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Abstract

Encrypted search schemes allow a client to query and retrieve its outsourced data

without the storage provider having to decrypt it. Usually, these schemes sacrifice

some security for better functionality or efficiency. Their security is typically measured

using a leakage function, which articulates exactly what property of the data or queries

is revealed to an adversary. In this thesis, we construct, analyze, and attack encrypted

search schemes on ordered data that support equality or range queries.

In the first chapter, we consider leakage functions that reveal repetitions in the data.

We first present a modern statistical re-framing of frequency analysis-type attacks

that exploit this plaintext repetition leakage in a one-time snapshot of data. Such

attacks enable an adversary, equipped with an estimate of the distribution from which

the plaintext data has been sampled, to infer exactly what the underlying plaintext

values are. We introduce and develop the notion of frequency-smoothing encryption

(FSE) to thwart these attacks while maintaining the ability to query the data. FSE is

a provably secure construction and we also present results of an empirical assessment

of its security on real data.

In the second (and all further) chapters, we consider passive, persistent adversaries

that observe leakage from multiple queries instead of a snapshot of the encrypted data.

In the second chapter, we present reconstruction attacks against range query schemes

that leak the access pattern—which documents a query matches—and the ranks of

the query endpoints (but not the endpoints themselves). These attacks require that

every value appears at least once in the database, a property of the database we

call “density.” We present exact and approximate reconstruction attacks. In the

latter, the aim is to recover the value of each record within some relative error. We

also present a heuristic inference attack that additionally uses an estimate of the

data’s distribution to reconstruct the values, even when the data is non-dense. The

performance of this last attack was evaluated on real data.
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In the third chapter, we examine reconstruction attacks that exploit only access pat-

tern leakage, not rank leakage, from range queries. First, we present a new analysis

that reduces (from a previous analysis in the literature) the expected number of nec-

essary queries to fully reconstruct dense data. Next, we present and analyze an ap-

proximate reconstruction attack for dense data. Reconstructing non-dense (“sparse”)

data requires a new algorithm with a slightly modified goal: we present such a recon-

struction attack, its analysis, and experimental evaluations on both sparse and dense

data.

In the last chapter, we present and evaluate attacks exploiting the most restricted

kind of leakage yet: volume leakage—the number of records matching a query. We

present a heuristic reconstruction algorithm for dense data using only volume leakage

from range queries, reasoning about its design with a graph-theoretic model. An

experimental evaluation of the attack on real data includes an example of strategies

that can extend the results from dense datasets to sparse datasets.
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Chapter 1

Introduction

Many organizations store our sensitive information, such as medical history, financial

records, or personal correspondence. However, they are often breached: billions of

these records have leaked in 2019 alone [78]. Data breaches have become so common

that there exist services, like have i been pwned [36], that will check if a particular

email address or user ID has appeared in a leak.

Security and privacy researchers have investigated ways to make these leaks less harm-

ful while keeping whatever functionality is needed on the stored data. For instance, is

there a way to encrypt medical records so that policy makers can still efficiently query

the data to look for trends and make decisions, but someone who absconds with the

hard drive can recover only encrypted data? Could transaction logs be encrypted in

such a way that a curious data center employee does not get access to the data even

though they have system administrator privileges on the database server?

It is important to analyze proposed cryptographic techniques thoroughly; believing

that data is secure when it is not could be catastrophic. This thesis is mainly about

how leakage from encrypted databases can still be exploited by an adversary.

Setting. We consider a simple client-server architecture where the server is storing

a database. We sometimes refer to the client as the data owner. Throughout this

thesis, “database” refers to a relational database—conceptually, a table where each

column is associated with an attribute and contains only values from that attribute’s

domain. Without loss of generality, one of the attributes is a record identifier (or a

“primary key” in SQL terminology) by which the record can be uniquely identified.

This record identifier could simply be a counter; we assume that it is independent

from any information associated with that record. We do not consider more advanced
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schemes or attacks that involve correlations between columns, which have also been

explored in the literature [21].

The rows in this table are referred to as the records or items in the database. A single

record is represented by r and the set of all records by R. We identify a record with its

record identifier and use these interchangeably. Throughout this thesis, we consider

only one attribute of a database at a time; we assume the database has only two

columns—the record identifier and the record’s value. We write val(r) to represent

the value of a particular record r.

Without loss of generality, the values in an attribute’s domain are ordered. For

numeric data, this ordering can be the natural one; for any other data, it could be

lexical or arbitrary. We extend any relation (<,≤, >,≥,=) between the values of

records to the records themselves with a superscript indicating that the relation is on

their value, e.g., whenever val(r) ≤ val(r′), we may write r
val

≤ r′. We also use these

relations on sets of records, e.g., A
val

< A′ means that for all records r ∈ A and all

records r′ ∈ A′, val(r) < val(r′).

employees

id last name first name age zip code sex salary

1 Blum Manuel 43 11375 M 2100

2 Germain Sophie 30 10044 F 1900

3 Paterson Kenneth 68 10022 X 2300

Table 1.1: An example of what is called a database throughout this thesis. We focus
on one column at a time and refer to that attribute’s value for a particular record r
as the value of this record, val(r).

Types of queries. In this thesis, we consider two types of queries on single columns:

equality queries and range queries. An equality query is defined by a value in that

column’s domain. The value need not be numeric. An equality query returns the

record identifiers of all rows having the specified value in the specified column. For

example, an equality query in SQL could look like

> SELECT id FROM employees WHERE last name = ’Paterson’;

A range query is defined by its two numeric endpoints. It returns the record identifiers

of all rows whose value in the specified column is between or equal to the endpoints.

A range query in SQL could look like

> SELECT id FROM employees WHERE salary >= 2000 AND salary <= 3000;

or

> SELECT id FROM employees WHERE salary BETWEEN 2000 AND 3000;

20



All numeric values are assumed to be integers. Throughout this thesis, we consistently

use a and b as the endpoints of a range query: [a, b] is a typical range query with

1 ≤ a ≤ b ≤ N . Since we assume numeric values are integers, we obtain another

representation of range queries by simply converting a range to a set:

> SELECT id FROM employees WHERE salary IN (2000, ..., 2099, 3000);

In Chapter 2, we also consider the “join” operation. A join is a kind of cross product.

A join on unencrypted data in SQL may look like

> SELECT id FROM t1 JOIN t2 WHERE t1.a=t2.b

Density. One way to classify the databases to which our attacks apply is by the

density of their values for a particular attribute. A dense database is one in which

there is at least one record having each possible value in the attribute’s domain. A

non-dense (i.e., sparse) database is one in which there exists a value that does not

appear in any record.

Query distribution. None of our attacks depend on the query distribution; only

their analysis does. A common assumption when evaluating database reconstruction

attacks is to assume queries are uniformly distributed. For example, consider range

queries on the domain [1, N ]. There are N(N+1)/2 such ranges, including N “point”

queries of the form [a, a]. If queries are uniformly distributed, then the range [1, 5] is

as likely as [1, 1], [N−1, N ], or [5, 17]; they each occur with probability 2/(N(N+1)).

Assumptions. Throughout, we assume that the support of the distribution is

known even if the exact distribution is not. We assume that the attribute values

are sampled independently according to a fixed distribution. We also assume that the

adversary knows the number of possible data values N in the field targeted by the

range queries. Note that this number does not depend on the database under attack,

but only on the type of data being targeted. For example, an attribute for month of

the year may take values between 1 and 12, even though a particular database might

contain no records with month 8. An adversary treat this data as having N = 12.

1.1 Background: database security

This section provides some context in the form of an overview of common building

blocks and techniques in encrypted databases, focusing on those that support range

queries. The material in this section is based on a whitepaper [46] I was invited to

publish at Black Hat USA 2019, in conjunction with a briefing I gave.
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Database security techniques tend to be tailored to specific threat models. For exam-

ple, if the database server is trusted, but the network is not, then client-server con-

nections can be encrypted with TLS [38]. If the database server is trusted, but there

is a risk of disk theft, then full-disk encryption or page-level encryption of database

files and logs can be enabled, e.g., with Transparent Data Encryption [55, 64]. If

the database server is not trusted at all, then a system that encrypts all data before

uploading it could be employed, e.g., a CipherCloud gateway [18] or a CryptDB [68]

proxy server.

All of these solutions, however, leak some information when a query is processed, and

some even leak information from the data at rest. The leaked information could be

the set of records matching the query, the size of this set, or which records in the

database have the same value. This information leaks even to an observer who does

not have any cryptographic keys. The source of the leakage can vary; it could be raw

bits on disk, network traffic, observed memory accesses, or database logs recovered

by forensic analysis. This leakage can be exploited by an attacker to recover values

in the database.

Looking ahead, in Chapter 2, we present a construction that mitigates inference

attacks on equality leakage from data at rest, while allowing equality queries and

allowing range queries, though somewhat inefficiently. In Chapters 3 through 5, we

present generic attacks on rank leakage, access pattern leakage, and volume leakage

from range queries. These attacks are entirely generic and do not depend on the

database implementation. A detailed overview of the thesis follows in Section 1.2.

First, the following three subsections provide details about typical methods used to

secure databases, based on securing the data while it is in transit, at rest, or in use.

1.1.1 Protecting data in transit

Historically, protecting queries and their results from a network eavesdropper was

the first step in securing a database server. The client and server can protect their

communications by encrypting them according to the Transport Layer Security (TLS)

standard [38]. TLS allows the client and server to authenticate each other and ne-

gotiate a session key to encrypt the queries and responses. These measures help

prevent an adversary from learning what the query was or which records matched it

by intercepting packets.
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1.1.2 Protecting data at rest

As individuals and organizations move their data to remote data centers, they may

update their threat models to reflect no longer having control over their data’s physical

environment and to acknowledge the possibility of disk theft. Encryption at the

filesystem level or column level addresses this issue.

A typical query process might have the following major steps:

1. The client uses TLS to encrypt its query and sends it to the server.

2. The server decrypts it, consults its search index, and fetches the relevant en-

crypted pages from disk.

3. It decrypts them in memory, processes the results, re-encrypts them with TLS,

and sends them back to the client.

4. The client decrypts them.

The data on disk stays encrypted the entire time, so disk theft is mitigated.

Many major database vendors offer some variant of this type of encryption, usually

called “Transparent Data Encryption” (TDE) or “Native Encryption.” These so-

lutions usually do not noticeably affect performance; the server can still index the

plaintext data, so range queries can be answered efficiently. Some of these solutions

also offer more granular field-level encryption, like format-preserving encryption or

tokenization, but the data encryption key is usually still managed by the server.

Some examples include Transparent Data Encryption (TDE) offered by Microsoft for

SQL Server [55], which encrypts data and transactions logs at the page level; Oracle

Database’s Transparent Data Encryption [64], which allows column or tablespace

encryption of data and encryption of undo and redo logs; IBM’s Native Encryption

for DB2 [37], which offers tablespace encryption of data and encryption of transaction

logs; and MongoDB’s Encrypted Storage Engine [59], which encrypts all data files,

but not logs.

When the database server manages the data encryption key, it is usually stored in a

separate keystore, i.e., not on the same disk as the data. However, it is often accessible

to curious database administrators, system administrators, or any user who gains such

permissions. To prevent a full database server system compromise from revealing the

data, it needs to be encrypted by the client, or via a proxy, before it arrives at the

server.
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1.1.3 Protecting data in use

How to query encrypted data without letting the database server see raw, unencrypted

data is an interesting and challenging problem (and the focus of this thesis). In

industry, these solutions are usually called client-side field-level encryption: instead

of the keys being in a keystore attached to the database server, the client completely

controls them.

Such solutions are offered by Microsoft’s Always Encrypted [54], which implements

field-level encryption in a client-side driver; MongoDB’s Field Level Encryption in its

version 4.2 release from August 2019 [58]; and companies like CipherCloud [18] or

solutions like CryptDB [68] that act as proxies between a client and database server.

For more commercial solutions, see [24, Sec. I(A)].

Usually, these client-side encryption solutions offer only two basic types of encryption:

deterministic and randomized. Deterministic encryption leaks repetition and makes

range queries possible but inefficient, while randomized encryption is secure, but does

not support ranges. A third type, called Order-Preserving Encryption (OPE) is also

sometimes used. It leaks order and makes range queries as efficient as they are on

plaintext.

ID Value

1 3

2 1

3 15

4 41

5 1

(a) Plaintext

ID Value

1 0x18fa83

2 0x5449a1

3 0x8b7630

4 0x10cae8

5 0x5449a1

(b) DE

ID Value

1 0x5239fb

2 0x8e9d98

3 0x5a9f2e

4 0x4ff8e1

5 0xe89cfb

(c) RE

ID Value

1 182

2 84

3 2307

4 8932

5 84

(d) OPE

Figure 1.1: An example illustrating the differences between the same values en-
crypted with Deterministic Encryption (DE), Randomized Encryption (RE), and
Order-Preserving Encryption (OPE).

DE. Deterministic Encryption (DE) is an attractive option for encrypting out-

sourced data because it is equality-preserving: finding an exact match for a particular

value is as easy as finding an exact match for its encryption of that value. This makes

it possible for a client to query its data using an encrypted search term, with the

server identifying and returning matches to the client without needing to decrypt

them. With deterministic encryption, any repeated plaintext values show up as re-

peated ciphertext values. For example, each record that has a value of “1” will have
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the exact same ciphertext. This enables range queries: if the client wants to retrieve

all records with values between 1 and 3 (i.e., in [1,3]), it could simply request all

records whose values are in the set of encryptions {DE(1), DE(2), DE(3)}. Although

range queries are possible with deterministic encryption, the fact remains that any

repetitions in the plaintext will show up in the ciphertext. Leaking the equality of

values can be exploited when combined with information about the distribution of

values. These attacks were evaluated on medical datasets by Naveed, Kamara, and

Wright [62], and many others after.

RE. With Randomized Encryption (RE), the server is unable to index the data

or group values. All encryptions of “1” would be different, which offers excellent

security, but the server would have no way to select all of the records with value “1.”

Due to this lack of functionality, randomized encryption that leaks nothing about the

plaintext (other than perhaps its size) is not considered further in this thesis.

OPE/ORE. Order-Preserving Encryption (OPE) [2, 10] is another method of en-

crypting numeric data, which does exactly what it sounds like: if x < y, then

OPE(x) < OPE(y). This property enables range searches and sorting encrypted data

in a straightforward manner. If the client encrypts values with OPE before sending

them to the server, the server can still index the data just as if it was unencrypted,

but it does not learn the exact values. When the client wants to perform a range

query, all it has to do is encrypt the endpoints of that range.

Unfortunately, even an “ideal” OPE scheme (one that behaves like a random order-

preserving function) must leak strictly more than order. In particular, Boldyreva,

Chenette and O’Neill proved that about half of the plaintext bits must leak [11],

which is why any efficient OPE scheme cannot offer much security. Further, some OPE

schemes are also deterministic, leaking repeated values, and susceptible to frequency

analysis attacks [32]. This property of OPE schemes motivated new types of schemes

that sacrifice less security while still allowing range queries and sorting. These include

techniques like Order-Revealing Encryption (ORE) [17, 51], which is a generalization

of OPE. With OPE, it is possible to look at two ciphertexts to compare them, but with

ORE, it is necessary to compute a function over each pair to know which one is smaller.

Some schemes use more subtle techniques, such as building a search index that the

server can traverse by itself, “destroying” nodes along it as it goes, and requiring the

client to “re-generate” them after each query [9]. Although these schemes leak less

than OPE, they still have some leakage.
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A modern encrypted database might combine all of these types of encryption: TLS

for the queries and responses, server-side disk encryption, and client-side field-level

encryption. Even with all of these layers, there might still be some exploitable leakage.

For instance, the server needs to know which records matched a range query in order

to return the correct results, so the access pattern of each query (the identifiers of

the records that matched it) could leak. If the server maintains an index that allows

range queries, the rank of each query endpoint (the number of records with value less

it) could leak. Despite client-server communications being encrypted, their length is

not hidden, so the volume of each query (how many records matched it) could leak.

The particular channel through which these properties leak varies: it could be from

an adversary man-in-the-middling connections to the database, getting access to

undo/redo logs or query profiling logs, or simply observing traffic volume [31]. How

to extract this leakage is an important question, but it is orthogonal to this thesis:

we focus on what can be learned upon having obtained the leakage.

Other approaches. There exist other solutions for securely querying an encrypted

database. For example, Kamara and Moataz [41] developed a structured encryption

scheme for relational databases that supports many types of SQL queries and does

not leak any frequency information. This scheme is not one that could be added to

an existing SQL database in a legacy-friendly manner; it would entirely replace a

database and change how queries are treated.

1.2 Thesis structure and main contributions

This thesis is roughly structured in terms of security models and adversarial capabil-

ities, from more limited to less limited adversaries. Chapter 2 introduces a scheme

that is designed to thwart a so-called “snapshot attacker” that obtains a one-time

copy of the contents of a database. Chapters 3 through 5 present attacks that can be

mounted by a stronger adversary that continuously observes information as another

party makes range queries on the database. With each chapter, mounting the attack

requires less information, culminating in the volume-only attacks in Chapter 5 that

can be carried out by an adversary that sees only how many records matched each

query.

Overall, the main contributions of this thesis are attacks. Table 1.2 offers an overview

of the different attacks considered in this thesis. The following paragraphs then

provide overviews of each chapter.
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Goal Output Success condition(s)

Decryption
(§ 2.7)

Map θ : C+ →M • ∀m ∈M, θ
(
HFSE(m) ∩ DB

)
= m

Exact
reconstruction
(§ 3.2)

Map v̂al : R → [1, N ] • ∀r ∈ R, v̂al(r) = val(r)

� or ∀r ∈ R, v̂al(r) = N + 1− val(r)

Diameter-δ
approximate
reconstruction
(§ 3.3)

Map v̂almin, v̂almax :
R → [1, N ]

• ∀r ∈ R, val(r) ∈ [v̂almin(r), v̂almax(r)]

• ∀r ∈ R, v̂almax(r)− v̂almin(r) ≤ δN

ε-Approximate
reconstruction
(§ 4.2)

Map v̂al : R → [1, N ] • ∀r ∈ R, |val(r)− v̂al(r)| < εN
� or ∀r ∈ R,

|N + 1− val(r)− v̂al(r)| < εN

ε-Approximate
ordered
reconstruction
(§ 4.3)

Disjoint subsets
A1, . . . , Ak ⊂ R

• ∀r ∈ R with val(r) ∈ (εN,N − εN),
∃i : r ∈ Ai
• ∀i ∈ [1, k], diam(Ai) < εN

• A1

val

< · · ·
val

< Ak

� or Ak
val

< · · ·
val

< A1

Count
reconstruction
(§ 5.1)

ĉount : [1, N ]→ Z • ∀i ∈ [1, N ], ĉount(i) = count(i)
� or ∀i ∈ [1, N ],
ĉount(N + 1− i) = count(i)

Table 1.2: The types of database reconstruction we consider as attack goals in this
thesis. For attacks on range query leakage, success conditions for reconstruction up
to reflection are marked by �.

Decryption attacks. Chapter 2 is different than the later chapters: its main con-

tributions are definitions of a new type of scheme, Frequency-Smoothing Encryption

or FSE (Section 2.2), security definitions (Section 2.4) and instantiations of FSE

(Sections 2.5 and 2.6). FSE offers the same functionality as deterministic encryption:

equality queries and, by using the simple technique of converting an interval of values

to a set, range queries. The goal of FSE is to use knowledge of the plaintext’s distri-

bution to encrypt in such a way that ciphertext frequencies do not leak information

about the underlying plaintext.

Despite being more constructive than Chapters 3 through 5, Chapter 2 also considers

attacks on the practical security of a proposed FSE scheme (Section 2.7), where

an attacker’s goal is not to break the formally defined indistinguishability security

notions (q.v. Section 2.4), but to construct a decryption mapping that assigns to each

ciphertext its correct plaintext. In FSE, each plaintext message m can have multiple

different ciphertexts, represented in its set of homophones HFSE(m), so the decryption

map may be many-to-one. To succeed, the adversary must successfully decrypt each

ciphertext appearing in the snapshot of the database it obtains.
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Rank and access pattern leakage attacks. Chapter 3 and all further chapters

deal with only range queries of the form [a, b] that are sub-intervals of the integers

[1, N ]. Suppose that for each range query a client makes, the adversary learns two

pieces of information about it: which records matched the query (the query’s access

pattern) and how many records have value less than the left query endpoint a, and how

many have value at most the right query endpoint b. The second piece of information

is the rank of the query endpoints, rank(a−1) and rank(b). Many encrypted database

schemes that support range queries leak this information (q.v. Section 3.1), and no

prior attacks had been designed to exploit it. With such leakage from sufficiently

many different queries, an adversary may attempt to exactly reconstruct the data by

assigning a value to each record: for each record r ∈ R, it assigns a value v̂al(r) ∈

[1, N ]. Exact (or full) reconstruction succeeds when the reconstructed values of all

records are correct. We present such an attack on dense databases in Section 3.2.

Instead of exactly reconstructing the values of all records, the adversary may find it

sufficient to approximately reconstruct their values. It can proceed by assigning each

record an interval of some small width (relative to the attribute domain’s size N) that

must contain its correct value. Approximate reconstruction within relative diameter

δ succeeds if each record is assigned an interval of width at most δN that contains

its actual value. Section 3.3 presents an attack targeting diameter-δ approximate

reconstruction on dense databases. Lastly, in Section 3.4, we present a different

type of value reconstruction attack that uses an auxiliary distribution and makes no

guarantees on the correctness of its output. The success of this attack is measured in

terms of the fraction of records whose values were close to their correct values, relative

to the domain size N . Our results show that the attack has good success when the

auxiliary distribution is close to the data’s distribution.

Access pattern leakage attacks. Using only access pattern leakage, and not rank

leakage, similar types of exact and approximate reconstruction are possible. First,

they require a small adaptation: with only access pattern leakage, it is impossible to

distinguish (without additional information) records with value a from records with

value N + 1−a. The reflection symmetry of [1, N ] and [N, 1] is explained at the start

of Chapter 4.

While our work was the first to consider attacks using rank and access pattern leak-

age, using only access pattern leakage was not novel. Kellaris, Kollios, Nissim, and

O’Neill (KKNO) [42] formalized and derived access pattern attacks for both dense

and sparse databases, which respectively require Ω
(
N2 logN

)
and Ω

(
N4 logN

)
uni-

formly random queries. In Section 4.1, we present an attack that succeeds with fewer
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queries on dense databases by using a different technique. We also present an attack

in Section 4.2 that targets a form of approximate reconstruction: it assigns a point es-

timate v̂al(r) to each record r and succeeds if all of these estimates are within distance

εN of the correct record values (or their reflections). Both of these attacks apply to

dense databases only.

We then introduce a new, more relaxed type of approximate reconstruction for non-

dense databases: instead of assigning point values to each record, the goal is to group

records with close values together, then sort these groups (up to reflection). This goal

and a corresponding attack are described in Section 4.3.

Volume leakage attacks. The last chapter of the main body of this thesis exploits

the most restricted kind of leakage yet: we consider an adversary that learns only

how many records match each range query. Our attack is designed to work after

the adversary has observed each of the N(N + 1)/2 possible range queries. It does

not know which query corresponds to which volume; it sees only the following set of

volumes:

{
vol([1, 1]), vol([1, 2]), . . . , vol([1,N]), vol([2, 2]), . . . , vol([N− 1,N]), vol([N,N])

}
.

In the absence of access pattern leakage, the adversary can no longer reconstruct a

value mapping v̂al as in the two previous scenarios since it does not learn any record

identifiers. Instead, its goal is to determine the database’s counts: for each value i

from 1 to N , it tries to determine the number of records with that value, ĉount(i).

We were not the first to devise reconstruction attacks on range query volume leak-

age; again, KKNO [42] also presented some. However, their algorithms strongly rely

on the assumption that range queries are drawn independently and uniformly at

random, whereas ours requires only the set of volumes, not their frequencies. Our

algorithm in Section 5.1 uses a graph to reason about a particular set of volumes,

called the elementary volumes, from which the counts can be reconstructed (and vice

versa). KKNO proved that, in general, any algorithm successfully achieving exact

reconstruction from volume leakage requires Ω
(
N4
)

range queries. However, our ex-

perimental results in Section 5.2 show that reconstruction is possible for real-world

databases with much fewer queries. Although our count reconstruction algorithm is

heuristic and its success cannot be analyzed as easily as the algorithms in previous

chapters, in Section 5.3 make a series of assumptions that allow reasoning about the

structure of the graph and when the algorithm is likely to success.
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1.3 Experimental evaluations and datasets

While most of the algorithms in this thesis are amenable to statistical analysis, a

few are not. In either case, it can be helpful for the methodology to include ex-

perimental evaluations. Such evaluations can allow comparing results for different

encoding lengths, attributes, database sizes, or data distributions, or validate as-

sumptions made in the analysis. Each of the other chapters in this thesis contains the

results of at least one experiment, sometimes on real datasets (though with simulated

queries). This section introduces the datasets we use, how we processed them, and

where experimental evaluations are used.

HCUP data. The real datasets were extracted from the yearly Nationwide Inpa-

tient Samples (NIS) from the Healthcare Cost and Utilization Project (HCUP), run

by the Agency for Healthcare Research and Quality (AHRQ) in the United States [1].

The AHRQ is a US government agency which collects a vast amount of data on the

American healthcare industry. HCUP is one of their core projects meant to track how

healthcare is used and paid for by different demographic groups. Within HCUP, there

are different types of samples taken every year and made available to researchers, of

which the NIS is one such sample. In this thesis, “HCUP data” refers to this NIS

data.

This data source was introduced to us in Naveed, Kamara, and Wright’s 2015 pa-

per [62], discussed further in Chapter 2. The NIS is the largest publicly available

inpatient database in the United States that includes discharge data for all types of

payers. It includes data at the hospital level (such as number of discharges, number of

beds) and at the patient discharge level (such as demographics, diagnosis, procedure,

payer). Acquiring this data involved paying a fee and completing HCUP Data Use

Agreement training. We did not attempt to deanonymize any of the data, nor are

our attacks designed to deanonymize medical data.

As a means of introduction to the HCUP NIS data, Figure 1.2 contains information

about the number of hospitals contained in each year’s release and the minimum,

maximum, and quartiles for the number of records per hospital for the relevant years.

There is not too much year-to-year variation in the number of records per hospital

for these years, which is expected since until 2012, the HCUP NIS data was collected

as a random sample from all hospitals in the USA. This provides evidence that our

experiments would be predictive of our attacks’ performance (were they carried out

on a real hospital database). In 2012, the sampling methodology for HCUP changed:
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Num. patient records per hospital

Year Num. hospitals Min. 25% 50% 75% Max.

2004 1004 15 1199 4300 11523 71580

2008 1056 3 889 3439 11170 117372

2009 1050 1 750 3278 10487 121668

Figure 1.2: Number of hospitals and quartiles for number of records per hospital for
2004, 2008 and 2009 HCUP data.

more recent HCUP data is collected using a random sample of patients instead of

hospitals.

Table 1.3 lists the attributes we chose to extract and use in our experiments, along

with their domain sizes, which range from N = 2 to N = 365. APRDRG refers to

the All Patients Refined Diagnosis Related Groups, a patient classification system.

For the experiments in Chapters 3–5, we used only those attributes on which range

queries are meaningful.

The following is an overview of the experimental evaluations in this thesis and which

ones use HCUP data:

• Section 2.7: Evaluation of frequency analysis attack on 12 attributes from the

largest 200 hospitals in the 2009 HCUP dataset encrypted with a frequency-

smoothing encryption (FSE) scheme using interval-based homophonic encoding.

• Section 3.4: Evaluation of inferred reconstruction attack using rank and access

pattern leakage and estimate of data distribution on AGE data from the largest

200 hospitals in the 2009 HCUP dataset.

• Section 4.3.4: Evaluation of ε-approximate ordered reconstruction attack on

synthetic data.

• Section 5.2: Evaluation of pre-processing and clique-finding steps on 10 about

attributes from about 1000 hospitals in the 2004, 2008, and 2009 HCUP datasets.

(Some attributes were not available in all years.)

• Section 5.3.4: Evaluation of estimates of graph properties computed in ana-

lytical Poisson model on synthetic data.

Every year the AHRQ prescribes a format and size for each attribute collected in the

various samples. In extracting per-attribute experimental data from HCUP, we faced

three main complications: (1) hospitals do not generally abide by these prescriptions,

(2) the prescribed formats change from year to year, and (3) not all attributes exist in
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all years of HCUP data. We will describe how we address each of these complications

in turn.

Hospitals are strongly encouraged, but not required, to report data in the format

dictated by the AHRQ, and some hospitals choose to report their data in incorrect or

outdated formats. The AHRQ corrects some of these mistakes before making samples

available publicly, but many mistakes still occurred in our data. For example, the

attributes NPR, NDX, and NCHRONIC are capped by the AHRQ, but some hospitals still

report greater values, which we simply ignored.

In extracting NPR, NDX, and NCHRONIC, we also faced the second complication: the

number of values changed (increasing from 16 to 26) in 2009. One other attribute

whose format changed is AGE. In 2012, the AHRQ mandated that ages be “top-

coded” (i.e., all values above a threshold be grouped into one category) at 90 in

all samples for privacy reasons. Despite not using any HCUP data from 2012 or

later in the experiments in this thesis, we top-coded all AGE data in our experiments

in Chapter 5. This top-coding was done for two main reasons: first, to make our

experiments address practical security risks to real deployments (in which ages may

be top-coded), and second, because our paper on which Chapter 5 is based included

an additional experiment involving AGE data from 2013, and we wanted results to be

comparable across years.

The only attribute which did not appear in all three years (namely not in 2004) of

HCUP data was NCHRONIC. Since we had several other datasets for that attribute and

the performance of all attacks on that attribute was similar across experiments, we

were not concerned. We were not able to obtain the full 2008 NIS, and as a result we

did not have APRDRG Severity or APRDRG Risk Mortality for that year.
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Table 1.3: The HCUP attributes examined in experiments throughout

Attribute (HCUP label) Num. values

Age (AGE) 125 or 91

Admission month (AMONTH) 12

Admission source (ASOURCE) 5

Admission type (ATYPE) 6

Patient died (DIED) 2

Sex (FEMALE) 2

Length of stay (LOS) 365

Major diagnostic category (MDC) 25

Number of chronic conditions (NCHRONIC) 16 or 26

Number of diagnoses (NDX) 16 or 26

Number of procedures (NPR) 16 or 26

Primary payer (PAY1) 6

Ethnicity group (RACE) 6

ZIP code income quartile (ZIPINC) 4

Disease severity (APRDRG Severity) 4

Mortality risk (APRDRG Risk Mortality) 4
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Chapter 2

Frequency-smoothing

encryption

Background. Beginning in 2015, a series of papers using statistical analysis of ci-

phertexts in databases showed that these techniques can yield devastating inference

attacks. They targeted deterministic encryption [62], order-preserving/revealing en-

cryption [32, 62], and searchable encryption [70]. One of the first papers I read upon

starting my PhD studies was by Naveed, Kamara, and Wright and dealt with attacks

on DE and OPE [62]. The two attacks on DE from this paper (simple frequency anal-

ysis and `p-optimization) motivated the work in this chapter. Here, we seek to answer

the question of how to encrypt data in a way that reduces frequency leakage—thus

thwarting such attacks—while preserving query functionality.

This chapter is based on the paper “Frequency-smoothing encryption: preventing

snapshot attacks on deterministically encrypted data,” which I co-authored with

Kenny Paterson. It was published in the IACR Transactions on Symmetric Cryp-

tology [50] in 2018 and the full version appears on the IACR’s Cryptology ePrint

Archive [49].

Introduction. At the heart of the aforementioned inference attacks is classical fre-

quency analysis. In this chapter, we propose and evaluate another classical technique,

homophonic encoding, as a means to combat these attacks. We introduce the concept

of frequency-smoothing encryption (FSE) which generalizes (symmetric) deterministic

encryption to the setting of “somewhat randomized” encryption, where each message

has a relatively small number of possible ciphertexts (i.e., homophones). FSE is gen-
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eral enough to capture schemes that handle initially unknown or changing message

distributions. We also show how FSE supports equality queries and database joins.

Classical frequency analysis is a powerful attack against deterministically encrypted

data. If the plaintext distribution is not uniform and an adversary has a reference

dataset from which it can compute expected plaintext frequencies, then, given access

to a snapshot of the encrypted data, the adversary can match frequencies in the en-

crypted domain with those in the plaintext domain, thus identifying which ciphertext

corresponds to which plaintext. This kind of inference attack, where statistical tech-

niques are used to infer plaintext information, was used to great destructive effect in

the work of Naveed et al. [62]: they correctly inferred large amounts of patient informa-

tion from DE-encrypted hospital records. Their work and related papers investigating

inference attacks [70, 39, 32, 7] and leakage-abuse attacks [16, 30, 79, 21, 42, 48] have

dented both the industry’s and the research community’s confidence in its ability to

protect outsourced data while preserving query capabilities.

A few proposed OPE/ORE schemes hide frequencies, such as those by Kerschbaum [43]

and Boneh et al. [13], but they both have limited practicality. Pouliot, Griffy, and

Wright [69] developed the notion of weakly randomized encryption (WRE), in which

a small amount of randomness is injected into each ciphertext to prevent frequency

analysis. We discuss this and other related work in greater detail in Section 2.1.

Homophonic encoding. Our goal is to develop a rigorous means of preventing

inference attacks on encrypted databases. Our solution was inspired by an old tech-

nique: homophonic encoding (HE). The goal of homophonic encoding (or homophonic

substitution) is to flatten the frequency distribution of messages by mapping each

plaintext to multiple possible homophones, with the number of encodings for each

plaintext m ideally being proportional to the frequency of m. Then, although homo-

phonically encoded data may still contain repetitions, the homophones occur roughly

equally often; frequency information would not help an adversary who has a copy

of the encoded data. Homophonic encoding has not received much formal analy-

sis in this context. Moreover, it is usually applied in contexts where adjacent data

items are not independent of one another—for example, letters or words in natural

language—which renders it vulnerable to attacks based on analysis of bi-grams rather

than single-letter frequencies. In database encryption, this inherent weakness does

not arise since each column of the database is encrypted under a separate key and we

treat the rows as an unordered set.
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Another common feature of HE schemes is variable-length encoding. The usual ad-

vantage of variable-length codes—their low average codeword length—is not as much

of an advantage in the setting of encrypted databases. In a database table, it is

likely that every value in a column is allocated the same amount of storage according

to the declared data type of the attribute. Variable-length entries are still possible,

however—for instance, by storing a prefix indicating the length of each entry in the

column. The MySQL version 5.7 reference manual describes four variable-length data

types, all for strings: VARCHAR, VARBINARY, BLOB and TEXT [63]. Values in a VARCHAR

column, for example, are stored with a prefix indicating their length in bytes. While

the maximum length of an entry in the column must be specified, the data is not

padded. Since we are considering applications where the data items are no longer

than a few bytes, it is space-efficient to pad data to a fixed size rather than include a

length prefix. For these reasons, we will consider only fixed-length codes.

By combining HE to flatten message distributions and encryption to provide message

privacy, we obtain what we call frequency-smoothing encryption (FSE). Using HE

leads to encryption schemes that are randomized: we ensure that each message has

enough homophones to combat frequency analysis, but not so many that they cannot

all be computed on the fly and sent to the database for comparison with the rele-

vant column of ciphertexts. We show that making this trade-off between preventing

frequency leakage and increasing query complexity is beneficial, at least for certain

distributions, and provides schemes that are both secure against snapshot attackers

and reasonably efficient.

Limitations. We evaluate our construction against only two types of attacks. The

first is security in a somewhat randomized generalization of the standard security

notion for DE due to Rogaway and Shrimpton [74]. The second is security against

inference attacks made by a snapshot attacker on a per-column basis. Our security

proofs and empirical evaluations are respectively focused on these notions. We do not

defend against more advanced forms of attack, such as those based on query analysis,

as in [16, 30], or attacks based on correlations between columns, as in [21]. Concretely,

without some kind of query padding or query batching, it will be possible to carry out

frequency analysis on the queries made in our schemes, since the number of queries

required for a given plaintext m will be roughly proportional to the frequency of

m. In addition, Grubbs et al. recently pointed out the artificiality of the snapshot

attack model in view of real database management systems [31]. These systems often

store additional information that an attacker would capture in its snapshot, e.g., prior
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queries. Nevertheless, resisting snapshot attacks is necessary for achieving meaningful

security in any realistic threat model, and our approach at least achieves this.

Despite some limitations, we believe that our work has significant value since currently,

there are few good solutions that address any of the recent and severe inference

attacks, and we show that at least some forms of attack can be effectively combated

at low cost. We consider that our work on frequency-smoothing encryption could

form the basis of a more complete solution to the problem of preventing inference

attacks on encrypted databases.

Chapter overview. In Section 2.1, we discuss related work in more detail. We then

introduce a definition for an FSE scheme (Section 2.2) and explain how FSE could be

used in practice (Section 2.3.) We provide two security notions for FSE in Section 2.4.

The first, FSE−SMOOTH, prevents frequency analysis attacks by requiring that a

collection of FSE ciphertexts be indistinguishable from random data even when the

underlying plaintext distribution is known. The second, FSE−PRIV, generalizes the

symmetric deterministic encryption security notion [74]. In Section 2.5, we give a

generic construction for FSE from any Deterministic Encryption (DE) scheme and

any Homophonic Encoding (HE) scheme.

We propose two simple, easy-to-implement HE schemes in Section 2.6. Both schemes

can be configured to yield different trade-offs between query efficiency and resistance

to frequency analysis attacks. We apply a framework for optimal distinguishers [5]

to our setting to show that our HE schemes asymptotically achieve perfect flatten-

ing in a statistical sense—even for computationally unbounded adversaries. However,

obtaining a typical cryptographic level of security like 2−80 might require such long

encoding lengths that the numbers of homophones per message make the query com-

plexity impractical. For this reason, we also conduct an empirical analysis of the

effectiveness of our FSE schemes with moderate values of the encoding length r (Sec-

tion 2.7). We attempt to match plaintexts with ciphertexts via frequency analysis,

in the same way as Naveed et al. [62]. Although this type of attack asks more of

the adversary than FSE−SMOOTH or FSE−PRIV, resisting it is nevertheless useful,

given a real-world adversary’s typical aim of recovering actual plaintext. We use the

method of Maximum Likelihood Estimation to derive an efficient algorithm that is

statistically optimal in assigning ciphertexts to possible plaintexts (Section 2.7.1),

in the same way that frequency analysis is optimal for deterministically encrypted

data. We apply this algorithm to FSE-encrypted HCUP medical data and measure

the attack’s success in terms of the number of hospitals in which a certain fraction of

records’ data was successfully recovered.
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Notation specific to this chapter. Let D be the actual (true) probability distri-

bution from which messages inM are sampled. The probability of a message m under

this distribution is fD(m). When a data owner or an adversary must guess or estimate

the data’s actual distribution D, we use D̃ for the owner’s approximation and D̂ for

the adversary’s approximation. To refer to the distribution of encoded or encrypted

data in the appropriate domain, which may be dependent upon a particular state s,

we use Ds. Table 2.1 summarizes our notation for these various distributions.

2.1 Related work

One of the works most similar to FSE, and developed in parallel, is Pouliot, Griffy,

and Wright’s weakly randomized encryption (WRE) scheme [69]. It uses a PRF, a

distribution-dependent “salt allocation method,” and an IND-CPA secure encryption

scheme to create tag-ciphertext pairs. The tags allow equality queries and depend on

the “salt” chosen for that encryption. Pouliot et al. present various salt allocation

methods, such as proportional salt allocation (which resembles our interval-based

homophonic encoding scheme in Section 2.6.2), and two Poisson-based variants. The

first Poisson salt allocation method is vulnerable to a form of frequency analysis

based on solving a knapsack problem. In this method, a Poisson process determines

the number of salts per message, and the inter-arrival times of the Poisson events

determine the distribution over the salts. However, the last salt for each message has

a different distribution, which could be exploited by an adversary to determine which

salts correspond to which message by solving a subset-sum problem. In response to

our pointing this out by email, the authors updated their paper and introduced a

bucketized Poisson variant [69, Sec. 5C1] that is no longer vulnerable to this attack,

but introduces false positives in results of equality queries.

A few OPE/ORE schemes have properties similar to frequency-smoothing. The first

OPE scheme [2], by Agrawal et al., used a kind of homophonic encoding in its con-

Table 2.1: Overview of our notation for various distributions

Symbol Domain Description

D M data’s actual distribution

D̃ M owner’s guess of the data’s distribution

D̂ M adversary’s guess of the data’s distribution

Ds E encoded data’s distribution for an HE or FSE scheme
when state is s (introduced in Sec. 2.6.1)
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struction. Its goal is not necessarily to hide frequencies, but to hide the input’s

distribution by transforming it to have some target distribution. The paper used the

Kolmogorov–Smirnov test (the maximum difference between the CDFs of the two

distributions) to determine whether (i) the input data’s distribution was indistin-

guishable from uniform after flattening, and (ii) the encoded data’s distribution was

indistinguishable from data with the target distribution (Gaussian, Zipf, or uniform).

In their experiments, the data items all had 32 bits and the encodings had 64 bits.

Kerschbaum [43] presented a frequency-hiding OPE scheme that entirely forbids rep-

etition of ciphertexts. However, it has large client-side storage requirements and,

because of its order-preserving nature, is vulnerable to partial plaintext recovery at-

tacks in a snapshot attack model [32]. The security notion used is indistinguisha-

bility under frequency-analyzing ordered chosen plaintext attack (IND-FA-OCPA).

The adversary is tasked with distinguishing between encryptions of two equal-length

sequences of plaintexts, not necessarily distinct, which have at least one common ran-

domized order (ranking in which ties may be broken arbitrarily). The IND-FA-OCPA

security notion captures the idea that the ciphertext leaks only the randomized order.

It does not leak any frequency information, since each message and ciphertext value

occurs exactly once. Roche et al. [72] introduced a partial order-preserving encoding

scheme that uses the same security notion. Boneh et al.’s ORE scheme [13] is built

from multilinear maps and the authors admit it is too inefficient for practical use.

Most of these OPE/ORE schemes that attempt to hide frequencies are generally in-

comparable to ours since we do not require ciphertexts to be distinct. We purposely

allow repetition, which enables us to achieve more flexible trade-offs between security

and performance.

A different approach was used in Papadimitriou et al.’s splayed additively symmetric

homomorphic encryption (SPLASHE) construction [65]. It hides frequencies while

supporting aggregate operations such as COUNT and SUM by expanding each column

into as many columns as there are possible values. Their enhanced SPLASHE con-

struction addresses the attendant storage expansion by assigning individual columns

to the “most frequent” values and grouping together the “least frequent” values in

one column. To distinguish the less frequent values, a column of deterministically

encrypted (DE) values is added. The frequencies of the “least frequent” values in

this column are smoothed with a rudimentary padding technique. The threshold sep-

arating most frequent and least frequent values is chosen to ensure that there are

enough records having their own columns so that their entries in the DE column can

be used to equalize the counts of the least frequent values’ DE values. SPLASHE

40



was designed for data analytics and in particular it does not support equality queries

or joins. It also suffers from significant data expansion, about 10x for a real-world

analytics database.

Another construction similar to ours is a secure order-preserving indexing (OPI) that

supports efficient point and range queries while hiding frequencies [57]. One advantage

of this scheme is that an equality query on the unencrypted data corresponds to

one range query on the indices, while our schemes transform each equality query to

multiple equality queries. OPI expands the plaintext domain to the ciphertext domain

by assigning an interval of indices to each plaintext whose size is proportional to its

frequency (much like we do with IBHE in Section 2.6.2). However, there is no formal

security analysis of the OPI scheme nor suggestion about how to choose the size of

the ciphertext domain.

Summary. Our work addresses a combination of properties that none of these pre-

vious schemes has: it allows equality queries, has a formal security analysis, and our

concrete constructions have adjustable parameters to attain the desired balance of

security and efficiency.

2.2 Definitions

Our goal is to design schemes that output ciphertexts whose frequencies are uniform,

so even an adversary who knows the underlying plaintext frequencies cannot infer

anything about the data.

In our formal definition of a frequency-smoothing scheme, the Setup algorithm accepts

as input the data owner’s estimate D̃ of the messages’ distribution and a distribution

adaptation parameter ∆ that indicates how “different” the estimated distribution D̃

may be from the actual, unknown message distribution D. The choice of “difference”

measure will depend on the particular FSE scheme and how it adapts to the message

counts it observes and encrypts. For instance, the parameter ∆ may be an upper

bound on the Kolmogorov–Smirnov statistic or the statistical distance of the two

distributions. In a sense, this parameter indicates how much uncertainty is associated

with the initial estimated distribution D̃; it indicates how conservatively a dynamic

FSE scheme should allocate homophones. Regardless of what measure of difference

is used, we assume that ∆ = 0 indicates complete confidence that D̃ = D, in which

case the scheme will be entirely non-adaptive, i.e., static.
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Maintaining state allows an FSE scheme to handle initially unknown distributions

(∆ 6= 0): by updating the state as messages are encrypted, the scheme can allocate

more homophones to the more frequently observed messages. Decryption involves

accessing the updated state, and therefore the state must always contain enough

information to decrypt any message encrypted with an earlier state. The state also

makes explicit that encryption requires knowledge of the plaintext distribution, which

the data owner will need to store in practice. Additionally, having a state allows some

pre-computation on the message distribution to make encryption or decryption faster.

