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ABSTRACT 

In recent decades, many megacities in the world have suffered from increasingly frequent 

heat waves.  During heat waves, air-conditioners, refrigerators, and electric fans add a 

considerable peak demand on electrical utility grids, and on the supply side, high temperatures 

exert adverse effects on electricity generation, transmission, and distribution. Without pro-active 

planning and mitigation measures, the overloading would result in more frequent blackouts (the 

complete failure of electricity distribution) and brownouts (voltage reductions). To facilitate a 

pro-active planning, which aims to replace blackouts and brownouts by a rationing regime in 

selected sectors, this research proposes an integrated modeling tool which couples a regression 

model between daily electricity use and maximum temperature over the summer and a mixed 

input-output model with supply constraints. With the help of available data in Shanghai, China, 

we show that this tool is capable of quantitatively estimating the overall economic effects and 

sequential changes in carbon emissions, which a given magnitude of power rationing in a 

specific sector can exert across all sectors. The availability of such information would enable 

decision makers to plan an electricity rationing regime at the sector level to meet the double 

criterions of minimizing the overall economic losses and maximizing the extent of carbon 

emission reduction. 
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1. Introduction 

 

In the Summary for Policymakers of the Working Group III to the 5
th

 Assessment Report of 

the IPCC, it is clearly stated that in the last 130 years, the world has warmed by approximately 

0.85C; and furthermore, each of the last 3 decades has been successively warmer than any 

preceding decade since 1850 [1].  This increasing global warming trend, in combination with the 

heat-island effects of large urban establishments, has led to more frequent events of heat waves 

in many mega-cities across the world in recent decades.  Extreme high air temperatures lasting 

for several days can contribute directly to deaths from cardiovascular and respiratory disease, 

particularly among elderly people. For example, in the heat wave of summer 2003 in Europe, 

more than 70,000 excess deaths were recorded [2].  To mitigate the adversary impact of a heat 

wave on human health and to save human lives, power suppliers should grant the top priority to 

the cooling of residential and working spaces in power supply management. However, when air-

conditioners, refrigerators, and electric fans add heavier power loads to the grid, blackouts (the 

complete failure of electricity distribution) and brownouts (voltage reductions) may occur as the 

power companies struggle to deal with the heat wave-caused problems with generation, 

transmission and distribution, in addition to the burden of overloading [3-4].
1
  This tension is 

much higher in big cities where economy is booming and demand for electricity increases 

rapidly owing to fast social-economic development and population growth. For example, the air 

conditioner ownership in Shanghai has increased from 93 in 2003 to 207 in 2013 per hundred 

households [7]. During heat wave, electricity shortage in Shanghai often reaches 1 million kWh 

or even a much higher level, and consequently, power rationing has to be imposed on certain 

sectors with very short notice [8].       

 Much research attention has been paid to the design of a power rationing regime. Given the 

complexity in assessing the direct and indirect impact of power rationing across many social and 

economic systems, decision-making regimes based on expert opinions has been regarded as the 

                                                             
1
 For example, during a two-week event of a heat wave in California in July 2006, Pacific Gas and Electric 

Company (PG&E), the biggest power company in the state, reported that heavy electricity use and ambient 

temperature heated the transformers and they failed to cool. This in turn tripped circuit breakers, broke fuses and 

burned the insulation, causing short circuits inside the transformers. In northern California, 1.2 million PG&E 

customers experienced electricity shortages when 1,150 distribution line transformers failed to cool down and 

stopped operating [3, 5-6]. 
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most practical approach [9-13].  However, experts’ opinions are often diverse and difficult to be 

quantified and standardized. As a consequence, it is hard to monitor and objectively evaluate 

such decision-making processes. In the case where biased opinion driven by conflict interests 

become influential, the resultant rationing plan could lead to more social and economic problems 

than the plan could solve. Fahrioglu and Alvarado [14] employed the ‘revelation principle’ of 

game theory to design incentive compatible contracts for encouraging customers to participate in 

a demand management program. The goal of this approach is to get certain load relief when 

needed and to do so in a cost effective way.  While such a theoretical design is potentially helpful 

to reduce the peak load during a heat wave, it is unclear where the boundary should be for the 

cost-benefit calculation by the contracting parts in practice. In other words, it would be very 

difficult for such a contract to incorporate indirect impacts on upstream and downstream sectors.  

