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2 Abstract 

Abstract 

Problem Statement: Predictive Analytics (PA) may effectively support semiconductor 

industry (SI) companies in order to manage the special challenges in SI value chains. To 

discover the implications of PA, the realistic benefits as well as its limitations of its 

application to semiconductor manufacturing, it is necessary to assess in which ways the 

application of PA affects the production system (PS) performances. However, based on the 

literature survey, the influences of PA on the various performance characteristics of an SI PS 

are not as clear as expected for the efficiently operative application. Besides, the existing 

performance models are not effective to predict the impacts of PA on the SI PS 

performances. Therefore, the overall aim of this thesis is to analyse and evaluate the 

impacts of PA on the SI PS performances and to identify under which conditions a PA 

application would generate the most significant performance improvements. The focus of this 

thesis is predictive maintenance (PdM). 

Research Methodology: Based on a post-positivist philosophy, the thesis applies a 

deductive research approach using mixed-methods for data collection. The research design 

has the following stages: (1) theory, (2) hypothesis, (3) state of research, (4) case study and 

(5) verification.

Main Achievements: (1) The systematic literature review is carried out to identify the gaps 

of the existing research and based on these findings, a conceptual framework is proposed 

and developed. (2) The existing performance models are analysed and evaluated against 

their applicability to this study. (3) A causal loop model for SI PS is generated based on the 

assessment of experts with industrial engineering and equipment maintenance expertise. (4) 

An expert system is developed and evaluated in order to investigate transitive and 

contradictory effects of PdM on SI PS performances. (5) A simulation model is developed 

and validated for investigating the strengths and limitations of PdM regarding SI PS 

performances under different circumstances.  

Results: The results of the logical inference study show that PdM has 34 positive effects as 

well as 4 contradictory effects on SI PS performance characteristics. Based on the various 

simulation experiments, it has been found that (1) ’Mean Time to Repair’ decreases only if 

PdM supports proportionate reduction of failures and repair times. (2) Logistics performance 

improves only if the underlying workcenter is limited in capacity or the four partners are non-

synchronous. (3) PdM supports optimal cost decreases for workcenters where the degree of 

exhausting wear limits can be most effectively improved and (4) the degree of yield 

improvement gained by PdM is dependent on the operation scrap rate. However, (5) if a 

workcenter has overcapacity, PdM will potentially worsen PS performances, even if the 

particular workcenter performance can be improved. These new insights advance existing 

knowledge in production managements when adopting predictive technologies at SI PS in 

order to improve PS performances. The findings above enable SI practitioners to justify a 
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PdM investment and to select suitable workcenters in order to improve SI PS performances 

by applying the proposed PdM.  

Contributions: The main contributions of this PhD project can be divided into practical 

application and theoretical work.  

The contributions from the theoretical perspective are: 

1) The critical review and evaluation of the state of the research for PA in the context of

semiconductor manufacturing and the models for predicting and evaluating SI PS

performances.

2) A new framework for investigating the implications of PA on the challenges such as

gaining high utilizations and controlling the variability in production processes in SI

value chains.

3) The new knowledge about transitive and contradictory effects of PdM on SI PS

performances, which indicates that PdM can be used to improve PS performances

beyond a single machine.

4) The new knowledge about strengths and limitations of PdM in order to improve SI

PS performances under particular circumstances.

The contributions from the practical application perspective are: 

1) A practical method for identifying workcenters where PdM delivers the most

significant benefits for SI PS performances.

2) An expert system that provides a comprehensive knowledge base about causes and

effects within SI PS in order to justify a PdM investment.

3) A concise review of important PA applications, their capabilities for the wafer

fabrication and the most suited PA methods. These findings can be adopted by SI

practitioners.

Limitations: Due to the resource and time constraints of this PhD project, this thesis is only 

focused on PdM, though the proposed framework, tools and method are generic and valid 

for other PA applications as well. In addition, the thesis concentrates on the frontend part of 

the SI value chain. 
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Chapter 1  Introduction 

1.1 Project Background 

The semiconductor industry (SI) provides important and indispensable 

components for current applications in all areas of life and business. These 

applications include but are not limited to automotive (e.g., distance radars in 

cars), communications (e.g., GPS chips), industrial applications (e.g., 

embedded systems in production equipment) as well as consumer 

electronics (e.g., modems for smart phones). The growing importance of 

semiconductor devices is also reflected by the economic profit of the whole 

industry: SI generated $97 billion in economic profit in 2017, which is more 

than a threefold increase compared to 2013 (Jong and Srivastava, 2019).  

Because the design and fabrication of semiconductor devices is a high-

technology process, the customer businesses are diverse, and the market is 

volatile, SI value chains face special challenges compared to other 

industries. These challenges can be summarized as follows: 

1) SI distributes various types of products to customers that can be

categorized, for instance, as memory, micro-component, and

optoelectronic devices. In addition, each category contains multiple

sub-types that may differ significantly in production and application,

e.g. light-emitting diodes versus lasers, which are both categorized as

optoelectronics but serve disjoint applications. 

2) The industry consists of several types of business models such as

integrated device manufacturer, foundry and IP licensing. In addition,

an SI company is not limited to only one business model and may

operate with different models simultaneously.

3) To manufacture a finished good in SI, a chip usually runs through the

‘frontend’ and the ‘backend’ stage of the value chain. This process

typically involves multiple sites and countries across the globe. For

instance, global market leader Intel (2011) operates most of its

‘frontend’ facilities from USA, whereas most of the ‘backend’ facilities

are located in Asia – and none of them in USA.
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4) SI belongs to the most research- and development (RnD)-intensive 

industries in the world with industry-wide investment rates ranging 

between 15 and 20 % of sales. Due to comparatively short product 

lifecycles and continuous product and process improvements, it is 

required to integrate RnD tasks into the primary value chain in order to 

reduce time-to-market and improve product yields. This type of 

organization is reflected, for instance, by Alam et al. (2020). Designing 

and managing a production system (PS) that is both enough flexible to 

serve RnD requirements and sufficiently stable to run a mass 

production is a challenging conflict of goals.  

5) Especially the manufacturing parts of the SI value chain face various 

challenges, which can be categorized by product management, data 

and IT, engineering, and others. Typical challenges are the variability 

in production processes, unpredictable product differentiations and 

high testing efforts. However, the largest number of challenges is 

associated to logistics. Such challenges include the importance of 

capacity, the inverted bill of materials and the conflict of goals between 

short runs and high utilization.  

Since SI produces masses of data during the manufacturing process (e.g. 

equipment telemetric data, process data, and wafer probing), it can be 

assumed that data-driven approaches may support managers and engineers 

to overcome these challenges. In fact, a growing attention on predictive 

analytics (PA) can be found in SI and particularly in semiconductor 

manufacturing. This increasing importance correlates to other trends in 

manufacturing such as ‘smart factory’, the German ‘Industry 4.0’ and ‘cyber 

physical production system’. However, the most important drivers might be 

the rapidly increased technical capabilities of both to store and process the 

masses of data, which is usually summarized as ‘Big Data’.  

To approach the question in which way PA may help to overcome the 

mentioned challenges, and subsequently, generate benefits for a company, 

an appropriate perspective must be identified. The thesis identified three 

perspectives: (1) PA in general, (2) single PA methods, and (3) particular PA 

applications. Since PA is not commonly defined in literature and its methods 

and possible applications are extensive, it is not seen as realistic that any 
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benefit could be calculated on this high level. The second perspective would 

evaluate benefits of single predictive techniques such as artificial neural 

networks and support vector machines. However, the review of previous 

studies indicates that one does not start a PA project by selecting a 

technique, but the PA project selects an appropriate technique in a later 

stage based on its validated prediction score. The source data, the type of 

data preparation and the actual prediction goal can influence the score. A 

general benefit cannot be stated for a PA technique, because it is not 

determinable whether it can be applied at all without knowing the actual 

environment and goal. Hence, it is not seen as reasonable to evaluate 

benefits for a technique by itself. Instead, it is proposed to focus on the third 

perspective: PA applications that are crucial for SI value chains in order to 

discover which process improvements they would generate, which specific 

challenges they would master and which types of benefits would arise. To 

narrow down the scope of this thesis, only the wafer fabrication (also called 

‘frontend’) part of the SI value chain is considered and possible benefits that 

are generated with regards to the PS performance by introducing a selected 

PA application to a frontend facility are evaluated. However, the literature 

review indicates an inconsistent use of ‘performance’ and related terms. 

Therefore, this thesis considers PS performance to be evaluated from four 

perspectives: (1) logistics, (2) quality, (3) engineering, and (4) maintenance. 

These perspectives are related to the manufacturing-related challenges in SI 

value chains that could be mastered by PA as proposed by the conceptual 

framework in Chapter 2. It is implied that the actual value of PS key 

performance indictors (KPIs) reflect the ability of a SI company to master 

particular challenges in SI value chains. If PA is capable of improving a KPI 

(e.g. equipment utilization), it is concluded that PA supports to overcome the 

underlying challenge (e.g., high utilization is required due to cost-intensive 

equipment).  

From the literature review, the following PA applications are found to be 

relevant for SI frontend PS: (1) predictive maintenance (PdM), (2) smart 

manufacturing, (3) predictive process control, (4) predictive quality, and (5) 

predictive dispatching and scheduling. Some of these applications show 

overlapping goals. For instance, PdM aims to predict machine faults, which is 



 
 
also a goal of ‘fault prediction’ that belongs to process control. Possible 

demarcations will be discussed and proposed in Section 2.5 in order to 

sharpen the definition of each application. Apart from single overlaps, the 

applications and associated goals differ significantly. In addition, each of 

these applications refers to a different group of experts such as industrial 

engineers, process engineers or quality engineers. In order to evaluate 

benefits of PA applications, each group of stakeholders must be interviewed 

to collect, analyse and evaluate the logical dependencies within the PS. 

Limitations in time and resource cause that no such method can be 

developed as part of a doctoral thesis that considers all perspectives in order 

to evaluate all types of benefits simultaneously. Hence, it is proposed to 

focus only on one selected PA application to demonstrate the new approach. 

Further research can be conducted beyond the thesis to extend this 

approach by adding further expert perspectives and PA applications. By 

analysing SI-related articles that are employed with these applications, PdM 

appears to be the most important solution at this time. Further increase is 

forecasted in the global PdM market beyond SI over the next years, which 

underpins that the importance of this application is still growing. Based on 

this finding, PdM is selected as PA application under study.  

To prove the importance and originality of this project, various articles were 

reviewed and existing frameworks that are employed with benefits of PA 

were analysed and evaluated. It turned out, that none of the proposed 

frameworks is suited to this research project. For instance, the majority of 

literature is not focussed on SI, and therefore, the industry-specific 

challenges are not considered. In addition, existing and published SI-related 

performance models are found to be not capable of supporting the aim of this 

thesis. These findings indicate a gap in the literature that is addressed by this 

thesis. 
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1.2 Motivation  

Observations in real semiconductor companies suggest that many benefit 

estimations for IT investments in the manufacturing area are not based on 

realistic calculations, since the underlying environment – the present PS – is 
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usually neither analysed nor evaluated in an objective way that includes 

transitive or dynamic effects. Especially for data-centric solutions, it is difficult 

to calculate a realistic benefit. The substitution of a human by a robot can be 

evaluated based on comprehensible facts, e.g., the increased number of 

handling activities per hour, the increased accuracy, and therefore, reduced 

handling errors and increased yield. By adding monetary characteristics such 

as the increased chip output that improves the revenue, the profitability of a 

robot can be proved. Data-centric solutions such as data quality tools or PA 

applications, however, cannot be evaluated in an equivalent way – at least in 

the area of semiconductor manufacturing. Technology companies such as 

Facebook, Google and Amazon demonstrate that their market value is 

directly related to the value of their data and how they use this data. Data can 

create new data that may lead to new business opportunities and also 

advanced ways to use the data (Press, 2018). By contrast, the market value 

of semiconductor companies is strongly related to their intellectual property 

for chip design or advanced manufacturing technologies (see 2.2). 

Admittedly, data is crucial to understand failure patterns and to improve 

product yields. Masses of data are produced during the manufacturing 

process that can be used to analyse deviations in single process steps. 

However, it is not clear to state in which way a semiconductor company 

would gain profit, if the data quality would improve or PA applications would 

be applied. Typical issues are that the potential positive effects of such data-

centric solutions are either delayed or appear at other positions in the value 

chain. The knowledge about these effects is important, because the 

implementation of a predictive solution requires considerable expenses such 

as human efforts and technology investments (see 5.2.4). For instance, it is 

assumed in literature that PdM is able to reduce unscheduled downtimes of a 

machine. The development of a machine-specific PdM solution is expensive, 

even for particular components of the machine. This leads to the question: 

which benefits are created when the unscheduled downtime of this particular 

machine is reduced and are the required efforts justified?  

