University of Louisville

ThinkIR: The University of Louisville's Institutional Repository

Undergraduate Arts and Research Showcase

Undergraduate Research

2021

Root Endophyte Community Response to Increased Resource Availability

Hillary K Payne hillary.payne@louisville.edu

Haley E. Sage haley.sage@louisville.edu

Follow this and additional works at: https://ir.library.louisville.edu/uars

Recommended Citation

Payne, Hillary K and Sage, Haley E., "Root Endophyte Community Response to Increased Resource Availability" (2021). *Undergraduate Arts and Research Showcase*. 41. https://ir.library.louisville.edu/uars/41

This Book is brought to you for free and open access by the Undergraduate Research at ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Undergraduate Arts and Research Showcase by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. For more information, please contact thinkir@louisville.edu.

Questions

- How does increased resource availability and Epichloe leaf endophyte infection affect plant mycobiome interactions?
- How does nitrogen deposition affect species diversity in root fungal endophyte communities?
- What are the broader implications of nitrogen deposition on species diversity?
- Does endophyte species richness differ between primary and secondary successional dune grass species?

The root endophytes were plated in standard media and then sub-cultured to isolate each morphospecies.

Root Endophyte **Community Response** to increased

Resource Availability

Hillary Payne*, Haley Sage*, Marissa Huber, Natalie Christian, Kylea Garces Department of Biology, University of Louisville

E- E+

UNIVERSITY of LOUISVILLE

136 morphospecies were isolated. Here they are represented in abundance where higher stacks are most common ranging to rare species of only one isolate.

Results and Implications

Little Bluestem

- Little Bluestem plants without Epichloe have more fungal species than plants with Epichloe in all three nitrogen treatments

- High nitrogen treatment in Ammophila yields the greatest species diversity

- National Science Foundation Graduate Research Fellowship for funding this project

-Christian & Emery lab for support

Morphospecies Community

- Ammophila has greater species diversity than

Acknowledgements