In this research, we propose an integrated modeling tool that combines a regression model, 

which quantifies the relationship between daily electricity use (or peak load) and daily maximum 

temperature, and a mixed input-output model with supply constraints.  This tool is designed to 

facilitate a pro-active rationing regime in selected sectors with the intention to avoid shocks of 

sudden blackouts and brownouts.  The close relationship between daily maximum temperature 

and daily electricity consumption or peak load in summer months has been acknowledged by a 

large number of studies [15-24]. Many researches have employed this relationship to forecast the 

electricity demand at hourly, daily and weekly time-steps [23-27].  In this study, we establish this 

relationship based on Shanghai’s data and employ the relationship to estimate the extent of 

power shortage gap for 1C increase in daily maximum temperature during heat wave.  We call 

this extent of power shortage gap the Marginal Shortage Gap (MSG).  In a standard Input–

Output (I-O) model, a change in final demand would stimulate changes in output and incomes 

across all economic sectors via a multiplier mechanism. However, an electricty rationing at the 

scale of the MSG in a specific sector leads to a constraint to the production activities in the sector 

and as a consequence, output of this sector will not automatically expand or shrink in direct 

proportion to changes in final demand. This means that the standard I-O model needs to be 

modified to incorporate supply constraints associated with the rationing, permitting a more 

realistic evaluation of multiplier effects across the economy [28], as we will present in details in 

Section 2.3. In addition to evaluating the direct and indirect impact on sectoral outputs, it is also 

important to estimate the changes in CO2 emission induced by the above magnitude of electricty 
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rationing. For the latter purpose, we extend the I-O model with a vector of sectoral CO2 

emissions coefficients and this leads to an environemtally-extended I-O model [29-31].     

We take Shanghai in China as an illustrative example to demonstrate the usefulness of this 

coupled modeling tool. We show that this tool is capable of quantitatively estimating the overall 

economic effects and carbon emissions consequences which a given magnitude of power 

rationing as measured by the MSG in a specific sector can impose to all sectors. Based on these 

estimations, we can rank individual economic sectors by (a) the total GDP loss, (b) total 

reduction of CO2 emissions, and (c) the ratio of (a) to (b), as triggered by the given extent of 

power rationing in the sector. The availability of such information would enable decision makers 

to plan an electricity rationing regime at the sector level to meet the double criterions of 

minimizing the overall economic losses and maximizing the extent of carbon emissions 

reduction. 

Although the concept of adaptation to climate change has received increasing attention in 

recent years, for heat waves, anticipatory adaptation is not common as governments and power 

companies are not willing to expend effort or money without clear warnings of risks or obvious 

losses [4]. This paper provides a simple and effective tool for decision makers in governments 

and utility companies to clearly access the direct and indirect losses of a MSG shock to each 

individual sector of the economy. This makes it much easier for government agencies and utility 

companies to design short-term adaptation measures before and during a heat wave. To the best 

of our knowledge, there is no comparable work in the literature and this means that our work fills 

in an important niche in the field of applied energy.  

 

2. Materials and Methods 

 

2.1. Daily Weather and Electricity Data 

Daily maximum temperature data are the observation records of Xujiahui Meteorological 

Observatory Station [32]. Xujiahui Station is located in one of commercial centers of Shanghai. 

It was the first Meteorological Observatory Station in East Asian and has followed the highest 

standard in its operation.  We take July 1
st
 to August 31

st
 in 2007 as the illustration period for two 

reasons. First, heat waves occurred frequently during these two months. Second, the latest input-

output table publicly available for Shanghai is the 2007 table. The daily electricity consumption 
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and peak-load data are from the State Grid Shanghai Municipal Electric Power Company [8]. 

 

2.2. Input-output Table and CO2 Emissions Data 

The 2007 input-output table with 144 sectors is obtained from the Survey Office of the 

National Bureau of Statistics in Shanghai [7]. The I-O table reports the final consumption and 

value added for each of the 144 sectors, as well as the inter-sectoral supply and intermediate use 

matrix. The CO2 emissions data for Shanghai are calculated based on the Yearbook of Shanghai 

Energy Statistics and the IPCC reference approach [33-34], with China-specific emission factors 

being used [29-31] instead of the IPCC default value as described in [30]. The CO2 emissions 

data cover 44 sectors. Therefore, we established a matching procedure to link the two datasets. 