The motivation for this research is, therefore, to find a way to analyse and 

evaluate the implications of PA under consideration of time and transitive 

effects. To narrow down the bandwidth of transitivity, it shall be discovered in 
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which way PA improves the PS performance in SI. These new insights will 

gain transparency for future PA technology investments in the SI 

manufacturing area.  

1.3 Research Questions, Overall Aim and Objectives 

As suggested by the previous section, the aim of this research is to analyse 

and evaluate the impacts of predictive analytics on the production system 

performance in SI. The conceptual framework for this thesis presents 

different types of PA applications that are relevant to SI manufacturing and 

that could be applied to overcome specific challenges in SI value chains (see 

2.6). Each of those applications has different majors and goals, and hence, 

requires a different setup in terms of source data, business processes, IT 

systems and participating business experts. Due to this heterogeneity in 

setups and goals, it is believed that an objective and reliable evaluation 

cannot consider all types of PA applications at once. In addition, the efforts 

for collection and evaluation of primary data for all types of PA applications 

would exceed the capacity of a doctoral thesis. Therefore, this thesis selects 

one particular PA application in order to discover its various benefits and 

other effects regarding production performance. Based on the results of the 

literature review (see Chapter 2), the thesis selects PdM as focus application. 

The growing and present number of articles concerned with PdM in SI 

indicates an overriding relevance of this application. In addition, other PA 

applications show noteworthy overlaps with the setup of PdM. Therefore, it is 

expected that downstream projects can adopt and extend the tools and 

methodology developed by this thesis to examine further PA applications. 

This research intends to find a method that is capable of analysing and 

evaluating benefits for PS performance when applying PdM. Possibly, 

performance models exist that can be applied to this study. For this purpose, 

research articles must be reviewed that are employed with performance 

models in SI manufacturing. This assumption leads to the first research 

question (RQ): 

1) What is the current state in research on simulating and evaluating the 

production system performance in SI? 



 

 
As discussed in 1.2, it is supposed that benefits of PA applications are not 

limited to the object that is under predictive study, e.g., a particular machine. 

The thesis aims to identify the transitive effects of PdM on the SI PS 

performance. Prior to discover transitive effects, the performance-critical 

characteristics of an SI PS must be identified. Then, the direct influences and 

causal dependencies between these characteristics and PdM must be 

identified. The underlying RQ is: 

2) Which are the performance-critical characteristics of an SI PS, how 

are they causally related, and how are they affected by application of 

PdM?  
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Once the direct effects are captured and modelled, the transitive effects of 

PdM on the SI PS can be discovered. It is believed that transitive influences 

between model elements are not only straight positive or negative but also 

contradictory in some situations. To confirm this hypothesis qualitatively 

through logical inference, the thesis will develop and propose a knowledge-

based system, which is called production performance expert system 

(PPES). The PPES shall be adoptable by researchers and managers in the 

area of SI manufacturing to discover the direct and transitive impacts of PdM 

on SI PS. The according RQ is:  

3) Can a knowledge-based system be developed to compute the 

transitive or even contradictory impacts of PdM on SI PS performance 

qualitatively? 

Another hypothesis in this research is that the actual impacts of PdM on the 

SI PS performance are not static but dependent on particular workcenters, 

operations, and the product line itself. Furthermore, it is assumed that there 

are scenarios where PdM would even decrease the overall PS performance. 

To confirm this hypothesis quantitatively, a model for dynamic simulation of 

SI PS behaviours will be developed. It shall be configurable to execute 

simulations under consideration of different workcenters, operations and 

production line characteristics. The results will be used to confirm (or reject) 

that the impacts of PdM on the SI PS performance differ and may also be 

negative. In addition, the model can be applied to real SI companies to 



 
 
identify workcenters that increase the SI PS performance at most when 

applying PdM. These activities are addressed by the final RQ: 

4) Can a simulation model be developed to quantify the impacts of PdM 

on SI PS performance over time under consideration of particular 

workcenters, operations and production line characteristics? 
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The overall aim is to prove the benefits (and disadvantages) of PA in the 

context of SI PS performance qualitatively and to identify parts of the SI PS 

where a PA application would generate the most significant performance 

improvements. As discussed in 1.1, the approach to achieve this overall aim 

will be demonstrated by PdM as selected PA application.  

To achieve this overall aim, the following research objectives (ROs) are set 

out:  

1) To review and evaluate existing models for simulating and evaluating 

the PS performance in SI. 

2) To identify and analyse performance-critical characteristics of an SI 

PS and in which way they are causally dependent and affected by 

application of PdM. 

3) To propose, design, develop, and validate an expert system for SIPSs 

in order to compute the transitive or contradictory impacts of PdM on 

SI PS performance qualitatively. 

4) To propose, design, develop, and validate a dynamic simulation model 

for quantitative analysis and evaluation of the impacts of PdM on 

SIPSs over time under consideration of particular workcenters, 

operations, and production line characteristics.  

1.4 Contributions to the New Knowledge Generation  

This research will advance existing knowledge in production management 

when adopting predictive technologies at SI PS. Since the research project is 

strongly related to practical issues in SI, its contributions can be divided into 

practical application and theoretical work. The main contributions from 

theoretical perspective will be as follows:  



 

 
1) The thesis will contribute the reviewed state of research for PMs in SI 

including a classification and evaluation of existing PMs, which will 

support other researchers in similar projects. 

2) The thesis will identify and review current research activities in the 

area of PA and especially in context of semiconductor manufacturing. 

The detected findings will include inconsistencies and gaps in 

literature beyond the scope of this thesis. Other projects may build up 

on these findings to conduct further research.  

3) The thesis will propose a new framework that discovers in which way 

PA may be applied in order to overcome challenges in SI value 

chains. This framework can be adopted by other research projects in 

the area of PA and SI.  

4) The thesis will identify, analyse and evaluate direct, transitive and 

even contradictory effects that may occur when PdM is applied to SI 

PS based on expert assessment and logical inference. In addition, the 

underlying expert system can be extended to further PA applications, 

which supports further research in this area.  

5) The thesis will identify, analyse and evaluate under which particular 

circumstances PdM may generate the most significant performance 

benefits to SI PS logistics and when it would even decrease the 

performance.  
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Based on these contributions, researchers will be able to conduct further 

studies to understand the transitive and contradictory impacts as well as 

environment-specific dynamic effects of PA on SI PS performance. From 

practical perspective, the main contributions will be as follows: 

1) The thesis will propose a new method to identify workcenters where 

PdM would gain the most significant benefits for SI PS performance. 

This method supports production managers and engineers to prioritize 

and select appropriate workcenters at their facilities that justify the 

required efforts of implementing a PdM solution.  

2) The thesis will provide an expert system that can be queried in order 

to retrieve logical dependencies between SI PS participants. This 

comprehensive knowledgebase was not existing prior to this study and 

supports production managers and engineers to gain deeper 
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understanding of causes and effects within SI PS, especially when 

adopting PdM. 

3) The thesis will identify and discuss the most relevant PA applications 

and capabilities for SI frontend manufacturing. The findings will 

support IT and production managers in defining PA strategies and 

setting up appropriate PA projects for their company. In addition, PA 

techniques that have been verified in literature to gain most promising 

results for a particular PA application will be highlighted.  

Generally, the tools and the particular results for PdM will support SI 

production managers in adopting predictive technologies to overcome 

logistics challenges in wafer fabrication.  

1.5 Thesis Structure 

The thesis consists of nine chapters that are shown in Figure 1-1.  

 

Figure 1-1: Thesis Structure 
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Following the introduction chapter, Chapter 2 presents the review of literature 

that is related to this thesis. The areas of literature are divided into SI, PA in 

general, PA methods and PA applications that are relevant to semiconductor 

manufacturing. The chapter concludes with a conceptual framework, which 

underpins the hypotheses and research questions.  

The research methodology and design for the thesis are presented in 

Chapter 3. It starts with the discussion and definition of an appropriate 

research methodology for this project, which includes among others the 

research philosophy, research approach and techniques for data collection. 

Hereafter, specific research methods and software tools are presented that 

are applied to this thesis in order to analyse data and to develop an expert 

system and a dynamic simulation model. The chapter finally presents a 

research design for this thesis and discusses ethical issues.  

Chapter 4 introduces crucial terms and formulas to evaluate SI PS 

performance and presents the review of existing PMs in SI. At first, the term 

‘production system’ is narrowed down and particularly defined for this project. 

After that, the evaluation of PS performance is discussed and defined for this 

thesis followed by the presentation of relevant KPIs of SI PS. Finally, the 

chapter reviews published PMs that are capable of predicting the 

development of KPIs in SI PS to verify if any of them could be applied to this 

study. The result of this verification solves RO 1.  

The case study for primary data collection is conducted at a real SI company 

and is discussed in Chapter 5. The chapter introduces the case study 

company and the aims of the data collection. Then, the preparation of the 

data collection is discussed followed by the actual data collection. In addition, 

secondary data regarding the manufacturing process and data from IT 

systems is presented. 

Chapter 6 presents the analysis and evaluation of the raw data that was 

gathered through the case study. At first, it presents the analysis and 

evaluation of the industrial engineering (IE)-specific data followed by the 

equipment maintenance (EM) specific data. Then, the expectations regarding 

PdM from both groups of experts are analysed and assessed. Finally, the 

EM- and IE-specific results are consolidated into a common causal loop 
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model (CLM) and the direct logical relationships are evaluated in order to 

solve RO 2.  

The development and evaluation of the knowledge-based PPES in order to 

solve RO 3 is discussed in Chapter 7. After defining the scope and 

boundaries of the expert system, the term transformation into ontology 

concepts is discussed. Hereafter, a class hierarchy is developed for the 

ontology followed by the object properties that associate various concepts. 

To finalize the PPES development, the formulation of first-order logical rules 

is presented. The chapter concludes with an analysis and evaluation of the 

PPES, which includes the implication of new knowledge.  

In Chapter 8, the development and evaluation of a dynamic simulation model 

is presented in order to solve RO 4. The chapter begins with the proposition 

of a method to apply the model to a practical use case. Then, the scope and 

considerations of the simulation model are presented followed by the 

discussion about transforming terms into System Dynamics (SD) variables. 

Afterwards, the development of the model is presented that consists of 

multiple sub-models and a specific user interface. To verify the model, 

various test cases are applied and discussed in a further section. Finally, the 

chapter presents the new knowledge that was gained from experiments 

based on the simulation model.  

Finally, Chapter 9 will conclude the thesis by presenting the main 

achievements and the contributions to the new knowledge generation. It 

further discusses the limitations of this thesis and proposes further work that 

can build on this project.  
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Chapter 2 Literature Review 

2.1 Introduction 

This chapter firstly presents the literature review in the following areas:  

 SI and optoelectronics in particular 

 Definition and overview of predictive analytics  

 Methods for predictive analytics  

 Predictive analytics applications in semiconductor manufacturing 

Based on the review, a conceptual framework will be proposed. 

2.2 The Semiconductor Industry 

2.2.1 History and Industry Overview 

The event and point in time when the history of SI begins is not clearly 

defined in literature. A comprehensive study from Łukasiak and Jakubowski 

(2010) pointed out that the semiconductor history goes back to the first 

observation of a semiconductor effect in 1833 by Michael Faraday. Hitachi 

(2015) declared the invention of the rectifier, which is an AC-DC converter, in 

1874 as the earliest historical event. According to Tel (2018), the 

development of SI began in 1904 with the invention of the two-electrode 

vacuum tube rectifier. Ward (2014) located the beginning of semiconductor 

history in 1906 when a patent was granted for the construction and operation 

of the ‘cat whisker’ crystal detector. More specifically, Malerba (1985) 

suggested that the SI was initiated in 1947 as Bell Laboratories had 

discovered the transistor. This historical inaccuracy in literature must be 

refined. For this purpose, it is suggested to differentiate the historical 

perspective between the semiconductor technology itself, semiconductor-

based applications, as well as the industrial development of the 

semiconductor market that is established today.  

 The technological history includes all inventions that build on each 

other to make use of the semiconductor capabilities. Based on 

Faraday’s experiments, this may include the revelation of the 
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photovoltaic effect in 1839, the discovery of the photoconductivity in 

1879, and others (Łukasiak and Jakubowski, 2010). 

