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Abstract

Due to their fundamental utility within cryptography, prime numbers must be easy
to both recognise and generate. For this, we depend upon primality testing. Both
used as a tool to validate prime parameters, or as part of the algorithm used to
generate random prime numbers, primality tests are found near universally within a
cryptographer’s tool-kit. In this thesis, we study in depth primality tests and their
use in cryptographic applications.

We first provide a systematic analysis of the implementation landscape of primality
testing within cryptographic libraries and mathematical software. We then demon-
strate how these tests perform under adversarial conditions, where the numbers
being tested are not generated randomly, but instead by a possibly malicious party.
We show that many of the libraries studied provide primality tests that are not pre-
pared for testing on adversarial input, and therefore can declare composite numbers
as being prime with a high probability. We also demonstrate that for a number
of libraries, including Apple’s CommonCrypto, we are able to construct composites
that always pass the supplied primality tests.

We then explore the implications of these security failures in applications, focus-
ing on the construction of malicious Diffie-Hellman parameters. These malicious
parameter sets target the public key parameter validation functions found in these
same cryptographic libraries – particularly within the ones that offer TLS imple-
mentations. Using the analysis performed on these library’s primality tests, we are
able to construct malicious parameter sets for both finite-field and elliptic curve
Diffie-Hellman that pass validation testing with some probability, but are designed
such that the Discrete Logarithm Problem (DLP) is relatively easy to solve. We
give an application of these malicious parameter sets to OpenSSL and password
authenticated key exchange (PAKE) protocols.

Finally, we address the shortcomings uncovered in primality testing under adver-
sarial conditions by the introduction of a performant primality test that provides
strong security guarantees across all use cases, while providing the simplest possible
API. We examine different options for the core of our test, describing four different
candidate primality tests and analysing them theoretically and experimentally. We
then evaluate the performance of the chosen test in the use case of prime generation
and discuss how our proposed test was fully adopted by the developers of OpenSSL
through a new API and primality test scheduled for release in OpenSSL 3.0 (2020).
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 14

This chapter gives an overview of the thesis. We provide the motivation for our

research and describe the contributions of this thesis. We also present the overall

structure of the thesis.

1.1 Motivation

It is a truth universally acknowledged, that a single man in possession of a good

fortune, must be in want of a prime [11]. Prime numbers are often referred to as

the building blocks of the natural numbers, but with more recent advancements in

the field of cryptography, we see just how integral primes are to our everyday lives.

With the rising prominence of the Internet, cryptography - the art of writing or

solving codes for secret communication - has evolved into a daily practice for most.

Supported by a deep and fast-growing research field, prime numbers and their use

in cryptography have a new found importance from the very first introduction of

public-key cryptography [48], to cutting edge post-quantum systems such as isogeny-

based cryptography [78].

The ubiquity of prime numbers throughout cryptography ensures that one is never

too far away from relying upon them. For cryptographic schemes in which security

arises from the extreme difficulty of certain computations, for example the factori-

sation of integers into primes or the discrete logarithm problem, the onus of the

security of the scheme can fall onto the prime parameter itself. We see examples of

such usage in public-key cryptography, with protocols like RSA and Diffie-Hellman
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1.1 Motivation

key exchange. We participate in cryptographic protocols like these each time we

use mobile messaging applications, make an online purchase, connect to a website

encrypted with TLS, or when using smart cards through contactless payments and

even government-issued IDs. Since many of these devices are low-power (or compu-

tationally light) we often look to find efficient methods of prime generation on the

device, or source the prime parameters from elsewhere – be it an external server or

even from a standard. This however opens up the possibility of vulnerability, either

by an attack from a malicious party or from weak or erroneous implementation.

A failure in the selection of prime parameters can be disastrous. In the case of RSA,

there are numerous examples of large scale implementations of parameter generation

that have led to the compromise of the system’s security as a whole. For example,

RSA smart card moduli were generated using a predictable underlying structure

which therefore could be reverse engineered to recover the private key factors by

Coppersmith’s algorithm [114]. As another example, a faulty pseudorandom number

generator (PRNG) was used to generate RSA moduli for use in digital certificates,

and led to the trivial factorisation of public keys that shared a common factor [73].

Similarly, we see that poor choices of primes taken from standards for use in Diffie-

Hellman admit the use of small subgroup attacks [156]. We have even seen composite

numbers believed to be prime being used in the Diffie-Hellman parameters used by

a command-line data transfer utility socat [137].

A fundamental tool in a cryptographic developer’s tool-kit is the primality test. This

is an algorithm used to classify a given number as either composite or prime. Primal-

ity tests are implemented near universally throughout every cryptographic library or

computer algebra system (in mathematical software). These primality tests provide

utility in two main forms. The first is part of a fundamental step in prime genera-

tion. Since many cryptographic protocols require fresh prime parameters, a library

must provide the ability to generate them as and when needed. There are numerous

ways of performing prime generation, but a popular technique – due to it producing

uniformly random primes in a fairly efficient manner, is to simply generate random

integers of the desired bit length and test them for primality using a primality test.

The second significant use case of primality testing in this setting is its use in val-

idation and checking functions. These, primarily found in cryptographic libraries

that offer TLS implementations (for example OpenSSL, Botan, Bouncy Castle, and

10



1.1 Motivation

NSS) are functions that take as input a parameter set – often public key parameter

sets used for RSA or Diffie-Hellman, and perform various tests upon each parameter

to verify that it is correct. This could be a check that a prime parameter really is

prime, or can include other checks such as ensuring that the subgroup generated by

a generator is of the correct order.

However these primality tests are far from perfect. While there do exist deter-

ministic primality tests that are able to correctly distinguish prime from composite

with absolute certainty (even some proven to do so in polynomial time [4]) these

algorithms are far too slow and impractical for everyday use, particularly on large

inputs like those abundant in cryptography. We therefore rely upon probabilistic

testing, which offers us great performance and practicality, but comes at a cost of

accuracy. One vastly popular probabilistic primality test which sees use in nearly

every cryptographic library and piece of mathematical software is the Miller-Rabin

test [106, 135]. The accuracy of the Miller-Rabin test is very well understood, from

Monier [108] and Rabin [135] we know that for an odd composite number n, a single

round of the Miller-Rabin test will declare n as prime with probability no greater

than 1/4. Therefore by repeated testing we are able to reduce the error probability

down to a very small margin of error.

A Miller-Rabin test requires as input two parameters, the number n we wish to test

for primality, and an integer a with 1 ≤ a < n which we call a base. For any odd n >

1, we can write n = 2ed+1 where d is odd. We know that if n is prime, then for any

integer 1 ≤ a < n, either ad ≡ 1 mod n or a2
id ≡ −1 mod n for some 0 ≤ i < e.

The Miller-Rabin test simply tests if either of these two conditions hold for the given

base a. If neither condition holds, then we have proven n as composite otherwise, n

is declared as probably prime. The Monier-Rabin [108, 135] theorem states that for

any odd composite n 6= 9, the number of bases a for which either of the above two

conditions hold is at most ϕ(n)/4 (where ϕ is Euler’s totient function). A result

of this is that the probability that an odd composite number n is declared prime

by t rounds of the Miller-Rabin test is at most 4−t. These are known as the worst-

case error estimates, as they give the largest possible probability that a composite

number is falsely classified as prime by the test.

In practice we may be presented with a large odd number n for which we are not sure

11



1.1 Motivation

if it is prime or composite. Suppose that this number n has been chosen randomly

from a set Nk of k-bit integers (as would be the case in random prime generation

by primality testing). Say that we continue to randomly choose numbers n from Nk

until we find one that passes t rounds (without failing any) of the Miller-Rabin test

when choosing bases uniformly at random. From the Monier-Rabin theorem as given

above, it may be tempting to think that the probability that this procedure returns

a composite number is 4−t for any bit-length k. However, as discussed in [17, 41],

such a conclusion is fallacious. This is due to the distribution of prime numbers.

In particular, because the primes are more sparsely distributed as k grows, it may

be more likely to observe an event with probability 4−t than the event that the

randomly chosen number is prime. Moreover, the work of [41] goes on to show that

it is a rare occurrence to find composite numbers n that meet the worst-case upper

bound of ϕ(n)/4 on the number of bases that indicate n is prime. That is, for most

n, the probability that a single round of Miller-Rabin would declare n as prime is

considerably smaller than 1/4. Therefore, when primality testing on random input

of bit size k, we instead use bounds known as average-case error estimates. These

take into consideration the distribution of the primes of this bit-size, and the rare

occurrence of composites that reach the Monier-Rabin bound. The average-case

error estimates are very useful in this context, as they can be used to give the

number of rounds of Miller-Rabin that need to be performed on a random input

to achieve a given error probability. We therefore see them used extensively when

determining how many rounds of testing to perform when generating prime numbers

in cryptographic libraries.

The distinction between working in the average-case or worst-case error estimates

must however be very carefully considered. While the average-case estimates provide

very precise error bounds when primality testing random input with Miller-Rabin,

these bounds must be reduced back to the worst-case error estimates as soon as

there is a possibility that input is not random. This distinction is perfectly illus-

trated by the two previously mentioned largest uses of primality testing in crypto-

graphic applications: prime generation and prime checking. Many primality tests in

cryptographic libraries are built for the main purpose of generating primes, and are

therefore mostly testing input generated locally within the library. For example, by

default the primality test in OpenSSL (pre-August 2018) utilises the average-case

error estimates given in [41], which propagated into many informative sources such
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1.1 Motivation

as the Handbook of Applied Cryptography [105] and standards like the Digital Sig-

nature Standard (DSS) FIPS PUB 186-4 [84], to promise an error rate less than 2−80

when testing random input in OpenSSL’s test. However, if the same primality test is

made available as an external API or used elsewhere within the library, for example

within a public key parameter checking function, the assumption that the numbers

tested are random may no longer hold. In this case, we must work using instead the

worst-case error estimates. These can drastically differ from the average-case. Again

using the example of OpenSSL (pre-August 2018) the same primality test discussed

above was used within their own Diffie-Hellman parameter checking function. Here

OpenSSL called the test again using the average-case error estimates to calculate

how many rounds of Miller-Rabin to perform, when the purpose of the test was

to identify erroneous (or possibly malicious) parameters from an untrusted source.

This meant that when testing a Diffie-Hellman prime parameter p for primality of

size 1300 bits or more, just two rounds of Miller-Rabin were performed. Thus if a

composite number that met Monier-Rabin bound was tested, it would have proba-

bility 1/16 of being accepted as prime by this parameter checking function. This is

a vast difference from the assurance of error probability less than 2−80 given in the

average-case setting. The difference in the error estimates can worsen even further

if the implementation of the Miller-Rabin test chooses its bases for testing in a de-

terministic manner. In this case, carefully constructed malicious composite numbers

can be guaranteed to be declared prime with any amount of repeated testing.

While it is the responsibility of the library to provide sufficient documentation to

indicate how its primality test is being performed and give bounds on the error asso-

ciated with probabilistic primality testing, often the onus of distinguishing between

the use cases and error bounds ultimately falls upon the end-user of the library. In

some cases, particularly to a user or developer who is not familiar with the subtle

distinction between the theoretical bounds given, the documentation provided by

many cryptographic libraries is not sufficient. Moreover, some of the APIs provided

are insecure by default (like that seen in OpenSSL), or invite the user to misuse the

test. Gutmann [70] identified the need to carefully define cryptographic APIs, rec-

ommending to “[p]rovide crypto functionality at the highest level possible in order

to prevent users from injuring themselves and others through misuse of low-level

crypto functions with properties they aren’t aware of.”. Later many others within

the cryptographic community identified the need to design APIs which can be easily
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used in a secure fashion (see [164, 68] as examples of this).

1.2 Contributions

In this thesis we study in depth primality tests and their use in cryptographic appli-

cations. We provide a systematic analysis of primality testing in a wide breadth of

popular cryptography libraries and mathematical software. Our analysis ranges from

the fundamental algorithms and the standards which give instruction for their use,

to the implementation across cryptographic libraries and mathematical software,

to the creation of carefully constructed composite numbers that have the highest

probability of being declared prime by these tests. We present ways in which to

create public key parameter sets that exploit the probabilistic nature of primality

testing to produce malicious parameter sets for both elliptic curve and finite field

Diffie-Hellman key exchange that offer an adversary an advantage in breaking the

underlying hardness assumption of the scheme. It is the aim of this work to high-

light attacks of this nature, with the aim of preventing them from being practical

by promoting more resilient testing. We attempt to achieve this by outlining the

key areas of error and misconception and using these to create new primality testing

procedures that are efficient and secure across both the average-case and worst-case

error settings. We also use our findings in primality testing as a case study for the

design and implementation of a “misuse-resistant” API, that is, one which provides

reliable results in all use cases even when the developer is crypto-naive.

1.2.1 Thesis Structure

In this section we highlight our main contributions, and give an overview of the

chapters in this thesis and the problems by which they are motivated.

Chapter 2. This chapter provides the necessary preliminaries needed for the work

to follow. We give an overview of primality testing, in which we introduce the four

core primality tests we shall be discussing throughout the work. We also introduce

a number of public-key cryptographic primitives and concepts that will be called on

throughout the subsequent chapters. These are not designed to be comprehensive
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introductions, but rather serve as a solid foundation for the rest of the thesis. We

note that, where necessary, all other chapter-specific preliminaries are introduced in

the relevant chapters.

Chapter 3. In this chapter we introduce known techniques for producing pseudo-

primes for the Miller-Rabin and Lucas primality tests and extend them with our

target applications in mind. We then survey the implementation landscape of pri-

mality testing in cryptographic libraries and mathematical software, evaluating their

performance in the adversarial setting. We go on to examine the implications of our

findings for applications, focussing on Diffie-Hellman parameter testing. The chapter

ends with a discussion on avenues for improving the robustness of primality testing

in the adversarial setting.

Chapter 4. In this chapter we extend our analysis on the generation of pseudo-

primes for the Miller-Rabin test. We introduce methods to generate composite num-

bers with more than three prime factors, that are declared prime by a Miller-Rabin

test with the highest probability. We then extend current methods of producing

such numbers, to enable us to efficiently generate pseudoprimes with the particular

properties required to form malicious Diffie-Hellman parameter sets that appear to

be safe primes. These parameter sets pass standard approaches to parameter val-

idation with some probability, but are designed such that the Discrete Logarithm

Problem (DLP) is relatively easy to solve. We give an application of this malicious

parameter set to OpenSSL (which will only accept safe prime parameters for DH)

and password authenticated key exchange (PAKE) protocols. While the main focus

of this chapter is on the finite field setting, we also briefly study malicious parameter

sets based on pseudoprimes in the elliptic curve Diffie-Hellman (ECDH) setting. We

show how such malicious ECDH parameters lead to attacks on PAKEs running over

elliptic curves, as well as more traditional ECDH key exchanges.

Chapter 5. In this chapter we set out to design a performant primality test that

provides strong security guarantees across all use cases and that has the simplest

possible API. We examine different options for the core of our test, describing four

different candidate primality tests and analysing them theoretically and experimen-

tally. We then evaluate the performance of the chosen test in the use case of prime

generation and discuss how our proposed test was fully adopted by the developers of
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OpenSSL through a new API and primality test scheduled for release in OpenSSL

3.0 (2020).

Chapter 6. In this chapter we conclude and briefly mention avenues for further

work.

1.2.2 OpenSSL Timeline

Throughout all three publications included in this thesis, we worked closely with

the developers of OpenSSL. This included the disclosure of our findings before each

publication, as well as an ongoing contribution to the development of OpenSSL, with

the mitigations due to our results. As a consequence of this (and of course natural

development), OpenSSL changed significantly over the three years of our analysis.

This means that the parts of OpenSSL we analyse in one chapter may have changed

significantly in the next.

Therefore in the process of consolidating this work into a thesis, we are sure to be

as clear as possible on the version of OpenSSL being analysed at any one time. To

this end, we now present a timeline of the different releases of OpenSSL relevant to

this thesis, with a short explanation of the changes to OpenSSL made based on our

contributions and their corresponding chapters.

Chapter 3. The work of Chapter 3 was mainly conducted in 2018. At this time

OpenSSL were preparing the release of 1.1.1 - the new long term support (LTS)

version of OpenSSL. Chapter 3 therefore analysed the most current version of the

pre-release for 1.1.1 which was version 1.1.1-pre6 (May 2018) [122]. We note that

the components studied were largely stable in other LTS releases such as 1.1.0h [120]

and 1.0.2o [118] (to the extent in which the analysis performed still applies to the

primality tests in these other versions), and remained similar to that of the early

releases (version 0.9.5 of February 2000).

In August 2018 we reached out to OpenSSL to disclose the findings discussed in

Chapter 3 before the work became public. At this time OpenSSL were in the process

of amending their primality testing code to make it FIPS-complaint [117]. In light
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of this, OpenSSL released version 1.1.1-pre9 [123], 1.1.0i [121] and 1.0.2p [119] (Aug

2018) that changed part of the primality testing code we had analysed (1.1.1pre7

and 1.1.1pre8 remained the same as 1.1.1pre6).

Because the changes made between 1.1.1-pre6 and 1.1.1-pre9, 1.1.0h and 1.1.0i,

1.0.2o and 1.0.2p were motivated by FIPS compliancy mostly made before our dis-

closure, they do not consider the adversarial scenario on which this chapter focuses,

and therefore the default settings in OpenSSL remain weak in that scenario. While

the documentation given for the affected APIs were updated at this time to reflect

our findings, we will see how we further helped OpenSSL to address this issue in

Chapter 5.

Chapter 4. The work of Chapter 4 was conducted simultaneously with the work

done on Chapter 3 in 2018 but continued longer on into January 2019. Therefore

this work again started analysis on OpenSSL 1.1.1-pre6, 1.1.0h and 1.0.2o, but also

had to reflect the changes made to the primality tests in versions 1.1.1-pre9, 1.1.0i

and 1.0.2p that occurred throughout this work. In Chapter 4 we therefore refer to

versions of OpenSSL both before and after this update.

The update mainly concentrated on modifying the default rounds of Miller-Rabin

performed by OpenSSL’s primality test. More specifically, the function that gave the

number of rounds of Miller-Rabin to perform based on the bit-size of the number

being tested (see Table 3.4) was modified with the aim of achieving 128 bits of

security instead of 80 bits (see Table 5.1). We note that previously to this, the last

time these iteration counts were changed was in February 2000 (OpenSSL version

0.9.5), before which they were all 2, independent of the bit-size of the number being

tested.

This work resulted in a contribution to the OpenSSL codebase by a pull request to

increase the number of rounds of Miller-Rabin performed during the primality test

on Diffie-Hellman parameters p and q during the check found in DH check. This

request was accepted by reviewers and merged into OpenSSL in March 2019 and

was utilised as part of OpenSSL 1.1.1c [125] in May 2019.
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Chapter 5. The work of Chapter 5 was conducted in 2019 after the release of

OpenSSL version 1.1.1. We therefore studied the most recent version available at

the time, which was OpenSSL 1.1.1c May 2019. The specific parts of the code

studied remain almost completely unchanged in the most current version 1.1.1d [126]

September 2019.

In June 2019 we contacted the OpenSSL developers to communicate the findings

of Chapter 5. These suggestions were adopted with only minor modifications: the

forthcoming OpenSSL 3.0 (scheduled for release in Q4 of 2020) will include our

simplified API for primality testing, and the OpenSSL codebase has been updated

to use it almost everywhere (the exception is prime generation, which uses the old

API in order to avoid redundant trial division). Moreover, OpenSSL will now always

use our suggested primality test (64 rounds of Miller-Rabin) on all inputs up to 2048

bits, and 128 rounds of Miller-Rabin on larger inputs. This represents the first major

reform of the primality testing code in OpenSSL for more than 20 years.
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Chapter 2

Background and Preliminaries

Contents

2.1 Mathematical Background . . . . . . . . . . . . . . . . . . 19

2.2 The Diffie-Hellman and Discrete Log Problems . . . . . 23
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2.4 Primality Testing . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Prime Generation . . . . . . . . . . . . . . . . . . . . . . . 38

This chapter provides a mathematical background on various aspects of number the-

ory and abstract algebra. We also give background material on the Diffie-Hellman

and discrete log problems, elliptic curve cryptography, and on primality testing and

its use in prime number generation

2.1 Mathematical Background

In this section we give a short introduction to the fundamental constructs in number

theory and abstract algebra that are required by the following work. These are by

no means a complete background, but aid in keeping the material required for the

digestion of this thesis self-contained, and establish the chosen notation.

2.1.1 The Prime Number Theorem

The prime number theorem [143] gives an asymptotic form for the prime counting

function π(x), which counts the number of primes less than or equal to some integer
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x. It states that:

lim
x→∞

π(x)

x/ lnx
= 1.

This means that for large values of x, π(x) is closely approximated by the expression

x/ lnx. We shall be referring to this approximation often throughout this thesis.

2.1.2 The Group Z∗n

In modular arithmetic, the integers that are relatively prime to n in the set Zn =

{0, 1, . . . , n−1} of n non-negative integers form a group under multiplication modulo

n, called the multiplicative group of integers modulo n. This group is defined as, for

any non-negative integer n

Z∗n = {a ∈ {0, 1, . . . , n− 1} | gcd(a, n) = 1}.

This group is fundamental in number theory and has found applications in cryp-

tography, integer factorisation, and primality testing. It is an abelian, finite group

whose order is given by Euler’s totient function ϕ(n).

Definition 2.1 (Euler’s totient function). Let n be a non-negative integer. Euler’s

totient function is defined as

ϕ(n) = #(Z∗n) = #{a ∈ {0, 1, . . . , n− 1} | gcd(a, n) = 1}.

In particular, if n is prime then Z∗n = {a | 1 ≤ a ≤ n− 1} and thus ϕ(n) = n− 1.

2.1.3 Cyclic Groups and Primitive Roots

We now introduce another important class of groups, known as cyclic groups. A

cyclic group is a group that can be generated by a single element g (the group

generator) and is formally defined as follows.

Definition 2.2 (Cyclic group). A group G is cyclic if there exists an element a ∈ G
such that for each b ∈ G there is an integer i with b = ai. Such an element a is

called a generator of G
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By Gauss [59] we know that the group Z∗n is cyclic if and only if n is 1, 2, 4, pk or

2pk, where p is an odd prime and k > 0. The generator of a cyclic group is known as

a primitive element of Z∗n. In this thesis we are concerned only with groups of the

form Z∗p for some prime p, in this case a primitive element is more formally defined

by the following theorem:

Theorem 2.1 (Primitive Root Theorem [145]). Let p be a prime number. Then

there exists an element g ∈ Z∗p whose powers give every element of Z∗p, i.e.,

Z∗p = {1, g, g2, . . . , gp−2}.

Elements with this property are called primitive roots of Zp or primitive elements of

Z∗p.

2.1.4 Lagrange’s Theorem

Over the next few sections we shall see how primitive elements are used within

public-key cryptography through the Diffie-Hellman key exchange protocol. Aside

from primitive elements, we also often require elements in the group that generate

only a proper subgroup of size q (i.e. one in which the subgroup q is not equal to

the whole group). To describe how to achieve this, we more formally introduce the

notion of order.

Definition 2.3. Let G be a group and a ∈ G. The order of a is defined to be the

smallest positive integer t such that at = 1, provided that such an integer exists. If

such a t does not exist, then a is said to have infinite order.

From the introduction of this definition we obtain a useful corollary of Theorem 2.1.

Corollary 2.1. Let p be a prime number. The primitive elements of Z∗p are the

elements of Z∗p having order p− 1.

For a finite group G, the order of a group |G| is the number of elements in G, known

as the cardinality of G. We can now introduce the following.

Theorem 2.2 (Lagrange’s Theorem [74]). Let G be a finite group and let a ∈ G.

Then the order of a divides the order of G. More precisely, let n = |G| be the order
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of G and let q be the order of a, i.e. aq is the smallest positive power of a that is

equal to 1. Then

an = 1 and q | n.

By Lagrange’s Theorem, we know that when working in the group Z∗n, the order of

the group is ϕ(n), and thus the order q of any element a ∈ Z∗n must be such that

q | ϕ(n). If the order of the group is prime, say p, then we know that ϕ(p) = p− 1

and therefore the order q of any a ∈ Z∗p must be such that q | p− 1.

2.1.5 Finding Primitive Elements and Elements of Order q

Finding primitive elements of Z∗n or elements of order q with q | ϕ(n) are both

common requirements of cryptographic applications. Given a cyclic group G of

order n, then for any divisor q of n we know that G has exactly ϕ(q) elements of

order q [58]. In particular, G has exactly ϕ(n) generators, and hence the probability

of a random element in G being a generator is ϕ(n)/n. Using the lower bound for

the Euler totient function [140], this probability is at least 1/(6 ln lnn). We can

therefore introduce Algorithm 1 as an efficient randomised algorithm for finding a

generator of a cyclic group, given the prime factorisation of the group order n.

Algorithm 1 Finding a generator of a cyclic group

Input a cyclic group G of order n, and the prime factorisation n = pe11 p
e2
2 · · · p

ek
k .

Output a generator g of G.
Step 1: choose a random element g in G.

1: g ←$ G
Step 2: compute the order of g.

2: for i = 1 to k do
3: b← gn/pi

4: if b = 1 then
5: go to Step 1
6: end if
7: end for

Step 3: output result.
8: Return g

If we instead wish to find an element of (high) order q, and not a generator then we

may do the following: given a generator g in a cyclic group G of order n, and given

a divisor q of n, an element h of order q can be efficiently obtained by computing
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h = gn/q. If q is a prime divisor of the order of n of a cyclic group G, then we are

able to find an element h ∈ G of order q without first having to find a generator of

G: select a random element g ∈ G and compute h = gn/q; repeat until h 6= 1.

2.2 The Diffie-Hellman and Discrete Log Problems

The Diffie-Hellman (DH) problem sits at the very foundation of public-key cryp-

tography [48]. Since its introduction, many cryptographic systems have been con-

structed from base assumptions on variants of the DH problem. Two of the most

important variants are the computational Diffie-Hellman (CDH) and the decisional

Diffie-Hellman (DDH) problems.

Definition 2.4 (CDH problem). Fix a cyclic group G and a generator g ∈ G.

Given elements ga, gb ∈ G, the computational Diffie-Hellman problem is to compute

an element h such that h = gab.

Definition 2.5 (DDH problem). Fix a cyclic group G and a generator g ∈ G. Given

ga, gb ∈ G for uniformly and independently chosen a, b and a third element gz ∈ G,

the decisional Diffie-Hellman problem is to decide if gz = gab or whether gz was

chosen uniformly at random from G.

The CDH assumption is a weaker assumption than the DDH assumption. This is

due to the fact that if the CDH problem was easy, we would be able to compute

gab from ga and gb and therefore given the tuple (ga, gb, gz), distinguishing gz = gab

from a uniform element in G would also be easy.

2.2.1 The Discrete Log Problem

Both the CDH and DDH problems are related to the discrete log problem (DLP).

Definition 2.6 (Discrete Log Problem (DLP)). Given a group G, a generator g ∈ G
and an element h ∈ G, the discrete log problem is to find an integer a such that

ga = h.
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If the discrete log problem in some group G is easy, then the CDH problem is

too: given ga and gb, it would be possible to efficiently compute the discrete log

a = logg g
a, then output gab by simply raising gb to the power a. It therefore also

follows that if the discrete log problem in some group G is easy, then the DDH

problem is too. However, the converse of these statements does not seem to be true,

and there are even examples of groups in which the discrete log and CDH problems

are believed to be hard despite the DDH problem being easy (cf. [43, 101, 103]).

2.2.2 Prime Parameters and Safe Primes

Although there are various classes of cyclic groups in which the discrete log and

Diffie-Hellman problems are believed to be hard, the most preferred are the cyclic

groups of prime order. There are multiple reasons for this choice, with some based

on usability features such as: finding a generator in prime order groups is trivial

(whereas finding a generator of a non-prime order group requires the full factorisation

of the order), and multiplicative inverses exist for all non-zero elements in a prime

order group. But we also choose to use prime order groups for security benefit, as

the discrete log problem is hardest in prime order groups. This is a consequence

of the Pohlig-Hellman algorithm, which shows that solving the discrete log problem

in a group of order q is easier if the group order is composed completely of small

prime factors. More precisely, the cost of solving the discrete log problem using the

Pohlig-Hellman algorithm is O(q
1/2
i ) where qi is the largest prime factor of the group

order q.

To ensure that the discrete log problem is hard to solve, we can select a group order q

that is prime, or contains a large prime factor. A typical recommendation is to work

over Z∗p where p is a safe prime, that is, to select p = 2q+1 for some prime q, where g

should generate the group of order q modulo p. The size of the prime p is commonly

chosen to be 1024, 2048, 3072 or 4096 bit. These sizes are chosen with respect to

the industry’s current understanding of the best known algorithms for solving the

discrete log problem as well as an estimate of computational resources [3]. These

primes chosen must be large enough to thwart subexponential algorithms for solving

the discrete log problem such as the Number Field Sieve. For p that are not safe

primes, the group order q can be much smaller than p. However, to maintain a high
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level of security, q must still be large enough to thwart generic attacks, which for

prime q run in time O(q1/2). A common parameter choice is to use a 160-bit q with

a 1024-bit p or a 224-bit q with a 2048-bit p. Diffie-Hellman parameters with p and q

of these sizes are suggested for use and standardised in Digital Signature Algorithm

(DSA) signatures in FIPS 186–4 [84].

We focus explicitly on how the security of schemes based on the Diffie-Hellman prob-

lem break down when we are able to trick implementations into believing they are

working with prime parameters (both safe and non-safe) that are actually composite

in Chapters 3 and 4.

2.2.3 Security Level and Generic Attacks

Throughout this thesis we shall often be referring to the security level, or the act

of achieving n-bits of security. In general, a cryptographic system offers an n-bit

security level if a successful generic attack can be expected to require an effort of

approximately 2n operations. A generic attack against a cryptographic primitive

is one that can be run independently of the details of how that primitive is imple-

mented. The security level is a measure for the security that may be attained and

allows us to more explicitly define the difficulty of problems in terms of effort, and

therefore elaborate on the terms “easy” or “hard”. The security level is also par-

ticularly helpful when comparing different cryptographic schemes with each other,

something we utilise when comparing finite field and elliptic curve Diffie-Hellman in

Table 2.1 later in this section.

Generic attacks for solving the discrete log problem include algorithms such as

Shanks’ baby-step/giant-step method [144], Pollard’s rho algorithm [131] and the

Pohlig-Hellman algorithm [130].

2.2.4 Pollard Rho

The Pollard rho [132] method can be used to solve the discrete log problem ga = h

in a finite group G where g ∈ G is a generator, h ∈ G and a ∈ Z. We are interested
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in the case where the group G is the specific group Z∗p of nonzero residues modulo p

for some prime p > 3. The Pollard rho method is based upon the observation that

if one can find aj , bj , ak, bk ∈ Z∗p such that gbjhaj = gbkhak with aj 6= ak (mod p),

then one can solve the discrete log problem as:

h = g(bj−bk)(ak−aj)
−1 (mod p−1) (2.1)

To find such values we generate a pseudorandom sequence of integer pairs (ai, bi)

modulo (p − 1) and a sequence of integers xi = haigbi (mod p), starting from the

initial values a0 = b0 = 0, x0 = 1 where the i + 1 term is constructed from the ith

term as:

(ai+1, bi+1) =


((ai + 1) (mod p− 1), bi), if 0 < xi <

1
3p,

(2ai (mod p− 1), 2bi (mod p− 1)), if 1
3p < xi <

2
3p,

(ai, (bi + 1) (mod p− 1)), if 2
3p < xi < p,

and so

xi+1 =


hxi (mod p), if 0 < xi <

1
3p,

x2i (mod p), if 1
3p < xi <

2
3p,

gxi (mod p), if 2
3p < xi < p.

If we can find such a pair j, k with j < k such that xj = xk, then we have gbjhaj =

gbkhak , and thus can use (2.1) to solve the discrete log problem for a. Floyd’s cycle-

finding algorithm [85] can be utilised to efficiently find such elements xj , xk with an

expected running time O(
√
p).

2.2.5 Pohlig-Hellman

We now give further details on the Pohlig-Hellman algorithm [130], due to its ef-

fectiveness in solving the discrete log problem in a group G when all non-trivial

factors of the group order q are small, and known – something we shall utilise later

in Chapter 4.

Suppose we are given a generator g of a group G of order q, an element h ∈ G, and

wish to find the discrete log x such that gx = h. Given a factorisation of the group

order q =
∏k
i=1 qi, where qi are pairwise relatively prime (this therefore does not

need to be a complete factorisation), we know that
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(
gq/qi

)x
= (gx)q/qi = hq/qi for i = 1, . . . , k.

Therefore, setting gi = gq/qi and hi = hq/qi , we have k instances of a discrete log

problem gxi = hi in k smaller groups of order qi respectively.

We then solve each of these k discrete log problems (using any suitable algorithm)

to produce a set of solutions {x1, x2, . . . , xk}, with xi ∈ Zqi , for which gxii = hi = gxi

and therefore x = xi mod qi for all i.

The Chinese Remainder Theorem (CRT) allows us to uniquely determine the so-

lution to the discrete log problem x mod q, using the k solutions {x1, x2, . . . , xk},
with xi ∈ Zqi , for which gxii = hi = gxi .

Theorem 2.3 (Chinese Remainder Theorem). Given pairwise relatively prime in-

tegers q1, q2. . . . , qk and arbitrary integers x1, x2, . . . , xk, the system of simultaneous

congruences

x ≡ x1 (mod q1)

x ≡ x2 (mod q2)

...

x ≡ xk (mod qk)

has a solution x. Moreover, the solution x is unique modulo q =
∏k
i=1 qi and can be

found efficiently (in O((log n)2) operations) by taking the least non-negative residue

modulo q of

x =
k∑
i=1

xiyizi

where yi = q/qi and the zi are inverses defined by ziyi ≡ 1 (mod qi).

The implication of this is to choose to work in group q of prime order where possible.

2.2.6 Finite Field Diffie-Hellman Key Exchange

Diffie-Hellman key exchange provides a method of securely exchanging cryptographic

keys over a public channel between two parties that require no prior knowledge of
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each other. Suppose Alice and Bob want to participate in a key exchange. In finite-

field Diffie-Hellman, Alice and Bob first agree on a prime p and a generator g of a

multiplicative subgroup modulo p. Alice sends ga (mod p) to Bob and Bob sends

gb (mod p) to Alice; each then computes a shared secret gab (mod p). The CDH

assumption states that an adversary observing the exchange cannot compute gab,

furthermore the DDH assumption states that an adversary cannot distinguish gab

from a random value gz. However, Alice and Bob can easily compute gab (mod p)

by using their private exponents to compute (gb)a (mod p) and (ga)b (mod p) re-

spectively.

2.3 Elliptic Curve Cryptography

In this section we introduce the basics of elliptic curves and elliptic curve cryptog-

raphy (ECC). We are only concerned with a particular use case of elliptic curves for

their use in Diffie-Hellman key exchange. We therefore only introduce the necessities

required for further work in Chapter 4.

As well as being based on modular arithmetic and groups in finite fields, Diffie-

Hellman can also be performed based upon groups consisting of points on an elliptic

curve. While there exist sub-exponential algorithms for solving the discrete log prob-

lem over the multiplicative group of a finite field (such as Coppersmith’s algorithm

for F∗2n [36] or the number field sieve (NFS) [64, 79, 142]), there are currently no

known1 sub-exponential algorithms for solving the discrete log problem in appropri-

ately chosen elliptic-curve groups. The consequence of this is that we are able to

achieve n-bits of security using elliptic-curve groups of order 2n-bits. This means

that practically, elliptic-curve based Diffie-Hellman can use significantly smaller pa-

rameters than a finite field counterpart, resulting in more efficient implementations.

See Table 2.1 for a direct comparison given by the US National Institute of Standards

and Technology (NIST) [16].

1This is however a very active field of research, with recent breakthroughs including conjectured
sub-exponential algorithms based upon heuristic assumptions and experimental evidence, see [128]
and a broader discussion of the state of the art in [56].
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Effective Order-q Elliptic-Curve
Key Length Subgroup of Z∗p Group Order q

112 p : 2048, q : 224 224
128 p : 3072, q : 256 256
192 p : 7680, q : 384 384
256 p : 15360, q : 512 512

Table 2.1: A summary of the key lengths (in bits) recommended by NIST
to achieve n-bits of security (effective key length) when using finite field
and elliptic-curve discrete log based primitives.

2.3.1 Elliptic Curves

An elliptic curve over a prime field Fp (with p > 3) in short Weierstrass form is the

set of solutions (x, y) ∈ Fp × Fp of an equation of the type y2 = x3 + ax+ b, where

a, b ∈ Fp satisfy 4a3 + 27b2 6= 0, together with the point at infinity O.

By introducing a group operation (namely point addition) this set of solutions form

an abelian group, called the elliptic-curve group of E. Let P1, P2 6= O be points on

a given curve E, with P1 = (x1, y1) and P2 = (x2, y2). The addition rule is defined

as follows [83].

1. If x1 6= x2, then P1 + P2 = (x3, y3) with

x3 = m2 − x1 − x2 (mod p) and y3 = m(x1 − x3)− y1 (mod p),

where m = y2−y1
x2−x1 (mod p).

2. If x1 = x2 but y1 6= y2 then P1 = −P2 and so P1 + P2 = O.

3. If P1 = P2 and y1 = 0 then P1 + P2 = 2P1 = O.

4. If P1 = P2 and y1 6= 0 then P1 + P2 = 2P1 = (x3, y3) with

x3 = m2 − 2x1 (mod p) and y3 = m(x1 − x3)− y1 (mod p),

where m =
3x21+A
2y1

(mod p).

Consequently, for a non-negative integer k, it is possible to define the scalar multi-

plication [k]P of a point P on the curve as the successive k-time addition of a point

P with itself.
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2.3.2 The Elliptic Curve Discrete Log Problem

Using the notation established above, we can now introduce the analogue of the

discrete log problem for elliptic curves, known as the elliptic curve discrete log

problem (ECDLP).

Definition 2.7 (Elliptic Curve Discrete Log Problem). Suppose E is an elliptic

curve over Fp and P ∈ Fp×Fp is a point on E. Given a scalar multiple Q of P , the

elliptic curve discrete log problem is to find k ∈ Z such that Q = [k]P .

This problem forms the fundamental building block for elliptic curve cryptogra-

phy, and has been a major area of research in computational number theory and

cryptography for several decades. We now go on to describe one of its uses in the

Diffie-Hellman key exchange protocol for elliptic curves.

2.3.3 Elliptic Curve Diffie-Hellman

We again consider the scenario in which two individuals, Alice and Bob, wish to

securely create a shared cryptographic key over a public channel. For this we use

elliptic curve Diffie-Hellman, described as follows.

Alice and Bob first agree on a public elliptic curve E and a public point P ∈ E

which generates a subgroup of order n. (In many scenarios, n is prime, or admits

of a large prime factor. We look at precisely how the security of the scheme can

be broken down when this is not the case, in Chaper 4.) Alice selects at random

her private key ka ∈ [2, n − 2] and computes her public key (a point on the elliptic

curve E) Q = [ka]P . She then sends this public key to Bob. Bob also selects at

random his private key kb ∈ [2, n − 2] and computes his public key R = [kb]P . He

sends his public key R to Alice. Alice and Bob can then construct their mutual

shared key by computing K = [ka]R and K = [kb]Q, respectively. Because of the

group structure of the elliptic curve, we know these two K values are equivalent,

since [kb]([ka]P ) = [kbka]P = [kakb]P = [ka]([kb]P ).
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2.4 Primality Testing

A primality test is an algorithm used to determine whether or not a given number

is prime. Primality tests come in two different varieties: deterministic and proba-

bilistic. Deterministic primality testing algorithms prove conclusively that a number

is prime, but they tend to be slow and are not widely used in practice. A famous

example is the AKS test [4]. We do not discuss such tests further in this thesis,

except where they arise in certain mathematical software.

Probabilistic primality tests make use of arithmetic conditions that all primes must

satisfy, and test these conditions for the number n of interest. If the condition does

not hold, we learn that n must be composite. However, if it does hold we may only

infer that n is probably prime, since some composite numbers may also pass the

test. By making repeated tests, the probability that n is composite conditioned on

it having passed some number t of tests can be made sufficiently small for crypto-

graphic applications. A typical target probability is 2−80, cf. [105, 4.49]. A critical

consideration here is whether n was generated adversarially or not, since the bounds

that can be inferred on probability may be radically different in the two cases; more

on this in Chapters 3 and 4.

We now discuss four widely-used tests: the Fermat, Miller-Rabin, Lucas, and Baillie-

PSW tests.

2.4.1 Fermat Test

The Fermat primality test is based upon the following theorem.

