance of of 1/2 to be involved in any given crossover in autotetraploids 

with bivalent pairing during meiosis. Let p = m+1 be length of a complete set of C events, 

 0

m

xC C . Among s C events, each strand will be involved in an expected number of (2 )s p  

crossovers. According to the definition of genetic distance here, the average number of C events 

( 1y  or 2y ) occurring within any given interval can be expressed in terms of genetic distance of 

the interval ( 1d  or 2d ), for example 1 12y pd  (or 2 22y pd ). However, in autotetraploids with 

quadrivalent pairing during meiosis, each strand made up of the eight-strand bundle during 
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meiosis has an equal chance of of 1/4 to be involved in any given crossover. Accordingly, the 

average number of C events ( 1y  or 2y ) occurring within any given interval can be expressed in 

terms of genetic distance of the interval ( 1d  or 2d ), for example 1 14y pd  (or 2 24y pd ) in 

autotetraploids with quadrivalent pairing. 

The occurrence of k crossovers ( xC ) between two flanking markers  A and B on a pairing 

bundle might be the result of 2p  possible situations as shown in Equation (1.1) and Equation 

(1.2) for 1k   and 0k   in Section 1.2.3. By assuming the C events are randomly distributed 

(Poisson distribution) along the chromosome and the first C event has an equal chance of being 

any of the m+1 elements of   0

m

xC C  , the probability of k crossovers between markers A and B 

can be computed by summing over probabilities of all the p2 possibilities  as 

1

1

1 1

1 1

1
1

1
0

p p
ijk

y

i j

p p
oij

y

i j

Q if k
p

Q if k
p

 

 






 






                 (II-1.25) 

where 
1 1 ( )!ijk y pk j i

yQ e y pk j i     and 
1

1 ( )!

0

y j i

oij

y

e y j i if i j
Q

if i j

   
 


  . Here y1 is mean 

parameter of Poisson distribution, with 1 12y pd  for bivalent pairing and 1 14y pd  for 

quadrivalent pairing. 

Similarly, as introduced in Section 1.2.3, analysis formulated above for two markers can be 

extended to that with three markers A, B and C. Consequently, the probability of k1 crossovers 
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occurring between markers A and B, and k2 crossovers between markers B and C along one 

pairing bundle of chromosomes is given by 

   
1 21 2

1
'k kI D y D y I

p
                      (II-1.26) 

where the details of matrix  
1 1kD y  and  

2 2kD y  can be found in Equation (II-1.3) and (II-1.4) 

in Section 1.2.3, with 1 12y pd  for bivalent pairing and 1 14y pd  for quadrivalent pairing. 

In autotetraploids with bivalent pairing during meiosis, there are two sets of paired 

chromosomes,  1 2 1 2Pr , , ,k k m d d  can be calculated by noting independence of the crossover 

events between the created bivalents as 

       1 2

' ' ' '' '
1 2 1 1 2 21 2

1 2 1 22 0 0

1
' '

k k

k k k k k kk k
I D y D y I I D y D y I

p   
        
                  (II-1.27) 

where 2l ly pd  for bivalent pairing, '

lk  indicates the number of crossovers occurring on the 

first chromatid among the lk  crossover events. 

In autotetraploids with quadrivalent pairing during meiosis, all the chromosomes paired together 

to form one pairing bundle. The probability of k1 crossovers occurring between markers A and B, 

and k2 crossovers between markers B and C along chromosomes,  1 2 1 2Pr , , ,k k m d d , is given 

by: 

   
1 21 2

1
'k kI D y D y I

p
                      (II-1.28) 
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where 4l ly pd . 

 

1.3.2. Prediction of diploid gamete mode distribution, 1 2

1 2 1 2

, , ,

/

I I e e

i i j jC    

Given the probability distribution of crossover events along the three marker loci, we can 

proceed to calculate the probability distribution of gamete mode,
1 2

1 2 1 2

, , ,

/

I I e e

i i j jC  
, under bivalent 

pairing or quadrivalent pairing during meiosis. Here I  or I  equals to 1 or 0, indicating the 

presence or absence of double reduction for the first marker of the first or second interval. 1e  

and 2e  indicate the 
1

the  and 
2

the  two-locus gamete mode corresponding to the recombination 

configuration of the gamete 1 2 1 2i i j j . In autotetraploids, we denote a recombination 

configuration of a diploid gamete by  1 2 1 2C i i j j , which is made up of recombination 

configuration  1 1 1/Y i j  within the first marker interval of the two chromatids in the gamete 

and recombination configuration  2 2 2/Y i j  within the second  marker interval of the two 

chromatids in the gamete. Here, i1 (or i2) takes a value of 1 if recombination occurs in the first 

(or second) chromosomal interval on one strand, and zero otherwise. Similarly, j1 (or j2) 

indicates recombination events in the first (or second) chromosomal intervals on the other strand. 

Let 1

1 1 1

,

/ ,

I k

i j eo   denotes the probability of 
1 1 1/ ,

I

i j eG  , the 
1

the  two-locus gamete mode with recombination 

configuration of  1 1 1/Y i j  given k1 crossovers occurring in the first marker interval. Similarly, 
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2

2 2 2

,

/ ,

I k

i j eo   denotes the probability of
2 2 2/ ,

I

i j eG  , the 
2

the  two-locus gamete mode with recombination 

configuration of  2 2 2/Y i j  given k2 crossovers occurring in the second marker interval.  

For bivalent pairing, there are four different two-locus gamete modes as summarized in Table II-

1.2. It is clear to see if no crossovers occur, all marker intervals will be non-recombinants. 

Mather (1935) demonstrated that under the assumption of no chromatid interference, if there are 

1k   crossovers between two markers, then the probability for the two markers to be 

recombinant on any given single strand is expected to be ½ for bivalents. In autotetraploids with 

bivalent pairing, a total of k crossovers within a marker interval will be assigned across the two 

bivalents with k’ crossovers on one bivalent and k-k’ crossovers on the other bivalent, as shown 

in Equation (II-1.27). Thus, the frequency of two- locus gamete modes, 
,

/ ,

I k

i j eo  , depends not only 

on k but also on k’, as summarized in Table II-1.2.  
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Table II-1.2. Two-locus gamete modes under bivalent pairing in an autotetraploid meiosis 

Recombination 

configuration (Y) 

The eth 

gamete 

mode 

Gamete modes 

(1 , , , 4i j k l  ) 

Frequency of two-locus gamete mode given k crossovers occurring 

 

0k   1k   

 
  

 and   

0/0 1 
  

1 1/2 1/2 1/4 

0/1 1 
  

0 1/2 0 1/4 

1/0 1 
  

0 0 1/2 1/4 

1/1 1 
  

0 0 0 1/4 

 

Here  indicates the number of crossovers occurring on the first chromatid among the  crossover events. 

' 0k  'k k ' 0k  'k k

/i i j jA B A B 0,

0/0,1

ko

/i i j lA B A B 0,

0/1,1

ko

/i k j jA B A B 0,

1/0,1

ko

/i k j lA B A B 0,

1/1,1

ko

'k k
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For quadrivalent pairing, there are five different two-locus gamete modes involving double-

reduction and ten different two-locus gamete modes involving no-double-reduction, as 

summarized in Table II-1.3.  

Table II-1.3.  Two-locus gamete modes under quadrivalent pairing with or without double 

reduction in an autotetraploid meiosis 

Double Reduction ( ) 

Recombination 

configuration (Y) 

The eth 

gamete 

mode 

Gamete modes 

( ) 

Frequency of  two-locus 

gamete mode given k 

crossovers occurring 

0/0 1 
 

 

0/1 1 
 

 

1/0 1 
 

 

1/1 1 
 

 

2 
 

 

No Double Reduction ( ) 

Recombination 

configuration (Y) 

The eth 

gamete 

mode 

Gamete modes 

( ) 

Frequency of  two-locus 

gamete mode given k 

crossovers occurring 

0/0 1 
 

 

0/1 1 
 

 

2 
 

 

1/0 1 
 

 

2 
 

 

1/1 1 
 

 

2 
 

 

3 
 

 

4 
 

 

5 
 

 

 

1I 

1 , , , 4i j k l 

/i i i iA B A B 1,

0/0,1

ko

/i i i jA B A B 1,

0/1,1

ko

/i j i iA B A B 1,

1/0,1

ko

/i j i jA B A B 1,

1/1,1

ko

/i j i kA B A B 1,

1/1,2

ko

0I 

1 , , , 4i j k l 

/i i j jA B A B 0,

0/0,1

ko

/i i j iA B A B 0,

0/1,1

ko

/i i j kA B A B 0,

0/1,2

ko

/i j j jA B A B 0,

1/0,1

ko

/i k j jA B A B 0,

1/2,2

ko

/i j j iA B A B 0,

1/1,1

ko

/i j j kA B A B 0,

1/1,2

ko

/i k j iA B A B 0,

1/1,3

ko

/i k j kA B A B 0,

1/1,4

ko

/i k j lA B A B 0,

1/1,5

ko
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To calculate the probability distribution of two-locus gamete modes with k crossovers occurring 

under quadrivalent pairing, we have first to calculate the transition probability from gamete 

modes with k crossovers occurring within the interval to gamete modes with k-1 crossovers 

occurring with diagrammatic demonstration as follows. 

During meiosis in autotetraploids under quadrivalent pairing, crossovers may occur between any 

two non-sister chromatids, which leads to twenty-four different crossovers as shown in Figure 

II-1.2. 

 

Figure II-1.2. Twenty-four different crossovers between any two non-sister chromatids in 

autotetraploids with quadrivalent pairing 

 

Here the eight solid lines with different colors represent four duplicated chromosomes in autotetraploids, 

flanking by markers A and B. The black forks in dotted lines indicate twenty-four different crossovers 

involving any two non-sister chromatids. 
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As listed in Table II-1.3, there are five different two-locus gamete modes involving double 

reduction and ten different two-locus gamete modes not involving any double reduction. The 

expected frequency of a particular gamete mode,  , given k crossovers is difficult to 

calculate directly. However, a recurrent relationship can readily be found for  of gametes 

with or without any double reduction gametes by considering the fate of two chromatids that 

would form the gamete. 

