University of Louisville

ThinkIR: The University of Louisville's Institutional Repository

Undergraduate Arts and Research Showcase

Undergraduate Research

2021

The Role of Talker in Adjusting for Different Speaking Rates in Speech Perception

Chloe M Sharpe chloe.sharpe@louisville.edu

Christian Stilp

Follow this and additional works at: https://ir.library.louisville.edu/uars

Part of the Cognition and Perception Commons

Recommended Citation

Sharpe, Chloe M and Stilp, Christian, "The Role of Talker in Adjusting for Different Speaking Rates in Speech Perception" (2021). *Undergraduate Arts and Research Showcase*. 56. https://ir.library.louisville.edu/uars/56

This Book is brought to you for free and open access by the Undergraduate Research at ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Undergraduate Arts and Research Showcase by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. For more information, please contact thinkir@louisville.edu.

INTRODUCTION

- **Context** is anything that can be perceived outside of what you're focusing on.
- **Context Effects** are what happens when context modifies the experience of your focus. They are very prevalent in perception.

Types of acoustic context effects

- Spectral Contrast Effects (SCEs) induced by the frequencies of sounds
- The difference between the frequency content of two sounds is perceived to be larger than they are.
- If the frequency of the context is high, the target sound will be perceived as lower frequency and vice versa. (Ladefoged and Broadbent, 1957)
- **Temporal Contrast Effects (TCEs)** induced by speech rate
- Context spoken at a fast rate will make the target sound slower.
- Context spoken at a slow rate will make the target sound faster.

Context

More likely to perceive

Sentence (unmodified)

"deer" or "tier"

Sentence spoken at a fast rate

"tier" (long VOT)

Sentence spoken at a slow rate

"deer" (short VOT)

Talker Variability is the concept that there is great acoustic variability amongst different talkers.

- When the talker is consistent from trial to trial, speech perception is faster and/or more accurate.
- When there is a new talker in each trial, performance is slower and/or less accurate. (Stilp & Theodore, 2020)

Talker variability's effect on SCEs

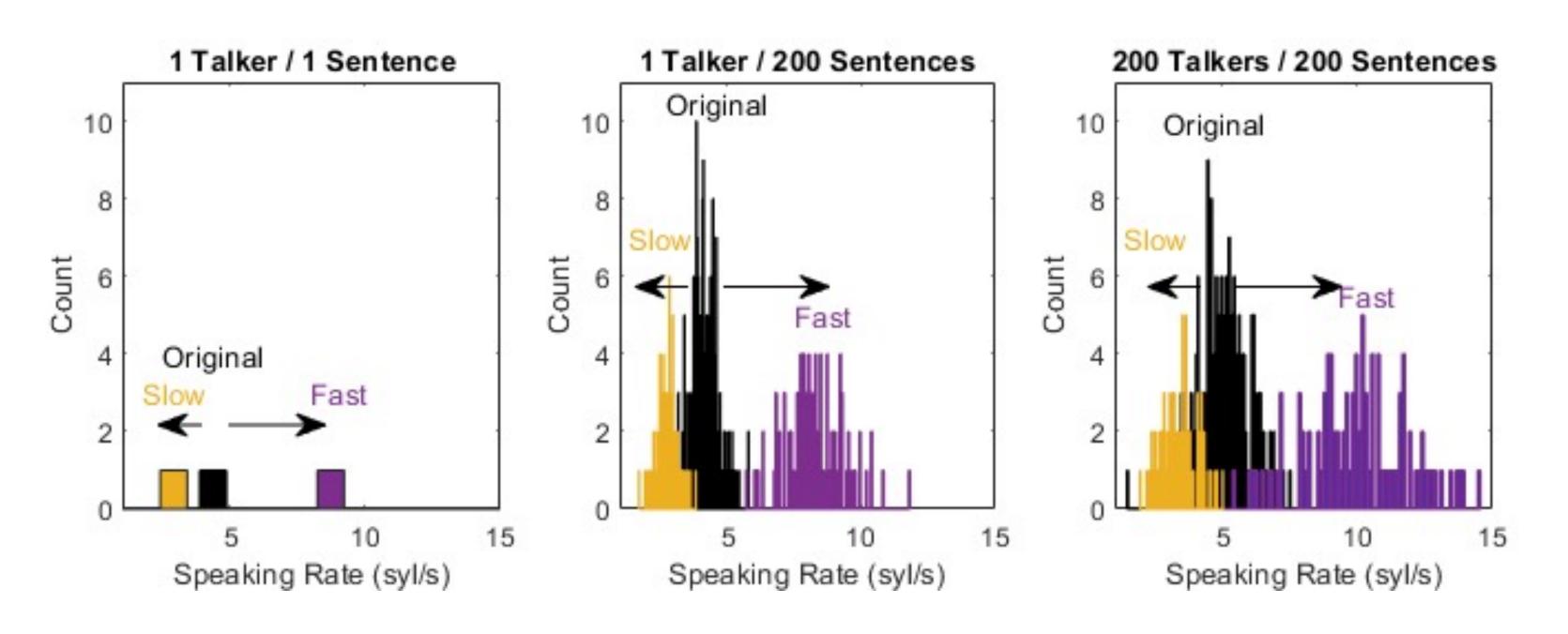
- Talker variability has been shown to diminish SCE magnitudes.
- Listeners exhibit smaller SCEs following multiple talkers and larger SCEs following a single talker. (Assgari & Stilp, 2015)
- However, it is unknown whether Talker Variability impacts TCEs.