For presentation convenience, we report results for these 44 aggregated sectors. The results for 

144 sectors are also available upon request.
2
 

 

2.3. Mixed I-O Model with Supply Constraint 

The basic I–O model presents the state of an economy during a single accounting period 

(generally a year) and enables to analyze the changes from one state to another as triggered by 

exogenous shocks. Dealing with discrete and explicit changes in economic structure through 

rigorous accounting constitutes the most distinguished feature of I–O modeling. This feature 

makes I-O model powerful in evaluating the direct and indirect impacts of alternative policy 

options, in dealing with contingencies and shocks, across all sectors of the economy. Through the 

evaluation of alternative policy options and by pinpointing the inadequacies and inconsistencies 

in some of the options, as a basis for improving them, policy evaluation based on I–O modeling 

can stimulate new insights in the search for the most promising policy choice. 

In the standard I-O model, changes in the exogenously given vector of final demand (y) 

are driving the economy via a matrix of output multipliers, i.e., the Leontief inverse (I – A)
–1

, 

leading to changes in sectoral output (x): 

(𝐼 − 𝐴)−1𝑦 = 𝑥.                                                                          (1) 

                                                             
2
 To evaluate the effects of a MSG shock for each of the 144 sectors, we disaggregate the emission data to match the 

I-O sectors instead of aggregating I-O sectors.  
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To calculate CO2 emissions triggered by y, we extend the I-O model in Eq. (1) with a 

vector of sectoral CO2 emission coefficients e, which is defined as CO2 emissions per unit of 

economic output in individual economic sectors n:  

𝑒 =  [𝑒1, 𝑒2…𝑒𝑛].                                                                                                           (2) 

Thus, the total change in CO2 emissions triggered by y can be calculated by: 

CO2 = e (I – A)
–1
y.                                                                             (3) 

It is worth noting that the standard I-O model assumes that the economy adjusts, within the 

given statistical year, to changes in spending patterns. All production activities are assumed to be 

endogenous and demand-driven, owing to the assumed excess capacity throughout the economy. 

Supply is assumed to be perfectly elastic in all sectors, and a change in demand is sufficient to 

stimulate changes in output and incomes across other sectors. However, in the case of this study, 

it is clear that the sector with power rationing will not automatically expand or shrink its output 

level in direct proportion to changes in final demand. A direct application of Eq. (1) in this case 

would provide multiplier estimates that are unrealistically large due to the simple assumption on 

supply response. To accommodate supply constraint caused by electricity rationing, we adopt the 

mixed I-O model with supply constraint as developed in [35-36]. The basic setup of such a 

mixed model is given by  
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The sub-matrices in Eq. (4) are defined as follows. 

P  is the k  k matrix containing the elements from the first k rows and the first k columns in (I – 

A), and represents average expenditure propensities of non-supply constrained sectors. The 

sectors have been labeled so that the first k sectors indicate the endogenous elements and 

the last (n – k) sectors are the exogenous sectors.  

R  is the (n – k)  k matrix containing elements from the last (n – k) rows and the first k columns 

of (–A) and represents average expenditure propensities of non-supply constrained sectors 

on supply constrained sector output. 

Xno  is the k-element column vector with elements x1 through xk;, representing endogenous total 
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output of non-supply constrained sectors. 

Yco is the (n – k)-element column vector with elements yk+1 through yn, representing endogenous 

final demand of supply-constrained sectors.  

Q is the k  (n – k) matrix of elements from the last (n – k) rows and first k columns of  (–A) 

the matrix, and represents supply constrained sector expenditure propensities on non-supply 

constrained sector output. 

S is the (n – k)  (n – k) matrix of elements from the last (n – k) rows and columns of – (I – 

A), and represents average expenditure propensities among supply-constrained sectors. 

noY  is the k-element column vector of elements y1 through yk , representing exogenous final 

demand for non-supply constrained sectors. 

coX  is the (n – k)-element column vector of elements xk+1 through xn, representing exogenous 

total output for supply constrained sectors. 

In above explanation of Eq (4), n stands for the total number of sectors in the input-output table, 

k refers to the number of the power rationing sectors.  