 The beginning of the application-oriented history correlates to the 

invention of crystal detectors. According to the Computer History 

Museum (2016a), the first patent for a point-contact semiconductor 

rectifier for detecting radio signals was granted to Jagadish Chandra 

Bose in 1901. However, it was emphasized that the ‘cat whisker’ 

crystal detector from 1906 was the first product based on 

semiconductor technology that gained economic profit.  

 As for the industrial history, Loeffler (2019) and Gargini (2017) 

agreed that it started with the foundation of the Shockley 

Semiconductor Laboratory in 1955. Several employees of this 

company later founded their own successful SI companies such as 

Fairchild, Intel and AMD (Computer History Museum, 2016b).  

Since the 1970s, the semiconductor unit shipment has continued to grow 

almost year-on-year as shown in Figure 2-1 (Matas, 2019).The number of 

units includes integrated circuits and optoelectronics, sensors, and discrete 

devices. The compound annual growth rate is 9.1% from 1979 until 2018. 

This significant level of growth must be emphasized taking into account the 

volatile market situation that is typical in SI. The largest annual increase in 

unit growth was 34% in 1984, whereas the greatest  decline was 19% in 

2001, as a result of the dot-com bust (Matas, 2019).  

 

Figure 2-1: Semiconductor Unit Growth since 1978 (Matas, 2019, p. 1) 

 



 

 
In addition, from a value-creation perspective, the SI has improved 

significantly over recent years compared to other industries. Particularly in 

2017, SI generated $97 billion in economic profit, which is more than a 

threefold increase compared to 2013 (Jong and Srivastava, 2019).  

There are various business models with different focuses and strengths in SI: 
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 Integrated device manufacturers (IDM) 

 Foundries 

 Fabless Companies 

 Outsourced semiconductor assembly and test (OSAT) 

 Intellectual property (IP) licensing 

 Capital equipment 

 

The first-generation SI companies, such as Intel and AMD, were capable of 

both designing and manufacturing semiconductor devices. These companies 

owned the complete value chain and are called IDM. In the late 1980s, 

another business model was developed with a combination of foundry 

companies and fabless companies. Semiconductor foundries are companies 

that fabricate the designs of other companies, whereas fabless companies 

specialize in the design, and outsource the fabrication of the devices. The 

evolution of this business model has been a driver for the global supply 

networks that are typical in SI. Many foundries were established in Asia, 

whereas many fabless companies were founded in the United States (Saito, 

2009). 

Changing the business model can also be a success factor for traditional 

companies. For example, because of its tense financial situation, AMD 

changed from IDM to fabless and sold its factories, which were then 

reconstituted as a new foundry company (Robertson, 2008). Mixed models 

also exist, where IDMs outsource only parts of the production line or 

dedicated products. Foundry businesses focus on the frontend parts of the SI 

value chain, which includes chip technology. Another business model is 

called OSAT and is concentrated on the backend parts of the SI value chain 

(Naeher et al., 2011). A further type of business model is IP licensing. For an 

annual fee, this model allows companies to use the design of other 
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companies that own the IP of this semiconductor design. A well-known 

licensor in SI is ARM, which owns IP for smartphone and tablet processors 

(McGregor, 2016). Another segment in SI is the manufacturing of capital 

equipment that is required for fabrication of semiconductor devices.  

The value-creation in SI can be divided by business model to reveal further 

insights about profitability. Figure 2-2 shows the results from 2013 to 2017 

based on the data from a McKinsey study (Jong and Srivastava, 2019). It 

clearly shows that IDM companies (including microprocessors and memory) 

dominate the industry by earning 50% of total economic profit. The fabless 

companies followed at the second position with almost half of the profit of 

IDMs. Foundries and capital equipment manufacturers had nearly the same 

profit each as a third of the fabless companies. At a significant distance, IP 

companies reached a profit of $1.8 Billion. OSAT companies had a negative 

result of $-0.6 Billion. 

 

Figure 2-2: Total Economic Profit in SI from 2010 to 2017 by Business Model 
based on data taken from Jong and Srivastava (2019, p. 6) 

 

SI companies operate from all over the world, however, the global sales 

share differ significantly between the regions. In 2017, China owned the 

largest sales share (32%) followed by Asia Pacific (28%) and the Americas 

(22%). Europe and Japan were on a par with 9% sales share each. Overall, 

the global total revenue in 2017 was $ 412.2 Billion (McGrath, 2018). Though 
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the sales increased during 2018, there was a significant sales loss of 12% in 

2019. Factors such as Brexit and American trade wars influenced the global 

economics in a negative way, including the SI. In particular, for the SI, the 

Americas lost the most sales by far (-23.8%). Other regions lost as well, but 

not as much as the Americas: Japan (-10%), Asia Pacific (-9%), China (-

8.7%) and Europe (-7.3%) (Semiconductor Industry Association, 2020). 

Though previous forecasts for 2020 were positive (Gartner as cited in Singer, 

2020; PricewaterhouseCoopers, 2019), Gartner (2020) updated its prognosis 

and expected a revenue decline of 0.9% due to the Covid-19 pandemic. This 

modification indicates the significant economic impact of the pandemic on SI.  

SI provides various products for different customers and applications. 

According to PricewaterhouseCoopers (2019), the products can be 

categorized by:  

 Memory: Semiconductor components such as dynamic random 

access memory, flash memory and solid-state drives.  

 Micro-component: Semiconductor components such as 

microcontrollers, real-time sensors and microprocessors.  

 Logic: Semiconductor components such as application-specific 

integrated circuits and application-specific signal processors.  

 Analog: Semiconductor components such as power supply chips or 

wideband signal devices. 

 Optoelectronic, sensor and discrete components (OSD): 

Semiconductor components such as light-emitting diodes, lasers and 

image sensors. 

 

Despite the tense economic situation in 2020, it can be expected that SI will 

still gain the sales increase that was predicted earlier for those applications 

once the Covid-19 crisis is over. Some of the main drivers for this prospective 

positive trend are the ongoing technological advancements in cloud 

computing, consumer electronics, car safety systems, smart-grid energy or 

internet-of-things, for example. Since it was forecasted that these 

applications would also increase their demands and sales volumes over the 

following years (PricewaterhouseCoopers, 2019), SI as a technology supplier 

is likely to benefit from these trends. It is not evident from recent articles that 
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these mid-term trends caused by the Covid-19 pandemic would flatten or 

even decline. On the contrary, the lockdown situations in multiple countries 

have reinforced the importance of digital services such as collaboration and 

conference tools, by which companies such as Microsoft and Zoom could 

gain long-term benefits (Vontobel, 2020). The infrastructure behind these 

services also requires semiconductor devices. In addition, it is believed that 

virtual classrooms, digitalization in public sectors and healthcare and similar 

trends will gain increased attention. This is because neither companies nor 

governments can afford to experience the negative impacts from these 

lockdowns again in future. They have to foster the transfer of traditional 

processes towards time- and location-independent processes that are 

supported by digital services. Overall, SI could take advantage of the current 

economic crisis with a long-term view due to the changing digital 

requirements and opportunities in multiple national societies.  

2.2.2 Optoelectronic Industry 

In this thesis, the method for primary data collection is the case study. The 

selected company for the case study is in the optoelectronic segment of SI. 

Therefore, the background and market for optoelectronic devices is 

discussed in more detail within this sub-section. Optoelectronic devices can 

be light-emitting or light-absorbing. As well as being products that produce 

visible light, optoelectronic devices can also generate infrared or ultraviolet 

light that is not visible to the human eye. Table 2-1 lists the types of 

optoelectronic products and their present applications based on Fox (2019).  

The global long-term sales forecasts for optoelectronic components are 

generally optimistic. However, not all product types show the same positive 

trend. A particular forecast compares data from 2018 with predicted values 

for 2024 (Fox, 2019, p. 17). It suggests that the market will only grow 

considerably for LEDs (+2.4%) and isolation products (+3.4%). Based on the 

detailed data, the market development for optical switches is expected to 

decrease by 0.3% whereas the revenue for LED displays will stagnate. 

Infrared components will increase their revenue by at least 0.8% according to 

the prediction. IC Insights (2020) pointed out that the sales of optoelectronics 
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in 2020 are expected to decrease by 6% compared to 2019 due to the Covid-

19 pandemic. However, they predict a sales increase of 10% for 2021 and a 

further growth over the next 5 years. This trend is driven by applications such 

as CMOS image sensors for embedded cameras, automotive safety and 3D 

imaging.  

Table 2-1: Optoelectronic Product Types and Economic Trends based 
on Fox (2019, pp. 21–119). 

Product Type Present Applications 

Visible Light-Emitting Diodes  General lightning and signage 

(LED)  Automotive exterior and interior  

 Consumer electrics, e.g., mobile handsets 

 Horticulture  

Isolation  Automotive, e.g., optocouplers for vehicles  

 Telecommunications, e.g., smartphone chargers 

 Computer and office equipment, e.g., power supplies 

 Special products for military and aerospace 

 Industrial, medical and security, e.g., motor drives 

Infrared  Biometrics, e.g., 3D face recognition and iris scan 

Optical Switches  Automotive, e.g., rain sensors 

 Computer and office equipment, e.g., detection of 

paper presence in printers 

 Industrial, e.g., automatic assembly  

LED displays  Application in several sectors such as industrial, 

medicine, military and aerospace 

Ultraviolet LEDs  Nail polish curing 

 Banknote counterfeit 

 Horticulture lighting 

 Tanning 

 Health care equipment 

 Disinfection for water, air, food, textile 

 Surface sterilization 

 Water and air purification 

 

Figure 2-3 illustrates the companies that fabricate optoelectronic devices and 

their global market share based on data from Fox (2019). The market leaders 

are Nichia and OSRAM Opto Semiconductors followed by Lumileds, Seoul 

Semiconductor and MLS.  
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Figure 2-3: Global Market Share Estimates for 2018 by Company based on 
Data taken from Fox (2019 p. 20) 

 

The global market can be divided by the most important customer regions for 

optoelectronic components. Greater China owns 50% of the market share, 

followed by the rest of Asia Pacific (15%), Western Europe and Japan (both 

11%) and North America (9%). The remaining portion is shared by Eastern 

Europe, South America, Middle East and Africa (Fox, 2019, p. 19). The 

comparison shows that China and Asia Pacific lead the optoelectronic market 

even more than the rest of SI. From recent articles, it is not evident that the 

Covid-19 pandemic would have any perceptible impact on this distribution.  

2.2.3 Semiconductor Value Chain 

The design and fabrication of semiconductor components is a high-

technology process. The components fulfil critical functions within their target 

applications and the customer businesses are very diverse as discussed 

earlier in this section. Even IDMs operate factories in different global regions 

depending on the process requirements that a factory must fulfil. Global SI 

leader, Intel (2011), separated its facilities by ‘wafer fabs’ and ‘assembly and 

test’. Wafer fabs are responsible for the chip fabrication and testing on wafer 

level. This stage in the manufacturing process is also called ‘frontend’. Once 

the chip circuits meet the specifications as designed, the finished wafers are 

sent to an assembly facility. At this stage, wafers are cut and separated into 
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microprocessors. Each single chip – also called ‘die’ – is assembled into a 

package for protection, critical power and electrical connection. After a final 

test of each package, the finished devices are distributed to customers. All 

process steps between frontend and distribution are also known as 

‘backend’. The report indicates that the majority of Intel’s wafer fabrication 

facilities are based in the USA, whereas most of the assembly and test 

facilities are located in Asia, and none of them is located in the USA. This 

constellation leads to a globally distributed but geographically concentrated 

value chain. A report from Alam et al. (2020) pointed out that this type of 

global value chain is typical in SI. The report puts the number of countries 

that are participating per stage in the industry-wide value chain as: chip 

design (12 countries), wafer fabrication (39 countries), assembly and test (25 

countries). In addition, the semiconductor device manufacturing process 

requires a variety of raw materials. A selected but unnamed US-based SI 

company has over 16,000 suppliers worldwide (Nathan Associates Inc., 

2016). All of these characteristics lead to a complex supply and production 

network in SI.  

A report from Deloitte (2020) discussed the long-term implications of Covid-

19 on SI value chains. It highlighted the risks of cost-driven geographical 

concentration, which led to single points of failures within the global value 

chain during the pandemic. To overcome this risk, the authors suggested 

going away from this type of model towards a more agile supply network. 

However, the article did not explain fully how a SI company should manage 

such a challenging change. For instance, it is not believed that established 

manufacturing processes can be moved to countries where SI is not present 

so far without losing process efficiency and product quality. The detailed 

configuration of machines and recipes is an iterative, time-consuming and 

cost-intensive process that is required to achieve a sufficient level of maturity. 