Theorem 2.4 (Fermat’s Little Theorem). If p is prime and a is not divisible by p,

then

ap−1 ≡ 1 (mod p).

To test n for primality, one simply chooses a base a and computes an−1 (mod n).

If an−1 6≡ 1 (mod n), then we can be certain that n is composite. If after testing

a variety of bases ai, we find that that they all satisfy an−1i ≡ 1 (mod n), we may
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conclude that n is probably prime.

It is well known that there exist composite numbers that satisfy an−1 ≡ 1 (mod n)

for all integers a that are not divisible by n. These numbers completely thwart the

Fermat test, and are known as Carmichael numbers. These will be of relevance in

the sequel. The following result is fundamental in the construction of Carmichael

numbers.

Theorem 2.5 (Korselt’s Criterion [88]). A positive composite integer n is a Carmichael

number if and only if n is square-free, and p− 1 | n− 1 for all prime divisors p of n.

2.4.2 Miller-Rabin Test

The Miller-Rabin [106, 135] (MR) primality test is based upon the fact that there

are no non-trivial roots of unity modulo a prime. Let n > 1 be an odd integer to be

tested and write n = 2ed + 1 where d is odd. If n is prime, then for any integer a

with 1 ≤ a < n, we have:

ad ≡ 1 mod n or a2
id ≡ −1 mod n for some 0 ≤ i < e.

The Miller-Rabin test then consists of checking the above conditions, declaring a

number to be (probably) prime if one of the two conditions holds, and to be com-

posite if both fail. If one condition holds, then we say n is a pseudoprime to base a,

or that a is a non-witness to the compositeness of n (since n may be composite, but

a does not demonstrate this fact).

For a composite n, let S(n) denote the number of non-witnesses a ∈ [1, n − 1]. By

the following theorem, the exact number of non-witnesses S(n) for any composite

number n can be computed given the factorisation of n:

Theorem 2.6 (Monier [108], Proposition 1). Let n be an odd composite integer.

Suppose that n = 2e ·d+1 where d is odd. Also suppose that n has prime factorisation

n =
∏m
i=1 p

qi
i where each prime pi can be expressed as 2ei · di + 1 with each di odd.

Then:

S(n) =

(
2min(ei)·m − 1

2m − 1
+ 1

)
m∏
i=1

gcd(d, di).
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An upper-bound on S(n) is given by results of [108, 135]:

Theorem 2.7 (Monier-Rabin Bound). Let n 6= 9 be odd and composite. Then

S(n) ≤ ϕ(n)

4

where ϕ denotes the Euler totient function.

This bound will be critical in determining the probability that an adversarially

generated n passes the Miller-Rabin test. Since for large n, we have ϕ(n) ≈ n, it

indicates that no composite n can pass the Miller-Rabin test for t random bases

with probability greater than (1/4)t. The test is commonly implemented using

either (a) a set of fixed bases (e.g. Apple corecrypto) or (b) randomly chosen bases

(e.g. OpenSSL). Of course, the (1/4)t bound only holds in the case of randomly

chosen bases.

2.4.3 Lucas Test

The Lucas primality test [15] makes use of Lucas sequences, defined as follows:

Definition 2.8 (Lucas sequence [9]). Let P and Q be integers and D = P 2 − 4Q.

Then the Lucas sequences (Uk) and (Vk) (with k ≥ 0) are defined recursively by:

Uk+2 = PUk+1 −QUk where, U0 = 0, U1 = 1,

Vk+2 = PVk+1 −QVk V0 = 2, V1 = P.

The Lucas probable prime test then relies on the following theorem (in which
(
x
p

)
denotes the Legendre symbol, with value 1 if x is a square modulo p and value −1

otherwise):

Theorem 2.8 ([39]). Let P and Q be integers, D = P 2 − 4Q, and let the Lucas

sequences (Uk), (Vk) be defined as above. If p is a prime with gcd(p, 2QD) = 1, then

U
p−

(
D
p

) ≡ 0 (mod p). (2.2)

The Lucas probable prime test repeatedly tests property (2.2) for different pairs

(P,Q). This leads to the notion of a Lucas pseudoprime with respect to such a pair

(here
(
D
n

)
denotes the Jacobi symbol, since n is composite).
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Definition 2.9 (Lucas pseudoprime). Let P and Q be integers and D = P 2 − 4Q.

Let n be a composite number such that gcd (n, 2QD) = 1. If Un−(D
n ) ≡ 0 (mod n),

then n is called a Lucas pseudoprime with respect to parameters (P,Q).

We can now introduce the notion of a strong Lucas probable prime and strong Lucas

pseudoprime with respect to parameters (P,Q) by the following theorem.

Theorem 2.9 ([9]). Let P and Q be integers and D = P 2 − 4Q. Let p be a prime

number not dividing 2QD. Set p−
(
D
p

)
= 2kq with q odd. Then one of the following

conditions is satisfied:

p | Uq or ∃i such that 0 ≤ i < k and p | V2iq. (2.3)

The strong Lucas probable prime test repeatedly tests property (2.3) for different

pairs (P,Q). This leads to the definition of a strong Lucas pseudoprime with respect

to parameters (P,Q).

Definition 2.10 (strong Lucas pseudoprime). Let P and Q be integers and D =

P 2−4Q. Let n be a composite number such that gcd(n, 2QD) = 1. Set n−
(
D
n

)
= 2kq

with q odd. Suppose that:

n | Uq or ∃i such that 0 ≤ i < k and n | V2iq.

Then n is called a strong Lucas pseudoprime with respect to parameters (P,Q).

A strong Lucas pseudoprime is also a Lucas pseudoprime (for the same (P,Q) pair),

but the converse is not necessarily true. The strong version of the test is therefore

seen as the more stringent and useful option.

Analogously to the Monier-Rabin theorem for pseudoprimes for the Miller-Rabin

primality test, Arnault [9] gives a theorem on pseudoprimes to the strong Lucas

test.

Theorem 2.10 (Arnault [9]). Let D be an integer and n a composite number rela-

tively prime to 2D and distinct from 9. For all integer D, the size

SL(D,n) = #

{
(P,Q)

∣∣∣∣ 0 ≤ P,Q < n, P 2 − 4Q ≡ D (mod n),
gcd(Q,n) = 1, n is slpsp(P,Q).

}
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is less than or equal to 4n/15 except if n is the product

n = (2k1q1 − 1)(2k1q1 + 1)

of twin primes with q1 odd and such that the Legendre symbols satisfy (D/2k1q1−1) =

−1, (D/2k1q1 − 1) = 1. Here, n is an slpsp(P,Q) denotes that n is a strong Lucas

pseudoprime with respect to parameters (P,Q). Also, the following inequality is

always true:

SL(D,n) ≤ n/2.

Therefore if (P,Q) are chosen at random from 0 ≤ P,Q < n with P 2 − 4Q ≡ D

(mod n) and gcd(n, 2QD) = 1, we can infer that t applications of the strong Lucas

test would declare a composite n to be probably prime with a probability at most

(4/15)t (with the exception of the specific twin primes mentioned in Theorem 2.10

which are declared prime with probability at most (n/2)t – however one can easily

test for such an n).

2.4.4 Baillie-PSW

The Baillie-PSW test [134] is a probabilistic primality test consisting of a single

Miller-Rabin test with base 2 followed by a single Lucas test. A slight variant of

the test in which the Lucas test is replaced with a strong Lucas test is mentioned

in [15]. Generally, the consensus that has emerged over time is that the Lucas test

should be used with the parameters (P,Q) set as defined by Selfridge’s method A:

Definition 2.11 (Selfridge’s Method A [15]). Let D be the first element of the

sequence 5,−7, 9,−11, 13, . . . for which
(
D
n

)
= −1. Then set P = 1 and Q =

(1−D)/4.

If no such D can be found, then n must be a square and hence composite. In

practice, one might attempt to find such a D up to some bound Dmax, then perform

a test for squareness using Newton’s method for square roots (see Appendix C.4

of [84]), before reverting to a search for a suitable D if needed. This is generally

more efficient than doing a test of squareness first.
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Since the parameters for both the Miller-Rabin and Lucas part of the test are fixed,

the result of the Baillie-PSW test implemented this way is in-fact deterministic (in

that the result of such a test will remain constant). We do however still classify

Baillie-PSW as a probabilistic test.

The idea of this test is that the two components are “orthogonal” and so it is very

unlikely that a number n will pass both parts. Indeed, there are no known composite

n that pass the Baillie-PSW test. Gilchrist [60] confirmed that there are no Baillie-

PSW pseudoprimes less than 264. PRIMO [99] is an elliptic curve based primality

proving program that uses the Baillie-PSW test to check all intermediate probable

primes. If any of these values were indeed composite, the final certification would

necessarily have failed. Since this has never occurred during its use, PRIMO’s author

Martin estimates [158] that there are no Baillie-PSW pseudoprimes with less than

about 10000 digits – yet this is just speculation.

This empirical evidence suggests that numbers of cryptographic size for use in Diffie-

Hellman and RSA are unlikely to be Baillie-PSW pseudoprimes. However, Pomer-

ance gives a heuristic argument in [133] that there are in fact infinitely many Baillie-

PSW pseudoprimes. The construction of a single example is a significant open prob-

lem in number theory. There do not appear to exist any bounds demonstrating the

test’s strength on uniformly random k-bit inputs, in contrast to the results of [41]

for the Miller-Rabin test. In summary, while the Baillie-PSW test appears to be

very strong, there are no proven guarantees concerning its accuracy. One positive

feature is that, being that we choose the parameters in a deterministic manner, it

does not consume any randomness (whereas a properly implemented Miller-Rabin

test does).

2.4.5 Supplementary and Preliminary Tests

It is often more efficient to perform some supplementary or preliminary testing on

an input n before executing the main work of the primality test. A common strategy

is to first perform trial division on n using a list of r small primes. This can be done

directly, or by equivalently checking if gcd(
∏r
i pi, n) 6= 1 where {p1, . . . , pr} is the list

of primes used. The list of primes can be partitioned and multiple gcds computed,
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so as to match the partial products of primes with the machine word-size. This is a

very cheap test to perform and can be quite powerful when testing random inputs.

The question arises of how r, the number of primes to use in trial division, should

be set. We shall discuss this question in more detail in Chapter 5.

2.4.6 Standards and Technical Guidelines

Technical guideline documents such as Cryptographic Mechanisms BSI TR–02102–

1 [55] and standards such as the Digital Signature Standard (DSS) FIPS 186–4

C.3.2 [84] and the International Standard for Prime Number Generation ISO/IEC

18032 [146] provide formal guidance and suggestions on primality testing algorithms

and parameter choices.

BSI TR–02102–1 suggests that in the worst case, 50 rounds of random base selection

Miller-Rabin must be performed, and in the average case it, like ISO/IEC 18032,

references the method proposed by Damgȧrd et al. [41] and the Handbook of Ap-

plied Cryptography [105] as described above. BSI TR–02102–1 also references the

guidance given in FIPS 186–4, which suggests Miller-Rabin with more conservative

numbers of rounds of iterations (t = 40 for 1024 and t = 56 for 2048 bit n) for

DSA parameter generation, as well as giving a detailed justification. FIPS 186–4

advocates the use of an additional Lucas primality test (cf. Section 2.4.3) and also

gives an elaboration of the distinction between the difference in the probability that

a composite number survives t rounds of Miller-Rabin testing, with the probability

that a number surviving t rounds of Miller-Rabin is composite. This is given explic-

itly as a warning when using error estimates in its Appendix F.2. While the current

ISO/IEC 18032:2005 states correctly the worst case and average case error bounds,

it does not make as clear the distinction between their use. This however seems to

be addressed in the latest draft of ISO/IEC DIS 18032 (under development 2020),

which gives a clear context for which each error condition can be applied in Annex

A [147].
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2.5 Prime Generation

A critical use case for primality testing is prime generation (e.g. for use in RSA keys).

The exact details of the algorithms used vary across implementations, but the ma-

jority follow a simple technique based on first generating a random initial candidate

n of the desired bit length k, possibly setting some of its bits, then doing trial di-

vision against a list of small primes, before performing multiple rounds of primality

testing using a standard probabilistic primality test such as Miller-Rabin. If the

trial division reveals a factor or the Miller-Rabin test fails, then another candidate

is generated. This can be a fresh random value, but more commonly, implementa-

tions add 2 to the previous candidate n. This method is commonly known as an

incremental search, and we give pseudocode of the algorithm in Algorithm 2.

Algorithm 2 Generating a random prime by incremental search

Input desired bit length k.
Output a k-bit prime.
Step 1: generate a random k-bit integer.

1: n′ ← {0, 1}k−2
2: n := 1||n′||1 # this forces n to be odd and have exactly k bits
3: nmax = min(2k, n+ 2µ)

Step 2: test n for primality.
4: Run trial division and the Miller-Rabin test on n
5: if the output is prime then
6: Return n
7: end if

Step 3: increment n.
8: n← n+ 2
9: if n > nmax then

10: go to Step 1
11: else
12: go to Step 2
13: end if

In order for this to be an efficient algorithm for generating primes, we must consider

both the probability that a uniform k-bit integer is prime and how to efficiently

test whether a given integer n is prime. The analysis in [31] provides choices for the

length of the search such that error probability and failure probability are in practice

negligible. We see these guidelines permeate through to standards, with ISO/IEC

18032:2005 standardising the incremental search algorithm, setting the choice for

the size of the search as min(2k, n+ 2µ) where µ = 10 ln(2k) [146].
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One might be concerned that an incremental search may not produce uniform prime

output. For example, one may argue that primes p such that there exists another

prime p′ < p with p−p′ < δ for some small δ > 0, are much less likely to be produced

by incremental search. However, Brandt et. al. [31] strongly suggest that, compared

to a uniform choice, there is no significant loss of security when using incremental

search in cryptographic applications where secret primes are required.

2.5.1 Bias in Prime Generation

There are however prevalent examples of the use of biased algorithms for prime

generation leading to cryptographic vulnerabilities. For example, a popular method

for generating prime numbers (in this case for the eventual use in RSA public keys)

is to construct a candidate of the form: n = k ×M + 65537a (mod M), where k, a

are integers such that a is chosen randomly, k is a buffer used to ensure n is of the

correct bit size and M is a primorial (a product of the first t successive primes),

i.e. M =
∏t
i=1 pi. This technique ensures that any candidate n produced would be

such that n 6≡ 0 (mod pi) for any of the t primes included in the primorial M , i.e.

we achieve sieving over a list of small primes during the first stage. This structure

is as described in [81, 80] and was widely deployed within the cryptographic library

RSALib. This allowed an attack [114] in which knowledge of this specific structure

allowed the factorisation of 1024 and 2048 bit RSA public keys in a widely used

application.2

OpenSSL [124] provides a cryptographically secure strong pseudorandom number

generator (see [149] for further analysis). However, aside from PRNG bugs like

that seen in the Debian OpenSSL vulnerability [165], OpenSSL has also suffered

from algorithmic biases that can be used to fingerprint primes as likely originating

from OpenSSL. Mironov [107] observes that while OpenSSL’s prime generation code

contains methods both to generate safe primes (primes of the form p = 2q+ 1 where

q is also prime) and non-safe primes, an implementation bug caused part of the

generation process for safe primes to be left over in the non-safe prime case. This

meant that in the non-safe prime case, OpenSSL would output primes p such that

2Interestingly, we will be harnessing the techniques described here in Chapters 3 and 4 as we
require both efficient and malleable methods to generate prime numbers when constructing pseu-
doprimes.
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p− 1 6≡ 1 mod 3, 5, . . . , 17863. Although no vulnerably was found, this fingerprint

was used by Mironov, and later Heninger et. al. [73], to attribute the source of

factorisable RSA keys found in digital certificates to OpenSSL.

Prime generation, and the primality testing performed there within, will be discussed

further in Chapter 5.
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Prime and Prejudice: Primality Test-
ing Under Adversarial Conditions
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In this chapter we provide a systematic analysis of primality testing under adver-

sarial conditions, where the numbers being tested for primality are not generated

randomly, but instead provided by a possibly malicious party. Such a situation can

arise in secure messaging protocols where a server supplies Diffie-Hellman parame-

ters to the peers, or in a secure communications protocol like TLS where a developer

can insert such a number to be able to later passively spy on client-server data. We

study a broad range of cryptographic libraries and assess their performance in this

adversarial setting. As examples of our findings, we are able to construct 2048-bit

composites that are declared prime with probability 1/16 by OpenSSL’s primality

testing in its default configuration; the advertised performance is 2−80. We can also

construct 1024-bit composites that always pass the primality testing routine in GNU

GMP when configured with the recommended minimum number of rounds. And,

for a number of libraries (Apple corecrypto and CommonCrypto, Cryptlib, LibTom-

Crypt, JavaScript Big Number, WolfSSL), we can construct composites that always

pass the supplied primality tests. We explore the implications of these security

failures in applications, focusing on the construction of malicious Diffie-Hellman pa-
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rameters. We show that, unless careful primality testing is performed, an adversary

can supply parameters (p, q, g) which on the surface look secure, but where the dis-

crete logarithm problem in the subgroup of order q generated by g is easy. We close

by making recommendations for users and developers. In particular, we promote

increasing the number of rounds performed in the Miller-Rabin test to 64. This en-

sures that composite numbers are wrongly identified as being prime with probability

at most 2−128. We also suggest considering the use of the Baillie-PSW test if the

additional code required is not too costly for the library.

3.1 Introduction and Motivation

Many cryptographic primitives rely on prime numbers, with RSA being the most

famous example. However, even in constructions that do not rely on the difficulty

of factoring integers into prime factors, primality is often relied upon to prevent an

adversary from applying a divide-and-conquer approach (e.g. in the Pohlig-Hellman

algorithm or in a Lim-Lee small subgroup attack [156]) or to prevent the existence

of degenerate cases such as zero divisors (which may complicate security proofs or

reduce output entropy).

One approach to obtaining prime numbers in instantiations of these cryptographic

primitives is to produce such numbers as they are needed on whatever device requires

them. This is accomplished by sampling random integers and checking for primality.

This process can be computationally intensive to the point of being prohibitively so.

The high cost of producing prime numbers led implementations to seek ways to

reduce this cost and, as demonstrated in [114], these performance improvements

may then lead to devastating attacks.

If the required prime numbers are public, an alternative approach is possible: (low-

power) devices are provisioned with prime numbers from a server or a standard.

For example, the popular Telegram messenger [93] uses Diffie-Hellman (DH) param-

eters provided by the server to establish end-to-end encryption between peers. If

the peers do not validate the correctness of the supplied DH parameters,1 the Tele-

gram server can provide malicious DH parameters with composite group orders and

1We stress that they do perform validation in the default implementation.
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thereby passively obtain the established secrets. As a concrete and closely related

example, Bleichenbacher [26] showed how the reliance on a small and fixed set of

bases in Miller-Rabin primality testing in GNU Crypto 1.1.0 could be exploited to

fool GNU Crypto into accepting malicious DH parameters. In particular, this led

to an attack on the GNU Crypto implementation of SRP enabling users’ passwords

to be recovered.

Another example is the Transport Layer Security protocol [47] which can use Diffie-

Hellman key exchange to establish master secrets in the handshake protocol. The DH

parameters are generated by the TLS server and sent to the client during each TLS

handshake.2 It is clear that the TLS server provider does not gain any advantage by

sending malicious DH parameters to the client since it knows the established master

key. However, we can consider an adversarial developer who implements a malicious

server with backdoored DH parameter generation, cf. [161, 54]. If such parameters

are accepted by TLS clients and used in the DH key exchange, a passive adversary

can observe the traffic and obtain the master key. Here, weak DH parameters that

still pass tests by trusted tools offer a sense of plausible deniability. Moreover, if an

application simply silently rejects bad parameters then any countermeasures could

be overcome by repeatedly sending malicious parameter sets having a reasonable

probability of fooling those countermeasures, until the target client accepts them.

In recent years we have seen several backdoors in cryptographic implementations.

For example, NIST standardised the Dual EC pseudorandom number generator

(PRNG) which allows an adversary to predict generated random values if it can

select a generator point Q whose discrete logarithm is known and collect enough

PRNG output [34]. In 2016 it was shown that Juniper had implemented this PRNG

in such a way as to enable an adversary to passively decrypt VPN sessions [33].

A notable example of a potential backdoor involving a composite number is the

security advisory [137] pushed by command-line data transfer utility socat, which

is popular with security professionals such as penetration testers. There, the DH

prime p parameter was replaced with a new 2048 bit value because “the hard-coded

1024 bit DH p parameter was not prime’ ’. The advisory goes on to state “since there

is no indication of how these parameters were chosen, the existence of a trapdoor that

2Up to version 1.2 (inclusive) of the protocol.
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makes possible for an eavesdropper to recover the shared secret from a key exchange

that uses them cannot be ruled out”, which highlights a real world application of

this attack model. Similarly, the prime group parameter p given by Group 23 of

RFC5114 [90] for use in DH key exchanges has been found to be partially vulnerable

to small subgroup attacks [156]. It might seem that code reviews and the availability

of rigorous primality testing (in, say, mathematical software packages, cf. Section 3.4)

would impose high rates of detectability for malicious parameter sets in code or

standards, but as these examples highlight, such sets still occur in practice.

Given these incidents we can assume a motivated adversary who is able to implement

software serving maliciously generated primes and/or DH parameters. Thus, there

is a need for cryptographic applications that rely on third-party primes to perform

primality testing. Indeed, many cryptographic libraries incorporate primality testing

facilities and thus it appears this requirement is easy to satisfy. However, the primary

application of these tests is to check primality (or, more precisely, compositeness)

for locally-generated, random inputs during prime generation. Thus, it is a natural

question to ask whether these libraries are robust against malicious inputs, i.e. inputs

designed to fool the library into accepting a composite number as prime. We refer

to this setting as primality testing under adversarial conditions.

3.1.1 Overview of Primality Testing

In this chapter we will be focused on the primality tests found in cryptographic

libraries and mathematical software. The tests discussed are the Fermat, Miller-

Rabin, Lucas and Baillie-PSW tests. While these tests were formally introduced in

Chapter 2, we now discuss more specific details of their implementation within the

libraries we study.

Clearly, when conducting a Miller-Rabin or Lucas test, the choice of the param-

eter t (the number of trials) is critical. Many cryptographic libraries, for exam-

ple OpenSSL [124], use test parameters originating from [41] as popularised in the

Handbook of Applied Cryptography [105]. These give the number of iterations of

Miller-Rabin needed for an error rate less than 2−80, when testing a random input

n. A main result of [41] is that if n is a randomly selected b-bit odd integer, then t
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independent rounds of Miller-Rabin testing to give an error probability:

P (X|Yt) < b3/22tt−1/242−
√
tb for 3 ≤ t ≤ b/9 and b ≥ 21,

where X denotes the event that n is composite, and Yt the event that t rounds of

Miller-Rabin declares n to be prime. This bound enables the computation of the

minimum value t needed to obtain P (X|Yt) ≤ 2−80 for a range of bit-sizes b; see

Table 3.4 later in this chapter.

However, these error estimates are for primality testing with Miller-Rabin on ran-

domly generated n. In the adversarial setting, we are actually concerned with the

probability that t trials of Miller-Rabin (or some other test) declare a given n to be

prime, given that it is composite. This probability is independent of bit-size, and

is at most (1/4)t if random bases are used in Miller-Rabin tests. Similar remarks

apply for both variants of the Lucas test.

Many libraries, for example GNU GMP [66], provide primality testing functions to

be deployed in applications such as mathematical software packages that require big

integer arithmetic. These functions often obligate the user to choose the ‘certainty’

or accuracy of the primality test performed. Since these parameters are often hidden

from the end user, this then forces the responsibility of choosing suitable parameters

on the developer of the application using the library. The only resulting guidance

that filters through from the standards is then found in the documentation of the

library, which is often brief and informal.

3.1.2 Contributions & Outline

We investigate the implementation landscape of primality testing in both crypto-

graphic libraries and mathematical software packages, and measure the security im-

pact of the widespread failure of implementations to achieve robust primality testing

in the adversarial setting.

In Section 3.2 we review known techniques for constructing pseudoprimes and ex-

tend them with our target applications in mind. In Section 3.3, we then survey

primality testing in cryptographic libraries and mathematical software, evaluating

their performance in the adversarial setting. We propose techniques to defeat their
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tests where we can. Overall, our finding is that most libraries are not robust in the

adversarial setting. Our main results in this direction are summarised in Table 3.3.

As one highlight of our results, we find that OpenSSL 1.1.1pre6 with its default

primality testing routine will declare certain composites n of cryptographic size to

be prime with probability 1/16, while the documented failure rate is 2−80. This

arises from OpenSSL’s reliance on Table 3.4 to compute the number of rounds of

Miller-Rabin testing required, and this number decreases as the size of n increases.

As another highlight, we construct a 1024-bit composite that is guaranteed to be

declared prime by the GNU GMP library [66] for anything up to and including

15 rounds of testing (the recommended minimum by GMP). This is as a result of

GNU GMP initialising its PRNG to a static state and consequently using bases

in its Miller-Rabin testing that depend only on n, the number being tested. We

also show how base selection by randomly sampling from a fixed list of primes, as in

Apple’s corecrypto library, Cryptlib, LibTomCrypt, JavaScript Big Number (JSBN)

and WolfSSL, can be subverted: we construct composites n of cryptographic size

that are guaranteed to be declared prime by these libraries regardless of how many

rounds of testing are performed.

We go on to examine the implications of our findings for applications, focussing on

DH parameter testing. The good news is that OpenSSL is not impacted because of

its insistence on safe primes for use in DH; that is, it requires DH parameters (p, q, g)

for which q = (p− 1)/2 and both p, q are tested for primality. Using the techniques

in this chapter we cannot produce malicious parameters of this form. However,

we will revisit the safe prime setting in Chapter 4, where the main focus will be

to produce malicious safe prime DH parameters that are accepted by OpenSSL

with some probability. In this chapter we show that when more liberal choices of

parameter are permitted, as is the case in Bouncy Castle and Botan, we are able

to construct malicious DH parameter sets which pass the libraries’ testing but for

which the discrete logarithm problem in the subgroup generated by g is easy.

We close by discussing avenues for improving the robustness of primality testing in

the adversarial setting in Section 3.7.
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3.2 Constructing Pseudoprimes

In this section, we review known methods of constructing pseudoprimes for the

Miller-Rabin and Lucas tests. We also provide variations on these methods. We

will use the results of this section in the next one, where we study the robustness of

cryptographic libraries for primality testing in the adversarial setting.

3.2.1 Miller-Rabin Pseudoprimes

The exact number of non-witnesses S(n) for any composite number n can be com-

puted given the factorisation of n [108]. Generating composites n that have large

numbers of non-witnesses is not so straightforward. In empirical work, Pomerance

et al. [134] showed that many composite numbers that pass a Miller-Rabin primality

test have the form n = (k+1)(rk+1) where r is small and both k+1 and rk+1 are

prime. More recently, Höglund [75] and Nicely [115] used the Miller-Rabin primality

test as implemented in GNU GMP to test randomly generated numbers of this form

for various values of r and for various different sizes of k. Their results support the

claims made by [134].

We now consider existing methods for producing composites which have many non-

witnesses, for two forms of the Miller-Rabin test: firstly where the bases are chosen

randomly and secondly where a fixed set of bases is used.

3.2.1.1 Random Bases

For random bases, we are interested in constructing composite n that have large

numbers of non-witnesses, i.e. for which S(n) is large. Such numbers will pass the

Miller-Rabin test with probability S(n)/n per trial; of course, this probability is

bounded by ϕ(n)/4n ≈ 1/4 by the Monier-Rabin theorem, but we are interested in

how close to this bound we can get.

Recall that Theorem 2.6 tells us for an odd composite integer n that has prime

factorisation n =
∏m
i=1 p

qi
i , where each prime pi can be expressed as 2ei · di + 1 with
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each di odd, we know that the number of non-witnesses S(n) is:

S(n) =

(
2min(ei)·m − 1

2m − 1
+ 1

)
m∏
i=1

gcd(d, di)

where integers e, d are found by writing n = 2e · d+ 1 where d is odd.

Note how the bound in this theorem does not depend on the exponents qi, indicating

that square-free numbers will have relatively large S(n). Also note the dependence

on the terms gcd(d, di), ensuring that the odd part of each prime factor pi has a

large gcd with the odd part of n is necessary to achieve a large value for S(n). As

an easy corollary of this theorem, we obtain:

Corollary 3.1 ([108]). Let x be an odd integer such that 2x+1 and 4x+1 are both

prime. Then n = (2x + 1)(4x + 1) has ϕ(n) = 8x2 and achieves the Monier-Rabin

bound, i.e. it satisfies S(n) = ϕ(n)/4.

The proof of this corollary follows easily on observing that we may take m = 2 and

d1 = d2 = x so that gcd(d, di) = x in the preceding theorem. Narayanan [113]

extended work from Monier [108] who showed that if n is a Carmichael number of

the form p1p2p3, where each pi is a distinct prime with pi ≡ 3 (mod 4), then S(n)

achieves the Monier-Rabin bound. Narayanan also gave further results showing that

these two forms for n are the only ones achieving the Monier-Rabin bound, with all

other n satisfying S(n) ≤ ϕ(n)/6.

3.2.1.2 Fixed Bases

Some implementations of the Miller-Rabin primality test select bases from a fixed

list (often of primes), rather than choosing them at random. For example, until

an update motivated by the disclosure of this work, the primality test provided by

Apple’s CommonCrypto library CCBigNumIsPrime performed 16 rounds of Miller-

Rabin using the first 16 primes as bases [6]. Similarly, Cryptlib, LibTomMath and

WolfSSL all choose the first t entries from a hard-coded list of primes as bases when

performing Miller-Rabin in their respective primality tests.
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Arnault [8] presented a method for producing composite numbers n = p1p2 · · · ph
that are guaranteed to be declared prime by Miller-Rabin for any fixed set of prime

bases A = {a1, a2, . . . , at}.

Not only is Arnault’s method effective when an implementation chooses bases from

a fixed list, it can also be utilised if an implementation chooses bases randomly from

a large fixed list of possibilities. For example, an implementation might select prime

bases randomly from a list of primes below 1000; since Arnault’s method scales well

(we simply need to solve more congruences simultaneously with the CRT) we can

use this method to produce a composite n such that all primes below 1000 are non-

witnesses for n. We shall see applications of this approach for different libraries in

Section 3.3.

Since this approach is a very useful tool for us, we now go into more detail on the

method proposed by Arnault, and give an example.

3.2.1.3 An Overview of Arnault’s Method

Arnault’s method generates n of the form n = p1p2 . . . ph where the pi are distinct

odd primes such that n is pseudoprime to a set of t prime bases A = {a1, a2, . . . , at}.
By [8, Lemma 3.2] we know that if gcd(a, n) = 1 and

(
a
pi

)
= −1 for all 1 ≤ i ≤ h,

then a will be a Miller-Rabin non-witness with respect to n (this set of conditions

is sufficient but not necessary for a to be a Miller-Rabin non-witness with respect

to n).

Now, by Gauss’s law of quadratic reciprocity, we know that, for any prime p,
(
a
p

)
can be determined from

( p
a

)
and the values of a and p taken modulo 4. This in turn

means that, for each a, we can compute the set Sa of possible non-residues mod 4a

of potential primes p. That is, we can compute the set Sa satisfying(
a

p

)
= −1 ⇐⇒ p mod 4a ∈ Sa.

Arnault’s method selects p1 and then determines the other pi from equations of the

form pi = ki(p1 − 1) + 1 where the ki are values also chosen as part of the method

(with k1 = 1). This is done so as to ensure that the resulting n = p1p2 . . . ph is a
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Carmichael number. But the conditions
(
a
pi

)
= −1 for all 1 ≤ i ≤ h imply that,

for each a ∈ A and each 1 ≤ i ≤ h we have ki(p1 − 1) + 1 ∈ Sa. Rewriting this, we

obtain that:

p1 mod 4a ∈
h⋂
i=1

k−1i (Sa + ki − 1), (3.1)

where k−1i (Sa + ki − 1) denotes the set {k−1i (s + ki − 1) mod 4a|s ∈ Sa}. This

gives a set of conditions on the value of p1 modulo 4a for each a ∈ A; typically a

few candidates for p1 mod 4a remain for each value of a. By selecting one of these

candidates za for each a ∈ A and using the CRT, the conditions can be combined

into a single condition on p1 modulo m = lcm(4, a1, . . . , at). The ki values must be

selected so that the sets on the right of (3.1) are non-empty; typically, they are set

to small primes larger than the maximum of the a ∈ A so that k−1i exists mod 4a

for each a.

Arnault’s method then brings into play other restrictions on p1 mod ki for each

i = 2, . . . , h. These result from the requirement that n be a Carmichael number.

We omit the full details, but, for example, when h = 3, the additional restrictions

can be written as:

p1 = k−13 mod k2 and p1 = k−12 mod k3

Making the ki co-prime to each other and to the a ∈ A ensures that another appli-

cation of the CRT can be made to incorporate these conditions. The end result is a

single condition of the form:

p1 = z mod lcm(4, a1, . . . , at, k2, . . . , kh)

where z is a fixed value determined by the choice of the za values and the additional

restrictions.

Finally, the method repeatedly generates candidates for p1 satisfying the above

constraint and uses the equations pi = ki(p1− 1) + 1 to determine the other pi. The

method is successful for a given p1 if all of the resulting p1, . . . , ph are prime.

Evidently, the method is complex and not guaranteed to succeed on every attempt for

a given set A. However, it can be iterated with different choices of the ki until the sets

on the right of (3.1) are non-empty; moreover a back-tracking approach can be used
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Table 3.1: Values a and subsets Sa of residues modulo 4a of primes p such

that
(
a
p

)
= −1.

a Sb

2 {3, 5}
3 {5, 7}
5 {3, 7, 13, 17}
7 {5, 11, 13, 15, 17, 23}

11 {3, 13, 15, 17, 21, 23, 27, 29, 31, 41}
13 {5, 7, 11, 15, 19, 21, 31, 33, 37, 41, 45, 47}
17 {3, 5, 7, 11, 23, 27, 29, 31, 37, 39, 41, 45, 57, 61, 63, 65}
19 {7, 11, 13, 21, 23, 29, 33, 35, 37, 39, 41, 43, 47, 53, 55, 63, 65, 69}
23 {3, 5, 17, 21, 27, 31, 33, 35, 37, 39, 45, 47, 53, 55, 57, 59, 61, 65, 71, 75, 87, 89}
29 {3, 11, 15, 17, 19, 21, 27, 31, 37, 39, 41, 43, 47, 55, 69, 73, 75, 77, 79, 85, 89, 95, 97, 99, 101, 105, 113}

to select the za values to speed-up the entire process of constructing p1. The density

of all-prime solutions (p1, . . . , ph) amongst all possible candidates (p1, . . . , ph) satis-

fying p1 = z mod lcm(4, a1, . . . , at, k2, . . . , kh) and pi = ki(p1−1)+1 for i = 2, . . . , h

can be estimated using standard heuristics concerning the distribution of primes of

size L = lcm(4, a1, . . . , at, k2, . . . , kh); it is roughly 1/(logh(L) ·
∑h

i=2 log(ki)).

Notice that, the larger the set A, the larger the modulus L in the condition deter-

mining p1 will be. Thus, if A contains many bases, then larger pi and hence larger n

will tend to result. Moreover, all-prime solutions will become less dense. As an ex-

ample, when analysing the primality test in Maple V.2, Arnault [8] considers h = 3

so n = p1p2p3 and A = {2, 3, 5, 7, 11} (so t = 5); he works with k2 = 13 and k3 = 41

and arrives finally at the condition:

p1 = 827443 mod 4924920.

For p1 = 286472803, this yields a 29-decimal digit composite passing Maple’s fixed-

base Miller-Rabin primality test.

We give a short example of the method described for an n of the form n = p1p2p3

for which the first 10 primes are Miller-Rabin non-witnesses. That is, we target

A = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}.

We start by generating the set Sa of residues modulo 4a of primes p such that(
a
p

)
= −1 for each base a ∈ A.

Table 3.1 gives the sets Sa for our chosen set A.
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a
⋂h
i=1 k

−1
i (Sa + ki − 1) Modulo

2 {3, 5} 8
3 {7} 12
5 {3, 7, 13, 17} 20
7 {15} 28

11 {21,23} 44
13 {21,47} 52
17 {5, 29,31, 39, 63, 65} 68
19 {33, 37, 39,47, 69} 76
23 {31,47, 57, 87, 89} 92
29 {19, 37, 41,55, 77, 95, 99, 113} 116

Table 3.2: Values a and the sets
⋂h
i=1 k

−1
i (Sa + ki − 1) when k2 = 41 and

k3 = 101.

We now set k2 = 41 and k3 = 101; these are coprime to all a ∈ A. We find subsets

of the Sa that meet the requirement:

p1 (mod 4a) ∈
h⋂
i=1

k−1i (Sa + ki − 1).

This gives us a set of residues modulo 4a for each a ∈ A that p1 must satisfy. We

give an example of this for the first 10 primes in Table 3.2.

We then need to make a choice of one residue za per set. This choice is arbitrary,

but we note that not all combinations of choices will lead to a solution. We give an

example of a good set of choices in Table 3.2 in bold.

We then have two additional conditions to add, based on our choice of the ki values.

These can be written as:

p1 = k−13 mod k2 and p1 = k−12 mod k3

In our example, we chose k1 = 41 and k2 = 101 which gives us:

p1 ≡ 28 (mod 41) and p1 ≡ 32 (mod 101).

We can then use the Chinese Remainder Theorem to simultaneously solve for the

10 conditions implied by the bold entries in Table 3.2 and the two conditions above.

In this case, we have the solution:

p1 ≡ 36253030834483 mod 107163998661720.
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The prime

p1 = 142445387161415482404826365418175962266689133006163

satisfies this condition, and yields primes

p2 = 5840260873618034778597880982145214452934254453252643

p3 = 14386984103302963722887462907235772188935602433622363

such that the product n = p1p2p3 is a 512-bit number that is a Miller-Rabin pseu-

doprime to the bases 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29.

3.2.1.4 Hybrid Technique

The method above produces composites that are in fact always Carmichael numbers.

We know from Section 3.2.1.1 that if n is a Carmichael number with 3 distinct

prime factors all congruent to 3 (mod 4), then n has the maximum number of non-

witnesses, ϕ(n)/4. We can set h = 3 in Arnault’s method and tweak it slightly

to ensure that, as well as producing n with a specified set A of non-witnesses, it

produces an n meeting the Monier-Rabin bound, so that random base Miller-Rabin

tests will also pass with the maximum probability. The tweak is very simple: we

ensure that 2 ∈ A; this forces p1 ≡ 3 or 5 (mod 8); we then select p1 ≡ 3 (mod 8)

so that p1 ≡ 3 (mod 4). Arnault’s method sets pi = ki(p1 − 1) + 1 where the ki are

co-prime to all the elements of A. Since 2 ∈ A, the ki must all be odd; it is easy to

see that this forces pi ≡ 3 (mod 4) too.

We will give an application of this technique in Section 3.3.11.

3.2.1.5 Extension For Composite Fixed Bases

The method of Arnault [8] works (as presented) only for prime bases, and not for

composite bases. Although less common, some implementations use both prime and

composite bases in their Miller-Rabin testing. By setting n ≡ 3 (mod 4), we know

that e = 1 when writing n = 2e·d+1 for d odd. In this case, the conditions to pass the

Miller-Rabin test simply become a(n−1)/2 ≡ ±1 (mod n). Hence, if n ≡ 3 (mod 4)
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is pseudoprime to some set of bases {a1, a2, . . . at}, then n is also pseudoprime for

any base b arising as a product b = ae11 · a
e2
2 · · · · · a

et
t (mod n) (for any set of indices

ei ∈ Z). Therefore we can construct a composite n that is pseudoprime with respect

to any list of bases {b1, . . . , bt} (of which any number can be composite) by using the

hybrid method described in Section 3.2.1.4, but with set A in that method being the

complete set of prime factors arising in the bi. Note that in this method, n is of the

form n = p1p2p3 where each pi ≡ 3 (mod 4), so we have n ≡ 3 (mod 4) as needed.

Moreover, because of the form of n, the composites generated in this manner will

also meet the Monier-Rabin bound.

We will give an application of this technique in Section 3.3.3, where we study Mini-

GMP [66] which uses Euler’s polynomial to generate Miller-Rabin bases.

3.2.2 Lucas Pseudoprimes

Like Miller-Rabin pseudoprimes, Lucas pseudoprimes are with respect to some choice

of test parameters. Throughout this work we follow Selfridge’s Method A [15] of

parameter selection, which is summarised as follows:

Definition 3.1 (Selfridge’s Method A [15]). Let D be the first element of the se-

quence 5,−7, 9,−11, 13, . . . for which
(
D
n

)
= −1. Then set P = 1 and Q = (1−D)/4.