1. Double reduction occurs on the first locus of the interval

For illustration purposes but without loss of generality, regarding only one pair of A alleles on 

the sister chromatids, e.g. A1 on strand 1 and strand 2 in Figure II-1.2, the expected frequency 

  is equivalent to the probability of the gamete with two alleles A1 on strand 1 and strand 2 

having the gamete mode after k crossovers occurring between two loci. To obtain the 

recurrent relationship, we consider the crossover configuration after k-1 crossovers between the 

two loci, and the effect of adding another crossover adjacent to these as follows. Here eight 

straight lines, indicated by four different colours (blue, red, green and yellow), represent eight 

duplicated chromosomes during meiosis.  The chromosomes with the same colour are the sister 

chromatids, between which crossing over could not occur. The black dotted forks indicate the kth 

crossover occurring during meiosis. 

 

 

 

,

/ ,

I k

i j to 

,

/ ,

I k

i j to 

I

,

/ ,

I k

i j to 

1

/ ,i j tG
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1.1.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in three 

different gamete modes as shown above.  

 

 

 

 

 

1

0/0,1G

1

0/0,1G
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1.2.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in five 

different gamete modes as shown above.  

 

 

 

 

 

1

0/1,1G

1

0/1,1G
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1.3.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in five 

different gamete modes as shown above.  

 

 

 

1

1/0,1G

1

1/0,1G
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1.4.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in four 

different gamete modes as shown above.  

 

 

 

 

1

1/1,1G

1

1/1,1G
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1.5.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in four 

different gamete modes as shown above.  

 

 

 

1

1/1,2G

1

1/1,2G
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2. No double reduction occurs on the first locus of the interval

For illustration purposes but without loss of generality, regarding only one pair of alleles on the 

non-sister chromatids, e.g. A1 and B1 on strand 1 and strand 3 in Figure II-1.2, the expected 

frequency   is equivalent to the probability of the gamete with two alleles A1 and B1 on 

strand 1 and strand 3 having the gamete mode after k crossovers occurring between two 

loci. To obtain the recurrent relationship, we consider the crossover configuration after k-1 

crossovers between the two loci, and the effect of adding another crossover adjacent to these as 

follows. Similarly, here eight straight lines, indicated by four different colours (blue, red, green 

and yellow), represent eight duplicated chromosomes during meiosis.  The chromosomes with 

the same colour are the sister chromatids, between which crossing over could not occur. The 

black dotted forks indicate the kth crossover occurring during meiosis. 

 

 

 

 

 

 

 

 

I

,

/ ,

I k

i j to 

0

/ ,i j tG
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2.1.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in six 

different gamete modes as shown above.  

0

0/0,1G

0

0/0,1G
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2.2.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in five 

different gamete modes as shown above.  

 

0

0/1,1G

0

0/1,1G
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2.3.After k-1 crossovers, the gamete mode is  

  

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in seven 

different gamete modes as shown above.  

0

0/1,2G

0

0/1,2G
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2.4.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in five 

different gamete modes as shown above.  

 

0

1/0,1G

0

1/0,1G
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2.5.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in seven 

different gamete modes as shown above.  

0

1/0,2G

0

1/0,2G
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2.6.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in six 

different gamete modes as shown above.  

0

1/1,1G

0

1/1,1G
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2.7.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in seven 

different gamete modes as shown above.  

0

1/1,2G

0

1/1,2G
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2.8.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in seven 

different gamete modes as shown above. 

0

1/1,3G

0

1/1,3G
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2.9.After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in six 

different gamete modes as shown above. 

0

1/1,4G

0

1/1,4G
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2.10. After k-1 crossovers, the gamete mode is  

 

If the gamete mode is  after k-1 crossovers, adding the kth crossover would result in six 

different gamete modes as shown above. 

0

1/1,5G

0

1/1,5G
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All these diagrams above (1.1-1.5, 2.1-2.10) illustrate the transition probabilities and are 

summarized in Table II-1.4. Let  and  represent the vector for probability distribution of 

gamete modes after k crossovers with or without double reduction on the first marker locus, 

                     (II-1.29) 

and             (II-1.30) 

Matrices T1 and T0 represent the transition probability from gamete modes with k-1 crossovers 

occurring to gamete modes with k crossovers occurring with or without double reduction on the 

first marker locus, detailed as: 

   

and       

1

kO 0

kO

1, 1, 1, 1, 1,

1 0/0,1 0/1,1 1/0,1 1/1,1 1/1,2

T
k k k k k kO o o o o o   

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 0/0,1 0/1,1 0/1,2 1/0,1 1/0,2 1/1,1 1/1,2 1/1,3 1/1,4 1/1,5

T
k k k k k k k k k k kO o o o o o o o o o o   

1

1 1 1 0 0
2 24 24

171 1 1 1
4 24 24 12 12

171 1 1 1
4 24 24 12 12

1 1 1 10
24 24 2 12

31 1 10
6 6 3 4

T

 
 
 
 
 
 
 
 
 
  

0

13 1 1 1 1 1 0 0 0 0
24 12 12 12 12 24

1 1 1 1 10 0 0 0 0
24 2 24 24 24

51 1 1 1 1 10 0 0
6 6 8 12 24 12 12

1 1 1 1 10 0 0 0 0
24 2 24 24 24

51 1 1 1 1 10 0 0
6 6 8 24 12 12 12

131 1 1 1 10 0 0 0
24 12 12 24 12 12

51 1 1 1 1 10 0 0
12 6 24 6 8 12 12

51 1 1 1 1 10 0 0
6 24 12 6 8 12 12

1 1 1 1 1 10 0 0 0
24 24 24 24 2 12

1 10 0 0
12 1

T 

71 1 10
2 12 12 6 12

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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Table II-1.4. Transition probability from gamete modes with k-1 crossovers occurring to gamete modes with k crossovers 

occurring 

Double reduction on the first marker locus 

 

 

0/0 0/1 1/0 1/1 
 

    

0/0  1/2 1/4 1/4 0 0 

0/1  1/24 17/24 1/24 1/24 1/6 

1/0  1/24 1/24 17/24 1/24 1/6 

1/1 
 0 1/12 1/12 1/2 1/3 

 0 1/12 1/12 1/12 3/4 

No double reduction on the first marker locus 

 

 

0/0 0/1 1/0 1/1 

  

     

 

  

0/0  13/24 1/24 1/6 1/24 1/6 1/24 0 0 0 0 

0/1 
 1/12 1/2 1/6 0 0 1/12 0 1/6 0 0 

 1/12 1/24 5/8 0 0 0 1/12 1/24 1/24 1/12 

1/0 
 1/12 0 0 1/2 1/6 1/12 1/6 0 0 0 

 1/12 0 0 1/24 5/8 0 1/24 1/12 1/24 1/12 

1/1 

 1/24 1/24 0 1/24 0 13/24 1/6 1/6 0 0 

 0 0 1/12 1/24 1/24 1/12 5/8 0 1/24 1/12 

 0 1/24 1/24 0 1/12 1/12 0 5/8 1/24 1/12 

 0 0 1/12 0 1/12 0 1/12 1/12 1/2 1/6 

 0 0 1/12 0 1/12 0 1/12 1/12 1/12 7/12 

1k k /i i i iA B A B /i i i jA B A B /i j i iA B A B /i j i jA B A B /i j i kA B A B

/i i i iA B A B

/i i i jA B A B

/i j i iA B A B

/i j i jA B A B

/i j i kA B A B

1k k /i i j jA B A B /i i j iA B A B /i i j kA B A B /i j j jA B A B /i k j jA B A B /i j j iA B A B /i j j kA B A B /i k j iA B A B /i k j kA B A B /i k j lA B A B

/i i j jA B A B

/i i j iA B A B

/i i j kA B A B

/i j j jA B A B

/i k j jA B A B

/i j j iA B A B

/i j j kA B A B

/i k j iA B A B

/i k j kA B A B

/i k j lA B A B
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Then the probability distribution of gamete modes after k crossovers occurring within the 

marker interval under quadrivalent pairing in autotetraploids can be calculated as 

                      (II-1.31) 

and                    (II-1.32) 

where  and .   

It can be seen from the demonstration above that the probability distribution of two-locus 

gamete modes is only related to the double reduction event on the first marker locus and the 

number of crossover events within the marker interval.  Thus the probability distributions of 

two-locus gamete modes of any pairs of markers are independent with each other. Take three 

linked loci into consideration, the probability distribution of gamete modes on three loci, 

, can be calculated as   

                (II-1.33) 

where  can be obtained from Equation (II-1.27) for bivalent pairing and 

Equation (II-1.28) for quadrivalent pairing, and can be obtained in Table II-1.2 for 

bivalent pairing and in Equation (II-1.31) and (II-1.32) for quadrivalent pairing. 
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1.3.3. Prediction of probability distribution of marker phenotypes at 

three loci,  

For simplicity but without loss of generality, a three-locus genotype of an autotetraploid parent 

can be represented by . During gametogenesis, gametes can be 

divided into 16 or 125 categories according to different gamete modes for bivalent pairing (or 

quadrivalent pairing) as summarized Table II-1.5 (or Table II-1.6). A general formula for the 

frequency of these gametes can be expressed as: 

                 (II-1.34) 

where is a constant which equals to 1/12 for bivalent pairing and takes various values such as 

36/144, 12/144, 12/144, …, 6/144 as shown in the last column of Table II-1.6  under 

quadrivalent pairing.  represents the coefficient of double reduction under quadrivalent 

pairing, while there is no such term for bivalent pairing.  takes the value of 1 or 0, indicating 

the presence or absence of double reduction on locus A. can be calculated by 

Equation (II-1.33) 

For any individual with a particular three-locus genotype rather than the generic genotype, the 

probability of a gamete genotype can be worked out on the basis of Table II-1.5 or Table II-1.6 

through the following formulation  

                    (II-1.35) 

if
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where indicates the sum over the frequencies of all those gametes k that correspond to the 

same gametic genotype i.  