Nevertheless, when the precise message distribution is known from the start or the

scheme is static (∆ = 0), the state does not need to be updated after running Setup

and the following definitions simplify accordingly.

Recall that one of our assumptions is that the support of the distribution (i.e., the

messages with non-zero probability) is always known. We also assume that messages

are sampled independently from a fixed distribution. If the distribution changes over

time, the estimated distribution D̃ given as input to Setup would need to be replaced

with a set of conditional distributions describing a stochastic process.

Definition 2.1. A frequency-smoothing encryption (FSE) scheme FSE is a quadruple

of algorithms FSE = (Setup,KeyGen,Encrypt,Decrypt) such that:

• Setup : {0, 1}∗ × DM × {0, 1}∗ → S takes a security parameter λ ∈ {0, 1}∗, a

distribution D̃ ∈ DM, and a distribution adaptation parameter ∆ ∈ {0, 1}∗ as

input and outputs a state s ∈ S that includes a description of the distribution D̃

and maybe other information.

• KeyGen : {0, 1}∗ → K takes a security parameter λ ∈ {0, 1}∗ as input and

outputs a secret key sk ∈ K.

• Encrypt : K ×M×S → {C × S} ∪ {⊥} takes a key sk ∈ K, a message m ∈M,

and a state s ∈ S as input and outputs either a ciphertext c ∈ C and an updated

state s′ ∈ S or ⊥.

• Decrypt : K × C × S →M∪ {⊥} takes a key sk ∈ K, a ciphertext c ∈ C, and a

state s ∈ S as input and outputs either a message m ∈M or ⊥.

Setup, KeyGen, and Encrypt are randomized algorithms, while Decrypt is deterministic.

For a particular key sk, we call a state s′ attainable from the state s if s′ = s or if there

exists a finite sequence of messages m1, . . . ,mn ∈ Mn such that by defining s0 := s

and (ci, si) ← Encrypt(sk,mi, si−1) for i = 1, . . . , n, we get sn = s′ with non-zero

probability. A frequency-smoothing scheme is correct for a distribution D̃ if for any

initial state s← Setup(λ, D̃,∆), any key sk← KeyGen(λ), any message m ∈ supp(D̃),
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and any intermediate state s′ attainable from s, if (c, s′′)← Encrypt(sk,m, s′), then for

any later state s′′′ attainable from s′′, Decrypt(sk, c, s′′′) = m with probability 1. Less

formally, any message encrypted after initializing the state can be decrypted later,

even if other messages are encrypted in the meantime, potentially updating the state.

For some fixed security parameter λ, distribution D̃, and distribution adaptation

parameter ∆, and any key sk output by KeyGen(λ) with non-zero probability, we let

HFSE
sk,s (m) be the set of all ciphertexts output by Encrypt(sk,m, s′) such that s0 is any

state output by Setup(λ, D̃,∆) with non-zero probability, s′ is a state is attainable

from s0, and s is attainable from s′. Thus, HFSE
sk,s (m) is the union of homophone sets

of message m for any state that may have come before the state s. We also let

HFSE
sk,s :=

⋃
m∈MHFSE

sk,s (m) be the set of all possible encryptions (homophones) of any

message with key sk for any state that may have come before s. We assume that the

sizes of homophone sets are independent of the choice of sk ∈ K, so we may write∣∣HFSE
s (m)

∣∣ for
∣∣∣HFSE

sk,s (m)
∣∣∣ and

∣∣HFSE
s

∣∣ for
∣∣∣HFSE

sk,s

∣∣∣. Two immediate corollaries of the

correctness property are that HFSE
sk,s (m) ⊆ HFSE

sk,s′(m) for any state s′ attainable from

s, and that HFSE
sk,s (m1) and HFSE

sk,s (m2) are disjoint unless m1 = m2, in which case

HFSE
sk,s (m1) = HFSE

sk,s (m2).

2.3 Using FSE

To use frequency-smoothing encryption in the intended setting—on outsourced data

that is queryable—the set HFSE
sk,s (m) must be easy to compute or describe for any

message m given a state s and key sk. For example, this allows a SQL query containing

an expression of the form WHERE attribute = x to be rewritten as WHERE attribute

IN (x1, x2, ...), where the xi’s compose the set of x’s homophones. This rewriting

incurs a query blow-up: a single query for item x is converted into a more complex

query for all of x’s homophones. We will parameterize our FSE schemes so that this

blow-up is manageable while still preventing frequency analysis attacks.

FSE also supports joins, which follows directly from the ability to support equality

queries. A join on unencrypted data such as FROM t1 JOIN t2 WHERE t1.a=t2.b

would instead be written as a UNION of join queries having the form FROM t1 JOIN

t2 WHERE t1.a IN (x1, x2, ...) AND t2.b IN (y1, y2, ...). There is a join

query for each possible plaintext value; the xi’s compose its set of homophones in

column a of table t1 and the yi’s compose its set of homophones in column b of

table t2.
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FSE is compatible with range queries, since a range is simply a set of values that can

be expanded to a larger set of homophones, but it does not natively maintain the

ability to index data for efficient range queries. However, the specific constructions

for FSE that follow can be adapted to use OPE, in which case range queries can be

efficiently supported. In particular, a deterministic OPE scheme could simply replace

DE in the HE-DE construction in Section 2.5.3. Further, the specific HE schemes

we present in Section 2.6 do not rely on messages being ordered by frequency—we

simply label them according to their frequencies for ease of exposition. Moreover,

both schemes preserve numerical ordering.

The state s of an FSE scheme is stored by the data owner or in a proxy that transpar-

ently performs the encryption and decryption operations. The state s will typically

include an accurate representation of the message distribution, and thus FSE schemes

may not be appropriate for very large message spaces. We will evaluate the client-side

storage requirements of our FSE schemes as we introduce them, but typically they

are in the order of r · |M| where r is a small parameter. Because each frequency fD̃(m)

must be represented with finite precision, the set of possible distributions over the

message space, DM, is finite.

2.4 Security definitions

A frequency-smoothing scheme should do what its name implies: hide the frequency

of messages from an attacker with access to a collection of ciphertexts, like a column in

a database table. It should also be hard to learn anything about individual plaintexts

from ciphertexts without the secret key. We formalize these notions of frequency-

smoothing and privacy in two security games.

2.4.1 Frequency smoothing

The frequency-smoothing game FSE−SMOOTH (Figure 2.1) captures the requirement

that ciphertexts do not leak any information about message frequencies, by making

their distribution indistinguishable from uniform. In the b = 0 case of this game,

the challenger uses an estimated distribution D̃ (corresponding to a data owner’s

guess of its data’s distribution) to initialize the state and then encrypts messages

sampled according to the true distribution D. In the b = 1 case, the challenger

samples ciphertexts uniformly at random with replacement from a set having the

size of the homophone set if the static scheme were used (∆ = 0) with the data’s

true distribution D. The adversary receives nr ciphertexts, the distribution D̃ that
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the challenger uses to initialize the state when b = 0, its own estimate of the data’s

distribution D̂ (possibly different from D̃), and the distribution adaptation parameter

∆. The adversary’s goal is to distinguish these two cases. Informally, if it is able

to distinguish the distribution of the nr ciphertexts from uniform, then the message

distribution must not have been properly smoothed by the FSE scheme.

Game FSE−SMOOTHA,D̃,D̂,D,nr,∆
FSE (λ)

b
$← {0, 1}

if b = 0 then

s0 ← FSE.Setup(λ, D̃,∆)

sk← FSE.KeyGen(λ)

m1, . . . ,mnr
D←M

for i in {1, . . . , nr} do
(ci, si)← FSE.Encrypt(sk,mi, si−1)

endfor

else

s∗0 ← FSE.Setup(λ,D, 0)

Y
$← C, |Y | =

∣∣∣HFSE
s∗0

∣∣∣
c1, . . . , cnr

$← Y

endif

b′ ← A(c1, . . . , cnr , D̃, D̂,∆)

return (b′ = b)

Figure 2.1: The frequency-smoothing game for an FSE scheme.

Definition 2.2. Consider the game FSE−SMOOTH in Figure 2.1. The frequency-

smoothing advantage of A against the FSE scheme FSE is

Advsmooth
FSE (A, D̃, D̂,D, nr,∆) = 2 ·

∣∣∣∣Prob
[
FSE−SMOOTHA,D̃,D̂,D,nr,∆

FSE (λ)⇒ 1
]
− 1

2

∣∣∣∣ .
Definition 2.3. An FSE scheme FSE is (α, t, D̃, D̂,D, nr,∆)-SMOOTH if for all ad-

versaries A running in time at most t and receiving at most nr samples, it holds that

Advsmooth
FSE (A, D̃, D̂,D, nr,∆) ≤ α.

From the definition of the FSE−SMOOTH game, some necessary conditions are im-

mediately obvious: first, for an FSE scheme to be FSE−SMOOTH for arbitrary D̃

and D, the distribution adaptation parameter would need to be large and so would

the total number of homophones—the latter would need to be about the number of

samples, nr. Therefore, for efficient constructions, it makes sense to consider schemes
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that are FSE−SMOOTH for classes of distributions D and D̃ that are “close enough”

according to the distribution adaptation parameter ∆.

Second, for a scheme to be FSE−SMOOTH for arbitrarily large nr, the size of every

message’s homophone set must be proportional to the frequency of the corresponding

message according to D. This is a consequence of the distribution over the set of all

homophones being indistinguishable from uniform and each homophone corresponding

to exactly one message.

The FSE−SMOOTH security notion is comprehensive; it captures the possibility that

the attacker has different information (D̂) about the messages’ actual distribution (D)

than the data owner used to initialize the state (D̃). It also captures the possibility

that the adversary has information about the data owner’s estimate of the data’s

distribution (D̃). In general, the adversary may not know exactly what distribution

the data owner used to initialize the state, but we assume that it does—such an

adversary is more powerful.

An important case is when the data’s distribution is known by both the data owner

and the attacker. In Section 2.6, we present FSE schemes that are provably secure

when D = D̃ = D̂, while in Section 2.7, we present results of an empirical analysis of

FSE security when D = D̃ = D̂ and compare it to the security of DE when D̂ = D

and D̂ ≈ D.

2.4.2 Message privacy

It is not enough for an FSE scheme to hide the frequencies of the messages: even

if the ciphertext distribution is uniform, the adversary could still be able to decrypt

messages, e.g., if the ciphertexts leak information about message order. Thus, we also

need a message privacy notion.

To obtain our message privacy definition, we adapt the deterministic privacy (“det-

Priv”) security notion for DE schemes [74] to our setting. That definition is itself an

adaptation of the indistinguishability-from-random-bits (“IND$”) notion of security

for a nonce-based symmetric encryption scheme [73]. It is also similar to the notion

of message privacy we use for DE schemes in Section 2.5.2.

In the detPriv game [74], the adversary is tasked with distinguishing real encryptions

of messages m of its choice from random bitstrings selected from the ciphertext space.

Our FSE−PRIV game diverges from the detPriv game in two related ways. First, we

restrict the adversary to requesting encryptions of messages sampled according to the

distribution D, so the challenger can sample the messages on its behalf. This may seem
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like a limitation of the adversary’s power, but it reflects exactly the scenario we want

to model, one in which encryption depends on the plaintext’s distribution. Second,

we allow the adversary to receive (potentially different) encryptions of the same mes-

sage. In the deterministic setting, it was assumed without loss of generality that the

adversary does not repeat any encryption queries since repeated encryptions would

have revealed nothing new. In our setting, the encryption algorithm is probabilistic,

so we allow repeated encryptions of m, but ensure they are either real encryptions

or sampled from a randomly selected set Ym of the appropriate size,
∣∣∣HFSE

s∗0
(m)

∣∣∣. For

different messages m, these sets are disjoint in view of the correctness property of an

encryption scheme.

In the FSE−PRIV game in Figure 2.2, the challenger either initializes the state using

the estimated distribution D̃ and then encrypts messages sampled according to D, or

it samples sets Ym of the “right” size for each message m if the true distribution D

had initially been known in the static scheme (∆ = 0). Given nr plaintext-ciphertext

pairs, the distributions D̂ and D̃, and the distribution adaptation parameter ∆, the

adversary A must determine how the plaintext-ciphertext pairs were generated.

Definition 2.4. Consider the message privacy game FSE−PRIV in Figure 2.2. The

message-privacy advantage of A against the FSE scheme FSE is

AdvprivFSE(A, D̃, D̂,D, nr,∆) = 2 ·
∣∣∣∣Prob

[
FSE−PRIVA,D̃,D̂,D,nr,∆

FSE (λ)⇒ 1
]
− 1

2

∣∣∣∣ .
Definition 2.5. An FSE scheme FSE is (α, t, D̃, D̂,D, nr,∆)-PRIV if for all adver-

saries A running in time at most t and receiving at most nr plaintext-ciphertext pairs,

it holds that AdvprivFSE(A, D̃, D̂,D, nr,∆) ≤ α.

From these definitions, some guidelines arise for creating efficient, secure schemes.

First, since homophone set sizes can only increase, the initial homophone set sizes in

the b = 0 case should be small to leave room to grow the sets corresponding to the most

frequent messages. Making a set of homophones too big will only require that some

of its members appear with low probability, so the sizes of the final homophone sets

in the b = 0 case,
∣∣∣HFSE

snr
(m)

∣∣∣, should be roughly equal to the sizes of the homophone

sets in the static b = 1 case, |Ym| =
∣∣∣HFSE

s∗0
(m)

∣∣∣.
Recall that in the smoothness game (Figure 2.1), the adversary sees only ciphertexts.

Frequency smoothness enforces that the sizes of each message’s homophone set must

be proportional to that message’s frequency or large enough that no ciphertexts are

repeated. In the message privacy game (Figure 2.2), the adversary sees plaintext-

ciphertext pairs. Message privacy enforces that there is no link between plaintexts and
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Game FSE−PRIVA,D̃,D̂,D,nr,∆
FSE (λ)

b
$← {0, 1}

m1, . . . ,mnr
D←M

if b = 0 then

s0 ← FSE.Setup(λ, D̃,∆)

sk← FSE.KeyGen(λ)

for i in {1, . . . , nr} do
(ci, si)← FSE.Encrypt(sk,mi, si−1)

endfor

else

s∗0 ← FSE.Setup(λ,D, 0)

Y
$← C, |Y | =

∣∣∣HFSE
s∗0

∣∣∣
for i in {1, . . . , nr} do

if ∃ j < i : mi = mj do

Ymi := Ymj

else

Ymi
$← Y, |Ymi | =

∣∣∣HFSE
s∗0

(mi)
∣∣∣

Y := Y \ Ymi

endif

ci
$← Ymi

endfor

endif

b′ ← A((m1, c1), . . . , (mnr , cnr), D̃, D̂,∆)

return (b′ = b)

Figure 2.2: The privacy game for an FSE scheme.

ciphertexts except what is necessary for correctness. Both conditions are necessary for

a secure frequency-smoothing scheme. In the next section, we present constructions

for FSE that reflect this two-part approach.

2.5 Building FSE from HE and DE

One approach to building an FSE scheme is to first probabilistically encode the mes-

sages in a way that smooths the plaintext distribution, then deterministically en-

crypt the encoded messages. In this section, we present such a two-part, modular

construction that composes homophonic encoding (to smooth frequencies) with de-

terministic symmetric-key encryption (to provide privacy). Sections 2.5.1 and 2.5.2

present definitions for homophonic encoding and deterministic encryption schemes,

while Section 2.5.3 describes how to compose them to get an FSE scheme.
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2.5.1 Homophonic encoding

We consider stateful encoding schemes that are initially given an estimated distribu-

tion of the messages as input.

Definition 2.6. A (stateful) homophonic encoding scheme HE is a triple of algorithms

(Setup,Encode,Decode) such that:

• Setup : {0, 1}∗ × DM × {0, 1}∗ → S is a probabilistic algorithm that takes a

configuration parameter λ ∈ {0, 1}∗, an estimated distribution D̃ over M, and a

distribution adaptation parameter ∆ as input and outputs some state s ∈ S that

includes a description of the distribution D̃ and any other scheme parameters.

• Encode :M×S → {E×S}∪{⊥} is a probabilistic algorithm that takes a message

m ∈M and a state s ∈ S as input and outputs either an encoded message e ∈ E

and an updated state s′ ∈ S, or ⊥.

• Decode : E × S →M∪ {⊥} is a deterministic algorithm that takes an encoded

message e ∈ E and a state s ∈ S as input and outputs a message m ∈M or ⊥.

We emphasize that all algorithms and parameters in a homophonic encoding scheme

are keyless and therefore provide no message privacy.

For some fixed configuration parameter λ, distribution D̃, and distribution adaptation

parameter ∆, let HHE
s (m) be the set of all possible encodings (homophones) of the

message m ∈M for any state up to the given state s. Also letHHE
s :=

⋃
m∈MHHE

s (m).

In order to use HE for its intended purpose, we require that the set of homophones

of a message is easy to compute or describe given a state. Again, call a state s′

attainable from the state s if s′ = s or there exists some finite sequence of messages

m1, . . . ,mn ∈ Mn such that setting s0 := s and letting (ei, si) ← Encode(mi, si−1)

for i = 1, . . . , n, then we have sn = s′ with non-zero probability. A homophonic

encoding scheme is correct for a distribution D̃ ∈ DM if for all states s output by

Setup(λ, D̃,∆), any message m ∈ supp(D̃), and any state s′ attainable from s, if

(e, s′′) ← Encode(m, s′), then for any s′′′ attainable from s′′, Decode(e, s′′′) = m with

probability 1. In particular, the correctness property requires that any two sets of

homophones HHE
s (m) and HHE

s (m′) are disjoint unless m = m′.

In Figure 2.3, we introduce a game HE−SMOOTH for HE schemes that is similar to the

FSE−SMOOTH game (Figure 2.1). We also define the advantage of an adversary and

the security of an HE scheme in a manner similar to the corresponding FSE−SMOOTH

definitions of the previous section. Note that in the b = 1 case of the FSE−SMOOTH

game, the adversary receives ciphertexts sampled uniformly at random from some set
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of the right size, while in the b = 1 case of the HE−SMOOTH game, the adversary

receives ciphertexts sampled uniformly at random from the actual set of homophones.

Game HE−SMOOTHA,D̃,D̂,D,nr,∆
HE (λ)

b
$← {0, 1}

if b = 0 then

s0 ← HE.Setup(λ, D̃,∆)

m1, . . . ,mnr
D←M

for i in {1, . . . , nr} do
(ei, si)← HE.Encode(mi, si−1)

endfor

else

s∗0 ← HE.Setup(λ,D, 0)

e1, . . . , enr
$← HHE

s∗0

endif

b′ ← A(e1, . . . , enr , D̃, D̂,∆)

return (b′ = b)

Figure 2.3: The frequency-smoothing game for an HE scheme.

Definition 2.7. Consider the game HE−SMOOTH in Figure 2.3. The frequency-

smoothing advantage of A against the homophonic encoding scheme HE is

Advsmooth
HE (A, D̃, D̂,D, nr,∆) = 2 ·

∣∣∣∣Prob
[
HE−SMOOTHA,D̃,D̂,D,nr,∆

HE (λ)⇒ 1
]
− 1

2

∣∣∣∣ .
Definition 2.8. An HE scheme HE is (α, D̃, D̂,D, nr,∆)-SMOOTH if for all adver-

saries A, it holds that Advsmooth
HE (A, D̃, D̂,D, nr,∆) ≤ α.

HE smoothness resembles the Distribution-Transforming Encoder (DTE) security no-

tion from Juels and Ristenpart’s work on honey encryption schemes [40]. In that

setting, distribution-specific encoders were used to construct encryption schemes that

withstand brute-force attacks by yielding plausible plaintexts when decrypting a tar-

get ciphertext with incorrect keys. A DTE adversary’s goal is to distinguish between

single message-encoding pairs where either the message was sampled according to

some given distribution, then encoded, or the encoding was first sampled uniformly

at random, then the message obtained by decoding. This notion is tailored to their

setting and is less suited to the snapshot inference attacks based on frequency analy-

sis that we are considering. In our setting, indistinguishability of a series of samples

from one of two distributions is more appropriate than indistinguishability of message-

encoding pairs. Nevertheless, the two notions are equivalent in some cases—consider

a static HE scheme where the adversary and data owner have perfect distributional

knowledge (D = D̃ = D̂). Encoded messages in the HE−SMOOTH game can then be
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decoded by the adversary, yielding a multi-sample version of DTE security. Thus, in

this case, HE−SMOOTH security implies DTE security, and when nr = 1, they are

equivalent.

Our definition of HE smoothness allows the adversary to be computationally un-

bounded. Our specific HE schemes in Section 2.6 will achieve HE smoothness in this

strong sense.

2.5.2 Deterministic encryption

Deterministic encryption is the second ingredient in our modular construction for FSE

schemes. We include the standard definition here for completeness.

Definition 2.9. A deterministic (secret-key) encryption (DE) scheme DE is a triple

of algorithms (KeyGen,Encrypt, Decrypt) with associated sets K, M, and C such that:

• KeyGen : {0, 1}∗ → K is a probabilistic algorithm that takes a security parameter

λ as input and outputs a secret key sk ∈ K.

• Encrypt : K×M→ C is a deterministic algorithm that takes a secret key sk ∈ K

and a message m ∈M as input, and outputs a ciphertext c ∈ C.

• Decrypt : K×C →M∪{⊥} is a deterministic algorithm that takes a key sk ∈ K

and a ciphertext c ∈ C as input and outputs a message m ∈M or ⊥.

A deterministic encryption scheme is correct if Decrypt(sk,Encrypt(sk,m)) = m for

all m ∈ M and all sk ∈ K. The security notion we choose to use for DE (Fig-

ure 2.4) is based on indistinguishability from random bits. Such definitions have

already been used in the context of nonce-based symmetric encryption [73] and de-

terministic authenticated encryption (DAE) for key-wrapping [74]. The adversary

adaptively queries an encryption oracle with messages and consistently receives ei-

ther the corresponding ciphertext or a string of random bits that has the same length

as the ciphertext. Without loss of generality, we assume the adversary does not repeat

any queries to its encryption oracle. The adversary’s goal is to determine whether the

oracle is responding with real ciphertexts or random bitstrings. However, to make

a definition that is well-suited to the potentially small message spaces we will en-

counter in our FSE schemes, we deviate from previous definitions in the literature:

in the “random bits” case, we sample ciphertexts uniformly at random without re-

placement from a random ciphertext set Y ⊂ C of an appropriate size. This makes

our definition closer to that of PRI (pseudorandom injection) security for DAE [74,

Section 8], though we do not use its decryption oracle.
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Game DE−PRIVA,nr
DE (λ)

b
$← {0, 1}

sk← DE.KeyGen(λ)

Y
$← C, |Y | = |M|

b′ ← AENC

return (b′ = b)

ENC(m)

if b = 0 then

c := DE.Encrypt(sk,m)

else

c
$← Y

Y := Y \ {c}
endif

return c

Figure 2.4: The message privacy game for a DE scheme. We assume that A does not
repeat queries.

Definition 2.10. Consider the deterministic privacy game in Figure 2.4. The mes-

sage privacy advantage of A against the deterministic encryption scheme DE is

AdvprivDE (A, nr) = 2 ·
∣∣∣∣Prob

[
DE−PRIVA,nr

DE (λ)⇒ 1
]
− 1

2

∣∣∣∣ .
Definition 2.11. A DE scheme DE is said to be (α, t, nr)-private if for all adversaries

A running in time at most t and making at most nr encryption queries, it holds that

AdvprivDE (A, nr) ≤ α.

A block cipher that is a pseudorandom permutation, like AES, meets this definition

of privacy. For more flexibility in selecting the message space M, one could pad

short strings and use a block cipher, or use a small-domain PRP [61, 71] or a format-

preserving encryption scheme [6, 8]. For larger domains, a wide-block PRP or a block

cipher mode such as SIV could be used [74].

2.5.3 FSE from HE and DE

Now that we have defined stateful HE schemes, DE schemes, and their security, we

are ready to present our modular construction for an FSE scheme.

Definition 2.12. Let HE = (Setup,Encode,Decode) be a stateful homophonic en-

coding scheme with message space M and encoded message space E. Let DE =

(KeyGen,Encrypt, Decrypt) be a deterministic encryption scheme with key space K,

message space E, and ciphertext space C. The composed FSE scheme (HE,DE)-FSE

is defined as follows.

• Setup takes a security parameter λ ∈ {0, 1}∗, a distribution D ∈ DM, and a dis-

tribution adaptation parameter ∆ ∈ {0, 1}∗ as input. It runs HE.Setup(λ,D,∆)

to obtain an initial state s0 and outputs s0.
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• KeyGen takes a security parameter λ ∈ {0, 1}∗ as input. It runs DE.KeyGen(λ)

to obtain a key sk ∈ K and outputs sk.

• Encrypt takes a key sk ∈ K, a message m ∈ M, and a state s ∈ S as input. It

runs HE.Encode(m, s) to obtain (e, s′). It then runs DE.Encrypt(sk, e) to obtain

a ciphertext c ∈ C. It outputs (c, s′).

• Decrypt takes a key sk ∈ K, a ciphertext c ∈ C, and a state s ∈ S as input. It

runs DE.Decrypt(sk, c) to obtain a message e ∈ E or ⊥. In the former case, it

then runs HE.Decode(e, s) to obtain a message m ∈ M or ⊥. It outputs m, or

⊥ if it occurred in either step.

When the HE scheme is frequency-smoothing and the DE scheme is message-private,

the composed FSE scheme is both frequency-smoothing and private, in the senses of

Definitions 2.3 and 2.5.

Theorem 2.13. Suppose that HE is an (αHE, D̃, D̂,D, nr,∆)-SMOOTH homophonic

encoding scheme on (M, E ,S) for some D̃, D̂,D ∈ DM and that DE is an (αDE, t +

tHE.Setup + nr · (tHE.Encode + tHE.Decode), nr)-PRIV deterministic encryption scheme on

(K, E , C). Then the FSE scheme (HE,DE)-FSE is

• (αHE + αDE, t, D̃, D̂,D, nr,∆)-SMOOTH, and

• (αHE + αDE, t, D̃, D̂,D, nr,∆)-PRIV,

where tX is the time necessary to run algorithm X.

Proof. First, consider smoothness of the composed FSE scheme. We prove that

(HE,DE)-FSE is smooth with the given parameters using the sequence of games illus-

trated in Figure 2.5. The transitions between successive games are based on indistin-

guishability.

Let A be any SMOOTH adversary for (HE,DE)-FSE that runs in time at most t, and

let Game 0 be the FSE−SMOOTH game, as in Figure 2.1. When b = 0, the ciphertexts

are obtained by sampling messages mi fromM according to D, encoding them using

D̃ to initialize the state, and then encrypting them. When b = 1, the ciphertexts

are chosen uniformly at random from a subset of C of the correct size (equal to the

number of FSE homophones of each message).

Let Game 1 be the same as Game 0 except when b = 0: the ciphertexts are obtained

by first sampling nr encodings ei uniformly at random from the set of HE homophones,

and then encrypting them with DE.
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Game 0

b
$← {0, 1}

if b = 0 then

sk← DE.KeyGen(λ)

s0 ← HE.Setup(λ, D̃,∆)

m1, . . . ,mnr
D←M

for i in {1, . . . , nr} do
(ei, si)← HE.Encode(mi, si−1)

ci := DE.Encrypt(sk, ei)

endfor

else

s∗0 ← HE.Setup(λ,D, 0)

Y
$← C, |Y | =

∣∣∣HFSE
s∗0

∣∣∣
c1, . . . , cnr

$← Y

endif

b′ ← A(c1, . . . , cnr , D̃, D̂,∆)

return (b′ = b)

Game 1

b
$← {0, 1}

if b = 0 then

sk← DE.KeyGen(λ)

s∗0 ← HE.Setup(λ,D, 0)

for i in {1, . . . , nr} do

ei
$← HHE

s∗0

ci := DE.Encrypt(sk, ei)

endfor

else

s∗0 ← HE.Setup(λ,D, 0)

Y
$← C, |Y | =

∣∣∣HFSE
s∗0

∣∣∣
c1, . . . , cnr

$← Y

endif

b′ ← A(c1, . . . , cnr , D̃, D̂,∆)

return (b′ = b)

Figure 2.5: Sequence of games in the proof of smoothness of an (HE,DE)-FSE scheme
(continued on next page).

Consider the following (α′, D̃, D̂,D, nr,∆)-SMOOTH adversary A′ for HE, which will

distinguish games 0 and 1. A′ receives (e1, . . . , enr , D̃, D̂,∆) and flips a coin b ∈ {0, 1}.

If b = 0, it runs DE.KeyGen(λ) to generate a secret key and encrypts the ei’s with it,

resulting in ci’s. If b = 1, it runs HE.Setup(λ,D, 0) to generate an initial state s∗0 and

samples nr ci’s uniformly at random from a subset of C whose size is
∣∣∣HFSE

s∗0

∣∣∣. It then

gives the ci’s, D̃, D̂, and ∆ to A, which returns a bit b′. If b′ = b, then A′ outputs 1.

Otherwise, it outputs 0. By definition, the advantage of A′ is the absolute difference

in the probabilities that A′ outputs 1 when its input was real encodings and when

its input was uniformly sampled encodings. If A′ received real encodings, then A is

playing Game 0. If A′ received uniformly sampled encodings, then A is playing Game

1. Therefore,

Advsmooth
HE (A′, D̃, D̂,D, nr,∆) =|Advgame0

FSE (A, D̃, D̂,D, nr,∆)

− Advgame1
FSE (A, D̃, D̂,D, nr,∆)|.

Since HE is (αHE, D̃, D̂,D, nr,∆)-SMOOTH for adversaries with unbounded runtime,

we have

|Advgame0
FSE (A, D̃, D̂,D, nr,∆)− Advgame1

FSE (A, D̃, D̂,D, nr,∆)| < αHE.
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Game 2

b
$← {0, 1}

if b = 0 then

s∗0 ← HE.Setup(λ,D, 0)

Y
$← C, |Y | =

∣∣∣HFSE
s∗0

∣∣∣
for i in {1, . . . , nr} do

ei
$← HHE

s∗0

if ∃ j < i : ei = ej do

ci := cj

else

ci
$← Y

Y := Y \ {ci}
endif

endfor

else

s∗0 ← HE.Setup(λ,D, 0)

Y
$← C, |Y | =

∣∣∣HFSE
s∗0

∣∣∣
c1, . . . , cnr

$← Y

endif

b′ ← A(c1, . . . , cnr , D̃, D̂,∆)

return (b′ = b)

Game 3

b
$← {0, 1}

if b = 0 then

s∗0 ← HE.Setup(λ,D, 0)

Y
$← C, |Y | =

∣∣∣HFSE
s∗0

∣∣∣
c1, . . . , cnr

$← Y

else

s∗0 ← HE.Setup(λ,D, 0)

Y
$← C, |Y | =

∣∣∣HFSE
s∗0

∣∣∣
c1, . . . , cnr

$← Y

endif

b′ ← A(c1, . . . , cnr , D̃, D̂,∆)

return (b′ = b)

Figure 2.5: Sequence of games in the proof of smoothness of an (HE,DE)-FSE scheme
(continued from previous page).

Next, let Game 2 be the same as Game 1 except when b = 0, where the nr cipher-

texts are chosen from a subset of C of the right size, with repetitions according to

the pattern of repetitions in the randomly selected ei (but otherwise being sampled

without replacement, as in the b = 1 case of the DE−PRIV game, cf. Figure 2.4). We

can again build an adversary A′′—this time for DE−PRIV—that interpolates between

Games 1 and 2 and has advantage

AdvprivDE (A′′, nr) =
∣∣∣Advgame1

FSE (A, D̃, D̂,D, nr,∆)− Advgame2
FSE (A, D̃, D̂,D, nr,∆)

∣∣∣ .
A′′ flips a coin b and either runs HE.Setup(λ,D, 0) to get an initial state s∗0, uniformly

samples nr encoded messages ei from HHE
s∗0

, and queries its ENC oracle with the ei

(avoiding repeated queries to ENC when repeated ei are encountered), or uniformly

samples nr ciphertexts from a subset of C having size
∣∣∣HFSE

s∗0

∣∣∣. It then runs A on these

nr ciphertexts, D̃, D̂, and ∆, and outputs 1 if A’s output b′ equals b. Its running time

is therefore the time to run A, tHE.Setup, the time to sample nr messages (which we

assume is less than nr · tHE.Encode), and the time it takes to query its oracle (which we
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assume is instantaneous). Since DE is (αDE, t+ tHE.Setup + nr · tHE.Encode, nr)-PRIV,

∣∣∣Advgame1
FSE (A, D̃, D̂,D, nr,∆)− Advgame2

FSE (A, D̃, D̂,D, nr,∆)
∣∣∣ < αDE.

Finally, we consider Game 3. In the b = 0 case of this game, we now sample the ci’s

with replacement from a subset of C of the right size, no longer relying on the ei’s,

which were sampled from a set of the same size, to dictate repetitions in the ci’s. It

is straightforward to see that the distribution on the ci’s is the same in Game 2 and

in Game 3. Hence

∣∣∣Advgame2
FSE (A, D̃, D̂,D, nr,∆)− Advgame3

FSE (A, D̃, D̂,D, nr,∆)
∣∣∣ = 0.

Finally, since
∣∣∣HFSE

s∗0

∣∣∣ =
∣∣∣HHE

s∗0

∣∣∣, the b = 0 and b = 1 cases of Game 3 are identical, so

Advgame3
FSE (A, D̃, D̂,D, nr,∆) = 0. We therefore have

Advsmooth
FSE (A, D̃, D̂,D, nr,∆) = Advgame0

FSE (A, D̃, D̂,D, nr,∆)

< αHE + αDE

for any FSE−SMOOTH adversary A running in time at most t.

Next, consider message privacy of the composed scheme. We prove via reduction that

FSE is (αHE+αDE, t, D̃, D̂,D, nr,∆)-PRIV by showing that if HE is (αHE, D̃, D̂,D, nr,∆)-

HE−SMOOTH and there is an (α, t, D̃, D̂,D, nr,∆)-PRIV adversary AFSE for FSE, then

there is also an (α−αHE, t+ tHE.Setup + nr · (tHE.Decode + tHE.Encode), nr)-PRIV adversary

ADE for DE.

ADE can query its provided encryption oracle ENCDE at most nr times (without

repetition), while it must simulate encrypting nr messages sampled according to D

(with repetition) for AFSE. First, ADE initializes the homophonic encoding scheme

HE: it runs HE.Setup(λ,D, 0) to generate a state s∗0. It samples nr encodings ei

uniformly at random with replacement from HHE
s∗0

. It decodes these ei’s to obtain the

messages mi. That is, for i = 1 to nr, it sets mi := HE.Decode(ei, s
∗
0). Next, it queries

ENCDE with each of the distinct encodings ei to obtain c1, . . . , cnr . It provides AFSE

with the distributions D̃ and D̂, the distribution adaptation parameter ∆, and the nr

plaintext-ciphertext pairs ((m1, c1), . . . , (mnr , cnr)). Eventually, AFSE outputs a bit b′.

ADE then outputs the same bit.

Note that AFSE’s view is exactly the same as in the FSE−PRIV game in Figure 2.2. If

ENCDE is operating with bDE = 0 (real ciphertexts), then ADE is perfectly simulating
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the b = 0 case for AFSE since, by the HE−SMOOTH property, encodings sampled

uniformly at random from HHE
s∗0

have the same distribution as if they were encodings

of messages sampled according to D, with an initial state determined by D̃.

If ENCDE is operating with bDE = 1 (random bitstrings without replacement), then

ADE is perfectly simulating the b = 1 case for AFSE. By the HE−SMOOTH property,

the distribution of encodings of messages sampled according to D is uniform on the

set of all homophones HHE
s∗0

. Since this set of homophones is partitioned into the sets

of individual messages’ homophones, the distribution on the latter is thus uniform as

well. Hence, as required, each message’s encoding (and thus its ciphertext) is chosen

uniformly at random from a set of the correct size with replacement. Therefore, ADE’s

advantage is at least AFSE’s advantage less the probability that the HE encodings were

distinguishable: AdvprivDE (ADE, nr) > α − αHE. The running time of ADE is at most the

time to run AFSE, tHE.Setup, sample nr values from HHE
s∗0

(which we again assume is less

than nr · tHE.Encode), decode nr items, and make at most nr queries to its encryption

oracle (which we assume is instantaneous), achieving the required bounds.

The modularity of the composed approach provides flexibility in choosing component

schemes. However, the separate decoding and decryption steps are not particularly

conceptually elegant.

2.6 Some static HE schemes

In this section, we narrow our focus to the case in which the data’s actual distribution

is known to both the data owner and the adversary (D̃ = D̂ = D) and the homophonic

encoding scheme is static (∆ = 0). We will write Advsmooth
HE (A,D, nr) for the adversary’s

advantage in this case.

We begin with a general result about an adversary’s smoothness advantage against

an HE scheme. Then, we present two concrete homophonic encoding schemes. We

will prove the smoothness of both schemes using the general bound we now develop.

2.6.1 Bounding an HE−SMOOTH adversary’s advantage

When the distribution is public and the HE scheme is static, we can re-interpret

the HE−SMOOTH game from Figure 2.3 in terms of distribution over the encoded

message space E that results from sampling messages according to D and encoding

them. Let Ds be this distribution—for a static HE scheme, it depends solely on the

initial state s output by Setup(λ,D). (For an arbitrary homophonic encoding scheme,

57



the distribution over the encoding space will involve a stochastic process.) Since a

message m’s homophone is chosen uniformly at random, each of its homophones e

will have frequency fDs(e) = fD(m)/
∣∣HHE(m)

∣∣.
The adversary must distinguish receiving nr samples drawn according to Ds and nr

samples drawn according to the uniform distribution over the set of homophones. We

bound an HE−SMOOTH adversary’s advantage using Baignères, Junod, and Vaude-

nay’s statistical framework for analyzing distinguishers [5]. The result we use, and

will restate, shows that the error probability of an optimal distinguisher given a num-

ber of samples from two close distributions D0 and D1 can be bounded in terms of

the Kullback–Leibler (KL) divergence of D0 with respect to D1, which is defined as

KL (D0,D1) :=
∑
m∈M

fD0
(m) · log

fD0
(m)

fD1
(m)

for two distributions D0 and D1 having support M. In particular, when D1 is the

uniform distribution U|M| over M, we can write the KL divergence in terms of D0’s

Shannon entropy, H(D0):

KL (D0,D1) =
∑
m∈M

fD0
(m) · log

fD0(m)

fD1
(m)

=
∑
m∈M

fD0(m) · (log(fD0(m)) + log |M|)

= log |M|+
∑
m∈M

fD0
(m) · log(fD0

(m))

= log |M| −H(D0).

Therefore, the Kullback–Leibler divergence of D0 from the uniform distribution is the

natural log of the support’s size less the Shannon entropy of D0 in nats (the “natural

unit of information”).

We now restate Baignères, Junod, and Vaudenay’s result in the following lemma.

Lemma [5, Theorem 6]. Let D0 and D1 be distributions over a set M having

the same support, and suppose that fD0
(m) and fD1

(m) are close for all m ∈ M.

Then, the total error of an optimal distinguisher limited to nr samples, for large nr,

is approximately

Φ

(
−
√

nr ·KL (D0,D1)

2

)

where Φ(·) is the cdf of the standard normal distribution.
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The requirement that fD0
(m) and fD1

(m) be close for all m ∈ M allows a Taylor

series expansion to be truncated at the second order with only small error [5, Prop.

5]. In our setting, this requirement will not be a restriction since it is necessary for

smoothness anyway.

Applying the Lemma of Baignères, Junod, and Vaudenay yields the following theorem.

Theorem 2.14. Let HE be a static homophonic encoding scheme with message space

M and encoded message space E. Let D ∈ DM be a public distribution over M,

and let Ds be the distribution over E resulting from sampling messages according to

D and encoding them with a state s output by HE.Setup(λ,D). If fDs(e) is close to

1/
∣∣HHE

s

∣∣ for all encodings e ∈ HHE
s , then, for any HE−SMOOTH adversary A, and

for sufficiently large nr,

Advsmooth
HE (A,D, nr) ≤

∣∣∣∣∣∣12 − Φ

−
√

nr·KL
(
Ds,U|HHE

s |
)

2

∣∣∣∣∣∣
where Φ(·) is the cdf of the standard normal distribution.

Proof. The proof follows directly from Baignères, Junod, and Vaudenay’s result ap-

plied to the distribution over encodings and the definition of advantage in terms of

total error.

Theorem 2.14 applies even to computationally unbounded adversaries. Recall that

the cdf of the standard normal distribution, Φ, equals 1/2 at 0, so the closer nr ·

KL
(
Ds,U|HHE

s |
)

is to 0, the smaller is any HE−SMOOTH adversary’s advantage.

Hence, in order to establish a smoothness bound on any particular static scheme

HE, it is sufficient to prove bounds on KL
(
Ds,U|HHE

s |
)
. Finally, using the fact that

the pdf of a standard normal distribution peaks at 0 with value 1/
√

2π, we see that

a good upper bound on Advsmooth
HE (A,D, nr) is given by

Advsmooth
HE (A,D, nr) ≤

1

2
√
π
·
√
nr ·KL

(
Ds,U|HHE

s |
)
. (2.1)

This suggests that to make the adversary’s advantage very small, we need KL
(
Ds,U|HHE

s |
)

� 1/nr.

We now turn to the analysis of two specific static encoding schemes. For convenience

in what follows, we assume that M⊆ {0, 1}n.
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2.6.2 Interval-based homophonic encoding

Informally, r-bit interval-based homophonic encoding (IBHE) encodes messages as

r-bit strings by partitioning {0, 1}r according to the message distribution D: message

m will be allocated an interval of about fD(m) · 2r bitstrings. The idea is that each

r-bit homophone will be used roughly equally often when encoding messages sampled

from D, since the number of homophones per message is proportional to its frequency.

One way (others are possible) of partitioning the set of r-bit strings according to D

is as follows. Suppose, without loss of generality, that the messages in supp(D) =

{m1,m2, . . .} are numbered by increasing frequency according to D. Now, consider

the cumulative distribution FD. To simplify notation, let there be a 0th message m0

with FD(m0) := 0. Then, the homophone set of any message mi ∈ supp(D) is defined

to be

{
b2r · FD(mi−1)e , . . . , b2r · FD(mi)e − 1

}
,

where integers in this set are represented with r bits, and bxe represents the integer

nearest to x. This interval has size approximately 2r ·fD(mi), as desired. The encoding

algorithm for IBHE simply selects an encoding e of mi uniformly at random from the

relevant interval.

It is clear that the encoding bitlength r must be at least log2 |supp(D)| so each mes-

sage can have at least one possible encoding. In addition, r must be big enough so

that each message is assigned a non-empty interval using this partitioning technique.

The following straightforward proposition relates a message distribution D, an IBHE

encoding length r, and a lower bound on the number of homophones h each message

has.

Proposition 2.15. Let D be a distribution over the message spaceM, with messages

in supp(D) = {m1,m2 . . .} numbered by increasing frequency, and let h ≥ 1 be a

positive integer. Then, when encoded with r-bit IBHE, every message mi ∈ supp(D)

has at least h homophones if and only if r ≥ rmin-h, where

rmin-h :=

⌈
max

1≤i≤|supp(D)|
log2

i · h− 0.5

FD(mi)

⌉
.

Proof. Let `i and ri represent the left and right endpoints (inclusive) of message

mi’s homophone set: `i := b2r · FD(mi−1)e and ri := b2r · FD(mi)e − 1, so the size

of this set is
∣∣HHE(mi)

∣∣ = ri − `i + 1. By definition, `1 = 0 and `i = ri−1 + 1 for

i = 2, . . . , |supp(D)|.
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Suppose every message in supp(D) has at least h homophones. This happens if and

only if, for each i from 1 to |supp(D)|, we have

ri ≥ i · h− 1

⇔ b2r · FD(mi)e − 1 ≥ i · h− 1

⇔ 2r · FD(mi) ≥ i · h− 0.5

⇔ r ≥ log2

i · h− 0.5

FD(mi)
.

Since this inequality must hold for all i and r is an integer, we obtain the desired

expression for rmin-h.

For correctness—to ensure that no message in the support of D is assigned an empty

homophone set—setting r ≥ rmin−1 is necessary and sufficient. It is possible to obtain

a simpler sufficient (though not necessary) condition for every message in the support

of D to have at least h homophones by noting that messages are ordered according to

increasing frequency, so FD(mi) ≥ i · fD(m1).

Corollary 2.16. If messages are encoded with r-bit IBHE for some r ≥ log2
h

fD(m1) ,

then every message m ∈M has at least h homophones.

Proof. For any i from 1 to |M|, we have

log2

h

fD(m1)
≥ log2

i · h− 0.5

i · fD(m1)
≥ log2

i · h− 0.5

FD(mi)
.

Therefore, the condition r ≥ log2
h

fD(m1) is enough to guarantee that all messages have

at least h homophones.

Definition 2.17. The interval-based homophonic encoding (IBHE) scheme with mes-

sage space M⊆ {0, 1}n is defined as follows:

• Setup : (λ,D) 7→ s, computes the maximum r of the minimum encoding length

rmin−1 and the encoding length rD,λ determined by D and λ, and outputs the

state s := (r,D).