In terms of our study, noY  corresponds to the change in the final demand of electricity 

supply sector caused by exogenous shock of a heat wave, and is calculated as the difference 

between peak-load in the heat wave and peak-load without the heat wave. We assume there is no 

exogenous change of final demand in other sectors. coX  represents the direct output reduction 

of the sector which is under power rationing. We will impose power rationing at the scale of 

MSG sector by sector.   𝑛  refers to the output change of the non-power rationing sectors 

induced by the indirect impact of the power rationing. Because the power supply of the 

electricity generation sector reaches the maximum capacity during the heat wave, the extra 

power needs will show up as negative numbers in the accounting system.     stands for the 

final demand change of the power rationing sectors  

 

2.4. Setting for Evaluating Electricity Rationing Choices across Economic Sectors 

The electricity rationing plan is designed to handle the situation when electricity demand 

increases significantly owing to a heat wave shock and the demand surpasses the maximum 

power supply capacity at an interval around the peak. In order to mitigate the adversary impact 

of a heat wave on human health and to save human lives, electricity use for cooling residential 
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and working spaces will not be targeted for rationing.  In order to maintain the safe functioning 

of the city systems, electricity supply to several key sectors such as food, water and energy 

supply, public transportation, and medical and educational services will not be rationed. As a 

consequence, the rationing plan is designed to target industrial sectors. 

  

 

Fig. 1. Flowchart of the evaluating procedure 

 

Because there was no record of a daily power shortage, we calibrated a proxy measurement 

as follows. We run a linear regression between daily power use and daily maximum temperature 

over all work-days in July and August in 2007 and take the slope coefficient of the regression 

model as the proxy measure of the marginal shortage gap (MSG) in response to 1C increase in 

daily maximum temperature during a heat wave. Section 3.2 will report the result of this 

regression and its statistical reliability.  We also convert MSG into monetary value based on 

average electricity price for its convenient use in the mixed I-O table. By imposing an MSG 

shock to the mixed I-O model (Eq. 4) and run the rationing loop across industrial sectors, we can 
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rank industrial sectors in terms of (a) the magnitude of total GDP loss (economic cost), (b) the 

extent of total CO2 emissions reduction (environmental gain), and (c) the ratio between GDP loss 

and emissions reduction (economic cost of environmental gain), respectively, as triggered by the 

MSG shock. Figure 1 presents the flowchart of this evaluation procedure.  

 

2.5. Limitation of the Method 

Two limitations to our evaluating method are worth mentioning. First, the fixed technical 

coefficients of the A-matrix in our mixed I-O model with supply constraint imply that the amount 

of electricity input for producing one unit of sectoral output is fixed and will not change during a 

heat wave. This may lead to an over-estimation of economic losses triggered by a heat wave 

because some end-users may switch to less electricity-intensive ways of working (e.g., more 

intensive utilization of underground spaces for office work and storage). However, the extent of 

such electricity saving is limited. Second, we do not explicitly take into account the possible 

reduction of power-supply capacity caused by the adversary effects of a heat wave on electricity 

generation, transmission and distribution system. This omission may lead to an under-estimation 

of the extent of power-shortage. This limitation can be overcome with the help of technical data 

from the power generation, transmission and distribution system.    

 

3. Results and Discussions 

 

3.1. Daily Maximum Temperature and Electricity Use Regression     

We run two regressions, one between daily electricity use and daily maximum temperature 

and the other between daily peak load and the maximum temperature over work-days during July 

and August in Shanghai. While both regressions are statistically well-performed, the first 

regression produces a higher R
2
 value at 0.761, in comparison with a R

2
 value of 0.719 from the 

second regression. Therefore, we employ the first regression. Figure 2 presents the scatter plot 

and the fitted line of the first regression. The figure indicates a close association between daily 

electricity consumption and maximum temperature. Such a close association was clearly owing 

to the electricity demand for cooling residential and working spaces in a very hot summer when 

the average of daily maximum temperature was 34.4C and the highest value of daily maximum 

temperature was 39.5C. The slope coefficient of the fitted line is 8.47, indicating that a 1C 
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increase in daily maximum temperature typically requires an additional power supply of 8.47 

million kWh, which amounts to about 2.3% of the average daily electricity consumption over 

July and August in 2007. We take 8.47 million kWh as the MSG in our simulations.  