Prediction

• TCE magnitudes will decrease following context sentences spoken by 200 different talkers compared to context sentences spoken by a single talker.

PARTICIPANTS

- 41 undergraduate students in the Department of Psychological and Brain Sciences signed up through SONA and received course credit for their participation
 - All reported being native English speakers with no known hearing impairments
- The experiment was conducted online using Gorilla (Anwyl-Irvine et al., 2020)


The role of talker in adjusting for different speaking rates in speech perception Chloe M. Sharpe and Christian E. Stilp Department of Psychological and Brain Sciences University of Louisville

METHODS

Stimuli

Context Sentences

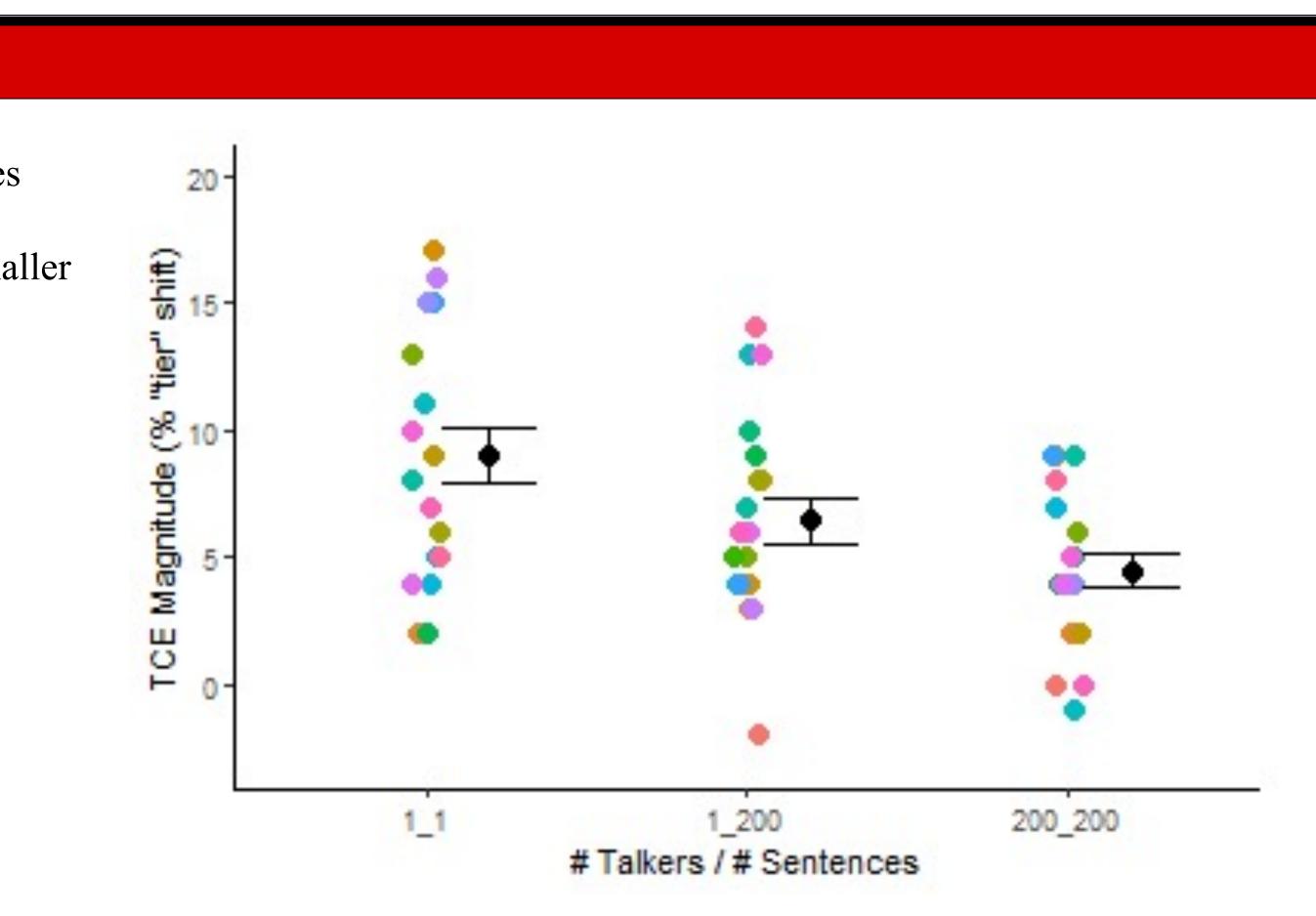
- One Talker / One Sentence: One adult man saying, "This time, I want you to click on the word" (duration = 2293ms)
- *One Talker / 200 Sentences*: One adult man reading 200 sentences (mean duration = 1793ms)
- 200 Talkers / 200 Sentences: 138 men and 62 women reading their own individual sentence (mean duration = 2248ms)
- Each sentence's speaking rate was manipulated in Praat using the PSOLA algorithm. (Boersma & Weenink, 2020) • In each condition testing 200 sentences, half were adjusted to speak faster, and half were adjusted to speak slower.
 - In the One Talker / One Sentence condition, slow and fast renditions were created

Target Consonants

- Series of 10 stimuli morphed from "deer" to "tier"
- Generated in Praat by varying the voice onset time (VOT; duration the vocal cords are not vibrating during production)
- The voiceless interval at the beginning of "deer" was made increasingly longer until a clear "tier" was heard. (Winn, 2020)

Procedure

- *Informed Consent*: participants read and signed a consent form
- *Practice:* 20 sentences paired with endpoint consonants; >80% categorization accuracy needed to pass (no one removed from analyses)
- Test: Each trial presented a context sentence, then a target word, which listeners labeled as "deer" or "tier". Three blocks were tested (One Talker / One maintain 80% accuracy on endpoint stimuli (n=3 removed from analyses).


RESULTS

• TCEs were calculated as the percent "tier" responses following fast sentences minus the percent "tier" responses following slow sentences.