• Encode : (m, s) 7→ e ∪⊥, chooses an integer e uniformly at random from the set

of m’s homophones HHE
s (m) :=

{
b2r · FD(mi−1)e , . . . , b2r · FD(mi)e − 1

}
, and

outputs either the r-bit representation of e, or ⊥ if m /∈ supp(D).

• Decode : (e, s) 7→ m ∪ ⊥, determines the message mi ∈ supp(D) such that

e ∈ {FD(mi−1), . . . ,FD(mi) − 1}, and outputs either m := mi, or ⊥ if no such

mi exists.
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Note that it is possible for the encoded bitlength r to be smaller than the data’s

bitlength n, in which case IBHE compresses data. Also note that IBHE’s Encode and

Decode algorithms need access to tables mapping the messages mi to their intervals

{
b2r · FD(mi−1)e , . . . , b2r · FD(mi)e − 1

}
via the cdf FD of D, and vice versa. Since each interval can be represented by 2r bits,

the total client-side storage for these tables is 4r · |supp(D)| bits.

In order to apply Theorem 2.14 to bound the HE-smoothness of IBHE, and thereby

Theorem 2.13 to construct an FSE scheme, we need an upper bound on the Kullback–

Leibler divergence of the encoded data’s distribution Ds relative to the uniform dis-

tribution U|HHE
s |. We derive this bound using the following result:

Lemma [5, Proposition 5]. Let D0 and D1 be distributions over a setM having the

same support, and suppose that fD0(m) and fD1(m) are close for all m ∈ M. Then,

the Kullback–Leibler divergence of D0 with respect to D1 is

KL (D0,D1) ≈ 1

2

∑
m∈M

(fD0
(m)− fD1

(m))2

fD1
(m)

.

We use this result in the proof of the following lemma: it says that for IBHE, if the

encoding length r is at least rmin-h, as defined in the statement of Proposition 2.15,

then this bound is approximately 1/2h2.

Lemma 2.18. Let D be a distribution over M and suppose that m1 is the least

frequent message in the support of D. Suppose that the encoding length r in the IBHE

scheme is such that r ≥ rmin-h for some positive integer h and let s := (r,D). Then,

KL (Ds,U2r ) ≤
1

2h2
.

Proof. For ease of notation, suppose E = HHE
s = {0, 1}r and write HHE for HHE

s .

Recall that messages in the support of D are numbered by increasing frequency, and

since r ≥ rmin-h, each of these messages has at least h homophones in E . In order

to apply Baignères et al.’s proposition to estimate the KL divergence, we need fDs(e)

to be close to 2−r for all encodings e ∈ E . Let δi := bFD(mi) · 2re − FD(mi) · 2r be

a rounding error associated with each message in supp(D), so δi ∈ (−0.5, 0.5]. For

convenience, set δ0 := 0. Then, we can express the size of a message’s homophone set

as

∣∣HHE(mi)
∣∣ = fD(mi) · 2r + δi − δi−1. (2.2)
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Let e ∈ HHE(mi) be one of mi’s homophones. Using the previous equation and

recalling how Ds is defined, we get

fDs(e)

2−r
=

fD(mi) · 2r

|HHE(mi)|
= 1 +

δi−1 − δi
|HHE(mi)|

.

Since the difference of the rounding errors, δi−1 − δi, could take on any value in

the interval (−1, 1), we use the fact that r ≥ rmin-h to bound
∣∣HHE(mi)

∣∣, ensuring

that fDs(e) and 2−r are close. We are now able to use the approximation in the

aforementioned proposition:

KL (Ds,U2r ) ≈
1

2

∑
e∈E

(fDs(e)− 2−r)2

2−r

≈ 2r−1
∑
e∈E

(fDs(e)− 1/2r)
2

≈ 2r−1

|supp(D)|∑
i=1

∣∣HHE(mi)
∣∣ · ( fD(mi)

|HHE(mi)|
− 1/2r

)2

≈ 2r−1

|supp(D)|∑
i=1

(
fD(mi)

2

|HHE(mi)|
− 2 · fD(mi)

2r
+

∣∣HHE(mi)
∣∣

22r

)

≈ 2r−1

|supp(D)|∑
i=1

(
fD(mi)

2

|HHE(mi)|

)
− 1 +

1

2
.

Next, we simplify the sum using Equation 2.2:

|supp(D)|∑
i=1

fD(mi)
2

|HHE(mi)|
=

|supp(D)|∑
i=1

(∣∣HHE(mi)
∣∣− (δi − δi−1)

)2
22r · |HHE(mi)|

=
1

22r

|supp(D)|∑
i=1

( ∣∣HHE(mi)
∣∣− 2(δi − δi−1) +

(δi − δi−1)2

|HHE(mi)|

)

=
1

2r
+

1

22r

|supp(D)|∑
i=1

(δi − δi−1)2

|HHE(mi)|
,

where the middle term collapsed to zero since δ0 = δ|supp(D)| = 0. Finally, by noting

that δi ∈ (−0.5, 0.5] guarantees that (δi− δi−1)2 ≤ 1, using the assumption that each

message has at least h homophones, and hence that |supp(D)| can be at most 2r/h,

we get the bound

|supp(D)|∑
i=1

(δi − δi−1)2

|HHE(mi)|
≤ |supp(D)| 1

h
≤ 2r

h2
.
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Combining the previous equations and inequalities yields the desired bound:

KL (Ds,U2r ) ≤
1

2h2
.

Suppose one has a distribution D, nr samples, and a given target ε for the frequency-

smoothing advantage Advsmooth
HE (A,D, nr) for the IBHE scheme. Using the approxima-

tion in Equation 2.1 at the end of Section 2.6.1 and the bound from Lemma 2.18, we

obtain after some manipulation the requirement h ≥
√
nr

2
√

2πε
. Combining this value

with the sufficient condition from Corollary 2.16 enables us to derive a minimum

bitlength for r to use in the IBHE scheme:

r ≥ log2

√
nr

2
√

2πε · fD(m1)
.

A consequence of this inequality is that to halve the upper bound on an adversary’s

advantage ε, the minimum encoding length must increase by 1 bit.

A numerical example. Suppose D is such that the least frequent message occurs

with probability fD(m1) = 2−5. Suppose nr = 210 and ε = 2−10. Then we get h ≥

215/2
√

2π ≈ 212.7. Applying the bound from Corollary 2.16 to guarantee r ≥ rmin-h,

we find that we need r ≥ 18 to limit the frequency-smoothing advantage of any

adversary to at most 2−10 against IBHE for these parameters.

Variants. We now describe, with practicality in mind, two variants of IBHE, one

of which we will use in our evaluation in Section 2.7.

• Variant 1: Append encodings to messages rather than entirely replacing them.

This enables, for instance, faster decoding when processing query results.

• Variant 2: Modify how intervals (homophone sets) are allocated in such a way

that smaller encoding bitlengths are possible (as long as they are still at least

log2 |supp(D)|). Some distributions can yield prohibitively large values of rmin−1

if fD(m1) is relatively tiny.

The change to how intervals of {0, . . . , 2r − 1} are assigned can be interpreted simply

as building intervals (in the same way as before) for a modified distribution D′. The

procedure shown in Algorithm 2.1 takes as input a distribution D and a desired encod-

ing length. It outputs a second distribution, D′, with the same support as D that can

be used to construct intervals, encode, and decode with the desired encoding length.

Starting with the least frequent message, this algorithm changes the distribution just

enough that one homophone is assigned to each “too small” message. It does this
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until each of the remaining messages can be assigned at least one homophone after

being scaled to share the error introduced by assigning “too many” homophones to

the least frequent messages. When r ≥ rmin−1, this algorithm does not change the

distribution.

The resulting modified IBHE scheme would run this algorithm as part of Setup and use

the adjusted distribution D′ in the state, s := (r,D′), for all encoding and decoding.

The original distribution D does not need to be stored.

Algorithm 2.1 Distribution adjustment algorithm for IBHE

Input: distribution D overM, desired encoding length r with r ≥ log2 |supp(D)|.
Output: distribution D′.

1: isBigEnough← False
2: scaleFactor ← 1
3: (m1, . . . ,m|supp(D)|)←M∩ supp(D) where fD(m1) ≤ . . . ≤ fD(m|M|)
4: for all i ∈ {1, . . . , |supp(D)|} do
5: if i = 1 then
6: if fD(mi) < 1/2r+1 then
7: fD′(mi) := 1/2r+1

8: scaleFactor ← (1− fD(mi))/(1− fD′(mi))
9: else

10: fD′(mi) := fD(mi)

11: else
12: if isBigEnough then
13: pmfD′(mi) := fD(mi)/scaleFactor
14: else
15: if fD(mi) ≥ 1/2r · scaleFactor then
16: isBigEnough← True
17: fD′(mi) := fD(mi)/scaleFactor
18: else
19: fD′(mi) := 1/2r

20: scaleFactor := (1− FD(mi))/(1− FD′(mi))

21: return D′ defined by fD′

2.6.3 Banded homophonic encoding

We next present a simple homophonic encoding scheme that appends tags to messages

rather than replacing them entirely. The tags can have any length l ≥ 1 and each

message has at most 2l homophones. Let D be some distribution over M and again

suppose that the messages in supp(D) are numbered according to their frequencies:

fD(m1) ≤ fD(m2) ≤ . . . ≤ fD(m|supp(D)|).

Based on these frequencies, each message has a “band” that determines the num-

ber of possible tags that can be appended to it and therefore the number of ho-

mophones it has. Divide the interval (0, fD(m|supp(D)|)] into 2l bands each of width

w := fD(m|supp(D)|)/2l, numbered 1 to 2l. The messages whose frequencies are in band
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i, in the interval ((i− 1) · w, i · w], will each have i homophones. In particular, the

most frequent message, m|M|, will have 2l homophones—all possible l-bit strings can

be appended to it.

Definition 2.19. The banded homophonic encoding (BHE) scheme with message

space M⊆ {0, 1}n is defined as follows:

• Setup : (λ,D) 7→ s computes the tag length l determined by λ and D, the band

width w := fD(m|supp(D)|)/2l, and outputs s := (l,w,D).

• Encode : (m, s) 7→ m ‖ t ∪ {⊥} computes message m’s frequency band, b :=

dfD(m)/we, picks an integer t uniformly at random in {0, 1, ..., b− 1}, and out-

puts either the (n+ l)-bit string m ‖ t, where t is represented using l bits, or ⊥

if m /∈ supp(D).

• Decode : (e, s) 7→ Trunc (e, n) removes the last l bits of e to recover m.

The main advantages of this banded HE scheme are that there is no minimum tag

length and decoding is fast—in particular, it does not need any table of frequency

information to decode. Encoding requires storing a table of l · |M| bits.

Another feature is that if the distribution changes, the scheme can adapt to the new

frequencies without re-encoding every data item. This can be done by using so-

far-unused l-bit tags if an item’s frequency increases (effectively increasing its band

number), or by initially over-sizing l and using a deliberately under-sized set of ho-

mophones and, if an item’s frequency decreases, re-scaling the bands used for all the

other items. For queries to continue to return complete results, either the all-time

maximum band number of each message will need to be stored, or all 2l homophones

of each message will need to be checked. By contrast, the interval-based encoding

scheme cannot adapt to changes in the distribution without re-encoding all of the

messages.

A negative aspect of the banded homophonic encoding scheme is that the total number

of encodings,
∣∣HHE

s

∣∣, is not fixed. For Theorem 2.14 to apply, the distribution of

the encoded data must already be close enough to the uniform distribution on its

homophones. Consider the rounding error for each message: let it be

δi :=
⌈
2l · fD(m)/fD(m|supp(D)|)

⌉
− 2l · fD(m)/fD(m|supp(D)|),

where δi ∈ [0, 1) for each mi, from 1 ≤ i ≤ |supp(D)|. The total number of ho-

mophones is then
∣∣HHE

s

∣∣ = 2l

fD(m|supp(D)|)
+
∑|supp(D)|
i=1 δi. Whereas the total number of

homophones was predictable (indeed fixed) for IBHE, here it may vary by as much as
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|supp(D)| − 1 depending on the distribution and the rounding errors δi it produces.

For the encoded data’s distribution to be close enough to uniform so we can apply

Theorem 2.14, we require |supp(D)| � 2l

fD(m|supp(D)|)
. This unpredictability indicates

that values of l for BHE will need to be much higher than values of r for IBHE to

guarantee smoothness. This is quantified in the following lemma.

Lemma 2.20. Let D be a distribution over M and suppose that m|supp(D)| is the

most frequent message according to D. Suppose that l in the BHE scheme is such that

|supp(D)| � 2l

fD(m|supp(D)|)
, and let

∣∣HHE
s

∣∣ be the size of the resulting set of homophones.

Then

KL
(
Ds,U|HHE

s |
)
≤
|supp(D)| · fD(m|supp(D)|)

2l+1
.

Proof. For ease of notation, suppose E =
⋃
m∈supp(D)HHE

s (m), and write HHE for HHE
s .

Recall that the number of homophones of a message m ∈ supp(D) is its band number,⌈
2l · fD(m)/fD(m|supp(D)|)

⌉
, where m|supp(D)| is the most frequent message according to

D. Letting δi :=
∣∣HHE(mi)

∣∣− 2l · fD(mi)/fD(m|supp(D)|), we can write

∣∣HHE
∣∣ =

2l

fD(m|supp(D)|)
+

|supp(D)|∑
i=1

δi. (2.3)

By assumption, |supp(D)| � 2l

fD(m|supp(D)|)
, so Theorem 2.14 applies and we can use the

following approximation for the Kullback–Leibler divergence:

KL
(
Ds,U|HHE|

)
≈ 1

2

∑
e∈E

(
fDs(e)− 1/

∣∣HHE
∣∣)2

1/|HHE|

≈
∣∣HHE

∣∣
2

|supp(D)|∑
i=1

∣∣HHE(mi)
∣∣ · ( fD(mi)

|HHE(mi)|
− 1

|HHE|

)2

≈
∣∣HHE

∣∣
2

|supp(D)|∑
i=1

(
fD(mi)

2

|HHE(mi)|
− 2 · fD(mi)

|HHE|
+

∣∣HHE(mi)
∣∣

|HHE|2

)

≈
∣∣HHE

∣∣
2

|supp(D)|∑
i=1

fD(mi)
2

|HHE(mi)|

− 1 +
1

2
.

Next, we estimate the sum using the fact that δi ∈ [0, 1) for i = 1, . . . , |supp(D)|:

|supp(D)|∑
i=1

fD(mi)
2

|HHE(mi)|
=

|supp(D)|∑
i=1

fD(mi)
2

2l · fD(mi)/fD(m|supp(D)|) + δi

≤
|supp(D)|∑
i=1

fD(mi)
2

2l · fD(mi)/fD(m|supp(D)|)

≤
fD(m|supp(D)|)

2l
.
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Finally, combining this upper bound on the sum with an upper bound on the total

number of homophones from Equation 2.3 yields the desired bound:

KL
(
Ds,U|HHE|

)
≤

2l

fD(m|supp(D)|)
+ |supp(D)|
2

(
fD(m|supp(D)|)

2l

)
− 1

2

≤
|supp(D)| · fD(m|supp(D)|)

2l+1
.

Suppose one has a distribution D, nr samples, and a given target ε for the frequency-

smoothing advantage Advsmooth
HE (A,D, nr) for the BHE scheme. Using the approxima-

tion in Equation 2.1 at the end of Section 2.6.1 and the bound from Lemma 2.20, we

obtain the requirement

l ≥ log2

(
nr · |supp(D)| · fD(m|supp(D)|)

(2ε)2 · π

)
− 1.

Note that since fD(m|supp(D)|) is the maximum frequency, fD(m|supp(D)|) ≥ 1
|supp(D)| , so

regardless of the distribution, the added bitlength l must be at least log2

(
nr

(2ε)2·π

)
−1.

A numerical example. Suppose nr = 210 and ε = 2−10, and let D be the given

distribution on the message space M. A lower bound on the required tag length l

in the BHE scheme is log2

(
210

(2·2−10)2·π

)
− 1 ≈ 25. The minimum value of l needed

for a specific distribution may be greater still. Recall the similar example at the end

of Section 2.6.2: for the same values of nr and ε, the minimum required encoding

bitlength for interval-based HE was r ≥ 12.7 + log2
1

fD(m1) . With banded HE, the

minimum additional bitlength is l = 25.

2.7 Practical security

We have introduced definitions and general constructions that we proved secure with

respect to our expressly defined security notions. However, as we have seen in some

numerical examples for our encoding schemes, achieving typical cryptographic se-

curity levels for our notion of FSE−SMOOTH security could require large encoding

lengths for some distributions, leading to a serious blow-up in query complexity (cf.

Section 2.3). Given this limitation, we choose to perform an empirical evaluation of

the security of FSE against frequency analysis attacks. Of course, we are also inter-

ested in achieving FSE−PRIV, but this is easily done using our HE-DE construction

with an appropriate DE component, e.g., a block cipher such as AES.
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In this section, therefore, we adopt a more pragmatic approach, working with mod-

erate encoding lengths and switching to a more practical metric of evaluation, since

we already know that we will not attain cryptographic levels of security for arbitrary

distributions. The security metric we work with in this section is the number of

data items that an attacker can correctly decrypt, which has been used for assess-

ing the effectiveness of inference attacks in the literature [32, 62] and closely reflects

a real-world adversary’s aim of plaintext recovery. This approach is similar to the

paradigm of accelerated provable security, also called prove-then-prune [35]: we de-

signed a scheme and proved its security based on the security of its primitives, but

we relax the primitives for practical use and rely on cryptanalysis to assess security.

We evaluate an FSE scheme built from static HE and DE using our modular con-

struction. For the HE component, we use IBHE (Section 2.6.2) with the distribution

adjustment algorithm (Variant 2 at the end of that section). Our attacks on FSE

are in the public distribution setting, where D̃ = D̂ = D. This grants the adver-

sary greater power than in the scenario considered by Naveed et al. [62], where the

distribution D̂ is only approximately D.

Our aim is to reduce the attacker’s success rate in recovering plaintext to that of a

näıve guessing attack, which is, in any case, not preventable. We develop a max-

imum likelihood attack for this setting, and then assess its performance using the

same HCUP datasets to which Naveed et al. applied DE and carried out inference

attacks [62]. This allows us to compare the security of FSE and of DE, and of FSE

to näıve guessing attacks.

2.7.1 A maximum likelihood attack on static FSE

Given the selected metric of success—the number of records an attacker can correctly

decrypt—we must determine how an attacker would maximize this number. We apply

the technique of maximum likelihood estimation (MLE) to derive an efficient attack

on a static FSE scheme under the assumption that only frequency information is

meaningful. MLE is an asymptotically optimal technique; as the number of samples

tends toward infinity, the maximum likelihood estimator is an unbiased estimator with

the smallest variance (spread). This means that the expected value of the estimator

is the true value.

Our analysis relies on the following two assumptions. The first is that a static FSE

scheme’s Encrypt algorithm outputs each of a message’s homophones with equal prob-

ability. This property holds for composed FSE schemes arising from both of our static

HE constructions. It is reasonable to assume that it would hold for any static FSE
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scheme since the state is not updated in such schemes and, after all, the goal of

a frequency-smoothing scheme is to smooth the distribution such that it becomes

indistinguishable from uniform. Our second assumption is that the adversary con-

siders only “proper” deterministic decryption functions—its solution cannot map one

ciphertext to multiple plaintexts, nor can it assign one plaintext more homophones

than it has. This rules out attacks that may otherwise appear to perform well, such

as simply guessing that every item is the plaintext having the highest frequency in

the reference distribution. Such a näıve attack could actually perform better than

the MLE attack with respect to our chosen success metric.

We let n(c) denote the number of times that ciphertext c ∈ C occurs in the database

DB. According to the MLE approach, a most likely decryption θ maximizes the

likelihood L(θ|DB) := Prob[DB|θ]. Thus we wish to compute

arg max
θ

Prob[DB|θ] = arg max
θ

∏
c∈C

(
fD(θ(c))

|HFSE(θ(c))|

)n(c)

= arg max
θ

∏
m∈supp(D)

(
fD(m)

|HFSE(m)|

)∑
c∈θ−1(m) n(c)

= arg max
θ

∑
m∈supp(D)

 ∑
c∈θ−1(m)

n(c)

 · log
fD(m)

|HFSE(m)|

where at the first step, we use the fact that messages are sampled independently, and

at the last step, we use the fact that maximizing a product of terms can be achieved

by maximizing the sum of the logs of those terms. To maximize this expression, θ

should map the most frequently occurring ciphertexts (with largest n(c) values) to

the messages with the largest “scaled frequencies” fD(m)/
∣∣HFSE(m)

∣∣. This observation

leads directly to the following attack.

When not all possible ciphertexts appear in DB, the sizes of the sets θ−1(m) can be

strictly less than
∣∣HFSE(m)

∣∣. In this case, we scale the number of homophones of each

message by the fraction of unique ciphertexts in C that occur in DB.

So, suppose the adversary has nr FSE-encrypted items, each of whose underlying

plaintext was sampled independently from M according to the known distribution

D. The adversary can compute the number of homophones
∣∣HFSE

s (m)
∣∣ for each m in

supp(D), since this set’s size depends on the state s, which in turn depends only on

the distribution and not the particular choice of key. Further, suppose
∣∣HFSE

∣∣ = |C|,

so that every possible ciphertext appears at least once.
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The adversary’s goal is to find the correct many-to-one decryption mapping θ : C →

M. The attack proceeds as follows. First, label the distinct observed ciphertexts so

their counts are in decreasing order: n(c1) ≥ n(c2) ≥ · · · ≥ n(c|C|). Also label the

plaintext items in the support of D so their scaled frequencies are in decreasing order:

fD(m1)

|HFSE
s (m1)|

≥ fD(m2)

|HFSE
s (m2)|

≥ · · · ≥
fD(m|supp(D)|)∣∣HFSE
s (m|supp(D)|)

∣∣ .
Then, the attack sets θ so that

θ :{c1, . . . , c|HFSE
s (m1)|} 7→ m1,

θ :{c|HFSE
s (m1)|+1, . . . , c|HFSE

s (m1)|+|HFSE
s (m2)|} 7→ m2,

and so on, until the
∣∣HFSE

s (m|supp(D)|)
∣∣ least frequent ciphertexts are mapped to

m|supp(D)|.

This efficient procedure creates a decryption mapping θ that is not necessarily unique:

if two or more encrypted data item counts are the same, then permuting them will

result in decryption mappings that are equally likely. Similarly, if two or more scaled

plaintext frequencies are the same, then permuting them will result in equally likely

decryption mappings. In our experiments, such ties were broken randomly.

Notice that if deterministic encryption were used in place of FSE, so that
∣∣HFSE

s (m)
∣∣ =

1 for each message m, then this attack reduces to a basic frequency analysis attack

of the type used by Naveed, Kamara, and Wright [62]. Thus, our attack generalizes

frequency analysis on deterministic encryption.

This attack is easily modified for the case where the attacker and data owner have

different information about the data’s distribution (D̂ 6= D̃). In this case, the attacker

would number the plaintext items according to fD̂(m)/
∣∣HFSE

s̃ (m)
∣∣, where s̃ depends

only on D̃.

2.7.2 Experimental results

We use the aforementioned MLE attack to simulate an attacker attempting to decrypt

FSE-encrypted records in a database. We individually attack the 12 columns of 200

medical databases (one database per hospital). To obtain the distribution D, we

use HCUP data from 2009 (q.v. Section 1.3). In Table 2.2, we list the 12 target

attributes, ordered by the number of values they can have, and a typical minimum

encoding length for the IBHE scheme. (Different per-hospital distributions could

result in slightly different rmin values.)
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We simulate FSE-encrypting and then attacking the HCUP data of the individual

largest hospitals using each of the hospitals’ data to define a per-hospital reference

distribution for each of the 12 target attributes. We assume this per-hospital dis-

tribution is always known to the attacker. This experimental setup is good for the

attacker—in reality, it is likely that an attacker attempting to steal a particular hos-

pital’s data would only have access to, say, national statistics from previous years (as

in [62]). To simplify our analysis, we ignore all values that were identified as missing,

invalid, unavailable, or inconsistent.

Table 2.2: Typical rmin values for attributes in FSE MLE attack

Attribute Num. values Typical rmin (IBHE)

Length of stay (LOS) 365 23

Age (AGE) 125 20

Major diagnostic category (MDC) 25 10

Admission month (AMONTH) 12 4

Admission type (ATYPE) 6 12

Primary payer (PAY1) 6 7

Ethnicity group (RACE) 6 7

Admission source (ASOURCE) 5 10

Disease severity (APRDRG Severity) 4 10

Mortality risk (APRDRG Risk Mortality) 4 10

Patient died (DIED) 2 5

Sex (FEMALE) 2 1

Our results are presented in a series of graphs in Figure 2.6, one for each attribute, and

with various encoding lengths r for each attribute. These graphs show complementary

cumulative distributions, since we are interested in the number of databases for which

at least some fraction of the records were recovered. We consider each attribute

separately, so “percentages of records recovered” refers not to entire records in a

database, but to the values of a particular attribute in those records.

Our goal, informally, is that attacking FSE is hard—in particular, at least as hard as

attacking DE. If our attacks are less successful against FSE than DE, then the lines

corresponding to FSE will be to the left of and below those for DE, and the area

under them will be smaller.

The trivial guessing attack. An adversary can always simply guess that every

ciphertext it sees corresponds to the most likely plaintext. It would succeed well
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with this metric for certain attributes, regardless of the encryption method. This is

the case, for example, with the binary attribute DIED where there is one very likely

plaintext since most patients survive their hospital visits. Each attribute’s graph in

Figure 2.6 includes a solid gray line, labeled “max fD”, that represents the success

rate of this trivial attack. No encryption method can force the trivial attacker below

this line, so—according to the metric chosen for our evaluation—little security is

achievable for certain attributes like DIED using any form of encryption.

Our MLE approach does not capture this trivial attack since it looks for a correct

decryption mapping that respects the numbers of homophones each plaintext has.

Thus, it is possible for the trivial attack to actually perform better than a statistically

optimal attack. As can be seen from the graphs, by setting r appropriately, we can

ensure that this is the case, making the MLE attack worse than simple guessing. Since

it is not possible for any encryption scheme to protect against simple guessing attacks,

the fact that the MLE attack is made worse than the trivial attack by homophonic

encoding is a positive feature of our approach. Indeed, once this is achieved for a

particular value of r, there is no benefit in increasing r further (except perhaps to

disguise which database column is which).

Comparison with DE. Naveed et al. individually attacked 200 databases of DE-

encrypted medical data from 2009 using aggregated 2004 data for the auxiliary distri-

bution [62]. The power of frequency analysis attacks on DE can be further strength-

ened by assuming the attacker knows the exact per-database distributions rather than

an aggregated distribution. In evaluating DE, we consider both situations, yielding

two curves for DE in each graph: one that uses an aggregated distribution (D̂ ≈ D,

similar to [62], but from the same year) and the other, a per-database distribution

(D̂ = D). Our experiments attacking FSE always assume that the adversary has exact

knowledge of the data’s distribution D, giving it the most power.

For some attributes, frequency analysis on DE even with aggregated auxiliary data

recovers nearly all records in all 200 databases (e.g., APRDRG Risk Mortality, DIED,

FEMALE), and per-hospital distributions perform even better, recovering nearly 100%

of records correctly in every case. And, as can be seen from our graphs in Figure 2.6,

FSE withstands attacks much better than DE in the majority of cases, even when

the adversary is given the per-hospital distributions. The results for AGE, LOS, and

MDC are particularly encouraging. One exception is DIED; using FSE barely reduces

the number of records an attacker can recover, even with large encoding lengths. The

reason is that DIED is binary and one value accounts for over 98% of records in a data

set, on average. Thus the MLE attack will still succeed with high probability, as it
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will assign the majority of ciphertexts to the high probability value and be correct

most of the time. As noted earlier, in such a situation, the trivial plaintext recovery

attack that just assigns every ciphertext to the most likely plaintext value performs

even better and is also unavoidable for any encryption scheme.

Limit case. As the encoding length r increases, there are fewer repeated cipher-

texts, and eventually, no ciphertext occurs more than once. Given nr ciphertext items,

our MLE attack assigns approximately nr · fD(m) of them to message m. For large

enough nr, we can approximate this assignment of plaintexts to ciphertexts in the fol-

lowing manner: for each ciphertext, the attacker independently samplesM according

to D to determine its guess. The probability that any single ciphertext is assigned

the correct plaintext is then f :=
∑
m∈M fD(m)2, and the number of correct guesses

then follows a binomial distribution with nr trials and success probability f . We have

simulated such an attack strategy using each individual hospital’s distribution and

indicated the resulting curves with r → ∞ in the graphs. The fraction of records

recovered quickly converges to this random guessing strategy, even using encoding

lengths much less than rmin.

Distribution adjustment algorithm. We use the distribution adjustment algo-

rithm from Algorithm 2.1: when the desired encoding length is less than rmin, inter-

vals are constructed in a different way that guarantees even the least frequent items

have at least one homophone. The values of rmin were typically highest for AGE (20)

and LOS (23). Using an encoding length of 8 for AGE still resulted in fewer records de-

crypted than with DE. For LOS, whose minimum unencoded bitlength is 9, there was

a drastic drop in the percentage of records recovered even with an encoding length

of only 10. Using only DE, 50% of hospitals had at least 80% of their records recov-

ered, while with 10-bit IBH encoding, no hospital had more than 22% of its records

recovered.

Query complexity. The parameter r affects query complexity in addition to af-

fecting storage cost: an equality query for one item becomes an equality query for

each of its homophones. For large enough encoding lengths r, our results indicate that

the statistically optimal MLE attack offers no advantage over guessing—even when

the attacker has precise knowledge of the underlying data’s distribution. However,

the results quickly converge to random guessing for all attributes, and the effect on

query complexity is manageable. For example, encoding AGE with r = 10 bits results

in a query expansion of 2r · fD(0) ≈ 27 in the worst case (for the most frequent age,

0). Encoding MDC with r = 10 bits results in a query expansion of about 28 for the

most frequent item.
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Limitations. For a few attributes, such as ASOURCE and RACE, even an attacker

using the random guessing strategy succeeds more often than may be acceptable.

In these cases, higher values of r cannot help limit the adversary’s success. These

attributes had few possible plaintext values (5 and 6 respectively) and their unencoded

distributions were skewed: for example, the most common ASOURCE value was about

29 times more frequent than the least common value. As we noted previously, such

guessing attacks are unavoidable in this situation.

2.8 Conclusions

Frequency-smoothing encryption provides a means to prevent inference attacks on

snapshots of encrypted databases. While deterministic encryption allows equality

queries on encrypted data, it must leak equality of plaintexts to do so. Our FSE

constructions allow randomizing ciphertexts in a controlled way to maintain support

for equality queries, while making the ciphertexts’ distribution uniform. Our schemes

are static and we did not analyze them in the case where the data owner’s guess of their

distribution, D̃, differed from their actual distribution, D, or when the adversary’s

approximation of the distribution, D̂, was different. We presented general definitions

that would allow considering such cases in future work.

Low-entropy distributions are those that would benefit the most from frequency

smoothing. However, for the scheme to allow efficient equality queries (both for-

mulation by the client and processing by the server), the number of homophones of

each item must not be too large, because an equality query on unencrypted data is

replaced by a set membership query for each of its homophones. Also, if values have

different sizes, then they still need to be encoded to a fixed length, which might result

in high ciphertext expansion and thus increased storage requirements at the server.

It would be interesting to explore the effect of HE on the success of pairwise column

attacks for OPE [21] and on the success of other inference attacks that exploit cross-

column correlations [7]. Addressing the same issue would be of great interest for

indices in searchable encryption, in particular for inference attacks exploiting word

co-occurrence [70] or attacks that use subsets of known documents [16]. Also, our

general definition of FSE is conducive to the development of schemes that can adapt

to changing distributions in the underlying data. Future work could assess how the

attack prevention capability of our static HE techniques degrades as the distribution

changes gradually, to understand how much change can be tolerated.
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Figure 2.6: Our experimental results by attribute: complementary cumulative distri-
butions (continued on next pages).
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Figure 2.6: Our experimental results by attribute: complementary cumulative distri-
butions (continued from previous page).
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Figure 2.6: Our experimental results by attribute: complementary cumulative distri-
butions (continued from previous page).
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Figure 2.6: Our experimental results by attribute: complementary cumulative distri-
butions (continued from previous page).
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Chapter 3

Rank and access pattern

attacks

Background. In 2016, Kellaris, Kollios, Nissim, and O’Neill (KKNO) published a

paper about generic attacks on range query leakage [42]. KKNO were the first to

derive such attacks that are generic (i.e., applied to classes of schemes, regardless of

their implementation details) and independent of data distribution. One of the types

of leakage targeted in KKNO’s paper was access pattern leakage.

After reading KKNO’s paper with Kenny Paterson and Brice Minaud, we observed

that many schemes (q.v. Section 3.1) supporting range queries have an additional

form of leakage, rank leakage. The rank leakage of a range query [a, b] is the number

of records with value strictly less than the left query endpoint, rank(a − 1), and the

number of records with value at most the right query endpoint, rank(b). We devised

generic attacks exploiting rank and access pattern leakage. As expected, since our

attacks use an additional kind of leakage, they require leakage from fewer queries to

accomplish the same kind of exact reconstruction targeted by KKNO.

The resulting paper is “Improved Reconstruction Attacks on Encrypted Data Using

Range Query Leakage,” co-authored with Brice Minaud and Kenny Paterson. It

was published at IEEE S&P 2018 [48] and the full version appears on the IACR’s

Cryptology ePrint Archive [47]. My main contribution to the paper was designing and

implementing an evaluation of the inferred reconstruction attack (here in Section 3.4).

This chapter also contains the following two contributions that were not in our paper.

First, I provide an upper bound on the expected number of queries till diameter-δ

approximate reconstruction succeeds (by adapting Proposition 3 [47, Appendix B.4]
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to use rank leakage). Second, I demonstrate why the approximate reconstruction

algorithm is not leakage-optimal by way of examples where our algorithm does not

achieve diameter-δ approximate reconstruction, but an extension of it does. (This

arises when the number of records in the database is relatively small.)

Persistent adversaries. In Chapter 2, we built a scheme that achieves security

in a specific threat model: FSE is built for security against a snapshot adversary

that obtains a one-time copy of the database, meant to model disk theft. Against

a different type of threat, such as a persistent adversary that observes queries, FSE

may provide much less security. Recall that with FSE, an equality query for one

item is translated into as many equality queries as that item has homophones. If the

adversary can count individual homophone queries and identify when the homophone

queries for one item end and those for another item begin, then it knows the number

of homophones for the queried value. Combined with knowledge of the frequencies of

values in the database, it could then infer exactly what the item is by determining

how many homophones each value should have. In this way, it could uniquely identify

the queried value and which records have that value. In other words, if the adversary

knows which set of encrypted values are homophones of a particular value, then

frequency-smoothing encryption is effectively reduced to deterministic encryption.

In this (and further) chapters, the focus shifts to attacks and we no longer consider

solutions for specific threat models. Instead, we consider generic attacks on abstract

forms of leakage that can arise due to the scheme specification or implementation in

various threat models.

For concrete examples of leakage, it may be helpful to consider what information may

leak at two particular points: during setup and during query execution. Setup leakage

could include properties such as the total number of rows (items) in the database, the

number of columns (attributes), which items have the same values, or even the order

of values in a column. Query leakage can include the query itself, the width of the

range, or the number of results. How exactly these properties leak varies depending on

the particular scheme or implementation. For instance, the size of the database could

leak to a passive network adversary that observes traffic during the initial upload, or

to a curious database server administrator that can monitor disk usage. The number

of results to a particular query may also leak to a network adversary, or they may be

encoded in a search index computed at the time of setup and available to a database

administrator.
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Rank and access pattern leakage. In this chapter, we consider attacks on two

types of leakage: rank of values or records and access pattern of range queries. For a

fixed attribute, the rank of a value is the number of items in the database whose value

is less than or equal to that value. It is sometimes convenient to also define rank as

a property of records: the rank of a record is the number of items in the database

(including itself) whose value is less than or equal to this value. We define a rank

function, rank(·), that maps either a value or record to the number of records whose

value is less than or equal to it:

rank(r∗) := |{r ∈ R : val(r) ≤ val(r∗)}| ,

rank(a) := |{r ∈ R : val(r) ≤ a)}| .

The access pattern of a range query is the set of record identifiers of the match-

ing items, i.e., the identifiers for records whose value falls in the given range. For

notational simplicity, define a null value 0 and set rank(0) := 0.

Chapter overview. Before presenting our attacks, we first discuss existing schemes

that leak rank and access pattern in Section 3.1—these are all schemes to which our

attacks apply. The three attacks presented in this chapter assume that the number of

possible values, N , the total number of records, nr, and the set of record identifiers,

R, are public. The first two attacks require data to be dense. Section 3.2 presents

an exact reconstruction attack whose goal is to reconstruct the value of every record.

If records can take values within {1, . . . , N}, then the expected number of uniformly

random range queries till our algorithm succeeds is at most N logN+N+6.6
√
N+7.

In the following section, we consider a different goal: approximately reconstructing the

value of every record by identifying an interval of diameter at most δN that contains

the record’s value. The expected number of queries until our diameter-δ approximate

reconstruction algorithm succeeds is (N + 1)(log(2/δ) + 4). Diameter-δ approximate

reconstruction outputs two maps, v̂almin and v̂almax, used to assign intervals of values

[v̂almin(r), v̂almax(r)] to each record r with width v̂almax(r)−v̂almin(r) ≤ δN . It is possible

that some records are assigned intervals of width δN and some are assigned intervals

of strictly smaller width. Recall the similar goal of ε-approximate reconstruction

(q.v. Table 1.2). Although diameter-δ approximate reconstruction does imply to 2ε-

approximate reconstruction, we use the different parameter δ to indicate that the

output of a diameter-δ approximate reconstruction algorithm may provide strictly

more information about the records’ values.
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Lastly, in Section 3.4, we craft a heuristic inferred reconstruction attack that uses an

estimate of the data’s distribution (the auxiliary distribution) to guess each record’s

value after even fewer queries. We design experiments to evaluate various aspects of

this attack and simulate queries on age data from the HCUP medical records (q.v.

Section 1.3).

3.1 Schemes that leak rank

We say that a scheme “leaks rank” if it is designed such that a party other than the

client making the range query [a, b] can learn the ranks of the endpoints, rank(a− 1)

and rank(b). For example, it could be an observer of the encrypted query tokens, or

the server processing the query. In this section, we describe some schemes that leak

rank and explain how they do so.

Consider a database DB whose records are retrieved via range queries on some fixed

attribute. Without any encryption, the database clearly reveals rank to any observer:

it can simply count the number of records with each value. However, some forms of

OPE reveal rank in this setting as well. Suppose values are encrypted with equality-

preserving OPE: for any two records r and r′, Enc(val(r)) < Enc(val(r′)) if and only

if val(r) < val(r′). It is then still easy for an observer to count how many records

have value less than or equal to a particular record r: it simply counts the number

of records with encrypted value less than or equal to that record’s encrypted value,

Enc(val(r)). This allows an adversary to learn ranks, but not exactly what values

the ranks correspond to, unless the database is dense. In general, OPE and ORE

are already vulnerable to other attacks based on the revealed orders of all records’

values, e.g., [62]. With more general forms of OPE that do not preserve equality,

rank does not necessarily leak from the static database since val(r) = val(r′) does not

disallow any ordering of Enc(val(r)) and Enc(val(r′)). Some other schemes that are

not vulnerable to a snapshot attacker but leak rank include the following.

First, the Lewi-Wu ORE scheme [51] leaks rank. This scheme can encrypt values with

a “left” encryption function EncL or a “right” encryption function EncR, and is able to

compare only left and right ciphertexts. The encrypted values in the database would

be “right” ciphertexts and, by themselves, semantically secure, but when compared

with a query endpoint—a “left” ciphertext—reveal rank. The length of a “right”

ciphertext is linear in the size of the plaintext space. A “left” ciphertext is simply a

key and an index (identifying a particular component of a “right” ciphertext). Given

a “left” and a “right” ciphertext, one may determine whether one is less than, equal
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to, or greater than the other. Therefore, a query for items in the range [a, b] would

be encrypted as (EncL(a),EncL(b)) and would leak rank(a), rank(a − 1), rank(b), and

rank(b− 1).

Second, the Arx-Range index [9], part of the Arx database system [67], also leaks

rank. In this system, the server traverses a tree to identify which items (leaf nodes)

fall in a particular range. The non-leaf nodes are chained garbled comparison circuits:

the output of one garbled circuit determines which of its children to visit next, and

provides the information required to encode the input to the next child. Specifically,

each node is a boolean circuit with n inputs (corresponding to the n bits of the input

value) and 1 output, representing the result of the comparison of the input with a

fixed, secret value encoded in the circuit. The server traverses the index twice—once

for each endpoint of the range—and returns all leaf nodes between the two endpoint

leaves. A query for items in the range [a, b] leaks to the server rank(a−1) and rank(b).

Third, Kerschbaum’s frequency-hiding OPE [43] (and the corrected version of this

scheme [53] that explicitly fixes a randomized order) leaks rank of the query endpoints.

In this scheme, the client stores a tree index that has an entry for each value stored

in the database (including repetitions). The need for storing this tree arises from the

fact that repeated values are encrypted to different ciphertexts—the client needs to

record whether a repeated value was inserted to the left or right of an existing value.

When the client wants to query the database with a range [a, b], it traverses its search

tree twice: it finds the smallest encryption of a, min(a), and the largest encryption of

b, max(b). Then, it sends the range [min(a),max(b)] to the server. Since encryption is

order-preserving, the server learns rank(a−1) and rank(b) simply by counting records.

Next, the Cipherbase [4] database system also leaks rank. Its custom range indexes are

B-trees (shallow trees with high fan-out) created and updated by a trusted hardware

module, but visible to the (untrusted) database server. Each entry is an IND-CPA

ciphertext of the record identifier, but they are ordered by plaintext value. In other

words, the range index reveals (randomized) order of records’ values, e.g., if the items

in a node are Enc(r1), Enc(r2), and Enc(r3), then val(r1) ≤ val(r2) ≤ val(r3). This

passive leakage of order—but not equality—is similar to Kerschbaum’s frequency-

hiding OPE scheme. As a range is queried, the trusted hardware traverses the index

to find the endpoints of the query in the B-tree. Therefore, the untrusted server learns

rank(a− 1) and rank(b).

Another scheme, Roche et al.’s Partial Order Preserving Encoding (POPE) [72], offers

frequency-hiding while aiming to prevent direct comparisons between many cipher-
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texts. Their scheme is suited to settings where many new records are continuously

added and there are relatively few range queries. POPE uses a structure similar to

a B-tree where nodes are augmented with buffers of unsorted items. Ciphertexts are

semantically secure; sorting is done by sending them to the client. Specifically, when

a range query is issued, the server traverses the tree to find the encrypted endpoints.

For every node encountered along the two paths, it sends the client the pivot values

and unsorted buffer. The client helps empty the buffer by decrypting the items and

telling the server which child buffer to move them to. In the end, there will be paths

from the root to two particular leaves, and these leaves will be the only nodes in the

path with non-empty buffers. Finally, the server answers the range query by send-

ing the client all items in the unsorted buffers of every node between the two query

endpoints. Therefore, after a range query for [a, b], the server learns rank(a − 1) by

counting items to the “left” of the left endpoint and rank(b) by counting items to the

“left” of the right endpoint.

All of the aforementioned schemes also leak access pattern to the server. Specifi-

cally, after the client queries a range [a, b], the server learns the subset of records

R[a,b] := {r ∈ R : a ≤ val(r) ≤ b}.

3.2 Exact reconstruction for dense data

Our first algorithm reconstructs the value of each record given rank leakage and access

pattern leakage from some queries. Specifically, suppose that for every queried range

[a, b], the ranks rank(a − 1) and rank(b), and the set of matching records R[a,b] leak.

Since the exact query endpoints a and b are not known, represent this leakage by

xi := rank(a− 1), yi := rank(b), and Ri := R[a,b]. The goal is to output a mapping v̂al

such that for all records r ∈ R, v̂al(r) = val(r).

Reasoning behind the algorithm. The idea behind this algorithm is to partition

the set of records based on which subset of queries matched them, and assign values

to each group using rank information. If two records have the same value, then every

possible range query must match both or neither of those records. If two records

have different values, then there exists a range query that matches one record but not

the other. If all queries are issued with non-zero probability, then the set of records

will eventually be divided into equivalence classes that correspond exactly to groups

of records having the same value. We refer to this set of equivalence classes as the

partition of records, PR.
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Once records are grouped in this manner, values must be assigned to them. Suppose

the recordsR were in a list ordered by value with ties broken arbitrarily. In such a list,

records with the smallest value, 1, would be in positions 1 through rank(1), records

with value 2 would be in positions rank(1)+1 through rank(2), and so on. The leakage

(xi, yi,Ri) can be interpreted as a restriction on the positions of the records Ri in this

list: they must occupy positions xi + 1 through yi. Since there is a bijection between

records and their position in this list (or many such bijections when there are multiple

records with the same value), the positions 1 through |R| can be divided into some

number of intervals based on which queries “matched” those positions. We refer to

this set of intervals as the partition of positions, PP .