 

Table II-1.5. Probability distribution of the modes of gamete formation and gamete 

genotypes at three linked loci of an autotetraploid species with bivalent pairing 

In the case of bivalent pairing, three equally likely pairs of bivalents can be generated for parent

, as follows , 

, and , where || is used to 

distinguish paired homologous chromosomes. For a given pairs of bivalents, gamete genotypes 

at three loci gametes can be classified into 16 categories as follows 

Recombination 

configuration 

for the first 

interval  

( ) 

Recombination 

configuration 

for the second 

interval 

( ) 

Gametes 

(i,j,k,l =1,2,3,4) 
Frequency 

Probabilities 

Modes Gametes 

0/0 

0/0  4   

0/1  4   

1/0  4   

1/1  4   

0/1 

0/0  4   

0/1  4   

k i

1 1 1 2 2 2 3 3 3 4 4 4A B C A B C A B C A B C
1 1 1 2 2 2 3 3 3 4 4 4A B C A B C A B C A B C

1 1 1 3 3 3 2 2 2 4 4 4A B C A B C A B C A B C 1 1 1 4 4 4 2 2 2 3 3 3A B C A B C A B C A B C

1 1/i j 2 2/i j

i i i j j jA BC A B C 0,0,1,1

00/00C 0,0,1,1

00/00 4C

i i i j j lA BC A B C 0,0,1,1

00/01C 0,0,1,1

00/01 4C

i i k j j jA BC A B C 0,0,1,1

01/00C 0,0,1,1

01/00 4C

i i k j j lA BC A B C 0,0,1,1

01/01C 0,0,1,1

01/01 4C

i i i j l lA BC A B C 0,0,1,1

00/10C 0,0,1,1

00/10 4C

i i i j l jA BC A B C 0,0,1,1

00/11C 0,0,1,1

00/11 4C
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1/0  4   

1/1  4   

1/0 

0/0  4   

0/1  4   

1/0  

4 
  

1/1  

4 
  

1/1 

0/0  

4 
  

0/1  

4 
  

1/0  

4 
  

1/1  

4 
  

 

 

  

 

 

 

 

 

i i k j l lA BC A B C 0,0,1,1

01/10C 0,0,1,1

01/10 4C

i i k j l jA BC A B C 0,0,1,1

01/11C 0,0,1,1

01/11 4C

i k k j j jA B C A B C 0,0,1,1

10/00C 0,0,1,1

10/00 4C

i k k j j lA B C A B C 0,0,1,1

10/01C 0,0,1,1

10/01 4C

i k i j j jA B C A B C 0,0,1,1

11/00C 0,0,1,1

11/00 4C

i k i j j lA B C A B C 0,0,1,1

11/01C 0,0,1,1

11/01 4C

i k k j l lA B C A B C 0,0,1,1

10/10C 0,0,1,1

10/10 4C

i k k j l jA B C A B C 0,0,1,1

10/11C 0,0,1,1

10/11 4C

i k i j l lA B C A B C 0,0,1,1

11/10C 0,0,1,1

11/10 4C

i k i j l jA B C A B C 0,0,1,1

11/11C 0,0,1,1

11/11 4C
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Table II-1.6. Probability distribution of the modes of gamete formation and gamete genotypes at three linked loci of an autotetraploid 

species with quadrivalent pairing 

Double 

reduction 

on locus 

A ( ) 

Double 

reduction 

on locus 

B ( ) 

Recombination 

configuration 

for the first 

interval  

( ) 

Recombination 

configuration 

for the second 

interval 

( ) 