There are two reasons for studying this particular method for setting parameters.

The first is that it is the parameter choice used when performing the Lucas part of the

Baillie-PSW primality test [134, 15]. The second is that this is the method that both

Java [38] and Crypto++ [40] libraries that we study use in their implementation of

the Lucas test.

The Lucas and strong Lucas-probable prime tests with this parameter choice are

commonly referred to in the literature as Lucas and strong Lucas-Selfridge probable

prime tests. Pseudoprimes for this parameter choice are well-documented. The

OEIS sequence A217120 [13] presents a small list of them, referring to a table of

all Lucas pseudoprimes below 1014 ≈ 247 compiled by Jacobsen [76]. There is an

equivalent sequence A217255 [14] for strong Lucas pseudoprimes. Any pseudoprime
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for the strong Lucas probable prime test with respect to some parameter set (P,Q),

is also a pseudoprime for the Lucas probable prime test.

Arnault [8] also presented a scalable method that takes as input a set of parameter

choices {(P1, Q1, D1), (P2, Q2, D2), . . . , (Pt, Qt, Dt)} and returns a composite n of

the form n = p1p2 · · · ph that is a strong Lucas pseudoprime to the parameters

(Pi, Qi, Di) for all 1 ≤ i ≤ t. The method is similar to that for constructing Miller-

Rabin pseudoprimes for fixed bases, but differs in its details. In particular, the two

construction methods are sufficiently different that it seems hard to derive a single

method producing n that are pseudoprimes for both the Miller-Rabin and Lucas

tests.

3.2.2.1 A Specialisation of Arnault [8] for Selfridge’s Method A

For Selfridge’s Method A, we know that if we take an n such that
(
5
n

)
= −1, then a

single test on n with parameter set (P,Q,D) = (1,−1, 5) will be performed. We next

show how to specialise Arnault’s construction [8] so that it will produce composites

n that are guaranteed to be declared prime by a strong Lucas test for this parameter

set.

Following Arnault’s construction, we consider n of the form n = p1p2p3 where pi =

ki(p1 + 1)− 1 for i ∈ {2, 3}, with k2 and k3 odd integers.

We first note that the pi must satisfy certain conditions with respect to Legendre

symbols (see [8, Lemmas 6.1 and 6.2]):(
D

pi

)
=

(
Q

pi

)
= −1 for all i such that 1 ≤ i ≤ 3.

With our single parameter set (P,Q,D) = (1,−1, 5), this becomes:(
−1

pi

)
=

(
5

pi

)
= −1 for all i such that 1 ≤ i ≤ 3. (3.2)

Now
(
−1
pi

)
= −1⇔ pi ≡ 3 (mod 4). Since pi = ki(p1 + 1)− 1 for i ∈ {2, 3}, and the

ki are odd, then it is easy to show that if p1 ≡ 3 (mod 4) then it follows that pi ≡ 3

(mod 4) for i = 2, 3 as well. We also have that
(

5
pi

)
= −1 ⇔ pi ≡ 2 or 3 (mod 5).
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Therefore condition (3.2) is satisfied when p1 ≡ 3 or 7 (mod 20) (by the CRT) and

pi ≡ 2 or 3 (mod 5) for i ≥ 2.

At this point we must choose k2, k3 and add conditions that ensure the coefficients

in [8, Lemma 6.1] are indeed integers. These conditions are simple:

p1 ≡ k−13 (mod k2) and p1 ≡ k−12 (mod k3).

We choose to fix p1 ≡ 7 (mod 20) and select (k2, k3) = (31, 43).

This produces our final congruence that prime p1 must satisfy: p1 ≡ 6647 (mod 26660).

We now search for a prime p1 that satisfies this congruence, and such that p2 and

p3 satisfying pi = ki(p1 + 1) − 1 for i = 2, 3 are also primes with p2 ≡ p3 ≡ 2 or 3

(mod 5).

The smallest solution is the following:

p1 = 486527, p2 = 15082367, p3 = 20920703

This yields a 68-bit n = 153515674455111174527 which indeed does pass the strong

Lucas test using Selfridge’s Method A for parameter selection. Of course, we can

take any (p1, p2, p3) satisfying the above conditions (which are not too onerous to

satisfy), and in this sense the method scales well to numbers n of cryptographically

interesting size.

This generation technique is also versatile, as we can simply include additional pa-

rameters in our set dependent on which parameter selection methods a particular

test uses. This allows us to generate composites that are declared prime by a va-

riety of strong Lucas tests, at the small cost of solving a few more simultaneous

congruences with the CRT.

A Large Strong Lucas Pseudoprime. To show just how well this method scales

to produce numbers of a cryptographically interesting size, we use our SAGE imple-

mentation of the method as described above to construct an n of the form n = p1p2p3,
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where pi = ki(p1 + 1)− 1 with (k2, k3) = (31, 43) and

p1 = 2576 · 0x0000000000000000000000822d0000000000000000000000

+ 2384 · 0x000000001a09000000000000000000000000000000000000

+ 20 · 0x00000000000000000000000000000000000000007254e7cb.

Then n = p1p2p3 is a 2048-bit strong Lucas pseudoprime for Selfridge’s Method A

of parameter selection.

3.3 Cryptographic Libraries

Many cryptographic libraries offering implementations of common cryptographic

protocols also provide a toolkit for handling arbitrary-precision integer arithmetic,

including primality testing. These functions would be used, for example, for testing

the primality of Diffie-Hellman parameters.

This section provides a survey of primality testing in a broad and representative

range of cryptographic libraries (OpenSSL, GNU GMP and Mini-GMP, NSS, Apple

corecrypto and CommonCrypto, Cryptlib, JavaScript Big Number (JSBN), LibTom-

Math, LibTomCrypt, WolfSSL, Libgcrypt, Java, Bouncy Castle, Botan, Crypto++

and Golang). For each library, we first describe how it implements primality testing.

We then tailor a composite likely to be declared prime by each particular library, and

quantify the probability that our composite passes the library’s primality test (so

that the primality test fails). Our findings are summarised in Table 3.3. Throughout

this chapter, we will refer to the number of rounds of Miller-Rabin testing as t.

3.3.1 OpenSSL

OpenSSL is the most widely used open source cryptographic library and TLS imple-

mentation. Throughout, we consider OpenSSL 1.1.1-pre6 [122] (May 2018) as this is

the most current pre-release of the next long term support (LTS) version OpenSSL

1.1.1. We note that the components studied are largely stable to other LTS releases

such as 1.1.0h [120] and 1.0.2o [118] (to the extent in which the analysis performed
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Table 3.3: Results of our analysis of cryptographic libraries. This shows how
the number of rounds of Miller-Rabin used is determined, whether a Baillie-
PSW test is implemented, the documented failure rate of the primality test
(that is, the probability that it wrongly declares a composite to be prime),
and our highest achieved failure rate for composite input.

Library Rounds of MR BPSW? Documented Our Highest
Failure Rate Failure Rate

Apple CommonCrypto 16 No < 2−32 100%
Apple corecrypto User-defined t ≤ 256 No (1/4)t 100%
Botan 2.6.0 User-defined t No ≤ (1/2)t (1/4)t

Bouncy Castle C# 1.8.2 User-defined t No (1/4)t (1/4)t

Cryptlib 3.4.4 User-defined t ≤ 100 No Not given 100%
Crypto++ 7.0 2 or 12 Yes Not given 0%

GNU GMP 6.1.2 User-defined t No (1/4)
t

100% for t ≤ 15

GNU Mini-GMP 6.1.2 User-defined t No (1/4)
t

100% for t ≤ 101

Golang 1.10.3 User-defined t Yes < (1/4)
t

0%

Golang pre-1.8 User-defined t No < (1/4)
t

100% for t ≤ 13
Java 10 User-defined t Yes‡ < (1/2)t 0% for ≥ 100 bits
JSBN 1.4 User-defined t No < (1/2)t 100%
Libgcrypt 1.8.2 User-defined t No Not given 1/1024†

LibTomCrypt 1.18.1 User-defined t ≤ 256 No (1/4)t 100%
LibTomMath 1.0.1 User-defined t ≤ 256 No (1/4)t 100%
NSS 3.50 User-defined t No Not given 100% for t ≤ 10††

OpenSSL 1.1.1-pre6 Default bit-size based No < 2−80 1/16
WolfSSL 3.13.0 User-defined t ≤ 256 No (1/4)t 100%

† When calling the check prime function as opposed to gcry prime check (or calling gcry prime check

in versions prior to 1.3.0).
‡ When testing input of size at least 100 bits.
†† Results of testing do not appear to be consistent across different machines.

still applies to the primality tests in these other versions), and remain similar to

that of the early releases (version 0.9.5 of February 2000).

Analysis. The primality tests in OpenSSL reside in the crypto library, which also

houses a wide range of implementations of cryptographic algorithms. The services

provided by the crypto library are used by the OpenSSL implementations of SSL,

TLS and S/MIME, and have also been used to implement SSH, OpenPGP, and

other cryptographic standards.

The functions called upon to perform primality testing in the OpenSSL BIGNUM li-

brary are BN is prime ex and BN is prime fasttest ex found in bn prime.c. The

bulk of the primality testing algorithm is done in BN is prime fasttest ex where
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Table 3.4: The rounds t of Miller-Rabin performed chosen by OpenSSL
when testing b-bit integers with checks = BN prime checks.

b t b t

b ≥ 1300 2 400 > b ≥ 350 8
1300 > b ≥ 850 3 350 > b ≥ 300 9
850 > b ≥ 650 4 300 > b ≥ 250 12
650 > b ≥ 550 5 250 > b ≥ 200 15
550 > b ≥ 450 6 200 > b ≥ 150 18
450 > b ≥ 400 7 150 > b 27

t =checks rounds of Miller-Rabin are performed, each with a randomly chosen base.

The checks variable is provided as a parameter to the primality verification func-

tion. The function BN is prime ex simply calls BN is prime fasttest ex without

doing any trial divisions. The composites n that we produce have factors much

larger than those in the trial divisions that OpenSSL performs. This means that,

for our purposes, the result of calling either function is equivalent. Therefore we will

focus only on BN is prime fasttest ex.

Number of Miller-Rabin rounds. Both primality testing functions allow the

user to determine the rounds of Miller-Rabin performed. The documentation in-

dicates that if the user sets the value of checks to the variable BN prime checks,

then the number of Miller-Rabin iterations t is chosen such that the probability of

a Miller-Rabin test declaring a random composite number n as prime is less than

2−80. The number of rounds performed is then based on the bit-size b of the number

n being tested. The relationship between these two values is shown in Table 3.4.

The entries here are based on average case error estimates taken from the Handbook

of Applied Cryptography [105], which in turn references [41].

Base Selection. OpenSSL chooses the Miller-Rabin bases it uses in a pseudoran-

dom manner, by using OpenSSL’s function BN rand range() with an optional flag

set to PRIVATE. This then calls bnrand to generate a pseudorandom base a in the

range 1 ≤ a < n using a cryptographically strong pseudorandom number genera-

tor with entropy inputs gathered from the operating system, cf. [149] for details on

OpenSSL’s random number generation.
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Pseudoprimes. As mentioned in Section 3.1, the average case estimates from [41]

are designed only to be used on testing numbers during prime generation. Indeed,

OpenSSL correctly applies primality testing as outlined above in this situation.

However, we found nothing in the documentation to warn about the adversarial

setting. Instead it appears to be left up to the user to decide how many rounds of

testing are needed, and if they set checks = BN prime checks then Table 3.4 would

dictate how many rounds are applied.

In this setting, we are able to undermine OpenSSL’s guarantees by producing com-

posite numbers using the methods described in Section 3.2.1.1. That is, we can easily

construct numbers of the form n = (2x+ 1)(4x+ 1) with x odd and 2x+ 1, 4x+ 1

prime, and be sure that n will pass random-base Miller-Rabin tests with probability

roughly 1/4 per test. For example, for n having b = 2048 bits, OpenSSL will apply

t = 2 tests, and we have a 1/16 chance of our composite n deceiving OpenSSL.

An Example Pseudoprime for OpenSSL.

Let

x = 2960 · 0x0000000000000000000000000000000058971a1a5c1b26e7

+ 2768 · 0x26a401f6937c462b9c3460e0000000000000000000000000

+ 2192 · 0x00000000000000000000000000000000000000000058971a

+ 20 · 0x1a5c1c624a1531999dbd1b6f5bbcb1942e8c4f8138f86231.

Then n = (2x + 1)(4x + 1) produces a 2048-bit composite number that is declared

prime by OpenSSL’s BN is prime fasttest ex with checks = BN prime checks

with probability 1/16.

3.3.2 GNU GMP

The GNU Multiple Precision Arithmetic Library [66], GNU GMP or simply GMP, is

a popular open source arbitrary precision integer library that is widely deployed in

mathematical software packages. We consider the latest version GMP 6.1.2 through-

out.
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Analysis. GMP provides its own datatype to handle big integers known as mpz t.

GMP’s primality test is implemented in mpz probab prime p(mpz t n, int reps).

On input n, this function performs some trial divisions, then a fixed-base Fermat

test with base 210 = 2 · 3 · 5 · 7, and finally t = reps rounds of Miller-Rabin; the

latter is implemented in function mpz millerrabin. The value of reps is selected

by the caller. The documentation gives assurance that a composite number will be

identified as being prime with a probability of less than (1/4)reps and states that

“reasonable values of reps are between 15 and 50”.

Base Selection. GMP uses a pseudorandom number generator (PRNG) to choose

the base used for each Miller-Rabin test. The PRNG’s state is initialised in the

function mpz millerrabin by calling gmp randinit default(rstate), which uses

the Mersenne Twister algorithm. This initial seed state is then used as a source of

randomness in mpz urandomm(a, rstate, n) to generate a uniform random integer

base a between 2 and n− 2 inclusive.

While GMP offers to seed PRNGs and to explicitly pass the state to functions

requiring access to pseudorandom numbers, this option is not available for primality

testing, i.e. each call to mpz millerrabin will work with an identical PRNG state.

Thus, since the initial seed state is constant, the resulting sequence of a values

chosen by mpz urandomm for a fixed n is also constant. Note, though, that different

a may be chosen for different n, since the bases a are sampled uniformly in a range

depending on n. This, in effect, means that the bases chosen when testing n are

defined as a function of n. Therefore the result of mpz probab prime p(mpz t n,

int reps) for fixed values of n and t is deterministic.3

Pseudoprimes. For integers n, t, let (a1, a2, . . . , at) denote the deterministic list

of bases used by GMP, where t = reps. By setting n = (2x+ 1)(4x+ 1) with x odd

and 2x+ 1, 4x+ 1 both prime, we will obtain a number for which random base MR

tests will pass with probability roughly 1/4. Since (a1, a2, . . . , at) is pseudorandom,

we may expect that an n constructed in this way would pass the MR tests in GMP

with probability (1/4)t. Thus, for example, for the minimum recommended value of

3We note that the same sequence of ai may still be produced even for different n when n is
only slightly smaller than a power of two. This is due to the application of rejection sampling by
comparison with n to sample in a range up to n.
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t = 15, it might be feasible to construct a suitable n which would always be declared

prime by just trying sufficiently many random values of x.

However, recall that we need 2x + 1 and 4x + 1 to be simultaneously prime, and

we must also pass the base 210 Fermat test. This makes the cost of constructing

n prohibitively high with this direct approach, since the probability that random

x will give prime pairs (2x + 1, 4x + 1) is approximately (2/ lnx)2, and the special

form of n means that a Fermat test will pass with probability roughly 1/2, while

passing t rounds of MR testing will happen with probability only (1/4)t. Putting

this together, each x would pass with probability about 1/22t−1(lnx)2; for a 99%

chance of success in finding a good x with lnx = s, we would need about 5 · 22t−1s2

trials, each trial involving at least a primality test on 2x+ 1. For a 1024-bit n and

t = 15 trials (the minimum recommended by GMP), roughly 247 trials would be

needed, each involving at least a 512-bit primality test.

Instead, and partly inspired by the ROCA attack [114] and the form of the primes

exploited there [81, 80], we consider x of the special form x = kM + 189 where M

is a product of the first ` primes in the set P = {2, 3, . . . , 373} and k is a randomly

chosen integer of a size to make n = (2x + 1)(4x + 1) have the desired target size

(say, 1024 bits). Here ` is a parameter to be chosen later. The selection of x of this

form ensures that 2x + 1 = 2kM + 379 and 4x + 1 = 4kM + 757 are not divisible

by the first ` primes in P, boosting the chances that 2x + 1 and 4x + 1 are both

prime (the form of x essentially ensures that 2x + 1, 4x + 1 pass trial divisions for

the first ` primes in P; here we rely on the fact that 379 and 757 are both prime and

larger than 373). The offset of 189 is specially chosen so that the Fermat test on n

to base 210 will always pass for n of the chosen form. This follows from a bespoke

mathematical analysis that we now discuss, before giving an example pseudoprime

for GMP.

Constructing GMP Pseudoprimes. Recall that we work with candidates x of

the form x = kM + 189, and then consider n = (2x+ 1)(4x+ 1); we select x so that

2x+ 1 and 4x+ 1 are both prime, and we select M as a product of the first ` primes

from the set P = {2, 3, . . . , 373}. We justify this construction here.
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First, note that 2x + 1 = 2kM + 379 while 4x + 1 = 4kM + 757, where both 379

and 757 are prime. Considering 2x + 1 modulo each of the ` prime factors p in

M , we see that 2x + 1 = 379 mod p 6= 0 mod p because p < 379; similarly, we

obtain 4x + 1 = 757 mod p 6= 0 mod p. Hence no such p divides either 2x + 1 or

4x + 1, so these numbers are not divisible by any of the primes in the product

M (i.e. the first ` primes). For this reason, with random choices of k and with

x = kM + 189, it follows that 2x + 1 and 4x + 1 are more likely to be prime

than they would be for random choices of x. An analysis of the effect involves an

application of the inclusion-exclusion principle to determine how many numbers are

“sieved out” by the process. We omit the full analysis here, but note that, for

numbers of cryptographically interesting size and with ` = 69 that we use in the

construction of our 1024-bit example for n, the effect is to increase the probability

of primality for each number from 2/ lnx to roughly 10/ lnx. Since we have two

numbers 2x + 1, 4x + 1 whose primality behaves largely independently over the

choice of x, this yields a 25-fold improvement in the performance of our approach

over the direct approach of trying random x values. This speed up is discussed more

extensively in Section 4.3.4 of Chapter 4 and can be calculated from Equation 4.4.

Next, we consider the Fermat test on n with base a = 210, assuming the factors

2x + 1 and 4x + 1 are prime. This test computes the value of an−1 mod n and

compares it to 1. Now n − 1 = (2x + 1)(4x + 1) = 8x2 + 6x = 2x(4x + 3), so we

obtain:

an−1 = (a4x+3)2x = 1 mod 2x+ 1

and

an−1 = a8x
2+6x = (a2x+1)4x · a2x = 1 · a2x = a2x mod 4x+ 1.

Here, we have made repeated use of Fermat’s Little Theorem (which states that

ap−1 = 1 mod p for prime p and a 6= 0 mod p).

It follows that an−1 = 1 mod n if and only if a is a quadratic residue modulo 4x+ 1.

Hence n passes a Fermat test to base a for roughly half of the possible bases a (since

roughly half of the values a mod n are quadratic residues mod4x+ 1).

Now we use the fact that a = 210 = 2 · 3 · 5 · 7 to write:(
210

4x+ 1

)
=

(
2

4x+ 1

)(
3

4x+ 1

)(
5

4x+ 1

)(
7

4x+ 1

)
.
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Since M is even, we can write 4x+1 = 8k(M/2)+757 = 5 mod 8, hence ( 2
4x+1) = −1.

Also ( 3
4x+1) = (4kM+757

3 ) = (7573 ) = (13) = 1, where we use Gauss’s Law of Quadratic

Reciprocity and 3|M . Similarly, we obtain ( 5
4x+1) = −1 and ( 7

4x+1) = 1. Combining

everything, we finally get(
210

4x+ 1

)
= (−1) · 1 · (−1) · 1 = 1.

We conclude that the Fermat test for n of the given form with base a = 210 always

passes.

A Pseudoprime for GMP. Our code for constructing x (and n) of this special

form first picks a target bit-size for n, then selects ` as large as possible so that

there are enough choices for k for there to be sufficiently many candidates that one

suitable x will result. For each resulting x, our code tests 2x+ 1 and then 4x+ 1 for

primality, and (if these tests pass) applies the GMP primality test for the desired

number of t rounds of MR testing.

For n of 1024 bits, we set ` = 69, taking M as the product of the primes up to 349,

and leaving a 51-bit value for k. The choice of M increases the probability that both

of 2x+ 1 and 4x+ 1 are prime by a factor of roughly 25, and the form of x ensures

that the Fermat test always passes, giving another factor of 2 improvement. Using

a total of 33,885 core-hours (3.87 core-years) of computation in parallel on 872 cores

running at 2.4GHz (kindly donated by CloudFlare), we found the following 1024-bit

example passing GMP’s primality test with t = 15 rounds of MR testing:

n = 2960 · 0x0000000000000000000000000000000081d564fbdd20b406

+ 2768 · 0x750af7bd334dcf547b131a1d8f8235fd603dba44e22e0775

+ 2576 · 0x0ecf755051d33cb8895413f5d69f5a3df701889e3a69f92e

+ 2384 · 0xdd3f5f36662521877231ba4753a3e7185a89ddb0b2d73a35

+ 2192 · 0x9e976a9bcfeae1a7c026d74bc7515a5010f3cd62c69fa9ad

+ 20 · 0x7b699f40e7a85192e1a4aa95537363fcb93d789aee32bbbf.

We recall that this n will always pass GMP’s primality testing for 15 MR rounds

because the generation of the MR bases depends deterministically on n.
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3.3.3 Mini-GMP

Mini-GMP is a small implementation of a subset of GMP’s mpn and mpz interfaces

included within GMP 6.1.2 [66]. This library includes its own miniature implemen-

tation of mpz probab prime p(n, reps). The most significant change compared

to GMP is that Miller-Rabin testing is performed explicitly with a deterministic

sequence of t bases obtained by evaluating Euler’s polynomial a(x) = x2 +x+ 41 at

x = 0, 1, 2, . . . , t− 1. It also omits GMP’s Fermat test.

Pseudoprimes. The use of a sequence of deterministic bases in Mini-GMP enables

us to predict the bases that will be chosen for any particular value t of reps. The

bases are not all prime (though Euler’s polynomial famously does produce many

primes), so we cannot directly use Arnault’s method from Section 3.2.1.2. Instead,

we use our extension for composite, fixed bases method in Section 3.2.1.5.

Using this approach, we constructed a 2960-bit composite n = p1p2p3 that passes up

to t = 101 rounds of Mini-GMP’s Miller-Rabin testing. Of the 101 bases produced by

Euler’s polynomial, 86 were already primes and the remaining 15 bases all factorised

into various combinations of the four primes 163, 167, 179 and 199. The combined

list of 90 unique primes was then used with the method described in Section 3.2.1.5

to produce n. This n is given in the example below.

We note that the documentation for Mini-GMP is shared with the main GMP library,

implying to a user that 15 to 50 rounds of MR testing would be reasonable.

A Pseudoprime for Mini-GMP. Using our SAGE implementation of the com-

posite fixed base technique as described in Section 3.2.1.5, we construct an n of the
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form n = p1p2p3, where pi = ki(p1 − 1) + 1 with (k2, k3) = (10937, 11257) and

p1 = 2960 · 0x00000000000000000000000000000000000000000002e394

+ 2768 · 0x1a2fe4aa9e66358347f63732494d08635ccc9ae0a3c17764

+ 2576 · 0xa8e266f4d26758ab804a702c235f63b1e109a81fc007f94b

+ 2384 · 0xec5158f231a30b1cbf96a7fc444c09be62f5a809f049cc5d

+ 2192 · 0xe94b84275c38885c9b61a6bdc44111501527722a8ac87ea2

+ 20 · 0xa5d4498caa2d9d07b34001a508fa53063991206268c547d7.

This yields a 2960-bit composite n that is guaranteed to pass any number up to and

including t = 101 rounds of Mini-GMP’s primality test. This large example was

created to emphasise how the recommended number of rounds of MR to perform by

GMP’s documentation can be vastly surpassed.

However, we are also able to generate numbers of a more suitable bit-size for cryp-

tographic use. Using the same SAGE implementation we construct an n of the form

n = p1p2p3, where pi = ki(p1 − 1) + 1 with (k2, k3) = (10709, 10781) and

p1 = 2576 · 0x0000000000000000000000031f56286a48b9e806b0a4dc84

+ 2384 · 0xbbf808788471fb4b91c291e92f25617f832581dd28b88325

+ 2192 · 0xd8d391bc68e6b720ef5a6f6701d8845658af13436b63217f

+ 20 · 0x71d60fade1aaea8eaf28b3c2ac81b9233d18fc962a7761b3.

This produces the following 2048-bit composite n that is guaranteed to pass any

number up to and including t = 70 rounds of Mini-GMP’s primality test. This is
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still well above the advised 15-50 rounds.

n = 21920 · 0x0000000000000000d17cafbd9fb7f539a99b9f970e13e0e8

+ 21728 · 0xac245b6a8937b4047d70858d6aea422f2d00f84a52906bb6

+ 21536 · 0xf39431237ae9f21a341337d37cf88b8668a91313c3bbb5e1

+ 21344 · 0xe3243ba1d22a22b81b497befd0dbb83bfe88e269438ceb8c

+ 21152 · 0x22fe8211696dae60f6770064904c5675accd31933f686727

+ 2960 · 0xe325348a2d42394d50708924257b2a38141e035333ae12ab

+ 2768 · 0xe9161b0757c5fec92dab42c507126d0ed02cab6cd69879c6

+ 2576 · 0x5cd68172318fe5a28805a24a3a71a7135b9582cafd5ea8e1

+ 2384 · 0x6a733b98bf41d770b80fc5067d80c44b86b73707764f176b

+ 2192 · 0xab00cb70531918ca06fe9c8096dd98db1bace156d0222e1a

+ 20 · 0x28217bf86d18a4c08c28f579c566d2adbe1bf5721d2334cb.

3.3.4 NSS

Mozilla’s Network Security Services (NSS) [109] is a set of libraries designed to sup-

port cross-platform development of security-enabled client and server applications.

NSS is the TLS library used by Mozilla’s Firefox browser. Applications built with

NSS can also support SSL v3, various PKCS, X.509 v3 certificates and many other

security standards. We consider NSS 3.50 (Feb. 2020) throughout.

Analysis. NSS provides the primality test mpp pprime found in mpprime.c. This

function takes as input a number n to be tested and the number of rounds of testing

chosen by the user, t. Each round of testing is composed of a Miller-Rabin test

performed on a base a, where a is chosen by the function mpp random. The function

mpp random uses the C library’s rand() function to generate random values. In the

corresponding documentation for mpp random, it is noted that “[i]t is up to the caller

to seed this generator before it is called.”, yet there is no seeding of this generator

before its use in mpprime.c. Therefore, this pseudorandom number generator will

output a deterministic sequence of numbers, and thus the Miller-Rabin test will be

performed on the same bases each time mpp pprime is invoked (in a manner similar
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to that found in GMP above).

Pseudoprimes. As was the case with GMP: if a composite number n is found such

that the first x bases produced by the function mpp random when testing n are non-

witnesses, then n will be declared prime for t ≤ x. Due to the similarities in the GMP

method of base selection, we are able to construct pseudoprimes for mpp pprime by

modifying the code used for the generation of the examples in Section 3.3.2. To do

this, we simply change the call to the primality test in GMP with mpp pprime.

However, unlike deterministic sequence of bases seen in GMP, the return values of

rand() do not appear to be consistent across different machines. This reduces the

portability of pseudoprimes to mpp pprime, as the result of performing the test may

be specific to just one machine. Furthermore, depending on the platform and con-

figuration, the underlying arbitrary precision integer arithmetic library used by NSS

(known as mpi) uses different limbs [110], which may change the number of rand()

calls (and thus its output). While this may affect the usability of these pseudo-

primes, it is still conceivable that a particular pseudoprime could be constructed

with the sole purpose of being accepted by just one machine, that could for example

be a particularly desirable host.

An Example Pseudoprime for NSS. By modifying the C implementation de-

scribed to efficiently generate pseudoprimes to GMP (described in Section 3.3.2) to

instead make calls to mpp pprime in NSS, we were able to produce an example pseu-

doprime for NSS. Using approximately 60 core-hours on 3.2GHz CPUs we produced

a 1024-bit composite number n of the form n = (2x + 1)(4x + 1) that passed the

primality test provided by NSS with t = 10 round of MR testing, with

x = 2384 · 0x00000000000000004071079147a638c3701eed9a97d0267e

+ 2192 · 0x6a7a7744256f79b5fb0f420fb2623219a17775639f052cdf

+ 20 · 0xff70763848269b02017b92484b65779743b2f6bcbfcaed3d.

However, due to the inconsistency of results across machines, this was declared prime

by NSS with t = 10 rounds of MR testing only on the single machine with which it
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was produced (our particular target machine). No further attempts were made to

produce an example that was declared prime across multiple machines.

3.3.5 Apple corecrypto and CommonCrypto

Apple’s CommonCrypto [6] library provides iOS and OS X cryptographic services.

CommonCrypto relies upon Apple’s corecrypto library [7] to provide implementa-

tions of low-level cryptographic primitives. The Apple corecrypto does not have

explicit version numbers, but we are able to give the various versions of Apple’s

operating systems which were using the corecrypto library analysed here in August

2018. Therefore, the results here affect versions prior to iOS 12.1, macOS Mojave

10.14.1, tvOS 12.1, watchOS 5.1, iTunes 12.9.1, and iCloud for Windows 7.8.

Analysis. Apple’s primality test can be found in corecrypto file ccz is prime.c,

which contains the function ccz is prime. This function takes as input a number n

to be tested and the number of rounds of testing chosen by the user, t. This function

then calls the function ccprime rabin miller found in ccprime rabin miller.c.

This in turn optionally checks that the number being tested is odd, is not one

of the first 256 primes, and not divisible by one of the first 119 primes (via a gcd

computation). It then performs min{t, 256} rounds of Miller-Rabin testing, selecting

the bases incrementally from a hard-coded list of the first 256 primes. The code

documentation states that when performing t = 32 rounds of testing, the probability

of a false prime classification is estimated as 2−64.

CommonCrypto provides the primailty test CCBigNumIsPrime which calls ccz is-

prime provided by corecrypto. However, the user has no choice over the number of

rounds of testing t in this case, as it is hard-coded to 16.

Pseudoprimes. Since the bases are chosen deterministically based on the value

of t, we can achieve a failure rate of 100% with respect to that value t, simply by

using the method of Section 3.2.1.2 to produce a composite n that has the first t

primes as non-witnesses. Such an n is in fact guaranteed to be declared prime by

ccz is prime, for any user input ≤ t. We give examples of composites n that will
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be declared prime by corecrypto for t ≤ 256 and t ≤ 40 in Section 3.3.17. (These

examples are shared between a few different libraries, so are placed in a separate

section for clarity.)

Since CommonCrypto forces ccz is prime to perform 16 rounds of testing, we can

achieve a 100% success rate even more easily in this case. Indeed, both examples in

Section 3.3.17 are guaranteed to be declared prime in this case, as are the supple-

mentary examples for a variety of bit-sizes provided below.

Example Pseudoprimes for Apple CommonCrypto. Using our SAGE im-

plementation of the method as described in Section 3.2.1.2 with A containing the

first 16 primes, we construct three compsites n of the form n = p1p2p3, where

pi = ki(p1 − 1) + 1 with (k2, k3) = (113, 173) where:

p1 = 0x32972d4e607a45f57d7144df60a7abf8b473a1680b

produces a 512-bit n,

p1 = 2192 · 0x00000000000151452e0a832f27b9eead0000000000000000

+ 20 · 0x000000000000000000000000aff3796792e7ceb8d55206a3

produces a 1024-bit n, and

p1 = 2576 · 0x000000000000000000000032972d4e607a45f57d66c00000

+ 20 · 0x000000000000000000000001f2a7b5c6a50fc1e38aae911b

produces a 2048-bit n.

These composites are always declared prime by CommonCrypto.

3.3.6 Cryptlib

Cryptlib 3.4.3 [71] is an open source security toolkit library developed by Peter

Gutmann. It provides a variety of services including: public-key algorithms, various

cryptographic functions and primality testing.
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Analysis. The primality test in Cryptlib is the function primeProbable found in

kg prime.c and is composed of t rounds of Miller-Rabin, where the value of tmust be

between 1 and 100 (inclusive) and is chosen by the user upon calling. The function

then chooses the base for each test incrementally from the start of a fixed list of

primes. This is either a list of the first 54 primes (2 to 251) or the first 2048 primes

(2 to 17863), depending on the preprocessor directive CONFIG CONSERVE MEMORY.

Pseudoprimes. Since t ≤ 100, we will at most only ever test using the primes

between 2 and 541 (the hundredth prime) as bases. We can therefore generate

numbers that are guaranteed to be declared prime by this test for any valid input t,

simply by using Arnault’s method to generate a composite n that has the first 100

primes as non-witnesses. Indeed, using the method described in Section 3.2.1.2 we

can produce a 2315-bit composite that is pseudoprime to all prime bases up to and

including 541.

An Example Pseudoprime for Cryptlib. Using our SAGE implementation of

the method as described in Section 3.2.1.2 with A containing the first 100 primes,

we construct a 2315-bit n of the form n = p1p2p3, where pi = ki(p1 − 1) + 1 with

(k2, k3) = (641, 677) and

p1 = 2576 · 0x24a027808260908b96d740bef8355ded63f6edb7f70de9a9

+ 2384 · 0xb99c408f131cef3855b4b0aea6b17a4469ed5a7ec8b2be62

+ 2192 · 0x66c3a9eae83a6769e175cb2598256da977b9e191b9b847a7

+ 20 · 0xe2cf4750d9bc2d64ccd3406f5db662c22c3fc65e3c56eff3.

This n is declared prime for any valid number of rounds t of testing performed by

Cryptlib’s primality test.

3.3.7 JavaScript Big Number (JSBN)

The Java Script Big Number (JSBN) library written by Tom Wu [163] provides a

small cryptographic toolkit for Java Script applications. Here we study the most

recent release JSBN 1.4 from 2013. According to its homepage the library has been
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used in a variety of applications, including: Forge (a pure JavaScript implementation

of SSL/TLS), Google’s V8 benchmark suite version 6, the JavaScript Cryptography

Toolkit, and the RSA-Sign JavaScript library.

Analysis. The library offers the primality test bnIsProbablePrime(t) where the

parameter t defines the number of rounds of Miller-Rabin the user wishes to perform.

The code documentation states that this function will “test primality with certainty

≥ 1− .5t”. The function pseudorandomly chooses a base a for each round of Miller-

Rabin from a hard-coded list of all primes below 1000 called lowprimes.

Pseudoprimes. We can consider this implementation as performing tests with

fixed bases, where the bases chosen are all primes between 2 and 1000. We can then

use Arnault’s method (Section 3.2.1.2) to construct composite numbers n that pass

JSBN’s primality test no matter how many rounds of testing t the user wishes to

perform.

An Example Pseudoprime for JSBN. Using our SAGE implementation of the

method as described in Section 3.2.1.2 with A containing the first 1000 primes, we

construct a 4279-bit n of the form n = p1p2p3, where pi = ki(p1 − 1) + 1 with

(k2, k3) = (1013, 2053) and

p1 = 21344 · 0x0000000000000000000000000000083dda18eb04a7597ca3

+ 21152 · 0xc6bc877df8a08eec6725fa0832cba270c42adc358bc0cf50

+ 2960 · 0xc82cb10f2733c3fb8875231fc1498a7b14cb675fac1bf3c5

+ 2768 · 0x127a76fc11e5d20e27940c95ceba671fe1c4232250b74cbd

+ 2576 · 0xf8448c90321513324c0681afb4ba003353b1afb0f1e8b91c

+ 2384 · 0x60af672a5a6f4d06dd0070a4bc74e425f3eae90379e57754

+ 2192 · 0x82d26e80e247464a4bb817dfcf7572f89f8b9cacd059b584

+ 20 · 0x0e4389c8af84f6a6ea15a3ea5d62cb994b082731ba4cde73.

This produces an n that is guaranteed to be declared prime by JSBN’s primality

test for any certainty parameter t.
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3.3.8 LibTomMath

LibTomMath v1.0.1 [45] is an open source multiple-precision integer library with a

number theoretic toolkit.

Analysis. LibTomMath includes several methods for primality testing in the form

of trial division, Fermat tests, and Miller-Rabin tests. The latter two take a single

base a and a number n to test as arguments and return whether a is a witness or

non-witness. The main primality test is defined by the function mp prime is prime,

which takes arguments n (the number to be tested), and integer t with 1 ≤ t ≤ 256.

It then performs some trial divisions (on a default of the first 256 primes) and then

t rounds of Miller-Rabin. The selection of bases to be used is made similarly as in

Cryptlib: it simply picks incrementally from a list of hard-coded primes (but this

time a list of 256 primes up to 1619 are used).

The documentation of LibTomMath (bn.pdf) discusses the number of rounds of

Miller-Rabin required with the statement: “Generally to ensure a number is very

likely to be prime you have to perform the Miller-Rabin with at least a half-dozen or

so unique bases.” This is complemented with a function mp prime rabin miller-

trials that gives the number of rounds needed to achieve an error rate less than

2−96 based on the bit-size of the number tested (similar to that in OpenSSL and [41])

and a comment in the header file tommath.h above mp prime rabin miller trials

that states the probability of a false classification is no more than (1/4)t.

Pseudoprimes. Since the bases are chosen deterministically based on the value

of t, we can achieve a failure rate of 100% simply by using the method of Section

3.2.1.2 to produce a composite n that has the first 256 primes as non-witnesses;

such an n is guaranteed to be declared prime by mp prime is prime, for any value

of t (including the t chosen by mp prime rabin miller trials that describes an

error rate less than 2−96). Section 3.3.17 provides a 7023-bit example of such an

n. Much smaller examples can be obtained if smaller values of t are guaranteed to

be used; in particular, we can easily obtain a 1024-bit example for t ≤ 40 (see also

Section 3.3.17).
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3.3.9 LibTomCrypt

LibTomCrypt v1.18.1 [44] is an additional cryptographic toolkit that shares many

resources with LibTomMath.

Analysis. The primality test in LibTomCrypt is called as isprime(n,t,result).

It takes as arguments an n to test and carries out t rounds of Miller-Rabin. The

documentation of LibTomCrypt advises that each round of Miller-Rabin reduces the

probability of n being a pseudoprime by a factor of 4, and therefore deduces that the

overall error is at most (1/4)t. LibTomCrypt supports selection from three different

big integer libraries at runtime.

If LibTomMath is chosen then isprime will call mp prime is prime as described

in Section 3.3.8, passing on parameters n and t. If TomsFastMath [46] is chosen

then isprime will call fp isprime ex, a function defined in the math library Toms-

FastMath that performs equivalent testing as LibTomMath’s mp prime is prime.

If GMP is selected then isprime will call mpz probab prime p as described in Sec-

tion 3.3.2. The value of t used by any of the three choices is inherited from the

original call to isprime, however if t = 0 the value is overwritten to t = 40.

Pseudoprimes. If either LibTomMath or TomsFastMath are selected, the pseu-

doprimes described in Section 3.3.8 will always be declared prime by the primality

test, for an example see Section 3.3.17. If GMP is selected we can apply the analysis

in Section 3.3.2 to generate pseudoprimes.

3.3.10 WolfSSL

WolfSSL 3.13.0 [160] (formerly CyaSSL) is a small SSL/TLS library targeted for

use in embedded systems. WolfSSL provides primality testing tools based on public

domain TomsFastMath 0.10 [46] and LibTomMath 0.38 [45] functions.
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Analysis. The primality test in WolfSSL is the function mp prime is prime which

takes a number n to be tested and the rounds of testing t as parameters. This

function is directly taken from an older version of LibTomMath, namely 0.38 [45].

WolfSSL will use LibTomMath by default, but can optionally be compiled to use

TomsFastMath 0.10 [46] at runtime. The primality test in LibTomMath 0.38 is

unchanged from that analysed in version 1.0.1 in Section 3.3.8. When using Toms-

FastMath, mp prime is prime calls fp isprime which strips the user’s choice of t

and simply calls fp isprime ex with the hard-coded value of t = 8. The function

fp isprime ex then performs trial division (on a default of the first 256 primes) and

then does 8 rounds of Miller-Rabin using the first 8 primes as bases. It thus acts

equivalently to mp prime is prime in LibTomMath, but with t = 8.

Pseudoprimes. Since the testing in WolfSSL is in effect the same as that per-

formed in LibTomMath (but using only 8 rounds of Miller-Rabin when using Toms-

FastMath), the composite examples given in Section 3.3.17 are also declared prime

with 100% success.