When not all queries have been issued, it is possible for two non-consecutive intervals

to correspond to records matched by the same set of queries. For example, suppose

the number of possible values is N = 3 and the issued queries are [1, 3] and [2, 2].

Rank leakage reveals the number of records with each value, but since no query so

far has matched only records with value 1 and not 3 (or vice versa), the partition

of records has 2 classes, while the partition of positions has 3. Forcing the partition

of positions to consist of intervals means that two non-neighboring intervals could

match exactly the same set of queries, so the number of intervals |PP | is at least the

number of elements in the partition of records |PR|.

Once the number of equivalence classes of records |PR| equals N , each equivalence

class of positions must correspond to a single interval—the positions occupied by

records with that particular value. Thus, values are assigned to partitions of records

based on the index of the class of positions that matched exactly the same set of

queries.

Algorithm details. Pseudocode is in Algorithm 3.1. First, the partitions of records

R and positions {1, . . . , |R|} are created by building the two maps, QR and QP , which

record the sets of queries that match each record and the sets of queries that match

each position respectively. Two records r and r′ are in the same equivalence class iff

the set of queries for which r ∈ Ri is exactly the set of queries for which r′ ∈ Ri.

The set {1, . . . , |R|} represents the positions of records in a hypothetical list where

they are sorted by value, so two positions j and j′ are in the same equivalence class

iff the set of queries for which j ∈ [xi + 1, yi] is exactly the set of queries for which

j′ ∈ [xi + 1, yi].

Let (xi, yi,Ri) be the leakage of the ith query, where xi is the rank of 1 less than the

left query endpoint, yi is the rank of the right query endpoint, and Ri is the set of
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Algorithm 3.1 Full reconstruction attack with rank and access pattern leakage

Input: query leakage {(xi, yi,Ri)}
nq
i=1.

Output: ⊥ or map v̂al : R → {1, . . . , N} such that v̂al(r) = val(r) for all r ∈ R.

1: v̂al, QR, QP ← empty maps
2: for all i ∈ {1, . . . , nq} do
3: for all r ∈ Ri do
4: QR[r]← QR[r] ∪ {i}
5: for all j ∈ {xi + 1, . . . , yi} do
6: QP [j]← QP [j] ∪ {i}
7: Form partition PR of R with equivalence relation defined by r ≡ r′ ⇔ QR[r] =
QR[r′]

8: if |PR| 6= N then
9: return ⊥

10: Form partition PP of {1, . . . , |R|} with equivalence relation defined by j ≡ j′ ⇔
QP [j] = QP [j′]

11: Order PP = ([J1], . . . , [JN ]) by [J ] < [J ′] iff j < j′ for all j ∈ [J ] and all j′ ∈ [J ′]
12: for all [R] ∈ PR do

13: k̂ ← k ∈ {1, . . . , N} such that QR[R] = QP [Jk]
14: for all r ∈ [R] do

15: v̂al(r)← k̂

16: return v̂al

records in R that match this range. First, QR[r] is updated with the query index i

for all records r in Ri (line 4), and QP [j] is similarly updated for all positions j in

[xi+1, y] (line 6). After processing all queries, the records are partitioned by which set

of queries they matched (PR, line 7). If the number of equivalence classes of records,

|PR|, is not the number of possible values a record can have, N , then it is not possible

to assign a value to each record—either not enough queries have been observed yet, or

not every value appears in at least one record—so the algorithm aborts. If |PR| = N ,

however, then the partition of positions PP is also formed (line 10) and its classes

ordered in the natural way (line 11). Recall that since |PP | ≥ |PR| = N , the partition

of positions will consist of N intervals of positions, so this ordering is well defined.

Finally, each class of records is assigned a class of positions, specifically, the one that

matched exactly the same set of queries. The records in each class are assigned the

value equal to the index of its assigned class of positions (lines 12–15). Records whose

position is in the first equivalence class must have value 1, records whose position is

in the second equivalence class must have value 2, and so on.

3.2.1 Leakage optimality

Algorithm 3.1 is optimal in the sense that it succeeds whenever any other correct

algorithm succeeds on the same leakage. A correct algorithm is one that, for each

possible input, either (a) with probability 1, returns⊥ (failure), or (b) with probability
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Table 3.1: Examples of non-dense databases that are indistinguishable with only rank
and access pattern leakage with N = 5.

DB1 DB2 DB3 DB4 DB5

val(r1) 1 1 1 1 2

val(r2) 1 1 1 1 2

val(r3) 2 2 2 3 3

val(r4) 3 3 4 4 4

val(r5) 4 5 5 5 5

1, returns a map v̂al that agrees with the map val defining any database consistent

with the given leakage (success). In particular, a correct algorithm must always return

⊥ unless its input leakage specifies a unique database.

For some fixed set of record identifiers R, if there exist two value mappings val and

val′ that generate the same leakage (possibly from different range queries), then it

is impossible for an algorithm to choose the correct one with probability 1. One

way in which the same query leakage could arise from two sets of queries on two

distinct databases (defined by their value mappings) is when the database is not

dense. Suppose the number of possible values a record can have is N = 5. Then, for

any range query and any two of the non-dense databases in Table 3.1, there exists

another range query such that the leakage of the first query on the first database is

identical to the leakage from the second query on the second database.

For instance, leakage (0, 3, {r1, r2, r3}) could arise from query [1, 2] on DB1, DB2, or

DB3, from query [1, 3] on DB4, or from query [1, 3] or [2, 3] on DB5. When not all

values appear in at least one record, there is no way to distinguish which specific value

does not appear using only rank and access pattern leakage.

Another way in which the same query leakage could arise from two distinct databases

is when not every pair of adjacent values has been “split” by at least one query. The

following proposition proves that Algorithm 3.1 is leakage-optimal by showing how

to construct different databases, with different value mappings, that yield the same

leakage when the algorithm fails.

Proposition 3.1. Let A be any correct exact reconstruction algorithm that takes

as input the rank and access pattern leakage from some range queries on a set of

records R that have integer values between 1 and N . Then, whenever A succeeds on

a particular input, so does Algorithm 3.1.
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Proof. Suppose that Algorithm 3.1 did not succeed, so the number of groups in the

partition of records PR is strictly less than N (line 9). Either all of the records in

each class have the same value, or there is at least one class containing records with

two or more different values.

In the former case, the number of different values appearing in the database must be

less than N , i.e., the database is not dense. Then, there exist two adjacent values

v∗ and v∗ + 1 in {1, . . . , N} such that one of them is in the range/image of val

and the other is not. Suppose v∗ is the one in val’s range/image—the other case is

similar—and let R∗ be the set of records whose value is v∗. Consider another mapping

val′ that agrees with val on every record except the ones in R∗, which instead have

val′(r) = v∗ + 1. Then, the same query leakage could arise from a (possibly different)

set of queries, as the following observations indicate:

• Any range of the form [a, v∗] has the same leakage with val as [a, v∗ + 1] with

val′.

• The range [v∗ + 1, v∗ + 1] has the same leakage with val as [v∗, v∗] with val′.

• Any range of the form [v∗ + 1, b] with b > v∗ + 2 has the same leakage with val

as [v∗ + 2, b] with val′.

• Any range [a, b] with a 6= v∗ + 1 and b 6= v∗ already matches both or neither of

v∗ and v∗ + 1, and therefore will have the same leakage with val′.

Thus, it is possible to form another value mapping that gives rise to the same leakage,

and therefore no correct algorithm A can succeed on this input.

In the latter case, by the pigeonhole principle, there must exist a class of records [R]

of PR containing two sets of records R∗1 and R∗2 (of size at least 1 each) with values

v∗1 and v∗2 6= v∗1 . Since these two sets of records are in the same partition, every query

either returned both sets of records or neither. Hence, swapping their values would

not change the leakage, so no correct algorithm A would succeed on this same input

either.

3.2.2 Query analysis

The leakage optimality of Algorithm 3.1 means that if it fails, full reconstruction

is impossible for any correct algorithm given the same query leakage: this algorithm

requires at most as many queries as any other correct algorithm. The actual number of

queries required, however, depends on their distribution. A necessary (but definitely

not sufficient) condition of the query distribution is that every value is in at least one
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range. Suppose all N(N + 1)/2 ranges occur with uniform probability. Then, as the

next theorem shows, the expected number of required queries for the algorithm to

succeed is O(N logN).

Theorem 3.2. Let N be the number of possible values a record can have, and let

DB be a set of records where each value appears in at least one record. Then, the

probability that Algorithm 3.1 fails given the leakage from nq queries drawn uniformly

at random is at most

2 · e−nq/(2N+2) +N · e−nq/N .

Proof. Let {[ai, bi]}
nq
i=1 be the set of sampled queries and {(xi, yi,Ri)}

nq
i=1 be the corre-

sponding leakage. Assume N is even. Algorithm 3.1 succeeds iff the partition PR con-

tains N elements, which is equivalent to the following: for each value v ∈ {1, . . . , N},

{v} =
(⋂
{[ai, bi] : v ∈ [ai, bi]}

)
\
(⋃
{[ai, bi] : v 6∈ [ai, bi]}

)
. (3.1)

That is, the smallest intersection of all ranges containing the value v, minus any range

not containing v, must be only the singleton set v.

Claim 3.3. This event is implied by the following three events:

1. There is at least one query with a = v for each v from 1 to N/2.

2. There is at least one query with b = v for each v from N/2 + 1 to N .

3. There are two queries whose union is [N/2 + 1, N ].

Proof of Claim 3.3. First, let v be any value in {1, . . . , N/2}, and suppose there is

some other w 6= v ∈ {1, . . . , N} in the set on the right-hand side of Equation 3.1.

Event 1 implies that there is a query [a, b] with a = v, so v is the smallest item in

the intersection of sets on the right-hand side of Equation 3.1. Therefore, w must be

strictly greater than v. Event 1 also implies that there are queries [a, b] with a = v+1,

a = v + 2, and so on up to a = N/2, so the set {v + 1, . . . , N/2} will be in the union

of sets on the right-hand side of Equation 3.1. Thus, w, if it exists, must be strictly

greater than N/2. Event 3 implies that the union of sets on the right-hand side of

Equation 3.1 contains all values between N/2 + 1 and N , so there can exist no other

w 6= v in the set.

If v is in {N/2 + 1, . . . , N}, then Event 3 implies that the intersection of sets on the

right-hand side of Equation 3.1 is contained in {N/2 + 1, . . . , N}, so the entire set

must be contained in it as well. Therefore, w must be at least N/2 + 1. Event 2

implies that there is a query [a, b] with b = v, so v must be the largest value in the
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intersection of sets on the right-hand side of Equation 3.1. Therefore, w must be in

{N/2 + 1, . . . , v − 1}. However, Event 2 also implies that there are queries [a, b] with

b = N/2 + 1, b = N/2 + 2, and so on up to b = v − 1, which will be in the union on

the right-hand side of Equation 3.1. Thus, no other w 6= v can be in the final set.

This concludes the proof of Claim 3.3.

Next, returning to the proof of Theorem 3.2, observe that Event 1 and Event 2 occur

with the same probability due to reflection, so consider only Event 1 for now. The

probability that Event 1 does not occur, i.e., that at least one value v ∈ {1, . . . , N/2}

does not arise as the left endpoint of any of the nq queries, is

Prob[¬Event 1] ≤
N/2∑
v=1

Prob[ai 6= v for all i] (union bound)

=

N/2∑
v=1

(
1− N − (v − 1)

N(N + 1)/2

)nq

(uniformity of queries)

≤
⌊
N

2

⌋(
1− N − (N/2− 1)

N(N + 1)/2

)nq

≤ N

2

(
1− N − (N/2− 1)

N(N + 1)/2

)nq

=
N

2

(
1− N + 2

N(N + 1)

)nq

≤ N

2

(
1− N + 1

N(N + 1)

)nq

=
N

2

(
1− 1

N

)nq

≤ N

2

(
e−

1
N

)nq
(Bound A.7).

Event 3 can happen in a number of ways. We lower-bound the probability of it

happening by considering a special case that can be interpreted as the intersection of

two events, and therefore can apply a union bound to the complement of these events.

Consider only pairs of queries of the form [N/2 + 1, b] and [a,N ], where in the “left”

queries, b ∈ {b3N/4c , . . . , N} and in the “right” queries, a ∈ {N/2 + 1, . . . , b3N/4c+

1}. Then, the union of any “left” query and any “right” query is {N/2 + 1, . . . , N},

the desired set. The number of possible values of b in a “left” query is

N − b3N/4c+ 1 ≥ N − (3N/4) + 1 = N/4 + 1 ≥ N/4,

while there are

b3N/4c+ 1−N/2 ≥ (3N/4− 1) + 1− (N/2) ≥ N/4
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options for a in a “right” query. Therefore, the probability that any single query is

not a “left” query (or not a “right” query) is at most 1− N/4
N(N+1)/2 = 1− 1

2(N+1) and

the probability that Event 3 does not occur is

Prob[¬Event 3] ≤ Prob[no “left” ∪ no “right”]

≤ Prob[no “left”] + Prob[no “right”] (union bound)

≤ 2

(
1− 1

2(N + 1)

)nq

≤ 2
(
e−

1
2(N+1)

)nq
(Bound A.7).

Finally, the probability that Algorithm 3.1 fails is at most

Prob[¬Event 1,¬Event 2, or ¬Event 3]

≤ Prob[¬Event 1] + Prob[¬Event 2] + Prob[¬Event 3] (union bound)

≤ N · e−nq/N + 2 · e−nq/(2N+2),

thus concluding the proof of Theorem 3.2.

Therefore, given the leakage from nq uniformly sampled queries, Algorithm 3.1 suc-

ceeds with probability at least 1−N · e−nq/N −2 · e−nq/(2N+2). Next, we determine an

upper bound on the expected number of uniformly random queries until Algorithm 3.1

succeeds. This bound has slightly worse constants than the one in the full version

of our paper [47, Proposition 1, Appendix B.2], but applies to any N ≥ 4 instead of

N ≥ 27.

Corollary 3.4. The expected number of queries until Algorithm 3.1 succeeds is at

most N logN+O(N). Specifically, for N ≥ 4, it is at most N logN+N+6.6
√
N+7.

Proof. Let X be a random variable representing the number of queries (sampled uni-

formly at random) until the algorithm succeeds. By Theorem 3.2, we have

Prob[X ≤ x] ≥ 1−N · e−x/N − 2 · e−x/(2N+2),

or, written as an inverse cumulative distribution function,

Prob[X ≥ x] ≤ N · e−(x−1)/N + 2 · e−(x−1)/(2N+2).
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By Formula A.4, the expected value is

E[X] =

∞∑
x=1

Prob[X ≥ x]

=

dN logNe∑
x=1

Prob[X ≥ x] +

∞∑
x=dN logNe+1

Prob[X ≥ x]

≤ N logN + 1 +

 ∞∑
x=dN logNe

N · e−x/N
+

 ∞∑
x=dN logNe

2 · e−x/(2N+2)

 .

The first sum satisfies

∞∑
x=dN logNe

N · e−x/N = N ·
(
e−dN logNe/N

1− e−1/N

)
(Formula A.6)

≤ N ·
(

e− logN

1− e−1/N

)
=

1

1− e−1/N

≤ N + 1 (Bound A.10).

Similarly, the second sum satisfies

∞∑
x=dN logNe

2 · e−x/(2N+2)

= 2 ·
∞∑

x=dN logNe
e−x/(2N+2)

= 2 ·
(
e−dN logNe/(2N+2)

1− e−1/(2N+2)

)
(Formula A.6)

≤ 2 ·
(
e−(N logN)/(2N+2)

1− e−1/(2N+2)

)
= 2 ·

(
e−(logN)/2 · elogN/(2N+2)

1− e−1/(2N+2)

) (
N logN

2(N + 1)
=

logN

2

(
1− 1

N + 1

))
=

2√
N
·
(

elogN/(2N+2)

1− e−1/(2N+2)

)
≤ 2√

N
·
(
e(N−1)/(2N+2)

1− e−1/(2N+2)

)
(Bound A.8)

≤ 2√
N
·
( √

e

1− e−1/(2N+2)

) (
N − 1

2N + 2
=

1− 1/N

2 + 2/N
<

1

2

)
≤ 2
√
e√
N
· (2N + 3) (Bound A.10)

= 4
√
e ·
√
N +

6
√
e√
N

≈ 6.6
√
N +

9.9√
N
.
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Combining these inequalities, we obtain

E[X] ≤ N logN + 1 +N + 1 + 6.6
√
N +

9.9√
N

≤ N logN +N + 6.6
√
N + 7 for N ≥ 4.

3.2.3 Efficiency analysis

The maps QR and QP in Algorithm 3.1 each contain one entry for every record in

the database, and each entry is mapped to a set of up to nq integers, representing

queries. These two maps represent the largest storage requirements of the algorithm.

There are two primary ways to reduce their size. They are described in detail in this

section and also apply to the approximate and inferred reconstruction algorithms in

the following sections.

First, consider the sets of query identifiers in each of the maps: their only purpose

is to group records and positions by the queries they matched (lines 7 and 10) and

then match each group of records with a group of positions (line 13). Since there is

no need to recover the queries that matched a record, these query identifier sets can

be represented more efficiently using one-way, collision-resistant maps. Let H(·) be

a collision-resistant hash function mapping arbitrary-length binary strings to `H-bit

strings. Instead of simply appending a query identifier to an entry in QR or QP , all

entries in these two maps could be initialized to 0`H and lines 4 and 6 in Algorithm 3.1

could be replaced with the following:

4: QR[r]← H(QR[r] ‖ i)

6: QP [j]← H(QP [j] ‖ i)

As long as each query is processed before the next (in the loop starting on line 2),

such a simple incremental sequence hashing technique suffices for correctness of the

algorithm and reduces the size of QR and QP to be independent of the number of

queries, nq.

Second, the representation of the map QP can be scaled down from containing |R|

elements to containing about N elements in a sorted list. Instead of recording the

set of queries that match every position from 1 to |R|, it is sufficient to record the

set of queries at only the positions where this set changes. Each item in the list is

a pair (j, h), where j is a position and h is a sequence hash, representing a set of

query identifiers. The list is sorted by the value of j and initially contains only the

items (0, 0`H) and (|R| + 1, 0`H). These two items will never be modified, but serve
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as artificial boundaries that ensure endpoints are properly handled when y = |DB|

(lines 6c and 6e).

Let (jk, hk) be the kth entry in this sorted list. Its meaning can be interpreted as “the

items in positions {jk, jk+1, . . . , jk+1−1} match the set of queries represented by the

sequence hash hk.” To handle leakage from the ith query, (xi, yi,Ri), the list must

be updated to reflect the following properties: (i) elements in positions xi + 1, . . . , yi

matched this range, (ii) elements in positions less than or equal to xi did not, and

(iii) elements in positions greater than or equal to yi + 1 did not. For simplicity of

the algorithm, these properties will be addressed in the order (iii), (i), and (ii). First,

the list is scanned for an entry with position equal to yi + 1, and if it does not yet

exist, (yi + 1, h) is inserted into it, where h is a copy of the sequence hash of the

previous element in the list. Next, the list is scanned for an entry with position equal

to xi + 1. If it does not yet exist, (xi + 1, h) is inserted into the list, where h is a copy

of the sequence hash of the previous element in the list. Finally, for every item in the

list with position greater than or equal to xi + 1 and at most yi, its sequence hash is

updated to include the current query index i.

The list QP contains at most N + 2 entries of the form (j, h); the possible positions

j are rank(0) := 0, rank(1), . . . , rank(N), and nr + 1. Recall that when forming the

partitions of positions and records as on lines 7 and 10, they have exactly the same

size. With the list representation of QP , however, this is harder to see, since there

can be two non-adjacent positions j and j′ that matched exactly the same set of

queries. For example, with query leakage {(1, 5,R1), (2, 4,R2)}, the partition of po-

sitions QP would be represented as {(0, 0`H), (1,H
(
0`H ‖ 1

)
), (2,H

(
H
(
0`H ‖ 1

)
‖ 2
)
),

(5,H
(
0`H ‖ 1

)
), . . . , (nr + 1, 0`H)}.

Specifically, using these two efficiency improvements results in the changes to Algo-

rithm 3.1 specified in Figure 3.1. When one line in the original algorithm is replaced

by multiple lines, a letter is appended to the original number. Using the sequence

hashing technique and the compressed representation of QP , the main loop (lines

2–6) involves computing at most 2
∑nq
i=1 |Ri| ≤ 2nq |R| hashes. Partitioning the set of

records based on QR (line 7) requires scanning all |R| of its entries, while matching

the N equivalence classes (line 13) requires O(N logN) operations.

This concludes the analysis of Algorithm 3.1, which fully reconstructs the values

of dense data given rank and access pattern leakage. If this algorithm fails, then

full reconstruction is impossible by any other correct algorithm given the same query

leakage. The expected number of queries required for it to succeed is N logN+O(N).
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1: v̂al, QR ← empty maps; QP ←
(
(0, 0`H), (|R|+ 1, 0`H)

)
5:

(
(j1, h1), . . . , (j|QP |, h|QP |)

)
← QP where j1 < · · · < j|QP |

6a: if 6 ∃k such that jk = yi + 1 then
6b: Find max k′ such that jk′ < yi + 1 and (jk′ , hk′) ∈ QP
6c: Insert (yi + 1, hk′) into QP after (jk′ , hk′)

6d: if 6 ∃k such that jk = xi + 1 then
6e: Find max k′ such that jk′ < xi + 1 and (jk′ , hk′) ∈ QP
6f: Insert (xi + 1, hk′) into QP after (jk′ , hk′)

6g: for (j, h) ∈ QP : j ∈ {xi + 1, . . . , yi} do
6h: Replace h with H(h ‖ i) in QP

10:
(
(j0, 0

`H), (j1, h1), . . . , (jN , hN ), (jN+1, 0
`H)
)
← QP where 0 = j0 < j1 < · · · <

jN < jN+1 = |R|+ 1
11: Define PP = ([J1], . . . , [JN ]) where [Ji] = {ji, . . . , ji+1 − 1}
13: k̂ ← k ∈ {1, . . . , N} such that (k,QR[R]) ∈ QP

Figure 3.1: Changes to Algorithm 3.1 to improve efficiency

3.3 Approximate reconstruction for dense data

For full reconstruction to succeed, the query leakage must induce a partition of records

PR of size N (line 8 in Algorithm 3.1). Corollary 3.4 proved that the leakage from

N logN + O(N) uniformly random queries are sufficient for this condition to hold.

Observing the leakage from so many queries may not always be realistic (assuming

the bound is somewhat tight), so we now adapt the algorithm to reconstruct values

approximately with fewer queries.

When the size of the partition of records PR is strictly less than N , all is not lost.

Recall that the number of classes in the partition of positions PP is at least the

number of classes in the partition of records: since the classes of positions must be

intervals, there can be more than the number of classes of records. In particular, one

class of records can correspond to multiple classes of position intervals. Therefore,

when |PR| < N , the algorithm can no longer assign a single value to each equivalence

class of records: it must assign an interval of values. The size of this interval depends

on both the number of classes of positions, |PP |, and how many classes of positions

matched the same set of queries. First, each class of positions is assigned a range

of values: given |PP | such classes, the kth class is assigned the range k through

k + N − |PP |, since the “extra” N − |PP | values that do not have their own class

could be part of any of the |PP | classes of positions. Next, each class of records is

matched to its corresponding class(es) of positions by identifying those that matched

the same set of queries. If there is only one such class of positions, records in that

class are assigned its corresponding interval of values (of width N−|PP |). If there are

multiple classes of positions that matched the same set of queries as a particular class
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of records, then the interval of values assigned to it is simply the smallest interval

containing all of those intervals of values, i.e., it ranges from the smallest value of any

matching class of positions to the largest value of any matching class of positions.

If the width of the interval (i.e., the difference between the greatest and least values

in it) assigned to each class of records is at most δN , then the algorithm has achieved

diameter-δ approximate reconstruction. The case δ = 0 corresponds to full recon-

struction as in the previous section. Since the value of any record is in the interval

1 to N (whose width corresponds to the parameter δ = 1 − 1/N), we assume in the

rest of the section that the target parameter δ is in (0, 1− 1/N). Since each class of

records is assigned an interval of width at least N − |PP |, the precision achieved by a

partition of positions of size |PP | is, at best, 1−|PP | /N . In other words, a necessary

(but not sufficient) condition for achieving diameter-δ approximate reconstruction is

that the partition of positions has size at least N − δN . The size of the partition of

records, however, does not provide any guarantees on the algorithm’s success. When

|PR| = N , the algorithm succeeds with δ = 0, full reconstruction. However, even

when there are N − 1 classes of records, it is possible that one of them is assigned

the range of values 1 to N . Consider leakage from the singleton queries [2, 2] through

[N − 1, N − 1] and the query [1, N ]—records with values 1 and N will be in the same

class, and match the same queries as the first and last intervals of positions, which

means they will be assigned the range of values [1, N ].

The pseudocode in Algorithm 3.2 describes the details of this approximate recon-

struction attack using rank and access pattern leakage. The algorithm begins by

processing leakage in the same way as in the full reconstruction attack (lines 2–6).

It forms the partition of records as before (line 7), then forms an ordered “interval”

partition of positions (lines 8–9). Here, two positions that matched exactly the same

queries are not necessarily in the same equivalence class—all positions between them

must also have matched the same set of queries. Next, each class of records is assigned

a range of values. The algorithm first finds the smallest and largest indices of classes

of positions that matched the same set of queries as this class of records (lines 11–12).

Then, it takes into account the number of classes of positions (|PP |) to determine the

width of the assigned range of values. If there is a single class of records assigned

an interval of width larger than δN , then diameter-δ approximate reconstruction has

failed and the algorithm returns ⊥ (lines 13–14).
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Algorithm 3.2 Diameter-δ approximate reconstruction attack with rank and access
pattern leakage

Input: real δ ∈ (0, 1− 1/N), query leakage {(xi, yi,Ri)}
nq
i=1.

Output: ⊥ or maps v̂almin, v̂almax : R → {1, . . . , N} such that for all records

r ∈ R, val(r) ∈ {v̂almin(r), . . . , v̂almax(r)} and v̂almax(r)− v̂almin(r) ≤ δN .

1: v̂almin, v̂almax, QR, QP ← empty maps
2: for all i ∈ {1, . . . , nq} do
3: for all r ∈ Ri do
4: QR[r]← QR[r] ∪ {i}
5: for all j ∈ {xi + 1, . . . , yi} do
6: QP [j]← QP [j] ∪ {i}
7: Form partition PR of R with equivalence relation defined by r ≡ r′ ⇔ QR[r] =
QR[r′]

8: Form “interval” partition PP of {1, . . . , |R|} with equivalence relation defined by
j ≡ j′ ⇔ QP [j] = QP [j + i] for all i ∈ [0, j′ − j]

9: Order PP = ([J1], . . . , [J|PP |]) by [J ] < [J ′] iff j < j′ for all j ∈ [J ] and all
j′ ∈ [J ′]

10: for all [R] ∈ PR do

11: k̂min ← min {k ∈ {1, . . . , |PP |} such that QR[R] = QP [Jk]}
12: k̂max ← max {k ∈ {1, . . . , |PP |} such that QR[R] = QP [Jk]}
13: if k̂max − k̂min +N − |PP | > δN then
14: return ⊥
15: for all r ∈ [R] do

16: v̂almin(r)← k̂min

17: v̂almax(r)← k̂max +N − |PP |
18: return v̂almin, v̂almax

3.3.1 Leakage optimality

The exact reconstruction algorithm in the previous section was leakage-optimal. We

can define a similar notion of leakage-optimality for a diameter-δ approximate re-

construction algorithm: such an algorithm must succeed whenever any other cor-

rect approximate reconstruction algorithm succeeds on the same leakage. A correct

diameter-δ approximate reconstruction algorithm is one that, for each possible input,

either (a) with probability 1, returns ⊥ (failure), or (b) with probability 1, returns

maps v̂almin and v̂almax such that the map val defining any database consistent with the

given leakage satisfies val(r) ∈ {v̂almin(r), . . . , v̂almax(r)} and v̂almax(r)− v̂almin(r) ≤ δN

for all records (success). Unlike the case for exact reconstruction, a correct algorithm

here does not necessarily return ⊥ when its input does not specify a unique database:

of course, another database whose records have values at most δN away from their

original values could still generate the same leakage.

In the full version of our paper [47, p. 31], we stated “Although we do not prove it,

it is also clear that the [approximate reconstruction] algorithm is [leakage-optimal].”

In general, however, this is not true: the characteristic feature of the approximation
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algorithm—that it assigns ranges of values to records—combined with the adversary’s

knowledge that the data is dense allows it to do better in some cases. Consider the

following example with N = 10 and 3 queries.

record values 1 2 3 4 5 6 7 8 9 10

query [4, 7]

query [1, 3]

query [8, 10]

Running Algorithm 3.2 yields a partition of positions of size |PP | = 3. Since each

class of records has only one corresponding class of positions, k̂min = k̂max for each

class of records. Records with values 1–3 will be assigned the range of values [1, 8],

records with values 4–7 will be assigned values [2, 9], and records with values 8–10 will

be assigned [3, 10]. Thus, the approximation is correct to within a diameter of δ ≥ 0.7

for any dense database with N = 10, regardless of the total number of records.

Suppose the database has 10 records, one with each value. Our attack is for dense

databases and we assume the adversary knows the data is dense: as soon as it sees

that there are 10 records and N = 10 possible values, it can deduce that there is

exactly one record with each value. Given the same leakage as previously, it has

enough information to assign the records with values 1–3 the range of values [1, 3];

records with values 4–7, [4, 7]; and records with values 8–10, [8, 10], which corresponds

to approximate reconstruction within diameter δ = 0.3. This same counterexample

extends to more than 10 records: if none of the three partitions has more than 7

records, an adversary will be able to reconstruct values within diameter δ < 0.7. Such

cases prevent Algorithm 3.2 from being leakage-optimal. The exact reconstruction

algorithm, from Section 3.2 (Algorithm 3.1), however, does not have this weakness

since the question of its success is binary: records either do or do not have the same

values.

3.3.2 Query analysis

The design of Algorithm 3.2 is independent of the query distribution. To estimate the

expected number of required queries, however, it is necessary to make an assumption

about the query distribution. Like in the last section, suppose all N(N + 1)/2 ranges

occur with uniform probability. Then, the expected number of required queries for

the algorithm to succeed is O(N log 1/δ). Using the following proof technique, we

require that δN ≥ 4 (otherwise, exact reconstruction is achieved). Without loss of

generality, we can assume that δN is an integer.
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Theorem 3.5. Let N be the number of possible values a record can have, let δ ∈

[4/N, 1 − 1/N) be the targeted diameter, and let DB be a set of records where each

value appears in at least one record. Then, the expected number of uniformly random

queries until Algorithm 3.2 succeeds for N ≥ 4 is at most (N + 1)
(

3
2 log(2/δ) + 4

)
.

Proof. Let {[ai, bi]}
nq
i=1 be the set of sampled queries and {(xi, yi,Ri)}

nq
i=1 be the corre-

sponding leakage. Algorithm 3.2 succeeds iff every class [R] in the partition of records

PR is assigned an interval of width at most δN .

Claim 3.6. The success of Algorithm 3.2 is implied by the following three events:

1. For N/2 − δN/4 distinct values v in {1, . . . , N/2}, there is at least one query

with a = v and b ≥ N/2 + 1.

2. For N/2 − δN/4 distinct values v in {N/2 + 1, . . . , N}, there is at least one

query with a ≤ N/2 and b = v.

3. There are two queries whose union is [N/2 + 1, N ].

Proof of Claim 3.6. Recall that each class of records [R] is assigned an interval of

width k̂max − k̂min + N − |PP |, where k̂min and k̂max are the smallest and largest

indices of classes of positions in PP that matched the same set of queries as [R]. To

prove this claim, we will show that the three stated events imply that N−|PP | ≤ δN/2

and k̂max − k̂min ≤ δN/2 for all classes of records.

First, consider the number of elements in the optimized list representation of QP

(introduced in Section 3.2.3). This list is initially ((0, 0`H), (|R| + 1, 0`H)). Event 1

results in the creation of at least N/2 − δN/4 items of the form (rank(v − 1) + 1, ·),

for v ∈ {1, . . . , N/2}. Similarly, Event 2 adds at least N/2 − δN/4 − 1 items of the

form (rank(v) + 1, ·), for v ∈ {N/2 + 1, . . . , N}. (The subtracted 1 is due to the case

v = N , which already has a corresponding entry.) Event 3 results in the addition of

a point (rank(N/2) + 1, ·). Thus, the total number of points in the list QP is at least

2 + N − δN/2, which corresponds to at least N − δN/2 classes of positions in PP .

That is, N − |PP | ≤ δN/2.

Next, we show that k̂max−k̂min ≤ δN/2 for all classes of records by proving something

slightly stronger: if two records are in the same class of records in PR, then the

difference of their values is no more than δN/2. This implies the desired property

since k̂min and k̂max refer to indices in the list of classes of positions, and each class

of positions corresponds to at least one different value.
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Let r and r′ be two records with values v and v′ such that |v − v′| > δN/2. We will

prove that they are in different classes of records. If the values are in different halves

(i.e., one is at most N/2 and the other is at least N/2 + 1), then Event 3 guarantees

that they cannot be in the same class of records, so they must be in the same half.

Suppose that they are in the first half. If there is at least one value between them

that has a query of the type in Event 1, then they must be in different classes because

this query will match only the greater of the two values. Similarly, if the greater value

has a corresponding query of the type in Event 1, then it will also be in a different

class than the lesser value. The only remaining case is that the greater value and all

values between v and v′ do not correspond to queries of the type in Event 1. However,

since there are at most δN/4 such values with no corresponding queries, the difference

|v − v′| would then be at most δN/4 < δN/2, a contradiction. The case where the

two values are in the second half is similar. This concludes the proof of Claim 3.6.

We now continue with the proof of Theorem 3.5 and consider the number of expected

queries until Events 1, 2, and 3 occur, starting with Events 1 and 2.

Claim 3.7. The expected number of queries until Events 1 and 2 occur is at most

3
2 (N + 1) log(2/δ).

Proof of Claim 3.7. There are N2/4 candidate bridging queries that are relevant for

Events 1 and 2—those with a ≤ N/2 and b ≥ N/2 + 1 (which “bridge” the two

halves). First, we use a coupon collector-style analysis to bound the expected number

of uniformly sampled bridging queries until Events 1 and 2 occur, then we determine

the expected number of draws from all queries until this many bridging queries occur.

Event 1 occurs iff there are N/2−δN/4 distinct left endpoints a in the set of bridging

queries; Event 2, the same number of distinct right endpoints b. Bridging queries

have the property that left and right endpoint values are independent: Prob[a = v] =

Prob[b = v′] = (N/2)/(N2/4) = 1/(N/2) and

Prob[a = v | b = v′] :=
Prob[a = v ∧ b = v′]

Prob[b = v′]
=

1/(N2/4)

1/(N/2)
= 1/(N/2) = Prob[a = v] .

Therefore, Events 1 and 2 are independent when drawing from the set of bridging

queries, and they occur with the same probability, by symmetry.

Let TLi be a random variable representing the number of bridging queries drawn to

get the ith distinct left endpoint after the (i − 1)st left endpoint (where TL0 := 0 for

convenience). Also let the random variable TL :=
∑N/2−δN/4
i=1 TLi represent the total
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number of bridging queries required until Event 1. Let TR be the identically defined

random variable representing the number of bridging queries drawn until Event 2

occurs. To bound the expected number of queries until both Events 1 and 2 occur,

we must bound E
[
max{TL, TR}

]
. By the definitions of TL and TR, we have

max{TL, TR} = max


N/2−δN/4∑

i=1

TLi ,

N/2−δN/4∑
i=1

TRi


≤
N/2−δN/4∑

i=1

max
{
TLi , T

R
i

}
. (3.2)

Let Tmax
i := max

{
TLi , T

R
i

}
be a random variable representing the maximum of TLi

and TRi . Since TLi and TRi are independent and identically distributed, we have

Prob[Tmax
i ≥ x] = 1− Prob[Tmax

i ≤ x− 1]

= 1− Prob
[
TLi ≤ x− 1

]
· Prob

[
TRi ≤ x− 1

]
= 1−

(
Prob

[
TLi ≤ x− 1

])2
= 1−

(
1− Prob

[
TLi ≥ x

])2
.

For a fixed value v, the number of bridging queries [a, b] with a = v is N/2. Since

queries are drawn uniformly at random and there are initially N/2 candidates for v,

each TLi is a geometric random variable with success probability

pi =
(N/2)(N/2 + 1− i)

N2/4
=
N/2 + 1− i

N/2
.

Therefore, Prob
[
TLi ≥ x

]
= (1− pi)x−1.

Substituting this term into the equation for Prob[Tmax
i ≥ x] yields

Prob[Tmax
i ≥ x] = 1−

(
1− (1− pi)x−1

)2
= 1−

(
1− 2(1− pi)x−1 + (1− pi)2(x−1)

)
= 2(1− pi)x−1 − (1− pi)2(x−1).
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Now, by Formula A.4, the expected value of Tmax
i is

E[Tmax
i ] =

∞∑
x=1

Prob[Tmax
i ≥ x]

=

∞∑
x=1

(
2(1− pi)x−1 − (1− pi)2(x−1)

)
=

∞∑
x=0

(
2(1− pi)x − (1− pi)2x

)
=

2

1− (1− pi)
− 1

1− (1− pi)2)
(Formula A.5)

=
2

pi
− 1

pi(2− pi)

E[Tmax
i ] =

1

pi

(
2− 1

2− pi

)
.

Recall that we must bound E
[
max{TL, TR}

]
. By applying linearity of expectation

to Equation 3.2 and combining it with the expected value of Tmax
i , we obtain

E
[
max{TL, TR}

]
≤
N/2−δN/4∑

i=1

E[Tmax
i ] =

N/2−δN/4∑
i=1

1

pi

(
2− 1

2− pi

)
.

First, note that
∑N/2−δN/4
i=1

1
pi

is simply the expected value of TL (or TR), the total

number of bridging queries until Event 1 (or Event 2), due to linearity of expectation

and the fact that TLi ∼ Geo (pi):

E
[
TL
]

=

N/2−δN/4∑
i=1

E
[
TLi
]

=

N/2−δN/4∑
i=1

1

pi
.

Recalling that pi = N/2+1−i
N/2 and applying Bound A.3, we can bound it as follows:

N/2−δN/4∑
i=1

1

pi
=

N/2−δN/4−1∑
i=0

N/2

N/2− i
= (N/2)

(
HN/2 − HδN/4

)
≤ (N/2) (log(2/δ)) .

Using pi > 0, we obtain
(

2− 1
2−pi

)
< 3/2, from which we may conclude that

E
[
max{TL, TR}

]
< (3N/4) log(2/δ).

Finally, we compute an upper bound on the expected number of uniformly ran-

dom queries drawn until E
[
max{TL, TR}

]
bridging queries occur. Since there are

N2/4 bridging queries, one occurs with probability pbridge = (N2/4)/(N(N + 1)/2) =

N/(2(N + 1)). Let Tbridge be the random variable representing the number of uni-

formly drawn range queries until E
[
max{TL, TR}

]
bridging queries occur. Tbridge has
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a negative binomial distribution with parameters E
[
max{TL, TR}

]
and pbridge, so its

expected value E[Tbridge] is

E
[
max{TL, TR}

]
pbridge

<
(3N/4) log(2/δ)

N/(2(N + 1))
=

(3N/2) log(2/δ)

1/(N + 1)
=

3

2
(N + 1) log(2/δ).

This concludes the proof of Claim 3.7.

Finally, returning to the proof of Theorem 3.5, we consider the expected number of

queries until Event 3 occurs. Like in the proof of Theorem 3.2, we consider one partic-

ular way in which two queries’ union could be [N/2 + 1, N ]: there were two queries of

the form [N/2+1, b] and [a,N ], where in the “left” queries, b ∈ {b3N/4c , . . . , N} and

in the “right” queries, a ∈ {N/2+1, . . . , b3N/4c+1}. The probability that any query

is a “left” (or “right”) query is at least N/4
N(N+1)/2 = 1/(2(N + 1)), so the number of

queries required until a “left” query (or “right” query) has been drawn is distributed

geometrically with probability of success at least 1/(2(N +1)). The expected number

of draws till multiple events occur is at most the sum of the expected number of draws

till each individual event occurs, so Event 3 occurs within at most 4(N + 1) drawn

queries, and the expected number of queries until all three events occur (implying the

success of Algorithm 3.2) is at most

3

2
(N + 1) log(2/δ) + 4(N + 1) = (N + 1)

(
3

2
log(2/δ) + 4

)
.

Theorem 3.5 shows that diameter-δ approximate reconstruction takes O(N log(1/δ))

queries, fewer than the O(N logN) queries required for exact reconstruction.

3.4 Inferred reconstruction

The two previous reconstruction algorithms guarantee correctness of the reconstructed

values: in the exact reconstruction algorithm, val(r) = v̂al(r) for all records, and in

the approximate reconstruction algorithm, val(r) ∈ {v̂almin(r), . . . , v̂almax(r)}. This

section examines a heuristic algorithm that provides no correctness guarantees, but

uses additional input to infer record values given leakage from fewer queries. The

additional input is the approximate distribution of values in the database, which we

call an auxiliary distribution. Like the first two attacks, this one also does not depend

on the query distribution being uniform, but unlike the first two attacks, it does not

require the data to be dense. Simply put, given knowledge of the distribution of
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values, and observing rank and access pattern leakage, it is possible to quickly and

roughly reconstruct values.

The auxiliary distribution. In many real scenarios, the distribution of values

may be predictable. For instance, the values might represent the age of patients in a

hospital or salaries in a personnel database. The availability of such a distribution is

not a new assumption; previous statistical inference attacks on encrypted databases

have used it [62, 7].

Reasoning behind the algorithm The idea behind this algorithm is to use the

auxiliary distribution to map positions to values. First, rank and access pattern

leakage are used to partition positions and records into classes: each class of records

corresponds to at least one class of positions, like in the exact and approximate

algorithms. The next step is similar to the approximate reconstruction algorithm, but

instead of assigning a range of values to each class of records, their range of positions

is used. The endpoints of these ranges are mapped to the most likely values according

to the auxiliary distribution, and then a point estimate is assigned to each class of

records by computing the expected value of the auxiliary distribution between those

most likely endpoints. These ranges of positions have boundaries that correspond to

ranks.

Algorithm details. The pseudocode in Algorithm 3.3 describes the details of this

heuristic, inferred reconstruction attack. It still assumes that the total set of record

identifiers and number of possible values, N , is known ahead of time. The algorithm

forms and then matches partitions of records and positions in the same way as in the

approximate reconstruction attack.

For each class of records, it finds the smallest and largest positions that matched the

same set of queries as this class (lines 11–12). The smallest position, ̂min, must be

equal to 1+rank(a) for some unknown value a, while the largest position, ̂max, must be

equal to rank(b) for some value b. Using the cumulative auxiliary distribution, F(x) :=

Prob[X ≤ x], it is possible to find the most likely pre-images of these two ranks. In

general, the rank of a value a can be interpreted as a binomial random variable

with parameters |R| and F(a): the probability that ̂ = rank(a) is
(|R|
̂

)
(F(a))̂(1 −

F(a))|R|−̂. Applying the technique of maximum likelihood estimation (MLE), the

most likely value of a is

arg max
a

(
|R|
̂

)
(F(a))̂(1− F(a))|R|−̂ = arg max

a
̂ log F(a) + (|R| − ̂) log(1− F(a)).
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Algorithm 3.3 Inferred reconstruction attack with auxiliary distribution and rank
and access pattern leakage

Input: query leakage {(xi, yi,Ri)}
nq
i=1, auxiliary distribution Daux with pmf f and

cdf F.
Output: ⊥ or map v̂al : R → {1, . . . , N}.

1: v̂al, QR, QP ← empty maps
2: for all i ∈ {1, . . . , nq} do
3: for all r ∈ Ri do
4: QR[r]← QR[r] ∪ {i}
5: for all j ∈ {xi + 1, . . . , yi} do
6: QP [j]← QP [j] ∪ {i}
7: Form partition PR of R with equivalence relation defined by r ≡ r′ ⇔ QR[r] =
QR[r′]

8: Form “interval” partition PP of {1, . . . , |R|} with equivalence relation defined by
j ≡ j′ ⇔ QP [j] = QP [j + i] for all i ∈ [0, j′ − j]

9: Order PP = ([J1], . . . , [J|PP |]) by [J ] < [J ′] iff j < j′ for all j ∈ [J ] and all j′ ∈ [J ′]
10: for all [R] ∈ PR do
11: ̂min ← min{j ∈ [Jk̂min

]} where

k̂min = min {k ∈ {1, . . . , |PP |} : QR[R] = QP [Jk]}
12: ̂max ← max{j ∈ [Jk̂max

]} where

k̂max = max {k ∈ {1, . . . , |PP |} : QR[R] = QP [Jk]}
13: â← arg max a∈{1,...,N} ̂min log F(a) + (|R| − ̂min) log(1− F(a))

14: b̂← arg max b∈{1,...,N} ̂max log F(b) + (|R| − ̂max) log(1− F(b))

15: v̂ ← b̂ if â = b̂, else
(∑b̂

i=a+1 i · f(i)
)
/(F(b̂)− F(â))

16: for all r ∈ [R] do

17: v̂al(r)← v̂

18: return v̂al

Without the restriction of taking the maximum over theN possible values, and instead

treating F(a) as any probability p in [0, 1], the log-likelihood function would be ̂ log p+

(|R| − ̂) log(1 − p), and the maximum would occur when its derivative with respect

to p is 0:

0 =
̂

p
− |R| − ̂

1− p
⇔ p |R| − p̂ = ̂− p̂ ⇔ p =

̂

|R|
.