In addition, the geographic concentration has produced important labour 

markets from experienced operators to highly skilled engineers. SI 

companies benefit from engineers and managers who change employers and 

contribute with their expertise. It would take several years or even decades 

before a similar labour market could be established in countries that are new 

to SI (Scott, 1987). Without such a regional labour market, the sourcing of 
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necessary experts would become complicated. Further efforts must be 

considered that are required for coordinating an even more complex supply 

network. Therefore, the proposal of Deloitte cannot be agreed as it would 

lead to significant disadvantages to the value chain.  

An established model to visualize and analyse value chains especially for 

manufacturing businesses was proposed by Michael Porter in 1985 (Mozota, 

1998). This model divides company activities into primary and support. 

However, this model shows a number of limitations when applying it to SI:  

1. The primary activities are organised as a linear sequence. Because 

products can be manufactured internally as well as externally (at 

foundries and OSATs), inbound and outbound logistics must be 

triggered multiple times in different orders for various products. 

Porter’s model does not consider this type of flexibility in logistics.  

2. Products that are more complex do not have one particular origin of 

manufacturing, but can root in multiple independent value chains. For 

instance, there are products that have already passed the backend 

stage only to be sent again to the frontend for advanced processing 

(e.g. LED panels). Porter’s value chain model is not able to address 

such a constellation.  

3. SI is highly dependent on RnD of products and processes. 

Observations in real SI companies show that RnD activities are 

strongly integrated with manufacturing activities. This integration is 

necessary in order to be responsive in the case of process deviations 

or to decrease the time to market for new products, which is a crucial 

success factor due to short product lifecycles (see 2.2.4). According to 

Porter’s model, RnD activities would be classified as ‘support’, 

whereas in reality RnD is part of the primary SI value chain. This 

objection is also reflected by SI value chain models from 

PricewaterhouseCoopers (2019), Alam et al. (2020) and Nathan 

Associates Inc. (2016). 

Since Porter’s model does not fit SI, a different model is proposed for this 

thesis to visualize the SI value chain. Figure 2-4 is inspired by Nathan 

Associates Inc. (2016, p. 4) and puts the key characteristics together into a 

value-chain-directed SI ecosystem. Support activities such as infrastructure 
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and human resource management are excluded because they are not 

relevant to this thesis.  

 

 

Figure 2-4: Value-chain directed SI Ecosystem inspired by Nathan 
Associates Inc. (2016, p. 4) 

 

Prior to the manufacturing of semiconductor devices, semiconductor 

companies conduct RnD to drive process innovations. Nathan Associates 

Inc. (2016) pointed out that SI belongs to the most research- and 

development-intensive industries in the world with industry-wide investment 

rates ranging between 15 and 20 % of sales. At the design stage, new 

products and specifications to meet customer needs are developed. The 

outcomes of the research and development stage are the key input to the 

design stage. Moreover, the design stage can be supported by, or even 

depend on, IP companies for design licensing or electronic design 

automation companies that provide specific design services. The designed 

chips are handed over to the wafer fabrication stage followed by the 

assembly and test stage.  Both stages interact with external partners to 

obtain raw materials and capital equipment that provide specialised tools for 

the manufacturing requirements. As discussed in 2.2.1, the wafer fabrication 

can be outsourced to foundries and the assembly and test can be outsourced 

to OSATs. For special products, it may be necessary to send chips that have 

passed the assembly and test stage back to the wafer fabrication. Finally, the 

finished goods are distributed to the customers.  
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2.2.4 Challenges in SI Value Chains 

As presented in 2.2.3, the constitution of SI value chains produces 

considerable complexity even on a high level. Looking into the manufacturing 

and supply chain processes, further complexity drivers and challenges can 

be identified. These challenges are especially valid for SI and can be 

grouped by areas to understand the most influencing ones. Figure 2-5 

presents the areas and numbers of associated challenges. Overall, 29 

challenges could be identified in the literature.  

The figure shows that most of the challenges are related to ‘logistics’ (10), 

followed by ‘product management’ (6), ‘data and IT’ (4), and ‘engineering’ (3). 

Less challenging areas in the context of manufacturing are ‘quality’ and 

‘organization’ (2 each) as well as RnD and ‘costs’ (1 each). Several 

challenges can be logically connected even across these areas. For 

instance, Fordyce (2012) emphasized that high capacity utilization is an 

important challenge. It can be associated with the area of ‘logistics’. Its 

importance is driven by the expense of capital equipment especially at the 

wafer fabrication stage. Managing these expenses appropriately is another 

challenge, which is related to ‘costs’. In the end, poor utilization affects the 

finished good costs in a negative way. 

 

Figure 2-5: Areas of Manufacturing-related Challenges in SI based on the 

Literature 
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Hence, the importance of these challenges can be agreed as they directly 

affect the economic results of a company. In the area of ‘product 

management’, a number of challenges is concerned with product lifecycles. 

Forster et al. (2013) pointed out that SI deals with rather short product 

lifecycles compared to other businesses such as the automotive industry. 

This leads to the challenge of constantly introducing new products efficiently. 

Another issue that is addressed to ‘product management’ is the diversity of 

the customer businesses. It can be implied that this diversity leads to very 

different product life cycles. For instance, components for smartphones are 

dependent on the rather short product lifecycles of smartphones. Though the 

selling trend from 2013 to 2016 indicates that customers keep their 

smartphones longer before upgrading to a new one (Armstrong, 2017), an 

average product lifecycle of 21.5 months can be seen as ‘short’ if a product 

costs between $ 200 and $ 700 on average (Statista, 2016). In contrast, the 

product age of cars in Germany in 2015 was nine years on average (ACE, 

2015). Therefore, an optoelectronic company that supplies both customer 

industries must manage various product life cycles that partially affect the 

same goods. 
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In the area of ‘Data and IT’, Sun et al. (2016) pointed out that observations 

show that SI managers and engineers tend to prioritize urgent operational 

needs rather than standardization. This type of prioritization leads to a 

growing number of so-called ‘quick fixes’ that solve a particular problem fast, 

but leads to high risk and uncertainties for the whole value chain. It is 

believed that this type of prioritization will have a long-term negative influence 

on the operational efficiency:  

 The creation of isolated solutions for single departments will be 

fostered, by which central services and data harmonisations are 

hindered. 

 Thereby, significant efforts for data discovery and cleansing must be 

spent to use important data from these isolated systems in central 

solutions or reports. 

 Hence, managers work with uncertain reporting results, which may 

lead either to poor decisions or to additional efforts to clarify the 

correctness.  



 
 
Villareal et al. (2018) discussed the strengths of big data applications to 

overcome IT-related challenges in SI. They claimed that SI companies fail to 

make use of the information that is generated during the manufacturing 

process especially at the wafer fabrication stage. Generated data is either 

stored and not used or even not stored at all. The authors justified this by 

citing mainly technological issues, e.g. missing database scalability and poor 

performance of data analysis hinder companies to make use of this data. 

However, it is not believed that data would be used more effectively only by 

upgrading the IT infrastructure. As discussed in the previous paragraph, SI 

value chains suffer from non-standardized and isolated IT solutions. Without 

harmonizing and sustainably managing the enterprise data architecture, big 

data applications are not able to gain value from the heterogenic and partially 

inconsistent data. 

Fielden (2018) pointed out that the continuous scaling of circuit density, 

computational power and energy efficiency becomes challenging without 

effective technologies for inspection and metrology. In fact, the testing 

capabilities of an SI company and the spent efforts for testing may have an 

impact on both product quality and cycle time. This challenge of keeping the 

testing efforts low is associated with the area of ‘engineering’.  

Further challenges are summarized in the conceptual framework in 2.6. 

Some of the challenges are expected to be mastered by PA that is discussed 

in the following section, 2.3.  
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2.3 Definition and Overview of Predictive Analytics 

In this thesis, a literature research has been carried out in order to assess the 

historical trends in PA and to contextualize them with trends in the related 

areas Machine Learning (ML) and Data Science (DS). Figure 2-6 visualizes 

the development of publications that are associated to each area from 1990 

to 2020. Since the actual numbers differ significantly, the bars present the 

percentage of publications per area and time period in relation to the sum of 

publications over the past 30 years. In addition, the lines highlight the 

percentage differences between the periods and indicate the trend directions.  
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Figure 2-6: Trend Comparison of Publications in the Areas of Data Science, 
Machine Learning and Predictive Analytics 

The analysis and evaluation of the research results led to following findings:  

 There was a general increase in all areas from the early 2000s 

onwards, however, different trends can be stated. ML was the first 

area that received noteworthy attention and showed the biggest 

increase of publications between 2006 and 2010 (+20%). Though the 

number of publications increased further and peaked between 2011 

and 2015, the slope decreased and turned even into a negative trend 

between 2016 and 2020. In contrast, PA started to gain attention in 

the upcoming period from 2011 to 2015. Though the majority of 

articles were published during the past four years, the trend indicates 

a slightly decreased slope (from +28% to +22%). The third area, DS, 

shows another different trend with a significant increase of 

publications from 2016 to 2020 (+41%) after an average slope of +4% 

during the upstream periods.  

 In spite of the negative trend are the actual numbers of publications in 

ML still significantly higher than in the other areas. Considering the 

total number of related publications from 1990 to 2020, the areas of 

DS (129.410 publications) and PA (46.111 publications) are far behind 

ML (3.610.600 publications). These differences indicate that the 

research in this area is much more established.  
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To understand the different trends despite the strong associations between 

these areas, clearer definitions and demarcations are required. Many 

researchers treat ML as a sub-discipline of ‘Artificial Intelligence’, e.g. Chris 

Huntingford et al. (2019), Alimadadi et al. (2020) and Rauschert et al. (2020).  

Alpaydin (2020) highlighted that ML aims to solve a given problem by 

programming computers to use example data or past experiences. The area 

of ML is often divided by learning type, which means that associated ML 

techniques can be classified as either ‘supervised’ or ‘unsupervised’. 

Supervised learning uses labelled data to identify relations between input and 

target variables, where a label represents a desired output. These relations 

are used to gain predictions in new data sets. Unsupervised learning makes 

only use of input data points in order to identify the organizing principles 

within the data set, whereas the desired output is not known (Ceriotti, 2019; 

L'Heureux et al., 2017). Some established ML techniques are support vector 

machines, artificial neural networks and clustering (Hesami et al., 2020; Hong 

et al., 2020; Mirmozaffari et al., 2020; Zhang et al., 2020). From the literature 

review it can be implied that the term ML is strongly related to the 

mathematical core techniques rather than to engineering topics such as 

improving database performances or implementation of IT tools that apply 

ML. For instance, Vo et al. (2019) discovered the capabilities of unsupervised 

learning for image matching based on mathematical optimization, which is 

able to limit human labelling efforts. In addition, the problem statements in 

ML are beyond economic applications such as in manufacturing or e-

commerce: Lillicrap et al. (2020) assessed the impacts of backpropagation 

on the learning mechanisms of the brain, Soltis et al. (2020) discovered the 

applicability of ML for plant biology and Tate et al. (2020) proposed a ML-

based model to predict mental health issues to name just a few. 

Based on the reviewed literatures, a clear and widely established definition of 

DS does not exist. Some authors like Nosratabadi et al. (2020) see DS as 

application of ML and deep learning. Steinwandter et al. (2019) considered 

several techniques to implement a DS project such as multivariate 

equivalence testing, principal component analysis, artificial neural networks 

and knowledge management. Boehmke et al. (2020) defined DS as 

combination of important skills, which are programming skills, analytics skills 
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and domain expertise. A similar but more advanced definition was proposed 

by Aunkofer (2020), who considered following skills in order to apply DS: (1) 

Expertise, e.g. finance and supply chain, (2) DS methods, e.g. ML and 

statistics, (3) DS tools and libraries, e.g. TensorFlow and Scikit-Learn, (4) 

programming language, e.g. Python and R, (5) data access and 

transformation, e.g. data streaming and data security, (6) database 

technology, e.g. SQL and InMemory. However, Singleton and Arribas‐Bel 

(2019) demarcate DS particularly from the term ‘Big Data’ and summarize it 

as ‘processes and techniques involved in turning (…) resources into insight 

and understanding’ (p. 2). Hence, they did not see the technical levels of data 

processing as part of DS. This view was shared by Bolard (2018) who 

proposed that DS consists of (1) data exploration and transformation, (2) 

aggregation and labelling and (3) learning and optimization, whereas the 

technical parts are related to ‘data engineering’. In addition, AI and especially 

deep learning were demarcated from DS, which is contradictory to 

Nosratabadi et al. (2020). Though the literatures did not provide a clear 

definition of DS, the importance of the term in academic research increases 

significantly as visualized in Figure 2-6. Such a development indicates that 

DS is rather a buzzword than a particular discipline. This view is also shared 

by many authors such as Golombek (2020), Mishra et al. (2020) and Nield 

(2019).  