3.3.11 Libgcrypt

Libgcrypt [87] is a general purpose cryptographic library originally based on code

from GnuPG. The library provides various cryptographic functions, including public-

key algorithms, large integer functions and primality testing. We analyse version

1.8.2, released in December 2017.

Analysis. The documentation for Libgcrypt states that the function used for

checking the primality of primes is gcry prime check which is found in primegen.c.

This function then calls check prime in which the actual testing performed. This

function check prime performs three testing steps. The first step is trial division

with all primes up to 4999. The second step is a Fermat test with base a = 2. The

last step comprises t rounds of Miller-Rabin where the bases are pseudorandomly

chosen. We note that t is user-defined, but cannot be set to less than 5. The default

for checking the numbers produced in the prime generation algorithm is set to 5,

but when a user calls gcry prime check the choice of t is hard-coded to 64.
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Pseudoprimes. Following Section 3.2.1, beating steps 1 and 2 of the testing per-

formed in check prime is trivial if we choose n as a Carmichael number of the form

n = pqr where p, q, r > 4999. By using the hybrid technique in Section 3.2.1.4, we

can create a Carmichael number that also has the maximum number of randomly

distributed non-witnesses. We then need only to overcome the t Miller-Rabin tests

with pseudorandom bases. This happens with probability (1/4)t. If the user calls

gcry prime check then the probability with which we can fool this test would be

only 2−128. Yet performing 64 rounds of Miller-Rabin is quite time consuming, and

a user may be tempted to bypass gcry prime check and call check prime with

fewer rounds. In this hypothetical situation, or in versions of Libgcrypt prior to

1.3.0 (2007) [86] (where gcry prime check would call t = 5 rounds by default) the

best we could achieve is passing the test with probability 1/1024 (for t = 5).

3.3.12 Java

Java implementations provide their own methods for arbitrary precision arithmetic,

including primality tests, as seen in java.math.BigInteger. We consider Open-

JDK10 [38], although there seems to be no significant changes to this section of the

code in older versions such as JDK8.

Analysis. The primality testing function isProbablePrime is passed a single pa-

rameter certainty. This is a value chosen by the user and is described in the

documentation as: “a measure of the uncertainty that the caller is willing to toler-

ate: if the call returns true the probability that this BigInteger is prime exceeds

(1 − 1/2certainty).” The certainty parameter is then used to determine how

many rounds of testing will be performed. This is done by calling the function

primeToCertainty. We include the source code of the function primeToCertainty

from the class java.math.BigInteger.

This function first sets a variable n as (certainty + 1)/2. This would produce

a non-integer result when certainty is even, yet the result is cast to an integer,

implicitly flooring the result.4

4Because of the role that n plays in determining the number of rounds of Miller-Rabin
to be performed, the result is that there is no difference in testing isProbablePrime(k) and
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Listing 3.1: OpenJDK10 java.math.BigInteger function primeToCertainty

boolean primeToCertainty ( int c e r ta in ty , Random random) {
int rounds = 0 ;
int n = (Math . min ( c e r ta in ty , I n t eg e r .MAXVALUE−1)+1) /2 ;

// The r e l a t i o n s h i p between the c e r t a i n t y and the number o f rounds
// we perform i s g iven in the d r a f t standard ANSI X9. 80 , ”PRIME
// NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES” .
int s i z e I nB i t s = this . b i tLength ( ) ;
i f ( s i z e I nB i t s < 100) {

rounds = 50 ;
rounds = n < rounds ? n : rounds ;
return passe sMi l l e rRab in ( rounds , random) ;

}

i f ( s i z e I nB i t s < 256) {
rounds = 27 ;

} else i f ( s i z e I nB i t s < 512) {
rounds = 15 ;

} else i f ( s i z e I nB i t s < 768) {
rounds = 8 ;

} else i f ( s i z e I nB i t s < 1024) {
rounds = 4 ;

} else {
rounds = 2 ;

}
rounds = n < rounds ? n : rounds ;

return passe sMi l l e rRab in ( rounds , random) && passesLucasLehmer ( ) ;
}

This function also takes into consideration the bit-size of the number being tested;

if it is less than 100, then Miller-Rabin is performed with at most 50 rounds; if it

is greater than 100, then both Miller-Rabin and a Lucas probable prime test with

Selfridge’s parameters are performed, as described in Section 3.2.2. In the latter

case, the maximum number of rounds of Miller-Rabin is determined based on the

bit-size of the tested number, similarly to OpenSSL. In both cases, the user’s choice

of certainty will determine the actual number of rounds of Miller-Rabin performed

only if it is less than the internally-specified number for that bit-size.

Pseudoprimes. For numbers of cryptographically interesting size, Java performs

both Miller-Rabin and Lucas probable prime tests. Using the method outlined in

Section 3.2.2 we could produce composites that are guaranteed to be declared prime

by the Lucas test. However, the resulting forms do not fit into any of the known

isProbablePrime(k+1) when k is odd. This has an effect on the assurance given to the user
— the guarantee of 1− 1/2certainty is no longer accurate for half of the values of certainty.
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families of composites having high numbers of Miller-Rabin non-witnesses. Hence,

we are unable to construct any numbers passing Java’s primality test with high

probability using our current techniques.

3.3.13 Bouncy Castle

Bouncy Castle is a cryptographic library written in Java and C# [116]. The pri-

mality test in Bouncy Castle Java is based on the BigInteger class from JDK as

described in Section 3.3.12. Bouncy Castle C# implements its own primality tests.

We analyse Bouncy Castle C# version 1.8.2.

Analysis. The relevant function responsible for primality tests is located in the

class BigInteger. This class provides method IsProbablePrime which accepts

certainty as a parameter. The method then uses Miller-Rabin tests with t rounds,

where t is computed as t = ((certainty−1)/2)+1. In each round the base is selected

using a secure random number generator (SecureRandom) which is provided by the

Bouncy Castle library.

The certainty parameter must always be provided to invocation of the IsProbable-

Prime method. Therefore, the user’s choice completely determines how many Miller-

Rabin rounds are performed. For example, this method is directly used in the

TlsDHUtilities class, which provides Diffie-Hellman operations for TLS. When val-

idating the incoming DH parameters, the ValidateDHParameters method invokes

isProbablePrime with certainty = 2. This results in only a single Miller-Rabin

test being carried out.

Pseudoprimes. We can produce composites n using any of the methods in Sec-

tion 3.2.1; such n meet the Monier-Rabin bound and so will pass Bouncy Castle’s

primality testing with probability (1/4)t with t as derived from certainty. Al-

though there is no formal documentation, a comment above the primality testing

code indicates that the failure rate of this testing function should be (1/2)certainty,

and so the user’s choice of certainty is achieved.
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3.3.14 Botan

Botan is a cryptographic library written in C++11 [94]. In addition to the crypto

functionality it offers a TLS client and server implementation. We analyse Botan

2.6.0.

Analysis. The relevant primality test implementation can be found in numthry-

.cpp, which contains function is prime. This function first evaluates whether a

tested number is divisible by small primes up to 65521. It then performs Miller-

Rabin primality tests with randomly chosen bases. The source of randomness and

the number of Miller-Rabin rounds are based on parameters passed to the is prime

function.

The number of rounds is computed based on parameter prob and t is set as (prob+

2)/2. Botan’s documentation is very clear on the distinction between testing num-

bers of random and possibly adversarial origin. To distinguish the source, the func-

tion is prime contains a boolean flag is random. If set, then the code uses [41] to

assign t based on the bit-size of the number being tested, with a target failure rate

less than 2−80.

Pseudoprimes. As with Bouncy Castle, we can produce composite n using any

of the methods in Section 3.2.1; such n meet the Monier-Rabin bound and will pass

Botan’s primality test with the highest probability of (1/4)t where t is from the

user’s choice of prob via t = (prob+2)/2. In this sense, the test’s guarantees match

the user’s expectations.

3.3.15 Crypto++

Crypto++ 7.0 is an open source C++ cryptography library originally written by Wei

Dai [40]. Crypto++ has a variety of primality testing algorithms in nbtheory.cpp.

These consist of trial division, Fermat, Miller-Rabin and both strong and standard

Lucas probable prime tests. Crypto++’s primality testing function isprime per-

79



3.3 Cryptographic Libraries

forms both Miller-Rabin and strong Lucas tests. Thus, to fool it, we would need

to find Baillie-PSW pseudoprimes (though the Miller-Rabin test is a random base

test, unlike that performed in Baillie-PSW). We do not currently know any such

pseudoprimes.

3.3.16 Golang

The Go programming language (Golang) 1.10.3 [62] created at Google in 2009 is

an open source project including arbitrary-precision arithmetic and cryptographic

functionality.

Analysis. The relevant primality test implementation can be found in int.go,

which contains function ProbablyPrime(t). The parameter t defines the number

of rounds of Miller-Rabin the user wishes to perform. The function first performs

trial division with a series of small primes, then t rounds of Miller-Rabin (where one

base is forced to be 2 and all other bases are chosen pseudorandomly), and finally a

Lucas probable prime test. Therefore the function is performing a Baillie-PSW test.

Before version 1.8, Go’s ProbablyPrime(t) function applied only the Miller-Rabin

tests. The documentation provided by Golang makes it clear that the probability

of the function declaring a randomly chosen composite input to be prime is at most

(1/4)t. It also states that “ProbablyPrime(t) is not suitable for judging primes

that an adversary may have crafted to fool the test”.

From an attack perspective it is interesting that the pseudorandom number generator

used in this primality test is seeded with the tested number n. Thus, an attacker

can reliably predict the pseudorandomly generated Miller-Rabin bases.

Pseudoprimes. Since a Baillie-PSW test is being performed, we know of no com-

posites that are incorrectly declared prime by Golang. However, for versions prior to

1.8 released in 2017, we are able to exploit the insecure nature of the Miller-Rabin

base selection to produce composite numbers that are guaranteed to be declared

prime with respect to a parameter t. Since this is the same method GNU GMP uses

to choose bases for Miller-Rabin, we can use the method described in Section 3.3.2
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to produce such composites.

We now give an example of a composite n that is always declared prime for t ≤ 13.

An Example Pseudoprime for Golang pre-1.8. Using the method described

in Section 3.3.2, we construct a 1024-bit composite n that is declared prime by

Golang’s primality test in versions prior to 1.8 with 100% success for t ≤ 13. We

take

n = 2960 · 0x00000000000000000000000000000000ff7d428a8a9f9ffc

+ 2768 · 0x2ea178501115ec855f1154c054f5f67e15967a139a92fe15

+ 2576 · 0xddf2c49b044820ea8c58551b74f81b45b116da4e1f11b926

+ 2384 · 0x93e0cdc58006bc2052eb9b2fc32c71dd041d1907225e2814

+ 2192 · 0xebe18736f626fea57c965b67b296a6461455226b39aba263

+ 20 · 0x3faeb483847a715c6a01d8d0e401a4aaf8f3d22121fd142f.

3.3.17 Example Pseudoprimes for Apple corecrypto and CommonCrypto,
LibTomMath, LibTomCrypt and WolfSSL

Using our SAGE implementation of the method as described in Section 3.2.1.2 with

A containing the first 256 primes, we constructed a composite number n that is a

pseudoprime to all bases a ∈ A. While the size of this number n may seem arbitrary,

it was simply the first number constructed that met all requirements. Previous to

this, we are unaware of any pseudoprime constructed by the Arnault method to have

as many as 256 chosen bases in A.

We construct a 7023-bit n of the form n = p1p2p3, where pi = ki(p1 − 1) + 1 with
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(k2, k3) = (2633, 5881) and

p1 = 22304 · 0x00000000000000000000000000000000000000001e46d6a8

+ 22112 · 0x4d42d684ddb3415e871b661303b1c60f0388dfb9e525f8bc

+ 21920 · 0x51c9de3c9f45627608de2f75dee580d9d4d97cab6fa86dad

+ 21728 · 0x9e6bbfd721f297472480a9bed9508aa884bda9dc56833752

+ 21536 · 0xfac8e89f413a9517d14731277148789987806654a8723593

+ 21344 · 0xa452f960facc9b65f6962cb26131b42650c29c8735083c7e

+ 21152 · 0x6c3a220d77d1cbe7f9628885a7b79465287d4b02ad546007

+ 2960 · 0x1d43306a8813836de5ccd162fbeca4f117552dba01975451

+ 2768 · 0x2f7684e32b0377e76f87b96906f8fa276381db612f76c2c7

+ 2576 · 0xdd97ab4380042c991a4719884377c70065a3614237a41289

+ 2384 · 0x24a1017fbb529443b0ad43c5424753db5b518cee5a1fcd87

+ 2192 · 0xea038ffcad33380db1d89cd4e0b15b480cf0c62e8999924d

+ 20 · 0x0284af806081ea106f35f85a664456166b864650ef034cf3.

This n is declared prime for any valid number of rounds t for the Apple corecrypto

and CommonCrypto, LibTomMath, LibTomCrypt and WolfSSL libraries.

Also using the method as described in Section 3.2.1.2 but now with A containing

the first 40 primes, we can construct a 1024-bit n of the form n = p1p2p3, where

pi = ki(p1 − 1) + 1 with (k2, k3) = (233, 241) and

p1 = 2192 · 0x000000000000e17516504450e648b6aedb0c0784e17dda33

+ 20 · 0x63e1956a843076a9e5b6d15a819cf0907a96154d47662d0b.

This n is guaranteed to be declared prime by mp prime is prime with t ≤ 40,

and therefore also guaranteed to be declared prime by mp prime is prime as in

LibTomCrypt 1.18.1 and WolfSSL 3.13.0 for the same values of t. The same applies

for Apple corecrypto and CommonCrypto.
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3.4 Mathematical Software

In this section we conduct an analysis of primality testing found in a selection of

popular mathematical software. We focus mainly on computer algebra systems that

provide number-theoretic tools, as these offer more functionality in primality test-

ing, namely: Magma, Maple, MATLAB, Maxima, SageMath, SymPy and Wolfram

Mathematica. Since this software is usually made to run on less computationally

constrained devices, with a higher focus on mathematical accuracy than efficiency,

we expect the testing here to be more thorough. We include these in our analysis

since they might be relied upon by developers when manually checking values in

standards or code. Some of the libraries use deterministic tests for proving primal-

ity, though most still rely on probabilistic methods when testing candidates larger

than 64 bits in size. Maple, Maxima and SymPy have dependencies on GMP and

therefore inherit the same issues with its primality test as discussed in Section 3.3.2;

however they all also perform Lucas tests in their latest versions, so this “cross con-

tamination” does not result in exploitable weaknesses. Our findings are summarised

in Table 3.5.

Table 3.5: Results of our analysis of mathematical software. This shows
how the number of rounds of Miller-Rabin used is determined, whether
a Baillie-PSW test is implemented, the documented failure rate of the
primality test (that is, the probability that it wrongly declares a composite
to be prime), and our highest achieved failure rate for composite input.

Software Rounds of Baillie-PSW? Documented Our Highest
MR Failure Rate Failure Rate

Magma V2.23-9† Default 20 No (1/4)t (1/4)t

Maple 2017 5 Yes, on n > 233 Not given 0%
MATLAB R2019b 10 No Not given (1/4)10

Maxima 5.41.0 25 No†† (1/4)25 0%
SageMath 8.2 1 Yes Not given 0%
SymPy 1.0‡ 46 No “small probability” 100%
SymPy 1.1 1 Yes, on n > 264 “small probability” 0%
Wolfram
Mathematica 11.3

2 Yes “correct for n < 1016” 0%

† When testing input of size at least 34 × 1013 or invoking the test with the parameter proof =

False.
†† An additional Lucas test is performed on input of size at least 249.
‡ When testing input of size at least 264.
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3.4.1 Magma

Magma V2.23-9 [29] is a mathematical software package designed for computations

in algebra, number theory, algebraic geometry and algebraic combinatorics.

Analysis. Magma provides a primality testing function that can either invoke a

primality proving algorithm, or what they call a probable-primality test, depending

on the arguments given when called. The main function call for primality testing is

IsPrime(n: Proof). The more rigorous method of primality proving is based on

an implementation of the ECPP (Elliptic Curve Primality Proving) method [10]. It

is used by default, unless the number tested is greater than 34×1013 or the parameter

Proof is set to False. In this case, the probable-primality test IsProbablePrime is

instead called. By default, this consists of 20 rounds of Miller-Rabin with random

bases. By setting the optional parameter Bases to some value B, the number of

bases used is B instead of 20.

Pseudoprimes. The pseudoprimes generated in Section 3.2 attempt only to over-

come probabilistic primality testing and are not designed to overcome primality

proving methods such as ECPP.

However, if the parameters are set to invoke the probable-primality test with de-

fault parameters, then composites generated by the methods in Section 3.2.1 have

a probability of 2−40 of being falsely declared prime. This probability is correctly

alluded to as being worst-case by the documentation given for this function.

3.4.2 Maple

Maple 2017 [157] is a computer algebra system developed by Maplesoft, that provides

a general-purpose software tool for mathematics, data analysis, visualisation, and

programming.
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Analysis. The primality test in Maple is called as isprime(n) on a candidate

n to be tested. Documentation states that “It returns false if n is shown to be

composite within one strong pseudo-primality test and one Lucas test. It returns

true otherwise”. The function begins with some trial division on a series of small

primes before calling gmp isprime(n). If the result of gmp isprime(n) is 1 (i.e.

the number is “probably prime”) and the candidate n being tested is greater than

5 × 109 ≈ 233, then isprime will go on to perform a Lucas test on n. In all other

cases, the Lucas test is omitted.

Although we cannot directly inspect the code of gmp isprime(n) (since Maple is

proprietary software) we are able to reverse-engineer this function by calling it on

our own input n and assessing how it performs. Maple’s documentation states

that it performs a Miller-Rabin test and uses GMP for this function, yet since

there is no other code indicative of a Miller-Rabin test in gmp isprime(n), we

deduce that Maple is calling GMP’s function mpz probab prime p(n, reps). Since

gmp isprime(n) takes only a single argument, we inferred that Maple passes a

hardcoded value of reps to GMP.

We were able to verify that the value of reps is actually 5. We did this by using

the methods described in Section 3.3.2 to generate composite numbers of various

bit-sizes that are declared prime by mpz probab prime p (n, reps) for reps =

1,2,3,4,5. For composites that can only pass at most reps = 4 tests, Maple’s

gmp isprime correctly identifies these as composite. But for composites that pass

reps = 5, the function falsely declares them to be prime.

Pseudoprimes. When testing numbers n ≤ 5× 109, isprime acts as a determin-

istic version of the Miller-Rabin test. We have verified this by calling mpz probab-

prime p(n,5) for all n ≤ 5×109 and comparing the results to a list of primes below

5×109. The different sets of bases that GMP chooses for each n are such that there

are no composites below this threshold that are declared prime by mpz probab -

prime p with reps > 3. However, any change made to the (flawed) way GMP cur-

rently chooses its bases for testing could actually make Maple’s isprime function

less accurate (and no longer deterministic) for n ≤ 5× 109!
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To fool Maple’s primality testing for numbers larger than 5× 109, we would need a

composite n passing a Lucas test and 5 rounds of Miller-Rabin testing. We do not

currently know any such n.

3.4.3 MATLAB

MATLAB R2019b is a widely used numerical computing environment and propri-

etary programming language developed by MathWorks. It provides capabilities for a

variety of mathematical tasks including linear algebra, calculus and number theory.

Analysis. The primality test in MATLAB is called as isprime(n) on a candidate

n to be tested. The documentation states that isprime(n) is performing the Miller-

Rabin primality test with 10 independently and randomly chosen bases. MATLAB’s

documentation does not mention explicit bounds of error probabilities, but does

inform users: “If n is positive and isprime returns TRUE, then n is prime with a

very high probability.”.

Like Maple, MATLAB is proprietary software. This means we are unable to directly

inspect all parts of the code. However, we can use documentation and tools such as

edit to inspect some of the code of the inbuilt functions. By calling edit isprime

we are able to see only the preliminary testing performed on n – this is mainly sanity

checking, but also includes MATLAB’s trial division code.

Pseudoprimes. If MATLAB is indeed just performing 10 rounds of Miller-Rabin

on n, we can produce composite numbers n using any of the methods in Section 3.2.1;

such n meet the Monier-Rabin bound and will pass MATLAB’s primality test with

the highest probability of (1/4)10, yet we were unable to verify this claim.

3.4.4 Maxima

Maxima 5.41.0 [98] is a free, open source computer algebra system developed by

the Macsyma group. Maxima is a general-purpose system including tools for a
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variety of mathematical functions and the manipulation of symbolic and numerical

expressions.

Analysis. The primality test supplied by Maxima is the function primep(n).

When testing an n less than 341550071728321 (≈ 249) a deterministic version of

the Miller-Rabin test is used. This is achieved by calling repeated rounds of Miller-

Rabin tests with a set of bases for which it has been verified that no composites

are falsely declared prime. These are as defined in [77, 104], and therefore can in

general be used to create a deterministic test for numbers less than 264.

When testing an n bigger than 341550071728321, primep(n) performs 25 random

base Miller-Rabin tests, then conducts one Lucas test. The source Maxima uses for

base selection is then provided by the Maxima random number generator, which is

an implementation of Mersenne twister MT 19937 [97].

Maxima’s documentation correctly states that “The probability that a non-prime

n will pass one Miller-Rabin test is less than 1/4. Using the default value 25 for

primep number of tests, the probability of n being composite is much smaller that

10−15.”

Pseudoprimes. When testing numbers n < 341550071728321 (≈ 249) the func-

tion primep(n) is deterministic, so no pseudoprimes can arise. If instead n >

341550071728321, then the combination of Miller-Rabin testing and a Lucas test

mean that no pseudoprimes for the test are known.

3.4.5 SageMath

SageMath 8.2 (or simply Sage) is a free Python-based open source mathematics

software system originally created by William Stein [148] but now developed by

many volunteers. Sage provides a toolkit of mathematical functions in areas such as

algebra, combinatorics, numerical mathematics, number theory, and calculus.
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Analysis. Although there are many methods one could use to test the primal-

ity of a number in Sage, the flagship function is is prime(n, proof) found in

/src/sage/rings/integer.pyx. If called with the value of proof set as True (de-

fault when starting Sage), the function will perform a provable primality test. If set

to False it uses a strong pseudo-primality test and instead calls is pseudoprime(n).

The “provable primality test” called when proof = True is the PARI [154] isprime

function. This then uses a combination of the Baillie-PSW test, Selfridge “p − 1”,

and Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) test [35]. It is indicated

in documentation that this test can be “very slow” when testing a prime that “has

more 1000 digits”.

The “strong pseudo-primality test” called when proof = False is less accurate,

but much quicker, and is therefore a likely choice when testing large candidates.

The candidates are then tested by PARI’s is pseudoprime(n), which consists of a

Baillie-PSW test.

Pseudoprimes. Since a Baillie-PSW test is being performed, we know of no com-

posites that are incorrectly declared prime by SageMath for either boolean value of

proof.

3.4.6 SymPy

SymPy [151] is a free, open source and widely used symbolic computation Python

library that provides computer algebra system capabilities.

Analysis. SymPy provides the primality test isprime(n), which like Maxima,

uses select bases to perform a deterministic version of Miller-Rabin when testing

candidates n < 264. We shall consider two recent versions of SymPy (SymPy 1.0

and SymPy 1.1) since significant changes to the function isprime have been made

between these versions.
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SymPy 1.0. Prior to release 1.1 in July 2017, the primality test isprime pro-

vided by SymPy 1.0 first conducted some initial trial division, before performing a

deterministic version of the Miller-Rabin test using bases described in [77, 104]. For

numbers larger than ≈ 253, the test would call additional rounds of Miller-Rabin.

In all releases up to and including 0.6.6 of 2009, this would simply perform 8 rounds

of Miller-Rabin on the bases {2, 3, 5, 7, 11, 13, 17, 19}. In version 0.6.7 [150], this was

increased to 46 rounds of Miller-Rabin, using the first 46 primes as bases. SymPy’s

documentation addresses the accuracy of its primality test by vaguely stating that

“For n < 1016 the answer is accurate; greater n values have a small probability of

actually being pseudoprimes.”. The test remained fundamentally unchanged until

version 1.1 in 2017.

SymPy 1.1 onwards. In July 2017 the function isprime was revised. Much

like Maxima, SymPy would now perform a deterministic version of the Miller-Rabin

test on input less than 264. This is achieved by calling repeated rounds of Miller-

Rabin tests with a set of bases for which it has been verified that no composites are

falsely declared prime [77, 104]. For numbers greater than 264, SymPy would instead

perform a Baillie-PSW test as described in Section 2.4.4. SymPy’s documentation

addresses the accuracy of its primality test by stating that “For n < 264 the answer is

definitive; larger n values have a small probability of actually being pseudoprimes.”

Pseudoprimes. SymPy 1.0 and all previous versions are vulnerable to composite

numbers n generated by the methods in Section 3.2.1.2. These numbers are trivial

to construct when the final Miller-Rabin test is based on the first 8 primes, but

even after the changes made in version 0.6.7, all versions prior to 1.1 would wrongly

declare composites generated in this manner to be prime.

An Example Pseudoprime for SympPy 1.0 and previous versions. Using

the method of Section 3.2.1.2, we are able to construct a 1024-bit n of the form

n = p1p2p3 that is pseudoprime to all bases selected by SymPy in all versions prior
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to 1.1. Here pi = ki(p1 − 1) + 1 with (k2, k3) = (241, 257) and

p1 = 2192 · 0x000000000000f8ae31e07964373e4997647e75fa186dd5e7

+ 20 · 0xe42ada869da0b3a333813f8102b1fb5f20623d6543e78a3b.

Since SymPy 1.1 introduced a Baillie-PSW test, we can no longer generate compos-

ites that would be declared prime by SymPy.

3.4.7 Wolfram Mathematica

Wolfram Mathematica is a computational software package developed by Wolfram

Research that covers scientific, engineering, mathematical, and computing fields.

The version we study, Mathematica 11.3 [136], (March 2018) features built-in inte-

gration with Wolfram Alpha.

Analysis. Mathematica provides the inbuilt primality test PrimeQ that is said

to perform two Miller-Rabin tests using bases 2 and 3, combined with a “Lucas

pseudoprime” test. Since the source code is not open source, we are unable to

verify the parameters used in the Lucas test. We note that the documentation

references Baillie and Wagstaff [15], from which Selfridge’s parameters originate.

Documentation of the function also indicates that this procedure is only known to

be correct for n < 1016 and that “it is conceivable that for larger n it could claim a

composite number to be prime”.

Pseudoprimes. Since a Baillie-PSW test is being performed, we know of no com-

posites that are incorrectly declared prime.

3.5 Application to Diffie-Hellman

Validating the correctness of Diffie-Hellman (DH) parameters is a vital step for

verifying the integrity of the key exchange. As mentioned in the introduction of

this section, since the DH parameter set (p, q, g), with g ∈ Zp generating a group
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of order q, is public, they can originate from third-party sources such as a server or

a standard. An adept DH parameter validation function should check that p, q are

both prime and that p = kq+1 for some integer k. It should also test that the given

generator g generates the subgroup of order q and that any received DH values lie in

the correct subgroup. A common choice is to set k = 2, so that p is a safe prime. For

p that are not safe primes, the group order q can be much smaller than p, offering

performance improvements. The security level is then based upon the bit-size of q,

which must still be large enough to thwart the Pohlig-Hellman algorithm for solving

the Discrete Logarithm Problem (DLP), which for prime q runs in time O(
√
q). A

common parameter choice is a 160-bit q with a 1024-bit p or a 256-bit q with a

2048-bit p.

More precisely, the Pohlig-Hellman algorithm runs in time O(
√
t) where t is the

largest prime factor of q. Thus, an attacker armed with the ability to fool a primality

test can supply a sufficiently smooth composite q such that p = kq+ 1 is still prime.

For example, if q is of the form (2x+ 1)(4x+ 1) this leads to an attack on DLP with

complexity 240 resp. 264 for the sizes mentioned above.

We stress, though, that none of the constructions for malicious composites in this

chapter pose a risk to protocols such as Telegram that insist on k = 2, i.e. which

check both q = (p− 1)/2 and p for compositeness. For example, the construction of

Section 3.2.1.1 would set q = (2x + 1)(4x + 1) and yield p that is always divisible

by 3; moreover, q would not be smooth enough for Pohlig-Hellman to pose a threat

for parameters of cryptographically appropriate size. However, it is the focus of the

next chapter to find a large, sufficiently smooth composite q passing a primality test

with a high probability such that p = 2q+ 1 is prime or passes a primality test, too.

We now discuss DH verification functions in various libraries. For each library, we

apply the analysis from Section 3.3 to check how robust these libraries are to attack.

We note that the other libraries discussed in Section 3.3 do not implement a higher-

level function for verification of DH parameters. Of course, this does not prevent an

application from using these libraries to realise its own verification function. Such

an application would inherit the weaknesses and strengths of the underlying library

(when k 6= 2 is permitted). We give an example of this scenario for the GMP library

below. We close with a discussion of the important use case of SSL/TLS.
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OpenSSL. The file dh check.c contains the functions DH check params and DH -

check. The former is a lightweight check that just confirms that p and g are ‘likely

enough’ to be valid, by testing to see if p is odd and 1 < g < p − 1. The latter

function is more thorough and calls BN is prime ex to test the primality of both p

and q = (p−1)/2. These primality tests are called with checks = BN prime checks,

therefore the rounds of Miller-Rabin are determined by Table 3.4. This means for

example that they will declare as prime with probability 1/16 composites n of the

special form n = (2x+ 1)(4x+ 1), for x odd and 2x+ 1, 4x+ 1 prime, when n has

more than 1300 bits. Since no private data is required, this testing function’s most

likely use-case is checking Diffie-Hellman parameters that have been generated by

someone else (perhaps from an untrusted server or an unknown origin) and therefore

clearly misuses OpenSSL’s own primality testing functions.

In Chapter 4 we exploit the misuse of the average-case error estimates in OpenSSL’s

Diffie-Hellman parameter checking function to generate parameters (p, q, g) that pass

primality testing on both p and q (with some probability) simultaneously and allow

efficient solving of the DLP.

Bouncy Castle. The validation of DH parameters in ValidateDHParameters ex-

tracts p, g from a DH parameter set and then only checks the primality of p with

1 round of Miller-Rabin. We can therefore produce composites that are accepted

as DH moduli with probability 1/4. More seriously, q is not given to the check

function, so even with a prime p, the value of g can be chosen so that it has small

order, making Pohlig-Hellman as easy as desired. Even if g had large prime order,

the flexibility in choosing parameters would allow Lim-Lee small subgroup attacks,

as explored in [156].

Botan. The Botan function is prime is used in the class DL Group (located in

dl group.cpp) which is also used for verifying DH parameters. This class contains

the verify group function, which can be invoked with boolean parameter strong.

If strong is set to true, the is prime function is invoked with prob=128. This

results in t = 65 Miller-Rabin computations. Otherwise, prob=10 and 6 Miller-

Rabin computations are performed. This test is performed for both p and q; the

code also checks that q|(p− 1) but does not insist on p being a safe prime.
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Using the methods described in Section 3.2.1 we can find a q of 160-bits that passes

6 rounds of MR testing with probability 1/4096 such that q has 2 or 3 prime factors.

Then we can construct 1024-bit prime p as p = kq + 1 by using the flexibility in

k, and a g that generates the subgroup of size q. Since this p is indeed prime and

q|(p− 1), all of Botan’s tests on the parameter set (p, q, g) will pass with probability

1/4096 if strong is set to false. We can subsequently use the Pohlig-Hellman

algorithm to solve the DLP in the subgroup generated by g and break DH with

about 228 effort.

An Example of a Malicious DH Parameter Set for Botan. Using our

SAGE implementation of the method in Section 3.2.1.4, we construct a 160-bit

q of the form q = q1q2q3, where qi = ki(q1 − 1) + 1 with (k2, k3) = (61, 101) and

q1 = 537242417098003.

This q is declared prime with probability 1/4096 by Botan’s verify group function.

By setting k = 2864 + 134 in p = kq + 1 we obtain a prime p, and thus by setting

the generator g as:

g = 2960 · 0x0000000000000000000000000000000075ead4f9fa60a06e

+ 2768 · 0x0787a1e0708f5e2055b2899691f7dd73303d5643e57b1636

+ 2576 · 0x66ce328086bd6a0df756175c35549ba7a5ffe517036c0ef1

+ 2384 · 0x44a9542f698255efb66cda28b0b8a5ebebf2c0892f8147d3

+ 2192 · 0x72083822a36098addcd30a1767ccefaae65d1dcd6b45de92

+ 20 · 0x09047326d40b622af6a76218664ba3df13eb0fead02d772a

we obtain a parameter set (p, q, g) such that g generates the subgroup of order q. The

probability that this set is accepted by Botan’s verify group function is 1/4096.

The DLP in the subgroup generated by g can be solved using the Pohlig-Hellman

algorithm over each of the 49-bit, 55-bit and 56-bit factors q1, q2 and q3 of q. The

cost is dominated by the largest prime factor, and is approximately 228 operations.
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GNU GMP. The 256-bit integer q = (2x+ 1)(4x+ 1) with

x = 0x400286bac15132db85b1c936709f369b

passes 15 rounds of GMP’s primality test mpz is probab prime p; picking k =

21792 + 1254 produces the 2048 bit prime p = kq + 1. The resulting parameter set

(p, q, g) would pass even fully adept DH validation with certainty if the underlying

primality testing was based on GNU GMP’s code with the minimum recommended

number of rounds of Miller-Rabin.

SSL/TLS. We close by commenting on the situation for DH parameter testing in

SSL/TLS. Here, the server chooses parameters but only sends (p, g) to the client.

There is no requirement that p be a safe prime. This makes it difficult for clients to

validate the DH parameters (they would need to factor p− 1 and then try different

divisors to determine the order of q) or to perform group membership tests on

received DH values. Consequently most clients perform only simple sanity checks,

e.g. checking that g /∈ {0,±1}. This makes SSL/TLS vulnerable to a variety of

malicious DH parameter attacks, cf. [161, 156], and in view of these, exhibiting

composite p that fool primality tests would be overkill for the SSL/TLS standards

in their present form. However, our work shows that even if clients tried to validate

DH parameters by factoring p − 1, finding the order of g and then testing it for

primality, they could still fall foul of malicious DH parameters. And if the SSL/TLS

protocol were amended so that the server provides full DH parameters, careful checks

would still be needed. Finally we note that only a small number of fixed, safe prime

DH parameter sets are permitted in TLS 1.3. These were recently standardised in

RFC 7919 [61], alleviating these issues for future versions of the protocol.

3.6 Disclosure and Mitigations

We reported our findings and suggested suitable mitigations based on the outcome

of our analysis to OpenSSL, GMP, Mozilla, Apple, Cryptlib, JSBN, LibTomMath,

LibTomCrypt, WolfSSL, Bouncy Castle and Botan. We give a short review of the

outcome of these discussions.
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• When we reached out to the OpenSSL developers, they were in the process of

amending its primality testing code to make it FIPS-complaint [117]. These

changes were included in OpenSSL versions 1.1.1-pre9, 1.0.2p and 1.1.0i (re-

leased 14/08/2018).5 However, these changes do not consider the adversarial

scenario on which our work focuses, and the default settings in OpenSSL re-

main weak in that scenario. We continued to work with OpenSSL to address

this further, and will discuss this throughout Chapters 4 and 5.

• Apple changed its corecrypto library from using fixed bases in Miller-Rabin

testing to using pseudorandom bases. This vulnerability was assigned CVE-

2018-4398.6

• LibTomMath and LibTomCrypt developers are in the process of adjusting the

primality testing functions within their library. They plan to remove the fixed

base Miller-Rabin testing and replace the function with a Baillie-PSW test in

accordance with our recommendations [91].

• WolfSSL has made several adaptations to its primality testing in version 3.15.5

in response to our findings [159]. This includes now performing Miller-Rabin

with pseudorandom bases, not overriding the users choice of iterations, and

increasing the number of rounds performed on prime parameters in DH and

DSA check functions.

• Bouncy Castle has also made changes based upon our findings, by removing

the DH verification function and replacing it with a whitelisting approach in

release 1.8.3. They are also looking into performing Baillie-PSW in future

versions as per our suggestion, yet this is not present in the current release

1.8.6 February 2020.

• Botan version 2.7.0 [95] has increased the number of rounds of Miller-Rabin

performed in DH verification and includes the Lucas test to perform Baillie-

PSW as per our suggestions.

• Mozilla filed a sec-moderate security bug in response to our disclosure to the

primality test in NSS in October 20197. NSS will update the primality test

5See https://www.openssl.org/news/changelog.html.
6See https://nvd.nist.gov/vuln/detail/CVE-2018-4398 and https://support.apple.com/

en-gb/HT201222.
7See https://bugzilla.mozilla.org/show_bug.cgi?id=1602379 (requires approval process).
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to perform testing on random bases chosen by a more secure PRNG. We have

been told this will take place in one of the next NSS releases.

• GNU GMP, Mini-GMP and Cryptlib all remain unchanged, but the authors

of Cryptlib pointed out a code comment that indicates the limitations of their

primality test.

• We received no response from JSBN.

3.7 Conclusion and Recommendations

Our work has explored primality testing in the adversarial setting and its impact

on Diffie-Hellman parameter testing. Our main finding is that leading libraries are

not designed for this setting, and therefore often vulnerable to accepting as prime

composite inputs that are maliciously chosen, see Table 3.3.

The need for careful distinction between non-adversarial (or random) and adversarial

primality testing is of course well understood in the cryptographic research commu-

nity. However, this distinction is not necessarily reflected and implemented in cryp-

tographic libraries and their documentation. As such, we can generally classify the

underlying cause of the failure in prime classification accuracy as a non-consideration

of the adversarial setting. More explicitly, we can categorise most failures in terms

of how the bases for Miller-Rabin are chosen, i.e. fixed base, predictable bases, insuf-

ficient number of bases. Mini-GMP, JSBN, Cryptlib, LibTomMath, LibTomCrypt

and WolfSSL all fail due to the selection of bases from a fixed list, whereas GNU

GMP and Golang pre 1.8 both suffer from predictable bases. OpenSSL, Libgcrypt,

Botan and Bouncy Castle C# all have options to run as many rounds of Miller-

Rabin as the user desires, but either default to, or call the test (elsewhere in the

library) with too few rounds.

Based on our analysis, we make the following recommendations:

• Libraries that wish to continue to use Miller-Rabin only (for example, to main-

tain a small codebase) should use pseudorandom bases, cf. Apple corecrypto
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and CommonCrypto, Cryptlib, JavaScript Big Number, LibTomCrypt, NSS,

WolfSSL. In particular, the bases should not depend only on n, cf. GNU GMP.

• We also recommend to default to worst-case bounds when picking the number

of iterations and only assume average-case behaviour when explicitly instructed

to by the user. Specifically, we recommend using 64 iterations to ensure that

composite numbers are wrongly identified as being prime with probability at

most 2−128. The impact on the performance of defaulting to worst-case bounds

should be minimal in the non-adversarial setting since testing can be aborted

as soon as a Miller-Rabin witness for compositeness is identified, and these

are exceedingly common (as the bounds of [41] show). On the other hand, it

is precisely in the adversarial setting that the worst-case bounds are needed.

Adopting this recommendation may require changes to interfaces to primality

testing code. In Chapter 5 we look in more detail at these changes, and perform

a cost-benefit analysis for performing Miller-Rabin with 64 rounds.

• If the size and complexity of the codebase is not a concern, or in mathemati-

cal libraries for which the functionality already exists (e.g. the computation of

Jacobi symbols), it may be suitable to perform the Baillie-PSW test. The neg-

ative impact on performance is moderate, and the positive impact on security

is significant. An existing benchmark for such a trade-off is found in the doc-

umentation of the computer algebra system PARI/GP [154] (on which Sage

bases its primality testing functions). PARI/GP implements both a Miller-

Rabin test with user-defined t and a Baillie-PSW test and indicate [153] that

their Baillie-PSW test is about as fast as their Miller-Rabin test with t = 3.

In Chapter 5 we will give a more detailed comparison between Baillie-PSW

and Miller-Rabin, to better solidify these benchmarks.

• Designers of new protocols should avoid the pitfalls made in SSL/TLS, where

DH parameter validation is made impractical for clients. TLS 1.3 does so by

fixing and requiring the use of a small collection of parameter sets.

Definitions in the cryptographic literature routinely start with “Let p be a prime . . . ”

whereas our work highlights that many implementations do not necessarily provide

strong guarantees for this assumption to hold. It is thus an interesting open question

which other seemingly innocuous assumptions concerning domain parameters in the

literature can be undermined in a similar fashion.
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In this chapter we consider the problem of constructing Diffie-Hellman (DH) pa-

rameters which pass standard approaches to parameter validation but for which the

Discrete Logarithm Problem (DLP) is relatively easy to solve. We consider both the

finite field setting and the elliptic curve setting.