Therefore, the value a that maximizes the likelihood should be close to ̂/ |R|. This

method is used to determine the most likely values â and b̂ corresponding to ̂min and

̂max (lines 13–14). The next step (line 15) is to compute the expected value v̂ of the

auxiliary distribution Daux restricted to the interval (â, b̂]:

E
[
v | v ∈ (â, b̂]

]
=

b̂ if â = b̂,∑b̂
i=a+1 i·f(i)
F(b̂)−F(â)

else.

Every record in the current class of records is assigned this estimated value, concluding

the algorithm.
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3.4.1 Experimental evaluation

This attack is less suited to rigorous analysis than the previous two attacks. First,

its performance depends on the accuracy of the auxiliary distribution Daux. Second,

although ranks are inverted to their most likely values, this step is done independently

for each endpoint. In addition to being rather crude, this method permits two different

ranks to be assigned the same value. Therefore, we evaluate the performance of this

attack experimentally.

Design. We simulate queries on AGE values from patient records of the 200 largest

hospitals in the 2009 HCUP data (q.v. Section 1.3). These 200 hospitals had between

13 000 and 122 000 records each, approximately, for a total of about 4.9 million

records. We simulate range queries on individual hospitals’ data and attack the

query leakage. The auxiliary distribution Daux was the aggregate of the 200 hospitals’

records.

Query end points are sampled independently and uniformly at random from [0, 124],

the range of valid age values according to the NIS Description of Data Elements.

The auxiliary attack does not require the data to be dense and, indeed, some of the

ages in this range do not appear in the records of any of the largest 200 hospitals.

For example, while some of the largest 200 hospitals’ records corresponded to age

114, none corresponded to age 113. Further, each hospital’s data is not necessarily

dense with respect to the auxiliary distribution. For instance, in all of the largest 200

hospitals’ records, only 6 records were for patients with age 119.

Evaluation. We display results from our experiments in plots with relative error

(ε) on the x-axis and cumulative fraction of records on the y-axis. This error ε is

different than the diameter δ in the approximate attack. There, each record’s value

was guaranteed to be in some interval of width δN ; here, there is no guarantee that a

record’s value is even within the interval (â, b̂] computed on lines 13–14, so we simply

measure the error as εN = |v̂ − val(r)|. Since ages are in the range [0, 124], the margin

of error for all records cannot be higher than 124, which corresponds to ε = 124/125.

Perfect reconstruction corresponds to a vertical line at ε = 0. Successful attacks have

steeply rising curves that reach a fraction of records y = 1 for small values of the

error ε.

Since we assume that the set of record identifiers is known, even records that have

not matched any queries can be assigned a value estimate by matching them with the

positions that have also not matched any queries. (In Section 3.4.2, we evaluate the

attack without the assumption that the set of all record identifiers is known ahead of
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Figure 3.2: Fraction of records recovered within ε of true AGE value as number of
observed queries tends to infinity, for largest 200 hospitals in 2009 HCUP data.

time, in which case we set ε to 1 for records that have not been seen yet.) We did not

round the point guesses for each class of records (v̂ on line 15) to the nearest integer.

Suitability of the auxiliary distribution. First, we demonstrate the extent to

which the performance of this attack is limited by the accuracy of the auxiliary distri-

bution. Although each hospital has over 10 000 records, the per-hospital distributions

of ages can vary greatly from the auxiliary distribution. Such differences could be

due to regional demographics or specialized departments, e.g., neonatal, pediatric, or

geriatric. Figure 3.2 shows the asymptotic success of the attack for each of the 200

hospitals: the fraction of records recovered within ε as the number of observed queries

tends to infinity, meaning that there has been enough leakage to fully determine the

partitions of records and the partitions of positions. To measure how closely each hos-

pital’s distribution matches the auxiliary distribution, and to investigate the effect of

this on the success of our attack, we color-code each hospital’s curve in Figure 3.2

with the discrete Kolmogorov–Smirnov (K-S) statistic for the per-hospital and ag-

gregate distributions. The K-S statistic is a cumulative goodness-of-fit test; for two

discrete distributions, it is the maximum absolute difference between their cumulative

distribution functions: KS(F,F′) := maxv∈{1,...,N} |F(v)− F′(v)| . The smaller the K-S

statistic, the closer the two distributions.

If the attack were carried out with exact knowledge of the frequencies, the relative

error for all records would be 0 as the number of observed queries tends to infinity.

Figure 3.2 illustrates the importance of the closeness of the auxiliary distribution to
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the actual distribution: for small K-S values (encoded in dark red, in the upper left),

the algorithm generally performs better, recovering more records with a smaller rel-

ative error. Other statistics seemed less appropriate since they were not cumulative

and therefore did not capture the ordering of the values. The Kullback–Leibler di-

vergence is not suitable for comparing distributions having different support (which

was the case for most hospitals; not all distinct ages from the auxiliary distribution

appeared in each hospital’s records). The Chi-Square goodness-of-fit test is not suited

to small (conventionally, less than 5) expected counts, which was the case for most

ages above 110.

In the remainder of this section, we focus on one hospital with over 30 000 records

whose distribution’s closeness to the auxiliary distribution was about average: its K-S

statistic (about 0.098) is near the median (about 0.103).

Required number of observed queries. Figure 3.3a shows the success of the

attack on this particular hospital’s data, averaged over 1000 experiments, with values

assigned to records after 5, 10, 15, 25, 50, 75, and 100 queries. Figure 3.3b shows what

its success would be if the auxiliary information were perfect. Even with this simple

heuristic attack and a rough auxiliary distribution, the number of queries required to

reconstruct most of the database is relatively small.

Recall from Corollary 3.4 in Section 3.2 that the expected number of uniformly dis-

tributed queries for an exact reconstruction attack can be as high as N logN +N +

6.6
√
N + 7, which is about 809 for N = 125. Also recall from Section 3.3 that

diameter-δ approximate reconstruction means that each record is assigned an interval

of width at most δN . We could extend this attack by assigning a point guess equal

to the interval’s median value. For the sake of comparison with the relative error ε

in this section, such a median point guess would correspond to δ = 2ε, which has an

expected number of required queries as high as (N + 1) · (log(1/ε) + 4) (q.v. The-

orem 3.5). For N = 125, recovering all records’ values within 40 years (ε = 0.32)

requires up to 648 queries, within 20 years (ε = 0.16) requires up to 735 queries, and

within 15 years (ε = 0.12) requires up to 771 queries.

With an auxiliary distribution, however, after observing only 10 queries, an attacker

can already guess the ages of 70% of records within 10 years (ε = 0.08). After 25

queries, it can guess the ages of 55% of records within 5 years (ε = 0.04) After 50

queries, it can guess the ages of 35% of records within 3 years (ε = 0.024). After 100

queries, the success of the attack is restricted only by the accuracy of the auxiliary

data’s distribution.
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(a) Approximate auxiliary information
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Figure 3.3: Fraction of records reconstructed within relative additive factor ε of true
AGE value using Algorithm 3.3 for one hospital, averaged over 1000 experiments.
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3.4.2 Relaxing assumptions

This attack makes two non-trivial assumptions in addition to knowledge of an auxil-

iary distribution: first, that the total number of records is known, and second, that

the set of all record identifiers is known. We briefly discuss the impact of removing

these two assumptions.

Estimating the total number of records. For some distributions, approximating

the total number of records is easy with only a few queries. Our approach comprises

two steps: (i) computing the expected value of the maximum right endpoint b in any

query so far, then (ii) translating the maximum observed rank and the cumulative

auxiliary distribution to arrive at an estimate ñr of the total number of records.

Let Bmax be a random variable representing the maximum right endpoint of nq uni-

formly sampled range queries, {[ai, bi]}
nq
i=1. The number of distinct queries that have

right endpoint at most bmax is
∑bmax

b=1 b = bmax(bmax + 1)/2, so the probability that

all nq right endpoints are at most bmax is Prob[Bmax ≤ bmax] =
(
bmax(bmax+1)
N(N+1)

)nq
. The

maximum right endpoint after nq queries is bmax iff bi ≤ bmax for all i ∈ {1, . . . , nq},

but not bi ≤ bmax − 1 for all i. Therefore, the probability that the maximum right

endpoint is bmax after nq queries is

Prob[Bmax = bmax] =

(
bmax(bmax + 1)

N(N + 1)

)nq

−
(

(bmax − 1)bmax

N(N + 1)

)nq

=
(bmax(bmax + 1))

nq − ((bmax − 1)bmax)
nq

(N(N + 1))
nq .

The expected value E[Bmax] is then equal to

=

N∑
bmax=1

bmax

(
(bmax(bmax + 1))

nq − ((bmax − 1)bmax)
nq

(N(N + 1))
nq

)

=

(∑N
bmax=1 bmax (bmax(bmax + 1))

nq −
∑N
bmax=2 bmax ((bmax − 1)bmax)

nq
)

(N(N + 1))
nq

=

(∑N
bmax=1 bmax (bmax(bmax + 1))

nq −
∑N−1
bmax=1(bmax + 1) (bmax(bmax + 1))

nq
)

(N(N + 1))
nq

=

(
N(N(N + 1))nq −

∑N−1
bmax=1 (bmax(bmax + 1))

nq
)

(N(N + 1))
nq

= N − 1

(N(N + 1))
nq

N−1∑
bmax=1

(bmax(bmax + 1))
nq .

Let the observed rank leakage from the nq queries be {(xi, yi)}
nq
i=1. For step (ii),

we guess that the maximum observed rank, ymax := max{yi}
nq
i=1, corresponds to
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the expected maximum right endpoint, E[Bmax]. Since, by definition, rank is the

number of records with value less than or equal to any particular value, it should be

proportional to the fraction of records with value less than or equal to that particular

value, i.e., E[rank(x)] = F(x) · nr. Thus, we obtain an estimate for the total number

of records:

ñr :=
ymax

Faux (bE[Bmax]e)
.

For uniformly random range queries with N = 125, the expected maximum right

endpoint E[Bmax] is 118.6 after just 10 queries, 122.0 after 25 queries, 123.2 after 50

queries, and 123.6 after 75 queries.

Returning to our experiment, we see that this heuristic for guessing the total number

of records works well for the age dataset because it takes few queries for the maximum

rank value to be observed: ages above 110 are infrequent, so it is unlikely to take

more than 10 queries to observe the maximum rank value, rank(N), i.e., the number

of records. For other distributions, perhaps the minimum or the mean rank value

would be more suitable. Since so few queries are required to estimate the total

number of records nr given an auxiliary distribution, we are confident that removing

this assumption would not have significantly decreased the attack’s success in our

experiments.

Known set of record identifiers. We have assumed that the adversary knows

the set of all record identifiers; otherwise, it could not “reconstruct” any records that

have not matched at least one query. Figure 3.4 shows the results of the experiment

when the attacker does not know the set of possible record identifiers before observ-

ing any queries, with the aggregate auxiliary distribution (3.4a) and exact auxiliary

information (3.4b). Records that have not matched any query so far are assigned an

error of ε = 1.

In this particular experiment, the most significant phenomenon arises from the fact

that 17% of our chosen hospital’s records are for patients with age 0. If no query

covers the value 0, then the corresponding 17% of records cannot be reconstructed.

This results in a sharp jump depending on whether a query covering the value 0 has

been issued, visible in the form of vertical lines at the top of the curves in Figure 3.4.

Because we average the error over a large number of experiments, the horizontal

position of the vertical line at the top of each curve reflects the probability that a query

covering the value 0 was issued. If the value 0 has been queried, the corresponding
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Figure 3.4: Fraction of records reconstructed within relative additive factor ε of true
AGE value using Algorithm 3.3 for one hospital, averaged over 1000 experiments, with-
out assumption that set of record identifiers is known.
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17% of records are recovered with an error close to 0; while if it was not queried, the

records cannot be reconstructed, and are attributed an error of 1.

If the adversary knows the set of all record identifiers, then it recovers all records

within an error of about ε = 0.19 after seeing only 5 queries using the approximate

auxiliary distribution. Without record identifiers, the IDs of 17% of the records cannot

be recovered (much less reconstructed) until an expected number of (N + 1)/2 = 63

queries have been issued. As a result, the performance of the attack, visible on

Figure 3.4, is significantly worse than in the case where record identifiers are known.

When comparing these graphs to Figure 3.3, note that the x-axis now runs from 0 to

1 rather than 0.24 and that the results are for up to 200 queries rather than just 100.

This illustrates the value of knowing the set of record identifiers in our attacks.

3.5 Conclusions

Many schemes that support range queries on outsourced data can reveal to a passive

adversary which records matched the query (the access pattern) and the rank of the

endpoints, i.e., how many records in the database have value less than them. In this

chapter, we examined how to exploit such leakage to reconstruct the database, either

exactly determining each record’s value, or narrowing its value down to an interval of

width δN .

Our attacks are computationally efficient and do not require queries to have any

particular distribution. To analyze how many queries an adversary would need to

observe before the attacks work, though, we needed to make an assumption about their

distribution. With uniformly random queries, exact reconstruction takes O(N logN)

queries, while diameter-δ approximate reconstruction takes O(N log(1/δ)) queries.

These attacks are well suited to dense databases with a not-too-large number of

possible values N , since observing enough queries might be impractical otherwise.

One way to avoid the requirement that data be dense is to use an estimate of the

data’s distribution. We also evaluated an inference attack that—when the estimated

distribution was close to the true distribution—was able to reconstruct a large frac-

tion of records to within a small additive error. Additional query leakage could also

provide a way to sidestep the requirement that data be dense—for instance, if queries

had a separate identifier that leaked when two queries had the same endpoints, this

information could be used to estimate the distance between records.
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Chapter 4

Access pattern attacks

Background. The last chapter built on KKNO’s generic attacks [42] on range query

leakage by considering an additional type of leakage common to many range query

schemes. We derived attacks that exploit this extra type of leakage and achieve

reconstruction with leakage from even fewer uniformly random queries: O(N logN)

versus O
(
N2 logN

)
for exact reconstruction of dense data.

In this chapter, we return to KKNO’s original setting of just access pattern leakage.

With Brice Minaud and Kenny Paterson, we observed that with a different analysis

and algorithm, it is possible to achieve exact reconstruction on a dense database in

only O(N logN) uniformly random queries. We published our results in the paper

“Improved Reconstruction Attacks on Encrypted Data Using Range Query Leak-

age” [47, 48], along with an approximate reconstruction attack. These results are

only for dense databases, however, and the problem of reconstruction from access pat-

tern leakage on sparse databases remained tempting, despite KKNO having proven a

lower bound of Ω
(
N4
)

uniformly random queries for exact reconstruction on sparse

databases [42].

With Paul Grubbs, Brice Minaud, and Kenny Paterson, we tackled the problem of

reconstruction of non-dense databases using a completely new approach and goal:

approximate ordered reconstruction (AOR). The resulting attack’s query complexity

depends only on the relative desired precision, not the domain size N . This result

was included in our paper “Learning to Reconstruct: Statistical Learning Theory and

Encrypted Database Attacks.” It was published at IEEE S&P 2019 [28] and its full

version appears on the IACR’s Cryptology ePrint Archive [29]. My main contribution

to this paper was designing and implementing evaluations of the ε-AOR (here in
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Section 4.3.4). This chapter also includes my own analysis of the VC dimension of

the concept space (Xranges,Cends) and my own proof of complexity of the AOR attack.

Introduction. In the last chapter, we presented and analyzed database reconstruc-

tion attacks exploiting rank and access pattern leakage from range queries on dense

databases. Recall the main idea of the first two attacks: records are partitioned ac-

cording to which set of queries they matched (using access pattern leakage), then

matched to classes of positions and sorted (using rank leakage). In this chapter, we

consider a stronger class of attacks that use only access pattern leakage.

Reconstruction up to reflection. Using only access pattern leakage, without

assuming any particular query or data distribution, it is impossible to reconstruct

all records’ values with probability 1, as the following example illustrates. Consider

any database DB with values in [1, N ]. The access pattern leakage of any query [a, b]

on DB is identical to the leakage of the query [N + 1 − b,N + 1 − a] on a different

database, DB′, constructed from DB by mapping the value of every record, val(r), to

N+1−val(r). If the query distribution were known, it would be possible to break the

symmetry using the query frequency information. For example, if 1 is more likely to

be a query endpoint than N , it would be possible to distinguish records having these

two values by counting how many queries match the records with value 1 and how

many match the records with value N . If the data distribution were partly known,

then the symmetry could also be broken. For example, if more records are expected

to have value a than N + 1− a (for any a other than the midpoint, (N + 1)/2), then

the number of records with these values can determine the correct order. The attacks

in this section will reconstruct all records’ values up to global reflection.

Chapter overview. We begin by presenting variants of the attacks in the last

chapter that we adapted to eschew rank leakage. The exact reconstruction attack

in this chapter (Algorithm 4.1 in Section 4.1) builds a partition of records in the

same way as Algorithm 3.1 from Section 3.2, but sorts its elements differently. The

approximate reconstruction attack in this chapter (Algorithm 4.2 in Section 4.2) takes

a slightly different approach from the previous algorithms, but its success depends

on similar events. In Section 4.3, we introduce an entirely new approach to access

pattern attacks on range queries using a specialized data structure and tools from

statistical learning theory. With this new approach, we can remove the requirement

that the database be dense and achieve a new kind of reconstruction: ε-approximate

order reconstruction (ε-AOR).
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4.1 Exact reconstruction for dense data

Like Algorithm 3.1 in the previous chapter, the goal of this algorithm is to find

a value mapping v̂al that assigns the correct value to each record in the database.

However, as mentioned in this chapter’s introduction, without rank leakage or some

other information about query or data distribution, we can reconstruct values only

up to global reflection. The symbol “�” denotes this restriction in the overview of

attacks given in Table 1.2 in Section 1.2.

Reasoning behind the algorithm. In Algorithm 3.1, records were partitioned

according to which set of queries they matched (using the access pattern leakage),

then matched to classes of positions and sorted (using rank leakage). Without using

rank leakage, however, it is still possible to sort the classes of records to assign them

values from 1 to N . Suppose that sufficiently many queries have been observed to

partition the records into N classes. Then, any query that matches more than one of

these classes provides some information about their orders: their values must be in a

continuous sub-interval of [1, N ] since they were chosen precisely based on their values

being in that sub-interval. Similarly, if the sets of classes matched by two queries

intersect, then the union of these sets must also be in a continuous sub-interval of

[1, N ]; the union of two overlapping intervals is also an interval.

We will use access pattern leakage to sort the N classes as follows. First, we identify

one of the classes that corresponds to the value 1 or N—an initial “endpoint class.”

Since our target is full reconstruction up to global reflection, we can assign the records

in this class the value 1. Next, we iteratively identify the classes of records with value

2, 3, and so on by finding unions of queries that match the endpoint class and 1 more

class, and 2 more classes, and so on, until all other classes have been successively

identified.

Algorithm details. The pseudocode in Algorithm 4.1 describes the details of the

algorithm. First, the partition of records PR is built as in the full reconstruction

attack with rank and access pattern leakage, i.e., by grouping together records that

matched exactly the same set of queries (lines 2–5). If the number of equivalence

classes of records, |PR|, is not the number of possible values a record can have, N ,

then it is not possible to assign a value to each record—either not enough queries

have been observed yet, or not every value appears in at least one record—so the

algorithm aborts (line 7). If |PR| = N , then the algorithm proceeds by trying to sort

the classes.
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The first step in sorting the classes is identifying a class of records with value 1 or

N by building a maximal strict subset of all records, Rmss. The algorithm picks (at

random) a query that did not match all records and initializes Rmss to this set (line 8).

Then, until it is no longer possible, it expands Rmss with overlapping query leakage

sets that are not entirely contained in the current maximal strict subset and whose

union with the current maximal strict subset is not all records (lines 9–10). When

augmenting Rmss in this way is no longer possible, if the records that are not in this

maximal strict subset, R\Rmss, belong to multiple classes of records in the partition

of records, then the algorithm has failed (line 12). If the excluded records all belong

to the same class, then they must be the records with value 1, up to reflection, and

are assigned this value (line 14) and recorded in the book-keeping map R≤ (line 15).

As the algorithm progresses, R≤[j] will eventually be a map from integer j ∈ [1, N ]

to the records with value less than or equal to j.

Next, starting with j = 1, the algorithm tries to identify records with value less than

or equal to j + 1. At each iteration, it forms a set T by intersecting all query leakage

sets Ri that overlap with, but are not entirely contained in, R≤[j] and then removing

R≤[j] from this set (line 17). Then, it also removes from this set T any query leakage

set that partially overlaps it “on the right.” It does this by removing the records in

any query leakage set Ri that intersects T but does not contain all of T , and does

not intersect the previously identified records R≤[j] (line 19). If, after this trimming

of the set T , the records in it belong to multiple classes in the partition of records,

then the algorithm has failed (line 21). However, if they all belong to the same class,

then these records are assigned the value j + 1 (line 23), the book-keeping structure

R≤ is updated (line 24), and the algorithm increments j until it equals N − 1. If

the algorithm completes when j = N − 1, then it has succeeded and it returns the

record-to-value mapping v̂al.

4.1.1 Leakage optimality

Like Algorithm 3.1 in the previous chapter, Algorithm 4.1 is leakage-optimal: when-

ever any other correct algorithm succeeds on the same leakage, Algorithm 4.1 also

succeeds.

Proposition 4.1. Let A be any correct exact reconstruction algorithm that takes as

input the access pattern leakage from some range queries on a set of records R that

have integer values between 1 and N . Then, whenever A succeeds on a particular

input, so does Algorithm 4.1.
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Algorithm 4.1 Full reconstruction attack with access pattern leakage

Input: query leakage {Ri}
nq
i=1.

Output: ⊥ or map v̂al : R → [1, N ] such that either ∀r ∈ R, v̂al(r) = val(r), or

∀r ∈ R, v̂al(r) = N + 1− val(r).

1: v̂al, QR, R≤ ← empty maps
2: for all i ∈ {1, . . . , nq} do
3: for all r ∈ Ri do
4: QR[r]← QR[r] ∪ {i}
5: Form partition PR of R with equivalence relation defined by r ≡ r′ ⇔ QR[r] =
QR[r′]

6: if |PR| 6= N then
7: return ⊥
8: Rmss

$← {Ri : |Ri| < |R|}
9: while ∃Ri : Ri ∩Rmss 6= ∅, Ri * Rmss, and Ri ∪Rmss ( R do

10: Rmss ← Rmss ∪ Ri
11: if @[Rk] ∈ PR : {R \Rmss} = {r ∈ R : r ∈ [Rk]} then
12: return ⊥
13: for all r ∈ R \Rmss do

14: v̂al(r)← 1

15: R≤[1]← R \Rmss

16: for all j ∈ {1, . . . , N − 1} do
17: T ← {∩{Ri : Ri ∩R≤[j] 6= ∅,Ri * R≤[j]}} \R≤[j]
18: while ∃Ri : Ri ∩ T 6= ∅,Ri * T ∪R≤[j], T \ Ri 6= ∅ do
19: T ← T \ Ri
20: if @[Rk] ∈ PR : T = {r ∈ R : r ∈ [Rk]} then
21: return ⊥
22: for all r ∈ T do
23: v̂al(r)← j + 1

24: R≤[j + 1]← R≤[j] ∪ T
25: return v̂al

Proof. Suppose that Algorithm 4.1 did not succeed. This failure must have occurred

on line 7, 12, or 21. We show that in all cases, no other correct algorithm could have

succeeded with probability 1 on the same input.

Suppose the failure occurred on line 7, so the number of groups in the partition

of records PR is strictly less than N . The same reasoning as in Proposition 3.1

applies: either all of the records in each class have the same value—in which case the

database was not dense—or there is at least one class containing records with two or

more different values—in which case we can construct a different (up to reflection)

database that yields the same leakage. In either case, no other correct algorithm can

succeed with probability 1 on this input.

Suppose the failure occurred on line 12. We will show that full reconstruction is

impossible by changing the values of records in some classes without changing the

leakage (up to reflection). At this point, the records are partitioned into N classes,

each of which corresponds to records with one value. Since the fail condition was
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triggered, the complement of the maximal strict subset Rmss contains at least two

classes, and there can be no query that overlaps these classes yet does not contain

all of R\Rmss—such a query would allow expanding Rmss. Then, consider the value

mapping val′ that coincides with the true value mapping val for all records in Rmss,

but reverses the order of points in its complement, R\Rmss. This new value mapping

cannot correspond to a reflection of the original values: R \ Rmss contains at least

two classes and their relative ordering is changed, while the ordering of these classes

relative to those in Rmss is unchanged. However, this new value mapping yields

the same leakage as the actual one; the only type of query that could distinguish

these value mappings is one that would add a class of points to Rmss. Thus, full

reconstruction is impossible.

Lastly, suppose Algorithm 4.1 failed on line 21. At this point, the set T must contain

at least two classes of records. Since the fail condition was triggered, there can be

no query that overlaps but does not contain all of T , and contains records outside

of T . We can thus construct a new value mapping by reversing the values of records

in R≤[j] ∪ T and keeping the value of all other records the same. By construction,

R≤[j] and R≤[j] ∪ T form initial (up to reflection) segments of values 1 through N .

Therefore, the only type of query that could distinguish this new value mapping from

the true value mapping is one that overlaps a strict subset of T and at least part of

R\{R≤[j]∪T}, which is exactly the type of query that would remove a class of points

from T . Therefore, full reconstruction by any correct algorithm is impossible.

Since, for each of the three points where Algorithm 4.1 can fail, any other correct

algorithm would fail, Algorithm 4.1 is leakage-optimal.

4.1.2 Query analysis

The leakage optimality of Algorithm 4.1 means that if it fails, full reconstruction

is impossible: this algorithm requires at most as many queries as any other correct

algorithm. The actual number of queries required, however, depends on the query

distribution. Again, we analyze the number of required queries in the case where

all N(N + 1)/2 ranges occur with uniform probability. In this case, as the following

theorem shows, the expected number of required queries for the algorithm to succeed

is O(N logN).

Theorem 4.2. Let N be the number of possible values a record can have, and let DB

be a set of records where each value appears in at least one record, i.e., the database is

dense. Then, the probability that Algorithm 4.1 fails given the leakage from nq queries

drawn uniformly at random is at most N · e−nq/(N+1) + 4 · e−nq/(2N+2).
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Proof. Let {[ai, bi]}
nq
i=1 be the set of sampled queries and {Ri}

nq
i=1 be the corresponding

leakage. For ease of exposition and avoidance of rounding functions, we assume that

N is an even integer. We begin by proving the following claim. Recall that the length

of a query is the number of values in it; the length of [a, b] is b− a+ 1.

Claim 4.3. Algorithm 4.1 succeeds if

1. There is at least one query [a, b] with a = v and length at least 2 for each v from

1 to N/2.

2. There is at least one query [a, b] with b = v and length at least 2 for each v from

N/2 + 1 to N .

3. There are two overlapping queries whose union is [1, N/2].

4. There are two overlapping queries whose union is [N/2 + 1, N ].

Proof of Claim 4.3. We show that when these four events hold, none of the failure

conditions of Algorithm 4.1 can occur. Suppose the failure occurred on line 7, where

the number of groups in the partition of records PR is strictly less thanN . In Claim 3.3

in the proof of Theorem 3.2, we defined similar events that guaranteed that the

partition (which was formed in exactly the same way, with just access pattern leakage)

had size N . Events 1, 2, and 3 here imply those events, therefore Algorithm 4.1 cannot

fail here either.

Next, consider the failure at line 12. By its construction, the set Rmss holds some set

of records whose values are in an unknown range, [amss, bmss], and there is no query

overlapping Rmss whose union with Rmss is not the full set of records, R. We first

show that amss ≤ 2. On the contrary, if amss > N/2 + 1, then the two overlapping

queries from Event 4 could be used to extend Rmss. If amss ∈ [3, N/2 + 1], then Event

1 with a = v = amss−1 could be used to extend Rmss. Therefore, amss must be either

1 or 2. Similarly, using Events 2 and 3, we can deduce that bmss must be either N −1

or N , leaving four possible ranges that could be [amss, bmss]. We can eliminate [1, N ]

since Rmss ( R by construction, and we can eliminate [2, N − 1] since Event 3 (or

Event 4) could be used to extend Rmss. Therefore, the only two possibilities for the

range of points corresponding to Rmss are [1, N − 1] and [2, N ], leaving R \ Rmss to

equal a single class of records in the partition of records, PR.

Lastly, consider the failure condition at line 21. At this point, R≤[j] contains all

records whose value (up to reflection) is less than or equal to j—there were N classes

of records, the algorithm identified one of the extreme ones in R \Rmss, and in each

iteration of the loop, the next successive class of records was identified. T is the
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intersection of all queries overlapping but not contained in R≤[j], minus R≤[j] itself.

Because of this construction, T contains exactly the records with values in the range

[j + 1, bT ] for some unknown bT . We will show that in every iteration j, bT must be

j + 1 and therefore the fail condition cannot be triggered.

First, suppose j + 1 ≤ N/2. Event 3 means that the intersection of queries initially

forming T must have values that are a subset of [1, N/2], so bT ≥ N/2+1 is impossible.

Also, bT cannot be in [j + 2, N/2] because the query from Event 1 with left endpoint

equal to bT was subtracted from T in the previous loop. Next, consider j+1 ≥ N/2+1.

In this case, the query from Event 2 with right endpoint equal to j + 1 means that

the intersection of queries initially forming T contains values that are at most j + 1.

In either case, the right endpoint bT of T must be j + 1, so T is the set of records

with value j + 1, and the fail condition does not occur. Thus, when the four events

occur, Algorithm 4.1 succeeds, ending the proof of Claim 4.3.

Let us now continue with the proof of Theorem 4.2 by bounding the probabilities of

these four events. Events 1 and 2 occur with the same probability by reflection, so

consider only Event 1 for now. The probability that Event 1 does not occur, i.e., that

at least one value v ∈ {1, . . . , N/2} does not arise as the left endpoint of any query

that has length at least 2, is

Prob[¬Event 1] ≤
N/2∑
v=1

Prob[ai 6= v ∀i : |bi − ai| ≥ 1] (union bound)

=

N/2∑
v=1

(1− Prob[ai = v, bi ≥ v + 1])
nq

=

N/2∑
v=1

(
1− N − v

N(N + 1)/2

)nq

(uniformity of queries)

≤
N/2∑
v=1

(
1− 1

N + 1

)nq

(N − v ≥ N −N/2 ≥ N/2)

≤ N/2
(

1− 1

N + 1

)nq

≤ (N/2) e−nq/(N+1) (Bound A.7).

Next, consider Events 3 and 4, which also occur with the same probability due to

reflection symmetry. Note that Event 4 is similar to Event 3 from the proof of

Theorem 3.2: here, we have the additional restriction that the two queries overlap.

We consider only pairs of queries having the form [N/2 + 1, b] and [a,N ], where in

the “left” queries, b ∈ {b3N/4c + 1, . . . , N} and in the “right” queries, a ∈ {N/2 +

1, . . . , b3N/4c+ 1}.
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Then, the union of any “left” query and any “right” query is {N/2 + 1, . . . , N}, and

they intersect at least at b3N/4c + 1. The number of possible values of b in a “left”

query is N − b3N/4c ≥ N − (3N/4) = N/4, while there are b3N/4c + 1 − N/2 ≥

(3N/4 − 1) + 1 − (N/2) ≥ N/4 options for a in a “right” query. Therefore, the

probability that any single query is not a “left” query (or not a “right” query) is at

most 1− N/4
N(N+1)/2 = 1− 1

2(N+1) and the probability that Event 4 does not occur is

Prob[¬Event 4] ≤ Prob[no “left” ∪ no “right”]

≤ Prob[no “left”] + Prob[no “right”] (union bound)

≤ 2

(
1− 1

2(N + 1)

)nq

(independence of queries)

≤ 2
(
e−

1
2(N+1)

)nq
(Bound A.7).

Finally, recalling that Events 1 and 2 occur with the same probability, and Events 3

and 4 occur with the same probability, we can apply a union bound to conclude that

the probability that Algorithm 4.1 fails is at most

Prob[¬Event 1,¬Event 2,¬Event 3, or ¬Event 4]

≤ 2 · Prob[¬Event 1] + 2 · Prob[¬Event 4]

≤ N · e−nq/(N+1) + 4 · e−nq/(2N+2).

Therefore, given only the access pattern leakage from nq uniformly sampled queries,

Algorithm 4.1 succeeds in reconstructing the values of all records up to reflection

with probability at least 1−N · e−nq/(N+1) − 4 · e−nq/(2N+2). Next, we determine an

upper bound on the expected number of uniformly random queries until Algorithm 4.1

succeeds.

Corollary 4.4. The expected number of uniformly sampled queries until Algorithm 4.1

succeeds is at most N logN + O(N). Specifically, for N ≥ 4, it is at most (N +

1) logN +N + 8
√
N + 9.

Proof. Let X be a random variable representing the number of queries (sampled uni-

formly at random) until the algorithm succeeds. By Theorem 4.2, we have Prob[X ≤ x] ≥

1 −N · e−x/(N+1) − 4 · e−x/(2N+2), or, written as an inverse cumulative distribution

function,

Prob[X ≥ x] ≤ N · e−(x−1)/(N+1) + 4 · e−(x−1)/(2N+2).
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Then, applying Formula A.4, we obtain that the expected value is

E[X] =

d(N+1) logNe∑
x=1

Prob[X ≥ x] +

∞∑
x=d(N+1) logNe+1

Prob[X ≥ x]

≤ (N + 1) logN + 1 +

 ∞∑
x=d(N+1) logNe

N · e−x/(N+1)


+

 ∞∑
x=d(N+1) logNe

4 · e−x/(2N+2)

 .

Following similar steps as in the proof of Corollary 3.4, the first sum satisfies

∞∑
x=d(N+1) logNe

N · e−x/(N+1) = N ·
(
e−d(N+1) logNe/(N+1)

1− e−1/(N+1)

)
(Formula A.6)

≤ N ·
(

e− logN

1− e−1/(N+1)

)
=

1

1− e−1/(N+1)

≤ N + 2 (Bound A.10).

Similarly, the second sum satisfies

∞∑
x=d(N+1) logNe

4 · e−x/(2N+2) = 4 ·
∞∑

x=d(N+1) logNe
e−x/(2N+2)

= 4 ·
(
e−d(N+1) logNe/(2N+2)

1− e−1/(2N+2)

)
(Formula A.6)

≤ 4 ·
(
e−((N+1) logN)/(2(N+1))

1− e−1/(2N+2)

)
= 4 ·

(
e−(logN)/2

1− e−1/(2N+2)

)
=

4√
N
·
(

1

1− e−1/(2N+2)

)
≤ 4√

N
· (2N + 3) (Bound A.10)

= 8
√
N +

12√
N
.

Combining these 3 parts of the sum, we obtain

E[X] ≤ (N + 1) logN + 1 +N + 2 + 8
√
N +

12√
N

≤ (N + 1) logN +N + 8
√
N + 9 for N ≥ 4.
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Thus, the expected number of queries to achieve full database reconstruction up to

reflection with Algorithm 4.1 using only access pattern leakage from uniformly random

queries is at most N logN +O(N). Recall that Algorithm 3.1 in Section 3.2 had the

same expected asymptotic query complexity despite using access pattern leakage and

rank leakage. These results indicate that for range queries, rank leakage is somewhat

superfluous; its only advantage asymptotically is breaking the symmetry between k

and N + 1− k.

4.2 Approximate reconstruction for dense data

As in the previous chapter, where both rank and access pattern leakage were available,

it is also possible here, where only access pattern leakage is available, to gain partial

information about values with fewer queries than for exact reconstruction. However,

the algorithm in this section takes a different approach from Algorithm 3.2. Recall

that the output of Algorithm 3.2 is two maps, v̂almin and v̂almax, that assign a range

of values to each record, and that different records can be assigned ranges of different

widths. In this section, our algorithm assigns a range of values of the same size to

each record; it will output a single value v̂al for each record. To reflect this difference,

we call the goal in this section ε-approximate reconstruction. Instead of assigning a

range of values of diameter at most δN to each record, we try to assign a point guess

that is less than εN away from the record’s true value. Throughout, we assume εN

is an integer, and we assign only point guesses that are integers (since all values are

integers too).

Reasoning behind the algorithm. This algorithm takes a different approach

from the previous one. Recall that when the number of classes of records in the par-

tition of records PR is strictly less than N , the values corresponding to some of these

classes may not be intervals. When rank leakage was available, this limitation was

tolerable: classes corresponding to non-continuous sets of records were identifiable.

Now, however, a different approach ensures that the values corresponding to any sets

of records we consider form an interval.

The algorithm has three main steps: splitting the records into two overlapping sets

such that each set corresponds to a continuous interval of values, grouping and sorting

the records within each set, and finally assigning values to each of the sorted groups.

The assigned values depend on two properties: the index of the group in the sorted

list of all groups and the number of groups relative to the number of possible values,

N . Suppose there are g < N sorted groups, (R1, R2, . . . , Rg). Our algorithm ensures
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that all records with the same value are in the same group, so there are N − g values

that may not have their own group. Therefore, the records in group Ri can have any

value in the range [i, i + N − g]. If N − g is even, the point guess corresponding to

the midpoint of this interval would be (i+ i+N − g)/2 = i+ (N − g)/2, otherwise it

can be either i+ b(N − g)/2c or i+ d(N − g)/2e. In all cases, the midpoint is at most

d(N − g)/2e away from any value in the interval. Therefore, to achieve ε-approximate

reconstruction, we require d(N − g)/2e < εN , or that the number of groups satisfies

g > N − 2εN .

Algorithm details. The first step is splitting the records into two “halves.” Let r

be any record in the database (line 2). (If splitting into halves does not succeed with

this record, then another will be chosen.) Let Mr be the intersection of all queries

containing r (line 3). Since an intersection of intervals is also an interval, the values

corresponding to the records in Mr form a (continuous) interval. The goal of the

splitting step is to find two overlapping sets of records L and R such that their union

is the set of all records (L ∪ R = R), their intersection is Mr (L ∩ R = Mr), and the

values of records in each L and R form continuous intervals.

First, we find a “left” query RL and a “right” query RR whose intersection is Mr and

whose union RL∪RR is of maximal size among all such queries (line 4). Next, we find

another “left” query RL′ that overlaps RL and whose intersection with RL is contained

in RL \Mr, and whose union with RL is maximal among all such queries (line 5).

Similarly, we find another “right” query RR′ that overlaps RR, whose intersection

with RR is contained in RR \Mr, and whose union with RR is of maximal size (line 6).

If the union of these four sets RL′ ∪RL ∪RR ∪RR′ is the set of all records R, then we

go on to build L = RL′ ∪ RL and R = RR ∪ RR′ (lines 8 and 9). These are the two

“halves,” concluding the first step.

Next, we sort the records in each half and use Mr to bridge the sorted groups. To sort

the left half, we look for queries that contain Mr and contain some records outside of

the right half R, i.e., records that are only in the left half L. These queries can be

ordered with respect to inclusion based on the records in L that they contain. Let CL

be this set of queries, where each query’s record set is replaced with its intersection

with L \Mr and each set is numbered according to inclusion (line 10). We do the

same process to obtain an ordered set CR of sets of records, sorted by inclusion, in

R\Mr (line 12). Now, we can form |CL|+1+ |CR| disjoint groups of records based on

which of the sorted elements of CL or CR they appeared in first (i.e., of the smallest

size), or whether they are in Mr. If the number of disjoint groups of records is strictly

greater than N − 2εN , then we assign values to the records in each of these sets as
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explained in the introduction to this section (lines 16–22). Otherwise, we try again

with a different record on line 3. If all records have been tested and the condition on

line 15 was not satisfied for any of them, then the algorithm fails and returns ⊥.

Algorithm 4.2 ε-Approximate reconstruction attack with access pattern leakage

Input: real ε ∈ [2/N, 1), query leakage {(Ri)}
nq
i=1.

Output: ⊥ or map v̂al : R → {1, . . . , N} such that for all records r ∈ R,∣∣∣val(r)− v̂al(r)
∣∣∣ < εN or for all records r ∈ R,

∣∣∣val(r)− (N + 1− v̂al(r))
∣∣∣ < εN .

1: v̂al← empty map
2: for all r ∈ R do
3: Mr ← ∩{Ri : r ∈ Ri}
4: Find (RL,RR) such that RL ∩ RR = Mr and |RL ∪ RR| is maximal
5: Find RL′ such that RL′∩RL 6= ∅, RL′∩RL ⊆ RL\Mr and |RL′ ∪ RL| is maximal
6: Find RR′ such that RR′ ∩ RR 6= ∅, RR′ ∩ RR ⊆ RR \ Mr and |RR′ ∪ RR| is

maximal
7: if RL′ ∪ RL ∪ RR ∪ RR′ = R then
8: L← RL′ ∪ RL
9: R← RR ∪ RR′

10: CL ← {Ri \R : Mr ⊆ Ri,Ri \R 6= ∅}
11: CL[1] ⊂ CL[2] ⊂ · · · ⊂ CL[|CL|]← CL
12: CR ← {Ri \ L : Mr ⊆ Ri,Ri \ L 6= ∅}
13: CR[1] ⊂ CR[2] ⊂ · · · ⊂ CR[|CR|]← CR
14: g ← |CL|+ |CR|+ 1
15: if g > N − 2εN then
16: for all r ∈ R do
17: if r ∈ L then
18: v̂al(r)← |CL|+ 1−min{j : r ∈ CL[j]}+ b(N − g)/2c
19: else if r ∈Mr then
20: v̂al(r)← |CL|+ 1 + b(N − g)/2c
21: else
22: v̂al(r)← |CL|+ 1 + min{j : r ∈ CR[j]}+ b(N − g)/2c
23: return v̂al
24: return ⊥

4.2.1 Query analysis

We now show that Algorithm 4.2 succeeds with access pattern leakage from at most

N log(1/ε) +O(N) queries sampled uniformly at random.

Theorem 4.5. Let N ≥ 4 be the number of possible values a record can have, let

ε ∈ [2/N, 1−1/N) be the targeted precision, and let DB be a set of records where each

value appears in at least one record, i.e., DB is dense. Then, the expected number

of queries drawn uniformly at random until Algorithm 4.2 succeeds is at most 2(N +

1) log(1/ε) + 8N + 4(1 + 1/ε).

Proof. To avoid cluttered notation due to rounding, we assume N is a multiple of 4

and εN/2 is an integer. Let {[ai, bi]}
nq
i=1 be the set of sampled queries and {Ri}

nq
i=1 be

the corresponding leakage.
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Claim 4.6. Algorithm 4.2 succeeds if the following four events occur:

1. For N/2 − εN/2 distinct values v in {1, . . . , N/2}, there is at least one query

with a = v and b ≥ N/2 + 1.

2. For N/2−εN/2 distinct values v in {N/2+1, . . . , N}, there is at least one query

with a ≤ N/2 and b = v.

3. There are two overlapping queries whose union is [1, N/2 + 1].

4. There are two overlapping queries whose union is [N/2 + 1, N ].

Proof of Claim 4.6. Suppose that all four events occurred. Algorithm 4.2 can fail

only if no suitable record r was found in the loop on line 2. We will show that if r

is any record with value N/2 + 1, then the algorithm succeeds. First, Events 3 and

4 imply that Mr contains only records with value N/2 + 1, and that the four sets of

queries on line 7 indeed cover all records R. Event 1 implies that |CL| ≥ (1− ε)N/2,

and Event 2 that |CR| ≥ (1− ε)N/2− 1 (because Event 2 may include a query with

b = N/2 + 1). Therefore, |CL| + |CR| + 1 ≥ (1 − ε)N , and the final check at line 15

succeeds, concluding the proof of Claim 4.6.

Returning to the proof of Theorem 4.5, the expected number of queries until all events

occur is at most the sum of the expected numbers of queries until each event occurs, so

we look at the events separately. Events 1 and 2 occur with the same probability due to

reflection, so consider only Event 1 for now. Let TLi be a random variable representing

the number of queries drawn to get the ith distinct left endpoint in [1, N/2] of a

query with right endpoint at least N/2 + 1 after the (i − 1)st left endpoint (where

TL0 := 0 for convenience). Since queries are drawn uniformly at random and there are

initially N/2 candidates for v and always N/2 for each right endpoint, each TLi is a

geometric random variable with success probability pi := (N/2)(N/2−i)
N(N+1)/2 = N/2−i

N+1 . Let

the random variable TL :=
∑(1−ε)N/2
i=1 TLi represent the total number of queries until

Event 1 occurs. Since it is a sum of independent random variables, we use linearity

of expectation to upper bound its expected value:

E
[
TL
]

=

(1−ε)N/2∑
i=1

E
[
TLi
]

=

(1−ε)N/2∑
i=1

N + 1

N/2− i
= (N + 1)

N/2−1∑
i=εN/2

1

i

= (N + 1)
(
HN/2−1 − HεN/2−1

)
≤ (N + 1)

(
log

1

ε
− 2

N
(1− 1/ε)

)
(Bound A.3)

≤ (N + 1) log
1

ε
− 2(1− 1/ε).
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The expected number of queries until Events 1 and 2 occur is therefore at most

2(N + 1) log(1/ε)− 4(1− 1/ε).