Number 

Gametes ( ) Frequency 

Probability 

  Mode Gametes 

1 1 

0/0 0/0 1 1  4   

0/0 0/1 1 1  12   

0/0 1/0 1 1  12   

0/0 1/1 

1 1  12   

1 2  24   

1/1 0/0 1 1  12   

1/1 0/1 1 1  12, 24   

1/1 1/0 1 1  12, 24   

1/1 1/1 1 1  12, 24   

I I
1 1/i j 2 2/i j

, , , 1,2,3,4i j k l 

1e 2e

/i i i i i iA BC A BC 1,1,1,1

00/00C 1,1,1,1

00/0036 144C

/i i i i i jA BC A BC 1,1,1,1

00/01C 1,1,1,1

00/0112 144C

/i i j i i iA BC A BC 1,1,1,1

01/00C 1,1,1,1

01/0012 144C

/i i j i i jA BC A BC 1,1,1,1

01/01C 1,1,1,1

01/0112 144C

/i i j i i kA BC A BC 1,1,1,2

01/01C 1,1,1,2

01/016 144C

/i j j i j jA B C A B C 1,1,1,1

10/10C 1,1,1,1

10/1012 144C

/ , /i j j i j i i j j i j kA B C A B C A B C A B C 1,1,1,1

10/11C 1,1,1,1

10/114 144C

/ , /i j i i j j i j k i j jA B C A B C A B C A B C 1,1,1,1

11/10C 1,1,1,1

11/104 144C

/ , /i j i i j i i j k i j kA B C A B C A B C A B C 1,1,1,1

11/11C 1,1,1,1

11/114 144C
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1 2  24, 24, 24                           

1 0 

0/1 0/0 1 1  12   

0/1 0/1 

1 1  12   

1 2  24   

0/1 1/0 

1 1  12   

1 2  24   

0/1 1/1 

1 1  12   

1 2  24   

1 3  24   

1 4  24   

1 5  24   

1/0 0/0 1 1  12   

1/0 0/1 1 1  12   

/ , /

/

i j i i j k i j k i j i

i j k i j l

A B C A B C A B C A B C

A B C A B C

1,1,1,2

11/11C 1,1,1,2

11/112 144C

/i i i i j jA BC A B C 1,0,1,1

00/10C 1,0,1,1

00/1012 144C

/i i i i j iA BC A B C 1,0,1,1

00/11C 1,0,1,1

00/1112 144C

/i i i i j kA BC A B C 1,0,1,2

00/11C 1,0,1,2

00/116 144C

/i i j i j jA BC A B C 1,0,1,1

01/10C 1,0,1,1

01/1012 144C

/i i k i j jA BC A B C 1,0,1,2

01/10C 1,0,1,2

01/106 144C

/i i j i j iA BC A B C 1,0,1,1

01/11C 1,0,1,1

01/1112 144C

/i i j i j kA BC A B C 1,0,1,2

01/11C 1,0,1,2

01/116 144C

/i i k i j iA BC A B C 1,0,1,3

01/11C 1,0,1,3

01/116 144C

/i i k i j kA BC A B C 1,0,1,4

01/11C 1,0,1,4

01/116 144C

/i i k i j lA BC A B C 1,0,1,5

01/11C 1,0,1,5

01/116 144C

/i j j i i iA B C A BC 1,0,1,1

10/00C 1,0,1,1

10/0012 144C

/i j j i i jA B C A BC 1,0,1,1

10/01C 1,0,1,1

10/0112 144C
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1 2  24   

1/0 1/0 

1 1  12   

1 2  24   

1/0 1/1 

1 1  12   

1 2  24   

1 3  24   

1 4  24   

1 5  24   

1/1 0/0 2 1  24   

1/1 0/1 

2 1  24   

2 2  24, 24   

1/1 1/0 

2 1  24   

2 2  24, 24   

1/1 1/1 2 1  24   

/i j j i i kA B C A BC 1,0,1,2

10/01C 1,0,1,2

10/016 144C

/i j i i i iA B C A BC 1,0,1,1

11/00C 1,0,1,1

11/0012 144C

/i j k i i iA B C A BC 1,0,1,2

11/00C 1,0,1,2

11/006 144C

/i j i i i jA B C A BC 1,0,1,1

11/01C 1,0,1,1

11/0112 144C

/i j i i i kA B C A BC 1,0,1,2

11/01C 1,0,1,2

11/016 144C

/i j k i i jA B C A BC 1,0,1,3

11/01C 1,0,1,3

11/016 144C

/i j k i i kA B C A BC 1,0,1,4

11/01C 1,0,1,4

11/016 144C

/i j l i i kA B C A BC 1,0,1,5

11/01C 1,0,1,5

11/016 144C

/i j j i k kA B C A B C 1,0,2,1

10/10C 1,0,2,1

10/106 144C

/i j j i k jA B C A B C 1,0,2,1

10/11C 1,0,2,1

10/116 144C

/ , /i j j i k i i j j i k lA B C A B C A B C A B C 1,0,2,2

10/11C 1,0,2,2

10/113 144C

/i j k i k kA B C A B C 1,0,2,1

11/10C 1,0,2,1

11/106 144C

/ , /i j i i k k i j l i k kA B C A B C A B C A B C 1,0,2,2

11/10C 1,0,2,1

11/103 144C

/i j k i k jA B C A B C 1,0,2,1

11/11C 1,0,2,1

11/116 144C
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2 2  24, 24   

2 3  24, 24   

2 4  24, 24   

2 5  24, 24   

0 1 

0/1 0/0 1 1  12   

0/1 0/1 1 1  12, 24   

0/1 1/0 1 1  12, 24   

0/1 1/1 

1 1  12, 24   

1 2  24, 24, 24   

1/0 0/0 1 1  12   

1/0 0/1 1   1  12, 24   

1/0 1/0 1 1  12, 24   

1/0 1/1 1 1  12, 24   

/ , /i j k i k i i j k i k lA B C A B C A B C A B C 1,0,2,2

11/11C 1,0,2,2

11/113 144C

/ , /i j i i k j i j l i k jA B C A B C A B C A B C 1,0,2,3

11/11C 1,0,2,3

11/113 144C

/ , /i j i i k i i j l i k lA B C A B C A B C A B C 1,0,2,4

11/11C 1,0,2,4

11/113 144C

/ , /i j i i k l i j l i k iA B C A B C A B C A B C 1,0,2,5

11/11C 1,0,2,5

11/113 144C

/i i i j i iA BC A BC   0,1,1,1

00/101 C   0,1,1,1

00/1012 1 144C

/ , /i i i j i j i i i j i kA BC A BC A BC A BC   0,1,1,1

00/111 C   0,1,1,1

00/114 1 144C

/ , /i i j j i i i i k j i iA BC A BC A BC A BC   0,1,1,1

01/101 C   0,1,1,1

01/104 1 144C

/ , /i i j j i j i i k j i kA BC A BC A BC A BC   0,1,1,1

01/111 C   0,1,1,1

01/114 1 144C

/ , /

/

i i j j i k i i k j i j

i i k j i l

A B C A B C A B C A B C

A B C A B C
  0,1,1,2

01/111 C   0,1,1,2

01/112 1 144C

/i j j j j jA B C A B C   0,1,1,1

10/001 C   0,1,1,1

10/0012 1 144C

/ , /i j j j j i i j j j j kA B C A B C A B C A B C   0,1,1,1

10/011 C   0,1,1,1

10/014 1 144C

/ , /i j i j j j i j k j j jA B C A B C A B C A B C   0,1,1,1

11/001 C   0,1,1,1

11/004 1 144C

/ , /i j i j j i i j k j j kA B C A B C A B C A B C   0,1,1,1

11/011 C   0,1,1,1

11/014 1 144C



Part II: Theory and methods for analysis for crossovers during meiosis in autotetraploids       Chapter II-1 

Page 212 of 267 
 

1 2  24, 24, 24   

1/1 0/0 4 1  12   

1/1 0/1 4 1  24, 24, 24   

1/1 0/1 4 1  24, 24, 24   

1/1 1/1 

4 1  12, 12, 12   

4 2  

12, 12, 12 

12, 12, 12 
  

0 0 

0/0 0/0 1 1  6   

0/0 0/1 

1 1  12   

1 2  24   

0/0 1/0 1 1  12   

/ , /

/

i j i j j k i j k j j i

i j k j j l

A B C A B C A B C A B C

A B C A B C
  0,1,1,2

11/011 C   0,1,1,2

11/012 1 144C

/i k k j k kA B C A B C   0,1,4,1

10/101 C   0,1,4,1

10/1012 1 144C

/ , /

/

i k k j k i i k k j k j

i k k j k l

A B C A B C A B C A B C

A B C A B C
  0,1,4,1

10/111 C   0,1,4,1

10/112 1 144C

/ , /

/

i k i j k k i k j j k k

i k l j k k

A B C A B C A B C A B C

A B C A B C
  0,1,4,1

11/101 C   0,1,4,1

11/102 1 144C

/ , /

/

i k i j k i i k j j k j

i k l j k l

A B C A B C A B C A B C

A B C A B C
  0,1,4,1

11/111 C   0,1,4,1

11/114 1 144C

/ , /

/ , /

/ , /

i k i j k l i k l j k i

i k j j k l i k l j k j

i k i j k j i k j j k i

A B C A B C A B C A B C

A B C A B C A B C A B C

A B C A B C A B C A B C

  0,1,4,2

11/111 C   0,1,4,2

11/112 1 144C

/i i i j j jA BC A B C   0,0,1,1

00/001 C   0,0,1,1

00/0024 1 144C

/i i i j j iA BC A B C   0,0,1,1
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Under the assumption of random union of gametes from two parents, a general form for the 

frequency of zygote j, which is composed of gametes k and l from the two parental genotypes, 

may be expressed as: 

  

                

(II-1.36) 

By sorting the zygotes according to their genotypes, a general formula for the frequency of 

zygotic genotype i may be written as: 

                           (II-1.37) 

where  indicates the sum of the frequencies of all those zygotes made up of gamete k 

and gamete l, which correspond to the same zygotic genotype i. 

The phenotypic distribution of offspring from two parental autotetraploids can be derived by 

summing up the probabilities of those genotypes that result in the same phenotypes. A general 

formula for the probability of zygote phenotype i takes the form of: 

              

(II-1.38)

 

where  indicates sum over the frequencies of all zygote combined with gametes k and l 

that corresponding to the same zygotic genotype g and  indicates the sum over the 
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frequencies of all those zygotic genotypes g that correspond to the same phenotype i, 

,  .  

 

1.3.4. Maximum likelihood estimates of the model parameters 

The above statistical method predicts the unknown parameters m, , d1 and d2 in the model 

with the information of the given parental phenotypes at the three marker loci, P1 and P2, and the 

marker phenotypes of a full-sib family of n segregating offspring individuals from a cross 

between the parental lines, . It has been demonstrated previously (Luo et al 

2000) that genotypes of the two parental lines, G1 and G2, at each of the three loci, can be 

accurately estimated from P1, P2 and . The linkage phase of the parental 

genotypes can be predicted through searching all possible allelic combinations at the marker loci 

under a tetrasomic linkage analysis model as shown in (Luo et al 2004, 2006). To simplify 

formulation of the RI analysis, we focus here on and , the most likely estimated parental 

genotypes.  When the offspring can be classified into M phenotype categories, each with  

individuals, the likelihood function of the parameters  can be written as follows: 
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The logarithm of the likelihood is thus 

        

(II-1.40) 

In which 

 

 

To simplify the formulation below, we write 

               (II-1.41) 

which is the frequency of a three locus gamete mode, , on three loci given k 

crossovers occurring in the marker interval AB, 

and 
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which represents the frequency of a three locus gamete mode, , given k crossovers 

occurring in the marker interval BC. 

Since the interference coefficient m takes non-negative integer values, the maximum likelihood 

estimates of the other model parameters will be calculated based on a prior given m. We repeat 

the estimation procedure at different m values and determine the global MLEs of all parameters 

by comparing the likelihood function (Equation (II-1.39)) at these different parameter values. 

For a given value of m, we propose an EM algorithm to calculate the other model parameters. In 

particular, the expectation (E) step of the EM algorithm calculates the conditional probability 

that individuals of the ith phenotype carry  a total of k crossovers within the first marker interval, 

which are generated during meiosis of their two parents, .    

                       (II-1.43) 

Here k’ indicates the number of crossover events occurring during the meiosis of one parent and 

k-k’ indicates the number of crossover events occurring during meiosis of on the other parent. 

The conditional probability of individuals of the ith phenotype with a total of k crossovers from 

both parents within the second marker interval, , is: 

                      (II-1.44) 
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The conditional probability of individuals of the ith phenotype with k double-reduction gametes,

, is calculated as 

                                    (II-1.45) 

where  indicates the sum of the frequencies of zygotes consisting of gametes u and 

gamete v that also have the same genotype g and the number of double reduction gametes in 

each zygote, , is equal to k. 

Since each chromosomal strand has a chance of ¼ to be involved in each crossover under both 

the bivalent and quadrivalent pairing models, the M step updates the estimates of the parameters 

of genetic distances, which are defined as the expected number of crossovers occurring on a 

single chromatid within that interval, from: 

                     (II-1.46) 

                     (II-1.47) 

and estimates the coefficient of double reduction from 

                     (II-1.48) 
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The likelihood function increases monotonically as the E step and M step repeat and the 

parameter estimates converge to the MLEs conditional on the given integer parameter, m. We 

can infer the most likely coefficient of crossover interference, m, by examining the likelihood. 

                                                                                                                                                                                        

1.4. Simulation studies 

We conduct an intensive computer simulation study to test reliability of the theoretical analyses, 

the feasibility of implementing the methods developed here for data analysis, and to explore the 

statistical properties of the methods developed. The simulation model and programs mimic 

chromosome segregation and recombination during gametogenesis of an autotetraploid species 

under either bivalent or quadrivalent homologous chromosome pairing (Luo et al 2006). 

To demonstrate the theory and method for inference of crossover interference developed here, I 

simulated a full-sib family of 1000 individuals from crossing two diploid genotypes ABC/abc 

and ABC/abc, and two autotetraploid genotypes ABC/ABC/abc/abc and ABC/ABC/abc/abc with 

both bivalent pairing and quadrivalent pairing during meiosis.  Three sets of parameters were 

considered for each ploidy level and the means and standard errors (in brackets) of the MLEs 

based on 30 replicate simulations are shown in Table II-1.7.        

To speed up the computation in autotetraploids with quadrivalent pairing, we first estimated the 

coefficient of double reduction for locus A independently according to the offspring phenotype 

data for locus A. The phenotypic probability distribution of offspring generated from parents 

 is  for phenotype (1, 0),  for phenotype (1, 1) and AAaa AAaa  
2

1 2 36  
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 for phenotype (0, 1). Here 1 or 0 in the first (or second) element of the phenotype 

vector indicates the presence or absence of allele A (or a).  Then the likelihood function of 

offspring data can be calculated as  

               (II-1.49) 

where , or  denotes the number of individuals in phenotype category (1, 0), (1, 1) or (0, 1) 

and C is a constant.   

Setting the derivative of the likelihood with respect to  equal to 0, the likelihood function 

reaches to maximum at the most likely estimate of as: 

                     (II-1.50) 

Here . 