For finite fields, we show how to construct DH parameters (p, q, g) for the safe prime

setting in which p = 2q + 1 is prime, q is relatively smooth but fools random-base

Miller-Rabin primality testing with some reasonable probability, and g is of order q

mod p. This problem was left open in Chapter 3. The construction involves modify-

ing and combining known methods for obtaining Carmichael numbers. Concretely,

we provide an example with 1024-bit p which passes OpenSSL’s Diffie-Hellman vali-

dation procedure with probability 2−24 (for versions of OpenSSL prior to 1.1.1pre9,
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1.1.0i and 1.0.2p Aug. 2018). Here, the largest factor of q has 121 bits, meaning that

the DLP can be solved with about 264 effort using the Pohlig-Hellman algorithm.

We go on to explain how this parameter set can be used to mount offline dictionary

attacks against PAKE protocols.

In the elliptic curve case, we use an algorithm of Bröker and Stevenhagen to construct

an elliptic curve E over a finite field Fp having a specified number of points n. We

are able to select n of the form h · q such that h is a small co-factor, q is relatively

smooth but fools random-base Miller-Rabin primality testing with some reasonable

probability, and E has a point of order q. Concretely, we provide example curves at

the 128-bit security level with h = 1, where q passes a single random-base Miller-

Rabin primality test with probability 1/4 and where the elliptic curve DLP can be

solved with about 244 effort. Alternatively, we can pass the test with probability 1/8

and solve the elliptic curve DLP with about 235.5 effort. These ECDH parameter

sets lead to similar attacks on PAKE protocols relying on elliptic curves.

Our work in this chapter shows the importance of performing proper (EC)DH pa-

rameter validation in cryptographic implementations and/or the wisdom of relying

on standardised parameter sets of known provenance.

4.1 Introduction and Motivation

In Chapter 3 we conducted a systematic study of primality testing “in the wild”.

We found flaws in primality tests implemented in several cryptographic libraries, for

example a reliance on fixed-base Miller-Rabin primality testing, or the use of too

few rounds of the Miller-Rabin test when testing numbers of unknown provenance.

We also studied the implications of this work for Diffie-Hellman (DH) in the finite

field case, showing how to generate DH parameter sets of the form (p, q, g) in which

p = kq+1 for some k, p is prime, q is composite but passes a Miller-Rabin primality

test with some probability, yet q is sufficiently smooth that the Discrete Logarithm

Problem (DLP) is relatively easy to solve using the Pohlig-Hellman algorithm in

the order q subgroup generated by g. Such a parameter set (p, q, g) might pass

DH parameter validation with non-negligible probability in a cryptographic library

that performs “naive” primality testing on p and q, e.g. one carrying out just a few
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iterations of Miller-Rabin on each number. If such a parameter set were used in

a cryptographic protocol like TLS, then it would also allow an attacker to recover

all the keying material and thence break the protocol’s security, cf. [161]. In Sec-

tion 3.5 we posited this as a plausible attack scenario when, for example, a malicious

developer hard-codes the DH parameters into the protocol.

It is notable that the methods described in Section 3.2 for producing malicious DH

parameters and the examples given in Section 3.5 do not work in the safe prime

setting, wherein p = 2q + 1. This is because we need flexibility in choosing k to

arrange p to be prime. It is also because our methods can only produce q with 2

or 3 prime factors, meaning that q needs to be relatively small so that the Pohlig-

Hellman algorithm applies (recall that Pohlig-Hellman runs in time O(B1/2) where B

is a bound on the largest prime factor of q; if q has only 3 prime factors and we want

an algorithm requiring 264 effort, then q can have at most 384 bits). Yet requiring

safe primes is quite common for DH in the finite field setting. This is because it

helps to avoid known attacks, such as small subgroup attacks [92, 156], and because

it ostensibly makes parameter validation easier. For example, OpenSSL’s Diffie-

Hellman validation routine DH check1 insists on the safe prime setting by default.

Indeed, it was left as an open problem in Chapter 3 to find a large, sufficiently

smooth, composite q passing a primality test with high probability such that p =

2q + 1 is also prime or passes a primality test.

Interestingly, more than a decade ago, Bleichenbacher [26] addressed a closely related

problem: the construction of malicious DH parameters (p, q, g) for which p and q

pass fixed-base Miller-Rabin primality tests. This was motivated by his observation

that, at this time, the GNU Crypto library was using such a test, with the bases

being the first 13 primes a = 2, 3, . . . , 41. He produced a number q having 1095 bits

and 27 prime factors, the largest of which has 53 bits, such that q always passed the

primality test of GNU Crypto, and such that p = 2q + 1 is prime. His q has very

special form: it is a Carmichael number obtained using a modified version of the

Erdös method [51]. Of course, his DH parameter set (p, q, g) would not stand up

to the more commonly used random-base Miller-Rabin testing, but his construction

is nevertheless impressive. Bleichenbacher also showed how such a parameter set

1See https://www.openssl.org/docs/man1.1.1/man3/DH_check.html for a description and
https://github.com/openssl/openssl/blob/master/crypto/dh/dh_check.c for source code.
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could be used to break the SRP Password Authenticated Key Exchange (PAKE)

protocol: he showed that a client that accepts bad DH parameters in the SRP

protocol can be subject to an offline dictionary attack on its password. Here, the

attacker impersonates the server in a run of the SRP protocol, sending the client

malicious DH parameters, and inducing the client to send a password-dependent

protocol message. It is the attacker’s ability to solve the DLP that then enables

the offline password recovery. Thus Bleichenbacher had already given a realistic and

quite standard attack scenario where robust DH (and ECDH) parameter validation

is crucial: PAKE protocols in which an attacker impersonating one of the parties

can dictate (EC)DH parameters.

4.1.1 Contributions & Outline

In this chapter, we address the problem left open from Chapter 3 of finding malicious

DH parameters in the safe prime setting. We also study the analogous problem in

the elliptic curve setting.

Finite Field Setting: As a flavour of the results to come, we exhibit a DH pa-

rameter set (p = 2q + 1, q, g) in which p has 1024 bits and q is a composite with

9 prime factors, each at most 121 bits in size, which passes a single random-base

Miller-Rabin test with probability 2−8. We show that no number with this many

factors can achieve a higher passing probability. Because of the 121-bit bound on

the factors of q, the DLP in the subgroup of order q generated by g can be solved

with about 264 effort using the Pohlig-Hellman algorithm. When OpenSSL’s DH

validation routine DH check is used in its default configuration, this parameter set is

declared valid with probability 2−24 for versions of OpenSSL prior to 1.1.1pre9, 1.1.0i

and 1.0.2p (released 14th August 2018). This is because OpenSSL uses the size of q

to determine how many rounds of Miller-Rabin to apply, and adopts non-adversarial

bounds suitable for average case primality testing derived from [41]. These dictate

using 3 rounds of testing for 1023-bit q for versions of OpenSSL prior to 1.1.1pre9,

1.1.0i and 1.0.2p, and 5 rounds in later versions (the increase was made in an effort

to achieve a 128-bit security level). We also give a DH parameter set (p = 2q+1, q, g)

in which p is a 1024 bit prime and q has 11 prime factors, each at most 100 bits
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in size, which passes a single random-base Miller-Rabin test with probability 2−10.

This parameter set is declared valid with a lower probability of 2−30 for versions of

OpenSSL prior to 1.1.1pre9, 1.1.0i and 1.0.2p, however the DLP in the subgroup of

order q generated by g can be solved using the Pohlig-Hellman algorithm with less

effort, in about 254 operations.

The probability of 2−24 or 2−30 for passing DH validation may not seem very large,

and indeed can be seen as a vindication of using safe primes for DH. On the other

hand, Bleichenbacher-style attacks against PAKEs can be carried out over many

sessions and against multiple users, meaning that the success probability of an overall

password recovery attack can be boosted. We exemplify this in the context of J-

PAKE, a particular PAKE protocol that was supported in OpenSSL until recently

(but we stress that the attack is not specific to J-PAKE).

Obtaining such malicious DH parameter sets in the finite field setting requires some

new insights. In particular, we are interested in numbers q that are relatively smooth

(having all prime factors less than some pre-determined bound B, say), but which

pass random-base Miller-Rabin primality tests with probability as high as possible.

We therefore investigate the relationship between the number of prime factors m of

a number n and the number of Miller-Rabin non-witnesses S(n) for n, this being

the number of bases a for which the Miller-Rabin test fails to declare n composite.

We are able to prove that S(n) ≤ ϕ(n)/2m−1 where ϕ(·) is the Euler function.

Since for large n we usually have ϕ(n) ≈ n, this shows that the highest probability

a malicious actor can achieve for passing a single, random-base Miller-Rabin test

is (roughly) 21−m. (This already shows that an adversary can only have limited

success, especially if multiple rounds of Miller-Rabin are used.) We are also able

to completely characterise those numbers achieving equality in this bound for m ≥
3: they are exactly the Carmichael numbers having m prime factors that are all

congruent to 3 mod 4.

This characterisation then motivates us to develop constructions for such Carmichael

numbers with a controlled number of prime factors. We show how to modify the

existing Erdös method [51] and the method of Granville and Pomerance [67] for con-

structing Carmichael numbers, and how to combine them, to obtain cryptographically-

sized q with the required properties.
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However, this only partly solves our problem, since we also require that p = 2q + 1

should pass primality tests (or even be prime). We explore further modifications of

our approach so as to avoid trivial arithmetic conditions that prevent p from being

prime (the prime 3 is particularly troublesome in this regard). We are also able to

show that the probability that p is prime is higher than would be expected for a

random choice of p by virtue of properties of the Granville-Pomerance construction:

essentially, the construction ensures that p cannot be divisible by certain small

primes; we tweak the construction further to enhance this property. Combining all

of these steps leads to a detailed procedure by which our example DH parameter

set (p = 2q + 1, q, g) described above was obtained. This procedure is amenable to

parallelisation. The computation of our particular example required 136 core-days

of computation using a server with 3.2GHz processors.

Elliptic Curve Setting: While the main focus of this chapter is on the finite

field setting, we also briefly study the elliptic curve setting. Here ECDH parameters

(p,E, P, q, h) consist of a prime p defining a field (we focus on prime fields, Fp), a

curve E over that field defined in some standard form (for example, short Weierstrass

form), a point P , the (claimed) order q of P , and a co-factor h such that #E(Fp) =

h · q. Parameter validation should verify the primality of p and q, and check that P

does have order q on E by computing [q]P and comparing the result to the point at

infinity.

Bröker and Stevenhagen [32] gave a reasonably efficient algorithm to construct an

elliptic curve E over a prime field Fp having a specified number of points n, given

the factorisation of n as an input. Their algorithm is sensitive to the number of

prime factors of n – fewer is better. We use their algorithm with n being one of our

specially constructed Carmichael numbers q passing Miller-Rabin primality testing

with highest possible probability, or a small multiple of such a q.

Since p ≈ q in the elliptic curve setting and we only need these numbers to have,

say, 256 bits to achieve a 128-bit security level, the task of constructing q is much

easier than in the finite field setting considered above. Indeed, we could employ

a Carmichael number q with 3 prime factors to pass Miller-Rabin with probability

1/4 per iteration. At the 128-bit security level, q then has 3 prime factors each of
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roughly 85 bits, and the Pohlig-Hellman algorithm would solve the ECDLP on the

constructed curve in about 244 steps. Using a Carmichael q with 4 prime factors each

of exactly 64 bits, we would pass Miller-Rabin with probability 1/8 per iteration and

solve the ECDLP with only 234 effort. We give concrete examples of curves having

such properties.

These malicious ECDH parameters (p,E, P, q, h) lead to attacks on PAKEs running

over elliptic curves, as well as more traditional ECDH key exchanges. These attacks

are fully analogous to those in the finite field setting. They highlight the impor-

tance of careful validation of ECDH parameters that may originate from potentially

malicious sources, especially in the case of bespoke parameter sets sent as part of

a cryptographic protocol. For example, the specification of the TLS extension for

elliptic curve cryptography [25] caters for the use of custom elliptic curves, though

this option does not seem to be widely supported in implementations at present. Our

work shows that robust checking of any such parameters would be highly advisable.

4.1.2 Related Work

In the light of the Snowden revelations, a body of work examining methods by

which the security of cryptographic algorithms and protocols can be deliberately

undermined has been developed. Our work can be seen as fitting into that theme

(though we stress that the application of our work to PAKE protocols shows that

there are concerns in the “standard” cryptographic setting too).

Young and Yung laid the foundations of kleptography, that is, cryptography designed

with malicious intent, see for example [166]. Bellare et al. [18] studied the problem

of how to subvert symmetric encryption algorithms, and how to protect against such

subversions.

Fried et al. [54] followed up on early work of Gordon [63] to examine how to backdoor

the DLP in the finite field setting. These works showed how to construct large primes

p for which the Special Number Field Sieve makes solving the DLP possible if one

is in possession of trapdoor information about how p was generated. This provides

another avenue to subverting the security of DH parameters. It appears that the
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1024-bit example in [54] is not in the safe-prime setting, however.

The NIST DualEC generator was extensively analysed [34] and found to be used in

Juniper’s ScreenOS operating system in an exploitable way [33]. This inspired more

theoretical follow-up work on backdoored RNGs [49] and PRNGs [42].

Bernstein et al. [20] extensively discuss the problem of certifying that elliptic curve

parameter sets are free of manipulation during generation.

The dangers of allowing support for old algorithms and protocol versions, especially

those allowing export-grade cryptography, are made manifest by the FREAK [23],

Logjam [3] and DROWN [12] attacks on SSL and TLS.

4.2 Miller-Rabin Primality Testing and Pseudoprimes

In this section, we extend the analysis of Section 3.2.1 on Miller-Rabin pseudoprimes,

focusing more on the number of non-witnesses a particular composite number con-

tains. We briefly recap on some of the definitions discussed in the preliminaries in

Section 2.4.2 in order to establish and refresh notation.

Suppose n > 1 is an odd integer to be tested for primality. We first write n = 2ed+1

where d is odd. If n is prime, then for any integer a with 1 ≤ a < n, we have:

ad = 1 mod n or a2
id = −1 mod n for some 0 ≤ i < e.

The Miller-Rabin test then consists of checking the above conditions for some value

a, declaring a number to be composite if both conditions fail and to be (probably)

prime if either of the two conditions hold. If n is composite but one condition

holds, then we say n is a pseudoprime to base a, or that a is a non-witness to the

compositeness of n (since n may be composite, but a does not demonstrate this

fact).

We begin by exploring the relationship between a composite number n and the

number of non-witnesses this number possesses, denoted S(n). Since in this work
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we are interested in constructing numbers n that fool the Miller-Rabin test with as

high a probability as possible for random bases a, our main interest is in constructing

n for which S(n) is as large as possible. However, since we are also interested in

solving discrete logarithm problems in subgroups of order n, we will also want n to

be relatively smooth.

Recall Theorem 2.6 that can be used to calculate the exact number of non-witnesses

that some composite n has, and the general upper-bound on S(n) given by results

of [108, 135]:

Theorem 4.1 (Monier-Rabin Theorem). Let n 6= 9 be odd and composite. Then

S(n) ≤ ϕ(n)

4

where ϕ denotes the Euler totient function.

It is known from [108] that the bound in Theorem 4.1 is met with equality for

numbers n of the form n = (2x+ 1)(4x+ 1) with 2x+ 1, 4x+ 1 prime and x odd. It

is also known that the bound is met with equality for numbers n that are Carmichael

numbers with three prime factors, n = p1p2p3, and where each factor pi is congruent

to 3 mod 4.

Definition 4.1 (Carmichael numbers). Let n be an odd composite number. Then n

is said to be a Carmichael number if an−1 = 1 mod n for all a co-prime to n.

Note that Carmichael numbers are those for which the Fermat primality test fails

to identify n as composite for all co-prime bases a.

Theorem 4.2 (Korselt’s Criterion). Let n be odd and composite. Then n is a

Carmichael number if and only if n is square-free and for all prime divisors p of n,

we have p− 1 | n− 1.

For a proof of this theorem, see [108]. It is also known that Carmichael numbers

must have at least 3 distinct prime factors.

106



4.2 Miller-Rabin Primality Testing and Pseudoprimes

4.2.1 On the Relationship Between S(n) and m, the Number of Prime
Factors of n

The Monier-Rabin bound is synonymous with understanding the accuracy of the

Miller-Rabin test; it states that any odd composite n 6= 9 can have at most ϕ(n)/4

non-witnesses, and therefore can pass a single round of Miller-Rabin with probability

at most ≈ 1/4. We present an extension of this bound to classify the maximum

number of non-witnesses an odd composite number n can have, with respect to

the number m of distinct prime factors it has. We show that is bound is at most

ϕ(n)/2m−1 non-witnesses, and therefore n has the probability of at most ≈ 1/2m−1

of being declared prime by a single round of Miller-Rabin. This result is central to

our work in this chapter.

Theorem 4.3 (Extended Monier-Rabin Bound). Let n be an odd composite integer

with prime factorisation n =
∏m
i=1 p

qi
i . Write n = 2ed + 1 where d is odd and

pi = 2eidi + 1 where each di is odd. If m = 2, and n 6= 9 then,

S(n) ≤ ϕ(n)

4
.

where ϕ(·) denotes Euler’s function. Otherwise,

S(n) ≤ ϕ(n)

2m−1
,

with equality if and only if n is square-free and, for all i, ei = 1 and di | d.

Proof. For m = 2 and n 6= 9 see the Monier-Rabin Theorem. Otherwise, we have:

2min(ei)·m−1
2m−1 + 1

2min(ei)·m
=

1

2m − 1
+

(
1

2min(ei)·m

)(
1− 1

2m − 1

)
≤ 1

2m − 1
+

(
1

2m

)(
1− 1

2m − 1

)
=

2(2m − 1)

(2m)(2m − 1)

=
1

2m−1
.

Therefore, using Theorem 2.6, we have:
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S(n) =

(
2min(ei)·m − 1

2m − 1
+ 1

)
m∏
i=1

gcd(d, di) ≤
1

2m−1
· 2min(ei)·m

m∏
i=1

gcd(d, di) (4.1)

≤ 1

2m−1

m∏
i=1

(2ei · di) (4.2)

=
1

2m−1

m∏
i=1

(pi − 1)

≤ 1

2m−1
ϕ(n). (4.3)

We obtain equality in equation (4.1) above when min(ei) = 1 and in equation (4.2)

when e1 = e2 = · · · = em and gcd(d, di) = di for all i (which is equivalent to di | d).

We obtain equality in equation (4.3) when ϕ(n) =
∏m
i=1(pi − 1). This occurs if and

only n is square free. The result follows.

Remark 4.1. For the case m = 2, Monier [108] remarked that the bound is met in

this case for numbers of the form n = (2x + 1)(4x + 1) with 2x + 1, 4x + 1 prime

and x odd, see also [113]. This form was exploited extensively in Chapter 3, but

will be less useful in this chapter because we require numbers n of cryptographic

size that satisfy a smaller smoothness bound. For example, we will be interested in

constructing 1024-bit n in which each prime factor has at most 128 bits, meaning n

will have at least 8 prime factors.

We now go on to show that, when m ≥ 3, the bound in the above theorem is attained

if and only if n is a Carmichael number of special form. This result is of particular

significance, as not only have we shown the maximum number of non-witnesses a

generic odd composite number n with m distinct factors can have, we now provide

a method to produce such a number that meets this bound for any m.

Theorem 4.4. Let n be a Carmichael number with m ≥ 3 prime factors that are

all congruent to 3 mod 4. Then S(n) = ϕ(n)
2m−1 . Conversely, if n has m ≥ 3 prime

factors and S(n) = ϕ(n)
2m−1 , then n is a Carmichael number whose prime factors are

all congruent to 3 mod 4.

Proof. By Korselt’s criterion we know that n is square-free. Write n = p1 · · · pm
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m Cm S(Cm)

3 7 · 19 · 67 ϕ(Cm)/4
4 7 · 19 · 67 · 199 ϕ(Cm)/8
5 7 · 11 · 19 · 103 · 9419 ϕ(Cm)/16
6 7 · 11 · 31 · 47 · 163 · 223 ϕ(Cm)/32
7 19 · 23 · 31 · 67 · 71 · 199 · 271 ϕ(Cm)/64
8 11 · 31 · 43 · 47 · 71 · 139 · 239 · 271 ϕ(Cm)/128
9 19 · 31 · 43 · 67 · 71 · 103 · 239 · 307 · 631 ϕ(Cm)/256

10 7 · 11 · 19 · 31 · 47 · 79 · 139 · 163 · 271 · 2347 ϕ(Cm)/512

Table 4.1: The smallest number Cm with m prime factors that meets the
upper bound of ϕ(Cm)/2m−1 on S(Cm).

where the pi are prime and, by assumption, pi = 3 mod 4 for each i. As before, we

write n = 2ed + 1 where d is odd and pi = 2eidi + 1 where each di is odd. Since

pi = 3 mod 4 for each i, it is immediate that ei = 1 for each i. Moreover, by Korselt’s

criterion, we have 2eidi|2ed, and hence di|d, for each i. The result follows from the

converse part of Theorem 4.3.

For the converse, let n =
∏m
i=1 p

qi
i . Suppose pi = 2eidi + 1 where di is odd and

n = 2ed+ 1 where d is odd. Necessarily, e ≥ 1. By Theorem 4.3, since S(n) = ϕ(n)
2m−1 ,

we have that n is square free, ei = 1 for all i and di | d for all i. Since ei = 1 ∀i,
we have that pi = 3 mod 4 and 2ei | 2e for all i. Also, since di | d for all i, it follows

that 2eidi | 2ed for all i, and thus pi − 1 | n− 1 for all i. Hence, n satisfies Korselt’s

criterion, and n is a Carmichael number.

Example 4.1. Table 4.1 gives, for each 3 ≤ m ≤ 10, the smallest number with

m prime factors achieving the bound of Theorem 4.3. In the light of Theorem 4.4,

these are all Carmichael numbers whose prime factors are all congruent to 3 mod 4.

These are obtained from data made available by Pinch and reported in [129]. Of

course, these examples are all much too small for cryptographic use.
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4.3 Generating Large Carmichael Numbers

The results in the previous section motivate the search for cryptographically-sized

Carmichael numbers with a chosen number of prime factors, with each factor congru-

ent to 3 mod 4. In this section, we discuss two existing constructions for Carmichael

numbers: the Erdös method [51] and the method of Granville and Pomerance [67].

We show how to combine these two methods to produce large examples. We also

show how to modify the constructions to improve the probability that they will

succeed in constructing large examples by the introduction of sieving during the

generation process.

4.3.1 The Erdös Method

Erdös [51] gave a method to construct Carmichael numbers with many prime factors.

The method starts with a highly composite number L and then considers the set

P(L) = {p : p prime, p − 1 | L, p - L}. If for some subset {p1, p2, . . . , pm} of P(L),

we have p1p2 · · · pm = 1 mod L, then n = p1p2 · · · pm is a Carmichael number, by

Korselt’s criterion. This is easy to see: by construction, pi − 1 | L; the condition

n = 1 mod L implies that L | n− 1; it follows that pi − 1 | n− 1, and n is evidently

square-free.

Example 4.2. If L = 120 = 23 · 3 · 5, then P(L) = {7, 11, 13, 31, 41, 61}. If we

examine all the subsets of P(L), we find that 41040 = 7 · 11 · 13 · 41, 172081 =

7 ·13 ·31 ·61 and 852841 = 11 ·31 ·41 ·61 are all 1 mod 120, and so are all Carmichael

numbers.

The Erdös method lends itself to a computational approach to generating Carmichael

numbers with a chosen number of prime factors m for moderate values of L. For

a given L, the set P(L) can be quickly generated by considering each factor f

of the selected L and testing the primality of f + 1. One can then examine all m-

products of distinct elements from P(L) and test the product n against the condition

n = 1 mod L.

Alternatively, as pointed out in [26], one can employ a time-memory trade-off
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(TMTO): for some k, build a table of all k-products p1 · · · pk from P(L), and look for

collisions in that table with the inverses of (m− k)-products (pk+1 · · · pm)−1 mod L

from P(L). Such a collision gives an equation

p1 · · · pk = (pk+1 · · · pm)−1 mod L

and hence

p1 · · · pkpk+1 · · · pm = 1 mod L.

Of course, one needs to take care to avoid repeated primes in such an approach.

For the L we use later, the direct approach suffices, and so we did not explore this

direction further.

4.3.2 The Selection of L in the Erdös Method

Clearly, L must be even, otherwise the integers p satisfying p − 1 | L will all be

even. We can ensure that all primes p in P(L) satisfy p = 3 mod 4 by setting the

maximum power of 2 in L to be 1, i.e. by setting L = 2 mod 4. For then each factor

f of L must be 2 mod 4, and hence p = f+1 = 3 mod 4. As we shall see later, other

conditions can be imposed on L as needed.

Note that since 2 | L, p = 3 is a candidate for inclusion in P(L). However, if 3 is

also a factor of L then it is excluded from P(L) because of the additional condition

p - L on elements of P(L); this condition is needed in general, since if p | L, then

any product p1p2 · · · pm including p as a factor would be 0 mod L instead of the

required 1 mod L.

For the Erdös method to be successful in producing a Carmichael number with m

prime factors, we need to find a product pi such that p1p2 · · · pm = 1 mod L. One

can see that the number of possible products that can be considered is
(|P(L)|

m

)
.

Let us make the heuristic assumption that the values of p1p2 · · · pm are uniformly

distributed amongst the odd numbers modulo the even integer L. Then we need to

ensure that: (
|P(L)|
m

)
' L/2

for the method to have a reasonable chance of success, since we need some product

equal to 1 mod L, and there are L/2 possible odd values mod L that a product may
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Lbound Lbest |P(Lbest)|

220 810810 = 2 · 34 · 5 · 7 · 11 · 13 39
221 2088450 = 2 · 33 · 52 · 7 · 13 · 17 50
222 4054050 = 2 · 34 · 52 · 7 · 11 · 13 58
223 7657650 = 2 · 32 · 52 · 7 · 11 · 13 · 17 65
224 13783770 = 2 · 34 · 5 · 7 · 11 · 13 · 17 73
225 22972950 = 2 · 33 · 52 · 7 · 11 · 13 · 17 89
226 53603550 = 2 · 32 · 52 · 72 · 11 · 13 · 17 93

Table 4.2: For a given Lbound (column 1), the value Lbest (column 2) gives
the value of L ≤ Lbound resulting in the largest set of primes P(L), subject
to the additional restriction that p = 3 mod 4 for all p ∈ P(L).

take.

Thus it is desirable to find L such that |P(L)| is as large as possible. In turn, this

heuristically depends on L being as smooth as possible, since such an L has many

factors f and therefore many possible candidates p = f + 1 that, if prime, can be

included in P(L). This analysis of course depends on the primality of the different

values f + 1 being in some sense independent for the different factors f of L; this is

a reasonable assumption given standard heuristics on the distribution of primes.

For various bounds Lbound, we have computed the value of L ≤ Lbound giving the

largest set P(L), where we impose the restriction L = 2 mod 4 to ensure the primes

in P(L) are all 3 mod 4. This was done by a brute-force search. The results are

shown in Table 4.2, and bear out our heuristic analysis suggesting that smooth L

make the best choices.
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Example 4.3. Suppose L = 53603550 = 2 · 32 · 52 · 72 · 11 · 13 · 17. Then |P(L)| = 93

with:

P(L) = {19, 23, 31, 43, 67, 71, 79, 103, 127, 131, 151, 199, 211, 239, 307, 331, 443,

463, 491, 547, 631, 859, 883, 911, 991, 1051, 1123, 1171, 1327, 1471, 1531,

1667, 1871, 1951, 2003, 2143, 2311, 2551, 2731, 3571, 3823, 3851, 4951,

4999, 5851, 6007, 7151, 7351, 8191, 9283, 10711, 11467, 11551, 16831,

17851, 19891, 22051, 23563, 26951, 27847, 28051, 33151, 34651, 41651,

42043, 43759, 46411, 50051, 53551, 54979, 57331, 72931, 77351, 91631

102103, 117811, 124951, 126127, 150151, 232051, 242551, 286651,

324871, 350351, 450451, 824671, 1051051, 1093951, 1191191, 1624351,

2144143, 4873051, 10720711}.

As representative examples, the following Carmichael numbers with, respectively 8

and 16 prime factors, can then be obtained by running a simple search algorithm

over subsets of P(L) to find subsets whose products are 1 mod L:

C8 = 19 · 23 · 43 · 239 · 859 · 9283 · 11467 · 242551

C16 = 19 · 23 · 31 · 43 · 67 · 71 · 79 · 103 · 127 · 131 · 491 · 1531 · 3851 · 7151 · 11467 · 33151

Here

C8 = 99605240811373000403701

and

C16 = 2952075740383473675231403915547850874801.

Our SAGE [148] implementation of the Erdös method running on a 3.3GHz processor

took 4.83 seconds to find C8 and 1.78 seconds to find C16. The code used to generate

these examples can be found in Appendix A.1.

It would be tempting to think that this method could easily be scaled-up to numbers

of cryptographic size. However, this is not so easy. To illustrate, suppose we wanted

to construct a 1024-bit n with, say, m = 8 prime factors, all having about 128 bits.

This would necessitate using an L substantially larger than 2128, which would make

the direct approach of finding a product p1 · · · p8 = 1 mod L infeasible; even the

TMTO version would require prohibitive time and memory, on the order of 264 of

each.
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4.3.3 The Method of Granville and Pomerance

The second method of generating Carmichael numbers that we consider is due to

Granville and Pomerance [67]. This takes a small Carmichael number with m

(known) factors and produces from it a larger Carmichael number, also with m

factors. It is based on the following theorem.

Theorem 4.5 (Granville and Pomerance [67]). Let n = p1p2 · · · pm be a Carmichael

Number. Let L = lcm(pi − 1) and let M be any integer with M ≡ 1 mod L. Set

qi = 1 + M(pi − 1). Then N = q1 · · · qm is a Carmichael number whenever each qi

is prime.

Recall that we are interested in Carmichael numbers N in which all prime factors

are congruent to 3 mod 4. Fortunately, as the following lemma shows, the method

of Granville and Pomerance ‘preserves’ this property.

Lemma 4.1. With notation as in Theorem 4.5, suppose pi ≡ 3 (mod 4). Then

qi = 3 (mod 4).

Proof. The integer L is even as it is the least common multiple of even integers

pi − 1. But M ≡ 1 (mod L) implies that M is odd; write M = 2s + 1. Moreover,

since pi = 3 mod 4, we have pi − 1 = 2di with di odd; write di = 2ti + 1. Then

qi = 1 +M(pi − 1) = 1 + (2s+ 1)(4ti + 2) = 3 + 4(2sti + s+ ti), which is evidently

3 mod 4.

There are two important choices of variable in this method: M and the starting

Carmichael number n.

Clearly, the properties of the resulting Carmichael number N are dependent on n,

for example the value of each prime factor mod 4 (as seen in Lemma 4.1) and the

number m of these factors.

The effects of M are more subtle. In particular, we need to select an M such that all

the resulting qi = 1 +M(pi−1) are prime. Using the heuristic that the values qi are

as likely to be prime as random choices of odd qi of the same size, the probability
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that a random choice of M yields m primes is approximately (2/ ln(B))m where B

is a bound on the qi. This probability drops very quickly for N of cryptographic

size and even moderate m. For example, with B of 128 bits and m = 8 (so that

the target N has 1024 bits), we obtain (2/ ln(B))m ≈ 2−43.77. Clearly then, simply

making random choices of M is unlikely to yield candidates of cryptographically

interesting sizes in a reasonable amount of time. We therefore turn to investigating

methods for improving the probability that the qi are all prime by careful choice of

M .

4.3.4 The Selection of M in the Method of Granville and Pomerance

The only requirement on M coming from Theorem 4.5 is that M ≡ 1 (mod L),

where L = lcm(pi − 1). However, by a careful choice of M we can both ensure that

this is true, and that the resulting values qi = 1 + M(pi − 1) are more likely to be

prime than if M was chosen at random.

Our approach is inspired by techniques originally introduced in [81, 80] for generating

primes on low-end processors. There, one considers numbers of the form p = kH+δ

where H is smooth (say, H is the product of the first h primes, H =
∏h
i=1 si), δ is

chosen to be co-prime to H, and k is a free parameter. Then p is guaranteed to be

divisible by each of s1, . . . , sh, since p = δ 6= 0 mod si. By choosing different values of

k, one can generate different candidates for p, and test them for primality. Numbers

p generated in this way have a higher probability of being prime than uniformly

random candidates, since they are effectively guaranteed to pass trial divisions by

each of the small primes dividing H. We refer to this process as ‘sieving’ by the

primes s1, s2, . . . , sh. An analysis using the inclusion-exclusion principle can be used

to evaluate the increase in probability that can be achieved by this means; a factor

of 5 increase is typical even for moderate values of h, since many small divisors can

be eliminated.

We present an adaptation of this method to generate candidates for M in the method

of Granville and Pomerance, such that the resulting qi are guaranteed to be indivis-

ible by many small primes.

115



4.3 Generating Large Carmichael Numbers

Since M = 1 (mod L), we can write M = kL + 1, where k now becomes the free

parameter in the construction method. Then

qi − 1 = M(pi − 1) = (kL+ 1)(pi − 1) = kLpi + pi − kL− 1.

Rearranging, we get:

qi = kLpi + pi − kL = kL(pi − 1) + pi.

Note that, typically, many small primes will divide L because L is the least common

multiple of the pi − 1. This is especially so if we use the Erdös method to generate

the starting Carmichael number n, since it starts with a smooth number which all

the pi − 1 will divide.

Now none of the primes dividing L can be a pi (again, because L is the least common

multiple of the pi − 1). For each such prime p, we have:

qi = pi 6= 0 mod p.

Hence, we are assured that qi is not divisible by any of the prime divisors of L: we

achieve ‘free’ sieving on qi for every such divisor.

Now we consider other primes (not equal to any of the pi, and not dividing L). Let

s denote such a prime, and suppose we choose k such that s divides k. Recalling

that M = kL+ 1, then we get:

qi = kL(pi − 1) + pi = pi 6= 0 mod s.

Hence, by choosing k so that it is divisible by a product of primes sj that do not

equal any of the pi nor any of the divisors of L, we also obtain sieving on all the sj .

Of course, we can include an additional factor when building k to ensure that the

resulting qi are of any desired bit-size and that there are sufficiently many choices

for k (and thence M). In what follows, we write k = k′
∏
j sj for some collection of

primes sj subject to the above constraints; k′ now replaces k as the free parameter

in the construction.
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The overall sieving effectiveness will be determined by the collection of prime factors

present in L and the sj . Let us denote the complete set of primes from these two

sources as {s1, . . . , sh}. Then the fraction of non-prime candidates for each qi that

are removed by the sieving can be calculated using the formula:

σ = 1−
h∏
i=1

(
1− 1

si

)
. (4.4)

This follows easily by noting that a fraction 1 − 1
si

of integers are not divisible by

si, so the probability that a randomly sampled integer is not divisible by any of the

si is
∏h
i=1

(
1− 1

si

)
, and hence the probability that a randomly sampled odd integer

is divisible by at least one si is σ. This means that the prime values of qi are now

concentrated in a fraction 1 − σ of the initial set of candidates, so that a random

selection from this reduced set is 1/(1 − σ) times more likely to result in a prime.

Notice that the effect here is multiplicative across all m of the qi – they all benefit

from the sieving on the si. Note too how powerful the prime s = 3 is in sieving,

contributing a factor 2/3 to the product term determining σ.

The overall effect is to improve the success probability for each trial of the modified

Granville-Pomerance construction (involving a choice of k′) from (2/ ln(B))m to

(2/(1− σ) ln(B))m.

Example 4.4. Using a C implementation of the modified Granville-Pomerance con-

struction, with the Carmichael number C8 of Example 4.3 as the starting value n

and L = 53603550, we found that choosing

k = 7891867750444302551322686487
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produces the 8-factor, 1024-bit Carmichael number N = q1 · · · q8 where:

q1 = 7614578295977916492449157442324119319

q2 = 9306706806195231268548970207285034723

q3 = 17767349357281805149048034032089611743

q4 = 100681646357930229177938859515174466539

q5 = 362961565441614019473409838084116354159

q6 = 3926584207959278937939615521091804194983

q7 = 4850486374537932805690113290760464005567

q8 = 102606442538302424735752396535317507810051.

Here, q8, the largest prime factor, has 137 bits.

As pointed out in Section 4.3.3, with B of 128 bits and m = 8 (so that the target

N has 1024 bits), we estimate the standard Granville-Pomerance construction to

have a success rate of (2/ ln(B))m ≈ 2−43.8 per trial, so that the expected number of

trials would be about 243.8. With our modified version of the Granville-Pomerance

construction we obtain sieving on each of the qi by the primes 3, 5, 7, 11, 13, 17 that

divide L (in this case, we did not add any more primes to k to improve the sieving

further). This gives us σ = 0.6393 and therefore reduces the expected number of

trials by a factor of about 1/(1 − σ)m ≈ 211.8 to roughly 232 trials. Finding the

above N using our ‘C’ implementation actually took 231.51 trials and less than one

core-hour running on 3.3GHz CPUs.

The above example illustrates that we can generate numbers that are of crypto-

graphically interesting size, have a controlled number of prime factors (and there-

fore achieve a given smoothness bound), achieve the upper bound of Theorem 4.3

on the number of Miller-Rabin non-witnesses, and hence maximise the probability

of passing random-base Miller-Rabin primality tests.
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4.4 Fooling Diffie-Hellman Parameter Validation in the Safe-
Prime Setting

In this section, we target the problem of producing Diffie-Hellman parameters for

the prime order setting, where the parameters are able to pass validity tests on the

parameters but where the relevant Discrete Logarithm Problem (DLP) is relatively

easy.

A Diffie-Hellman (DH) parameter set (p, q, g) in the prime order setting is formed

of a prime p with g ∈ Zp generating a group of prime order q, where q | p − 1. As

explained in both Section 3.5 of Chapter 3 and Section 4.1 of this chapter, validating

the correctness of DH parameters is vital in ensuring the subsequent security of the

DH key exchange. As also explained there, Bleichenbacher [26] provided an extreme

example of this in the context of Password Authenticated Key Exchange (PAKE):

he showed that a client that accepts bad DH parameters in the SRP protocol can

be subject to an offline dictionary attack on its password. Here, the attacker im-

personates the server in a run of the SRP protocol, and induces the client to send

a password-dependent protocol message; the attacker’s ability to solve the DLP is

what enables the offline password recovery.

DH validation checks should consist of primality tests on both p and q as well as

a verification that p = kq + 1 for some integer k. The checks should also ensure

that the given generator g generates the subgroup of order q. The security is based

in part on size of q: it must still be large enough to thwart the Pohlig-Hellman

algorithm for solving the DLP. For prime q, this algorithm runs in time O(
√
q).

In Chapter 3 we already showed how to subvert DH parameters in the case where

k is permitted to be large and where a weak primality test based on Miller-Rabin

with a small number of rounds is permitted. For example, we selected q to be of the

form (2x + 1)(4x + 1) with both factors prime, and then tried k of a suitable size

until kq + 1 was prime. This gives an O(q1/4) algorithm using the Pohlig-Hellman

algorithm in the subgroups of orders 2x+ 1 and 4x+ 1, with q passing t rounds of

random-base Miller-Rabin testing with the best possible probability 4−t (this coming

from the Monier-Rabin bound).
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However, many implementations insist on using DH parameters in which p is a safe

prime; that is, they require p = 2q+1, in which case g must have order q or 2q if it is

not equal to ±1. OpenSSL in its default setting is a good example of such a library.

Insisting on safe primes to a large extent eliminates small subgroup attacks. It is also

a good option in the context of protocols like SSL/TLS in which a server following

the specification only provides p and g but not q.2 As noted in the introduction of

this chapter, the techniques of the previous chapter do not extend to the safe-prime

setting, since they need the flexibility in k to force p = kq + 1 to be prime. The

resulting q would also be too large and have too few prime factors to make the

Pohlig-Hellman algorithm effective.

This leaves open the problem of fooling DH parameter validation upon safe prime

parameter sets, when random-base Miller-Rabin tests are used for checking p and q

(as should be the case in practice, in light of the work of [8] and [26]).

4.4.1 Generating Carmichael Numbers q such that p = 2q + 1 is Prime

To summarise the above discussion, we wish to construct a number q such that q

and p = 2q+1 both pass random-base Miller-Rabin primality testing, and such that

q is sufficiently smooth that the Pohlig-Hellman algorithm can be used to solve the

DLP in some subgroup mod p.