Next, consider Events 3 and 4. We use the same technique as we did for Events 3 and

4 in the proof of Theorem 4.2: we consider only particular types of overlapping queries

whose union is the given range. Here, Event 3 is slightly different—the overlapping

queries’ union must be [1, N/2+1] instead of [1, N/2]—but this wider range translates

to a higher probability of getting the desired type of query, so the expected number of

queries until Event 3 occurs is at most the expected number of queries until Event 4

occurs. In Event 4, there are at least N/4 “left” queries and N/4 “right” queries that

overlap by at least 1 value, 3N/4. Since queries are drawn uniformly at random, the

number of queries until a “left” (or “right”) query is drawn is distributed geometrically

with probability of success at least (N/4)/(N(N + 1)/2) = 1/(2(N + 1)). Hence, the

expected number of queries until both Events 3 and 4 occur is at most

2 · (2 · (2(N + 1))) = 8(N + 1).

Combining this bound with the one for Events 1 and 2, we conclude that the expected

number of queries until Algorithm 4.2 succeeds is at most

2(N + 1) log(1/ε)− 4(1− 1/ε) + 8(N + 1) = 2(N + 1) log(1/ε) + 8N + 4(1 + 1/ε),

concluding the proof of Theorem 4.5.

Thus, the expected number of queries to achieve ε-approximate database reconstruc-

tion up to reflection with Algorithm 4.2 using only access pattern leakage is at most

N log(1/ε)+O(N). As in the case for full reconstruction, the approximate reconstruc-

tion algorithm that uses rank leakage (Algorithm 3.2 in Section 3.3) has the same

asymptotic query complexity—again, the only advantage of rank leakage asymptoti-

cally appears to be breaking symmetry.

4.3 Approximate ordered reconstruction for sparse

data

All attacks so far require leakage from a number of queries that is at least linear in N ,

the number of possible values a record can take. They also require the database to

be dense. As N increases, so must the number of records in the database to maintain

density. In this section, we develop and analyze an approximate reconstruction attack
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that succeeds even when not every value from 1 toN appears in the database. Further,

the number of queries required depends only on the target precision, not on N .

The attack uses a special data structure—a PQ tree—to maintain information from

range query leakage. We analyze it using properties of concept spaces over the set

of all possible range queries, and apply results from learning theory that rely on the

Vapnik–Chervonenkis (VC) dimension of the concept space, which roughly measures

how complex it is.

The type of approximate reconstruction targeted by this attack is different from all

previous attacks; instead, the structure of the output naturally arises from using a PQ

tree. Specifically, this attack targets ε-approximate ordered reconstruction (ε-AOR)

by grouping records together whose values are close and then sorting these groups.

This goal is achieved when an algorithm outputs some number k of disjoint sets of

records, A1, . . . , Ak, such that the diameter of each set, diam(Ai), is strictly less than

εN , the sets are ordered correctly up to reflection (i.e., either A1

val

< · · ·
val

< Ak or

A1

val

> · · ·
val

> Ak), and every record whose value is further than εN from the endpoints

1 and N is belongs to one of the k sets.

Section overview. We first introduce PQ trees and the relevant concepts from

VC theory in Sections 4.3.1 and 4.3.2. Then, in Section 4.3.3, we present our ε-

approximate ordered reconstruction algorithm and analyze its query complexity. We

experimentally evaluate the bound in Section 4.3.4.

4.3.1 PQ trees

PQ trees were discovered nearly 45 years ago [14]. They have been used as tools to

solve problems like planarity testing for graphs and the consecutive ones problem. A

PQ tree can compactly represent a set of orderings (permissible permutations) over

some base set of elements and can be efficiently updated after learning about a new

set of “consecutive” elements, referred to as an interval. We will use PQ trees to

encode orderings of records compatible with the given access pattern leakage. The

idea of using a PQ tree to order records in a database is not new [19], but it was not

previously used to reconstruct values in a database.

Structure and interpretation. A PQ tree is a rooted tree with three types of

nodes. The leaves are the elements of the base set—the records, in our setting. A

PQ tree has two types of internal (i.e., non-leaf) nodes that dictate which orderings

of their children are possible: P nodes and Q nodes. The children of a P node can be

reordered in any way: if a P node has k children, then there are k! possible orderings
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of its children. The children of a Q node, on the other hand, can only be reflected;

there are two possible orderings of its children. When a node has exactly two children,

that node can be either a P node or a Q node. A node with one child can always be

replaced by that child.

PQ trees support two operations: Build and Update. The Build operation takes a base

set and outputs a PQ tree T consisting of a root P node and one leaf for each of the

elements in the base set. The Update operation takes a PQ tree T and an interval,

or subset of elements in the base set. (In our application, the intervals will be sets

of records matched by queries.) It returns ⊥ if the interval is not a subset of the

tree’s leaves, or if none of the orderings compatible with the tree allow the elements

in the supplied interval to be contiguous. Otherwise, it modifies the structure of the

PQ tree T precisely to reduce the set of orderings (compatible permutations) such

that the elements in the provided set are always contiguous. If the elements in the

provided interval are already contiguous in all compatible orderings, then the tree

is not modified. The most restricted set of orderings that can be represented by a

PQ tree is 2, in which case the root is a Q node with all elements in the base set as

children.

Notation. If T is a PQ tree, we use root(T) to denote its root. PQ trees are com-

monly depicted with the root at the top, growing down. The children, descendants,

parent, and ancestors of the node node are defined as follows:

• children(node): The set of direct descendants of the node node, empty iff node

is a leaf.

• descendants(node): The set of node’s children, its children’s children, and so on

(until the leaves), or node itself if it is a leaf.

• parent(node): The direct ancestor of the node node, empty iff node is the root.

• ancestors(node): The set of node’s parent, its parent’s parent, and so on (until

the root).

Two more terms will also be helpful in dealing with the nodes in PQ trees:

• leaves(node): The subset of descendants of node that are leaves (i.e., the leaves

of the subtree rooted at node). We may say that a leaf “belongs” to node if it

is in the set leaves(node).

• lca(A): The lowest common ancestor of all nodes in the set A (i.e., the node

furthest from the root that contains all nodes in A as descendants).
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The symbols ≺ and � (or � and �, if repeated elements are allowed) denote an order

relation between the leaves of a PQ tree T. We say that an ordering ≺ on the leaves

of a PQ tree T is compatible with T if there is a way to re-order the children of the

internal nodes, following rules about Q nodes’ children (since P nodes’ children may

be in any order), such that the leaves, when read from left to right, are in the order

dictated by ≺. Looking ahead, we will reason about which relations hold between

at least three leaves of a PQ tree for all compatible orderings ≺. (Since the internal

nodes in a PQ tree allow either reflections or arbitrary permutations of their children,

it is always true that any two leaves a and b satisfy a ≺ b for some compatible ordering

≺.) For example, we will prove results about what it means when three leaves a, b,

and c satisfy a ≺ b ≺ c for all orderings compatible with a PQ tree T.

Useful properties. PQ trees have some appealing properties, which we state here,

but do not prove. The size of any PQ tree on a base set of k elements is linear in k.

The complexity of the Update procedure on a PQ tree is linear in the size of its base

set. The order in which a PQ tree is updated on various intervals does not matter;

the resulting tree represents the same set of orderings.

It is also possible to account for the case where not all elements of the base set are

known in advance. A special leaf node can be added during the Build procedure,

corresponding to the undiscovered elements. When running the Update procedure, if

the interval contains a new element, then it is added as a sibling of this special leaf

node (i.e., as a child of the special leaf node’s parent).

PQ trees and AOR. Recall the goal of approximate ordered reconstruction: group-

ing together records with values that are close, and sorting these groups. Looking

ahead to Section 4.3.3, our algorithm will simply build a PQ tree on the base set of all

records, then run the Update procedure on each set of records in the observed access

pattern leakage.

Access pattern leakage from range queries on a database can be interpreted exactly

as intervals in the context of PQ trees: the records whose values fall in a range [a, b]

are precisely those that are contiguous when the set of all records is sorted by value.

Consider how a PQ tree built on the base set of all records would look after running

the Update procedure on the access pattern leakage of all possible range queries on

a dense database. Its root would be a Q node and it would have N children, one for

each value from 1 to N . If two records have the same value, then they must match

exactly the same set of queries; there can be no range query that matches one but not

the other. If a particular value appears in only one record, then it is a direct child of
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the root Q node. Otherwise, all records with that particular value are children of a P

node, and thus are grandchildren of the root Q node. This PQ tree is as reduced as it

can be; the records have been grouped by value and ordered (up to reflection). When

the database is dense, the first child of the Q node corresponds to the record(s) with

value 1; the second, the record(s) with value 2; and so on.

We now state and prove some results about PQ trees that will be useful in the proof

that our algorithm achieves ε-approximate order reconstruction. The first one says

that if for all orderings compatible with a given PQ tree, the relative order of a set

of elements is fixed up to reflection, then they must all belong to different children of

their lowest common ancestor.

Lemma 4.7. Let r1, . . . , rk be any k ≥ 3 leaves in a PQ tree T, and let L =

lca(r1, . . . , rk) be their lowest common ancestor. Suppose that for all orderings com-

patible with T, either r1 ≺ r2 ≺ · · · ≺ rk or rk ≺ rk−1 ≺ · · · ≺ r1. Then, each leaf ri

belongs to a different child of the lowest common ancestor L, and L is a Q node.

Proof. Consider any two leaves ri and rj and suppose, towards a contradiction, that

they belong to the same child, C, of their lowest common ancestor L. Regardless of

whether C is a P node or a Q node, it allows two relative orderings: ri ≺ rj and ri � rj .

Consider now any other leaf rh different from ri and rj , which must exist for k ≥ 3.

Without loss of generality, we can assume that the leaf rh does not belong to C. (If all

leaves belonged to the same child of L, then that child, not L, would be their lowest

common ancestor.) Then, two relative orderings of C and rh are possible: C ≺ rh and

C � rh. However, within C, both ri ≺ rj and rj ≺ ri are possible, yielding two orders

supposedly compatible with T that are not reflections of each other: ri ≺ rj ≺ rh and

rj ≺ ri ≺ rh. Therefore, the assumption that ri and rj belong to the same child of

L must be false. Since ri and rj were arbitrary leaves, this implies that all k leaves

belong to different children of L. Therefore, L has at least k children, and since

k ≥ 3, the relative ordering of the leaves cannot be fixed up to reflection unless L is

a Q node.

A corollary of this result is that the lowest common ancestor of any two of the leaves

ri and rj in the statement of Lemma 4.7 must be L, the lowest common ancestor of the

three leaves. By definition of the lowest common ancestor, it cannot be an ancestor

of L, and if it were a child of L, then the two leaves would have to belong to that

same child.
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The next useful result is for a similar setting, where we consider groups Ai of leaves

instead of individual leaves themselves. It expresses the fact that the sets Ai must

also correspond to different children of their lowest common ancestor L.

Lemma 4.8. Let A1, . . . , Ak be k ≥ 3 non-overlapping sets of leaves in a PQ tree T,

let A := ∪ki=1Ai be their union, and let L := lca(A) be their lowest common ancestor.

Suppose that for all orderings compatible with T, either A1 ≺ A2 ≺ · · · ≺ Ak or

Ak ≺ Ak−1 ≺ · · · ≺ A1. Then for every child C of L, either leaves(C) ∩ A = ∅, or

there exists a single set of leaves Ai such that leaves(C) ∩Ai 6= ∅.

Proof. Let C be a child of L and suppose leaves(C) ∩ A 6= ∅. Suppose, towards

a contradiction, that the leaves of C overlap with the two sets AiC and AiC′ (and

maybe others). Let rC and rC′ be leaves in the intersections leaves(C) ∩ AiC and

leaves(C) ∩AiC′ respectively.

Consider now another leaf rh different from rC and rC′ . Without loss of generality, we

can assume that the leaf rh belongs to a different child of L than C, say Ch (otherwise

C would be the lowest common ancestor, not L). Then, two relative orderings of C and

rh are possible: C ≺ rh and C � rh. However, within C, both rC ≺ rC′ and rC � rC′

are possible, yielding two orders supposedly compatible with T: rC ≺ rC′ ≺ rh and

rC′ ≺ rC ≺ rh. Since rC ∈ AiC , rC′ ∈ AiC′ , and rh ∈ ACh , these two orderings on

elements correspond to orderings on the sets {AiC , AiC′ , ACh} that are not reflections

of each other. This contradiction implies that the leaves of any child C having a

non-empty intersection with A must intersect with a single set of leaves Ai.

The next result shows that after updating a PQ tree with two intervals of a particular

form, the relative order of three elements is fixed in all orderings compatible with the

tree.

Lemma 4.9. Let r1, r2, and r3 be three distinct elements in the base set, and let T

be a PQ tree built on this base set. Suppose the tree T was updated with two intervals

R and R′ such that

• r1 and r2 are in R, but r3 is not in R, and

• r2 and r3 are in R′, but r1 is not in R′.

Then, in all orderings ≺ compatible with the PQ tree T, the relative order of r1, r2,

and r3 is fixed up to reflection as r1 ≺ r2 ≺ r3.

Proof. Let ≺ be any ordering compatible with the PQ tree. From the interval R, we

know that r3 cannot be between r1 and r2; it must be the case that either (i) r3 ≺ r1, r2
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or (ii) r3 � r1, r2. Similarly, from the interval R′, we learn that r1 cannot be between

in r2 and r3; it must be the case that either (iii) r1 � r2, r3 or (iv) r1 ≺ r2, r3. We now

consider all four combinations of conditions:

• (i) and (iii) yield the possible ordering r3 ≺ r2 ≺ r1.

• (i) and (iv) yield a contradiction since r3 ≺ r1 and r1 ≺ r3 cannot both be true.

• (ii) and (iii) yield a contradiction since r3 � r1 and r1 � r3 cannot both be true.

• (ii) and (iv) yield the possible ordering r3 � r2 � r1.

Since the only two possibilities are r3 ≺ r2 ≺ r1 and r3 � r2 � r1, the order of the

three records is fixed up to reflection.

Lemma 4.9 is easily extended to the case where we consider sets of elements instead

of single elements; the proof proceeds nearly identically. Recall that for two sets R

and R′, R ≺ R′ means that for all r ∈ R and all r′ ∈ R′, we have r ≺ r′.

Corollary 4.10. Let R1, R2, and R3 be disjoint, non-empty subsets of elements from

the base set, and let T be a PQ tree built on this base set. Suppose the tree T was

updated with two intervals R and R′ such that

• (R1 ∪R2) ⊆ R, but R3 ∩ R = ∅, and

• (R2 ∪R3) ⊆ R′, but R1 ∩ R′ = ∅.

Then, in all orderings ≺ compatible with the PQ tree T, the relative order of R1, R2,

and R3 is fixed up to reflection as R1 ≺ R2 ≺ R3.

We will use Lemma 4.9 and Corollary 4.10 extensively in the proof that our AOR

algorithm succeeds after a certain number of queries. Another lemma that will be

useful is the following, which proves that if the relative order of three elements is fixed

in all orderings compatible with a PQ tree, then it is possible to “lift” the ordering

to intervals containing them.

Lemma 4.11. Let r1, r2, and r3 be three distinct elements in the base set, and let

T be a PQ tree built from this base set. Suppose that the tree T was updated with

three disjoint intervals R1, R2, and R3 whose intersections with the three elements

{r1, r2, r3} are exactly r1, r2, and r3 respectively (e.g., r1 ∈ R1, but {r2, r3} ∩R1 = ∅).

If for all orderings ≺ compatible with the tree T, r1 ≺ r2 ≺ r3 (up to reflection), then

for all orderings ≺ compatible with the tree, R1 ≺ R2 ≺ R3 (up to reflection) as well.

Proof. Let L := lca(R1, R2, R3) be the lowest common ancestor of the elements in

R1, R2, and R3. By definition of lowest common ancestor, R1, R2, and R3 cannot
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all belong to the same child of L (otherwise that child would be their lowest common

ancestor).

We first prove that each child of L can contain elements from at most one of the sets

Ri. Suppose for a contradiction that a child C of L contains at least one element

from multiple sets, say at least one from R1 and at least one from R2. Since the tree

was updated for the interval R1, the elements of R1 are contiguous in all compatible

orderings, and no elements of R2 or R3 can come between them in any compatible

orderings (by contiguity and disjointness of the three sets Ri). Given that L’s child

C contains elements from both R1 and R2, the elements of R1 cannot be contiguous

unless they all belong to the same child C—otherwise, there would exist a compatible

ordering where the elements of R1 that belong to C and those that belong to another

child may be separated by an element of R2 (regardless of the node type of C). Similar

reasoning implies that all elements in R2 must also belong to the same child C as all

of the elements in R1. Now, because r1 ∈ R1 and r2 ∈ R2, they must both belong to

the child C. However, by hypothesis, r1 ≺ r2 ≺ r3 in all orderings compatible with

the PQ tree, and by implication of Lemma 4.7, the lowest common ancestor of any

two of these three elements is also the lowest common ancestor of all three. Since r1

and r2 both belong to C, their lowest common ancestor must be C or a descendant

of C, which implies that r3 must also belong to C. Applying the same reasoning we

applied to elements in R1 and R2, if r3 belongs to the child C of L, then so must

all other elements of R3. However, this contradicts the definition of lowest common

ancestor. Therefore, each child C of L must contain elements from at most one of the

intervals R1, R2, and R3.

Now, L has at least three different children, and the elements r1, r2, and r3 each belong

to different children, so L is their lowest common ancestor too, and, by Lemma 4.7,

it is a Q node. Lastly, because the tree T was updated with the intervals R1, R2, and

R3, we know that the elements in each set are contiguous in all compatible orderings.

Therefore, the children of L having a non-empty intersection with R1 (or R2, or R3)

are contiguous in all compatible orderings, so an ordering on R1, R2, and R3 is well

defined. The last step is to prove that these three sets are ordered correctly. Since L

is a Q node, three relative orders (up to reflection) are possible: (i) R1 ≺ R2 ≺ R3,

(ii) R2 ≺ R1 ≺ R3, and (iii) R1 ≺ R3 ≺ R2. By hypothesis, r1 ≺ r2 ≺ r3 in all

compatible orderings, therefore (ii) and (iii) are eliminated, concluding the proof.

The proof of Lemma 4.11 does not assume that any of the intervals R1, R2, or

R3 contains more than one element. Note that running the Update procedure on a

singleton interval is a null operation, in the sense that it has no effect on the structure
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of the tree, so we may always assume that the Update procedure of a PQ tree was

called on any interval containing a single element of its base set. This implies the

following result:

Corollary 4.12. Let r1, r2, and r3 be three distinct elements in the base set, and let

T be a PQ tree built from this base set. Let R1, R2, and R3 be three disjoint subsets

of the base set whose intersections with the three elements {r1, r2, r3} are exactly r1,

r2, and r3 respectively. Suppose that for each set Ri, either Ri = {ri} or the tree

T was updated with the interval Ri. If for all orderings ≺ compatible with the tree

T, r1 ≺ r2 ≺ r3 (up to reflection), then for all orderings ≺ compatible with the tree,

R1 ≺ R2 ≺ R3 (up to reflection) as well.

4.3.2 Background on statistical learning theory

Ground sets and concepts. The terminology we use in this section is mainly from

Mitzenmacher and Upfal’s 2017 textbook [56]. Let X be a finite set of elements. In

our application, the particular ground set we use is Xranges := {[a, b] : 1 ≤ a ≤ b ≤ N},

the set of all possible range queries on values 1 to N . A concept C is a subset of X.

For example, we can define a concept for each value i from 1 to N as the set of ranges

matching i, or for each pair of values i < j as the set of ranges whose left endpoint

is in [i, j]. Any concept C can be viewed as a function X → {0, 1} (its characteristic

function): the function’s output on input x ∈ X is 1 if x ∈ C and 0 otherwise.

Given a probability distribution D on the set X, let fD represent the probability mass

function. The probability ProbD[C] of a concept C is equal to the probability that a

single element of X sampled according to D is in C, i.e., ProbD[C] :=
∑
c∈C fD(c).

Concept spaces. A concept space is a pair (X,C) where C is a set of concepts

(subsets) of X. Given a concept space (X,C) and a sample S of elements drawn from

X according to D, we may ask whether every concept in C with some not-too-small

probability occurs in the sample S. Answering this question involves analyzing an

object called an ε-net [34].

ε-Nets. A subset S ⊆ X is an ε-net for the concept space (X,C) with respect to

the distribution D if for every concept C ∈ C having ProbD[C] ≥ ε, the intersection

S∩C is non-empty. Informally, a sample S is an ε-net iff every concept of probability

at least ε occurs in the sample. One way to analyze when a subset S ⊆ X is an

ε-net is to characterize the complexity of the concept space. The critical measures in

determining the complexity of a concept space are the growth function mC(n) and the

Vapnik–Chervonenkis (VC) dimension d, which are related. Given a finite concept

space (X,C) and a sample S ⊆ X, an important object is the set of subsamples of S
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induced by C (also called the projection of C on S): CS := {C ∩ S}C∈C. The size of

this set is called the index of C with respect to S, ∆C(S):

∆C(S) := |CS | = |{C ∩ S : C ∈ C}| .

The index of a concept space relative to a set S is at most the number of possible

subsamples, 2|S|, and, when C is finite (which is always the case in this thesis), it is

at most |C|.

Shattering and VC dimension. The concept space (X,C) shatters the sample

S ⊆ X if C induces all possible subsamples of S, i.e., if ∆C(S) = 2|S|. The VC

dimension, denoted by d, of a concept space (X,C) is the largest size of a sample

S ⊆ X that can be shattered by C. It is sufficient for only one set of this size

to exist; not all sets of this size need to be shattered by C. Proving that the VC

dimension of a concept space is at least a given number is easy; it suffices to give an

example of a sample of that size that is shattered by the concept space. On the other

hand, proving that the VC dimension of a concept space is less than a given number is

harder; it requires proving that any sample of that size is not shattered by the concept

class. VC dimension is an indicator of the complexity of a concept space. Related to

VC dimension is the growth function mC(n) of a concept space (X,C), which is the

maximum index of C over all samples S ⊆ X of size n: mC(n) := maxS⊆X:|S|=n ∆C(S).

The VC dimension, then, is the largest value of n for which the growth function equals

2n. Knowing an upper bound on the growth function can also give an upper bound

on the VC dimension.

One of the fundamental results of VC theory is that knowing the VC dimension of

a concept space is sufficient to determine an upper bound on the growth function:

either the VC dimension d is infinite or the growth function is bounded by
∑d
i=0

(
n
i

)
.

Sauer’s Lemma [75]. Let (X,C) be a concept space having finite VC dimension d.

Then, the growth function satisfies mC(n) ≤
∑d
i=0

(
n
i

)
.

Consider the ground set Xranges of all N(N + 1)/2 ranges in [1, N ], and the concept

space Cpoint := {Ak : k ∈ [1, N ]} of N classes, where the concept Ak := {[a, b] : k ∈

[a, b]} is the set of ranges containing value k. Then, as the next lemma establishes,

the VC dimension of this concept space is 2.

Lemma 4.13. (Xranges,Cpoint) has growth function 2n and VC dimension 2.

Proof. Let S be any sample of n ranges, say S = {[a1, b1], . . . , [an, bn]}. Consider the

set of points Y comprising 1, N+1, all of the left endpoints of ranges in S, and 1 more
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than each right endpoint of ranges in S: Y := {1, N + 1}∪{ai}1≤i≤n∪{bi + 1}1≤i≤n.

It contains some ` ≤ 2n+2 elements, y1 < . . . < y`, where y1 = 1 and y` = N +1. By

adding bi+ 1 instead of bi, we obtain the property that any y ∈ Y matches a different

subset of ranges in S than y − 1. The point N + 1 is added to Y for convenience

only. Whenever two distinct integers k1 and k2 lie in the same interval [yi, yi+1), they

must match exactly the same subset of ranges in S, since all ranges match both or

neither of them. Formally, in terms of the concepts Ai, we have S ∩ Ak1 = S ∩ Ak2 .

Therefore, the concepts corresponding to values in an interval [yi, yi+1) contribute at

most 1 different induced subsample of S. Given that ` points create ` − 1 intervals,

the growth function is at most `− 1 ≤ 2n+ 1.

If ` ≤ 2n+ 1, then `− 1 ≤ 2n, so we are done. If ` = 2n+ 2, then, because |S| = n,

all left endpoints ai must be strictly greater than y1 = 1 and all right endpoints bi+1

must be strictly less than y` = N + 1. In this case, for any k1 ∈ [y1, y2) = [1, y2) and

k2 ∈ [y`−1, y`) = [y`−1, N + 1), S ∩ Ak1 = S ∩ Ak2 = ∅, so the growth function (i.e.,

the maximum index of Cpoint over a sample of size n) is again at most 2n.

We now show this bound is tight for N ≥ 2n by constructing a set S of n ranges

such that S ∩ Ak takes 2n distinct values as k spans [1, N ]. Consider the set of

ranges S := {[1, n], [2, n + 1], . . . , [n, 2n − 1]}. For N ≥ 2n, the resulting set Y is

{1, 2, . . . , 2n,N + 1}, with |Y | = ` = 2n + 1. Each of the sets Ak for k = 1, . . . , 2n

induces a distinct subsample of S: for k in {1, . . . , n}, the induced subsample S∩Ak is

{[1, n], . . . , [k, n+k−1]}, while for k ∈ {n+1, . . . , 2n−1}, it is {[k−n+1, k], . . . , [n, 2n−

1]}, and for k = 2n, it is the empty subsample ∅.

Hence, the growth function of (Xranges,Cpoint) is 2n for N ≥ 2n. Since Cpoint induces

at most 2n subsamples in a sample of size n, and shattering a sample requires 2n

subsamples (and 2n > 2n for n > 2), the size of the largest sample that can be

shattered, and thus the VC dimension of this concept space, is 2.

In the analysis of our ε-AOR attack in Section 4.3, we use a slightly more complex

concept space over the ground set of ranges Xranges, where the set of concepts is

defined as Cends := {As,t,u,v : 1 ≤ s < t ≤ u < v ≤ N}, where the concept As,t,u,v :=

{[a, b] : a ∈ [s, t] and b ∈ [u, v]}. Its concept classes include ranges whose left and

right endpoints fall in some particular intervals. To analyze its VC dimension, we use

the following result characterizing concept spaces built from other concept spaces.

Concept class construction lemma [45, Lemma 9.7]. Let (X,C) and (X,C′) be

two concept spaces over the same ground set with VC dimensions d and d′ respectively.
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Then, the concept space (X,C ∩ C′), where C ∩ C′ := {C ∩ C ′ : C ∈ C, C ′ ∈ C′}, has

VC dimension at most d+ d′ − 1.

The set of concepts of interest, Cends, can be written as the intersection of the following

two concept spaces:

CL := {As,t : 1 ≤ s < t ≤ N} where As,t := {[a, b] : a ∈ [s, t]}, and

CR := {Au,v : 1 ≤ u < v ≤ N} where Au,v := {[a, b] : b ∈ [u, v]}.

We use the Concept class construction lemma to determine an upper bound on the

VC dimension of (Xranges,Cends). Consider CL, the set of concepts corresponding to

ranges whose left endpoints fall in some given range. The following lemma proves

that its VC dimension is at most 2:

Lemma 4.14. The growth function of (Xranges,CL) is at most n2/2 + n/2 + 1 and

its VC dimension is at most 2.

Proof. Let S be any sample of n ranges, say S = {[a1, b1], . . . , [an, bn]}. Consider

the set of points Y := {1, N + 1} ∪ {ai}1≤i≤n. It contains some ` ≤ n + 2 elements,

y1 < . . . < y`, where y1 = 1 and y` = N + 1, and splits [1, N + 1] into `− 1 ≤ n + 1

intervals. Every non-empty intersection of S with the concepts As,t of CL can be

characterized by which intervals (yi, yi+1], [yj , yj+1), with i 6= j, the endpoints s

and t fall in. Indeed, where exactly the minimum left endpoint s falls in the range

(yi, yi+1] does not matter since, by definition, no query in S had a left endpoint in

(yi, yi+1). Similarly, where the maximum left endpoint t falls in the range (yj , yj+1)

does not matter since no query in S had a left endpoint in (yj , yj+1). When i = j,

the representative endpoints s and t must both be in (yi, yi+1), which results in an

empty intersection with S since no queries have left endpoints in this interval.

Since there are `−1 ≤ n+1 intervals in which we can pick representative values of s and

t, the number of different (empty or non-empty) intersections of S with the concepts

of CL—and therefore the growth function—is at most
(
`−1

2

)
+ 1 ≤ n(n + 1)/2 + 1.

Since 2n > n(n + 1)/2 + 1 for any integer n > 2, and they are equal for n = 2, we

may conclude that the VC dimension of (Xranges,CL) is at most 2.

Using a nearly identical proof, we conclude that the VC dimension of CR is also

at most 2. Thus, we are able to prove that the VC dimension of Cends is at most 3.

Since CL∩CR = Cends, the result follows directly from the Concept class construction

lemma.
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Corollary 4.15. The VC dimension of (Xranges,Cends) is at most 3.

Haussler and Welzl, who introduced ε-nets, derived an upper bound on the sample size

required to obtain an ε-net in the case where the distribution over X is uniform [34,

Thm. 3.7]. Later work extended this bound to arbitrary distributions D over X:

ε-Net Theorem [56]. Let (X,C) be a concept space with growth function mC(n) and

VC dimension d. Let D be a probability distribution on X and let S be a set of size n

drawn from X according to D. Then, for any ε > 0, the probability that S is an ε-net

is at least 1− 2 ·mC(2n) · e−εn/2. In particular, there is an n that is

O
(
d

ε
log

d

ε
+

1

ε
log

1

δ

)

such that a sample of at least this size drawn according to D is an ε-net with prob-

ability at least 1 − δ. Specifically, a sample drawn according to D of size at least

max{ 8d
ε log 16d

ε ,
4
ε log 2

δ } is an ε-net with probability at least 1− δ.

Ehrenfeucht et al. proved a lower bound [22, Cor. 5] on the number of samples needed

to obtain an ε-net with probability at least 1− δ.

Theorem [22, 56]. Let (X,C) be a concept space of VC dimension d. Let D be a

probability distribution on X and let S be a sample drawn from X according to D.

Let ε > 0 and δ > 0. Suppose S is an ε-net with probability at least 1 − δ. Then,

|S| = Ω
(
d
ε + 1

ε log 1
δ

)
.

We now have the necessary results to analyze our algorithm, presented in the next

section.

4.3.3 ε-Approximate ordered reconstruction algorithm

The ε-AOR algorithm targets ε-approximate ordered reconstruction: it groups records

with close values into sets and orders these sets, up to reflection. The idea behind

the algorithm is simple: build a PQ tree whose leaves are records and run the Update

procedure on the access pattern leakage from every query. In this way, the number of

possible orderings of the records is gradually restricted. Once all queries have been

processed, the algorithm looks for a Q node that has the majority of leaves (records)

below it. Since the possible orderings of a Q node’s children are fixed up to reflection,

the records can be grouped according to which children of the Q node they belong

to. The sets Ai output by the algorithm correspond to the leaves of the children of

this Q node.
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Algorithm 4.3 Approximate ordered reconstruction attack with access pattern leak-
age

Input: query leakage {(Ri)}
nq
i=1.

Output: ⊥ or non-overlapping sets of records A1, . . . , Ak.
1: T← Build(R)
2: for all i ∈ {1, . . . , nq} do
3: T.Update(Ri)

4: currNode← root(T)
5: while ∃C ∈ children(currNode) with |leaves(C)| > nr/2 do
6: currNode← C
7: if currNode is a P node and |children(currNode)| > 2 then
8: return ⊥
9: C1, . . . , Ck ← children(currNode)

10: for all i ∈ {1, . . . , k} do
11: Ai ← leaves(Ci)

12: return A1, . . . , Ak

Algorithm details. The algorithm begins by building a PQ tree that initially con-

sists of a single P node with as many children as there are records (line 1). It then

processes the access pattern leakage from each query using the PQ tree’s update pro-

cedure to restrict the set of orderings it encodes (lines 2–3). To find the Q node whose

children’s leaves will form the sets Ai output by the record, we first find the deepest

(i.e., closest to the root) node in the tree that is an ancestor of the majority of records

(lines 4–6). If this node is not a Q node (which is equivalent to a P node when it

has 2 children), then the algorithm fails and returns ⊥ (line 8). Otherwise, the leaves

of each of this node’s children (in order) form the sets A1, . . . , Ak returned by the

algorithm (lines 9–12).

While this algorithm itself is simple, its analysis is less so. The main idea is to observe

enough queries that all records having value further than εN from the endpoints are

partitioned into groups of small diameter (close to the target precision, εN), and that

the order of these groups is known.

Necessary properties. Our analysis requires the records in the database DB to

have three properties. First, we require that there are at least two records, ra and

rb, which we sometimes refer to as anchor records, whose values are in the range

(N/4, 3N/4) and are at least N/3 apart:

Property 1. There exist two records ra, rb ∈ DB such that val(ra) ∈ (N/4, 3N/4),

val(rb) ∈ (N/4, 3N/4), and |val(rb)− val(ra)| > N/3.

Second, we require that there are at least three records, rc, rd, and re (which could be

ra and/or rb), whose values are in the range (εN,N + 1− εN), and whose values are

at least εN apart from each other:
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Property 2. There exist three records rc, rd, re ∈ DB such that val(r) ∈ (εN,N + 1−

εN) for each r ∈ {rc, rd, re} and min(r,r′)⊂{rc,rd,re} |val(r)− val(r′)| > εN .

Properties 1 and 2 are used to guarantee the existence of a Q node whose children’s

leaves will be the sets of records output by the algorithm.

Third, we require that the values in the database are not concentrated at the endpoints

1 and N , or in a range of length εN :

Property 3. The number of records with values in the range (εN,N + 1 − εN), is

strictly greater than nr/2, and there is no i such that the number of records with

values in the range (i, i + εN) is strictly greater than nr/2. Property 3 is used to

ensure that the Q node is the deepest one in the PQ tree.

The “ε” in ε-net. Our proof uses the concept space (Xranges,Cends), introduced in

Section 4.3.2, whose VC dimension is at most 3 (q.v. Corollary 4.15). Recall that a

concept As,t,u,v ∈ Cends is the set of all ranges whose left endpoint is in [s, t] and whose

right endpoint is in [u, v]. Under the uniform distribution on Xranges, the probability

of concept As,t,u,v is

(t− s+ 1)(v − u+ 1)

N(N + 1)/2
.

In particular, if t − s + 1 ≥ bεN/2c and v − u + 1 ≥ N/4, then the probability of

concept As,t,u,v is at least

bεN/2c ·N/4
N(N + 1)/2

=
bεN/2c

2(N + 1)
≥ (εN − 1)/2

2(N + 1)
=
ε− 1/N

4 + 4/N

≥ ε− 1/4

5
(N ≥ 4)

= ε/5− 1/20.

Our analysis uses ε-nets with “ε” equal to ε/5− 1/20.

Theorem 4.16. Let N be the number of possible values a record can have, and let

DB be a set of records satisfying Properties 1, 2, and 3. Let ε ∈ (1/N, 1/4) be the

desired precision. Then, given the leakage from at least O
(

1
ε log 1

ε + 1
ε log 1

δ

)
range

queries drawn uniformly at random, the probability that the output of Algorithm 4.3

does not achieve ε-approximate ordered reconstruction is at most δ.

Proof. Suppose, for convenience and to avoid cluttered notation, that εN is an integer

(so εN ≥ 2). Our proof uses concepts from (Xranges,Cends) with probability at least

ε/5−1/20. All concepts As,t,u,v with t− s+ 1 ≥ bεN/2c and v−u+ 1 ≥ N/4 (or vice
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versa) have at least this probability. We proceed by showing how we can use such

concepts to guarantee success of the algorithm. By the ε-net theorem in Section 4.3.2,

a uniformly random sample of O
(

1
ε log 1

ε + 1
ε log 1

δ

)
queries is an (ε/5− 1/20)-net for

(Xranges,Cends) with probability at least 1− δ.

Let ra and rb be the two records referred to in the statement of Property 1. Recall that

their values are in the interval (N/4, 3N/4), and that their difference |val(rb)− val(ra)|

is greater than N/3. Without loss of generality, suppose that ra
val

< rb. We demonstrate

in a series of steps that if the set of queried ranges is an (ε/5 − 1/20)-net, then

Algorithm 4.3 succeeds except with probability δ.

Step 1. Let r be any record whose value is at least bεN/2c away from val(ra), val(rb),

and the endpoints 1 and N . (Such a record exists by Property 3.) We show that in

all orderings ≺ compatible with the PQ tree T built in Algorithm 4.3, the relative

order of ra, rb, and r is correct up to reflection. By Lemma 4.9, one way to show

that the three records are correctly ordered is to demonstrate that there have been

range queries matching two different subsets of size two of the set {r, ra, rb}. Crucially,

these will be queries that belong to concept classes whose probabilities are at least

ε/5− 1/20. We consider the following three cases, based on the value of r relative to

the values of ra and rb.

• Case 1: r
val

< ra
val

< rb. Consider the following queries:

i. left endpoint in [1, bεN/2c] (interval of length bεN/2c), and right endpoint

in [val(ra), val(rb)−1] (interval of length val(rb)−val(ra) ≥ N/3 by assump-

tion in Property 1). This query matches r and ra, but does not match

rb.

ii. left endpoint in [val(ra) − bεN/2c + 1, val(ra)] (interval of length bεN/2c),

and right endpoint in [val(rb), N ] (interval of length N − val(rb) + 1 ≥ N/4

by assumption in Property 1). This query does not match r, but matches

ra and rb.

By Lemma 4.9 on queries i and ii, r ≺ ra ≺ rb for all compatible orderings ≺.

• Case 2: ra
val

< r
val

< rb. Consider the following queries:

iii. left endpoint in [1, val(ra)] (interval of length val(ra) ≥ N/4 by assump-

tion), and right endpoint in [val(rb)−bεN/2c , val(rb)−1] (interval of length

bεN/2c). This query matches ra and r, but does not match rb.

iv. left endpoint in [val(ra) + 1, val(ra) + bεN/2c] (interval of length bεN/2c),

and right endpoint in [val(rb), N ] (interval of length N − val(rb) + 1 ≥ N/4

by assumption). This query does not match ra, but matches r and rb.
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By Lemma 4.9 on queries iii and iv, ra ≺ r ≺ rb for all compatible orderings ≺.

• Case 3: ra
val

< rb
val

< r. By reflection symmetry of ra and rb, this case is very similar

to Case 1.

This concludes Step 1: each record sufficiently far in value from the endpoints and

the anchor elements ra and rb is in the correct region relative to these anchor records.

The three possible regions are (i) less than both ra and rb, (ii) between ra and rb, and

(iii) greater than both ra and rb. Next, we show that any two records sufficiently far

from the endpoints, anchor elements, and each other are ordered relatively correctly.

Step 2. Let r and r′ be any two records whose values are at least bεN/2c away from

val(ra), val(rb), 1, N , and each other. We show that in all orderings ≺ compatible

with the PQ tree, the relative order of ra, rb, r, and r′ is correct up to reflection.

First, if r and r′ are not in the same region relative to ra and rb, then the result from

the previous step is sufficient to guarantee that all four records are ordered correctly.

Therefore, we can assume that both r and r′ are
val

< ra, both are between ra and rb, or

both are
val

> rb (for ra
val

< rb). Since records r and r′ are interchangeable, we consider only

the three cases with r
val

< r′ (again, for ra
val

< rb). In this step, we use both Lemma 4.9

and Corollary 4.10. We consider the following three cases, based on which region

relative to ra and rb the two records r and r′ are in.

• Case 1: r
val

< r′
val

< ra
val

< rb. Consider the following queries:

i. left endpoint in [1, bεN/2c] (interval of length bεN/2c), and right endpoint

in [val(ra), val(rb) − 1] (interval of length val(rb) − val(ra) ≥ N/3). This

query matches {r, r′, ra}, but does not match rb.

ii. left endpoint in [val(r′) − bεN/2c + 1, val(r′)] (interval of length bεN/2c),

and right endpoint in [val(rb), N ] (interval of length N−val(rb)+1 ≥ N/4).

This query does not match r, but matches {r′, ra, rb}.

By Corollary 4.10 on queries i and ii, r ≺ {r′, ra} ≺ rb for all compatible orderings

≺. By Step 1, r′ ≺ ra ≺ rb for all compatible orderings, so the four records are

correctly ordered.

• Case 2: ra
val

< r
val

< r′
val

< rb. Consider the following queries:

iii. left endpoint in [1, val(ra)] (interval of length val(ra) ≥ N/4), and right

endpoint in [val(r), val(r) + bεN/2c − 1] (interval of length bεN/2c). This

query matches {ra, r}, but does not match {r′, rb}.
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iv. left endpoint in [val(ra) + 1, val(ra) + bεN/2c] (interval of length bεN/2c),

and right endpoint in [val(rb), N ] (interval of length N−val(rb)+1 ≥ N/4).

This query does not match ra, matches {r, r′}, and does not match rb.

By Lemma 4.9 on queries iii and iv, ra ≺ r ≺ r′ for all compatible orderings ≺.

By Step 1, ra ≺ {r, r′} ≺ rb for all compatible orderings, so the four records are

correctly ordered.

• Case 3: ra
val

< rb
val

< r
val

< r′. By reflection symmetry of ra and rb, this case is very

similar to Case 1.

In all cases, the four records are correctly ordered relative for all compatible orderings.

Step 3. Let r, r′, and r′′ be any three records whose values are at least εN away

from each other, 1, and N . In this step, we show that in all orderings ≺ compatible

with the PQ tree, the relative order of r, r′, and r′′ is correct up to reflection. Suppose,

without loss of generality, that their true order is r
val

< r′
val

< r′′ (for ra
val

< rb). We consider

3 different cases, based on how the records’ values relate to the anchor records’ values

val(ra) and val(rb): they contain both anchor records’ values, they are all far from the

anchor records’ values, or at least one of the three records is close to at least one of

the anchor records’ values.

• Case 1: two of the records’ values are equal to val(ra) and val(rb). Since records

with the same value are indistinguishable, by Step 1, the three records are

correctly ordered.

• Case 2: all three of the records’ values are at least bεN/2c away from val(ra)

and val(rb). Consider applying Step 2 three times, with {r, r′}, with {r, r′′}, and

with {r′, r′′}. The ordering of r, r′, and r′′ relative to each other and ra and rb is

completely (and correctly) determined up to reflection.

• Case 3: at least one of the records’ values is within bεN/2c of an anchor record’s

value: let ri∗ be this record and let rj and rk be the other two records. (One of

them may also be close to the other anchor record.) Without loss of generality,

we may consider only the case where ri∗ is close to the anchor record ra. (By

reflection symmetry, the same arguments can be used to show the records are

correctly ordered when ri∗ is close to rb.)

We subdivide this case into
(

3
2

)
= 6 subcases, depending on which regions

(relative to ra and rb) rj and rk are in, e.g., both less than ra, or one less

than ra and the other between ra and rb. For each subcase, we prove that

{ri∗ , rj , rk, } = {r, r′, r′′} are always correctly ordered if the set of queries is an

(ε/5− 1/20)-net.
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Subcase 1. both rj and rk are less than ra. Without loss of generality, suppose

rj
val

< rk, so the correct order of the records is rj
val

< rk
val

< ri∗ (assuming ra
val

< rb).

Since rj and rk are at least εN apart from each other and ri∗ , which is close to

ra, both rj and rk are far enough from ra for the result from Step 2 to apply:

for all orderings compatible with the PQ tree, rj ≺ rk ≺ ra ≺ rb. It therefore

remains to prove that ri∗ is ordered correctly relative to {rj , rk}.

Consider the following queries:

i. left endpoint in [val(rk) + 1, val(rk) + bεN/2c] (interval of length bεN/2c),

and right endpoint in [val(rb), N ] (interval of length at least N/4). It does

not match {rj , rk}, but does match {ri∗ , ra, rb}.

ii. left endpoint in [val(rj) + 1, val(rj) + bεN/2c] (interval of length bεN/2c),

and right endpoint in [val(ra), val(rb)− 1] (interval of length at least N/3).

It does not match rj , does match {rk, ra}, maybe matches ri∗ , and does not

match rb. (Since we know only that ri∗ and ra are close, it is possible that

ra
val

< ri∗ and hence possible that the right endpoint of this query is between

val(ra) and val(ri∗), in which case it does not match ri∗ .)

We consider two cases based on whether query ii matched ri∗ or not:

– If query ii matches ri∗ , so matches {rk, ra, ri∗}, then by Corollary 4.10 on

queries ii and i, rk ≺ {ra, ri∗} ≺ rb for all compatible orderings ≺. Since

rj ≺ rk ≺ ra by Step 2, the three records are correctly ordered.

– If query ii does not match ri∗ , so matches {rk, ra}, then again by Corol-

lary 4.10 on queries ii and i, rk ≺ ra ≺ {ri∗ , rb} for all compatible orderings

≺. Since rj ≺ rk ≺ ra by Step 2, the three records are again correctly

ordered.

This concludes the first of six subcases.