From a methodical perspective, PA uses a similar set of statistical and 

analytics techniques as the related and previously established discipline data 

mining (DM). These techniques allow the extraction of new information from 

data and the prediction of trends and effects (Finlay, 2014). The methodical 

overlaps of DM and PA partially lead to the assumption that both terms refer 

to the same approach. On the one hand, some authors argue that the targets 

of the two disciplines are not identical. For example, whereas DM is mainly 

concerned with finding new relationships in large amounts of data, PA is 

focused on the prediction of future trends, events and behaviour patterns 

(Hair, 2007). On the other hand, Abbott (2014) admitted that he uses DM and 

PA synonymously and Gulati (2015) literally proposed DM techniques to 

apply PA. At least it can be implied that one could separate PA from DM by 
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defining areas of application. However, due to the methodical overlaps, a 

separation is not necessary.  

The statistical techniques behind PA and DM were developed between the 

end of the 19th century and the 1920s. The exploratory data analysis, based 

thereon, was proposed in the 1970s (Hair, 2007). Therefore, it can be 

criticized that both terms only consolidate and reuse selected techniques that 

already existed. It is not evident from the literature that the actual foundation 

of DM and PA as separate disciplines contributed anything fundamental to 

science or economics. Therefore, both terms have the character of a 

buzzword. This assessment is also supported by Chahal et al. (2019) and 

Ripley and Chen (2003). The latter claimed that DM is mainly used for the re-

marketing of previous ideas from statistics and machine learning (ML) and to 

commercialize associated solutions. Indeed, the global big data market size, 

which is related to PA as mentioned by Siegel (2013), quintupled between 

2011 and 2017 from $ 7.6 billion to $ 35 billion (Holst, 2020). Nevertheless, 

and despite the mentioned explanations from Siegel, the question is not 

clearly answered by the literature: is this success influenced by the 

importance of PA – or is the importance of PA caused by the success of big 

data? At least Sathishkumar et al. (2020) stated that ‘as data availability 

increases, the accuracy of the algorithm also improved’ (p. 971). Thus, as 

Holst (2020) forecasted that the big data revenues continue to increase over 

the following years, it can be expected that the importance of PA will 

correlate to this trend.  

Since the point of interest is located in the future, an exact prediction is 

usually not possible. Therefore, to deal with this kind of uncertainty, PA works 

with scores and probabilities. The following example illustrates this approach:  

A trading company wants to calculate the product demand dt+1 for the 

next order period to adequately restore their stocks. Primarily, they will 

put the historical sales data and apply predictive algorithms, e.g., 

exponential smoothing. They will also add seasonal or regional factors 

and include information from market development studies to improve 

the predictive result. Thus, the result dt+1 can reach a reliable level. 

Nevertheless, it remains only a probable result. The company needs to 

add further statistical calculations to set a reliability interval from x to y 
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around dt+1. In the end, they can state: with a probability of 95%, the 

demand for period t+1 will vary between x and y (Herrmann, 2009).  

 

Gronwald (2015) classified the approaches in analytics into five categories: 

(1) descriptive analytics, (2) predictive analytics, (3) prescriptive analytics, (4) 

sentiment analysis (SA) and (5) text mining. He defined each category with 

the orientations, techniques and goals. This classification shows that it is 

necessary to define the goal before selecting an appropriate approach. For 

instance, prescriptive analytics focuses on the underlying causes as well as 

the predicted result while PA only focuses on the predicted result without 

asking ‘why’ an analysed entity will develop as calculated. In addition, this 

classification provides a clear overview of the various capabilities of data 

analytics. However, the classification does not make clear that there is a 

difference between the maturities of the approaches. Lepenioti et al. (2020) 

pointed out that prescriptive analytics is still less mature than descriptive and 

predictive analytics. Furthermore, it is doubtful that SA fits into this 

classification. All other approaches use raw data that is typically system-

generated (e.g. MES timestamps, product measurement, telemetric data of 

equipment), whereas SA uses subjective data gathered directly from 

humans. López and Cuadrado-Gallego (2008) stated that SA is an 

application of natural language processing that belongs to the area of 

artificial intelligence. This type of classification is reasonable and supports 

the idea of separating the raw-data-based approaches in data analytics from 

SA and text mining due to substantial differences of methods, input data and 

areas of application. 

A notable finding from the literature review is that the number of articles 

increased disproportionately that focus on PA in the context of 

manufacturing. The trend shows that the percentage of manufacturing-

related articles was at 34% in the early 1990s. However, it seems that PA 

researchers changed their focus during the following years, because they 

discussed applications in manufacturing in less than 10% of all articles until 

2005. From this time forward, the attention on manufacturing aspects 

increased significantly. Between 2011 and 2015, 27% of all articles are 

related to manufacturing, and between 2016 and 2020 the percentage 
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reached 54%. It can be assumed that this high increase is related to other 

technological trends in the area of manufacturing. To prove this hypothesis, 

further research was performed to extract the number of articles that are 

employed with data-related trends in the area of manufacturing. Figure 2-7 

presents the search results in relation to the percentage of manufacturing-

related PA articles.  

 

Figure 2-7: Number of Articles concerned with Data-related Trends in 
Manufacturing 

 

The results indicate that there is a general relationship between the 

importance of PA in manufacturing and other trends such as ‘smart factory’, 

the German ‘Industry 4.0’ (I4.0) and ‘cyber physical production system’ 

(CPPS). The longer-existing trend ‘computer-integrated manufacturing’ (CIM) 

correlates to the importance of PA in the period from 2001 until 2010. 

Between 2011 and 2015, the overall number of articles decreased, which is 

mainly a result of reduced attention to CIM. Nevertheless, new trends such 

as CPPS and I4.0 disproportionately gained attention compared to the 

previous period. This particular increase correlates to the growing percentage 

of manufacturing-related articles in the area of PA. Furthermore, there was a 

rapid rise of articles for both data-related trends in manufacturing and 

manufacturing-related articles in the area of PA from 2016 to 2020. 

Therefore, it can be concluded that both courses are related and there is an 
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increased importance of digitalization, especially of data-based automation 

and decision-making in manufacturing business. 

In order to narrow down the key intentions of the core terms associated to 

this research and how they are logically related, Figure 2-8 presents a 

contextualization that is based on the review of definitions and associated 

research projects.   

 

Figure 2-8: Contextualization of Major Terms related to PA 

 

The figure suggests to treat DS as an implementation approach that 

combines and applies Big Data, Statistics and ML in order to create a PA 

application. PA itself is seen as part of the discipline DM, whereas ML is seen 

as part of the discipline AI. In addition, it must be emphasized that DS does 

not only create PA applications but other types of applications with different 

goals. Based on these relations and previous discussions, the different 

research trends visualized in Figure 2-6 could be explained as follows:  

 ML provides the fundamental techniques that are required to build PA 

solutions, hence, the attention on methodical issues increased 

chronologically earlier than on applications. Many publications present 

basic research in ML, which could be a driver for the much higher 

number of articles in this area compared to applied research in DS 

and PA.  

 The growing importance of PA was driven by digitalization initiatives in 

the manufacturing area and can also be stated for other technological 
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trends. In order to accomplish the goals of Industry 4.0 and similar 

concepts, ML was applied to generate new insights from data, where 

predictive capabilities are crucial to minimize failures, material waste 

and other types of production costs.  

 DS has been found as an implementation approach that applies 

several techniques such as ML and Statistics in combination with Big 

Data technology. PA applications may be one type of output from DS 

initiatives, however, the literature review shows a broader spectrum of 

applications. Due to this relation, the total number of articles in the 

area of DS surpasses PA. The broader applicability of DS could also 

explain the significantly increased importance of DS during the past 

four years, where more and more disciplines (e.g. medicine, biology 

and geography) assessed potential fields of use for DS.   

2.4 Methods of Predictive Analytics 

Based on the findings from the current literature review, PA is not defined by 

a fixed set of methods. It is assumed that a major problem in identifying 

commonly accepted methods lies in the fact that PA itself is not consistently 

defined. The following list shows different scopes and thematic separations 

for PA:   

 Larose and Larose (2015) divided PA and DM into exploratory data 

analysis, statistical analysis, classification, clustering and association 

rules.  

 Kotu (2015) divided PA and DM into data exploration, classification, 

regression, association, text mining, time series forecasting, anomaly 

detection and features selection. 

 Abbott (2014) divided PA into data understanding, data preparation, 

item sets and association rules, descriptive modelling, predictive 

modelling and text mining. 

 Barga et al. (2015) referred to applied PA with Microsoft Azure and 

divided PA only by statistical and ML algorithms.  

 Finlay (2014) referred to both particular methods (e.g., support vector 

machines (SVM), expert systems) and groups of techniques (e.g., 
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linear models, clustering) to separate the types of PA models. Other 

activities such as data exploration and preparation were treated as 

part of the PA development process. 

 Mauerer (2020) highlights the overlaps between PA and DM, where 

PA exceeds the scope of DM by application of advanced techniques 

such as Simulation and Text Mining.  

 Adobe (2020) considers ML, statistics and DM in order to apply PA 

and emphasizes regression, decision trees and neural networks.  

 

The comparison of the literature leads to several findings. As already 

discussed in 2.3, PA cannot be fully delimitated from DM due to the 

significant overlap in methods and aims. In addition, text mining and 

descriptive analytics are seen as part of PA (e.g., by Kotu (2015)), which was 

clearly disagreed by Gronwald (2015). Furthermore, the activities in the area 

of PA are not clearly specified. Some authors refer to PA as the entire 

process to implement a predictive solution (e.g., Abbott (2014)), whereas 

others separate the actual prediction models from upstream or downstream 

tasks (e.g., Finlay (2014)). Beyond the inconsistent use of terms, the authors 

do not match with the selected prediction techniques, for instance: 

 Finlay (2014) proposed expert systems as one type of predictive 

model, which is not considered by any other author.  

 Kotu (2015) and Finlay (2014) proposed support vector machines for 

classification, which is not considered at all by Abbott (2014) or by 

Larose and Larose (2015). 

 Larose and Larose (2015) defined clustering as a type of descriptive 

modelling, which they separated from predictive modelling, whereas 

Finlay (2014) proposes clustering as a predictive model.  

To gain a clearer understanding, it is suggested that PA methods should be 

classified as either supportive (e.g., data preparation) or core (e.g., 

regression). A full PA application requires both types of methods to be 

applied during the development process. If a supportive task such as data 

preparation becomes a regular task for the PA application, it might also be an 

integral part of the solution. Though only the core methods are capable of 

prediction, it is believed that only a PA application as a whole is able to 
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generate benefits for a company. In particular, the maturity of data 

preparation can be seen as a success factor for reliable predictions. 

Techniques such as correlation analysis and principal component analysis 

can be applied to PA projects for this purpose. For instance, Budgaga et al. 

(2016) discussed them in terms of dimensionality reduction, which is an 

upstream step to limit the input variables for the actual prediction model. 

Gogtay and Thatte (2017) pointed out that ‘correlation analysis stops with the 

calculation of the correlation coefficient and perhaps a test of significance’ (p. 

81) and that usually regression analysis is also applied in order to achieve 

predictions. This statement supports the idea of dividing PA methods into 

supportive and core. 