Our approach parallels that of [26]: we construct q as a large Carmichael number

with m prime factors that are all 3 mod 4 using the techniques from the previous

section. Then q will pass random-base Miller-Rabin primality tests with the highest

possible probability amongst all integers with m prime factors. After constructing

a candidate q, we test 2q + 1 for primality (using a robust primality test), rejecting

q if this test fails, and stopping if it passes. If 2q + 1 is prime, then the DLP in the

subgroup of order q can be solved with O(mB1/2) effort where B is an upper bound

on the prime factors of q.

The approach just described will fail in practice. The first reason is that it is unlikely

2For if p is not a safe prime, then the client is forced to blindly accept the parameters or to do
an expensive computation to factorise p− 1 and then test g for different possible orders arising as
factors of p− 1. We know of no cryptographic library that does the latter.
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that 2q + 1 will happen to be prime by chance (the probability is about 1/ ln q by

standard density estimates for primes). The second reason is that there may be

arithmetic reasons why 2q+ 1 can never be prime. We investigate and resolve these

issues next.

4.4.1.1 Sieving for 2q + 1

We begin by examining the method of Granville and Pomerance and its consequences

for the values of 2q + 1 modulo small primes.

Assume we have some starting Carmichael number n = p1 · · · pm, and we apply the

method of Granville and Pomerance, setting qi = M(pi − 1) + 1 where M = 1 + kL

and L = lcm(pi − 1). We assume k is such that the qi are all prime, and we write

q = q1 · · · qm for the resulting Carmichael number.

Lemma 4.2. With notation as above, for all primes s dividing kL, we have that

2q + 1 = 2n+ 1 (mod s).

Proof. Since qi = M(pi− 1) + 1 = (1 + kL)(pi− 1) + 1, it follows that for any prime

s with s | kL we have qi = pi (mod s), therefore 2q + 1 ≡ 2n+ 1 (mod s).

The importance of the above lemma is that we can determine at the outset, based

only on the small starting Carmichael number n, whether 2q + 1 will be divisible

by each of the primes s or not. In particular, we should just ignore any n for which

2n + 1 ≡ 0 (mod s) for any of the primes s dividing L or k, since then 2q + 1 can

never be prime. Typically, there are many such primes s, since L is usually rather

smooth, arising as the least common multiple of the pi − 1. This is particularly so

when the Erdös method is used to construct n.

4.4.1.2 The Prime 3

The prime 3 plays a particularly important role when applying our sieving trick in

the method of Granville and Pomerance: it contributes a factor 2/3 to the product
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term
∏h
i=1

(
1− 1

si

)
when computing σ. It is therefore desirable to keep 3 as a factor

of kL in the construction. On the other hand, the above lemma then imposes the

necessary condition 2n + 1 6= 0 mod 3 for 2q + 1 to be prime; this in turn requires

n = 0 mod 3 or n = 2 mod 3.

We consider the two cases n = 0 mod 3 and n = 2 mod 3.

The case n = 0 mod 3: In this case, we have 3 | n, and so we can set p1 = 3.

Recall that, in our approach, n = p1 · · · pm will be obtained using the Erdös method,

in which case p1 = 3 is contained in the set P(L∗) (henceforth L∗ denotes the smooth

number used in the Erdös method; we use L∗ to distinguish it from L = lcm(pi− 1)

in the method of Granville and Pomerance – they are often equal but need not be

so). From the conditions on P(L∗), we deduce that 3 - L∗. Since each prime in

P(L∗) is constructed by adding 1 to a factor of L∗, we deduce that p = 2 mod 3

for every p ∈ P(L∗) \ {3}. Since we will also have p = 3 mod 4 by choice of L∗, we

deduce that p = 11 mod 12 for every p ∈ P(L∗) \ {3}.

Hence, in the case where 3 appears as a factor in the starting Carmichael number

n, and n is obtained via the Erdös method, then the remaining primes arising as

factors of n must all be 11 mod 12. This happens automatically in the Erdös method

simply by ensuring 3 - L∗.

The case n = 2 mod 3: In this case, we can show that pi = 2 mod 3 for all primes

pi arising as factors of n. For suppose that pi = 1 mod 3 for some i. This implies

3 | pi − 1. By Korselt’s criterion, we deduce that 3 | n− 1, and hence n = 1 mod 3.

This contradicts our starting assumption on n.

Moreover, it is easy to see that we must take m, the number of prime factors of n,

to be odd in this case. For n =
∏m
i=1 pi = 2m mod 3, and so n = 2 mod 3 if and only

if m is odd.

Hence, in the case where n = 2 mod 3, we are forced to use a starting Carmichael

number with m odd in which pi = 2 mod 3 for each prime factor pi (whether or

not we use the Erdös method). This may sound overly restrictive. But, fortunately,
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we have already seen how to arrange this for the Erdös method: we simply need to

ensure that 3 - L∗, where L∗ denotes the smooth number used in that construction,

and then all but one of the primes p ∈ P(L∗) will satisfy this requirement. We then

remove p = 3 from P(L∗) when running the last step in the Erdös method.

4.4.1.3 Other Primes

Of course, Lemma 4.2 imposes a single condition on n for every other prime s dividing

kL, but these conditions are much less restrictive than that in the case s = 3, and

so we do not investigate the implications for the pi any further here.

4.4.1.4 Completing the Construction

We have now assembled all the tools necessary to produce a suitable Carmichael

number n such that when the method of Granville and Pomerance is applied to

produce q from n, then 2q + 1 6= 0 mod 3; moreover q will attain the bound of

Theorem 4.3 on S(q), the number of Miller-Rabin non-witnesses for q, namely S(q) =

ϕ(q)/2m−1. Our procedure is as follows:

1. We use the first step of the Erdös method with an L∗ such that 2 | L∗, 4 - L∗,
3 - L∗. This ensures that the resulting set P(L∗) contains the prime 3, and a

collection of other primes that are all 11 mod 12.3

2. We remove 3 from P(L∗) and run the second step of the Erdös method with

an odd m to find a subset of primes p1, . . . , pm such that n := p1 · · · pm = 1

(mod L); n is then a Carmichael number with m prime factors that are all

11 mod 12 and therefore both 3 mod 4 and 2 mod 3.

3. We set L = lcm(pi−1) and test the condition 2n+1 6= 0 mod s for each prime

factor s of L (cf. Lemma 4.2). If any test fails, we go back to the previous step

and generate another n.

3Of course, one could choose not to restrict L∗ in this way and just filter the resulting set P(L∗)
for primes that are 11 mod 12, but this involves wasted computation and the use of larger L∗ than
is necessary.
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4. Integer n is then used in the method of Granville and Pomerance to produce

candidates for q (in which the qi are all prime). By construction of the pi, we

will have 3 - L in the Granville-Pomerance method, but we desire 3 | kL in

view of the power of sieving by 3 in that method. We therefore set k = 3k′ for

k′ of suitable size when running this step, introducing the prime 3 in k.

5. Finally, we test 2q + 1 for primality. By choice of n, we are guaranteed that

2q + 1 6= 0 mod 3 and 2q + 1 6= 0 mod s for each prime divisor s of L, so we

are assured that 2q + 1 will not be divisible by certain (small) primes.

Note that the procedure as described focusses on the case n = 2 mod 3. An alter-

native procedure could be developed for the case n = 0 mod 3. The procedure can

be enhanced by setting k at step 4 to contain additional prime factors s beyond

3 not already found in L, to increase the effect of sieving. Of course, in view of

Lemma 4.2, certain bad choices of s should be avoided at this stage.

4.4.2 Examples of Cryptographic Size

Using the method described above, we now give two examples of Carmichael numbers

q such that p = 2q+ 1 is a 1024-bit prime. In the first example q is the product of 9

prime factors, which by construction will pass a random-base Miller-Rabin primality

test with probability approximately 1/28. Since the largest factor of q is 121 bits

in size, the DLP in the subgroup of order q mod p for this parameter set can be

solved in approximately 9 · 260.5 ≈ 264 operations. In the second example, q is the

product of 11 prime factors, which by construction will pass a random-base Miller-

Rabin primality test with probability approximately 1/210. However, because the

q with 11 factors is smoother, with largest factor 100 bits in size, the DLP in the

subgroup of order q mod p for this parameter set can be solved in approximately

11 · 250 ≈ 254 operations. We give both these examples to illustrate the trade-off

between the probability of a parameter set being accepted and the work required to

solve the DLP for that parameter set.

Example 4.5. Using SAGE [148] we examined all L∗ < 230 such that 2 | L∗,
4 - L∗, 3 - L∗. We found the largest set of primes P(L∗) was produced when
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L = 565815250 = 2 · 53 · 72 · 11 · 13 · 17 · 19. Here, |P(L∗)| = 53 (including the prime

3).

Then, using the Erdös method with L∗ = 565815250 we generated the 9-factor

Carmichael number

n = 1712969394960887942534921587572251

= 71 · 131 · 647 · 1871 · 4523 · 4751 · 46751 · 350351 · 432251.

Using the procedure described above, we found that k = 3k′ with

k′ = 1844674409176776955124

produced a 9-factor, 1023-bit Carmichael number q such that n = 2q+1 is a 1024-bit

prime.

To generate a target q with 1023 bits, with m = 9 factors each around 114 bits in

size, we estimate the standard Granville-Pomerance construction to have a success

rate of (2/ ln(B))m ≈ 2−47.73 per trial, so that the expected number of trials would

be about 247.7. With our modified version of the Granville-Pomerance construction

we obtain sieving on each of the qi by the primes 5, 7, 11, 13, 17, 19 that divide L and

the prime 3 since it divides k. This gives us σ = 0.658 and therefore reduces the

expected number of trials by about 1/(1 − σ)m ≈ 213.9 to roughly 233.8 trials. We

then need to consider the probability that the q produced is such that p = 2q + 1 is

also prime. By Lemma 4.2 we know that we obtain sieving on 2q+1 from all primes

s | kL, hence a success rate of (2/(1 − σ) ln(21024)) ≈ 2−6.9. Therefore we expect

to require 233.8+6.9 = 240.7 total trials. Finding the above q such that p = 2q + 1 is

prime actually took 238.15 trials, so we were somewhat lucky. Our implementation

is in ‘C’ and ran for 136 core-days on 3.2GHz CPUs.
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The factors of this q are:

q1 = 219186431519361672882122216610071

q2 = 407060515678814535352512687990131

q3 = 2022777639450109152597870741858647

q4 = 5855408956302947546993836358011871

q5 = 14159443476150764068185095193010523

q6 = 14873364995956684945572578984254751

q7 = 146385223907573688674845908950296751

q8 = 1097028089754405172775021694133400351

q9 = 1353476214632058330047104687567182251.

Since 2q ≡ 1 (mod p) we can set a generator g = 2 to obtain a complete set of

DH parameters (p, q, g). By construction q will pass a random-base Miller-Rabin

primality test with probability approximately 1/28. Since q9, the largest factor of q,

is 121 bits in size, the DLP in the subgroup of order q mod p for this parameter set

can be solved in approximately 9 · 260.5 ≈ 264 operations.

The C code used to generate this example can be found in Appendix A.2.

Example 4.6. Again, using the Erdös method with L∗ = 565815250 we generated

the 11-factor Carmichael number

n = 96647594591145401276131753609264751

= 23 · 71 · 191 · 419 · 491 · 3851 · 4523 · 4751 · 9311 · 17291 · 113051.

Using the procedure described above, we found that k = 3k′ with

k′ = 3994916512074331

produced a 11-factor, 1023-bit Carmichael number q such that p = 2q + 1 is a

1024-bit prime.

To generate a target q with 1023 bits, with m = 11 factors each around 93 bits in size,

we estimate the standard Granville-Pomerance construction to have a success rate of

(2/ ln(B))m ≈ 2−55.11 per trial, so that the expected number of trials would be about

255.1. Again, using our modified version of the Granville-Pomerance construction
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we sieve as in the previous example to reduce the expected number of trials by

about 1/(1 − 0.658)m ≈ 217 to roughly 238.1 trials. Then again by considering the

probability that the q produced is such that 2q+1 is also prime we expect to require

238.1+6.9 = 245 total trials. Finding the above q such that 2q + 1 was prime took

244.83 trials. The computation using our ‘C’ implementation ran for 1680 core-days

on 3.3GHz CPUs.

The factors of this q are:

q1 = 149185389210558730480951523

q2 = 474680783851777778803027571

q3 = 1288419270454825399608217691

q4 = 2834522395000615879138078919

q5 = 3322765486962444451621192991

q6 = 26107443111847777834166516351

q7 = 30664378636824844510675581023

q8 = 32210481761370634990205442251

q9 = 63132544252286444580802666811

q10 = 117246153611389111364347809791

q11 = 766609465920621112766889525551.

Since 2q ≡ 1 (mod p) we can set a generator g = 2 to obtain a complete set of

DH parameters (p, q, g). By construction q will pass a random-base Miller-Rabin

primality test with probability approximately 1/210. Since q11, the largest factor of

q, is 100 bits in size, the DLP in the subgroup of order q mod p for this parameter

set can be solved in approximately 11 · 250 ≈ 254 operations.

4.4.3 Application to OpenSSL and PAKE protocols

OpenSSL provides the DH parameter verification function DH check in dh check.c.

This function takes a DH parameter set (p, q, g) and performs primality testing on

both p and q. A safe-prime setting is enforced by default, and if q is not provided

then it is calculated from p via q = (p− 1)/2. For this reason, we were not able to

create malicious DH parameter sets passing OpenSSL’s testing using the approach
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in Chapter 3. However, using the work of this chapter we are now able to create

such parameter sets.

The primality test that OpenSSL uses is BN is prime ex; this performs t rounds of

random-base Miller-Rabin testing, where t is determined by the bit-size of p and

q. Since p and q are 1024 and 1023 bits respectively, t = 3 rounds of Miller-Rabin

are performed, at least in versions prior to OpenSSL 1.1.1pre9, 1.1.0i and 1.0.2p

(released 14th August 2018). From versions 1.1.1pre9, 1.1.0i and 1.0.2p onwards,

t was increased to 5, with the aim of achieving 128 bits of security instead of 80

bits.4 This change was made based from disclosures of the findings of Chapter 3

to OpenSSL: the numbers 3 and 5 were selected based on estimates for the average

case performance of Miller-Rabin primality testing, with the OpenSSL developers

implicitly assuming that p and q are generated randomly rather than maliciously.

For the DH parameter set given in Example 4.5, we know that q has ϕ(q)/28 Miller-

Rabin non-witnesses, and thus a probability of approximately 1/28 of being declared

prime by a single round of Miller-Rabin testing. Hence this DH parameter set will

be accepted by DH check as being valid with probability approximately 2−24 (and

the lower probability of 2−40 in versions 1.1.1pre9, 1.1.0i and 1.0.2p of OpenSSL).

This may seem like a small probability, and indeed it is in a scenario where, say,

malicious DH parameters are hard-coded into a server by a developer with the hope

of later compromising honestly established TLS sessions between a client and a

server: only 1 in 224 sessions would be successfully established, and the malicious

DH parameters would be quickly spotted if ever careful validation were to be carried

out.

Consider instead a PAKE scenario like that envisaged by Bleichenbacher [26]. Here,

a client and server use some hypothetical PAKE protocol which relies on DH param-

eters as part of the protocol, with the server supplying the DH parameters. Assume

OpenSSL’s DH parameter validation is used by the client. Then an attacker im-

personating the server to the client has a 1 in 224 chance of fooling the client into

using a weak set of DH parameters. For specific PAKE protocols, this may allow

the client’s password to be recovered thereafter. For example, this is the case for

4Interestingly, the last time these iteration counts were changed was in February 2000 (OpenSSL
version 0.9.5), before which they were all 2, independent of the bit-size of the number being tested.
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SRP [162, 152], as seen in [26]. It is also true of J-PAKE [72]: in this protocol,

the client in a first flow sends values g1 = gx1 , g2 = gx2 , while the server sends

g3 = gx3 , g4 = gx4 (along with proofs of knowledge of the exponents). In the second

flow in J-PAKE, the client sends (g1g3g4)
x2s where s is the password or a derivative

of it. At this point, the attacker aborts the protocol, and uses its ability to solve

the DLP to recover x2 from the first flow and then again to recover x2s and thence

s from the second flow.

We pick SRP and J-PAKE here only as illustrative examples; many other proto-

cols would be similarly affected. We also note that the specification for using SRP

in TLS [152] makes careful mention of the need to use trusted DH parameters,

and gives examples of suitable parameter sets. However, [152] states that clients

SHOULD only accept group parameters that come from a trusted source, leaving

open the possibility for implementations to use parameters from untrusted sources

(to remove that possibility the IETF reserved term “MUST” should have been used).

Meanwhile J-PAKE [72] just assumes that the DH parameters are agreed in advance

and suggests some methods and sources for obtaining parameters. This does not re-

move the possibility of the parties using bad parameters and side-steps the important

problem of parameter verification.

The power of the attack in the PAKE scenario is that the client has a secret that an

attacker would like to learn; the attacker then gains an advantage by impersonating

the server in a standard attack scenario. This is different from a protocol like

TLS where there is no such static secret and the server is usually authenticated

and therefore hard to impersonate; there we require a “malicious developer” attack

scenario.

The attack can be carried out repeatedly to boost its success probability, and it

can be done across a large population of users in a stealthy manner. Thus even a

small per-attempt success probability of 2−24 may represent a significant weakness

in practice.
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4.4.4 OpenSSL Disclosure and Mitigations

As remediation to attacks of this form, we recommend that OpenSSL and other

cryptographic libraries modify their DH parameter testing code to carry out stronger

primality tests – as our analysis shows, 3 rounds of random-base Miller-Rabin testing

is insufficient; 5 rounds are better in that it reduces the success probability of our

attack to 2−40, but this is still far from the 128-bit security level that the OpenSSL

developers have targeted.

As part of ongoing work with the developers of OpenSSL to improve security within

primality testing and prime parameter validation, we disclosed the findings of this

work to OpenSSL. This resulted in a contribution to the OpenSSL codebase by a

pull request5 to increase the number of rounds of Miller-Rabin performed during

the primality test on Diffie-Hellman parameters p and q during the check found in

DH check. This update modified the primality tests within DH check to perform at

the 128-bit security level, by replacing the call to set the number of Miller-Rabin

rounds on the bit-size of the parameters with an enforced 64 rounds. This request

was accepted by reviewers and merged into OpenSSL in March 2019 and was utilised

as part of OpenSSL 1.1.1c in May 2019. A preferable solution would have been to

change the primality test itself to be safe under all use cases rather than to make

a bespoke change to the DH parameter testing, and this is something we go on to

address in Chapter 5.

5see https://github.com/openssl/openssl/commit/2500c093aa1e9c90c11c415053c0a27a00661d0d.
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4.5 The Elliptic Curve Setting

An elliptic curve over a prime field Fp in short Weierstrass form is the set of solutions

(x, y) ∈ Fp × Fp satisfying an equation of the type y2 = x3 + ax+ b, where a, b ∈ Fp
satisfy 4a3 + 27b2 6= 0, together with the point at infinity O. When using a scheme

such as Elliptic Curve Diffie-Hellman (ECDH), one typically transmits a description

of the used curve via a set of domain parameters as part of the protocol, uses hard-

coded parameters, or uses a standardised ‘named’ curve. An ECDH parameter set

is typically composed of (p,E, P, q, h), where E is a description of the elliptic curve

equation (typically represented by a and b), P is a base point that generates a

subgroup of order q on the curve and h is the cofactor of this subgroup.

Analogously to our attacks on the parameter sets on finite field DH, we can create

malicious ECDH parameter sets. The idea is to first construct a composite number

q that is designed to be declared ‘probably prime’ by a target implementation of a

probabilistic primality test but which is actually reasonably smooth, then retroac-

tively construct a curve of suitable order n = h · q. This can be done using the

algorithm of Bröker and Stevenhagen [32].

Depending on the specific structure of n, a composite order will expose ECDH to

attacks like Lim-Lee style small subgroup attacks as in [92], or may aid in solving the

Elliptic Curve Discrete Logarithm Problem (ECDLP) in the order q subgroup. For

this we would use the Pohlig-Hellman algorithm to solve ECDLP in time O(B1/2)

where B is an upper bound on the largest prime factor of q. For example, we could

produce a 256-bit q with 4 prime factors, and hope to use the algorithm of Bröker

and Stevenhagen to find a suitable curve over a 256-bit prime p of order n = h · q
possibly even with h = 1. During parameter validation, q would pass a single round

of the Miller-Rabin test with probability 1/8. And the ECDLP could be solved with

effort approximately 4 · 232 = 234 group operations.

4.5.1 The Algorithm of Bröker and Stevenhagen

This subsection was written by Steven Galbraith. Steven provided us with the method-

ology of creating elliptic curves in this way as well as the implementation included in
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Appendix A.3. I provided Steven with the pseudoprime parameters that matched his

requested criteria (e.g. a composite number n with the highest probability of passing

a Miller-Rabin test, such that n was 256-bit and had 4 composite factors) which

allowed Steven to produce the Examples in Section 4.5.2.

For completeness, we give a short exposition of the algorithm of Bröker and Steven-

hagen [32].

An elliptic curve E over Fp has #E(Fp) = p + 1 − t points where |t| < 2
√
p. The

endomorphism ring of E contains Z[
√
t2 − 4p], which is a subring of the imaginary

quadratic field K = Q(
√
t2 − 4p). Conversely, if E is an elliptic curve over a number

field whose endomorphism ring is the ring of integers of K, then (by the Complex

Multiplication theory of elliptic curves) the reduction modulo p of E is an elliptic

curve over Fp and, by taking a suitable isomorphism (a twist), we may ensure that

the reduced curve has p+ 1− t points.

The algorithm of Bröker and Stevenhagen exploits these ideas. Given an integer n,

the first step is to construct a prime p and an integer t such that p+ 1− t = n and

such that Q(
√
t2 − 4p) has small discriminant D. Once this is done, the curve E

is constructed using standard tools in Complex Multiplication (namely the Hilbert

class polynomial).

We now briefly sketch the first step of the algorithm. The input is an integer n, and

we wish to construct an elliptic curve with n points.

Let D < 0 be a discriminant of an imaginary quadratic field. We will try to find

(p, t) such that t2 − 4p = f2D for some f ∈ N. We also need p + 1 − t = n and so

p = n+ t− 1. If t2 − 4p = f2D then

(t− 2)2 − f2D = t2 − f2D − 4t+ 4 = 4(p− t+ 1) = 4n.

Hence, to construct a curve with n points it suffices to choose a discriminant D, solve

the equation w2 − f2D = 4n, and then check whether n+ (w + 2)− 1 = n+ w + 1

is prime. Note that if ` | n then w2 − f2D ≡ 0 (mod `) and so (D` ) 6= −1.

An important ingredient is Cornacchia’s algorithm [37], which solves the equation
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w2 − f2D = 4n (note that D < 0, so the left hand side is positive definite and the

equation only has finitely many solutions). Cornacchia’s algorithm starts by taking

as input an integer x0 such that x20 ≡ D (mod 4n).

Putting everything together, the algorithm is as follows (we refer to [32] for the full

details). Let n = `1 · · · `k be the target group order. Search over all D < 0 such

that D ≡ 0, 1 (mod 4), up to some bound |D| < Dbound. Ensure that (D`i ) ≥ 0

for all `i | n. Determine all solutions x0 ∈ Z/4nZ such that x20 ≡ D (mod 4n)

and run Cornacchia’s algorithm for each. Whenever we find an integer solution

w2 − f2D = 4n check whether p = n+ w + 1 is prime. If so, output (p, t).

Note that the algorithm is not guaranteed to succeed for a given integer n, because

we are restricting to |D| < Dbound. In our application this is not a serious problem,

because we are able to generate many viable choices for n.

In practice one usually desires elliptic curves of order q (supposed to be prime) or

whose group order is 4q (Edwards and Montgomery curves have group order divisible

by 4). We make one remark about the case when n = 4q is even. If D is odd then

any solution (w, f) to w2 − f2D = 4n has w odd, and so t is odd. If n is odd then

this means p = n+w+1 is odd, which is all good, whereas if n is even then p cannot

be prime when D is odd, so when n is odd we must use odd discriminants D. On

the other hand, when n is even then we can take D even (so that w and t will be

even and so p = n+ w + 1 will be odd).

4.5.2 Examples

We implemented the algorithm of Bröker and Stevenhagen [32] in SAGE, and ran it

with q that are 256-bit Carmichael numbers with 3 and 4 prime factors, all congru-

ent to 3 mod 4. These were generated using methods described in Section 4.3. By

design, these values of q pass random-base Miller-Rabin primality testing with prob-

ability 1/4 and 1/8 per iteration, respectively. We used an early abort strategy for

each q and estimate a success probability of roughly 1/4 for each q we tried. When

successful, the computations took less than a minute on a laptop. The SAGE code

for the first stage (finding p, t) of the 3-prime case can be found in the Appendix A.3.
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Example 4.7. Set q = q1q2q3 where:

q1 = 12096932041680954958693771

q2 = 36290796125042864876081311

q3 = 133066252458490504545631471

Then q is a Carmichael number with 3 prime factors that are all congruent to

3 mod 4, so q passes random-base Miller-Rabin primality testing with probability

1/4 per iteration. Using the algorithm of Bröker and Stevenhagen, we obtain the

elliptic curve E(Fp) defined by y2 = x3 + 5, where

p = 58417055476151343628013443570006259007184622249466895656635947464036346655953

such that #E(Fp) = q and p has 256 bits. Every point P on this curve satisfies

[q]P = O, the point at infinity, so any point can be used as a generator (of course

such points may not have order q, but if q is accepted as being prime then this will

not matter). The Pohlig-Hellman algorithm can be used to solve the ECDLP on

this curve using about 3 · 242.5 group operations, since the largest prime factor of q

has 85 bits.

Example 4.8. Set q = q1q2q3q4 where:

q1 = 2758736250382478263

q2 = 8276208751147434787

q3 = 30346098754207260883

q4 = 91038296262621782647

Then q is a Carmichael number with 4 prime factors that are all congruent to

3 mod 4, so q passes random-base Miller-Rabin primality testing with probability

1/8 per iteration. Using the algorithm of Bröker and Stevenhagen, we obtain the

elliptic curve E(Fp) defined by y2 = x3 + 2, where

p = 63076648027364534028465951740325404957612973168788427535105160157981242952139

such that q = #E(Fp) and p has 256 bits. Every point P on this curve satisfies

[q]P = O, the point at infinity, so any point can be used as a generator. The Pohlig-
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Hellman algorithm can be used to solve the ECDLP on this curve using about 4·233.5

group operations, since the largest prime factor of q has 67 bits.

The two examples above both construct examples of order q. We were also able to

construct examples of order 4q, compatible with applications that use Montgomery

or Edwards curves, see for example [21, 28].

Example 4.9. Set q = q1q2q3q4 where:

q1 = 2758736250261979423

q2 = 8276208750785938267

q3 = 30346098752881773643

q4 = 91038296258645320927

Then q is a Carmichael number with 4 prime factors that are all congruent to

3 mod 4, so q passes random-base Miller-Rabin primality testing with probability

1/8 per iteration. Using the algorithm of Bröker and Stevenhagen, we obtain the

elliptic curve E(Fp) defined by:

y2 = x3

+ 63211828799498031821204904225181561748092026624820303276994872794407705943418x

+ 249786191391559959607130363488993290926587553092617766888175625285668967944516

where

p = 252306592065376137818686700732966664325087694535176640541400554419287031734461,

such that 4q = #E(Fp) and p has 256 bits. Every point P on this curve satisfies

[4q]P = O, the point at infinity, so any point can be used as a generator. The Pohlig-

Hellman algorithm can be used to solve the ECDLP on this curve using about 4·233.5

group operations, since the largest prime factor of q has 67 bits.

We have not attempted to do it, but we see no reason why similar examples could

not be constructed where q passes fixed-base Miller-Rabin primality tests with prob-

ability 1, as per [26].

These examples illustrate the necessity for careful parameter validation, in partic-

ular robust primality testing of q, when accepting bespoke curves in cryptographic

applications.
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4.6 Conclusion and Recommendations

The best countermeasure to malicious DH and ECDH parameter sets is for protocols

and systems to use only widely vetted sets of parameters, and to eliminate any op-

tions for using bespoke parameters. This is already widely done in the elliptic curve

setting, not necessarily because parameter validation is hard, but because suitable

parameter generation is non-trivial in the first place, and because safe and efficient

implementation is much easier with a limited and well-understood set of curves.

Nevertheless, issues can still arise with the provenance of parameter sets. In short,

it is difficult to eliminate suspicion that a curve may have a hidden backdoor unless

the generation process is fully explained and has demonstrably little opportunity

for manipulation; see [20] for an extensive treatment. Similar concerns apply in the

finite field setting, in the light of [63, 54].

On the flip-side is the argument that, in the finite field setting, using a common set

of DH parameters may be inadvisable because, with the best known algorithms for

finding discrete logarithms, the cost of solving many logarithms can be amortised

over the cost of a large pre-computation, making commonly used DH parameter an

even more attractive target. This was a crucial factor in assessing the impact of the

Logjam attack on 512-bit DH arising in export cipher suites in TLS [3].

Our work adds to the weight of argument in favour of using only limited sets of

carefully vetted DH parameters even in the finite field setting. This approach was

recently adopted in TLS 1.3, for example, which in contrast to earlier versions of

the protocol only supports a small set of DH and ECDH parameter sets, with the

allowed DH parameters being specified in [61].

If bespoke parameters must be used, then implementations should employ robust

primality testing as part of parameter validation, using, for example, at least 64

rounds of Miller-Rabin tests, or the Baillie-PSW primality test for which there are

no known pseudoprimes, as discussed in Chapter 3.
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In this chapter we set out to design a performant primality test that provides strong

security guarantees across all use cases and that has the simplest possible API. We

examine different options for the core of our test, describing four different candidate

primality tests and analysing them theoretically and experimentally. We then evalu-

ate the performance of the chosen test in the use case of prime generation and discuss

how our proposed test was fully adopted by the developers of OpenSSL through a

new API and primality test scheduled for release in OpenSSL 3.0 (2020).

5.1 Introduction and Motivation

Primality testing, and closely related tasks like random prime generation and testing

of Diffie-Hellman parameters, are core cryptographic tasks. Primality testing is

by now very well understood mathematically; there is a clear distinction between

137



5.1 Introduction and Motivation

accuracy and running time of different tests in settings that are malicious (i.e. where

the input may be adversarially-selected) and non-malicious (e.g. where the input is

random, as is common in prime generation).

Yet the results of Chapter 3 on how primality testing is actually done in practice have

highlighted the failure of popular cryptographic libraries to provide primality testing

APIs that are “misuse-resistant”, that is, which provide reliable results in all use

cases even when the developer is crypto-naive. Extending Chapter 3, in Chapter 4

we showed how failure to perform robust primality testing in the popular OpenSSL

library has serious security consequences in the face of maliciously generated Diffie-

Hellman parameter sets (see also Bleichenbacher [26] for an earlier example involving

the GNU Crypto library).

The main underlying issue identified in Chapter 3 is that, while all libraries exam-

ined performed well on random inputs, some failed miserably on maliciously crafted

ones in their default settings. Meanwhile code documentation was generally poor

and did not distinguish clearly between the different use cases. And developers were

faced with complex APIs requiring them to understand the distinctions between use

cases and choose parameters to the APIs accordingly. An illustrative example is

provided by the OpenSSL 1.1.1c primality testing code. This requires the devel-

oper using the function BN_is_prime_fasttest_ex1 to pass multiple parameters,

including checks, the number of rounds of Miller-Rabin testing to be carried out;

and do_trial_division, a flag indicating whether or not trial division should be

performed. Setting checks to 0 makes the test default to using a number of rounds

that depends only on the size of the number being tested;2 then the number of

rounds decreases as the size increases, this being motivated by average-case error

estimates for the Miller-Rabin primality test operating on random numbers (see

Table 3.4 in Section 3.3.1). This makes the default setting performant for random

prime generation, but dangerous in potentially hostile settings, e.g. Diffie-Hellman

parameter testing.

As an illustration of how this can go wrong in practice, in Section 4.4.3 we pointed

1See https://github.com/openssl/openssl/blob/

3e3dcf9ab8a2fc0214502dad56d94fd95bcbbfd5/crypto/bn/bn_prime.c#L186.
2Strictly, the default is invoked by setting checks to BN prime checks, an environmental variable

that is set to 0.
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out that OpenSSL (pre-1.1.1c May 2019) itself makes the wrong choice in using the

default setting when testing finite field Diffie-Hellman parameters. We then went on

and exploited this choice to construct Diffie-Hellman parameter sets (p, q, g) of cryp-

tographic size that fool OpenSSL’s parameter validation with a non-trivial success

rate. In response to our work, the Diffie-Hellman parameter validation in OpenSSL

1.1.1c was subsequently changed to remedy this issue (though without changing

the underlying primality test).3 This example provides prima facie evidence that

even very experienced developers can misunderstand how to correctly use complex

primality testing APIs.

One may argue that developers who are not cryptography experts should not be us-

ing such security-sensitive APIs. However, they inevitably will, and, as our OpenSSL

example shows, even expert developers can get it wrong. This motivates the search

for APIs that are “misuse-resistant” or “robust”, and that do not sacrifice perfor-

mance (too much). This search accords with a long line of work that identifies the

problem of API design as being critical for making it possible for developers to write

secure cryptographic software (see [70, 164, 68] amongst others).

5.1.1 Contributions

Given this background, we set out to design a performant primality test that provides

strong security guarantees across all use cases and that has the simplest possible API:

it takes just one input, the number being tested for primality, and returns just one

integer (or Boolean) indicating that the tested number is highly likely to be prime

(1) or is definitely composite (0). We note that none of the many crypto libraries

examined in Chapter 3 provide such an API.

We examine different options for the core of our test – whether to use many rounds

of Miller-Rabin (MR) testing (up to 64 or 128, to achieve false positive rates of

2−128 or 2−256, respectively), or to rely on a more complex primality test, such as

the Baillie-PSW test [134] which combines MR testing with a Lucas test. Based on

a combination of code simplicity, performance and guaranteed security, we opt for

64 rounds of MR as the core of our test.

3See https://github.com/openssl/openssl/pull/8593 for our contribution to OpenSSL on
this issue.
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We also study the performance impact of doing trial division prior to more expensive

testing. This is common practice in primality testing code, with the idea being that

one can trade fast but inaccurate trial division for much slower but more accurate

number theoretic tests such as Miller-Rabin. For example, OpenSSL 1.1.1c tests for

divisibility using a fixed list of the first 2047 odd primes. We show that this is a

sub-optimal choice when testing random inputs of common cryptographic sizes, and

that the running time can be reduced substantially by doing trial division with fewer

primes. The optimal amount of trial division to use depends on the size of the input

being tested, though is not a new observation – see for example [105, 102, 82]. What

is more surprising is that OpenSSL chooses so conservatively and with a fixed list

of primes (independent of the input size). For example, with 1024-bit random, odd

inputs, trial division using the first 128 odd primes already removes about 83% of

candidates, while extending the list to 2047 primes, as OpenSSL does, only removes

a further 5.5%. On average, it turns out to be faster to incur the cost of an MR test

on that additional 5.5% than it is to do the full set of trial divisions.

The outcome of our analysis is a primality test whose performance on random, odd,

1024-bit inputs is on average 17% faster than the current OpenSSL test, but which

guarantees that composites are identified with overwhelming probability (1−2−128),

no matter the input distribution. The downside is that, for inputs that are actually

prime rather than random, our test is significantly slower than with OpenSSL’s

default settings (since we do 64 MR tests compared to the handful of tests used by

OpenSSL). This is the price to be paid for a misuse-resistant API.

We then examine how our choice of primality test affects the performance of a crucial

use case for primality testing, namely generation of random k-bit primes. OpenSSL

1.1.1c already includes code for this. It makes use of a sieving step to perform

trial division at reduced cost across many candidates, obviating the need to perform

per-candidate trial division internally to the primality test. OpenSSL avoids the

internal trial division via the above-mentioned do_trial_division input to the

primality test in OpenSSL. Since we do not allow such an input in our simplified

primality testing API, a developer using our API would be (implicitly) forced to

do trial division on a per candidate basis, potentially increasing the cost of prime

generation. Moreover, our primality test may use many more rounds of MR testing

than OpenSSL selects in this case, since our API does not permit the user to vary the
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number of rounds according to the use case. However, for random prime generation,

most candidates are rejected after just one MR test, and so the full cost of our test

(trial division plus 64 rounds of MR testing) is only incurred once, when a prime is

actually encountered. So we seek to understand the performance impact of plugging

our new API and primality test into the existing OpenSSL prime generation code.

We find that, for generation of random 1024-bit primes OpenSSL’s prime generation

code is 35-45% slower when using our primality test internally. For this cost, we

gain an API for primality testing that is as simple as possible and where the test

has strong security guarantees across all use cases.

We communicated our findings to the OpenSSL developers, and they have adopted

our suggestions with only minor modifications: the forthcoming OpenSSL 3.0 (sched-

uled for release in Q4 of 2020) will include our simplified API for primality testing,

and the OpenSSL codebase has been updated to use it almost everywhere (the ex-

ception is prime generation, which uses the old API in order to avoid redundant trial

division). Moreover, OpenSSL will now always use our suggested primality test (64

rounds of MR) on all inputs up to 2048 bits, and 128 rounds of MR on larger inputs.

This represents the first major reform of the primality testing code in OpenSSL for

more than 20 years.

5.1.2 Related Work

The topic of API design for cryptography has a long history and connections to

related fields such as usable security and API design for security more generally.

As early as 2002, Gutmann [70] identified the need to carefully define cryptographic

APIs, recommending to “[p]rovide crypto functionality at the highest level possible

in order to prevent users from injuring themselves and others through misuse of

low-level crypto functions with properties they aren’t aware of.” This is precisely

what we aim to do for primality testing in this chapter.

Later, Wurster and van Oorschot [164] (in the broader context of security) argued

that attention should be focussed on those developers who produce core functionality

used by other developers, e.g. producers of APIs. They identified the need to design
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APIs which can be easily used in a secure fashion.

Green and Smith [68] extensively discuss the need for usable security APIs, and focus

on cryptographic ones. They give an extensive list of requirements for good APIs,

including: APIs should be easy to learn, even without cryptographic expertise;

defaults should be safe and never ambiguous; APIs should be easy to use, even

without documentation; APIs should be hard to misuse and incorrect use should

lead to visible errors. These precepts have influenced our API design for primality

testing.

Acar et al. [2] advocate for a research agenda for usable security and privacy research

that focusses on developers rather than end users. This encompasses cryptography.

Recent research related to this agenda and having a cryptographic focus includes [50,

52, 89, 1, 112, 111, 65].

Nonce-based Authenticated Encryption (AE), a primitive introduced by Rogaway

[138], can be seen as an attempt to simplify the symmetric encryption API for

developers, replacing the need to understand various requirements on IVs with the

arguably simpler need to be able to supply unique (per key) inputs to an encryption

algorithm. It has become the standard target for algorithm designers. However,

as [27] showed, developers can accidentally misuse even this simplified API, with

disastrous results for nonce-sensitive modes like AES-GCM. This motivated the

development of misuse-resistant AE schemes, which attempt to preserve as much

security as possible even when nonces are repeated. Prominent examples include

SIV [139], Deoxys-II (part of the CAESAR competition final portfolio), and AES-

GCM-SIV [69] (see also RFC 8452). Later authors identified the fact that developers

may want an even higher-level API, for example a secure streaming channel like that

provided by TLS [53, 127] or channels that tolerate some forms of reordering and

repetition [30]; the mismatch between what developers want and what nonce-based

AE can provide can lead to attacks, cf. [24].

Bernstein’s design for DH key exchange on Curve25519 [19] deliberately presents

a simple API for developers: public and private keys are represented by 32-byte

strings, and the need for public key validation is avoided.
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The NaCl crypto library [22] has provision of a simple API to developers as one of

its primary aims. It gives the user a crypto_box function that encrypts and au-

thenticates messages, with a simple API of the form: c = crypto_box(m,n,pk,sk),

where m is a message, n is a nonce, pk is the public key of the recipient and sk is

the private key of the sender. Its security does rely on developers correctly han-

dling nonces; we are unaware of reports of any misuse of this type. Some criticism

of NaCl’s approach, especially the way in which it breaks the developer’s expected

paradigm, can be found in [68].

There is an extensive literature on primality testing and generation, nicely sum-

marised in [105, Chapter 4]. The state-of-the-art has not changed significantly since

the publication of that book in 1996. On the other hand, as Chapter 3 showed,

primality testing and generation as it is done in practice has many shortcomings.

Our work can be seen as an effort to narrow the gap between the literature and its

practical application.