For a given estimated coefficient of double reduction, further estimation of other model 

parameters can be achieved more rapidly. The MLEs of the coefficient of interference, m, were 

searched from 0 to 5 based on 1000 offspring individuals. It can be seen from Table II-1.7 that 

all model parameters were predicted accurately and with reasonable precision. 
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Table II-1.7. Simulated parameters and means and standard errors (in brackets) of their 

MLEs 

   

  

  

  

Diploid 

0 - 0.15 0.15 
0.1333 

(0.0631) 
- 

0.1490 

（0.0023） 

0.1487 

（0.0195） 

1 - 0.15 0.15 
1.2000 

(0.1213) 
- 

0.1520 

（0.0019） 

0.1497 

（0.0021） 

2 - 0.15 0.15 
2.2000 

（0.2166） 
- 

0.1520 

（0.0016） 

0.1507 

（0.0018） 

Tetraploid1 

0 - 0.15 0.15 
0.2000 

（0.0884） 
- 

0.1511 

（0.0030） 

0.1487 

（0.0038） 

1 - 0.15 0.15 
1.1667 

（0.2095） 
- 

0.1511 

（0.0027） 

0.1534 

（0.0029） 

2 - 0.15 0.15 
2.1667 

（0.2673） 
- 

0.1526 

（0.0033） 

0.1475 

（0.0023） 

Tetraploid2 

0 0.1 0.15 0.15 
0.3333 

（0.0875） 

0.1007 

（0.0044） 

0.1487 

（0.0008） 

0.1508 

（0.0011） 

1 0.1 0.15 0.15 
1.2333 

(0.3096) 

0.1007 

（0.0044） 

0.1510 

(0.0021) 

0.1528 

(0.0013) 

2 0.1 0.15 0.15 
2.0667 

(0.3553) 

0.1007 

（0.0044） 

0.1502 

(0.0007) 

0.1522 

(0.0018) 

 

( ), ( ),  ( ) and  ( ) are simulated value (or MLEs) of the coefficient of interference, 

the coefficient of double reduction and genetic distances for the two consecutive marker intervals. Here 

Tetraploid1 represents autotetraploids with bivalent pairing during meiosis and Tetraploid2 represents 

autotetraploids with quadrivalent pairing. 
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1.5. Real data analysis 

In this section the model we have developed is implemented to fit three marker locus gamete 

data generated from both diploid and autotetraploid Saccharomyces cerevisiae on three different 

chromosomes 3, 6 and 8. Two haploid strains of budding yeast, YH1A and YL1C, were used to 

initiate creation of autotetraploid strains. YH1A is isogenic to the standard strain, s288c, and 

YL1C is a laboratory strain. The lithium acetate method was implemented to transform the three 

anti-biotic genes hphMX4 (anti-hygromycin B), natMX4 (anti-nourseothricin), kanMX4 

(anti_G418), into a given chromosome at pre-designed locations in the haploid strain YH1A 

with MATa. The transformation of the anti-biotic genes was repeatedly and respectively done in 

yeast chromosomes III, VI and VIII. The genetically modified haploid strain was then used to 

construct diploid and autotetraploid strains. Right after completion of meiosis, tetrads generated 

from the diploid and autotetraploid strains were dissected by use of a micromanipulator (Singer, 

MSM300). Single-colony cultures were patched on a YPD plate added with hygromycin B, a 

YPD plate added with nourseothricin, a YPD plate added with G418 and a standard YPD plate. 

Genotype of each spore was confirmed from whether it could grow on a plate added the 

corresponding anti-biotic. This part of experimental work was done by our collaborator from 

Fudan University in Shanghai, China. 

For each chromosome, parental genotypes for the three dominant marker loci are denoted by

 and  for both diploid and autotetraploid parents, where capital letter 

alleles are linked on the same chromosome. There are eight different phenotypes of gametes 

generated by the genotyping data as follows: , , , 

Aa Bb Cc Aaaa Bbbb Cccc

 1 1 1 1o   2 1 1 0o   3 1 0 1o 
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, , , , . Here the three 

elements in the vector represent the phenotyping results for the marker loci A, B and C, 

respectively. A value of 1 (or 0) indicates the presence (or absence) of capital letter alleles in the 

gametes for the corresponding loci. The observed counts of the different gamete phenotypes for 

the three chromosomes in both diploids and autotetraploids are listed in Table II-1.8.   

In the current study, the total n gametes generated by a diploid/autotetraploid parent can be 

classified into eight phenotype categories, each with ni individuals, the likelihood function of the 

parameters  can be written as follows: 

              (II-1.51) 

 

 4 0 1 1o   5 1 0 0o   6 0 1 0o   7 0 0 1o   8 0 0 0o 

 1 2, , ,m d d 
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Table II-1.8. Observed counts of gametes from S. cerevisiae data 

Phenotypes of gametes 
o1 o2 o3 o4 o5 o6 o7 o8 

Total 
111 110 101 011 100 010 001 000 

Chromosome  

3 

Diploids 346 136 21 63 61 15 137 349 1128 

Autotetraploids 430 176 30 66 66 22 158 476 1424 

 

Chromosome 

6 

Diploids 529 65 12 173 177 11 73 524 1564 

Autotetraploids 395 67 39 183 188 26 68 426 1392 

 

Chromosome 

8 

Diploids 382 87 30 147 143 30 87 382 1288 

Autotetraploids 390 120 38 145 150 32 115 406 1396 
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Here G denotes the known parental genotype on three linked loci, with  for diploids 

and  for autotetraploids. O represents the phenotype records of the n gametes 

on the three marker loci.  is the frequency of gamete with the ith phenotype. 

In analysis of diploids, the probability of the gamete with the ith phenotype can be calculated as 

                 (II-1.52) 

where Gh is a general form for frequency of the gametic genotype h defined in Equation (II-1.16) 

of Section 1.2.5 and means summing up  the probabilities of those genotypes that are 

compatible to the same phenotype i. 

To calculate the MLE of the model parameters d1 and d2 at any given value of m, the E-step 

calculates the conditional probability of k crossovers within the first marker interval in the 

gamete with the ith phenotype as 

              (II-1.53) 

and also the conditional probability of l crossovers within the second marker interval in the 

gamete with the ith phenotype as 

                 (II-1.54) 
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where is the number of gametes with recombination configuration within the ith 

gametic genotype class.  and  are defined in Section 1.2.6 on page 19 to 21. 

Since each strand made up of the four-strand bundle has a chance of ½ to be involved in each 

crossover in diploids, the M-step updates the estimates of the genetic distances from 

                       (II-1.55) 

                  (II-1.56) 

As the E-step and M-step repeated, the parameter estimates converge to the MLEs conditional 

for a given integer value of parameter, m.  

In analysis of autotetraploids, the probability of the gamete with the ith phenotype can be 

calculated as 

             (II-1.57) 

where Gh is a general form for frequency of the gametic genotype h defined in Equation (II-1.35) 

of Section 1.3.3. 

istw   X s t

k

sta k

stb

8
'

1

1 1

1

2
i ik

i k

d n k n
 

 
  

 
 

8
'

2

1 1

1

2
i ik

i k

d n k n
 

 
  

 
 

  , , , 1, 2,,
1 , , ,

' '1 u u u u uu

u u u u

I I I e eI

i h u u s t s t

h i h i u h h i u h

f G g C    


    

     



Part II: Theory and methods for analysis for crossovers during meiosis in autotetraploids       Chapter II-1 

Page 232 of 267 
 

The E-step of the EM algorithm calculates the conditional probability that gametes of the ith 

phenotype carry k crossovers generated during meiosis of parent within the first marker interval, 

.    

                          (II-1.58) 

Here  is defined in Equation (II-1.34) and can be calculated from Equation (II-

1.41). is the coefficient of double reduction and  takes value of 1 or 0 to represent 

presence or absence of double reduction on the first marker locus. 

The conditional probability of individuals of the ith phenotype with k crossovers from parent 

within the second marker interval, , is: 

                         (II-1.59) 

where  can be calculated from Equation (II-1.42). 

The conditional probability of gametes of the ith phenotype with k double-reduction gametes, , 

is calculated as 

                              (II-1.60) 

where  is given in Equation (II-1.33). 
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Since each chromosomal strand has a chance of ¼ to be involved in each crossover under both 

the bivalent and quadrivalent pairing models, the M step updates the estimates of the parameters 

of genetic distances from: 

                     (II-1.61) 

                     (II-1.62) 

and estimates the coefficient of double reduction from 

                     (II-1.63) 

The likelihood function increases monotonically as the E step and M step repeat and the 

parameter estimates converge to the MLEs conditional on the given integer parameter, m.  

For both diploids and autotetraploids, I calculated MLEs of parameters given values of m from 0 

to 5 and infer the most likely coefficient of crossover interference, m, by examining the 

likelihood. The results of statistical inference were shown in Table II-1.9 with estimated optimal 

m, genetic distances and coefficient of double reduction for autotetraploids with quadrivalent 

pairing. For autotetraploids, the analysis was carried out under the assumption of bivalent 

pairing (denoted as Tetraploids1) or quadrivalent pairing (denoted as Tetraploids2). 
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To test the goodness of fit under the proposed model, the Pearson chi-squared statistic,

, and corresponding P value were calculated (Table II-1.9). The test statistic is calculated as 

                (II-1.64) 

Here ni is the observed gamete counts of the ith phenotype category and n is the total number of 

generated gametes.  is the expected frequency of gamete with the ith phenotype under the 

model with MLEs of parameters and can be calculated according to Equation (II-1.52) for 

diploids and Equation (II-1.57) for autotetraploids. The degree of freedom is equal to 7. 

It can be seen that the model fitted well to the data from diploid yeast (high P values). A mild 

degree of crossover interference was observed on chromosomes 3 and 6 for which the MLE of 

the integer shape parameter, m, was larger than 0. In the analysis of autotetraploid data, the 

model fitted the data reasonably under the assumption of quadrivalent pairing, but the goodness 

of fit was notably improved under the assumption of bivalent pairing. We infer that bivalent 

pairing of chromosomes was more likely than quadrivalent pairing in this autotetraploid yeast.  