Since PA as a term, as well as the underlying methods, are not clearly 

defined by literature, it is not believed that any benefit could be calculated on 

this broad level. In addition, it can be implied from the previous findings that 

PA does not only mean a particular prediction technique, but includes 

upstream activities such as data discovery and preparation. Therefore, it is 

not believed that any benefit could be determined for single PA methods 

such as artificial neural networks or naïve Bayes classifiers. Instead, it is 

proposed to discover how PA can be applied to SI manufacturing in oder to 

overcome the identified challenges. According to Finlay (2014), PA can be 

applied to improve the efficiency of a process, to enable better decision-

making or to enable a new activity that was not possible before. For instance, 

Rauniaho-Mitchell (2020) proposed applying PA in order to optimize the 

material flow within a factory. Since PA is capable of detecting anomalies in 

historical data, it could identify those anomalies that have generated 

bottleneck situations in the past. By applying this knowledge to real-time 

data, bottlenecks could be predicted based on topical anomalies, and 

production managers are able to act before the issue occurs. It was noted 

that Rauniaho-Mitchell (2020) did not refer to any particular PA method that 

is used for this scenario without giving reasons. The implicit reason could be 

that the method itself does not matter as long as the results of the whole PA 

application meet the expectations. In fact, Mishra and Silakari (2012) pointed 

out that the development of a DM solution requires testing multiple predictive 

techniques against a set of case-specific validation data. They explained that 
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the validity of the tested techniques could be expressed by the prediction 

error that is measured, for instance, by average error, total sum of squared 

errors, or root mean squared error. Professional software for developing PA 

applications such as IBM SPSS provides features to compare the validity of 

various predictive models (El-Shimy, 2018). In addition, D’Haen et al. (2013) 

demonstrated that the type of data preparation, such as combining different 

data sources instead of using them independently, could influence the 

performance of a predictive technique. The fact that validity and performance 

of a core PA method highly depend on the specific case data underpins that 

a general benefit of single methods for SI PS cannot be calculated. Instead, it 

is believed that the benefit of PA results from the improvements that are 

gained by applying a PA solution to a particular business process. Hence, it 

is proposed to focus on PA applications that are crucial for semiconductor 

manufacturing in order to discover which process improvements they would 

generate, which specific challenges they would master, and which types of 

benefits to PS performance would arise.  

2.5 Predictive Analytics Applications in Semiconductor 
Manufacturing 

2.5.1 Overview 

A literature research has been carried out in this thesis to discover the 

importance of PA in SI and in which way it has developed over the past 15 

years. Figure 2-9 shows the yearly development of publications that are 

concerned with PA in semiconductor manufacturing from 2005 to 2020. 

Based on these numbers, it appears that PA was less important to SI before 

2010. Only a small number of articles and theses were detected that were 

employed on this topic at that time (e.g. Barbee (2007)). Since 2010, there 

has been a positive trend in general, such as with studies from Meidan et al. 

(2011) and Moyne et al. (2014)) that turned into a significant increase from 

2017 to 2018 (e.g., with studies from Chiu et al. (2017) and Liao et al. 

(2018)).  This increase correlates with the data-driven trends in 

manufacturing that have been identified and discussed in 2.3. From 2018 to 

2019, the number of articles stagnated. The value for 2020 is forecasted 
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based on the previous number at the time of the review. This forecast 

suggests that in 2020 at least a similar number of articles will be published as 

that in 2019.  

 

Figure 2-9: Number of Articles concerned with PA in Semiconductor 
Manufacturing 

 

The titles of the overall 443 articles can be divided into single words to 

analyse the occurrence of each term in this research context. Figure 2-10 

visualises the number of occurrences as a word cloud. It indicates, for 

instance, that there is a significant relationship with activities in ‘Big Data’ and 

‘Machine Learning’. The numbers of occurrences are only raw data that do 

not recognize compound terms (e.g., ‘Big Data’ or ‘Data Mining’) and does 

not exclude auxiliary words (e.g., ‘using’ or ‘based’). To gain insights into 

which majors and conceptual relationships exist, a more specific analysis is 

required. The weighted data behind the word cloud acts as the basis to 

search for relevant (compound) terms within the titles of the articles. The 

coding technique is applied to group different but related terms, and the 

articles are classified by codes. The codes are then classified as either 

application of, or technology for PA. 
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Figure 2-10: Word Cloud for Terms that are concerned with PA in 
Semiconductor Manufacturing (own visualization) 

 

Figure 2-11 shows the results of this analysis. Overall, 208 articles can be 

classified by the selected codes. The other articles that do not match to any 

of these codes are employed either with single or special topics such as 

predictive controlling, or with systematic reviews without focussing on 

particular methods or applications. Based on this analysis, equipment 

maintenance appears to be the most important application in the area of PA 

in SI manufacturing, followed by applications in the area of smart 

manufacturing and supply chain.  From a technology perspective, Big Data is 

most relevant for PA applications in SI manufacturing followed by ML and 

Internet of Things. 
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Figure 2-11: Number of Articles concerned with selected Codes 

In addition to this analysis, the literature research is conducted to identify 

further applications where PA methods are used to improve SI manufacturing 

processes. From this, the following important PA applications in SI 

manufacturing have been identified: 

1. Predictive Maintenance 

2. Smart Manufacturing 

3. Predictive Process Control 

4. Predictive Quality  

5. Predictive Dispatching and Scheduling 

These applications are discussed in more detail in the following sub-sections. 

However, PA applications for supply chain purposes are excluded from this 

study. The reason for this decision is that the thesis focuses on the core 

manufacturing aspects from the wafer fabrication (frontend) part of the value 

chain. This focus is supported by the selection of the case study company, 

whose German factory concentrates on wafer fabrication.  
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2.5.2 Predictive Maintenance 

SI is one of the most capital-intensive industries with significant capital 

investment in equipment and, therefore, optimization of equipment 

performance has received noteworthy attention. SI manufacturing processes 

constantly generate hundreds of metrology data that can be used to analyse 

and understand failure patterns and to improve the yield of high quality 

products (Munirathinam and Ramadoss, 2016). Speaking at the January 

2000 ISS, the former Intel Senior Vice President, Michael Splinter stated that 

one hour of downtime for a critical unit of process equipment could be 

translated into $100,000 of lost revenue. Hence, in a generic wafer 

fabrication facility, a downtime reduction of only 1% on the 50 most critical 

tools can lead to revenue opportunities and cost savings of around $100 

million annually. By improving response times and repair times and by 

predicting the point in time when problems may occur, a reduction of 

unscheduled downtimes can be achieved (Munirathinam and Ramadoss, 

2014).  

PdM is seen as a data-driven approach to address these goals, which is 

agreed by many authors, such as Raoslash et al. (2016), Chiu et al. (2017) 

and Motaghare et al. (2018) However, they partially disagree in scope and 

targets of a PdM solution. For instance, Chiu et al. (2017) proposed an 

agent- and cloud-based PdM system for an entire factory that does not only 

focus on one single machine, whereas Tiddens et al. (2018) pointed out that 

each machine requires a time-consuming process to implement a suitable 

PdM solution. Hence, they proposed a method that supports the selection of 

suitable machines or components. It was found that this evaluation method 

does not consider logistics or dynamic aspects that might be affected by the 

application of PdM. Therefore, the approach is not seen as suitable for SI. 

Nevertheless, it is agreed that such a type of criteria-based pre-selection is 

important because maintenance experts as well as data scientists are limited 

in a company and cannot work on a thousand or more PdM solutions 

simultaneously. Therefore, it is proposed that PdM should be treated as one 

of many maintenance strategies that supplement a company’s maintenance 

operations. However, it is not clearly defined in the literature how PdM relates 

to other maintenance strategies. A comprehensive study by Gackowiec 



 
 
(2019) compared various classifications of maintenance strategies. Some of 

these classifications treat PdM as their own strategy along with corrective 

maintenance (e.g. Wang et al. (2007)), whereas others consider it as part of 

proactive maintenance (e.g. Sambrekar et al. (2018)). However, Rani et al. 

(2015) classified PdM as a ‘planned maintenance’ strategy on the same level 

as proactive maintenance. Gackowiec did not regard that Swanson (2001) 

discussed a further strategy called ‘aggressive maintenance’ that is beyond 

traditional maintenance. It attempts to improve the overall equipment 

operation, which leads to increased equipment lifespan. It is assumed that 

PdM as a technique can be used to prevent unscheduled downtimes as well 

as to improve the overall equipment operation.  
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There is a common understanding in the literature that PdM is based on (big) 

data and applies PA techniques to gain predictions. Coleman et al. (2017) 

pointed out that built-in or external sensors of connected machines create the 

fundamental data for PdM. Through network communication (e.g., by using 

Wi-Fi or RFID), the data is made available for remote monitoring. Sensor 

data is enriched by other existing data from ERP or PLC using sophisticated 

middleware and data management platforms. Though these types of data are 

crucial, it is believed that an effective PdM solution must provide more than 

pattern recognition in historical sensor and status data. For this purpose, Bink 

and Zschech (2017) discussed a further approach that adds information from 

past maintenance actions to classify whether these actions were more risk-

affine or risk-averse. Such findings may support future situations to reduce 

wrong decisions based on subjective interpretations. Yan et al. (2017) 

considered unstructured data for PdM such as manufacturing videos or voice 

signals. They discussed in which way an operator’s behaviour and efficiency 

could be analysed based on this data. However, they did not reflect the 

ethical issues that arise with such a type of data acquisition and analysis. To 

overcome these issues, it is suggested that anonymization procedures 

should be applied as well as techniques to ensure privacy and data 

protection. Otherwise, the laws and regulations of many countries and 

companies may prohibit this type of data collection. A case study from Bink 

and Zschech (2017) discovered that ML procedures, such as clustering, ANN 

and SVM, generate the most accurate prediction quality for PdM scenarios. 



 

 
Compared to statistical methods, these procedures return better results for 

complex and non-linear associations between a target variable (e.g., 

remaining useful life) and higher-dimensional equipment state data. 

Furthermore, Butte et al. (2018) considered deep belief networks, 

convolutional neural networks, random forest and other ML techniques for 

PdM. They discovered that single models might be prone to poor predictions 

in real scenarios, although they gained high validity during tests. They stated 

that this is due to violations of the underlying production environment. To 

overcome this issue, they proposed applying so-called super learning, which 

combines several base learning procedures with a meta-learner that is 

trained to find the optimal combination of prediction algorithms. It is believed 

that this approach is valuable especially for volatile manufacturing processes 

in SI. An approach beyond ML was suggested by Cao et al. (2019) who 

criticized that DM-based PdM is limited to the prediction of a point in time 

when a failure may occur. However, these solutions are not capable of 

identifying the criticality of a failure. They emphasized that this capability is 

important for creating and applying appropriate maintenance plans. To 

overcome this issue, they proposed an expert system that consists of a 

domain ontology to store PdM knowledge, a fuzzy c-means classification to 

learn the criticality from historical data, and SWRL rules to infer the time and 

criticality of a future machine failure. This semantic approach is seen as 

relevant to SI due to the heterogenic machine and process landscape. 

Knowledge about the criticality of a predicted failure supports an appropriate 

prioritization of maintenance tasks, which might improve both maintenance 

operations and production performance. Biebl et al. (2020) proposed an 

advanced SI-specific approach based on Bayesian Networks. It is capable of 

predicting the root cause of a failure at an etching tool and to provide 

recommendations to the EM staff.    
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PdM is not only relevant to SI, but also for many other industries. Therefore, 

many software- and analytics-oriented companies provide particular PdM 

solutions to meet these demands. Figure 2-12 (Scully, 2019) shows the 

results of a study on the global market for PdM. It expects a growth from $3.3 

billion in 2018 to $23.5 billion in 2024. Even if the actual growth is less than 



 
 

 

66 2.5 Predictive Analytics Applications in Semiconductor Manufacturing 

this optimistic forecast, the trend underpins the increasing importance of 

PdM.  

As discussed earlier in this sub-section, PdM promises the reduction of 

unscheduled downtimes, which finally results in monetary benefits for a SI 

company. Some studies were employed to discover the potential benefits of 

PdM in more detail. Iskandar et al. (2015) focussed on the financial benefits 

of PdM for semiconductor manufacturing that are gained by avoiding 

particular costs. They highlighted cost factors, such as lost production, cost 

of parts and labour and lost yield. They proposed a calculation model to 

analyse the impact of false positives on the maintenance operations for a 

specific PdM configuration. Since the focus was on the optimal configuration 

of a specific solution instead of PdM as a strategy, the model is not capable 

of calculating general financial benefits of PdM. In addition, they do not 

consider other SI PS participants, or in which way PdM affects them. 

 

Figure 2-12: Global Market Development and Forecast for PdM (Scully, 
2019) 

 

Koitzsch et al. (2012) proposed a model to calculate the potential benefits 

gained by PdM with a focus on SI wafer fabrication. They preselected 

expected economic benefits of PdM such as reduction of maintenance costs, 

increased equipment utilization and reduction of scrap wafers. They found 

out that PdM generates different benefits for different equipment types, which 

is an important insight that must be considered before initiating a PdM 

project. Furthermore, they translated the benefits into financial metrics to 
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state, for instance, how many euros per year could be saved on maintenance 

costs for a lithography machine. However, the calculation approach shows 

the following weaknesses:  

1) The types of benefits were preselected, so the model is not able to 

discover other benefits beyond these.  