• Larger TCEs in One Talker / One Sentence condition and smaller TCEs in 200 Talkers / 200 Sentences condition

- RMANOVA was statistically significant (F(2,38)=6.05, p<.05)
- Three post-hoc Bonferroni corrected paired sample *t*-tests
- One Talker / One Sentence and One Talker / 200 Sentences: not significant (t(19)=1.59, p=0.128)
- One Talker / 200 Sentences and 200 Talkers / 200 Sentences: not significant (t(19)=1.87, p=0.076)
- One Talker / One Sentence and 200 Talkers / 200 Sentences: significant (t(19)=3.75, p<.01)
- Talker Variability does affect TCE magnitudes, shown by the decreased magnitudes in conditions with increased variability.

Headphone Screen: participants discerned which of 3 tones were the quietest, tones sounded different over headphones vs. speaker (n=9 removed from analyses) Sentence, One Talker / 200 Sentences, 200 Talkers / 200 Sentences) each with 200 trials (n=9 removed from analyses due to not finishing). Participants had to

DISCUSSION

- The results show that TCEs magnitudes are larger following context spoken by a single talker, and smaller following context spoken by different talkers.
- Assgari & Stilp (2015) saw a similar pattern of results in their study regarding Talker Variability and SCEs. But, SCEs their in one-talker conditions were equal and here TCEs in one-talker conditions were marginally but not significantly different. So, the pattern is not perfectly identical.
- It is possible listeners don't just adjust to talker variability, but sentence structure as well.
- Bosker & Ghitza (2018) proposed an idea about what is happening in the brain when listeners are adjusting to speech rate.
 - Neural entrainment populations of cortical neurons lock onto the speaking rate of speech and fire in response to its syllables.
 - When cortical theta oscillations can optimally track the rate of speech, there are larger context effects.
- Context sentence and speaking rate variability may disrupt this process.
- Acoustic properties of everyday speech are incredibly variable, so it's important to ask if research reflects reality.
- The standard way of measuring contrast effects is by using a single sentence with varying rates of speech. But, in real life, people don't hear a singular sentence back-to-back.
- The current study used repetitive and unique context sentences within and across talkers to better mimic listening situations in the real world.
- A follow-up study with the three original conditions and a new condition of 200 Talkers / One Sentence would reveal how influential Talker Variability is in speech perception and answer whether sentence structure is an impactful form of context.

REFERENCES

- Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020). Gorilla in our midst: An online behavioral experiment builder. *Behavior Research Methods*, 52(1), 388–407. https://doi.org/10.3758/s13428-019-01237-x
- 2. Assgari, A. A., & Stilp, C. E. (2015). Talker information influences spectral contrast effects in speech categorization. The Journal of the Acoustical Society of America, 138(5), 3023-
- . Boersma, P. & Weenink, D. (2020). Pratt: doing phonetics by computer [Computer program]. Version 6.1.24, retrieved 29 September 2020 from http://www.praat.org/
- Bosker, H. R., & Ghitza, O. (2018). Entrained theta oscillations guide perception of subsequent speech: Behavioural evidence from rate normalisation. Language, Cognition and Neuroscience, 33(8), 955-967.
- 5. Ladefoged, P., & Broadbent, D. E. (1957). Information conveyed by vowels. The Journal of the Acoustical society of America, 29(1), 98-104.
- 5. Stilp, C. E., & Theodore, R. M. (2020). Talker normalization is mediated by structured indexical information. Attention, Perception, & Psychophysics, 82(5), 2237–2243. https://doi.org/10.3758/s13414-020-01971-x
- Summerfield, Q. (1981). Articulatory rate and perceptual constancy in phonetic perception. Journal of Experimental Psychology: Human Perception and *Performance*, 7(5), 1074-1095.
- . Winn, M. B. (2020). Manipulation of voice onset time in speech stimuli: A tutorial and flexible Praat script. The Journal of the Acoustical Society of America, 147(2), 852–866. https://doi.org/10.1121/10.0000692