Subcase 2. One of {rj , rk} is less than ra, and the other is between ra and rb in

value. Without loss of generality, suppose rj
val

< rk, so the correct order of the

records up to reflection is rj
val

< ri∗
val

< rk (assuming ra
val

< rb). In this case, neither

rj nor rk can be close to ra (since ri∗ is), but rk may be close to rb. By Step 1,

rj ≺ ra ≺ rb for all compatible orderings ≺.

Consider the following queries:

i. left endpoint in [val(rj) + 1, val(rj) + bεN/2c] (interval of length bεN/2c),

and right endpoint in [val(rb), N ] (interval of length at least N/4). It does

not match rj , but does match {ra, ri∗ , rk, rb}.
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ii. left endpoint in [1, val(ra)] (interval of length at least N/4), and right end-

point in [val(rk)−bεN/2c , val(rk)−1] (interval of length bεN/2c). It maybe

matches rj , matches {ra, ri∗}, and does not match rk or rb.

iii. left endpoint in [val(rk) − bεN/2c + 1, val(rk)] (interval of length bεN/2c),

and right endpoint in [val(rb), N ] (interval of length at least N/4). It does

not match {rj , ra, ri∗}, and does match {rk, rb}.

Query ii may or may not match rj . We consider these two cases:

– If query ii matches rj , so matches {rj , ra, ri∗}, then by Corollary 4.10 on

queries ii and i, rj ≺ {ra, ri∗} ≺ {rk, rb} for all compatible orderings ≺, so

the records are correctly ordered.

– If query ii does not match rj , so matches {ra, ri∗}, by Corollary 4.12 on

queries ii and iii, we can “lift” rj ≺ ra ≺ rb to rj ≺ {ra, ri∗} ≺ {rk, rb} for

all compatible orderings ≺, so the three records are correctly ordered.

This concludes the second of six subcases.

Subcase 3. One of {rj , rk} is less than ra, and the other is greater than rb.

Without loss of generality, suppose rj
val

< rk (for ra
val

< rb), so the correct order of

the records up to reflection is rj
val

< ri∗
val

< rk (again, assuming ra
val

< rb). Then,

rj cannot be close to ra (since ri∗ is), but rk may be close to rb. By Step 1,

rj ≺ ra ≺ rb for all compatible orderings ≺. In this subcase, we divide the

analysis by which side of the anchor record ra the record ri∗ is on.

First, suppose ri∗
val

< ra. Consider the following two queries:

i. left endpoint in [val(ri∗)− bεN/2c , val(ri∗ − 1] (interval of length bεN/2c),

and right endpoint in [val(ra), val(rb)− 1] (interval of length at least N/3).

It matches only {ri∗ , ra}, and none of the other records.

ii. left endpoint in [val(ra) + 1, val(rb)] (interval of length at least N/3), and

right endpoint in [val(rk), val(rk) + bεN/2c− 1] (interval of length bεN/2c).

It matches only {rb, rk}, and none of the other records.

By Corollary 4.12 on these two queries, we may then “lift” rj ≺ ra ≺ rb to

rj ≺ {ri∗ , ra} ≺ {rb, rk}, thus the three records are ordered correctly by all

compatible orderings.

Otherwise, ra
val

< ri∗ . In this case, the true ordering is rj
val

< ra
val

< ri∗
val

< rb
val

< rk. No

query with one endpoint in an interval of length bεN/2c and the other endpoint

in an interval of length at least N/4 is guaranteed to always contain a particular
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subset of the five records, so we consider more complex cases. Our case-by-case

analysis involves the following three queries:

iii. left endpoint in [1, val(ra)] (interval of length at least N/4), and right end-

point in [val(rb)− bεN/2c , val(rb)− 1]. It may match rj , matches {ra, ri∗},

and does not match {rb, rk}.

iv. left endpoint in [val(ra) − bεN/2c + 1, val(ra)] (interval of length bεN/2c),

and right endpoint in [val(rb), N ] (interval of length at least N/4). It does

not match rj , matches {ra, ri∗ , rb}, and may match rk.

v. left endpoint in [val(ra) + 1, val(rb)] (interval of length at least N/3), and

right endpoint in [val(rk), val(rk) + bεN/2c− 1] (interval of length bεN/2c).

It does not match {rj , ra}, may match ri∗ , and matches {rb, rk}.

We divide the analysis for part two (ra
val

< ri∗) into four cases based on whether

query iii matches rj , and query iv matches rk or query v matches ri∗ :

– If query iii matches rj , so matches {rj , ra, ri∗}, and query iv matches rk,

so matches {ra, ri∗ , rb, rk}, then by Corollary 4.10 on queries iii and iv,

rj ≺ {ra, ri∗} ≺ {rb, rk} for all compatible orderings, as required.

– If query iii matches rj , so matches {rj , ra, ri∗}, and query iv does not match

rk, so matches {ra, ri∗ , rb}, then by Corollary 4.10 on queries iii and iv,

rj ≺ {ra, ri∗} ≺ rb. It therefore remains to show that rk is correctly ordered

relative to the other two records.

If query v matches ri∗ , so matches {ri∗ , rb, rk}, then by Corollary 4.10 on

queries iii and v, {rj , ra} ≺ ri∗ ≺ {rb, rk} for all compatible orderings.

If query v does not match ri∗ , so matches {rb, rk}, then by Corollary 4.10

on queries iv and v, {ra, ri∗} ≺ rb ≺ rk, as required to show that rk is

correctly ordered relative to the other two records. Thus the three records

are correctly ordered in all compatible orderings.

– If query iii does not match rj , so matches {ra, ri∗}, and query v matches

ri∗ , so matches {ri∗ , rb, rk}, then by Corollary 4.10 on queries iii and v,

ra ≺ ri∗ ≺ {rb, rk} for all compatible orderings. Recalling that by Step 1,

rj ≺ ra ≺ rb, we conclude that the three records are correctly ordered.

– If query iii does not match rj , so matches {ra, ri∗}, and query v does

not match ri∗ , so matches {rb, rk}, then we may apply Corollary 4.12 to

queries iii and v to “lift” rj ≺ ra ≺ rb to rj ≺ {ra, ri∗} ≺ {rb, rk}, thus the

three records are correctly ordered.

This concludes the third of six subcases.
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Subcase 4. Both rj and rk are between the anchor records ra and rb. Without

loss of generality, suppose rj
val

< rk (for ra
val

< rb), so the correct order of the records

up to reflection is ri∗
val

< rj
val

< rk (again, for ra
val

< rb). By Step 1, ra ≺ rj ≺ rb for

all compatible orderings ≺, since rj cannot be close to ra.

Consider the following three queries:

i. left endpoint in [val(rj) − bεN/2c + 1, val(rj)] (interval of length bεN/2c)

and right endpoint in [val(rb), N ] (interval of length at least N/4). It does

not match ra or ri∗ , and does match {rj , rk, rb}.

ii. left endpoint in [1, val(ra)] (interval of length at least N/4), and right end-

point in [val(rj), val(rj)+bεN/2c−1] (interval of length bεN/2c). It maybe

matches ri∗ , matches {ra, rj}, and does not match rb.

iii. left endpoint in [1, bεN/2c] (interval of length bεN/2c), and right endpoint

in [val(ra), val(rb)−1] (interval of length at least N/3). It matches {ra, ri∗},

maybe matches rj or rk, and does not match rb.

If query ii does match ri∗ , so matches {ri∗ , ra, rj}, then by Corollary 4.10 on

queries ii and i, {ri∗ , ra} ≺ rj ≺ {rk, rb} for all compatible orderings ≺, so the

records are correctly ordered.

If query ii does not match ri∗ , so matches just {ra, rj}, then it must be the case

that ri∗ is less than ra (assuming ra
val

< rb). By Corollary 4.10 on queries ii and i,

ra ≺ rj ≺ {rk, rb} for all compatible orderings ≺, so it remains to prove that ri∗

is correctly ordered relative to rj and rk. We now consider the three possibilities

for query iii, based on which of the “maybe” elements it matched.

– If query iii matches neither rj nor rk, only {ri∗ , ra}, then by Lemma 4.9

on queries iii and ii, ri∗ ≺ ra ≺ rj for all compatible orderings ≺, so ri∗ ’s

relative order is correct, as required to prove that the records are correctly

ordered.

– If query iii matches rj but not rk, so matches {ri∗ , ra, rj}, then by Corol-

lary 4.10 on queries iii and i, {ri∗ , ra} ≺ rj ≺ {rk, rb} for all compatible

orderings ≺, so the records are correctly ordered.

– Lastly, if query iii matches both rj and rk, so {ri∗ , ra, rj , rk}, then by Corol-

lary 4.10 on queries iii and i, {ri∗ , ra} ≺ {rj , rk} ≺ rb for all compatible

orderings. Thus, ri∗ is correctly ordered with respect to rj and rk, as re-

quired, so the three records are correctly ordered.

This concludes the fourth of six subcases.
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Subcase 5. One of {rj , rk} is between the anchor records ra and rb, and the other

is greater than rb. Without loss of generality, suppose rj is the record between

ra and rb, so the correct order of the records up to reflection is ri∗
val

< rj
val

< rk

(for ra
val

< rb). It is possible that one of {rj , rk} is close to rb, but not both, since

they are at least εN apart. We therefore separate further into the following four

cases based on which side of the anchor record ra the record ri∗ is on, and which

one of {rj , rk} is not close to rb.

– ra
val

≤ ri∗
val

< rb, and rj is not close to rb. In this case, by Step 1, we have that

ra ≺ rj ≺ rb for all compatible orderings. Consider the following queries:

i. left endpoint in [1, val(ra)] (interval of length at least N/4), and right

endpoint in [val(rj), val(rj) + bεN/2c − 1] (interval of length bεN/2c).

It matches {ra, ri∗ , rj}, and does not match rb or rk.

ii. left endpoint in [val(rj)−bεN/2c+1, val(rj)] (interval of length bεN/2c),

and right endpoint in [val(rb), N ] (interval of length at least N/4). It

does not match either ra or ri∗ , matches {rj , rb}, and maybe matches

rk.

iii. left endpoint in [val(ra) + 1, val(rb)] (interval of length at least N/3),

and right endpoint in [val(rk), val(rk) + bεN/2c − 1] (interval of length

bεN/2c). It does not match ra, maybe matches ri∗ or rj , and matches

{rb, rk}.

iv. left endpoint in [1, val(ra)] (interval of length at least N/4), and right

endpoint in [val(ri∗ , val(ri∗) + bεN/2c − 1] (interval of length bεN/2c).

It matches {ra, ri∗}, and none of {rj , rb, rk}.

If query ii does match rk, so matches {rj , rb, rk}, then by Corollary 4.10 on

queries i and ii, {ra, ri∗} ≺ rj ≺ {rb, rk} for all compatible orderings ≺, so

the records are correctly ordered.

If query ii does not match rk, so matches only {rj , rb}, then by Corol-

lary 4.10 on queries i and ii, {ra, ri∗} ≺ rj ≺ rb for all compatible orderings

≺. It therefore remains to prove that rk is correctly ordered with respect

to ri∗ and rj . Consider now the three possibilities for query iii, based on

which of the “maybe” elements it matched.

∗ If query iii matches both ri∗ and rj , so matches {ri∗ , rj , rb, rk}, then

by Corollary 4.10 on queries i and iii, ra ≺ {ri∗ , rj} ≺ {rb, rk} for all

compatible orderings ≺. Thus, rk is correctly ordered with respect to

ri∗ and rj , and the three records are correctly ordered.
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∗ If query iii matches just rj , so matches {rj , rb, rk}, then by Corol-

lary 4.10 on queries i and iii, {ra, ri∗} ≺ rj ≺ {rb, rk} for all compatible

orderings ≺, so the records are correctly ordered.

∗ If query iii matches neither ri∗ nor rj , so matches {rb, rk}, then we

may apply Corollary 4.12 on queries iii and iv to “lift” ra ≺ rj ≺ rb

to {ra, ri∗} ≺ rj ≺ {rb, rk} for all compatible orderings ≺. Thus, the

three records are ordered correctly.

– ra
val

≤ ri∗
val

< rb, and rk is not close to rb. In this case, by Step 1, we have that

ra ≺ rb ≺ rk for all compatible orderings. Consider the following queries:

v. left endpoint in [1, val(ra)] (interval of length at least N/4), and right

endpoint in [val(rb), val(rb) + bεN/2c − 1] (interval of length bεN/2c).

It matches {ra, ri∗ , rj , rb} and does not match rk.

vi. left endpoint in [val(ri∗)−bεN/2c+1, val(ri∗)] (interval of length bεN/2c),

and right endpoint in [val(rb), N ] (interval of length at least N/4). It

does not match ra nor ri∗ , does match {rj , rb}, and maybe matches rk.

vii. left endpoint in [1, val(ra)] (interval of length at least N/4), and right

endpoint in [val(ri∗ , val(ri∗) + bεN/2c − 1] (interval of length bεN/2c).

It matches {ra, ri∗}, and none of {rj , rb, rk}.

If query vi matches rk, so matches {rj , rb, rk}, then by Corollary 4.10 on

queries v and vi, {ra, ri∗} ≺ {rj , rb} ≺ rk for all compatible orderings, so

the records are correctly ordered.

If query vi does not match rk, so matches {rj , rb}, then by Corollary 4.12

on queries vi and vii, we may “lift” ra ≺ rb ≺ rk to {ra, ri∗} ≺ {rj , rb} ≺ rk

for all compatible orderings, so the records are correctly ordered.

– ri∗
val

< ra
val

< rb, and rj is not close to rb. In this case, by Step 1, we have that

ra ≺ rj ≺ rb for all compatible orderings. Consider the following queries:

viii. left endpoint in [val(ra) + 1, val(rb)] (interval of length at least N/3),

and right endpoint in [val(rj), val(rj) + bεN/2c − 1] (interval of length

bεN/2c). It does not match ri∗ nor ra, maybe matches rj , and matches

{rb, rk}.

ix. left endpoint in [val(ri∗)−bεN/2c+1, val(ri∗)] (interval of length bεN/2c),

and right endpoint in [val(ra), val(rb) − 1] (interval of length at least

N/3). It matches {ri∗ , ra}, maybe matches rj , and does not match rb

nor rk.

x. left endpoint in [val(rj)−bεN/2c+1, val(rj)] (interval of length bεN/2c),

and right endpoint in [val(rb), N ] (interval of length at least N/4). It

does not match {ri∗ , ra}, matches {rj , rb}, and maybe matches rk.
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xi. left endpoint in [1, val(ra)] (interval of length at least N/4), and right

endpoint in [val(rj), val(rj) + bεN/2c − 1] (interval of length bεN/2c).

It maybe matches ri∗ , matches {ra, rj}, and does not match {rb, rk}.

We again consider different cases based on which “maybe” elements the

queries match.

∗ If query viii matches rj , so matches {rj , rb, rk}, and query ix matches rj ,

so matches {ri∗ , ra, rj}, then by Corollary 4.10, {ri∗ , ra} ≺ rj ≺ {rb, rk}

for all compatible orderings.

∗ If query viii does not match rj , so matches {rb, rk}, and query ix does

not match rj , so matches {ri∗ , ra}, then by Corollary 4.12, we may “lift”

ra ≺ rj ≺ rb to {ri∗ , ra} ≺ rj ≺ {rb, rk} for all compatible orderings.

∗ Suppose query viii does not match rj , so matches {rb, rk}, and query ix

matches rj , so matches {ri∗ , ra, rj}.

If query x matches rk, so matches {rj , rb, rk}, then by Corollary 4.10 on

queries ix and x, {ri∗ , ra} ≺ rj ≺ {rb, rk} for all compatible orderings.

If query x does not match rk, so matches {rj , rb}, then by Corollary 4.10

on queries ix and x, {ri∗ , ra} ≺ rj ≺ rb, so ri∗ and rj are correctly

ordered relative to rb. By Lemma 4.9 on queries xiii and x, rj ≺ rb ≺ rk,

so we conclude that the three records are correctly ordered for all

compatible orderings.

∗ Suppose query xiii matches rj , so matches {rj , rb, rk}, and query ix

does not match rj , so matches {ri∗ , ra}.

If query xi matches ri∗ , so matches {ri∗ , ra, rj}, then by Corollary 4.10

on queries xi and xiii, {ri∗ , ra} ≺ rj ≺ {rb, rk} for all compatible order-

ings.

If query xi does not match ri∗ , so matches {ra, rj}, then by Lemma 4.9

on queries ix and xi, ri∗ ≺ ra ≺ rj , so ri∗ and rj are correctly ordered

relative to ra. By Corollary 4.10 on queries xi and xiii, ra ≺ rj ≺

{rb, rk}, so we conclude that the three records are correctly ordered for

all compatible orderings.

– ri∗
val

< ra
val

< rb, and rk is not close to rb. In this case, by Step 1, we have that

ra ≺ rb ≺ rk for all compatible orderings. Consider the following queries:

xii. left endpoint in [val(rj)−bεN/2c+1, val(rj)] (interval of length bεN/2c),

and right endpoint in [val(rb), N ] (interval of length at least N/4). It

does not match ri∗ nor ra, matches {rj , rb}, and maybe matches rk.

xiii. left endpoint in [val(ri∗)−bεN/2c+1, val(ri∗ ] (interval of length bεN/2c),

and right endpoint in [val(ra), val(rb) − 1] (interval of length at least
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N/3). It matches {ri∗ , ra}, maybe matches rj , and does not match

{rb, rk}.

xiv. left endpoint in [1, val(ra)] (interval of length at least N/4), and right

endpoint in [val(rb), val(rb) + bεN/2c − 1] (interval of length bεN/2c).

It maybe matches ri∗ , matches {ra, rj , rb}, and does not match rk.

We consider four different cases based on which “maybe” elements queries xii

and xiii match.

∗ If query xii matches rk, so matches {rj , rb, rk}, and query xiii matches

rj , so matches {ri∗ , ra, rj}, then by Corollary 4.10, {ri∗ , ra} ≺ rj ≺

{rb, rk} for all compatible orderings.

∗ If query xii does not match rk, so matches {rj , rb}, and query xiii does

not match rj , so matches {ri∗ , ra}, then by Corollary 4.12, we may “lift”

ra ≺ rb ≺ rk to {ri∗ , ra} ≺ {rj , rb} ≺ rk for all compatible orderings.

∗ If query xii does not match rk, so matches {rj , rb}, and query xiii

matches rj , so matches {ri∗ , ra, rj}, then by Corollary 4.10, {ri∗ , ra} ≺

rj ≺ rb for all compatible orderings. Since ra ≺ rb ≺ rk for all compat-

ible orderings from Step 1, the records are correctly ordered.

∗ Suppose query xii matches rk, so matches {rj , rb, rk}, and query xiii

does not match rj , so matches {ri∗ , ra}. If query xiv matches ri∗ , so

matches {ri∗ , ra, rj , rb}, then by Corollary 4.10 on queries xii and xiv,

{ri∗ , ra} ≺ {rj , rb} ≺ rk for all compatible orderings. If query xiv

does not match ri∗ , so matches {ra, rj , rb}, then by Corollary 4.10 on

queries xiii and xiv, ri∗ ≺ ra ≺ {rj , rb} for all compatible orderings.

Since ra ≺ rb ≺ rk for all compatible orderings from Step 1, the records

are correctly ordered.

This concludes the fifth of six subcases.

Subcase 6. Both rj and rk are greater than rb. Without loss of generality,

suppose rj
val

< rk, so the correct order of the records up to reflection is ri∗
val

< rj
val

< rk

(for ra
val

< rb). In this case, rj may be close to rb, but rk cannot. From Step 1,

ra ≺ rb ≺ rk for all compatible orderings ≺. We consider two cases based on

which side of the anchor record ra the record ri∗ is on.

First, suppose ri∗
val

< ra. Consider the following two queries:

i. left endpoint in [val(ri∗)− bεN/2c+ 1, val(ri∗)] (interval of length bεN/2c),

and right endpoint in [val(ra), val(rb)− 1] (interval of length at least N/3).

It matches {ri∗ , ra}, and none of {rb, rj , rk}.
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ii. left endpoint in [val(ra) + 1, val(rb)] (interval of length at least N/3), and

right endpoint in [val(rj), val(rj) + bεN/2c] (interval of length bεN/2c). It

does not match {ri∗ , ra}, matches {rb, rj}, and does not match rk.

Using Corollary 4.12 with queries i and ii, we may then “lift” ra ≺ rb ≺ rk

to {ri∗ , ra} ≺ {rb, rj} ≺ rk, thus the three records are ordered correctly by all

compatible orderings.

Otherwise, ra
val

< ri∗ . Consider the following three queries:

iii. left endpoint in [1, val(ra)] (interval of length at least N/4), and right end-

point in [val(rj), val(rj)+bεN/2c−1] (interval of length bεN/2c). It matches

{ra, ri∗ , rb, rj} and does not match rk.

iv. left endpoint in [val(ra) + 1, val(rb)] (interval of length at least N/3), and

right endpoint in [val(rk), val(rk) + bεN/2c− 1] (interval of length bεN/2c).

It does not match ra, maybe matches ri∗ , and matches {rb, rj , rk}.

v. left endpoint in [1, val(ra)] (interval of length at least N/4), and right end-

point in [val(ri∗), val(ri∗) + bεN/2c − 1] (interval of length bεN/2c). It

matches {ra, ri∗} and does not match {rb, rj , rk}.

If query iv matches ri∗ , so matches {ri∗ , rb, rj , rk}, then by Corollary 4.10 on

queries iii and iv, ra ≺ {ri∗ , rb, rj} ≺ rk for all compatible orderings. It therefore

remains to prove that ri∗ and rj are ordered correctly with respect to rk. By

Corollary 4.10 on queries v and iv, ra ≺ ri∗ ≺ {rb, rj , rk}, as required, so the

three records are ordered correctly.

If query iv does not match ri∗ , so matches {rb, rj , rk}, then by Corollary 4.10 on

queries iii and iv, {ra, ri∗} ≺ {rb, rj} ≺ rk for all compatible orderings, so the

records are correctly ordered. This concludes the last of six subcases.

These six subcases assumed that ra and ri∗ were close (i.e., their values were within

bεN/2c), and considered all possibilities for the positions of the other two records of

interest, rj and rk. Due to the reflection symmetry that allows swapping ra and rb,

these six subcases are sufficient to prove that the three records are ordered correctly

whenever one of them is within bεN/2c of rb. This concludes case 3 of Step 3: any

three records at least εN away from each other, 1, and N are correctly ordered.

Step 4. At this point, we have proven that all records in (εN,N + 1− εN) that are

at least εN away from each other are ordered correctly in all orderings ≺ compatible

with the PQ tree, except with probability δ. Since, by Property 3, there are at least

3 such records, we may apply Lemma 4.7: the lowest common ancestor of any set

of such records is a Q node, and it is also the lowest common ancestor of ra and
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rb. Lemma 4.8 allows us to conclude that all of the ordered sets belong to different

children of the lowest common ancestor. Property 3, which said that no majority of

records is at the endpoints 1 or N , or in one range of length less than εN , ensures that

Algorithm 4.3 will find this Q node, thus concluding the proof of the theorem.

4.3.4 Experimental results for dense and sparse data

Assuming uniform queries, the ε-approximate ordered reconstruction attack succeeds

within O
(
ε−1 log ε−1

)
queries for any given constant probability of success η < 1. We

experimentally evaluate the tightness of this bound for a fixed number of records nr,

and various numbers of possible values, N , so that we generate both dense and sparse

databases. In our experiments, we used a C++ implementation [25] of the PQ tree

data structure and used the interface generator SWIG [77] to call it from Python.

Record values are sampled uniformly at random, so Properties 1, 2, and 3 were

satisfied with high probability. Our results are averaged over 500 databases, each

with 500 randomly sampled queries. We measured the results after every 10 queries,

and therefore sometimes needed a heuristic to identify a likely candidate for the Q

node when the number of queries is very small. When the root node was not a Q

node, our experiments chose the first child Q node that contained at least a third

of the records. As our results indicate, this node usually contained an overwhelming

majority of the records. We refer to the chosen Q node’s children as buckets; these

are the sets Ai output by the algorithm.

Figure 4.1 shows two properties of the resulting PQ tree (on the y-axis) for different

numbers of queries (on the x-axis) and different values of N (corresponding to different

lines). The first property, depicted in the bottom group of lines, is the maximum

symmetric value, as a fraction of N , of any “sacrificed” record that was not in one of

the Q node’s children. The symmetric value of a record r is min{val(r), N+1−val(r)}.

When Algorithm 4.3 succeeds, the only records that are not necessarily in buckets are

those with values in [1, εN) or (N + 1− εN,N ], i.e., those with symmetric value less

than εN . If all records have been placed into buckets below the Q node, the maximum

excluded symmetric value is set to 0. These results show that the theoretical upper

bound holds, even when taking it with all constants set to 1. The attack also behaves

in the predicted scale-free way: changing N has little effect on empirical results.

The upper group of lines in Figure 4.1 shows the second property: the maximum di-

ameter, as a fraction of N , of the Q node’s children (buckets). We compare this to the
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Figure 4.1: Maximum symmetric values of records not in buckets and maximum
bucket diameters. Results averaged over 500 databases for each value of N , with
nr = 1000 records.

expected maximum diameter dictated by the ε-net bound, and see that convergence

happens as quickly as predicted by the bound taken with all constants set to 1.

Another way of interpreting these results is to ask, after a certain number of queries,

for what ε have we achieved sacrificial ε-approximate order reconstruction? Our

results indicate that the bottleneck is the maximum bucket diameter, not the sacrificed

values, so the upper group of lines in Figure 4.1 could be interpreted in this way.

Although our theoretical analysis for Algorithm 4.3 assumes a uniform query distri-

bution, this assumption was only for the analysis and the attacker does not need to

know the query distribution to carry out the attack. We consider now another more

realistic distribution on queries, namely fixed-width range queries. Such queries are

widespread in practice: for example, the industry-standard TPC-H contains six ex-

plicit fixed-width range queries. For a given number of possible values N and width

W ≤ N , there are N + 1−W such ranges: [1,W ], [2,W + 1], . . . , [N + 1−W,N ]. We

experimentally evaluate how well Algorithm 4.3 performs for a dataset of nr = 1000

records, N = 10000 possible values, and range queries of different widths. The re-

sults are in Figure 4.2. Unlike the case of uniform range queries, the limiting factor

here in attaining ε-AOR is initially the too-high symmetric values of the sacrificed

records. For small range widths (relative to the domain size, N), these results are

to be expected: when only a few queries have been observed, the total number of
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Figure 4.2: (Top) Maximum symmetric values of records not in buckets. (Bot-
tom) Maximum bucket diameters. Results for fixed-width queries averaged over 500
databases for each value of range query width, with nr = 1000 records.

possible values that have matched any query so far is limited, and thus the maximum

symmetric value of a record that is not in a bucket may be high. After this initial

period, the attack’s performance follows the results of the uniform range query case

and reflects the behavior of ε−1 log ε−1 .
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4.4 Conclusions

The attacks in this chapter target database reconstruction using only access pattern

leakage from range queries. The exact and approximate algorithms in Sections 4.1

and 4.2 succeed with the same expected query complexity, O(N logN), as the exact

and approximate algorithms from the previous chapter, which additionally used rank

leakage. Therefore, asymptotically, it seems that the only advantage of rank leakage

is breaking the global symmetry of the reconstructed values. These two attacks are

well suited to dense databases where the number of possible values a record can take,

N , is not too high.

In Section 4.3, we designed an approximate ordered reconstruction (AOR) algorithm

that performs well even on sparse databases. The algorithm uses a PQ tree to process

query leakage in an efficient manner. Rather than assigning a value to each record, it

groups together records with similar values, and orders these groups. The runtime of

the algorithm and the number of queries required to group records into small-diameter

“buckets” is independent of the number of possible values, N . The small cost to pay

for this scale-free behavior is that records whose values are near the endpoints 1 and

N are sacrificed—they are not necessarily included in any of the ordered buckets. In

particular, an attacker may learn only that these records have very small or very large

values.

Our analysis of the AOR algorithm used tools from statistical learning theory. Despite

these tools giving only an asymptotic bound on the number of queries required for

AOR to succeed, our experimental evaluations in Section 4.3.4 show the hidden con-

stants are small, i.e., about 1, and suggest that our algorithm may be quite effective

with few queries.
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Chapter 5

Volume attacks

Background. Chapter 3 dealt with reconstruction attacks on access pattern and

rank leakage from range queries, while the previous chapter, Chapter 4, dealt with

reconstruction attacks using only access pattern leakage. In this chapter, we continue

the trend of reconstruction attacks using even less leakage: we use only the number

of records that were returned by a given range query [a, b], which we call the volume

of the query, vol([a, b]).

This work was again inspired by the paper of Kellaris et al. [42] (KKNO), which also

presented attacks on volume leakage. They were the first to show how to reconstruct

element counts in a database given leakage from uniformly random range queries.

However, their algorithm strongly depends on the queries being uniformly random,

and it is not clear how to adapt it to other cases. KKNO proved that, in general, any

algorithm successfully achieving exact reconstruction from volume leakage requires

Ω
(
N4
)

range queries.

With Paul Grubbs, Brice Minaud, and Kenny Paterson, we set out to design a more

practical attack that would succeed with fewer queries on a more restricted set of

databases. Our work was published in the paper “Pump up the Volume: Practi-

cal Database Reconstruction from Volume Leakage on Range Queries” at ACM CCS

2018 [27] and the full version appears on the IACR’s Cryptology ePrint Archive [26].

My main contributions to the paper were designing the count reconstruction algo-

rithm (in particular, the pre-processing step), correctness proofs, and designing and

implementing an evaluation of the main attack.

Introduction. We target a different type of reconstruction than in previous chap-

ters. Since no access pattern leakage is available, there are no record identifiers; there
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is no way to distinguish a query matching records with identifiers 1 and 2 from a query

matching records with identifiers 2 and 3. Our goal is instead count reconstruction:

determining the exact number of elements in the database with each value from 1

to N . Like the access pattern attacks in the previous chapter, we can accomplish

reconstruction only up to reflection since replacing each value val(r) in the database

with N + 1− val(r) and swapping query [a, b] with [N + 1− b,N + 1−a] yields exactly

the same leakage.

Volume leakage. The volume of a query can leak in a number of ways. For in-

stance, a network eavesdropper could simply measure packet sizes and infer how many

records were returned—even if data is encrypted and authenticated, its length can

leak. Another source of volume leakage could be diagnostic tables that record which

queries match the most records [31]. Even the time the database server takes to

process a query could indicate the number of matching records. Exploiting volume

leakage is similar to traffic analysis attacks, such as identifying which video a user is

streaming based on the burst rate [76].

Elementary ranges and volumes. Consider the ranges [1, 1], [1, 2], . . ., [1, N ].

We refer to these as elementary ranges. In a dense database, knowing the volumes

of these N ranges is necessary and sufficient for count reconstruction: if we know the

volumes of [1, 1], [1, 2], . . ., [1, N ], then the number of records that have value k is the

difference between the (k− 1)st and kth element in the list (treating the 0th element

as zero). The goal of our algorithm is to identify the volumes of these elementary

ranges (which we call simply elementary volumes) among the set of all volumes.

Our approach is based on three properties of elementary ranges and volumes. First,

every range is either an elementary range or a difference of elementary ranges: [a, b]

can be expressed either as [1, b] if a = 1 or as [1, b] \ [1, a − 1] if a > 1. In terms

of volumes, this property reflects that every volume is either an elementary volume

or the difference of two elementary volumes. If all queries were observed, then the

converse also holds: the difference of any two elementary ranges is a range, and

the difference of any two elementary volumes is also an observed volume. Third, all

elementary ranges other than [1, N ] are nr-complemented : each elementary range [1, b]

has a complement [b + 1, N ] such that the sum of these two volumes is nr, the total

number of records. If we consider the range [1, N ] as an elementary range and the

volume nr as an elementary volume, then the pairwise differences of all elementary

volumes and the elementary volumes themselves generate the entire set of all query

volumes. As we will explain, this last property translates well to a clique in a graph.
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We will assume, as in other chapters, that the number of possible values, N , is known.

When it is not, however, note that N nodes are not always necessary to generate all

observed volumes V : two databases with different numbers of elementsN can generate

the same volume set. For example, consider N = 5 with all elements having counts

of 2, so V = {2, 4, 6, 8, 10}. We could also generate this set of volumes with N = 3

and elements having counts 2, 4, and 4.

Practicality. Compared to the best previous known attack—KKNO’s volume at-

tack (q.v. Section 1.2)—ours does not require a particular query distribution, which

makes it much more applicable to real-world settings. Recall that KKNO established

a lower bound on the number of queries necessary to reconstruct counts using only

volume leakage: Ω
(
N4 logN

)
uniformly random queries are required. Because our

attack requires only that every possible range is queried at least once, which would

take in expectation about N2 logN queries if they were sampled uniformly at ran-

dom, it must fail for some databases. However, we aim to have it succeed for realistic

databases. In particular, our attack generally succeeds when the number of records

in the database, nr, is at least N2/2, and the complexity does not increase as the

number of records increases.

Clique-finding. Our goal of practical attacks may seem at odds with our chosen

technique of finding a clique in a graph to identify elementary volumes—after all, the

clique decision problem is NP-complete. However, the graph we build has a lot of

structure that we can use before resorting to generic clique-finding algorithms.

Density. As we saw in the last chapter, without any information about record values

or the query distribution, access pattern leakage from range queries reveals only the

order of records: our ε-approximate ordered reconstruction algorithm groups together

records with similar values, and sorts these groups, but it does not assign values to

these groups—it does not know where there are gaps between these groups. In the

setting this chapter explores—having only volume leakage—an analogous property

holds: we can reconstruct counts in order, but only non-zero counts. This still con-

stitutes a considerable amount of information and some knowledge of the database

distribution may enable reconstruction of all counts. This is discussed further in Sec-

tion 5.2. Note that the database being sparse is equivalent to the volume 0 appearing

in the set of all volumes.

Chapter overview. We cast the problem of finding the set of elementary volumes

as a clique-finding problem in a graph constructed from the volume leakage. Our

algorithm has three main steps: observing enough queries to obtain a complete set
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of volumes, building the graph, and finding a clique in that graph. We present the

details of our complete algorithm for count reconstruction in Section 5.1. Then, in

Section 5.2, we present the results of an experimental evaluation of our algorithm on

HCUP data (q.v. Section 1.3). We find that applying techniques based on the prop-

erties of elementary volumes is often enough to make clique-finding trivial, obviating

the need for expensive generic clique-finding algorithms. In Section 5.3, we design a

model of the volume graph for databases with uniformly random values, estimating

the number of distinct volumes, complementary volumes (vertices), edges, and when

there is expected to be only one clique. We find that when nr is Ω
(
N2
)
, we expect

our algorithm to perform well.

5.1 Reconstruction for dense data

As mentioned in this chapter’s introduction, we target the ordered reconstruction of

all non-zero counts in the database, up to reflection. We discuss how to extend results

to sparse databases in Section 5.2. Our algorithm has three main steps:

1. observe sufficiently many queries to obtain a complete set of volumes,

2. build a graph using these volumes, and

3. find a clique in this graph.

Step 1. The number of queries needed to see all query volumes depends on the query

distribution; we must assume something about it to analyze the query complexity.

If the queries are distributed uniformly at random, then each of the N(N + 1)/2

ranges can be seen as a coupon that must be collected. Thus, the classic coupon

collector problem’s analysis applies: the number of necessary queries on expectation

is N(N + 1)/2 ·HN(N+1)/2. By Bound A.2, the expected number of queries to gather

all volumes is thus at most

N(N + 1)/2 · (log (N(N + 1)/2) + 1) ≈ N2 logN.

For a non-uniform distribution, if the least likely range has probability α
N(N+1)/2 ,

then an adaptation of coupon collection analysis shows that O
(
α−1N2 logN

)
queries

suffice.

If the queries have a standard Zipfian distribution [80], where the k-th most likely

element has probability proportional to 1/k, then the expected number of queries

until each range occurs at least once is O
(
N2 log2N

)
[23]. This implies that even if
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the query distribution is Zipfian—a skewed distribution—the query complexity of our

attack is not much higher than with a uniform distribution.

The complete set of volumes is V and its size is nv := |V|. Its elements are numbered

in increasing order: v1 < v2 < . . . < vnv . Since there are N(N + 1)/2 queries, nv ≤

N(N+1)/2. The largest volume, vnv , must be the number of records, nr = vol([1, N ]).

When the data is dense (i.e., each of the N values occurs at least once), N ≤ nv ≤

N(N + 1)/2. If the data were sparse (i.e., iff the volume 0 appeared in V ), then the

number of values that would appear in the database (with non-zero counts) would be

at least Nmin := −0.5 + 0.5 ·
√

1 + 8 · (nv − 1). We explain this further in Section 5.2.

Step 2. Next, we form an undirected graph from the set of volumes V. Its nodes

are the elements of V, and there is an edge between two nodes v and v′ iff |v − v′| ∈ V.

Step 3. To identify the set of elementary volumes, we must find a clique of N

complemented nodes that generate all volumes: our goal is to identify a subset of

nr-complemented nodes v∗1, v
∗
2, . . . , v

∗
N such that V = {v∗i }Ni=1 ∪ {

∣∣v∗ − v∗′
∣∣}(v∗,v∗′)⊆V.

Note that by reflection symmetry, the volumes [N,N ], [N −1, N ], . . . , [1, N ] also form

a clique in this graph.

Step 3 is carried out in two parts: first, using efficient heuristics to reduce the set

of candidate elementary volumes and grow a set of necessary elementary volumes

(pre-processing), and second, applying generic clique-finding techniques.

Reasoning behind pre-processing. We use the three properties of elementary

ranges and volumes mentioned in the introduction of this chapter to design our

efficient graph pre-processing. First, recall that all elementary volumes vol([1, b])

with b < N are nr-complemented because of the existence of the complementary

ranges [b + 1, N ]. The elementary volume corresponding to the range [1, N ] is easy

to identify—it is simply nr, the total number of records and the largest volume in

V. Therefore, the sought-after elementary volumes must be in the subset {v ∈ V :

∃v′ with v + v′ = nr} of nr-complemented volumes, and we may restrict the nodes of

the graph to this set.

The remainder of the algorithm is spent alternating between identifying volumes that

must be elementary volumes and removing nodes from the graph that cannot be

elementary volumes. This procedure continues until the sets of nodes stabilize. In

our experiments, we found that this pre-processing step often suffices to identify the

clique of elementary volumes. When it does not, however, we run a traditional clique-
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finding step that tries to identify the remaining nodes that should be in the set of

necessary volumes. Pseudocode for pre-processing is in Algorithm 5.1.

Algorithm 5.1 Graph pre-processing: finding a smaller subgraph

Input: set of all volumes V.
Output: sets Vnec ⊆ V, Vcand ⊆ V such that Vnec ⊆ Velem ⊆ Vcand.

1: nr ← max{V}
2: Vcomp ← {v ∈ V : nr − v ∈ V} ∪ {nr}
3: Vcomp ← V \ Vcomp

4: Vcand ← Vcomp

5: vmin ← min{Vcomp}
6: Vnec ← {vmin, nr}
7: allProcessed← False
8: while not allProcessed do
9: V∗nec ← AugmentNec(Vcand,Vnec,Vcomp, N)

10: V∗cand ← ReduceCand(Vcand,V
∗
nec,V)

11: if V∗cand = Vcand and V∗nec = Vnec then
12: allProcessed← True
13: Vnec ← V∗nec
14: Vcand ← V∗cand
15: return Vcand,Vnec

16: procedure AugmentNec(Vcand,Vnec,Vcomp, N)
17: if |Vcand| = N then
18: Vnec ← Vcand

19: return Vnec

20: for all e ∈ Vcomp do
21: for all v ∈ Vcand \ Vnec do
22: if @(w,w′) ⊆ (Vcand \ {v}) : |w − w′| = e then
23: Vnec ← Vnec ∪ {v}
24: for all v ∈ Vcand \ Vnec do
25: if @(w,w′) ⊆ (Vcand \ {v}) : |w − w′| = v then
26: Vnec ← Vnec ∪ {v}
27: return Vnec

28: procedure ReduceCand(Vcand,Vnec,V)
29: for all v ∈ Vcand \ Vnec do
30: for all vnec ∈ Vnec do
31: if |v − vnec| /∈ V then
32: Vcand ← Vcand \ {v}
33: return Vcand

Pre-processing algorithm details. We want to identify the N elementary vol-

umes among the complete set of all possible range query volumes, V. In the pre-

processing step, we will build up a set Vnec of volumes that are necessarily elementary

volumes (up to global reflection), and whittle down a set Vcand of candidate elementary

volumes.

The set of nr-complemented volumes (line 2) contains nr itself, pairs of volumes,

and maybe the singleton volume nr/2 if nr is even and this volume was observed.
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(a) The largest observed volume is nr=27, so we initialize Vcand to the set of nr-
complemented volumes and Vnec to {vmin, nr}={2, 27}.

(b) Eliminate candidate volumes 3, 8, and 23 since they are not adjacent to both
nodes in Vnec.

2
3

4

5

8

1922

23

24

25

27
2

4

5

1922

24

25

27

(a) (b)

(c) 4 and 19 are necessary since 15 arises only as their difference. 24 is necessary
since it does not arise as a difference of candidate volumes, only as a candidate
volume itself.

(d) The number of necessary volumes is N , so pre-processing succeeded. These
elementary volumes correspond to element counts 2, 2, 15, 5, 3 (or 3, 5, 15, 2,
2).

2

4

5

1922

24

25

27
2

4

19

24

27

(c) (d)

Figure 5.1: An example of pre-processing for a database with N = 5 distinct ele-
ments having counts 3, 5, 15, 2, and 2. The set of all possible range query volumes
is {2, 3, 4, 5, 8, 15, 17, 19, 20, 22, 23, 24, 25, 27}. Nodes corresponding to necessary ele-
mentary volumes have thicker borders and red shading.
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Since elementary volumes are nr-complemented, we set the initial set of candidate

elementary volumes to be the set of nr-complemented volumes (line 4). This is the

initial set of nodes. It must contain the volumes of the elementary ranges [1, 1] through

[1, N − 1] because of their complementary ranges [2, N ] through [N,N ]. It must also

contain the elementary volume nr for range [1, N ].

We present an example of graph pre-processing in Figure 5.1. Subfigure (a) shows

the initial graph. For the moment, ignore its distinguished nodes.

We seed the initial set of necessary elementary volumes with the smallest nr-comple-

mented volume and nr itself, which is the volume of [1, N ] (line 6). Let vmin be the

smallest nr-complemented volume. Then, up to reflection, it must be an elementary

volume: the largest volume strictly smaller than nr must be vol([1, N−1]) or vol([2, N ])

since every other range is included in one of those two ranges. Therefore, vmin must

be either the volume of [1, 1] or the volume of [N,N ]. Since we are targeting count

reconstruction only up to reflection, we choose to set vmin = vol([1, 1]) and thus it is

a necessary elementary volume. These are the two nodes highlighted in subfigure (a)

in the example in Figure 5.1.

Next, we repeatedly augment the set of necessary elementary nodes and reduce the

set of candidate elementary nodes until these sets stabilize (lines 8–14). The augmen-

tation procedure is defined on lines 16–27 and the reduction procedure on lines 28–33.

There are three ways to extend the set of necessary elementary volumes. First, if the

set of elementary volume candidates is as small as it can be (i.e., of size N), then all

candidate nodes must be necessary (line 17). Second, we look for a non-complemented

volume (e ∈ Vcomp, line 20) that arises only as an edge or edges incident to a single

non-necessary candidate elementary volume v (line 22). The latter such non-necessary

candidate elementary volume must then be a necessary elementary volume—otherwise

e would not arise—so we add it to Vnec. In the example in Figure 5.1, we see in

subfigure (c) that nodes 4 and 19 have been added to the set of necessary nodes

because non-complemented volume 15 arises only as an edge between them. Finally,

if any non-necessary candidate elementary volume v (line 24) arises only as itself or as

edges incident to itself in the graph (line 25), then it must be an elementary volume

and is added to Vnec. We see in subfigure (c) that node 24 was added to the set

of necessary nodes for this reason. The example finishes in subfigure (d) when all

remaining non-necessary candidate nodes are removed since they are not adjacent to

all of the necessary nodes.
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Reduction of the set of candidate elementary volumes is done by looking for a non-

necessary candidate elementary volume v (line 29) that is not adjacent to all necessary

elementary volumes. If such a node exists, then it cannot be an elementary volume—

since they are adjacent to each other—so it is removed from the set of candidate

elementary volumes Vcand (line 32). In the example in Figure 5.1, we see in subfigure

(b) that three nodes have been removed in this way.

The following lemma proves that the pre-processing procedure is correct: it does not

eliminate any elementary volumes from the set of candidate elementary volumes, and

all necessary elementary volumes actually correspond to elementary volumes.

Lemma 5.1 (Correctness of Algorithm 5.1). Consider any database DB with values

in [1, N ]. Let V be the set of all possible range query volumes, and let Velem be the

set of elementary range volumes that contains the minimum complemented volume.

Then, after running Algorithm 5.1 on V to obtain the sets Vnec and Vcand of necessary

and candidate nodes, we have Vnec ⊆ Velem ⊆ Vcand.

Proof. We show that Vnec ⊆ Velem ⊆ Vcand holds throughout Algorithm 5.1. After

line 4, we have Velem ⊆ Vcand since all elementary volumes are complemented. After

line 6, we have Vnec ⊆ Velem since nr = vol([1, N ]) is in Velem, and vmin is in Velem by

design.