2) The model is concentrated on machine downtimes and does not 

reflect the effects on PS logistics performance.  

3) It is believed that environmental factors were not considered such as 

available wafers to process, because the article does not discuss 

them.  

A general finding from the literature review is that the benefit evaluation of 

PdM mostly concentrates on the avoidance of unscheduled machine 

downtimes and the effects on directly involved PS participants, such as 

maintenance operations, spare part logistics and avoidance of yield loss. 

Therefore, it is believed that other benefits or even negative effects could be 

identified if the scope was increased to logistics aspects, which appear to be 

the most challenging area in SI value chains as presented in 2.2.4. 

2.5.3 Smart Manufacturing 

The literature review shows that the term ‘smart manufacturing’ (SM) is not 

clearly defined. According to Wei et al. (2020), SM refers to a 

manufacturing method that improves its performance with the 

integrated and intelligent use of processes and resources in cyber, 

physical, and human spheres to create and deliver products and 

services, while also collaborating with other domains within an 

enterprise's value chains (p. 46). 

Kang et al. (2016) defined SM as a ‘collection and a paradigm of various 

technologies that can promote a strategic innovation of the existing 

manufacturing industry through the convergence of humans, technology, and 

information’ (p. 111). They highlighted eight key technologies for SM such as 

internet of things, big data analytics, cyber-physical systems and cloud 

computing, and the particular features they provide. In contrast, Kusiak 



 
 
(2018) was less focussed on technologies, but considered SM as a 

compilation of six pillars: (1) predictive engineering, (2) data, (3) 

sustainability, (4) manufacturing technology and processes, (5) resource 

sharing and networking as well as (6) materials. In his opinion, the 

importance of these pillars ‘have been changing, however, they have been 

around manufacturing throughout its history’ (p. 510). However, he saw 

production planning and forecasting as the predecessors to predictive 

engineering, which is not agreed because planning and forecasting are 

logistic core tasks that are still relevant to modern SI PS. Denno et al. (2018) 

refer to the U.S. National Institute of Standards and Technology which stated 

that SM systems enable data-driven decisions throughout manufacturing. 

They pointed out that PA applications in SM systems are most effective 

where engineers have limited or no understanding of a phenomenon. For 

phenomena that are understood, conventional analytical models such as 

operations research generate results that are more accurate. According to 

Thoben et al. (2017), SM is a technology transfer scheme developed by 

policy makers and especially known in the United States, Japan and Korea. 

They considered it as similar to I4.0, which is more prominent in Germany. 

The goal of this scheme is to support the manufacturing industry in order to 

upgrade their traditional production facilities to so-called smart factories.  
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Tao et al. (2018) pointed out that data is a key enabler for SM but it must first 

be translated into concrete and useful information. This translation requires 

in-depth knowledge about the data lifecycle in manufacturing that consists of: 

(1) data source, (2) data collection, (3) data storage, (4) data processing, (5) 

data visualisation, (6) data transmission and (7) data application. They 

explained that data applications are able to create value from the data. 

Beyond PdM, they stated the accurate and rapid translation of customer 

voices into product features and quality requirements as a possible SM data 

application. Gao et al. (2020) agreed on the importance of data in the context 

of smart manufacturing, especially due to the fact of growing data volumes. 

They highlighted and discussed recent Big Data technologies and PA 

methods and their value-adding applications in smart factories. Bajic et al. 

(2018) shared the view that SM is strongly dependent on data. They 

discussed following ML techniques that are particularly applicable to SM use 
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cases: (1) support vector machine, (2) decision tree, (3) expert system, (4) k-

nearest neighbour, (5) naive Bayesian, and (6) artificial neural network. They 

reviewed and outlined various use cases where these techniques are applied 

in SM, such as classification problems, pattern recognition and permanent 

quality improvement, which they see as especially relevant to SI. For benefit 

evaluation of SM, it is seen as highly important to understand the potential 

applications behind the overall term, and which process improvements or 

cost reductions are feasible. However, Bajic et al. (2018) neither clearly 

presented which PA techniques were applied to which use case, nor which 

strengths and weaknesses had been discovered. This gap can be closed 

partially by a study from Wang et al. (2018) who reviewed various deep 

learning techniques for SM, such as convolutional neural network, deep 

belief network, autoencoder, and recurrent neural network. They highlighted 

product quality inspection, machinery fault diagnosis, and defect prognosis 

as potential applications (where the latter two applications are similar to 

PdM). The comparison showed, for instance, that deep belief networks could 

be applied to all types of applications, whereas autoencoder was only applied 

to machinery fault diagnosis, but is used by most referenced articles.  

The literature review indicates that SM itself is not one PA application. 

However, most of the authors agree that it combines several PA applications 

to meet various requirements from multiple participants within the value 

chain. The approach of SM can be understood as extending single PA 

applications by integrating them seamlessly through central technologies and 

organizations, and therefore, enabling the creation of synergy effects. Kusiak 

(2018) expected that increased volume of collected data and the 

consequently increased prominence of PA methods would drive the future 

development of SM. However, he pointed out that enterprises must address 

challenges such as cybersecurity and collaborative standards to gain benefits 

from this development.  

2.5.4 Predictive Process Control 

The aim of process control is to actively change a process based on the 

results of a process monitoring tool. Once an out-of-control situation has 

been detected, the responsible person applies a change to bring the process 
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back under control. Out-of-control action plans consist of detailed actions that 

need to be performed in particular situations. Each unique process may be 

associated with a specific action plan. In addition, advanced process control 

loops are used to automatically change a process based on the programmed 

logics and the size of the out-of-control measurement (NIST SEMATECH, 

2012).  

Moyne et al. (2007) referred to the Semiconductor Equipment and Materials 

International consortium who considered the following applications for 

process control: run-to-run (R2R), fault detection and classification (FDC), 

fault prediction, and statistical process control (SPC). According to Moyne et 

al. (2000), R2R is a control mechanism that is able to adjust a product recipe 

autonomously after single machine runs with respect to the particular 

machine process. By modifying the recipe, the process drift, shift and 

variability is minimized. Moyne et al. (2016) pointed out that PA methods are 

mainly relevant to FDC. However, they explained that predicted results from 

FDC could be used by R2R to improve its performance, for instance, by 

adjusting the control granularity from lot level to wafer-to-wafer control. SPC 

is mainly used to identify anomalies using statistical techniques. Though SPC 

in SI is ‘established as a fundamental technique to improve production 

efficiency and yield’ (Park et al., 2017, p. 3523), it is suspected that statistical 

methods do not fit to all types of problems. For this purpose, Khoza and 

Grobler (2019) compared ML and statistical techniques to predict when a 

manufacturing process is out of control. They discovered that the random 

forest algorithm generates better results than other ML methods and that it 

outperforms the statistical technique Hotelling’s T². In addition, Liao et al. 

(2018) pointed out that ML is a crucial approach for anomaly detection that 

overcomes the tool and process complexity in SI as well as unknown 

correlations in sensory data. They proposed a framework based on 

autoencoder to detect anomalies in real-time for a chemical vapor deposition 

tool. Despite the valuable insights of these projects, it is doubted that these 

results can be extrapolated to prove the statement that ML-based process 

control outperforms SPC in general. Broader research is required to 

understand and demarcate the optimal use cases for both types of methods. 
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However, the results indicate that traditional SPC techniques should be 

questioned in order to improve quality control performance.  

FDC is focussed on variations in the process result data to detect anomalies 

and determine the cause of a fault (Moyne et al., 2007). Figure 2-13 (Tuv et 

al., 2018) shows an architecture for fault classification that is proposed by 

and uses technology from Intel. Images of wafer surfaces are collected by 

metrology equipment and sent to a classification server. The labelled images 

are returned to a defect analysis database, and in addition, archived to 

improve the prediction model itself. The solution is also applied at Intel wafer 

fabrication factories, and delivers benefits such as quicker identification of 

root causes for specific issues and greater improvement in yield. It uses ML 

methods such as convolutional neural network for automatic feature learning 

(Tuv et al., 2018). Furthermore, Lee et al. (2017) demonstrated that 

convolutional neural networks outperform other ML techniques for FDC, 

which underpins the importance of this method in this application area.  

 

 

Figure 2-13: Architecture for Automated Defect Classification as proposed by 
Intel (Tuv et al., 2018, p. 5) 

 

To improve the efficiency of FDC applications, Fan et al. (2020) proposed an 

approach that uses multiple ML techniques such as k-nearest neighbours 

and naïve Bayes classifiers. The approach is capable of identifying the key 

sensors of an equipment and the relevance of their sensor readings 

regarding quality abnormalities of a wafer. This knowledge enables engineers 

to focus on particular sensor readings in order to monitor and improve single 

processes.  



 
 

 

72 2.5 Predictive Analytics Applications in Semiconductor Manufacturing 

Fault prediction also analyses variations in the current process result data, 

but its purpose is to predict anomalies in future processes (Moyne et al., 

2007). In addition to equipment-oriented failure prediction, which has already 

been discussed as PdM, fault prediction can also be product-oriented and 

applied to predict wafer or chip defects. Several studies exist that are 

employed with different goals and aspects of product-oriented fault 

prediction. Arnold (2016) developed a fault prediction model for wafer and 

chip defects with random forest classifier, which is a technique based on 

decision trees. Kim et al. (2019) proposed a deep belief network-based multi-

classifier to determine whether a pass/fail test of chips is accurate or not. Kim 

and Kang (2019) examined the effect of irrelevant variables on the quality of 

fault prediction results for wafer defects. They did this by testing artificial 

neural networks, decision trees and k-nearest neighbours and came to the 

conclusion that decision trees are the most robust against the presence of 

many irrelevant variables.  

General challenges when applying process control in SI include the lack of 

critical in-situ sensors to provide real-time information on the wafer status, 

the accurate modelling of electrical parameters, long delays for model 

updates, the integration of fault detection and classification with R2R, and the 

existence of inline metrology instead of integrated metrology (Qin et al., 

2004). These challenges limit the degree of data quality (e.g., accuracy and 

topicality) that is required to generate reliable predictions.   

2.5.5 Predictive Quality 

As discussed in 2.2.1, semiconductor devices are components of various 

products including goods that are crucial for human safety such as distance 

sensors in cars. Consequently, the proven quality and reliability of 

semiconductor devices are highly important. Quality indicates whether, and 

to which degree, a device performs its proper function. In addition, reliability 

shows to what extent a device keeps to its original level of quality over time 

and against various conditions (Crossley, 2008). Yang et al. (2003) 

concluded that quality management practices are also crucial to on-time 

delivery performance in SI. However, a number of issues hinders the 
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successful application of these practices, such as the limited role of the 

quality department, a lack of established techniques to improve the design 

quality, and insufficient process management capabilities.  

Certainly, reduced equipment and process faults (as discussed in 2.5.2 and 

2.5.4) have a positive influence on the quality of produced goods. Studies by 

Lee et al. (2019), Critical Manufacturing (2017) and Besnard et al. (2012) 

agreed with this hypothesis and treat the term ‘predictive quality’ (PQ) as a 

result of PdM or process control. 

However, this sort of PQ considers only the manufacturing process and 

ignores the preceding stages of the value chain. Following the ‘quality-by-

design’ approach, the quality of a product is influenced by several factors 

beyond the physical production. Prior to the design of a proper manufacturing 

process, development engineers must at least specify a quantifiable target 

quality profile and critical material quality attributes (Lionberger et al., 2008). 

Henning (2018) considered this perspective and defined PQ as the prediction 

of properties that are relevant to the quality of a certain product based on 

data that is gathered from the use of this product. The goal of a PQ 

assurance concept, as shown in Figure 2-14, is to ensure product quality in 

advance before faulty products can be manufactured. For this purpose, data 

from customer returns, quality inspections or product specifications are 

collected. ML algorithms are trained to identify different types of product 

failures based on collected product or production process characteristics. An 

integrated assistance system is able to propose alternative product 

characteristics that would improve the quality at most. Development and 

design engineers can use these proposals to modify the product 

specifications accordingly as input to the future manufacturing process.  
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Figure 2-14: PQ Assurance Concept inspired by Henning (2018) 

The reduction of time and costs for device testing can be seen as another 

goal of product-oriented PQ. Schellenberger (2018) pointed out that the 

various process steps for quality control produce up to 50% of the total costs 

of a chip. At the end of the frontend stage in the SI value chain, typically 

100% of chips on a wafer are tested via probing procedures. These 

procedures are time-consuming and expensive because a machine must test 

each wafer chip by chip – this means that the more chips that are on a wafer, 

the more time is required for probing. The approach of predictive probing 

considers only a selected number of chips (~7%) and decreases the 

processing time significantly. To achieve the same result as for full probing, 

relevant historical data from upstream measurements and other control 

procedures is collected and analysed using a convolutional neural network 

(Schellenberger, 2018). Figure 2-15 visualises the approach for chips on a 

wafer, where the blue squares indicate the chips to be measured for both full 

and predictive probing. The study concludes that both approaches generate 

the same result (e.g., classified pass or fail chips), but with different probing 

efforts. It is agreed that this way of probing would gain significant benefits to 

SI companies in terms of lead time and cost reduction.  
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Figure 2-15: Predictive Probing inspired by Schellenberger (2018) 

A similar approach was proposed by Schmitt et al. (2020) in order to reduce 

the quality inspection efforts. They combined ML techniques with cloud and 

edge computing technologies and conducted a case study at a surface 

mount technology factory that confirmed the effectivity of this new approach. 