5.1.3 Outline

The remainder of this chapter is organised as follows. In Section 5.2 we give further

background on primality testing and detail the approach used in OpenSSL 1.1.1c.

In Section 5.3 we describe four different candidate primality tests and analyse them

theoretically and experimentally. Our chosen primality test (64 rounds of Miller-

Rabin with a varied amount of trial division based upon the bit-size of the number

being tested) emerges from this analysis as our preferred test. We then evaluate the

performance of this chosen test in the use case of prime generation in Section 5.4.

Section 5.5 briefly discusses how our test is being adopted in OpenSSL, while Sec-

tion 5.6 contains our conclusions and avenues for future work.
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5.2 Further Background

5.2.1 Primality Testing

In this chapter we will be discussing in depth the three primality tests introduced

in Chapter 2. These are the Miller-Rabin, Lucas and Baillie-PSW tests. We shall

also be discussing the details of the supplementary and preliminary tests (e.g. trial

division).

5.2.1.1 Primality Testing in OpenSSL

Since we will extensively compare our primality test and its API with those of

OpenSSL, we give a detailed description of the approach in OpenSSL 1.1.1c here.

OpenSSL’s primality test is based mainly on the Miller-Rabin test as introduced in

Section 2.4.2 and discussed in more detail in Section 3.3.1. The Miller-Rabin test

is probabilistic, in that a t-round MR test using uniformly random bases declares

any composite number to be composite with probability at least 1− 4−t. Moreover,

this bound is tight: there are composites which are not identified as being such

over t rounds of testing with probability 4−t. Such numbers, then, are worst-case

adversarial inputs for the test. They are treated extensively in Chaper 3. On the

other hand, the test never declares a prime to be composite.

The above discussion holds for any input n, no matter how it is chosen. When n is a

uniformly random odd k-bit integer, much better performance can be assured. For

example, a result of [41] assures that the probability pk,1 that a composite n chosen

in this way passes one round of random-base MR testing is bounded by k242−
√
k.

Thus, for k = 1024, we have pk,1 ≤ 2−40. Using more precise bounds from [41],

this can be improved to pk,1 ≤ 2−42.35. These bounds are what motivates the rather

small numbers of rounds of MR testing in the default setting in OpenSSL’s primality

test.

OpenSSL provides two functions for primality testing: BN is prime ex and BN is-

prime fasttest ex, both in file bn prime.c. The core part of the code is in the
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k t λ (bits)

k ≥ 3747 3 192
k ≥ 1345 4 128
k ≥ 476 5 80
k ≥ 400 6 80
k ≥ 347 7 80
k ≥ 308 8 80
k ≥ 55 27 64
k ≥ 6 34 64

Table 5.1: The default number of rounds t of Miller-Rabin performed by
OpenSSL 1.1.1c when testing k-bit integers determined by the function
BN prime checks for size and the associated bits of security λ.

second of these, while the first simply acts as a wrapper to this function that forces

omission of trial division. The second function call has the form:

int BN is prime fasttest ex(const BIGNUM *w, int checks,

BN CTX *ctx passed, int do trial division, BN GENCB *cb)

Here, w is the number being tested. The option to do trial division is defined via the

do_trial_division flag. When set, the function will perform trial division using

the first 2047 odd primes (excluding 2), with no gcd optimisations (the code also

separately tests whether the number being tested is equal to 2 or 3, and whether

it is odd). After this, the function calls bn miller rabin is prime to invoke the

MR testing with pseudo-random bases. The number of MR rounds is set using the

argument checks. When checks is set to BN prime checks, a value that defaults

to zero, then the number of MR rounds is chosen such that the probability of the

test declaring a random composite number n with k bits as being prime is at most

2−λ, where λ is the security level that a 2k-bit RSA modulus should provide. Thus,

the number of MR rounds performed is based on the bit-size k, as per Table 5.1.

The entries here are based on average case error estimates taken from [105], which

in turn references [41].4

4One might note how Table 5.1 differs from that shown in Table 3.4 of Section 3.3.1. This is
due to the natural development of OpenSSL between the version 1.1.1-pre6 in August 2018 and
OpenSSL 1.1.1c of May 2019 - for more information on this, see Section 1.2.2.
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5.2.2 Prime Generation

A critical use case for primality testing is prime generation (e.g. for use in RSA

keys). The exact details of the algorithms used vary across implementations, but

the majority follow a simple technique based on first generating a random initial

candidate n of the desired bit size k, possibly setting some of its bits, then doing

trial division against a list of small primes, before performing multiple rounds of

primality testing using a standard probabilistic primality test such as the MR test.

If the trial division reveals a factor or the MR test fails, then another candidate is

generated. This can be a fresh random value, but more commonly, implementations

add 2 to the previous candidate n. This allows an important optimisation: if a table

of remainders for the trial divisions of n is created in the first step, then this table

of remainders can be quickly updated for the new candidate n+ 2. Fresh divisions

can then be avoided – one just needs to inspect the updated table of remainders.

We refer to this procedure as trial division by sieving or just sieving. It is, of course,

much more efficient than performing trial divisions anew for each candidate. Note

that this approach leads to a slightly non-uniform distribution on primes: primes

that are preceded by a long run of composites are more likely to result from it

than primes that are close to their preceding primes. However, it is known that the

deviation from the uniform distribution is small [31].

5.2.2.1 Prime Generation in OpenSSL

OpenSSL adopts the above high-level procedure, with one important difference. The

code is found in BN generate prime ex in file bn prime.c. The function call has

the following form:

int BN generate prime ex(BIGNUM *ret, int bits, int safe, const BIGNUM

*add, const BIGNUM *rem, BN GENCB *cb)

Here bits is the desired bit-size, safe is a flag that, when set, asks the function to

produce a safe prime p = 2q + 1, and add and rem allow the callee to set additional

conditions on the returned prime. We will ignore safe, add and rem in our further
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work; an analysis of how they affect prime generation when using our primality test

is left to future work.

The initial steps are performed together in a separate function called probable-

prime. A cryptographically strong pseudo-random number is first generated by

BN priv rand. The two most significant bits and the least significant bit are then

set to ensure the resulting candidate n is odd and of the desired bit-size. This number

is then sieved using a hard-coded list of the first 2047 odd primes p2, . . . , p2048, so

p1 = 2, p2 = 3, . . . , p2048 = 17863. If a candidate passes the sieving stage, it is tested

for primality by BN is prime fasttest ex. This function carries out the default

number of Miller-Rabin rounds, as per Table 5.1. Trial division is omitted by setting

the do_trial_division flag in the function call. This is because trial division has

already been carried out externally via sieving. This exploits the complexity of the

OpenSSL API for primality testing to gain performance, an option not available if a

simplified API is desired (as we do). Importantly, if the MR tests fail, then instead

of going to the next candidate that passes sieving, a fresh, random starting point is

selected and the procedure begins again from the start.

5.3 Construction and Analysis of a Primality Test With a
Misuse-resistant API

We now propose how to construct a performant primality test with a misuse-resistant

API. Our design goal is to ensure good performance in the most important use cases

(malicious input testing, prime generation) while still maintaining strong security.

At the same time, we want the simplest possible API for developers: a single input n

(the number being tested) and single a 1-bit output (0 for composite, 1 for probably

prime).

We propose four different primality testing functions, all built from the algorithms

described in Chapter 2. The first of these follows OpenSSL with its default settings,

and we name this Miller-Rabin Average Case (MRAC). It provides a baseline for

analysis and comparison. The second and third use 64 and 128 rounds of MR testing,

respectively. We name them MR64 and MR128. The fourth uses the Baillie-PSW

test, and we name it BPSW for short. For each of these four options, we provide
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an assessment (both by analysis and by simulation) of its security and performance

when considering random composite, random prime, and adversarially generated

composite inputs. We also consider the influence of trial division on each test’s

performance. For concreteness, throughout we focus on the case of 1024-bit inputs,

but of course the results are easily extended to other bit-sizes.

5.3.1 Miller-Rabin Average Case (MRAC)

The first test we introduce, MRAC, is a reference implementation of OpenSSL’s pri-

mality test, as per the function BN is prime fasttest ex described in Section 5.2.1.1

with input checks set to BN prime checks, so that the number of MR rounds per-

formed is based on the bit-size k, as per Table 5.1. Recall that this function either

does no trial division or does trial division with the first 2047 odd primes. Of course,

this test is quite unsuitable for use in general, because it performs badly on adver-

sarial inputs: Chapter 3 showed that it has a worst case false positive rate of 1/22t

where for example t = 5 for 1024-bit inputs. On the other hand, it is designed to

perform well on random inputs.

5.3.1.1 MRAC on Random Input

We now consider the expected number of MR rounds performed when receiving a

random 1024 bit odd input. For now, we ignore the effect of trial division. The

probability that a randomly chosen odd k-bit integer is prime is qk := 2/ ln(2k) by

standard estimates for the density of primes (for k = 1024, qk ≈ 1/355). In this

case MRAC will do t MR rounds, as per Table 5.1. Otherwise, for composite input,

up to t rounds of MR testing will be done. One could use the bounds from [41]

to obtain bounds on the expected number of MR rounds that would be carried out

on composite input. However, for numbers of cryptographic size (e.g. k = 1024

bits), to a very good approximation, the number needed is just 1, since with very

high probability, a single MR test is sufficient to identify a composite (recall that the

probability that a single round of MR testing fails to identify a 1024-bit composite is

less than 2−40). From this, one can compute the expected number of rounds needed

for a random, odd input: it is approximately the weighted sum t · qk + 1 · (1− qk) =
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1 + (t − 1)qk. For k = 1024, we have t = 5 and qk = 0.0028, and this expression

evaluates to 1.026.

5.3.1.2 MRAC on Random Input with Trial Division

Now we bring trial division into the picture. Its overall effectiveness will be deter-

mined by the collection of small primes in the list P = {p1, p2, . . . , pr} used in the

process (where we assume all the pi are odd) and the relative costs of MR testing

and trial division (about 800:1 in our experiments).

For random odd inputs, the fraction σ(P ) of non-prime candidates that are removed

by the trial division by the primes in P can be computed using the formula:

σ(P ) = 1−
r∏
i=1

(
1− 1

pi

)
. (5.1)

This follows easily by noting that a fraction 1 − 1
pi

of integers are not divisible by

pi, so the probability that a randomly sampled integer is not divisible by any of the

pi is
∏r
i=1

(
1− 1

pi

)
, and hence the probability that a randomly sampled odd integer

is divisible by at least one pi is σ(P ). In turn, this means that any candidate that

passes the trial division stage is 1/(1− σ(P )) times more likely to be a prime than

an odd candidate of equivalent bit-size chosen at random (this is because a fraction

1− σ(P ) of integers remain after sieving, and all primes survive sieving).

But simply adding more primes to the list P is not necessarily effective: fewer

additional composites are removed at a fixed cost (one additional trial division per

prime), and eventually it is better to move on to a more heavyweight test (such as

rounds of MR testing). Moreover, from inspecting the formula for σ(P ), it is evident

that, for a given size r of set P (and hence a given cost for trial division), it is better

to set P as containing the r smallest odd primes (including 2 is not useful as the

input n is already assumed to be odd). Henceforth, we assume that when P is of

size r, then it consists of the first r odd primes. We write σr in place of σ(P ) in this

case. Using Mertens’ theorem, we can approximate σr as follows:

σr ≈ 1− 2e−γ/ ln(pr).

where γ = 0.5772 . . . is the Euler-Mascheroni constant.
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As an example, BN is prime fasttest ex in OpenSSL performs trial division on

the first 2047 odd primes (ending at p2047 = 17863). As shown in Figure 5.1, using

the first r = 2047 primes gives a value of σ2047 = 0.885. This is only a little larger

than using, say, the r = 128 smallest odd primes yielding σ128 = 0.831.

Figure 5.1: Proportion of candidates removed by trial division, σr, as a
function of r, the number of primes used.

Now we build a cost model for MRAC including trial division. This will also be

applicable (with small modifications) for our other tests.

Let Ci denote the cost of a trial division for prime pi and let CMR denote the cost

of a single MR test.5 Then the total cost of MRAC on random prime k-bit inputs

is:
r∑
i=1

Ci + t · CMR (5.2)

since the test then always performs all r trial divisions (assuming k is large enough)

and all t MR tests. For random, odd composite inputs, the average cost is approxi-

5In practice, we could set Ci to be a constant CTD for the range of i we are interested in, but
using a more refined approach is not mathematically much more complex.
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mately:

σ1 · C1 + (σ2 − σ1) · (C1 + C2) + . . .+ (σr − σr−1) · (C1 + · · ·+ Cr)

+(1− σr) · (
r∑
i=1

Ci + CMR).

This is because a fraction σ1 of the composites are identified by the first trial division,

a further fraction σ2 − σ1 are identified after 2 trial divisions, etc, while a fraction

(1− σr) require all r trial divisions plus (roughly) 1 round of MR. Here we assume

that the MR test performs in the same way on numbers after trial division as it does

before. After some manipulation, this last expression can be simplified to:

r∑
i=1

(1− σi−1) · Ci + (1− σr) · CMR (5.3)

where we set σ0 = 0. This expression can be simplified further if we assume that

the Ci are all equal to some CTD (a good approximation in practice), and apply

Mertens’ theorem again. For details, see the equivalent analysis in [102].

From expressions (5.2) and (5.3), the expected cost for random, odd, k-bit input can

be easily computed via a weighted sum (qk)(5.2) + (1− qk)(5.3). However, the cost

is dominated by expression (5.3) for the composite case. From (5.3), the futility of

trial division with many primes is revealed: adding a prime by going from r to r+ 1

on average adds a term (1 − σr) · Cr+1, but only decreases by a fraction σr+1 − σr
the term in front of CMR. As can be seen from Figure 5.1, when r is large, 1− σr is

around 0.1, while σr+1 − σr becomes very small. So each increment in r only serves

to increase the average cost by a fraction of a trial division (and with the cost of

trial division increasing with r).

Figure 5.2 shows a sample (theoretical) plot of the average cost of MRAC as a

function of r for k = 1024. This uses as costs CTD = 0.000371ms and CMR =

0.298ms obtained from our experiments (reported below) for k = 1024 and the

weighted sum of expressions (5.2), (5.3). This curve broadly confirms the analysis

of [102] which suggests setting pr = CMR/CTD to minimise the running time of

primality testing with trial division; here we obtain CMR/CTD ≈ 800, corresponding

to r ≈ 140.6

6The analysis of [102] technically applies to prime generation, but ignores certain terms in such
a way as to actually analyse the cost of primality testing of composite numbers. In this sense, it is
only valid when the cost of primality testing for prime inputs can be ignored compared to the case
of composite inputs; this is not the case in general, but is a reasonable approximation for MRAC.
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Figure 5.2: A plot of the theoretical running time of MRAC as a function
of r, the number of primes r used in trial division for k = 1024, using
CTD = 0.000371ms and CMR = 0.298ms obtained from our experiments.

5.3.1.3 MRAC on Adversarial Input

Recall from Chapter 3 that worst-case adversarial inputs can fool random-base MR

testing with probability 1/4 per round. The expected number of rounds needed to

identify such inputs as composite is then 1.33. However, with t rounds of testing,

MRAC will fail to identify such composites as being so with probability 1/22t (and

will indicate that the input was prime). Note that this analysis is unaffected by trial

division, since the adversarial inputs used have no small primes factors – the trial

division just increases the running time of the test.

5.3.2 Miller-Rabin 64 (MR64)

Next we consider trial division followed by up to 64 rounds of MR testing with

random bases (the test will exit early if a base that is a witness to compositeness of

the input n is found). We refer to this test as MR64. By design, this test guarantees
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a failure probability of at most 2−128, no matter the input distribution, so it offers

robust security guarantees without the user needing to understand the context of

the test (i.e. whether the test is being done with adversarial inputs or not).

5.3.2.1 MR64 on Random Input

As for MRAC, for a random, odd composite, k-bit input, the expected number

of rounds of MR testing (without trial division) is very close to 1. On the other

hand, for prime, k-bit input, the number of rounds is exactly 64. This enables the

average cost without trial division on random, odd, k-bit input to be computed: it

is approximately given by the weighted sum

(64 · qk + 1 · (1− qk)) · CMR = (1 + 63qk) · CMR

For k = 1024, we again have qk = 2/ ln(2k) = 0.0028, and this sum evaluates to

1.18CMR, about 17% higher than MRAC for the same input distribution.

5.3.2.2 MR64 on Random Input with Trial Division

Following the analysis for MRAC, we can compute the cost of MR64 on random,

prime, k-bit input as:
r∑
i=1

Ci + 64 · CMR (5.4)

since here all trial divisions are performed, together with 64 rounds of MR testing.

For random, odd, composite input with r-prime trial division, the expected cost is

very close to that of MRAC with the same r, since whenever MR testing is invoked,

almost always one round suffices. As for the case of MR64 without trial division, it

is the prime inputs that make the cost difference here: they involve 64 rounds of MR

testing instead of the (close to) 1 needed for composite inputs. Again, a theoretical

prediction for random, odd input can be made by combining the expressions for odd,

composite and prime input using a weighted sum. This sum is (qk)(5.4)+(1−qk)(5.3),

differing only from the cost model for MRAC by the term representing the cost of

testing prime input. Figure 5.3 shows the theoretical curve for MR64 as compared

to MRAC (using costs CTD = 0.000371ms and CMR = 0.298ms for k = 1024 as

before).
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Figure 5.3: Comparing the theoretical running time of MR64 and MRAC
as a function of r (the number of primes r used in trial division) for
k = 1024, using CTD = 0.000371ms and CMR = 0.298ms obtained from our
experiments.

5.3.2.3 MR64 on Adversarial Input

By design, the MR64 test will fail to identify a worst-case adversarial input as a

composite with probability at most 2−128, this after 64 rounds of MR testing. The

expected number of rounds needed to successfully classify such inputs is again 1.33.

5.3.3 Miller-Rabin 128 (MR128)

This test is identical to MR64, but up to 128 rounds of MR testing are invoked.

The intention is to reduce the false positive rate from 2−128 to 2−256. The analysis

is almost identical to that for MR64, replacing 64 by 128 where it appears in the

relevant formulae. We include it for comparison purposes and because the OpenSSL

documentation does target 256 bits of security when testing very large numbers
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(larger than 6394 bits in size7). The headline figure for this test is its expected cost

(without trial division) of (1+127qk) ·CMR, equating to 1.36 ·CMR on random, odd,

1024-bit inputs, roughly 35% higher than MRAC at the same input size.

5.3.4 Baillie-PSW (BPSW)

The final test we consider is the Baillie-PSW test. Recall that this is the combination

of a single Miller-Rabin test to base 2, with a Lucas test using Selfridge’s Method A

to select D. If the input n we are testing is a perfect square, then there does not exist

a valid choice of D (see Section 2.4.4). So we must decide upon a point to test for

this. Baillie and Wagstaff [15] show that, when n is not square, the average number

of D values that need to be tried until a suitable one is found is 1.78. We choose to

run a test to check if n is a perfect square only after 7 unsuccessful attempts to select

D. This choice is inspired by other implementations [96] and the fact that, if n is

a random non-square, then the probability of failing 7 times is extremely unlikely.

This provides a balance between the relatively cheap process of testing a choice

of D with the more expensive test for n being a perfect square. We perform the

Miller-Rabin part of the test first, since it is the more efficient of the two techniques,

omitting the Lucas test early if this indicates compositeness. We then search for D

using Selfridge’s Method A, using it to carry out a Lucas test if found. We abort

the search for D after 7 attempts and then test n for being a perfect square. If this

test fails, we revert to searching for a suitable D and then perform the Lucas test

when one is eventually found.

Algorithm 3 gives example pseudocode for the process of selecting the parameter D

and performing the Baillie-PSW test in the manner described above. The detail of

the pseudocode for the Miller-Rabin test, Lucas test, Jacobi symbol calculation, and

perfect square test are omitted, as these are discussed within the preliminary mate-

rial in Chapter 2. However, a full reference implementation (including all of these

functions) of the Baillie-PSW test used for this work is included in Appendix B.1.

7See the man page https://www.openssl.org/docs/man1.1.0/

man3/BN_is_prime_fasttest_ex.html and code documentation https://github.com/openssl/

openssl/blob/fa4d419c25c07b49789df96b32c4a1a85a984fa1/include/openssl/bn.h#L159.
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Algorithm 3 The Baillie-PSW test on n

Input a positive integer n.
Output the result of the B-PSW test on n. Returns 1 if the test indicates that
n is prime and 0 if n is composite.

Step 1: perform the Miller-Rabin test on n. Here MillerRabin(a, n) is a func-
tion that performs a single round of Miller-Rabin on n to base a, returning 1 if
n is a probable prime and 0 if n is composite.

1: a← 2
2: if MillerRabin(a, n) == 0 then
3: res← 0
4: go to Step 4
5: end if

Step 2: find the parameter D for the Lucas test. Here JacobiSymbol(D,n) is a
function that returns the Jacobi symbol

(
D
n

)
and PerfectSquare(n) is a function

that returns 1 if n is a perfect square and 0 otherwise.
6: D ← 5
7: while JacobiSymbol(D,n) 6= −1 do
8: if D < 0 then
9: D ← abs(D) + 2 # where abs(x) is the absolute value of x.

10: else
11: D ← −(D + 2)
12: end if
13: if D == −19 then # we have 7 failed attempts at findingD with

(
D
n

)
= −1.

14: if PerfectSquare(n) == 1 then
15: res← 0
16: go to Step 4
17: end if
18: end if
19: end while

Step 3: perform the Lucas test on n. Here Lucas(P,Q,D, n) performs a Lucas
test on n, returning 1 if the test indicates that n is prime and 0 if n is composite.

20: P ← 1 # the remaining parameters for Selfridge’s method are set.
21: Q← (1−D)/4
22: if Lucas(P,Q,D, n) == 0 then
23: res← 0
24: go to Step 4
25: end if
26: res← 1 # if we have reached this point, n has passed the B-PSW test.

Step 4: output result.
27: Return res
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5.3.4.1 BPSW on Random Input

The analysis without trial division is much like that of MRAC, assuming that MR

with a fixed base 2 performs as well as MR with a random base when the number

being tested is uniformly random. For prime inputs, the average cost is CMR +CL,

where CL is average the cost of doing the Lucas part of the test (and any tests

of squareness); for composite inputs, the cost is roughly CMR since the MR test

catches the vast majority of composites. The performance on random inputs is the

weighted sum of these, as usual. In our implementation, the average for CL for

1024-bit inputs is equal to 17.04 · CMR (5.078ms compared to 0.298ms on average

for 1024-bit inputs, based on 220 trials). Overall, then, this test has an expected

cost (without trial division) of 1.05 ·CMR on random, odd, 1024-bit inputs, roughly

4% more than MRAC.

The analysis with trial division is again similar to that for MRAC: when the input is

prime, the average cost is
∑r

i=1Ci +CMR +CL, while when the input is composite,

it is of the same form as in (5.3) (where we are able to omit a term CL under the

assumption that the base 2 MR test is effective in detecting composites). We omit

further detail.

5.3.4.2 BPSW on Adversarial Input

It is relatively easy to construct composites passing a base 2 MR test. For example,

integers of the form (2x + 1)(4x + 1) with each factor a prime have a roughly 1 in

4 chance of doing so (see Section 3.2.1.1 for further discussion). Such inputs are

highly likely to be detected by the Lucas part of the BPSW test, so the cost of

BPSW on such inputs would be
∑r

i=1Ci +CMR +CL. However, we do not know if

such numbers are worst-case adversarial inputs for BPSW, and indeed, we cannot

rule out the existence of BPSW pseudoprimes, that is, composites which are declared

probably prime by the test. Recall that Pomerance [133] has given heuristic evidence

that there are infinitely many such pseudoprimes. Perhaps the smallest is beyond

the bit-size we care about in cryptographic applications, but we cannot be sure.

Note also that such a pseudoprime, if it can be found, would always fool the BPSW

test (because the choice of parameters used within the test is deterministic). This
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is in sharp contrast to MR64 and MR128, where we can give precise bounds on the

false positive rate of the tests. We consider this, along with the relative complexity

of implementing the BPSW test, to be a major drawback.

5.3.5 Experimental Results

Having described our four chosen primality tests and given a theoretical evaluation

of them, we now turn to experimental analysis. This analysis gives us a direct

comparison with the current approach of OpenSSL (MRAC with trial division either

off or based on 2047 primes). It also allows us to study how the Baillie-PSW test

performs against Miller-Rabin testing in practice, something that does not appear to

have been explored before. We focus initially on testing 1024-bit numbers to avoid

deluging the reader with data; results for other bit-sizes are presented later in the

section.

5.3.5.1 Random Input

Our results for random, odd, 1024-bit inputs to the tests are shown in Tables 5.2

and 5.3. We worked with 225 inputs, produced using OpenSSL’s internal random

number generator. All timings are in milliseconds, and are broken down into results

for composite inputs, inputs that were declared prime, and overall results. We also

report results for different amounts of trial division — none, r = 128 (which, from

our theoretical analysis above, we consider to be a sensible amount of trial division

for 1024-bit inputs) and r = 2047 (as in OpenSSL). All results were obtained using

a single core of an Intel(R) Xeon(R) CPU E5-2690 v4 @ 3.20GHz processor, with

code written in C using OpenSSL 1.1.1c (May 2019) for big-number arithmetic and

basic Miller-Rabin functionality.

Of the 225 random, odd, 1024-bit numbers that we generated, 94947 were prime.

This is closely in line with the estimated q1024 × 225 ≈ 94548 given by the usual

density estimate.

The results in Table 5.2 are broadly in-line with our earlier theoretical analysis.
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Some highlights:

• MRAC is fast overall, but with r = 2047, OpenSSL is doing far too much trial

division on 1024-bit inputs. Much better performance could be achieved for

this input size in OpenSSL by setting r = 128 (more than 2x speed-up overall

can be gained).

• MR64 is 8-9 times slower than MRAC on prime input, reflecting the many

more rounds of MR testing being done in MR64.

• MR128 is roughly twice as slow as MR64 on prime input (reflecting the dou-

bling of rounds of MR testing). On random input, the gap between MR64 and

MR128 is not so large (because most composites are identified by trial division

or after just one round of MR testing).

• BPSW is quite competitive with MRAC overall and only 2-3 times slower for

prime input. This is because the Lucas test part of BPSW is expensive but

rarely invoked for random input, but always done for prime input.

• Based on overall figures, MR64 with r = 128 outperforms MRAC with r =

2047 (as used in OpenSSL) by 17% on 1024-bit input. This indicates that, by

tuning parameters carefully, it is possible to obtain improved performance over

the current approach used in OpenSSL whilst enjoying strong security across

all use cases (i.e. a guaranteed false positive rate of 2−128). Even MR128 with

r = 128 is not far behind MRAC with r = 2047 on overall figures at this input

size.

Further improvements in running time can be obtained by fine-tuning the value of

r on a per test basis, and according to input size. Importantly, the latter is feasible

even with a simple API (and indeed seems to be the only general, input-dependent

optimisation possible). To illustrate this, we show in Figure 5.4 the average running

times for MRAC and MR64 on random, odd, 1024-bit input for varying r. The

figure also shows the theoretical curves obtained previously. There is an excellent

agreement between the experimental data and the curves obtained from the model.

In both cases, the curve is quite flat around its minimum, but we see that using

r = 128 gives close to optimal performance for this value of k = 1024. The figure

also illustrates that using large amounts of trial division (as per OpenSSL) harms
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r Declared Composite
MRAC MR64 MR128 BPSW

0 0.312 0.313 0.312 0.302
128 0.063 0.063 0.063 0.061

2047 0.135 0.134 0.134 0.133

r Declared Prime
MRAC MR64 MR128 BPSW

0 1.50 19.1 38.1 5.39
128 1.55 19.1 38.2 5.44

2047 2.26 19.8 38.9 6.15

r Overall
MRAC MR64 MR128 BPSW

0 0.315 0.366 0.419 0.316
128 0.067 0.117 0.170 0.077

2047 0.141 0.190 0.244 0.150

Table 5.2: The mean running time (in ms) for each test when testing MRAC,

MR64, MR128 and BPSW for random 1024-bit, odd inputs and various amounts

of trial division (r). Broken down by input primality. Results based on 225 trials.

r Declared Composite
MRAC MR64 MR128 BPSW

0 0.007 0.007 0.007 0.006
128 0.133 0.133 0.133 0.129

2047 0.338 0.338 0.337 0.335

r Declared Prime
MRAC MR64 MR128 BPSW

0 0.028 0.359 0.716 0.099
128 0.028 0.358 0.717 0.097

2047 0.032 0.363 0.720 0.104

r Overall
MRAC MR64 MR128 BPSW

0 0.064 1.00 2.01 0.270
128 0.154 1.02 2.02 0.312

2047 0.356 1.10 2.08 0.462

Table 5.3: The standard deviation of the running time (in ms) for each test

when testing MRAC, MR64, MR128 and BPSW for random 1024-bit, odd inputs

and various amounts of trial division (r). Results based on 225 trials.
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Figure 5.4: Experimental and theoretical performance of MRAC and
MR64 on random, odd, 1024-bit input for varying amounts of trial di-
vision, r. The horizontal dashed line represents the minimum of the
average running time of MR64 across all choices of r. This gives a visual
representation of the comparison between MR64 with r = 128 and MRAC
with r = 2047.

performance for this input size, as was also explained theoretically in Section 5.3.1.

Specifically, OpenSSL uses r = 2047, putting its performance with default settings

(MRAC) well above the minimum obtainable with MR64 with a carefully tuned

choice of r.

5.3.5.2 Adversarial Input

To bring into sharp relief the failings of MRAC as a general-purpose primality test,

we generated a set of 220 1024-bit composites of the form n = (2x + 1)(4x + 1)

in which the factors 2x + 1, 4x + 1 are both prime. Numbers of this special form
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Rounds MRAC MR64

1 787054 786765
2 196110 196268
3 49167 49305
4 12157 12103
5 4088 3129
6 – 776
7 – 169
8 – 44
9 – 13
10 – 4

Table 5.4: Number of rounds of MR testing needed to identify as compos-
ite 1024-bit numbers of the form n = (2x+1)(4x+1) with 2x+1, 4x+1 prime
from an initial set of 220 candidates. MRAC only performs 5 rounds of
MR testing for this bit-size and failed to identify exactly 1000 candidates.

are known to pass random-base MR tests with probability 1/4. We then put these

n through our MRAC and MR64 tests without trial division,8 tracking how many

rounds of MR were used on each input by each test. Table 5.4 shows the results.

MR64 needed a maximum of 10 rounds of MR testing to correctly classify all the

inputs, while MRAC, using only 5 rounds of MR for inputs of this size, incorrectly

classified exactly 1000 of the inputs. This performance is in-line with expectations,

as the expected number of misclassifications is 220 × (1/4)5 = 210.

5.3.6 Other Bit Sizes

So far in our experimental evaluation, we have focussed on k = 1024, i.e. testing of

1024-bit inputs. We have carried out similar testing also for k = 512, 2048, 3072.

Figures 5.5, 5.6 and 5.7 show these additional results for the MRAC and MR64

tests, focussing on the effect of varying r on running time. Notice the characteristic

“hockey-stick” shape of the curves in all the figures.

In each figure, the dashed horizontal time highlights the minimum running time for

MR64. Notably, for k = 512, this is significantly lower than MRAC with r = 2047

(as in OpenSSL). We saw the same effect for k = 1024 in Figure 5.4. For k = 2048,

8Including trial division would not change the results.
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Figure 5.5: Experimental and theoretical performance of MRAC and
MR64 on random, odd, 512-bit input for varying amounts of trial division,
r.

MR64 with the best choice of r is slightly slower than MRAC with r = 2047 (but

still competitive). For k = 3072, the influence of r on running time is quite small,

and MRAC consistently comes out ahead of MR64 (but recall that MRAC is unsafe

for maliciously chosen inputs).

These experiments confirm our earlier observation: the choice of r, the amount of

trial division, can have a significant effect on running time of primality tests, and

should be taken into account when selecting a test.

163



5.3 Construction and Analysis of a Primality Test With a
Misuse-resistant API

Figure 5.6: Experimental and theoretical performance of MRAC and
MR64 on random, odd, 2048-bit input for varying amounts of trial divi-
sion, r.

Figure 5.7: Experimental and theoretical performance of MRAC and
MR64 on random, odd, 3072-bit input for varying amounts of trial divi-
sion, r.
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5.3.7 Selecting a Primality Test

We select MR64 with the amount of trial division, r, depending on the input size as

our preferred primality test. Our reasons are as follows:

• MR64 has strong security guarantees across all use cases (unlike MRAC and

BPSW). These guarantees can be improved by switching to MR128, but we

consider the guarantees of MR64 to be sufficient for perhaps all but the most

stringent requirements.

• MR64 is easy to implement, while a test like BPSW requires significant ad-

ditional code. We give a reference implementation of the BPSW test in Ap-

pendix B.1 as it could be implemented in OpenSSL 1.1.1c. This helps provide

an understanding of the increase in code complexity involved in using this test.

• MR64 with an input-size-dependent choice of r outperforms the current ap-

proach used in OpenSSL (MRAC with fixed r = 2047) up to k = 1024 and

remains competitive with MRAC even for larger inputs. (Obviously OpenSSL

could also be made faster by tuning r, but this would not improve security for

malicious inputs).

• MR64 permits a very simple API, with a single input (the number being tested)

and a single output (whether the input was composite or probably prime),

whilst still allowing input-size-dependent tuning of r.

Table 5.5 shows our recommended values of r to use with MR64, based on the exper-

imental results obtained above. Further small improvements in performance could

be obtained by being more precise in setting r values and by further partitioning

the set of k values, but the gains would be marginal.

We further validate this selection of MR64 in the next section, where we examine

the performance of different tests when used as part of prime generation (as opposed

to testing).
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k r

k ∈ [1, 512] 64
k ∈ [513, 1024] 128
k ∈ [1025, 2048] 384
k ∈ [2049, 3072] 768
k ∈ [3073,∞) 1024

Table 5.5: Recommended values of r for use with the MR64 primality
test.

5.4 Prime Generation

In this section, we want to assess the impact of our choice of primality test on a key

use case, prime generation. We focus on the scenario where our primality test is

used as a drop-in replacement for the existing primality test in OpenSSL, without

making any modifications to the prime generation code. We are not suggesting this

should be done in practice, but are merely evaluating a strawman example when

switching to our proposed test.

5.4.1 Experimental Approach

In order to establish a benchmark, we first use OpenSSL’s prime number generating

function BN generate prime ex as it appears in the standard library. As discussed

in detail in Section 5.2.2, this involves sieving with s = 2047 primes and using the

OpenSSL primality test that consumes t rounds of MR testing on a sequence of

candidates n, n+ 2, . . ., restarting the procedure from scratch whenever an MR test

fails. Here t is determined as in Table 5.1 (i.e. the test is what we call MRAC).

Importantly, OpenSSL exploits the rich API of its primality test to switch off trial

division in the primality tests, since that trial division is already taken care of by

the cheaper sieving step.

Next, we change the underlying primality test to use our selected test: MR64 with

input-length-dependent trial division (as per Table 5.5), keeping all other aspects of

OpenSSL’s prime generation procedure the same. All the trial division done in our

underlying primality test is of course redundant, because of the sieving step carried
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k r used MR64 MRAC Overhead

512 64 12.37 8.859 40%
1024 128 60.83 45.20 35%
2048 384 385.2 268.5 43%
3072 768 1379 946.7 46%

Table 5.6: Running time (in ms) for prime generation using our proposed
primality test (MR64 with input-length-dependent trial division) and
current OpenSSL primality test (MRAC with no trial division). Each
timing is based on 220 trials.

out in OpenSSL’s prime generation code. However, with our deliberately simplified

API for primality testing, that extra work would be unavoidable. Similarly, our

underlying primality test performs more rounds of MR testing (64 instead of the 3-5

used in MRAC) when a prime is finally encountered. It is the amount of this extra

work that we seek to quantify here.

Our experimental results are shown in Table 5.6. It can be seen that the overhead

of switching to our primality test in this use case ranges between 35% and 46%.

This is a significant cost for this use case, but recall that the gain is a primality

test that has strong security guarantees across all use cases, along with a simple and

developer-friendly API.

5.4.2 Cost Modelling

We can build simple cost models which illustrate the performance differences we

have observed; see also [102] for a similar model. Sieving can be recast as a one-time

trial division of the first candidate n with the first s odd primes (OpenSSL uses

s = 2047), followed by per candidate updating of a table of remainders. We assume

the latter can be done essentially for free compared to other operations and ignore

its cost henceforth. Then the average cost of prime generation when the underlying

primality test uses up to t rounds of MR testing but no trial division, is given by:(
s∑
i=1

Ci

)
+
(

ln(2k) · (1− σs)/2
)
· CMR + (t− 1) · CMR. (5.5)

Here the first term comes from sieving. The second term comes from, on average,

inspecting ln(2k) · (1− σs)/2 odd, composite candidates in the sieved version of the
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list n, n + 2, n + 4, . . . before encountering a prime, and doing 1 MR test to reject

each composite (recall that, because of sieving, the density of primes in the list

n, n + 2, n + 4, . . . is boosted by a factor 1/(1 − σs); recall also that almost every

random composite is rejected with just 1 MR test). The third term comes from

doing a further t− 1 MR tests when a prime is finally found. To model OpenSSL’s

performance, we would set t according to Table 5.1.

Note that this analysis ignores the fact that OpenSSL aborts and restarts with a

fresh, random value whenever an MR test fails; this effect may be significant in

practice and we leave a detailed evaluation to future work. Note also that this

modelling deficiency does not affect our experimental results reported in the main

body, since they were obtained by measuring the running time of the actual OpenSSL

code.

It should be evident from expression (5.5) that, as with trial division, working with

large s in the initial sieve is not profitable: eventually, the gains made from decreas-

ing the term 1 − σs are outweighed by the cost of initial sieving by trial division.

Moreover, this model neglects the true cost of updating the table of remainders

between candidates. This cost is linear in s (albeit with a small constant) and so

heightens the effect. A more detailed model including this cost could of course be

developed.

If we now assume that (redundant) trial division with r ≤ s primes is also carried

out in the underlying primality test, and that the test uses up to t′ rounds of MR

testing, then the average cost becomes:(
s∑
i=1

Ci

)
+
(

ln(2k) · (1− σs)/2
)
· ((

r∑
i=1

Ci) + CMR) + (t′ − 1) · CMR (5.6)

Here, the additional cost compared to (5.5) is precisely that of doing a full set of r

trial divisions for each candidate – this cost is always incurred because when r ≤ s,
all the candidates which might fail trial division at some early stage have already

failed on sieving. To model the performance of OpenSSL with our chosen primality

test, MR64, t′ must be set to 64 rather than the values in Table 5.1; the difference

means that, when a prime is finally encountered, the cost of testing it will be higher.
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The difference in the costs as expressed in (5.5) and (5.6) is given by:(
ln(2k) · (1− σs)/2

)
· (

r∑
i=1

Ci) + δt · CMR (5.7)

where δt = t′−t, depending on k, is the difference in the maximum number of rounds

of MR testing carried out in the two cases.

For MR64 and MRAC, and for k of cryptographic size, δt ranges between 59 and 61.

For our selected primality test, MR64 with input-length-dependent trial division, r

in the above expression is also k-dependent, and is set by Table 5.5. The first term

in (5.7) accounts for the cost of redundant trial division over the first r primes for

N := ln(2k) · (1− σs)/2 different candidates. Here both r and N are in the range of

a few hundred. For example, when k = 1024 we set r = 128, and when s = 2047, we

have N ≈ 41. Hence, when k = 1024, we do about 5200 redundant trial divisions,

compared to an extra δt = 59 MR tests. For this k, the extra MR tests are about 8

times more expensive than the redundant trial divisions (roughly 17.5ms versus 2ms

based on our experimental timings). This indicates that the redundant trial division

contributes much less to the overhead of prime generation than do the extra MR

tests that are necessary to make our primality test secure in all use cases.

5.5 Implementation and Integration in OpenSSL

We communicated our findings to the OpenSSL development team, specifically to

Kurt Roeckx, one of the OpenSSL core developers. He did his own performance

testing, and concluded that our new API and primality test should be deployed in

OpenSSL. In personal communication with Roeckx, we were informed that these

changes are slated for inclusion in OpenSSL 3.0, which is scheduled for release in

Q4 of 2020.

In more detail, the following changes were made:

• Our proposed API is included via a new, external-facing function (see https:

//github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.c#L253):

int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb)
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{

return bn_check_prime_int(p, 0, ctx, 1, cb);

}

This code wraps the existing “internal” primality testing function bn check-

prime int. Note that the API has 3 parameters, instead of our desired 1:

OpenSSL still needs to pass pointers to context and callback objects for pro-

grammatic reasons.