To test the significance of crossover interference along the three chromosomes when m 

exceeded 0 in either diploids or autotetraploids, the likelihood-ratio test statistic was calculated 

by: 
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Table II-1.9. Statistical inference of genetic parameters from data of diploid and 

autotetraploid S.cerevisiae  

Chromosome 3 

 m d1 d2  (P_value) 
Likelihood ratio 

test (P_value) 

Diploids 1 0.148 0.323  0.006 (1.000) 2.318 (0.130) 

Tetraploids1 0 0.150 0.391  0.142 (0.986) - 

Tetraploids2 0 0.203 0.547 0.028 3.413 (0.844) - 

Chromosome 6 

 m d1 d2  (P_value) 
Likelihood ratio 

test (P_value) 

Diploids 2 0.255 0.104  0.044 (0.998) 9.955 (0.002) 

Tetraploids1 0 0.493 0.169  0.151 (0.985) - 

Tetraploids2 0 0.679 0.236 0.001 8.354 (0.302) - 

Chromosome 8 

 m d1 d2  (P_value) 
Likelihood ratio 

test (P_value) 

Diploids 0 0.392 0.226  0.340 (0.952) - 

Tetraploids1 1 0.304 0.243  0.077 (0.994) 2.029 (0.150) 

Tetraploids2 0 0.504 0.400 0.000 9.278 (0.233)    - 

 

Here d1, d2 indicate the genetic distances for the first and second interval, respectively.  is the 

coefficient of double reduction  under quadrivalent pairing  of autotetraploids. Tetraploids1 represents the 

data set is analyzed under the assumption of bivalent pairing during meiosis, and tetraploids2 represents 

the data set is analysed under the assumption of quadrivalent pairing. 

 2

 2

 2


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As shown in Table II-1.9, significant crossover interference was found on chromosome 6 (P 

value 0.002) in diploid yeast with m equal to 2, but was absent in the corresponding 

autotetraploid with either bivalent or quadrivalent pairing assumptions (m=0). Correspondingly, 

we can see that compared with other chromosomes, the estimated genetic distances between 

markers on chromosome 6 showed a greater increase in the autotetraploids compared with 

diploids. 

 

1.6. Discussion  

Theoretical analysis of crossover interference has been a historically challenging area since 1915 

and an important topic in genome research (Sturtevant, 1915; Muller, 1916). Although some 

progress has been made in this field, the biological nature of crossover interference is still not 

adequately understood (Haldane, 1931; McPeek and Speed, 1995). The present study addresses 

some key problems in statistical inference of crossover interference in both diploids and 

autotetraploids. In diploids, Zhao et al (1995) have already proposed a  model which 

mathematically formulate crossover process and fitted well to genetic data from various 

organisms. In the present study, I extended this model to analyse three-locus data for 

autotetraploids and proposed an EM algorithm to obtain the MLE of model parameters.  

To address crossover interference in autotetraploids, I have developed a new model for the 

distribution of offspring genotypes from a cross between two parents at three linked loci in 

terms of the genetic distances of the two marker intervals, the coefficient of crossover 

interference and the coefficient of double reduction (where double reduction is present). This 

( )m

x oC C
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model takes into account several key properties of tetrasomic inheritance and can be applied to 

the case of both bivalent pairing and quadrivalent pairing meiosis. These features include alleles 

with multiple dosages, allelic segregation distortion due to double reduction, the existence of 

null alleles, homologous chromosome pairing pattern during meiosis, and incomplete 

information of phenotype in regard to genotype. The EM algorithm was developed to calculate 

the MLEs of the model parameters. This work has therefore filled a longstanding theoretical and 

methodological gap in the genetic analysis of crossover interference in autotetraploid species. 

The feasibility of our new method in parameter estimation from genetic data of diploid or 

autotetraploid species was demonstrated through extensive simulation analysis and the analysis 

of real data from large populations of diploid and autotetraploid species of the yeast 

Saccharomyces cerevisiae.  

In our model, the coefficient of crossover interference, m, has the same definition in both 

diploids and autotetraploids, which providing a convenient way to compare the degree of 

crossover interference between diploids species and their corresponding autotetraploid relatives. 

All flowering plants have experienced at least one polyploidization event during their 

evolutionary history (Jiao et al., 2011), and as such, polyploidization has been an important 

driving force in evolutionary of plants (Chen, 2007; Soltis and Soltis, 2009). Theoretical and 

experimental evidence suggests that recombination frequency is increased in autotetraploid 

plants compared with their parental diploids (Pecinka et al., 2011; Wang and Luo, 2012), but 

little is known about the underlying mechanism. The real data analysis in the present study 

described a direct comparison of crossover interference in diploids and their corresponding 

autotetraploid species. We found evidence for a decrease in the strength of crossover 

interference after polyploidization on one of the three chromosomes analysed, suggesting a new 
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hypothesis worthy of future exploration that an increase in recombination in autotetraploids 

compared with diploids could be explained by a corresponding decrease in the level of crossover 

interference.  

At the same time, this theoretical development in autotetraploids provides a way to calculate the 

probability distribution of two/three-locus gametes/zygotes in terms of the genetic distances 

between loci, the coefficient of double reduction and the coefficient of crossover interference, 

which would be helpful to incorporate varying degrees of crossover interference into the linkage 

analysis in autotetraploid species. 

In the current real data analysis, parental genotypes on three marker loci were very special and 

quite simple, which have only two different alleles and alleles denoted by capital letters are 

linked on the same chromosome. In this special case, the traditional method for inference of 

recombination interference could be applied to analyse the gamete data for autotetraploids under 

the assumption of bivalent pairing. Thus using the statistical method I proposed here to analyse 

this kind of data would cause another problem named over-paramerization. To have a better 

understanding of the change of crossover interference after polyploidization, it is better to have 

more general and larger dataset analysis in different autotetraploid species. 
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Chapter II-2: Predicting meiotic crossover rate in Saccharomyces 

cerevisiae based on the whole genome wide sequencing data analysis 

for autotetraploids  

2.1. Overview 

Polyploidization plays a very important role in the evolutionary history of plants in nature and 

under domestication (Soltis 1995, Otto 2000, Comai 2005). More and more evidence has been 

found to support that polyploidization would increase meiotic recombination frequency and 

result rapid creation of genetic diversity (Pecinka 2011, Wang 2011). To investigate the 

underlying genetic mechanism, we would like to understand the dynamic change of crossover 

events during meiosis after polyploidization. One aspect is to compare the meiotic crossover rate, 

defined as the expected number of crossover events occurring on a chromatid, between diploids 

and autotetraploids.    

Crossovers are essential for reciprocal exchange of genetic material during meiosis in most 

eukaryotes, which would result in the outcome recombination events. This process increases 

genetic diversity and is tightly regulated. In diploids, high-resolution mapping of crossover 

events can be achieved by monitoring recombination between closely located markers along a 

chromatid based on sequencing data (Mancera 2008). However, it is impractical to observe all 

the recombination events in autotetraploids due to the existence of multiplex alleles.   

In the context here I first proposed a likelihood-based method to predict crossover rate in 

autotetraploids. Second, we applied next generation sequencing approach to all four spores 
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derived from meiosis of both diploid and its related autotetraploid Saccharomyces cerevisiae 

and obtained a set of genotype data called from the intensely distributed SNP markers. Using 

our statistical inference method, we found that crossover rate significantly increased in 

autotetraploid yeast than that in diploid yeast.     

 

2.2. Methods  

We assume SNP markers were intensely distributed on a chromosome and at most only one 

crossover event may occur within a marker interval due to the high resolution. To make it 

comparable between diploids and autotetraploids, the crossover rate, p, is defined as the 

probability of occurring one crossover on a chromatid within the marker interval.  Consider a 

marker interval and we focused here gametogenesis of a diploid individual with genotype, 

AB/ab, and an autotetraploid individual with genotype, AB/ab/ab/ab, with A and B 

corresponding to s288c (SK1) alleles, and a and b to SK1 (or s288c) alleles in the autotetraploid 

strain s288c/SK1/SK1/SK1 (or SK1/s288c/s288c/s288c).  

 

2.2.1. Counting crossover events in diploids 

 In diploids, it is directly to observe crossover events according to the SNP marker genotypes of 

all spores in the tetrad called from sequence data. There are only two two-locus genotype 

categories for the tetrad:  for non-crossover and  for crossover.  For a 

particular chromatid, it can get involved into two different crossovers among the total four 

AAaa BBbb AAaa BbBb
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distinct crossovers.  To make it comparable, the expected number of crossover events on a 

chromatid equals to half of the number of marker intervals with crossover occurring. 

 

2.2.2. Predicting the average number of crossovers in 

autotetraploids 

In autotetraploids, although we can observe the genotype of tetrad on each marker locus from 

sequence data, we do not know whether alleles on consecutive markers are linked in coupling or 

in repulsion in the diploid spore.  Assume there are N marker intervals intensely distributed on a 

chromosome. The coefficient of double reduction at the flanking marker locus, which is nearer 

to the centromere, is denoted as and the probability of occuring a crossover event within a 

marker interval is p’. We considered the crossover occurring between all possible non-sister 

chromatids and all possible configurations of diploid gamete generation under a tetrasomic 

model, and worked out distribution of possible tetrads at the two marker loci in terms of and p’ 

as follows: 

During meiosis in autotetraploids under quadrivalent pairing, crossovers may occur between any 

two non-sister chromatids, which lead to twenty-four different crossovers as shown in Figure II-

2.1.  

 

 




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Figure II-2.1. Twenty-four different crossovers between any two non-sister chromatids in 

autotetraploids with quadrivalent pairing 

 

Here the eight solid lines with different colours represent four duplicated chromosomes in autotetraploids, 

flanking by markers A and B. The black forks in dotted lines indicate twenty-four different crossovers 

involving any two non-sister chromatids. 