 

    

Fig. 2. Linear regression between daily electricity use and daily maximum temperature (p-value 

< 0.001) 

 

3.2. Electricity Consumption and CO2 Emissions in 20 Industrial Sectors 

As discussed in Section 2.2, the sectoral match between the I-O table and list of CO2 

emission inventories results an aggregate I-O table with 44 sectors. After excluding those critical 

for the safe functioning of city systems, 20 industrial sectors are identified for potential 

implementation of electricity rationing, as listed in Figure 3.  

Figure 3 shows the monetary value of electricity use as intermediate input in each of the 20 

industrial sectors targeted for potential power rationing. The values range from 3.1 million to 1.4 

billion Yuan. The top three sectors are Smelting and Pressing of Ferrous Metals, Metal Products, 

and Ordinary Machinery, with a value of power consumption over 1 billion Yuan per annum. 

Figure 4 reports the share of electricity purchase in the total sectoral output across these 20 

sectors. It can be seen that the Metal Products sector is most electricity-intensive, where 

y = 8.4698x + 86.376 
R² = 0.7613 
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electricity purchase accounts for 1.32% of the total sectoral output, followed by the sector of 

Smelting and Pressing of Ferrous Metals, with a share of 0.75%.  

 

 

Fig. 3. Monetary value of electricity use as intermediate input in each of the 20 industrial sectors 

in 2007 
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Fig. 4. Share of electricity purchase in the total sectoral output in 2007 

 

The total CO2 emissions of Shanghai was 200 million tons in 2007. Direct emissions from 

these 20 industrial sectors accounted for about 25% of the total emissions or 51.7 million tons. 

As shown in Figure 5, the top five emission sectors are Smelting and Pressing of Ferrous Metals, 

Nonmetal Mineral Products, Construction, Raw Chemical Materials and Chemical Products, and 

Ordinary Machinery. The Smelting and Pressing of Ferrous Metals sector was by far the largest 

emitter and directly emitted 37.4 million tons of CO2 in 2007, which accounted for 72.3% of the 

total emissions from these 20 industrial sectors and 18.7% of the city total emissions. Table 6 

ranks these 20 industrial sectors by CO2 emissions intensity, which is measured by direct 

emission quantity per unit of sectoral output. It shows that the Smelting and Pressing of Ferrous 

Metals and Nonmetal Mineral Products were the most emission-intensive sectors, with an 

intensity level as about 204 and 130 thousand tons per million Yuan, respectively. At the ranks 3-

5 were the Textile, Papermaking and Paper Products, and Other Manufacturing, with an emission 
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intensity above 100 thousand tons per million Yuan. 

 

 

Fig. 5. Direct CO2 emissions from each of the 20 industrial sectors in 2007 
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Fig. 6. CO2 emission intensity in the 20 industrial sectors in 2007 

 

3.3. Evaluating Economic Loss versus Environmental Gain across Industrial Sectors 

 

We run the MSG-based rationing loop across industrial sectors as presented in Section 2.4. 

The results show that for 14 sectors among the 20 industries, in each of them the direct output 

loss caused by this MSG-based rationing is greater than its average daily output. This implies 

that a complete shut-down of the sector for one day would be insufficient to solve the shortage 

problem on the day. We exclude these 14 sectors from the priority list of power rationing. The 

remaining sectors include Raw Chemical Materials and Chemical Products, Construction, 

Nonmetal Mineral Products, Smelting and Pressing of Ferrous Metals, Ordinary Machinery, and 

Equipment for Special Purposes.    

The total GDP loss triggered by the MSG-based rationing in each of the above selected 6 
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sectors is presented in Figure 7. A comparison across Figures 3, 5, and 7 shows that while the 

Smelting and Pressing of Ferrous Metals is the largest sector in terms of electricity use as 

intermediate input (Fig. 3) and direct CO2 emission (Fig. 5), it takes only the number 4 position 

in Figure 7, which ranks the 6 priority sectors from the least to the largest GDP loss as triggered 

by the MSG-based rationing in each of the sectors. The previous practices in Shanghai often 

regarded this sector as the priority target for power rationing owing to its top position in Figures 

3 and 5. Our result in Figure 7 suggests that if a power rationing at the scale of the MSG were 

imposed on the Raw Chemical Materials sector rather than the Smelting and Pressing of Ferrous 

Metals, the total GDP loss could be reduced by 85 million yuan, which is a significant saving for 

one day.   