We now show that if Vnec ⊆ Velem ⊆ Vcand, then (i) AugmentNec(Vcand,Vnec,Vcomp, N)

is contained in Velem, and (ii) Velem is contained in ReduceCand(Vcand,Vnec). First,

consider the three ways in which AugmentNec can add elements to Vnec.

• (line 17) If |Vcand| = N and Velem ⊆ Vcand, then clearly Velem = Vcand since

|Velem| = N .

• (line 20) Let e be a non-complemented volume. Since Velem ⊆ Vcand, we know

that every volume, including e, arises as a node or an edge (or both) in the

graph induced by Vcand. The volume e has no complement, so it must arise as

an edge, i.e., as the absolute difference of two volumes in Vcand. If all such edges

are incident to one node v in Vcand, then that node is necessarily in Velem.

• (line 24) Let v be a non-necessary complemented volume in Vcand. Every volume,

including v, arises as a node or an edge (or both) in the graph induced by Vcand.

If the volume v arises only as itself and maybe edges incident to itself, then it

must be in Velem.
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Next, consider ReduceCand. Let v be a non-necessary complemented volume in

Vcand. Since Vnec ⊆ Velem, and the volumes in Velem are all adjacent to each other, any

node that is not adjacent to a subset of volumes in Velem cannot be in Velem.

Clique-finding details. After pre-processing, we have two sets of volumes, Vnec and

Vcand, satisfying Vnec ⊆ Velem ⊆ Vcand. The next part of Step 3 is traditional clique-

finding. Detailed pseudocode is given in Algorithm 5.2, along with some subroutines.

The only subroutine we do not specify is FindMaximalCliques; we treat it as a

black box for now. Algorithm 5.2 returns a set of sets of volumes that each (1) include

vmin, (2) have size N , and (3) generate exactly the volumes in V and no others.

As we will see when we present our experimental results in Section 5.2, pre-processing

was often enough to find a clique that generated all volumes in V—that is, the sets

it found satisfied Vnec = Vcand (line 1). This is the case in the example of Figure 5.1

as well. When this is not the case, however, we must find a clique of size N in

the graph induced by Vcand that generates exactly all volumes V. The graph may

contain multiple cliques that generate all volumes of V. Each such subclique must be

a subclique of a maximal clique—a set of nodes for which no node outside the set is

adjacent to all nodes within the set. Although the clique of the elementary volumes

Velem must be a subclique of a maximal clique, it is not necessarily a subclique of a

maximum clique (the largest maximal clique).

Since the clique we want to find must include the nodes in Vnec, which already form

a clique themselves, we can reduce our problem to finding the rest of the clique in

the subgraph of non-necessary candidate elementary volumes—that is, the subgraph

induced by Vnn-cand := Vcand \ Vnec. If the number of elementary volumes is N , then

this clique part must have size N − |Vnec| (line 3). It must also generate all missing

volumes—volumes in V that do not arise as nodes or edges in the subgraph induced by

Vnec—and no other volumes outside of V. The missing volumes could arise either as

edges among the nodes of this clique part, or as edges between its nodes and the nodes

in Vnec. Given such a clique in the subgraph of non-necessary candidate elementary

volumes, we recover the elementary volumes by combining it with Vnec.

The algorithm first uses a procedure that finds all maximal cliques in the subgraph

induced by the set of non-necessary candidate elementary volumes (line 5). Again,

we treat this procedure as a black box for now. For each of these maximal cliques,

the algorithm checks whether its size is at least M , the number of missing elementary

volumes (line 8). If so, it checks whether the clique, when combined with the known

necessary elementary volumes Velem, generates the entire set of volumes V and maybe
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more (line 9). Since this clique could be too large, the next step is to find subcliques

of the right size that generate exactly the volumes in V. This is done with the

MinSubcliques procedure (lines 18–23). For each subclique Vsk ⊆ Vk of size M ,

the algorithm checks if the previously identified necessary elementary volumes Vnec

combined with the subclique generate exactly the volumes V. If so, the union of these

sets is added to the list of returned subcliques (line 22).

Algorithm 5.2 Recovering elementary volumes via clique-finding

Input: candidate elementary volumes Vcand, necessary elementary volumes Vnec,
set of all volumes V.
Output: set solutions of sets of N volumes that generate all volumes V.

1: if |Vcand| = |Vnec| then
2: return {Vnec}
3: M ← N − |Vnec|
4: Vnn-cand ← Vcand \ Vnec

5: cliques← FindMaximalCliques(Vnn-cand)
6: solutions← {}
7: for all Vk ∈ cliques do
8: if |Vk| ≥M then
9: if GenAllVolumes(Vnec ∪ Vk,V) then

10: solutions← solutions ∪ MinSubcliques(Vk,V,M,Vnec)

11: return solutions

12: procedure GenAllVolumes(Vnodes,V)
13: for all v ∈ V do
14: if @ (v1, v2) ⊆ Vnodes : |v2 − v1| = v then
15: if v /∈ Vnodes then
16: return False
17: return True

18: procedure MinSubcliques(Vk,V,M,Vnec)
19: subcliques← {}
20: for all Vsk ⊆ Vk : |Vsk| = M do
21: if GenExactVolumes(Vnec ∪ Vsk,V) then
22: subcliques← subcliques ∪ {Vnec ∪ Vsk}
23: return subcliques

24: procedure GenExactVolumes(Vnodes,V)
25: if Vnodes ⊆ V and GenAllVolumes(Vnodes,V) then
26: for all (v1, v2) ⊆ Vnodes do
27: if |v2 − v1| /∈ V then
28: return False
29: return True
30: else
31: return False

This set of lists of volumes must include Velem, as the following lemma proves.

Lemma 5.2 (Correctness of Algorithm 5.2). Let DB be a database of elements with

N possible different values, let V be the set of all range query volumes, and let Velem

be the set of elementary range volumes that contains the minimum complemented
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volume. Suppose we are given two sets Vnec and Vcand such that Vnec ⊆ Velem ⊆ Vcand.

Then, after running Algorithm 5.2 on (N,Vcand,Vnec,V) to obtain the set solutions,

we have Velem ∈ solutions.

Proof. Consider the graph G := (Vcand, E) with edge set E := {(v1, v2) ⊆ Vcand :

|v2 − v1| ∈ V} and the subgraph Gnn := G(Vnn-cand) induced by the set of non-

necessary candidate elementary volumes. Since the subgraph induced by Velem is

a clique in G, the subgraph induced by Velem \ Vnec will also be a clique in Gnn.

Since every clique is contained in (or simply is) a maximal clique, at least one of

the maximal cliques in Gnn output by FindMaximalCliques (line 5), say V∗k , will

have Velem \ Vnec as a subclique. The size of V∗k must be at least N − |Vnec|, so the

algorithm will proceed to line 9 in this iteration. Since Velem ⊆ {Vnec ∪V∗k} generates

all volumes in V (and maybe others), solutions will be updated to include the output

of MinSubcliques (line 10).

Since Velem \ Vnec is a subset of V∗k of size M = N − |Vnec|, it will arise as a subclique

on line 20 of MinSubcliques. Velem generates all volumes in V and no others, so the

algorithm will proceed to add it to subcliques. Any element added to subcliques in

MinSubcliques will form part of the solutions output by the algorithm, completing

the proof.

5.1.1 Efficiency analysis

The main loop of the pre-processing procedure (line 8 of Algorithm 5.1) augments

Vnec or reduces Vcand at each iteration. Since there are at most distinct N(N + 1)/2

volumes in Vcand initially, this step iterates O
(
N2
)

times.

The bulk of the time complexity comes if the clique-finding procedure (Algorithm 5.2)

is run. Recall that we have not specified FindMaximalCliques. In general, a graph

on n nodes can have an exponential (in n) number of maximal cliques [60]. This

seems incompatible with our goal of practical reconstruction attacks, but when the

number of nodes is small, it is still feasible to enumerate all of the maximal cliques

with an algorithm such as Bron–Kerbosch [15], and for larger domains, there are

logarithmic-time algorithms to sample one maximal clique at a time [52].

In the MinSubcliques procedure in Algorithm 5.2, the check on line 21 occurs for( |Vk|
|Vsk|
)

subcliques. The maximal clique Vk has O
(
N2
)

volumes, and the subclique’s

size M is O(N), so
( |Vk|
|Vsk|
)

is Ω
(
NN

)
, not practical at all for large values of N .
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To address these potential impracticalities of finding all maximal cliques and finding

minimal subcliques that generate all volumes, we design some more efficient proce-

dures for our evaluation in the following section. The pseudocode for these practical

variants is in Algorithm 5.3.

First, we design a probabilistic variant of FindMaximalCliques, which we call

FindMaximalCliquesP, that replaces line 5 of Algorithm 5.2 with

5: cliques← FindMaximalCliquesP(Vnn-cand,M,V).

For graphs with 20 or fewer nodes, we used the find cliques routine from the

NetworkX Python module (line 4) [33]. For graphs with more nodes, we sampled max-

imal cliques one at a time, 1000 times, (line 7) using Luby’s efficient parallel algorithm

for maximal independent sets, implemented as the max independent vertex set rou-

tine from the graph-tool Python module [66].

We also modify Algorithm 5.2 to return all solutions (when possible), not only minimal

ones. Specifically, we replace MinSubcliques with AllSubcliquesP as defined

starting on line 15 in Algorithm 5.3. If we deem it impractical to enumerate the

subcliques of the right size, then we do not return any subcliques—the final solutions

will be incomplete.

The three points at which clique-finding may fail with these probabilistic variants are

(i) FindMaximalCliquesP fails to find any maximal cliques of size at least M

(line 11),

(ii) it found such cliques, but none of them generated the set of missing volumes

(line 13), or

(iii) there were such cliques that generated the set of missing volumes, but for all of

them, it was impractical (line 17) to find all of their subclique solutions.

5.2 Experimental evaluation

In this section, we present an experimental evaluation of Steps 2 and 3 of the recon-

struction attack from the previous section. We simulate an attacker who has observed

enough queries to see all possible volumes of range queries. We implemented our al-

gorithms in Python and used the graph-tool [66] and NetworkX [33] packages for

finding cliques (or maximal independent vertex sets, the dual problem).

Datasets and methodology. We test our algorithm on various attributes from

three different years of HCUP data medical records (q.v. Section 1.3), The attributes
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Algorithm 5.3 Practical, probabilistic subroutines for Algorithm 5.2

1: procedure FindMaximalCliquesP(Vnn-cand,M,V)
2: cliques← {}
3: if |Vnn-cand| ≤ 20 then
4: cliques← FindMaximalCliques(Vnn-cand) . NetworkX
5: else
6: for i ∈ {1, . . . , 1000} do

7: Vk
$← Find A Maximal Clique(Vnn-cand) . graph-tool

8: if |Vk| ≥M then
9: cliques← cliques ∪ {Vk}

10: if cliques = {} then
11: return ⊥ . All sampled cliques too small

12: if @ Vk ∈ cliques : GenAllVolumes(Vnec ∪ Vk,V) then
13: return ⊥ . No sampled clique gen. all volumes

14: return cliques

15: procedure AllSubcliquesP(Vk,V,m,Vnec)
16: subcliques← {}
17: if

(|Vk|
m

)
≤ 2000 then

18: for all Vsk ⊆ Vk : |Vsk| = m do
19: if GenExactVolumes(Vnec ∪ Vsk,V) then
20: subcliques← subcliques ∪ {Vnec ∪ Vsk}
21: return subcliques

we chose to extract have domain sizes that range from N = 4 to N = 366 and they

are all attributes on which range queries are meaningful. For more information about

these datasets and how we extracted attributes, see Section 1.3. Each of the three

years includes patient discharge records from about 1000 hospitals, giving us 3000

datasets for most attributes. (Some were not available in all years.)

We say the attack succeeds if there is a single solution output by Algorithm 5.2, and

it is the set of elementary volumes (up to reflection). For dense datasets (where every

value appears at least once and no range query has volume 0), this means that all

element counts have been recovered exactly, up to reflection. For sparse datasets, this

means that all non-zero element counts have been recovered in order (up to reflection),

but it is not known which elements did not appear in the database—the attacker must

make a decision about which values were not observed. In our evaluation of step 3,

we discuss and evaluate one such strategy, which uses a small amount of auxiliary

information, for assigning the recovered counts to a subset of elements in the domain.

Handling sparse datasets. Not all databases were dense and we adapted our

algorithms to work with a lower bound, Nmin, of the number of elements with non-

zero counts. A database is non-dense iff 0 was an observed query volume. Since the

total number of ranges (and therefore the total number of distinct volumes, |V|) is at
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most N(N + 1)/2 plus 1 for the empty range, we must have have

|V| − 1 ≤ N(N + 1)/2

⇔ 0 ≤ N2 +N − 2(|V| − 1)

⇔ 0 ≤ N2 +N − 2 |V|

⇔ N ≥ −0.5 + 0.5 ·
√

1 + 8 · (|V| − 1).

In graph pre-processing (Algorithm 5.1), we simply check after line 1 whether a query

of volume 0 was observed. If so, we replace N by

Nmin :=
⌈
−0.5 + 0.5 ·

√
1 + 8 · (|V| − 1)

⌉
and remove 0 from the set of volumes before continuing. In clique-finding (Algo-

rithm 5.2), additional changes are necessary. In particular, we also use an upper

bound on the number of non-zero counts. Since every distinct value appearing in the

database has a corresponding elementary volume, and the elementary volumes must

be a subset of the candidate elementary volumes after pre-processing, we deduce that

an upper bound on the number of elements with non-zero counts is Nmax := |Vcand|.

Thus we obtain a range of possible values, [Nmin, Nmax]. These yield, in turn, a range

of possible missing numbers of elementary volumes, [Mmin,Mmax] instead of just M as

in Algorithm 5.2. On line 8, we must check that the size of the clique is at least Mmin.

In MinSubcliques, we must check not only subsets of size M of Vk, but all subsets

of size in the range [Mmin,max{|Vk| ,Mmax}]. Our practical, probabilistic procedures

in Algorithm 5.3 also required a few changes. On line 8 of FindMaximalCliquesP,

we must check that the size of the clique is at least Mmin. On line 17, we check the

sum
∑Mmax

m=Mmin

(|Vk|
m

)
, and on line 18 of AllSubcliquesP, we must check all subsets

of Vk having size in the range [Mmin,max{|Vk| ,Mmax}].

Pre-processing evaluation. For each dataset-attribute combination, we ran Algo-

rithm 5.1 to obtain sets of necessary elementary volumes, Vnec, and candidate elemen-

tary volumes, Vcand. The plot in Figure 5.2 shows, for each attribute, the (average)

number of datasets for which pre-processing was sufficient for the attack to succeed.

The results are averaged for attributes that were available in more than one year,

since results were similar.

For all attributes except AGE and AGEDAY, pre-processing correctly identified the non-

zero element counts in order (up to reflection) for the vast majority of datasets. The

difference in patterns on the bars indicates which datasets were dense. Attributes with

smaller domain sizes, e.g., AMONTH, MRISK, APRDRG Severity (SEV), and ZIPINC, were
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Pre-processing results by attribute and data density

Figure 5.2: Pre-processing success and data density by attribute

dense most of the time. The attributes with the largest domain, LOS and AGEDAY, were

dense in fewer than 0.01% of datasets. Pre-processing recovered the set of elementary

volumes for at least 90% of all dense datasets for each attribute except AGEDAY. This

attribute had a single dense dataset in each 2004 and 2008 that required clique-finding.

For sparse datasets, recovering the set of all non-zero counts provides a lot of in-

formation. Combining it with some rudimentary information about the database

distribution can lead to recovering all element counts, just like in the dense case. For

instance, one might guess that the length of stay (LOS), the number of chronic condi-

tions (NCHRONIC), and the number of procedures (NPR), might be 0 most frequently,

then decrease.

To illustrate just how valuable knowing the set of elementary volumes could be when

combined with a tiny bit of knowledge about the domain, we evaluate the following

strategy for assigning counts to elements: simply guess that they correspond to the

first values in the domain. The results are displayed in Figure 5.3. We juxtapose the

success of our simple strategy for LOS, NCHRONIC, and NPR with its mediocre results

for the number of diagnoses, NDX, which is 1 more frequently than 0, and thus our

strategy is not suitable. This strategy could be adapted to other distributions, e.g.,

by assigning the non-zero counts to elements in the middle or end of the domain.
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Figure 5.3: Extending pre-processing success for sparse datasets. The fraction of
correct values is out of the actual number of values for each dataset. Whiskers indicate
the 5th and 95th percentiles, while boxes indicate the 25th and 75th percentiles, with
a line at the median and a diamond at the mean.

When pre-processing is not sufficient for sparse datasets, the attacker knows only that

the number of values that appear is between N and Nmax. Although N may be much

smaller than the number of candidate volumes Vcand output by pre-processing, the

size of the latter was exactly N in many of the AGEDAY datasets, suggesting another

strategy for the attacker: if the set Vcand has size at most Nmax and it forms a clique,

simply guess that these are the elementary volumes.

Clique-finding evaluation. Lastly, we ran Algorithm 5.2 (with the modifications

described in Section 5.1.1) on the few dataset-attribute combinations for which pre-

processing did not find a unique solution. Recall that the modifications include re-

turning all solutions, not just minimal ones, due to replacing MinSubcliques in Al-

gorithm 5.2 with AllSubcliquesP (described starting on line 15 in Algorithm 5.3).

We also allowed the clique-finding algorithm to return an incomplete list of solutions,

or to fail entirely. Figure 5.4 shows the overall attack results. Success, in green, oc-

curs when pre-processing or clique-finding finds the solution and it is unique—there

is a single clique whose size is in the right range that generates all observed volumes.

Multiple cliques, in blue, arise when clique-finding has found all such solutions, but

there is more than one, so that the correct solution cannot be precisely determined.

Failure, in red, arises when Algorithm 5.2 returns FAILURE or {}, or when we sam-
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Figure 5.4: Overall results of the practical reconstruction attack

pled maximal cliques using Luby’s algorithm (line 7) and may not have found all

maximal cliques.

Recall from the end of Section 5.1.1 the three points where clique-finding may fail.

In our experiments, the most common reason for failure overall was (iii): it was

impractical to find all subcliques (about 60% of failures or incomplete cases). The

second most common overall reason for failure was (ii), not finding any cliques that

generated all missing volumes (about 36%). However, as one might expect because of

the bound on line 17 in AllSubcliquesP, the attributes with fewer possible values

(e.g., AGE with N = 91 compared to AGEDAY with N = 365) failed more often due to

no cliques generating all volumes as opposed to too-big cliques.

Conclusions. Overall, our experiments indicate that our clique-finding approach

yields overwhelming success in reconstructing counts of dense datasets—and that in

most cases, no expensive clique-finding is even required (see the white bars corre-

sponding to dense data in Figure 5.2).

For sparse data, the success of this approach mainly depends on what auxiliary in-

formation is available to the attacker. We showed how an attacker can leverage
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rudimentary knowledge of a distribution (e.g., that the most frequent values are the

smallest in the domain) to correctly assign exact counts to values (see Figure 5.3).

5.3 Analytical model of the graph

In this section, we develop an analytical model for the behavior of our main attack

from Section 5.1. We estimate three quantities in terms of the number of possible

values N and the number of records nr: the number of volume collisions (which

determines the size of V), the number of complemented volumes (which determines

the number of vertices in the initial graph), and the number of edges. The main

takeaway is that the ratio nr/N
2 emerges as the critical value that determines whether

our main attack succeeds.

For this model, we assume that the data is distributed uniformly at random in [1, N ],

so the number of records matching any particular value follows a binomial distribution

Bin (nr, 1/N). The number of records matching any particular range [a, b] is also

binomially distributed with success probability (b− a+ 1)/N . The main idea behind

our model is to use independent Poisson random variables to approximate the volume

of each range. We retroactively validate our series of assumptions in Section 5.3.4.

5.3.1 Number of distinct volumes

Two volumes collide iff there are two distinct range queries that match the same

number of records. Intuitively, since there are
(
N
2

)
≈ N2/2 different ranges and

each range matches between 0 and nr queries, there should be few collisions when

nr/(N
2/2) is not too close to 1. We estimate the number of volume collisions by

counting pairwise collisions, which provides a good estimate since three-way collisions

are rare for our parameter choices. We also count only collisions between ranges of

the same length—since we assume data is uniformly distributed, we expect nearly all

collisions to be of this type. These assumptions will also help simplify the analysis.

Consider ranges of length d, i.e., [a, b] with d = b − a + 1. The number of records

each such range matches is binomially distributed and its expected value is nr · d/N .

We model this number as a Poisson random variable with rate λ = nr · d/N . Then,

to analyze the probability of a collision, we consider the difference X − X′ of two

identically distributed random variables X,X′ ∼ Pois (nr · d/N). Let ∆d := X − X′

be the difference of these two Poisson random variables. By definition, the differ-

ence of two Poisson random variables has a Skellam distribution. In our case—for

two identically distributed Poisson random variables—the Skellam pmf simplifies to
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Prob[∆d = x] = e−2nr·d/N · Ix(2nr · d/N) where Iα(x) denotes the modified Bessel func-

tion of the first kind with order α and argument x. Therefore, the probability that

the two volumes collide is Prob[∆d = 0] = e−2nr·d/N · I0(2nr · d/N). Using Approxi-

mation A.1 for the Bessel function Iα(x), we have

I0(2nr · d/N) ≈ e2nr·d/N/
√

2π(2nr · d/N),

so the probability of a collision of two length-d intervals is

Prob[∆d = 0] ≈ 1/2
√
πnr · d/N.

Since there are N + 1 − d ranges of length d, we can approximate the number of

pairwise volume collisions among them by
(
N+1−d

2

)
·Prob[∆d = 0]. Next, considering

all range lengths d from 1 to N − 1, we obtain the following approximation of the

total number of pairwise volume collisions:

N−1∑
d=1

(
N + 1− d

2

)
· 1

2
√
πnr · d/N

=

N−1∑
d=1

(N + 1− d)(N − d)

4
√
πnr · d/N

≈ 1

4
√
πnr

N−1∑
d=1

(N − d)2√
d/N

=
N2

4
√
πnr

N−1∑
d=1

(1− d/N)2√
d/N

=
N3

4
√
πnr

N−1∑
d=1

1

N
· (1− d/N)2√

d/N
.

The sum on the last line is the left Riemann sum for the integral
∫ 1

1/N
(1−x)2/

√
x dx

from 1/N to 1 with N − 1 steps of width 1/N . We approximate it with the integral

from 0 to 1:

∫ 1

0

(1− x)2/
√
x dx =

∫ 1

0

x−1/2 − 2x1/2 + x3/2 dx

=

[
2x1/2 − 4

3
x3/2 +

2

5
x5/2

]1

0

= 2− 4

3
+

2

5
=

16

15
≈ 1.

Therefore, the expected total number of volume collision pairs is about N3/(4
√
πnr).

For there to be no collisions, the number of records would need to be Ω
(
N6
)
. The

fraction of volumes that are not unique is about

N3/(4
√
πnr)

N(N + 1)/2
=
N3/
√
πnr

N(N + 1)
≈ N/

√
πnr.
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Thus, as foreshadowed in the introduction of this section, the critical quantity for a

constant fraction of volumes to be collision-free is N/
√
nr: if nr is Ω

(
N2
)
, then the

ratio of collisions among volumes is nearly 1.

5.3.2 Number of nr-complemented volumes

Recall that elementary volumes must be nr-complemented, so the vertices of the initial

graph in Step 3 of our attack can be the set Vcomp := {v ∈ V : (nr−v) ∈ V}. There are

2(N − 1) ranges that are automatically complemented: the N − 1 elementary ranges

[1, 1], [1, 2], . . . , [1, N−1] and the N−1 complements [2, N ], . . . , [N,N ]. In this section,

we estimate how many volumes v are complemented “by accident”—not because the

complement of their corresponding query is also a range, but simply because nr − v

was the volume of another range.

Recall that there are N + 1 − d ranges of length d, of which 2 are automatically

complemented ([1, d] and [N + 1−d,N ]). Let v be the volume of any of the N −1−d

other ranges.

Recall that we model the number of records in a range of length d as a Poisson random

variable with rate nr ·d/N . Let Xd ∼ Pois (nr · d/N) represent the volume of this range.

If we consider only accidental collisions that occur from ranges of length N − d, a

collisions corresponds to Xd = nr − XN−d.

Let [a, a+ d− 1] be any range of length d. The probability that its volume is nr − k

is exactly the probability that all k other records have values in [1, a− 1]∪ [a+ d,N ].

Since we assume all values are distributed uniformly at random, the probability that

k records have values in [1, a − 1] ∪ [a + d,N ] is exactly the same as the probability

that k records have values in any set of N − d values—they do not need to form an

interval. Therefore, Prob[Xd = nr − k] = Prob[XN−d = k]. On the other hand, the

number of records matched by a range of length N − d is Pois ((N − d)nr/N). An

accidental volume collision between a range of length d and a range of length N − d

therefore corresponds to a collision of two samples of XN−d. Again using the fact that

a difference of Poisson random variables has a Skellam distribution, we obtain

Prob[Xd = nr − XN−d] = e−2nr(N−d)/N · I0(2nr(N − d)/N)

≈ 1/2
√
π(nr(N − d)/N).

For each of the N − 1− d ranges of length d that is not automatically complemented,

there are d + 1 ranges of length N − d that it could collide with. Considering all

range lengths d from 1 to N −1 and using similar techniques as in the last section, we
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obtain the following estimate of the number of accidentally complemented volumes:

N−1∑
d=1

(N − 1− d)(d+ 1)

2
√
πnr(N − d)/N

≈
N−1∑
d=1

(N − d)d

2
√
πnr(N − d)/N

=
N2

2
√
πnr

N−1∑
d=1

(1− d/N)d/N√
1− d/N

=
N3

2
√
πnr

N−1∑
d=1

1

N
·
√

1− d/N · d/N

≈ N3

2
√
πnr

∫ 1

0

√
1− x · x dx

=
N3

2
√
πnr

[
2(−3x− 2)(1− x)3/2

15

]1

0

=
N3

2
√
πnr

(
0− −4

15

)
≈ N3

8
√
πnr

.

Taking into account the 2(N − 1) volumes that are automatically complemented, we

get that the total number of complemented volumes, and hence the initial number of

vertices in the graph, is approximately 2N + N3

8
√
πnr

.

5.3.3 Number of edges in the graph

By construction, two vertices are adjacent in the graph iff the absolute difference of

their volumes is also a volume. We know that the graph contains two cliques of size

N : one whose vertices corresponds to the elementary volumes [1, 1], [1, 2], . . . , [1, N ]

and the other, their complements [N,N ], [N − 1, N ], . . . , [1, N ]. Since a clique of size

N has
(
N
2

)
edges, these two cliques account for N(N − 1) edges in the graph. In

this section, we estimate how many edges occur “by accident”—not because the set

difference of the two corresponding endpoints is a range, but simply because there

exists a range whose volume is the difference of their volumes.

We consider only accidental edges that arise from the difference of volumes of two

ranges of lengths d1 and d2 equaling the volume of another range of length |d2 − d1|.

Recall that the number of records having any value in a set of d values is distributed

exactly like the number of records whose value is in a range of length d; these have a

Poisson distribution, Pois (dnr/N). Suppose, without loss of generality, that d2 > d1

and consider Xd2 − Xd1 . We can think of it as representing the difference in volume

of any two ranges of lengths d2 and d1. In particular, we could consider a range of
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length d2 that is a superset of the range of length d1. The volume of the difference of

these two ranges is distributed like the volume of a range of length d2 − d1.

Therefore, we can characterize an accidental edge as being a collision of two identically

distributed Poisson random variables with rate |d2 − d1| nr/N . Following similar steps

as in the previous section to derive the appropriate Skellam distribution, we find

that the probability that two vertices corresponding to ranges of length d1 and d2

accidentally collide with the volume of a range of length |d2 − d1| with probability

approximately

1/2
√
πnr |d2 − d1| /N.

For any fixed d1 > d2, there are N + 1− d2 + d1 ranges of length d2− d1. Also, recall

that the number of ranges of length d whose volumes are complemented (i.e., that are

vertices in the graph) is about

(N − d)d

2
√
πnr(N − d)/N

=
d
√
N − d

2
√
πnr/N

.

We use this for d1 and d2. Combining all of these pieces, we arrive at the following

expression for an estimate of the number of accidental edges:

N∑
d1=1

N∑
d2=d1+1

d1

√
N − d1

2
√
πnr/N

· d2

√
N − d2

2
√
πnr/N

· N + 1− d2 + d1

2
√
πnr(d2 − d1)/N

=

N∑
d1=1

N∑
d2=d1+1

N3 · d1

√
1− d1/N · d2

√
1− d2/N

4πnr
· N(1 + 1/N − (d2 − d1)/N)

2
√
πnr(d2 − d1)/N

=
N4

8(πnr)3/2

N∑
d1=1

N∑
d2=d1+1

d1

√
1− d1

N
· d2

√
1− d2

N
· 1 + 1/N − (d2 − d1)/N√

(d2 − d1)/N

=
N7

8(πnr)3/2

N∑
d1=1

N∑
d2=d1+1

d1

N

√
1− d1

N
· d2

N

√
1− d2

N
· 1

N
· 1 + 1/N − (d2 − d1)/N√

(d2 − d1)/N

≈ N7

8(πnr)3/2

N∑
d1=1

N∑
d2=d1+1

d1

N

√
1− d1

N
· d2

N

√
1− d2

N
· 1

N
· 1− (d2 − d1)/N√

(d2 − d1)/N

≈ N7

8(πnr)3/2

∫ 1

0

∫ 1

x1

x1

√
1− x1 · x2

√
1− x2 ·

1− (x2 − x1)√
x2 − x1

dx1 dx2

=
N7

8(πnr)3/2
· 43π

1540

≈ N7

80(πnr)3/2
.

Hence, counting both the edges arising from nr-complemented ranges and accidental

edges, we get approximately N2 + N7

80(πnr)3/2
.
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In the previous section, we saw that the number of vertices is approximatelyO
(
N3/
√
nr
)
,

so the edge density of the graph is about

N2 + N7

80(πnr)3/2(2N+ N3

8
√
πnr

2

) ≈
N7

nr3/2(
N3√
nr

)2 ≈
N
√
nr
.

Edge density is relevant to our main algorithm: if it is too high, then there might be

other or larger cliques than the ones corresponding to elementary volumes and their

complements, generating multiple valid solutions.

Modeling as a random graph. Given the estimated number of vertices and the

edge density, we can model the graph as a random graph, adding an edge between each

pair of vertices with probability equal to the edge density. This modeling completely

disregards the necessary structure and the existence of the two N -cliques, but we can

apply results from random graph theory to estimate the maximal size of a clique in

such a graph.

A result of Bollobás and Erdös from 1976 [12] states that the maximal clique size of

a random graph with n vertices and edge density p is Θ (− log n/ log p). Having a

clique number greater than N would therefore require that the edge density p satisfy

log p > − log(n)/N . Since e−x ≈ 1 − x (q.v. Bound A.7), we get p > 1 − log(n)/N .

In our graph, the number of nodes n satisfies log n ≈ 3 log(N)− log
√
nr and the edge

density p satisfies log p ≈ log(N)−log
√
nr. Therefore, we expect a clique of size larger

than N when

(log(N)− log
√
nr) > 1− ((3 log(N)− log

√
nr)/N)

log(N)(1 + 3/N) > 1 + log(
√
nr)(1 + 1/N),

or when, approximately, log(N)−1 > log(
√
nr), i.e., nr is O

(
N2
)
. Therefore, to ensure

that no clique of size N exists by accident due to edge density, we would require nr

to be Ω
(
N2
)
.

5.3.4 Experimental validation

In the previous sections, we derived estimates for the number of distinct volumes, the

number of complementary volumes (vertices in the initial graph), and the number of

edges in this graph for uniformly distributed values in terms of nr, the total number

of records, and N , the number of possible values. We now present the results of

experiments that evaluated the accuracy of these estimates (Table 5.1).
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|V| |Vcomp| Number of edges

nr Observed Computed Observed Computed Observed Computed

N = 50

1250 710 776 375 349 52381 42183

2500 907 922 313 276 26787 16530

5000 1034 1025 230 224 10949 7460

10000 1098 1098 179 188 5966 4253

N = 100

5000 2803 3055 1406 1197 730625 644936

10000 3553 3639 1116 905 323943 234483

20000 3979 4052 784 698 120779 89367

40000 4291 4344 607 552 60511 38060

N = 200

20000 11061 12121 5344 4389 10448021 10198981

40000 13885 14458 4144 3220 4465672 3631742

80000 15927 16110 2793 2394 1376980 1309872

160000 17158 17279 1836 1810 458622 488967

Table 5.1: Experimental evaluation of the Poisson model. |V| is the number of distinct
volumes, estimated to be N(N+1)/2−N3/(4

√
πnr). |Vcomp| is the number of volumes

with nr-complements, estimated to be 2N + N3/(8
√
πnr). The number of edges was

estimated to be N2 +N7/(80(πnr)
3/2).

For various combinations of N and nr, we present the average (over 30 different

databases) of the number of distinct volumes, number of complementary volumes,

and number of edges. We compare these values to the computed estimates from the

previous sections.

We chose three different values of N—50, 100, and 200. For each, we tested nr =

N2/2, N2, 2N2, and 4N2. We found that our estimates are reasonably accurate,

especially for the number of distinct volumes. The computed number of edges had

the highest relative error, being sometimes 40% lower than the experimental value.

Part of the reason could be that our estimate for the number of edges relied on

estimates for the number of complemented volumes of particular lengths, and these

were often too low in our experiments as well.
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5.4 Conclusions

Volume leakage is hard to hide from passive network adversaries. In the context of

encrypted databases, packet sizes could leak how many records matched a query. In

this chapter, we showed how an adversary can exploit this leakage with fewer queries

than the best previous attack [42].

We developed a practical attack that uses the complete set of query volumes to identify

elementary volumes and then reconstruct all counts. Our attack works better when

there are many records relative to the number of possible values N . The query

distribution does not matter as long as all queries are observed eventually. This is

probably the main limitation to using this attack in practice: the volumes of all

queries must be observed. In some settings, it might be impractical to observe all

volumes before the values change or new records are inserted.

Some specific questions remain surrounding our volume leakage attack, which is the

most heuristic attack in this thesis. Is it possible (and if so, how) to characterize the

volume graphs for which there is not a unique clique of elementary volumes? Is it

possible to apply other techniques from graph theory to delay generic clique-finding,

or avoid it entirely? Future research could investigate whether it is possible to make

this attack robust to a few missing volumes, or whether it could detect inconsistencies

that indicate changes were made to the database.
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Chapter 6

Conclusions

Encrypted search schemes are an important component of a defense-in-depth approach

to database security: they allow storage providers to process queries on data without

decrypting it. The main contributions of this thesis are discovering new trade-offs

between security, functionality, and efficiency in encrypted search schemes. In this

chapter, I reflect on a few salient themes and discuss future work in the area of

encrypted search schemes.

6.1 Reflections

One of the themes of this thesis is that an adversary can learn a lot from a little bit of

leakage. It was initially surprising, at least to me, that an adversary can reconstruct

element counts in a database by observing only how many records match each query.

Another surprise was how soon ε-approximate ordered reconstruction succeeded with

relatively few queries in our experiments.

Second, the implications of leakage of new encrypted search schemes must be thor-

oughly explored before they are deployed. Although many schemes supporting range

queries leak rank, our work was the first to consider attacks on rank leakage and we

were able to reconstruct records’ values.

Third, experimenting with real datasets yields meaningful insights. For instance,

despite our frequency-smoothing encryption schemes from Chapter 2 requiring high

encoding lengths for typical cryptographic levels of security, experiments showed that

even small encoding lengths were able to limit an optimal adversary’s success to the

success of random guessing.
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6.2 Future directions

There are many problems left to solve in the area of encrypted search schemes. The

work in this thesis considered only two types of queries on databases—equality queries

and range queries—but real-world databases support many more. For each type of

query, researchers could create new schemes, evaluate countermeasures to existing

attacks, or design new attacks.

Recent research has begun to explore attacks on different query types. For exam-

ple, Kornaropoulos et al. exploit leakage from k-nearest neighbor queries [44], and

Akshima et al. reconstruct data from multi-dimensional range queries [3]. I hope

to see future work on leakage from pattern-matching queries on text data. It would

be particularly gratifying to see work adapt our query analysis techniques based on

statistical learning theory to establish bounds for different query classes.

One of the major limitations of work in this area is the lack of publicly available query

distributions. For the analysis of our attacks, we had to assume a particular query

distribution. We chose the uniform, but not because this distribution is thought

to occur in practice—because previous work used it and we wanted our work to

be comparable. If real query information were available, analyses would be much

more relevant to practice (and the information might inspire new encrypted search

constructions). Relatedly, more research could be done on the design and evaluation

of countermeasures to attacks that exploit properties of particular query distributions.

Query information could include, for example, the proportion of database interactions

that are read-only, as opposed to inserting new records or modifying existing records.

I believe stronger interaction with industry will be required if secure encrypted search

schemes are ever to be widely deployed.
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Appendix A

Formulae and Bounds

Approximation A.1 (Limiting form of the modified Bessel function of the first kind).

[20, Eq. 10.30.4] When the order α is fixed, and as the argument x tends towards

infinity, the modified Bessel function of the first kind Iα(x) tends to ex/
√

2πx.

Bound A.2. For any positive integer n, the nth harmonic number Hn satisfies

log n+ 1/n ≤ Hn ≤ log n+ 1.

Bound A.3. For any positive integers m and n with m > n, the difference of Hm

and Hn satisfies

Hm − Hn ≤ log(m/n).

Proof. The difference Hm −Hn equals the right Riemann sum for the area under 1/x

from n to m with m− n steps:

m−n∑
j=1

1 · 1

n+ j
= Hm − Hn.

Since 1/x is decreasing in this interval, the right Riemann sum is an underestimation

of the area, thus

Hm − Hn ≤
∫ m

n

1/x dx = log(m)− log(n) = log(m/n).
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Formula A.4. For any discrete random variable X whose support is the non-negative

integers, its expected value E[X] equals
∑∞
i=1 Prob[X ≥ i].

Proof. Starting with the definition of expected value for a discrete random variable,

we have

E[X] :=

∞∑
y=1

y · Prob[X = y] =

∞∑
y=1

y∑
x=1

Prob[X = y] =

∞∑
x=1

∞∑
y=x

Prob[X = y]

=

∞∑
x=1

Prob[X ≥ x] .

Formula A.5. For any constant c ∈ R and ratio r ∈ R with |r| < 1,
∑∞
x=0 c · rx =

c
1−r .

Formula A.6. For any constant c ∈ R, ratio r ∈ R with |r| < 1, and integer a ≥ 0,

∞∑
x=a

c · rx =
c · ra

1− r
.

Bound A.7. For any x ∈ R, ex ≥ x+ 1.

Proof. By definition, d
dxe

x = ex > 0, so ex is a convex function (concave upwards). It

is therefore lower-bounded by any of its tangent lines, i.e., any line with slope ex
′

that

goes through the point (x′, ex
′
). In particular, the tangent line at x = 0 has slope 1

and goes through point (0,1), thus we conclude that the line x+ 1 is below ex across

its entire domain.

Bound A.8. For any real x > 0, log x ≤ x− 1.

Proof. Substitute log x for x in Bound A.7 to obtain x ≥ log x+ 1.

Bound A.9. For any non-zero x ∈ R, x ≤ 1
1−e−1/x .

Proof. Substitute −1/x for x in Bound A.7 to obtain e−1/x ≥ −1/x + 1. Negating

both sides and adding 1 yields 1−e−1/x ≤ 1/x. The sides of this inequality are either

both positive or both negative, so taking reciprocals yields 1
1−e−1/x ≥ x.
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Bound A.10. For any non-zero x ∈ R, 1
1−e−1/x ≤ x+ 1.

Proof. Substitute 1/x for x in Bound A.7 to obtain e1/x ≥ 1/x + 1. Since e1/x is

always positive and 1/x+ 1 is negative for x ∈ (−1, 0), taking reciprocals yields

e
−1/x ≤ 1

1/x+1 for x ∈ (−∞,−1] ∪ (0,∞),

e−1/x ≥ 1
1/x+1 for x ∈ (−1, 0).

In the first case, negating both sides and adding 1 yields 1 − e−1/x ≥ 1
x+1 . When

x < −1, both sides are negative, and when x > 0, both are positive. Thus, 1
1−e−1/x ≤

x+ 1 for x ∈ (−∞,−1] ∪ (0,∞). In the second case, negating both sides and adding

1 yields 1− e−1/x ≤ 1
x+1 , where the left-hand side is negative and the right-hand side

is positive for x ∈ (−1, 0). Thus, 1
1−e−1/x ≤ x+ 1 for x ∈ (−1, 0) as well.
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Index of Notation

x D← S The element x is assigned an element from the set S according to the distri-

bution D.

x
$← S The element x is assigned a uniformly random element from the set S; equiv-

alent to x U← S.

bxe The integer nearest to x. When the fractional part of x is 0.5, it is always rounded

up.

2S The power set of the elements S; the set of all possible subsets of S.

[a, b] A query with left endpoint a and right endpoint b. Equal to the range {a, . . . , b}.

A An adversary in a security game.

α A bound on an adversary’s advantage.

Iα(x) Modified bessel function of the first kind. One of the solutions to the differential

equation 0 = x2 d
2y
dx2 + x dydx − x2y − α2y. When the order α is 0, equal to∑∞

k=0
(x2/4)k

k! k! .

Bin (n, p) Binomial distribution with success probability p. Number of successes in n

trials. Prob[X = x] =
(
n
x

)
px(1− p)n−x, E[X] = np.

x ‖ y The concatenation of two strings.

∆ A distribution adaptation parameter indicating how different an estimated distri-

bution D̃ may be from the actual, unknown distribution D; input to an adaptive

FSE scheme’s Setup algorithm.

DS The space of all possible probability distributions over a set S; the subscript may

be removed if the set is clear from context.

D A distinguisher in a security game.

DB A set of records and their values; a table with one attribute.

195



D A statistical distribution, defined by a pmf f or cdf F, sometimes written with its

domain as a subscript, e.g, DM.

E The encoding space of an HE scheme; all members are fixed-length in this thesis.

F Cumulative distribution function; F(x) := Prob[X ≤ x].

f Probability mass function; f(x) := Prob[X = x].

Geo (p) Geometric distribution with success probability p. Number of trials required

to get 1 success.

H(D) The Shannon entropy of the distribution D with pmf f, equal to H(D) =

−
∑
m∈supp(D) f(m) · log f(m), measured in nats.

HFSE
sk,s The set of FSE homophones of all possible messages under key sk for any state s

attainable from an initial state s0 output by the FSE scheme’s Setup algorithm.

HFSE
sk,s (m) The set of FSE homophones of one message m under key sk for any state s

attainable from an initial state s0 output by the FSE scheme’s Setup algorithm.

HHE
s The set of HE homophones of all possible messages for any state s attainable

from an initial state s0 output by the HE scheme’s Setup algorithm.

HHE
s (m) The set of HE homophones of one message m for any state s attainable from

an initial state s0 output by the HE scheme’s Setup algorithm.

Hn The nth harmonic number; Hn :=
∑n
i=1 1/i.

KL (D0,D1) The Kullback–Leibler divergence of distribution D0 with respect to D1,

where both distributions have the same support. Equal to
∑
x∈supp(D0) fD0

(x) ·

log
fD0

(x)

fD1
(x) .

log The natural logarithm.

M The message space of an encryption or encoding scheme.

NegBin (k, p) Negative binomial distribution with success probability p. Number of

trials required to get k successes. Prob[X = x] =
(
x−1
k−1

)
pk(1−p)x−k, E[X] = k/p.

N The number of distinct values an attribute can take. Values are assumed to be

{1, . . . , N}.

nq The total number of queries issued, counting repetition.

nr The number of records in a database.
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Pois (λ) Poisson distribution with rate λ. Number of times an event occurs in an

interval. Prob[X = x] = λx

x!ex , E[X] = λ.

Φ The cdf of the standard normal distribution.

R The set of all records in a database or just their identifiers.

R A subset of records or record identifiers, e.g., those matching a range query.

r A record or record identifier.

rank (of a record or value) The number of records with value less than or equal to

this (record’s) value, rank(0) := 0 by definition.

Skellam (λ, x) Skellam distribution with rates λ1 and λ2. Difference between two Pois-

son random variables with rates λ1 and λ2. Prob[X = x] = e−(λ1+λ2)
(
λ1

λ2

)x/2
·

Ix
(
2
√
λ1λ2

)
,.

λ A security parameter.

supp(D) (of a distribution) The set of elements in the distribution’s domain for which

the pmf f is strictly greater than 0.

Trunc (x, n) Truncating the string x to a length of n bits, removing the bits from the

right.

val The value of a record, in the range {1, . . . , N}.

(x, y) The two rank values corresponding to a query [a, b]. x := rank(a − 1) and

y := rank(b).
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[49] M.-S. Lacharité and K. G. Paterson. Frequency-smoothing encryption: prevent-

ing snapshot attacks on deterministically encrypted data. Cryptology ePrint

Archive, Report 2017/1068, 2017. https://eprint.iacr.org/2017/1068.
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