 

1. No crossover occurs within the marker interval 

1.1. Double reduction occurs on locus A of the first chromosome 

In the case of no crossover occurring within the marker interval and double reduction occurring 

on locus A of the first chromosome, the outcome tetrad would be  
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and the corresponding probability is . 

 

1.2. No double reduction occurs on locus A of the first chromosome 

In the case of no crossover occurring within the marker interval and no double reduction 

occurring on locus A of the first chromosome, the outcome tetrad would be  

 

and the corresponding probability is . 

 

 1 'p 

  1 ' 1p  
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2. One crossover occurs within the marker interval 

2.1. Double reduction occurs on locus A of the first chromosome 

In the case of one crossover occurring within the marker interval and double reduction occurring 

on locus A of the first chromosome, there will be two different outcome tetrads depending on 

which two strands involved into the crossover. The first one is generated as 

 

 

and the corresponding probability is . ' 2p 
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The second one is generated as 

 

 

and the corresponding probability is . 

 

2.2. No double reduction occurs on locus A of the first chromosome 

In the case of one crossover occurring within the marker interval and no double reduction 

occurring on locus A of the first chromosome, there will be four different outcome tetrads 

depending on which two strands involved into the crossover. For illustration purpose but without 

' 2p 
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loss of generality, we consider that strand 1 and strand 3 would enter into the same spore, and 

strand 2 and strand 4 would enter into the same spore. The first one is generated as 

 

 

and the corresponding probability is . 

The second one is generated as 

 ' 1 12p 
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and the corresponding probability is . 

The third one is generated as 

 ' 1 3p 
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and the corresponding probability is . 

The fourth one is generated as 

 ' 1 2p 
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and the corresponding probability is . 

Based all the above possible configurations of tetrad generation under a tetrasomic model, I  

worked out distribution of phenotype of five possible tetrads at the two marker loci in term of 

and p’, which was listed as Table II-2.1. In the distribution, a tetrad phenotype was presented as 

two sequential integers representing two chromosomes. A non-zero integer in the sequence 

represented the number of A or B alleles and the four integers referred to the four spores. 

 ' 1 12p 


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Table II-2.1. Distribution of tetrad phenotype of two linked SNP markers generated from 

an autotetraploid parental strain AB/ab/ab/ab. 

Phenotype ni 
Underlying Spore Genotype 

Probability 

Spore1 Spore2 Spore3 Spore4 

2000/2000 n1 AA/BB aa/bb aa/bb aa/bb  

1100/1100 n2 Aa/Bb Aa/Bb aa/bb aa/bb  

2000/1100 n3 AA/Bb aa/Bb aa/bb aa/bb  

1100/0200 n4 Aa/bb Aa/BB aa/bb aa/bb  

1100/0110 n5 Aa/bb Aa/Bb aa/Bb  aa/bb  

Scoring on the four spores of the two loci tetrad follows the rules: 2 represents AA (BB), 1 represents 

Aa(Bb) and 0 represent aa(bb). Here  is the coefficient of double reduction on locus A and  is the 

probability of occurring a crossover event within the marker interval. 

 

For a sample of N two-locus tetrad phenotypes, let be the number of two-locus 

tetrad with the ith marker phenotype. Then the log-likelihood function of the model parameters 

and p can be written as 

  

       (II-2.1) 

 

 1 ' 2p 

  1 1 5 ' 12p 

' 2p

 1 ' 12p

 1 ' 3p
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The derivative of likelihood with respect to p equals to 

                (II-2.2) 

Let , the likelihood function reaches to maximum and we can get the most likely 

estimates of p’. Since , the normal equation is given by 

                                       (II-2.3) 

There are two roots for the equation above, 

          (II-2.4) 

      (II-2.5) 

Since a meaningful estimate of crossover rate should be fallen in the range of [0, 1], the most 

likely estimate of p’ equals to .  

In autotetraploids, there are two different kinds of two-locus tetrads: from the phenotype of the 

first one we can directly observe a crossover, which has a number of N1, and from the phenotype 

of the second we can only expect a crossover occurring underlying with a probability of , 

which has a number of ( ). The expected number of crossover events occurring among the 
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total N marker intervals should equal to . For a particular chromatid in 

autotetraploids, it can get involved into six different crossovers among the total twenty-four 

distinct crossovers. So the expected number of crossover events occur on a chromatid in 

autotetraploids equals to . 

 

2.3. Real data analysis 

The statistical method proposed was used to analyse a set of sequence data for all four meiotic 

products of diploid and autotetraploid yeast. Firstly, our collaborator used a haploid strain to 

construct diploid and autotetraploid strains. Diploid or autotetraploid strains were then 

sporulated in the way detailed as: Freshly created diploid and autotetraploid cells were streaked 

out to create single colonies on the YPD plate. After 2 days of colony development, 3 large and 

healthy colonies were patched on a new YPD plate and grew for 13.5 hours, then transferred to 

the SPM plate (1% KAC) and incubated at 30 ℃. Genomic DNA was then extracted from 

single-colony cultures of the tetrads and sheared into fragments with an average length of 200 

bp using the Covaris S220 (Duty Factor =10%, Intensity Peak Incident Power =140W, Cycles 

per Burst = 200, Processing Time = 180 seconds, Volume = 130 μl in microtubes). The DNA 

fragments were then purified by use of the QIAGEN minelute gel extraction kit. Sequencing 

library was prepared using the NEBNext Ultra DNA Library Prep Kit designed for illumine and 

whole genome sequencing was performed using an illumina Hiseq-2000 sequencer with a design 

to generate 2*100 bp paired reads. 

  '

1 1 2
ˆN N N p 
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1 1 2
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We achieved a detailed characterization of recombination outcomes by calling 30,000~60,000 

SNP marker in all four spores derived from four meiosis of diploid yeast and seven meiosis of 

autotetraploid yeast. To make them comparable, we have to consider the common markers 

among all the individuals, which reached to 8653. Since we assume that there is at most one 

crossover event occurring within the marker interval, effective marker intervals were selected 

with length between 2500 to 10000 bp and we got 1950 effective marker interval totally. 

Parental genotype on the markers can be represented by HS for all the diploid individuals and by 

HSSS (four samples) or HHHS (three samples) for the autotetraploid individuals.      

Crossover counting estimation under the model above was carried out on all the fifteen 

chromosomes (except chromosome 3 which has large DNA segment missing in some 

autotetraploid tetrads) of each individual and summarized in Table II-2.2. Applying general  
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Table II-2.2. Crossover rate estimation for both diploid and autotetraploid samples 

Chr 
Common 

marker 

Effective 

marker 

intervals 

HS1 HS2 HS3 HS4 HS5 HSSS1 HSSS2 HSSS3 HSSS4 HHHS1 HHHS2 HHHS3 

n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 

1 128 28 1 0.5 2 1 2 1 5 2.5 3 1.5 1 0.829 2 1.614 0 0 0 0 2 1.565 1 0.829 3 2.357 

2 637 154 3 1.5 1 0.5 3 1.5 3 1.5 2 1 5 4.129 2 1.684 3 2.515 4 3.338 3 2.443 3 2.447 6 4.96 

4 1137 284 5 2.5 7 3.5 6 5 7 3.5 8 4 6 5.024 5 4.197 3 2.531 5 4.197 7 5.723 7 5.846 3 2.503 

5 547 109 1 0.5 3 1.5 3 1.5 2 1 2 1 0 0 5 4.112 2 1.678 1 0.844 3 2.5 2 1.678 3 2.5 

6 446 62 2 1 3 1.5 1 0.5 0 0 1 0.5 0 0 2 1.661 2 1.661 2 1.661 0 0 0 0 3 2.463 

7 797 186 4 2 6 3 5 2.5 3 1.5 6 3 3 2.521 3 2.521 3 2.521 3 2.521 7 5.792 7 5.734 7 5.622 

8 466 103 0 0 1 0.5 1 0.5 2 1 5 2.5 2 1.677 5 4.104 3 2.498 1 0.844 0 0 2 1.677 2 1.677 

9 425 84 3 1.5 1 0.5 2 1 1 0.5 2 1 2 1.671 1 0.843 3 2.411 3 2.486 6 4.843 6 4.843 1 0.822 

10 344 90 0 0 1 0.5 2 1 3 1.5 3 1.5 2 1.673 4 3.293 3 2.49 3 2.49 1 0.843 4 3.277 2 1.673 

11 405 103 2 1 4 2 2 1 1 0.5 2 1 2 1.677 1 0.82 2 1.677 0 0 2 1.661 3 2.498 1 0.843 

12 707 175 2 1 5 2.5 6 3 4 2 5 2.5 9 7.341 3 2.493 4 3.345 2 1.587 5 3.999 5 4.164 5 4.164 

13 774 171 4 2 5 2.5 6 3 4 2 2 1 1 0.846 2 1.686 2 1.686 3 2.518 4 3.344 2 1.636 3 2.518 

14 137 25 1 0.5 0 0 2 1 0 0 0 0 0 0 1 0.826 0 0 1 0.826 0 0 1 0.826 3 2.334 

15 911 205 5 2.5 4 2 5 2.5 6 3 5 2.5 6 4.995 9 7.413 5 4.177 2 1.688 3 2.524 7 5.807 4 3.353 

16 792 171 3 1.5 3 1.5 5 2.5 8 4 6 3 6 4.974 5 4.162 5 4.162 3 2.518 5 4.162 4 3.221 6 4.974 

sum 8653 1950 36 18 46 23 49 24.5 49 24.5 52 26 45 37.36 50 41.43 40 33.35 33 27.52 48 39.40 54 44.48 52 42.76 
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Here n1 represents the observed number of crossover events on the chromosome and n2 represents the estimated average number of crossover events occurring on a 

chromatid.
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linear model analysis to the data indicates significant effects of chromosomes (p-value is 0.000), 

ploidy (p-value is 0.000) and their interaction (p-value is 0.049) on the outcome crossover 

events. Here R2 equals to 66.73%. According to Bonferroni method, there was no difference 

between two autotetraploid parental genotypes but they are different to diploids. From the real 

data analysis, we can see that crossover rate is statistically higher in autotetraploids than that in 

diploids.  