The reduction of CO2 emissions triggered by the MSG-based rationing in each of the 6 

sector is presented in Figure 8. Because the Smelting and Pressing of Ferrous Metals sector is by 

far the largest sector in term of direct CO2 emissions (Fig. 5), it is not a surprise that the greatest 

reduction of 42,000 tons can be triggered by a power rationing at the scale of MSG in this sector. 

The number 2 sector in Figure 8 is Nonmetal Mineral Products, and this is consistent with its 

rank in Figure 5. Interestingly, while the Ordinary Machinery sector ranks number 5 in Figure 5, 

it moves to number 3 in Figure 7. This move-up can be attributed to the fact that the up-stream 

and down-stream industries of this sector are relatively more CO2 intensive and this results in a 

significant reduction in terms of indirect CO2 emissions. 

Although the issue on how to effectively coordinate the policy choices based on the 

different ranks in Figures 7 and 8 are subject to political consideration of the local planners, 

based on our research findings we can propose a simple indicator which can help decision-

makers to evaluate the economic cost of emissions reduction as triggered by a given degree of 

electricity rationing. This indicator is the ratio of the total GDP loss to the reduction of total CO2 

emissions (thousand Yuan/ton) as triggered by the rationing. Figure 9 reports this ratio for the 6 

priority sectors for power rationing. It shows that the power rationing in the Nonmetal Mineral 

Products sector results in the lowest economic cost of CO2 reduction at 2,900 yuan/ton, followed 

by the Smelting and Pressing of Ferrous Metals sector and Ordinary Machinery sector, at 3,100 

and 5,900 yuan/ton, respectively. In contrast, the rationing in the Raw Chemical Materials and 

Chemical Products sector results in the highest economic cost of CO2 reduction at 25,400 

yuan/ton, which is about 9 times higher than the figure triggered by the rationing in the 
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Nonmetal Mineral Products sector. 

 

 

Fig. 7. Total GDP loss triggered by MSG rationing in 6 sectors 

 

 

 

Fig. 8. The reduction of total CO2 emissions triggered by MSG power rationing in 6 sectors 
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Fig. 9. Ratio of GDP loss to the reduction of CO2 emissions in 6 sectors 

 

4. Concluding Remarks 

 

Three great challenges of the 21
st
 century for many megacities in the world are maintaining 

sustainable economic growth, fostering low-carbon development, and managing climate change. 

While failure on any of them would lead to failures on the other two, a well-constructed response 

to one can provide great advantages and opportunities for the others. This research aims to 

facilitate a well-constructed short-term electricity rationing regime for managing electricity 

shortage caused by heat wave shocks. The regime should eliminate the shock incidents of 

blackouts and brownout, minimize the overall economic cost of the electricity rationing, and 

maximize the environmental gain of the rationing. We have proposed a policy support tool which 

combines a regression model between daily electricity use and maximum temperature over the 

summer months and a mixed input-output model with supply constraint. We applied this tool to 

the datasets of Shanghai in China and ranked individual industrial sectors of Shanghai according 

to (a) the total GDP loss, (b) total reduction of CO2 emissions, and (c) the economic cost of 

emissions reduction, as triggered by a given degree of electricity rationing enacted in the sector.  

These results on ranks and the magnitudes of losses and gains will provide scientifically 

integrated information for the local planners to effectively identify priority policy choices and 

coordinate policy actions in line with their political consideration and value judgement. Given 

the concern in the literature that for heat waves, anticipatory adaptation is not common owing to 
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the lack of simple and effective tools to clearly assess the risks and losses caused by a heat wave 

[4], our work fills an important niche in the field of applied energy. 

It is worth noting that the prerequisite for applying this tool is the availability of well-

constructed input-output table at the city level and the table should not be behind the current year 

for more than five years because some technical coefficients may experience significant change 

after five years. Although this prerequisite may form a hard constraint for the applicability of this 

decision supporting tool in many cities, it is highly possible that the rapid progress in big-data 

collection, consolidation, and analytics would make such input-output tables widely available in 

near future.       
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