• The “internal” primality testing function bn check prime int has been up-

dated to do a minimum of 64 rounds of MR testing (and 128 rounds for 2048+

bit inputs). This deviates slightly from our recommendation to always do 64

rounds of testing – it is more conservative. Note that the average case analysis

of [41] is no longer used to set the number of rounds of MR testing in the de-

fault case. This function also uses a small table to determine how many primes

to use in trial division; the numbers are aligned with our recommendations in

Table 5.5. Details are in the new function calc trial divisions.9

• The rest of the OpenSSL codebase has been updated to use the new API,

except for the prime generation code. That code has also been updated (see

https://github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.

c#L123). It now uses yet a third internal function for its primality testing (see

bn_prime.c#L170):

bn_is_prime_int(ret, checks, ctx, 0, cb);

Here, checks determines the number of rounds of MR testing done, and is

set to either 64 or 128 according to the input size. In the call,“0” indicates

that trial division is no longer done. The number of MR rounds here could

have been set based on average case performance, as was formerly the case,

rather than worst case, but it seems the OpenSSL developers have opted for

simplicity over performance. Not doing trial division inside the primality test

is appropriate here because the inputs have already been sieved to remove

numbers with small prime factors by this point.

• The “old” and complex external-facing APIs in the functions BN is prime ex

and BN is prime fasttest ex have been marked for deprecation in OpenSSL

9See https://github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.c#L74.
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3.0: they will only be included in a build of the library in case the environ-

mental variable OPENSSL NO DEPRECATED 3 0 is set.10

5.6 Conclusions and Future Work

We have proposed a primality test that is both performant and misuse-resistant, in

the sense of presenting a simplest-possible interface for developers. The test balances

code simplicity, performance, and security guarantees across all use cases. We have

not seen a detailed treatment of this fundamental problem in the literature before,

despite the by-now classical nature of primality testing as a cryptographic task. Our

recommendations – both for the API and for the underlying primality test – have

been adopted in full by OpenSSL and are scheduled for inclusion in OpenSSL 3.0,

which is expected to be released in Q4 2020.11

We have focussed in this work on regular prime generation. Our work could be

extended to consider efficiency of safe-prime generation. Special sieving procedures

can be used in this case: if one creates a table of values n mod pi, then one can also

test 2n + 1 for divisibility by each of the pi very cheaply; techniques like this were

used in [57] in a slightly different context. Further work is also needed to fully assess

the impact of the amount of sieving (s) on the performance of prime generation at

different input lengths (k). Our work could also be extended to make a systematic

study of prime generation code in different cryptographic libraries. For example, we

have already noted that the OpenSSL code aborts and restarts whenever a Miller-

Rabin test fails; this behaviour leads to sub-optimal performance, and it would be

interesting to see how much the code in OpenSSL and in other leading libraries could

be improved.

One can view our work as addressing a specific instance of the problem of how to

design simple, performant, misuse-resistant APIs for cryptography. In our discus-

sion of related work, we highlighted other work where this problem has also been

considered, in symmetric encryption, key exchange, and secure channels. A broader

10See https://www.openssl.org/docs/manmaster/man3/BN\_is\_prime\_fasttest\_ex.html

for details.
11See https://www.openssl.org/blog/blog/2019/11/07/3.0-update/.
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research effort in this direction seems likely to yield significant rewards for the se-

curity of cryptographic software. As here, it may occasionally also yield improved

performance.
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Chapter 6

Conclusion

In this chapter we provide an overall summary for this thesis, and then go on to give

a more detailed breakdown with respect to each individual chapter. We also briefly

mention avenues for future work.

In this thesis we have provided a holistic analysis of primality testing and its use as

a mathematical tool within cryptography. Using primality testing as a case study,

we journeyed from the very inception of the fundamental primality testing algo-

rithms, to their standardisation and recommended configuration, to the real world

implementation. Using this systematic style of analysis, we are able to uncover

flaws in these primality tests at many different stages. Some flaws are inherent to

the design of the primality test, for example the nature of pseudoprimes for the

Miller-Rabin test. In this case, we expanded existing techniques for creating such

pseudoprimes, and furthered their use as malicious parameter sets for public-key

cryptography. We also uncovered numerous flaws in the implementation of primal-

ity testing across cryptographic libraries. The fault here is usually contingent upon

the authors not fully understanding the importance of selecting random bases when

performing Miller-Rabin, or not performing enough rounds of testing. We also wit-

nessed a common misunderstanding in distinguishing between when the primality

test is performed on either random, or adversarial input – this often resulted in

a failure to use the correct error bounds or the correct context for applying these

bounds to the result of the test. As an outcome of this analysis, we were able to im-

pact the primality testing procedures in numerous implementations across different

libraries to provide security against these pseudoprimes in the real world. For exam-

ple, we worked with the developers of the most widely used cryptographic library,

OpenSSL, at many different stages of the primality testing functionality. OpenSSL
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have fully adopted the solutions provided by this work, from amending the public

key parameter checking function for Diffie-Hellman, working to make the documen-

tation clearer on testing random or malicious input, to even re-writing the core

primality tests to provide a more robust API. We also worked with other vendors

such as Apple, Bouncy Castle, Botan, Mozilla and WolfSSL to improve the security

of their primality testing procedures.

In Chapter 3 we explored primality testing in the adversarial setting and its im-

pact on Diffie-Hellman parameter testing. Our main finding is that leading libraries

are not designed for this setting, and are therefore often vulnerable to accepting

maliciously chosen composite inputs – as being prime. We can generally classify the

underlying cause of the failure in prime classification accuracy as a non-consideration

of the adversarial setting. More explicitly, we can categorise most failures in terms

of how the bases for Miller-Rabin are chosen, i.e. fixed base, predictable bases, insuf-

ficient number of bases. Apple’s corecrypto and CommonCrypto, Mini-GMP, JSBN,

Cryptlib, LibTomMath, LibTomCrypt and WolfSSL all fail due to the selection of

bases from a fixed list, whereas Mozilla’s NSS, GNU GMP, and GoLang pre-1.8 all

suffer from predictable bases. OpenSSL, Libgcrypt, Botan and Bouncy Castle C#

all have options to run as many rounds of Miller-Rabin as the user desires, but either

default to, or call the test (elsewhere in the library) with too few rounds. Problems

left open by this work are to find malicious Diffie-Hellman parameter sets that can

fool primality tests in the safe-prime setting (this is addressed later in Chaper 4).

Further work may also include an investigation into which other seemingly innocu-

ous assumptions concerning domain parameters in the literature can be undermined

in a similar fashion.

In Chapter 4 we considered the problem left open from Chapter 3 of construct-

ing Diffie-Hellman parameters which pass parameter validation functions that test

for safe primes, but for which the Discrete Logarithm Problem is relatively easy to

solve. We then went on to provide malicious parameter sets for elliptic curve Diffie-

Hellman, in a method analogous to the finite field case. This chapter dived much

deeper into the existence of pseudoprimes for the Miller-Rabin test – to determine

if there are other forms of composite numbers that possess a significant probability

(perhaps not optimal) to be declared as prime. The Monier-Rabin bound is syn-

onymous with understanding the accuracy of the Miller-Rabin test; it states that
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any odd composite n 6= 9 can have at most ϕ(n)/4 non-witnesses, and therefore can

pass a single round of Miller-Rabin with probability at most ≈ 1/4. We were suc-

cessful in expanding the bound, by proving that any odd composite number n with

m distinct prime factors can have at most ϕ(n)/2m−1 non-witnesses (and therefore

a probability of at most ≈ 1/2m−1 of being declared prime by a single round of

Miller-Rabin). We then went on to prove that for any m ≥ 3 (m = 2 was covered

significantly in Chapter 3), this maximum bound of non-witnesses can be achieved,

and happens if and only if n is a Carmichael number with each factor congruent to

3 mod 4. Not only does this vastly increase the knowledge of how pseudoprimes for

the Miller-Rabin test are distributed among the integers, it also gives us the abil-

ity to create relatively smooth numbers that still posses a significant probability of

falsely being declared prime. This was instrumental in being able to create pseudo-

primes to be part of malicious parameter sets (for both finite field and elliptic curve

Diffie-Hellman) that allow the Discrete Logarithm Problem to be relatively easy to

solve. In the remainder of this chapter, we harnessed techniques from Erdös [51] and

Granville and Pomerance [67] to a give methodology for creating such pseudoprimes

in an efficient manner. Further work in this area might include additional analysis

on the sieving techniques for generation of primes (particularly the ones that form

the factors of Carmichael numbers), so that large pseudoprimes with many more

factors can be more efficiently generated.

In Chapter 5 we focused on the development of an API for primality testing that

stands robust against misuse within the context of testing input from any source.

This is an effort to eliminate the common pitfall identified in Chapters 3 and 4:

a failure to consider the case of testing on adversarial input. We provided various

different options for the core testing procedure within a primality test, and compared

their performance (both accuracy and efficiency) against each other, along with the

current implementation in OpenSSL. This work also allowed us to perform a more

detailed analysis of a competitor to the Miller-Rabin test: the Baillie-PSW test. The

Baillie-PSW test is becoming increasingly more popular within primality testing

techniques found in cryptographic libraries and mathematical software, yet there

are still serious questions to ask about its performance – both in terms of accuracy

and efficiency. In this chapter, we focused on giving a more concrete analysis of the

efficiency of the test, particularly with respect to how long the Miller-Rabin test

takes to test the same input. We studied the tests in multiple contexts, from testing
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random input, to maliciously generated input, to how the time taken to generate

prime numbers is affected when this was the core primality test used. This provided

us with the ability to propose a primality test that is both performant and misuse-

resistant, in the sense of presenting a simplest-possible interface for developers. Our

recommendations – both for the API and for the underlying primality test – have

been adopted in full by OpenSSL and are scheduled for inclusion in OpenSSL 3.0,

which is expected to be released in Q4 2020. Further work in this area would

include the continued study of the Baillie-PSW test, in particular the search for

pseudoprimes for the test. Our work could also be extended to make a systematic

study of prime generation code in different cryptographic libraries. For example, we

have already noted that the OpenSSL code aborts and restarts whenever a Miller-

Rabin test fails; this behaviour leads to sub-optimal performance, and it would be

interesting to see how much the code in OpenSSL and in other leading libraries could

be improved. A broader research effort could also be made within the direction of

how to design simple, performant, misuse-resistant APIs for cryptography.
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Appendix A

Implementation Code

Here we provide three example implementations of some of the methods described

in Chapter 4. Namely, a SAGE code implementation of the Erdös Method for

generating Carmichael numbers, the C code used to generate a Carmichael number

q with 9 prime factors such that p = 2q+ 1 is a 1024 bit prime, and the SAGE code

for the first step of the algorithm of Bröker and Stevenhagen in the case where N ,

the target group order, has 3 prime factors.

A.1 SAGE code of the Erdös Method for Generating Carmichael
Numbers

We present below our SAGE code implementation of the Erdös Method for generat-

ing Carmichael numbers. This particular code was used to generate the Carmichael

numbers with 8 and 16 factors in Example 4.3.

import itertools

from operator import mul

from sage.arith.functions import LCM_list

def all_combinations(any_list ):

"""

Wrapper for itertools to generate all possible combinations of all

(non trivial) sizes.

"""

return itertools.chain.from_iterable(

itertools.combinations(any_list , i + 1)

for i in xrange(len(any_list )))

def LCMpim1(n):

"""

Takes as input n: a list of integers p_i and returns the lcm(p_i -1) for all i

"""

pim1list = []
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Numbers

for pi in n:

pim1 = pi - 1

pim1list.append(pim1)

return LCM_list(pim1list)

def listbuild(L):

"""

Takes as input a (highly composite) number L and returns a list of all primes

p such that p-1 | L where p does not divide L. We include the additional

requirement that p = 3 mod 4.

"""

a = list(factor(L))

p = []

for y in a:

for i in range(0, y[1]):

p.append(y[0])

pvals = all_combinations(p)

ps = []

for pp in pvals:

t = reduce(mul , pp , 1)

tt = t + 1

if tt.is_prime(proof=False) and L % tt != 0:

if tt not in ps:

ps.append(tt)

pps = []

ps.sort()

# we now filter results to only inlude p with p = 3 mod 4

for p in ps:

if p % 4 == 3:

pps.append(p)

return pps

def erdos_build(factors , L, k):

"""

This function takes a list of possible factors , a (highly composite) integer L

and k, and produces a Carmichael number with k factors sampled from "factors"

such that the LCM of each factor p_i - 1 is equal to L. Output is parsed as

n,[p_1 ,p_2 ,...,p_k] where n = p_1 * p_2 * ... * p_k.

"""

if k <=2:

print "Choice of factors must be >=3"

return 0

for i in itertools.combinations(factors , k):

v = reduce(mul , i, 1)

if v % L == 1:

fin = list(i)

fin.sort()

if LCMpim1(fin) == L:

return [v,fin]

print "None found , try increasing size of factor list"

L = 53603550

factors = listbuild(L)

print factors , L, len(factors)

print erdos_build(factors , L, 8)

print erdos_build(factors , L, 16)
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A.2 C Code of the Modified Granville and Pomerance Method for
Generating Carmichael Numbers q such that p = 2q + 1 is Prime

A.2 C Code of the Modified Granville and Pomerance Method
for Generating Carmichael Numbers q such that p =
2q + 1 is Prime

We present below our C code used to generate a Carmichael number q with 9 prime

factors such that p = 2q + 1 is a 1024 bit prime as in Example 4.5.

#define _XOPEN_SOURCE 500

#include <stdint.h>

#include <stdio.h> /* printf () */

#include <stdlib.h> /* abort () */

#include <unistd.h> /* getopt () */

#include <gmp.h>

/* Command Line Parsing */

#define DEFAULT_COUNT 37

#define DEFAULT_OFFSET 0

struct _cmdline_params_struct {

uint32_t count; // we use this for parallelisation

uint32_t offset; //< how much we want to offset the starting value of k by

};

typedef struct _cmdline_params_struct cmdline_params_t [1];

static inline void print_help_and_exit () {

printf("-c log2 of number of trials (default: %d)\n", DEFAULT_COUNT );

printf("-o offset on starting k value , where offset*c (default: %d)\n",

DEFAULT_OFFSET );

abort ();

}

static inline void parse_cmdline(cmdline_params_t params , int argc ,

char *argv []) {

params ->count = DEFAULT_COUNT;

params ->offset = DEFAULT_OFFSET;

int c;

while ((c = getopt(argc , argv , "c:o:")) != -1) {

switch(c) {

case ’c’:

params ->count = (uint32_t)strtoul(optarg , NULL , 10);

break;

case ’o’:

params ->offset = (int32_t)strtoul(optarg ,NULL , 10);

break;

case ’:’: /* without operand */

print_help_and_exit ();

case ’?’:

print_help_and_exit ();

}

}

printf("-c %d -o %d\n",

params ->count , params ->offset );

}

/* Logging */

void logit(mpz_t q, mpz_t q1, mpz_t q2, mpz_t q3, mpz_t q4 , mpz_t q5,

mpz_t q6 , mpz_t q7,mpz_t q8 , mpz_t q9) {

char tmp [2000];
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snprintf(tmp , 2000, "0x%s:0x%s:0x%s:0x%s:0x%s:0x%s:0x%s:0x%s:0x%s:0x%s",

mpz_get_str(NULL , 16, q), mpz_get_str(NULL , 16, q1), mpz_get_str(NULL , 16, q2),

mpz_get_str(NULL , 16, q3), mpz_get_str(NULL , 16, q4), mpz_get_str(NULL , 16, q5),

mpz_get_str(NULL , 16, q6), mpz_get_str(NULL , 16, q7), mpz_get_str(NULL , 16, q8),

mpz_get_str(NULL , 16, q9));

FILE *fh = fopen("CARM -9.log", "a");

fprintf(fh, "%s\n", tmp);

fclose(fh);

}

/*

* Function: main

* --------------------

* This function uses the modified Granville Pomerance method to generate a

* Carmichael number q of cryptographic size , such that N = 2q+1 is prime.

*

* This function is currently not set up for generality , and does not perform

* sanity checks. We specifically set up an instance of this code to search for

* a single valid example. This is the 9 factored example that is given a starting

* Carmichael number p = p_1 *...* p_9 generated previously by the Erdos method.

*

* The function iterates through kprime (k ’) values to construct:

* m = kL + 1, where k = k’ * s

* then q_i = M(p_i -1)+1 for all i

* such that q = q_1 * ... * q_9 is approx 1023 bits.

*

* We then test each q_i for primality , iterating to the next k’ value if composite.

* Finally , if all q_i are prime , we construct q = q_1 * ... * q_9 and test if

* N = 2q+1 is prime. If true , we log q, and its factors.

*

*/

int main(int argc , char *argv [])

{

mpz_t s,p1,p2 ,p3,p4,p5 ,p6,p7 ,p8,p9,q,q1,q2,q3,q4,q5 ,q6,q7,q8 ,q9,kprime ,fudge2 ,

fudge3 ,fudge4 ,fudge5 ,k,m,off ,L,N;

mpz_init(q);

mpz_init(q1);

mpz_init(q2);

mpz_init(q3);

mpz_init(q4);

mpz_init(q5);

mpz_init(q6);

mpz_init(q7);

mpz_init(q8);

mpz_init(q9);

mpz_init(k);

mpz_init(m);

mpz_init(off);

mpz_init(N);

int res;

cmdline_params_t params;

parse_cmdline(params , argc , argv);

// here we set up our specific starting Carmichael number p and other parameters

mpz_init_set_str(s, "3", 10);

mpz_init_set_str(kprime , "1", 10);

mpz_init_set_str(fudge2 , "1", 10);

mpz_init_set_str(fudge3 , "1", 10);

mpz_init_set_str(fudge4 , "1", 10);

mpz_init_set_str(fudge5 , "1", 10);

mpz_init_set_str(p1, "70", 10);

mpz_init_set_str(p2, "130", 10);

mpz_init_set_str(p3, "646", 10);

mpz_init_set_str(p4, "1870", 10);

mpz_init_set_str(p5, "4522", 10);

mpz_init_set_str(p6, "4750", 10);
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mpz_init_set_str(p7, "46750", 10);

mpz_init_set_str(p8, "432250", 10);

mpz_init_set_str(p9, "350350", 10);

mpz_init_set_str(L, "565815250", 10);

uint64_t Lbits = 30;

mpz_init_set_ui(off ,params ->offset );

mpz_mul_2exp(off ,off ,params ->count);

size_t p1bits = mpz_sizeinbase (p1 , 2);

size_t sbits = mpz_sizeinbase (s, 2);

// we now make some speicific alterations to ensure the final N is 1024 bits

uint64_t t = 9;

uint64_t fudgefactor = 1;

uint64_t power = 113 - (t/2 -1) -p1bits - Lbits - sbits + fudgefactor;

mpz_mul_2exp(kprime ,kprime ,power );

mpz_mul_2exp(fudge2 ,fudge2 ,power -1);

mpz_mul_2exp(fudge3 ,fudge3 ,power -4);

mpz_mul_2exp(fudge4 ,fudge4 ,power -5);

mpz_mul_2exp(fudge5 ,fudge5 ,power -6);

mpz_sub(kprime ,kprime ,fudge2 );

mpz_sub(kprime ,kprime ,fudge3 );

mpz_sub(kprime ,kprime ,fudge4 );

if (params ->offset != 0) {

mpz_add(kprime ,kprime ,off);

}

// The following for loop accounts for the bulk of the time to run

for (uint64_t i = 0; i <= (1ULL)<<params ->count; i++){

mpz_add_ui(kprime ,kprime ,1);

mpz_mul(k,kprime ,s);

mpz_mul(m,k,L);

mpz_add_ui(m,m,1);

//q1

mpz_mul(q1,m,p1);

mpz_add_ui(q1,q1 ,1);

res= mpz_probab_prime_p (q1, 2);

if (!res) {

continue;

}

//q2

mpz_mul(q2,m,p2);

mpz_add_ui(q2,q2 ,1);

res= mpz_probab_prime_p (q2, 2);

if (!res) {

continue;

}

//q3

mpz_mul(q3,m,p3);

mpz_add_ui(q3,q3 ,1);

res= mpz_probab_prime_p (q3, 2);

if (!res) {

continue;

}

//q4

mpz_mul(q4,m,p4);

mpz_add_ui(q4,q4 ,1);

res= mpz_probab_prime_p (q4, 2);

if (!res) {

continue;

}

//q5

mpz_mul(q5,m,p5);
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mpz_add_ui(q5,q5 ,1);

res= mpz_probab_prime_p (q5, 2);

if (!res) {

continue;

}

//q6

mpz_mul(q6,m,p6);

mpz_add_ui(q6,q6 ,1);

res= mpz_probab_prime_p (q6, 2);

if (!res) {

continue;

}

//q7

mpz_mul(q7,m,p7);

mpz_add_ui(q7,q7 ,1);

res= mpz_probab_prime_p (q7 , 2);

if (!res) {

continue;

}

//q8

mpz_mul(q8,m,p8);

mpz_add_ui(q8,q8 ,1);

res= mpz_probab_prime_p (q8 , 2);

if (!res) {

continue;

}

//q9

mpz_mul(q9,m,p9);

mpz_add_ui(q9,q9 ,1);

res= mpz_probab_prime_p (q9 , 2);

if (!res) {

continue;

}

mpz_mul(q,q1 ,q2);

mpz_mul(q,q,q3);

mpz_mul(q,q,q4);

mpz_mul(q,q,q5);

mpz_mul(q,q,q6);

mpz_mul(q,q,q7);

mpz_mul(q,q,q8);

mpz_mul(q,q,q9);

mpz_mul_2exp(N,q,1);

mpz_add_ui(N,N,1);

res= mpz_probab_prime_p (N, 2);

if (!res) {

continue;

}

printf("PRIME !\n" );

logit(q,q1 ,q2,q3,q4 ,q5,q6,q7 ,q8,q9);

}

mpz_clear(s);

mpz_clear(p1);

mpz_clear(p2);

mpz_clear(p3);

mpz_clear(p4);

mpz_clear(p5);

mpz_clear(p6);

mpz_clear(p7);

mpz_clear(p8);

mpz_clear(p9);

mpz_clear(q1);

mpz_clear(q2);

mpz_clear(q3);
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mpz_clear(q4);

mpz_clear(q5);

mpz_clear(q6);

mpz_clear(q7);

mpz_clear(q8);

mpz_clear(q9);

mpz_clear(kprime );

mpz_clear(fudge2 );

mpz_clear(fudge3 );

mpz_clear(fudge4 );

mpz_clear(fudge5 );

mpz_clear(k);

mpz_clear(m);

mpz_clear(off);

mpz_clear(L);

mpz_clear(N);

return 0;

}

A.3 SAGE code for Algorithm of Bröker and Stevenhagen

We present below our SAGE code for the first step of the algorithm of Bröker and

Stevenhagen in the case where N , the target group order, has 3 prime factors. This

code was written by Steven Galbraith, with the exception of the parameters p, q, r

which were from myself.

# Generate elliptic curve using CM with group order divisible by product p*q*r

# that is a fake prime.

# Cornacchia algorithm

def Cornacchia( A, B, D ):

a = A

b = B

while (b^2 > A):

rrem = int( Mod(a,b) )

a = b

b = rrem

x = b

f2 = (A - x^2) / -D

f = int( sqrt( f2 ))

return x, f

# [58417055476151343628013443570006259007635701626361239226508929045758536501851 ,

p = 12096932041680954958693771

q = 36290796125042864876081311

r = 133066252458490504545631471

N = p*q*r

DBOUND = -2000;

# First try to construct a curve with N points

D = -3
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while (D > DBOUND ):

if (1 == legendre_symbol( D, p )) and (1 == legendre_symbol( D, q )) and

(1 == legendre_symbol( D, r )):

F = GF( p )

x01 = int( sqrt( F( D ) ))

F = GF( q )

x02 = int( sqrt( F( D ) ))

F = GF( r )

x03 = int( sqrt( F( D ) ))

# There are 8 possible choices for x0 coming from the 2^3 choices of sign

# +/- x01 , +/- x02 , +/- x03

ct = 0

while (ct < 8):

x0 = crt( crt( x01 , x02 , p, q ), x03 , p*q, r )

while (0 != Mod(x0^2-D,4*N)):

x0 = x0+N

x, f = Cornacchia( 4*N, x0 , D )

if ( 0 == (x^2 - D*f^2 - 4*N)):

pp = int( N + x + 1 )

if is_prime(pp):

print "Success (D,x,f) = ", D, x, f

print "And get a prime p = ", pp

pp = int( N - x + 1 )

if is_prime(pp):

print "Success with other sign (D,x,f) = ", D, x, f

print "And get a prime p = ", pp

x01 = p - x01

if (0 == (ct % 2)):

x02 = q - x02

if (0 == (ct % 4)):

x03 = r - x03

ct = ct + 1

D = D - 4

# Now consider curves whose number of points is a multiple of 2*N

# Algorithm is basically the same except D now must be even

c = 1

while (c < 5):

NN = 2*c*N

c = c + 1

D = -4

while (D > DBOUND ):

D = D - 4

DD = D

if (1 == legendre_symbol( D, p )) and (1 == legendre_symbol( D, q )) and

(1 == legendre_symbol( D, r )):

F = GF( p )

x01 = int( sqrt( F( DD ) ))

F = GF( q )

x02 = int( sqrt( F( DD ) ))

F = GF( r )

x03 = int( sqrt( F( DD ) ))

ct = 0

while (ct < 8):

x0 = crt( crt( x01 , x02 , p, q ), x03 , p*q, r )

chk=0

while (0 != Mod(x0^2-DD ,4*NN)) and (chk < 100):

chk = chk+1

x0 = x0+N

x, f = Cornacchia( 4*NN , x0, D )

if ( 0 == (x^2 - DD*f^2 - 4*NN)):

pp = int( NN + x + 1 )

if is_prime(pp):

print "Success (D,x,f) = ", DD , x, f

print "And get a prime p = ", pp
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pp = int( NN - x + 1 )

if is_prime(pp):

print "Success with other sign (D,x,f) = ", DD, x, f

print "And get a prime p = ", pp

x01 = p - x01

if (0 == (ct % 2)):

x02 = q - x02

if (0 == (ct % 4)):

x03 = r - x03

ct = ct + 1

185



Appendix B

Baillie-PSW Test

B.1 Reference Implementation of the Baillie-PSW Test

For completeness, we include here our code that implements a Baillie-PSW primality

test in the context of OpenSSL’s bn prime.c from version 1.1.1c. bn prime bpsw.c

/*

* Copyright 1995 -2018 The OpenSSL Project Authors. All Rights Reserved.

*

* Licensed under the OpenSSL license (the "License "). You may not use

* this file except in compliance with the License. You can obtain a copy

* in the file LICENSE in the source distribution or at

* https ://www.openssl.org/source/license.html

*/

#include <stdio.h>

#include <time.h>

#include "internal/cryptlib.h"

#include "bn_lcl.h"

#include "bn_prime.h"

static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,

const BIGNUM *a1_odd , int k, BN_CTX *ctx ,

BN_MONT_CTX *mont);

static int probable_prime(BIGNUM *rnd , int bits , prime_t *mods);

static int probable_prime_dh_safe(BIGNUM *rnd , int bits ,

const BIGNUM *add , const BIGNUM *rem ,

BN_CTX *ctx);

static int BN_lucas_test_ex(BIGNUM * n);

static int BN_jacobi(BIGNUM *a, BIGNUM *n);

static BIGNUM * BN_lucas_sequence(BIGNUM *d, BIGNUM *k, BIGNUM *n);

static BIGNUM * BN_is_perfect_square(BIGNUM * C);

static int BN_is_prime_BPSW_ex(BIGNUM *a, BN_CTX *ctx_passed ,

int do_trial_division , BN_GENCB *cb);

int BN_GENCB_call(BN_GENCB *cb, int a, int b)

{

/* No callback means continue */

if (!cb)

return 1;

switch (cb->ver) {

case 1:

/* Deprecated -style callbacks */

186



B.1 Reference Implementation of the Baillie-PSW Test

if (!cb->cb.cb_1)

return 1;

cb->cb.cb_1(a, b, cb->arg);

return 1;

case 2:

/* New -style callbacks */

return cb->cb.cb_2(a, b, cb);

default:

break;

}

/* Unrecognised callback type */

return 0;

}

int BN_is_prime_BPSW_ex(BIGNUM *a, BN_CTX *ctx_passed ,

int do_trial_division , BN_GENCB *cb)

{

int i, j, l, ret = -1;

int k;

BN_CTX *ctx = NULL;

BIGNUM *A1, *A1_odd , *check = BN_new (); /* taken from ctx */

BN_MONT_CTX *mont = NULL;

BN_set_word(check , 2); //only testing MR to base 2

/* Take care of the really small primes 2 & 3 */

if (BN_is_word(a, 2) || BN_is_word(a, 3))

return 1;

/* Check odd and bigger than 1 */

if (! BN_is_odd(a) || BN_cmp(a, BN_value_one ()) <= 0)

return 0;

/* first look for small factors */

if (do_trial_division) {

for (i = 1; i < TRIAL_DIVISION_PRIMES; i++) {

BN_ULONG mod = BN_mod_word(a, primes[i]);

if (mod == (BN_ULONG )-1)

goto err;

if (mod == 0)

return BN_is_word(a, primes[i]);

}

if (! BN_GENCB_call(cb, 1, -1))

goto err;

}

if (ctx_passed != NULL)

ctx = ctx_passed;

else if ((ctx = BN_CTX_new ()) == NULL)

goto err;

BN_CTX_start(ctx);

A1 = BN_CTX_get(ctx);

A1_odd = BN_CTX_get(ctx);

if (check == NULL)

goto err;

/* compute A1 := a - 1 */

if (! BN_copy(A1 , a) || !BN_sub_word(A1 , 1))

goto err;

/* write A1 as A1_odd * 2^k */

k = 1;

while (! BN_is_bit_set(A1, k))

k++;
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if (! BN_rshift(A1_odd , A1, k))

goto err;

/* Montgomery setup for computations mod a */

mont = BN_MONT_CTX_new ();

if (mont == NULL)

goto err;

if (! BN_MONT_CTX_set(mont , a, ctx))

goto err;

j = witness(check , a, A1, A1_odd , k, ctx , mont);

if (j == -1)

goto err;

if (j) {

ret = 0;

goto err;

}

if (! BN_GENCB_call(cb, 1, i))

goto err;

ret = 1;

l = BN_lucas_test_ex(a);

if (!l) {

ret = 0;

goto err;

}

err:

if (ctx != NULL) {

BN_CTX_end(ctx);

if (ctx_passed == NULL)

BN_CTX_free(ctx);

}

BN_MONT_CTX_free(mont);

return ret;

}

int BN_lucas_test_ex(BIGNUM * n){

// performs a Lucas test (with Selfridge ’s paramters) on n

BIGNUM *two = BN_new ();

BN_set_word(two , 2);

// sanity check input , n odd and > 2

if (BN_cmp(two ,n)==1) { // 1 if a > b i.e b < a

BN_free(two);

return 0;

}

if (BN_cmp(n,two )==0) {

BN_free(two);

return 1;

}

if (! BN_is_odd(n)) {

BN_free(two);

return 0;

}

BN_CTX *ctx = BN_CTX_new ();

BIGNUM *result = BN_new ();

BIGNUM *zero= BN_new ();

BIGNUM *np1 = BN_new ();

BIGNUM *minusone = BN_new ();

BIGNUM *u = BN_new ();

BIGNUM *d = BN_new ();

BIGNUM *minusnineteen = BN_new ();
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int32_t J;

int32_t res;

const char *m1 = " -1";

const char *m19 = " -19";

BN_add(np1 ,n,BN_value_one ());

BN_zero(zero);

BN_dec2bn (&minusone , m1);

BN_dec2bn (& minusnineteen , m19);

BN_set_word(d, 5);

// while jacobi(d,n) != -1

while ((J = BN_jacobi(d,n))!= -1) {

if (J==0) { // if jacobi(d,n) == 0 then d | n, i.e n is composite

res = 0;

goto free;

}

if (BN_cmp(zero ,d)==1) { // 0>d

BN_mul(d,d,minusone ,ctx);

BN_add(d,d,two);

}

else{

BN_add(d,d,two);

BN_mul(d,d,minusone ,ctx);

}

if (BN_cmp(d,minusnineteen )==0 && !( BN_cmp(BN_is_perfect_square(n),zero )==0)) {

res = 0;

goto free;

}

}

u = BN_lucas_sequence(d,np1 ,n);

BN_mod(result ,u,n,ctx);

if (BN_cmp(result ,zero )==0) {

res = 1;

goto free;

}

else{

res = 0;

goto free;

}

free:

BN_CTX_free(ctx);

BN_free(result );

BN_free(zero);

BN_free(np1);

BN_free(minusone );

BN_free(two);

BN_free(u);

BN_free(d);

return res;

}

int BN_jacobi(BIGNUM *a, BIGNUM *n){

// computes jacobi symbol of (a/n), currently returns 2 if a,n are invalid input

BIGNUM *x = BN_new ();

BIGNUM *y = BN_new ();

BIGNUM *halfy = BN_new ();

BIGNUM *r = BN_new ();

BIGNUM *s = BN_new ();

BN_CTX *ctx = BN_CTX_new ();

BN_nnmod(x,a,n,ctx);

BN_copy(y,n);
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int J = 1;

int k = 0;

BIGNUM *three = BN_new ();

BN_set_word(three , 3);

BIGNUM *four = BN_new ();

BN_set_word(four , 4);

BIGNUM *five = BN_new ();

BN_set_word(five , 5);

BIGNUM *eight = BN_new ();

BN_set_word(eight , 8);

if (! BN_is_odd(n)|| BN_cmp(n,BN_value_one ()) <= 0) {

J = 2;

goto free;

}

while (BN_cmp(y,BN_value_one ()) == 1) { // while y > 1

BN_mod(x,x,y,ctx);

BN_rshift1(halfy ,y);

if (BN_cmp(x,halfy )==1) {

BN_sub(x,y,x);

BN_mod(r,y,four ,ctx);

if (BN_cmp(r,three )==0) {

J = -J;

}

}

if (BN_is_zero(x)) {

//gcd(a,n)!=1 so we return 0

J = 0;

goto free;

}

//count the zero bits in x, i.e the largest value of n s.t 2^n divides x evenly.

k = 0;

while (! BN_is_bit_set(x, k)) {

k++;

}

BN_rshift(x,x,k);

if (k%2) {

BN_mod(s,y,eight ,ctx);

if (BN_cmp(s,three )==0 || BN_cmp(s,five )==0) {

J = -J;

}

}

BN_mod(r,x,four ,ctx);

BN_mod(s,y,four ,ctx);

if (BN_cmp(r,three )==0 && BN_cmp(s,three )==0) {

J = -J;

}

BN_swap(x,y);

}

free:

BN_CTX_free(ctx);

BN_free(x);

BN_free(y);

BN_free(halfy );

BN_free(r);

BN_free(s);

BN_free(three );

BN_free(four);

BN_free(five);

BN_free(eight );

return J;

}
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void BN_rshift1_round(BIGNUM *r, BIGNUM *a){

// temporary fix as part of code demo , but the rounding in BN_rshift1

// is not consistant with python/java across positive and negative numbers.

// This function adds one before the shift if a is negative and performs

// BN_rshift1 normally otherwise. e.g this function rounds -127/2 = -63.5

// to -64 (toward -infinity), where as BN_rshift1 would round to -63 (toward 0)

// This is needed in my implementation of jacobi symbol calculation.

//Can’t simply negate result , as we still want 127/2 = 63.

BIGNUM *zero= BN_new ();

BIGNUM *one= BN_new ();

BN_zero(zero);

BN_one(one);

if (BN_cmp(zero ,a)==1) { //a < 0

BN_sub(r,a,one);

BN_rshift1(r,r);

}

else{

BN_rshift1(r,a);

}

BN_free(zero);

BN_free(one);

}

BIGNUM * BN_lucas_sequence(BIGNUM *d, BIGNUM *k, BIGNUM *n){

// computes the Lucas sequence U_k modulo n, where d = p^2 -4q

BN_CTX *ctx = BN_CTX_new ();

BIGNUM *kp1 = BN_new ();

BIGNUM *u = BN_new ();

BIGNUM *v = BN_new ();

BIGNUM *u2 = BN_new ();

BIGNUM *v2 = BN_new ();

BIGNUM *r= BN_new ();

BIGNUM *zero= BN_new ();

BIGNUM *one= BN_new ();

BN_add(kp1 ,k,BN_value_one ());

BN_zero(zero);

BN_one(one);

BN_one(u);

BN_one(v);

size_t k_bits = BN_num_bits(kp1) -1;

for (size_t i = k_bits -1; i != (size_t) -1; --i) {

BN_mod_mul(u2,u,v,n,ctx);

BN_mod_sqr(r,u,n,ctx); //r = u^2 mod n

BN_mod_mul(r,r,d,n,ctx); // r = r *d = u^2 *d (mod n)

BN_mod_sqr(v2,v,n,ctx); //v2 = v^2 mod n

BN_mod_add(v2,v2,r,n,ctx); // v2 = v2 + r = v^2 + (u^2*d) (mod n)

if (BN_is_odd(v2)) {

BN_sub(v2,v2 ,n);// v2 = v2 - n

}

BN_rshift1_round(v2,v2);

BN_copy(u,u2);

BN_copy(v,v2);

if (BN_is_bit_set(k,i)) {

BN_nnmod(r,v,n,ctx); //r= v mod

BN_add(u2,u,r); // u2 = u + v mod n

if (BN_is_odd(u2)) {
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BN_sub(u2,u2 ,n);

}

BN_rshift1_round(u2,u2);

BN_mod_mul(r,d,u,n,ctx); // r = d*u mod n

BN_add(v2,v,r); // v2 = r + v = v + d*u mod n

if (BN_is_odd(v2)) {

BN_sub(v2,v2 ,n);

}

BN_rshift1_round(v2,v2);

BN_copy(u,u2);

BN_copy(v,v2);

}

}

BN_CTX_free(ctx);

BN_free(kp1);

BN_free(v);

BN_free(u2);

BN_free(v2);

BN_free(r);

BN_free(zero);

BN_free(one);

return u;

}

BIGNUM * BN_is_perfect_square(BIGNUM * C){

//https :// nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS .186 -4. pdf sec C.4

// checks if C is a perfect square. If so , function returns X where C = X^2

// else function returns 0

BIGNUM *one= BN_new ();

BIGNUM *zero= BN_new ();

BIGNUM *ret= BN_new ();

BN_one(one);

BN_zero(zero);

if (BN_cmp(one ,C)==1) {

printf("is_perfect_square requires C >=1 \n");

BN_free(one);

return zero;

}

if (BN_cmp(one ,C)==0) {

BN_free(zero);

return one;

}

BN_CTX *ctx = BN_CTX_new ();

BIGNUM *B = BN_new ();

BIGNUM *X = BN_new ();

BIGNUM *r = BN_new ();

BIGNUM *s = BN_new ();

BIGNUM *X2 = BN_new ();

BIGNUM *two= BN_new ();

size_t c_bits = BN_num_bits(C);

size_t m = (c_bits +1)/2;

BN_set_word(two , 2);

BN_set_bit(B,m);

BN_add(B,B,C);

BN_set_bit(X,m);

BN_sub(X,X,one);

BN_mul(X2,X,X,ctx);

for (;;) {

BN_add(r,X2,C);
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BN_mul(s,X,two ,ctx);

BN_div(X,NULL ,r,s,ctx);

BN_mul(X2,X,X,ctx);

if (BN_cmp(B,X2)==1) {

break;

}

}

if (BN_cmp(X2,C)==0) {

ret = X;

goto free;

}

else {

ret = zero;

goto free;

}

free:

BN_CTX_free(ctx);

BN_free(B);

BN_free(r);

BN_free(s);

BN_free(X2);

BN_free(one);

BN_free(two);

BN_free(zero);

return ret;

}

static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,

const BIGNUM *a1_odd , int k, BN_CTX *ctx ,

BN_MONT_CTX *mont)

{

if (! BN_mod_exp_mont(w, w, a1_odd , a, ctx , mont)) /* w := w^a1_odd mod a */

return -1;

if (BN_is_one(w))

return 0; /* probably prime */

if (BN_cmp(w, a1) == 0)

return 0; /* w == -1 (mod a), ’a’ is probably prime */

while (--k) {

if (! BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */

return -1;

if (BN_is_one(w))

return 1; /* ’a’ is composite , otherwise a previous ’w’

* would have been == -1 (mod ’a’) */

if (BN_cmp(w, a1) == 0)

return 0; /* w == -1 (mod a), ’a’ is probably prime */

}

/*

* If we get here , ’w’ is the (a-1)/2-th power of the original ’w’, and

* it is neither -1 nor +1 -- so ’a’ cannot be prime

*/

bn_check_top(w);

return 1;

}
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