 

2.4. Discussion 

This chapter presents a likelihood-based method for estimating the crossover rate in 

autotetraploids using dense genetic marker data collected from all four products of meiosis, 

which takes properly account of essential features of tetrasomic inheritance. This method was 

designed specific to the data with parental genotypes of AB/ab/ab/ab in autotetraploids. I 

demonstrated the method by analysing the datasets of all meiotic products of diploid yeast and 

autotetraploid yeast. This method provides a way to compare crossover rate between diploids 

and the corresponding autotetraploids. The analysis result reveals obvious increase of crossover 

rate in autotetraploid yeast compared with that in the related diploid yeast, suggesting a new 

hypothesis that the overall crossover rate would increase after polyploidization. Subsequently, it 

could have effects on genetic diversity and promote adaptive evolutionary change. Although this 

method presented here was developed to analyse the current dataset, we can also expand the 

basic idea of the method to analyse various datasets with any parental genotypes of 

A1B1/A2B2/A3B3/A4B4 using a computer-based approach. This method also has some limitations 
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in real data analysis. For example, to compare crossover rate among different individuals, we 

have to choose common marker intervals among these sample. Thus as the sample size increases, 

it is more difficult to ensure sufficient common marker intervals distributing uniformly in the 

whole genome and it would require much higher sequencing depth in the samples. Even more, it 

is difficult to get perfect data set in practice, such as Chromosome 3 in current dataset analysis. 

Due to different large segments of DNA sequence missing during polyploidization, we can 

hardly find common marker intervals among all the individuals and have nothing to do but to 

discard data analysis for Chromosome 3. Such kind of missing data would probably causes bias 

in the comparison result and requires further consideration. 
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1.1. Summary of the project 

Polyploidy occurs widely in the evolutionary history of nearly all angiosperms (Jiao et al, 2011). 

Much evidence suggests that polyploidization of a genome could have profound long-term 

effects on genetic diversity and evolutionary success (Otto and Whitton 2000; Soltis and Soltis 

2000; Blanc and Wolfe 2004; Chen 2007; Otto S.P. 2007; Christian 2010). Besides playing an 

evolutionarily important role in many species, polyploidy is present in several economically 

important species, in both agriculture and aquaculture, such as cultivated potato, alfalfa, Atlantic 

salmon and trout. However, in contrast with diploid species, progress in statistical genetic 

analysis in polyploid species lags far behind due to much more complicated patterns of 

inheritance in polyploids, which create a significant challenge. Throughout the entire project, I 

developed several theoretical methods to accelerate progress in statistical genetic analysis in 

autotetraploid species. To give some insight into these fundamental questions in autotetraploids, 

I divided the thesis into two parts: Part I aimed to develop theory and methods in QTL analysis 

in autotetraploid species, which would provide tools for breeding programmes of the world’s 

third most important food crop, cultivated potato; Part II established methods of statistical 

analysis of crossover events in autotetraploids, giving some insight into the evolutionarily 

important role played by autotetraploidy.  

In Part I of the thesis, I first proposed and developed an orthogonal contrast scales based genetic 

model in Chapter I-1, for decomposing quantitative genetic effects into independent monogenic, 

digenic, trigenic, quadrigenic and various epistatic effects independently under tetrasomic 

inheritance. This quantitative genetics model outperforms its rivals in several aspects: first, this 

model properly takes account of the key features of tetrasomic inheritance, especially the 
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phenomenon of double reduction; second, it is general in its use for populations with various 

genetic structures; third, the bi-allelic model substantially reduces the number of parameters to 

allow fundamental analysis of genetic effects; finally, this quantitative genetic model has taken 

the existence of epistasis into consideration in both populations with linkage equilibrium or 

linkage disequilibrium. The property of orthogonality ensures that the various genetic effects 

can be estimated independently for any number of loci, which is essential for a model to be 

consistent and comparable across multiple loci. In addition, to solve the practical problem 

caused by the finite sample size in QTL mapping experiments, especially for the analysis of two 

or more loci, I proposed a reduced model to select a subset of statistically significant genetic 

effects. This progress provides a solid basis for QTL analysis by linking genetic effects of genes 

at QTL to phenotypes of quantitative traits.  

With the development of various high throughput technologies, several recent genome projects 

have been launched in economically and strategically important autotetraploid species, creating 

an urgent need for analytical tools to integrate genome sequence information collected from 

such projects with phenotypic data of quantitative traits. In Chapter I-2 of Part I, I proceeded to 

develop an interval mapping method for QTL analysis in autotetraploids. This method properly 

takes account of the key features of tetrasomic inheritance, including the phenomenon of double 

reduction and multiplex allele segregation. It is worthy of note that this work contributes the first 

method to successfully taking into account quadrivalent pairing during meiosis in QTL mapping 

for autotetraploids, which is an essential feature of tetrasomic inheritance. The quadrivalent 

pairing method was demonstrated to be more robust in the real data analysis than the 

corresponding bivalent pairing method. This advancement in the theoretical methods provides 

analytical tools to the recently launched genome projects in autotetraploids, which can be used 



Overall Discussion: Progress in the theoretical basis for statistical genetic analysis in autotetraploids 

 

Page 264 of 267 
 

to improve breeding efficiency for economically important autotetraploid species, such as 

cultivated potato. To further investigate the application of this method in QTL mapping in 

cultivated potato, I also simulated QTL analysis in whole potato genome. Using this single QTL 

mapping method, we can see that QTLs on different chromosomes can be adequately detected. 

However, this method still has some limitations when QTLs are closely linked on the same 

chromosome or if large amount of epistasis existing among QTLs. Thus it would be worthy of 

future work to develop methods to inferring multiple QTLs simultaneously. 

In Part II of the thesis, I developed statistical methods to investigate the process of 

recombination in autotetraploids, which is the key event in meiosis and enables generation of 

new combinations of chromosomes segments or alleles at different loci. In Chapter II-1, I 

established methods for statistical inference of crossover interference in autotetraploids under 

bivalent pairing and quadrivalent pairing during meiosis, properly taking account of the essential 

properties of tetrasomic inheritance. Theoretical analysis of crossover interference has been a 

historically challenging topic and very little work has been done in autotetraploids. I extended 

the ( )m

x oC C  model developed by Zhao et al (1995) to analyze three-locus gamete/zygote data for 

autotetraploids in terms of the genetic distances of the two marker intervals, the coefficient of 

crossover interference and the coefficient of double reduction. This work has therefore filled a 

longstanding theoretical and methodological gap in the genetic analysis of crossover 

interference in autotetraploid species. By comparing crossover interference in a real dataset 

collected from gametes of yeast, we found a decrease in the strength of crossover interference 

after polyploidization on one of three chromosomes studied, suggesting a new hypothesis 

worthy of future exploration to explain the observed increase of recombination in autotetraploids 

compared with diploids (Pecinka 2011, Wang 2011). 
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To further investigate the crossover events during meiosis in autotetraploids, in Chapter II-2 I 

proposed a likelihood-based method to predict crossover rate based on whole genome 

sequencing data collected from tetrads of autotetraploid meiosis. Taking advantage of the next 

generation sequencing approach, we can implement this method to analyze phenotype data 

collected from densely distributed SNP markers and estimate crossover rate at the genome level 

in autotetraploids. By analyzing a real dataset collected from diploid and its related 

autotetraploid Saccharomyces cerevisiae, we found that the crossover rate significantly 

increased in autotetraploid yeast compared with diploid yeast, providing further evidence that 

the increase of recombination frequency in autotetraploids may be partly due to an increase in 

crossover events at the genome level after polyploidization.   

All of the above progress in developing the theoretical basis for statistical genetic analysis will 

bring us closer to understand the genetic architecture of complex traits in autotetraploids. To 

facilitate widespread application, the methods developed have been implemented as R packages 

or Fortran programmes freely available upon request. 

 

1.2. Possibilities for future work 

In the future, a number of aspects of the methodology for statistical genetic analysis in 

autotetraploids need to be improved to increase applicability. For example, one prominent 

feature of autotetrasomic inheritance, the occurrence of mixed bivalent and quadrivalent 

chromosome pairing during meiosis, has important implications for QTL analysis and breeding 

schemes of autotetraploid species. The theoretical methods presented here assume complete 

quadrivalent chromosome pairing or complete bivalent chromosome pairing during meiosis. It 
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would be desirable to properly incorporate different pairing patterns of homologous 

chromosomes during meiosis into the statistical genetic analysis. 

To solve the problem of unknown parental QTL genotypes in the QTL mapping method, the 

strategy presented here is to use a computer-intensive search method, which is obviously a time 

consuming calculation procedure. This is the key step which determines the rum time of the 

method and could be improved by developing a more efficient strategy. In addition, it is very 

likely that the genetic variance of a quantitative trait would be contributed by the segregation of 

multiple QTLs in practice. Therefore when a test reveals a QTL within a marker interval, the 

effect observed may be due to two or more loci. In this case, methods dealing with single QTL 

would be biased and simultaneously dealing with multiple QTLs would be required to improve 

the estimates of mapping positions and genetic effects. 

The method of statistical inference of crossover interference assumes that the amount of 

crossover interference does not vary in different regions within the chromosome. However, this 

would not necessarily be upheld in practice. A local coefficient of crossover interference would 

be more desirable than a global coefficient of crossover interference. Moreover, the model could 

be improved to include both gene conversions and crossovers, helping us understand more about 

the process of crossing over during meiosis. The method presented here for predicting crossover 

rate in autotetraploids was designed specifically for data with a particular parental genotype. A 

more general method would be desirable for analysing tetrad datasets with various parental 

genotypes in autotetraploids. 
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