Stich et al. (2020) pointed out that yield prediction is a critical and complex 

issue in the SI. Based on the process capabilities of single process steps, the 

recipe, the current machine state and manufacturing history of the individual 

wafer, they apply ML techniques to generate improved yield indicators. Lyu et 

al. (2020) provided a more advanced approach that is capable of identifying 

the root causes of product defects. They used the features of Internet-of-

Things to efficiently collect manufacturing data and applied statistical 

techniques as well as decision trees to generate rules that detect those 

parameters in the manufacturing process that cause product defects. A case 

study showed a defect rate that decreased from 20% to 5%.  

Beyond product quality, reliability prediction requires an understanding of the 

time-to-failure behaviour of a semiconductor device. To gain this 

understanding, data about the device structure and chemistry, manufacturing 

process, packaging material and operational conditions must be considered 

(Xie and Pecht, 2003). Thaduri et al. (2013) proposed a reliability prediction 

model that combines the strengths of the Physics of Failures method and PA 



 
 
methods such as regression and SVM. The model suggests different 

alternatives for enhancement in reliability and supports the reduction in recall 

or replacement costs. Huang et al. (2016) developed a narrow-cut prediction 

model to understand and improve degradation processes. These insights 

allow engineers to increase the reliability of avalanche photodiodes that are 

used in datacenters, wireless or cloud computing networks. 

Generally, the reviewed literature does not use a common definition of PQ. 

Most of the articles are concerned with quality improvement by avoiding 

incidents during the manufacturing process, and have a significant overlap to 

the approaches of PdM and process control. Sub-section 2.5.5 emphasises 

PQ approaches beyond those applications.  
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2.5.6 Predictive Dispatching and Scheduling 

A special characteristic in semiconductor wafer fabrication compared to other 

industries is that wafers are produced in layers. Each layer is created and 

modified through various process steps. As pointed out by Varadarajan and 

Sarin (2006), the machines that are required to perform these process steps 

are expensive, hence, only a limited number of the same type of machine is 

available in a factory. Most probably, one wafer revisits a machine multiple 

times with different recipe requirements until the final layer is finished. In 

addition to this machine capacity limitation, a wafer fabrication process for 

one product may consist of around 600 single steps and a factory serves 

around 200 products simultaneously. Furthermore, the machine types and 

process steps differ significantly from each other in terms of batch versus 

serial processing, process duration and sequence-dependent setups 

(Varadarajan and Sarin, 2006). To cope with this situation, advanced 

software tools are applied for scheduling and dispatching. At the detailed 

level, these tools dictate to production staff or transportation robots in real-

time the production lot that has to be moved to a particular machine to 

perform a certain process step. Such tools provide rule-based dispatching, 

real-time reporting as well as data integration with a manufacturing execution 

system and other IT systems. The expected benefits are up to 15% 

increased wafer output per day, 50% reduction in cycle time and cycle time 



 

 

 

77 2.5 Predictive Analytics Applications in Semiconductor Manufacturing 

variability as well as up to 10% increased equipment utilization  (Applied 

Materials, n.d.).  

To understand the differences between scheduling and dispatching in 

manufacturing, McKay and Wiers (2003) considered the following aspects: 

(1) horizon and timing, (2) decision making, and (3) context. It was 

established that dispatching is measured from minutes to days and decisions 

are executed continuously each day, whereas scheduling typically constructs 

a production schedule once a week. Scheduling orchestrates the resource 

allocation and manipulates demand, whereas dispatching is responsible for 

immediate decisions based on setup, job duration and resource availability. 

Generally, dispatching tools are highly interacting with production staff, 

whereas scheduling tools are used by planning experts. This classification is 

reasonable and fits with observations at real SI companies.  

Several studies explore the opportunities to improve the quality of scheduling 

and dispatching results by the application of PA methods. Rothe et al. (2014) 

highlighted the influence of inefficient carrier logistics on the equipment 

utilization and factory throughput. Challenges in this type of logistics include 

the carrier exchange performance, changing lot sizes, different equipment 

configurations and internal equipment buffers. The study applied PA for 

different targets, for instance, to predict the readiness to unload a carrier from 

a piece of equipment, to predict material starvation of equipment load ports, 

and to predict the carrier dispatch behaviour ahead of time. Following the 

study conclusions, this type of predictive dispatching overcomes most of the 

inefficiencies of typical carrier logistics. Kuhnle et al. (2019) proposed an 

autonomous order dispatching agent based on reinforcement-learning. This 

approach is intended to overcome the challenges in semiconductor 

manufacturing, such as dynamic and non-deterministic production 

environments and unexpected incidents. Traditional methods (e.g., 

mathematical programming, heuristics and dispatching rules) are not 

considered appropriate to meet these challenges. The study presented a 

comparison of the throughput times for agent-based and heuristic-based 

dispatching under changing buffer capacities. Based on a real-world use 

case, the agent-based approach achieved better overall results. Zahmani et 
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al. (2015) applied decision trees to generate new dispatch rules for a single 

machine. To solve the dispatch rules, they use a genetic algorithm. 

Yu et al. (2020) recommended a prediction-based dynamic scheduling 

method with a multi-layer perceptron for load balancing. Compared to 

traditional scheduling methods, the predictive approach shows improvements 

in daily movement, equipment utilization, throughput rate and cycle time. A 

study by Takeda Berger et al. (2019) applied ML techniques in combination 

with simulation-based optimization for predictive-reactive production 

scheduling (PRPS). Figure 2-16 (Takeda Berger et al., 2019) shows a 

schematic of this PRPS approach. The PRPS system is based on data from 

the nominal factory scheduling. The predictive scheduling component 

analyses historical data regarding disruptions related to inventory that were 

not considered by the nominal scheduling. If required, the component 

modifies the schedule to eliminate these disruptions. Operational data, which 

is related to production interruptions, is continuously gathered and stored. If 

the PRPS system detects any problems, it verifies if the current schedule is 

affected. If so, the reactive scheduling component is triggered. The ML sub-

component collects online data form the shop floor and generates a solution. 

During the calculation, the simulation sub-component provides partial 

solutions to the production execution.  

 

 

Figure 2-16: Schematic of Predictive-reactive Scheduling (Takeda Berger et 
al., 2019, p. 1346) 
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Particularly in the area of predictive scheduling, the literature review has 

discovered a significant number of articles that call their approach ‘predictive’ 

without applying PA as considered in this thesis context. To gain predictions, 

most of the authors apply analytical, stochastic or deterministic techniques 

instead, for example, Nouiri et al. (2019), Ali Abuhasel (2016) and Lou et al. 

(2012). These approaches are not in the scope of this thesis, and hence, not 

discussed in more detail. 

2.6 Conceptual Framework 

The previous sections 2.2 to 2.5 discussed PA and SI mostly independent 

from each other. The PA applications that are relevant to semiconductor 

manufacturing have been discussed regarding their particular benefits and 

challenges. However, as the foundation of this research project, a conceptual 

framework is required to associate challenges in SI value chains to PA 

applications.  

2.6.1 Existing Frameworks 

Various articles have been reviewed to examine proposed frameworks and to 

understand to what extent they fit into this research project. Moyne and 

Iskandar (2017) discussed challenges in SI that prohibit the proper usage of 

PA methods and applications. However, they focussed on challenges 

regarding the applicability of PA rather than on how PA supports overcoming 

challenges in the value chain. Ren et al. (2019) proposed a conceptual 

framework of big data analytics in sustainable smart manufacturing systems. 

They focussed on product lifecycle management and considered the way big 

data analytics can help to improve single steps of the lifecycle. Ivanov et al. 

(2019) examined the influence of digital technologies and Industry 4.0 on 

supply chain disruption risks. The conceptual framework developed by 

Kozjek et al. (2020) intends to facilitate the introduction of big data analytics 

in manufacturing systems. It provides a domain model with different levels of 

abstraction and a reference procedure for development and implementation 

of a PA application. Lee et al. (2013) provided a conceptual framework that 

describes a so-called predictive manufacturing system. It associates data 

sources, data types, big data technologies, enterprise IT systems and target 
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applications, such as PdM and overall equipment efficiency. Belhadi et al. 

(2019) proposed a framework that associates manufacturing process 

challenges via big data analytics faculties with values gained by PA. The 

challenges, however, are not SI-specific but more general (e.g., safety and 

risk analysis).   

The review shows that none of the proposed frameworks is suited to this 

research project. Apart from Moyne and Iskandar (2017), none of the 

frameworks is employed with SI in particular. Therefore, the industry-specific 

challenges that have been discussed in 2.2.4 are not considered. Some 

frameworks are focussed on either PA or big data technologies and do not 

sufficiently consider the influences on value chains. Other frameworks 

consider such influences, but concentrate on supply chain or product lifecycle 

management and not on manufacturing aspects. These findings indicate a 

gap in the literature that is addressed by this thesis. 

2.6.2 Proposal of a New Framework 

A new conceptual framework based on the preceding literature study is 

proposed and presented in Figure 2-17. The framework consists of four 

sections from the bottom up: (1) SI value chain, (2) SI value chain 

challenges, (3) PA applications and (4) PA methods. Hence, it connects the 

two major areas in this thesis: PA (top part) and SI (bottom part). In section 

(1), the SI value chain with its main stages is presented. Because it is the 

primary focus of this thesis, the wafer fabrication stage is highlighted. The 

challenges of SI value chains previously discussed are shown in section (2). 

These are primarily valid for the wafer fabrication process, but are also 

related to RnD as well as product design. The framework connects those 

challenges that are suspected of having a logical dependency. For instance, 

the importance of capacity, or the necessity of high utilization are only 

relevant because semiconductor equipment is expensive. Another example is 

that the positive development of yield over time is a result of highly variable 

processes that are less controlled at the beginning of the lifecycle of a newly 

released semiconductor device.  
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Figure 2-17: Conceptual Framework for this Thesis 

 

Section (3) presents the discussed PA applications that are relevant for 

semiconductor manufacturing. As explained in 2.5.3, smart manufacturing is 

considered as a collection of multiple and partially integrated PA applications. 

Therefore, it visually consists of the other presented PA applications. Section 



 
 
(4) presents selected PA methods that are relevant to the presented PA 

applications. They are divided into supportive and core as suggested in 2.4.  

It should be highlighted that this list is not complete and more relevant 

methods may exist. However, these are the ones that have been proved to 

be crucial for the particular PA applications. Generally, all PA applications 

can use the full set of PA methods, although some studies recommend 

particular methods for certain applications. 
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As discussed in 2.5, each PA application is expected to cause various 

benefits that are listed in green boxes and are associated with the 

corresponding application. Considering these benefits, the framework 

suggests that particular challenges in SI value chains can be overcome by 

PA applications. The challenges in section (2) that could potentially be 

mastered by PA are highlighted in green. An exemplary relation exists 

between the increased equipment utilization gained by predictive dispatching 

that would directly meet the challenge where high utilization is required due 

to significant equipment expense. Another benefit that directly masters a 

challenge is the reduced customer information delay that could be achieved 

by smart manufacturing. Other challenges are only influenced indirectly, e.g., 

the variability in production processes could be reduced potentially by the 

application of predictive process control, which supports the root-cause 

detection of faults, and therefore enables the improvement of the process 

steps towards higher process stability. However, these types of indirect 

relationships must be discovered and proven through a scientific approach. 

In particular, the influences of PA on the various performance aspects of a SI 

PS are not clear from the literature study. Hence, it is believed that unknown 

transitive or even contradictory influences of PA applications on SI value 

chains can be discovered based on various causal relationships in a SI PS 

(hypothesis 1). In addition, it is believed that the potential benefits of PA are 

dependent on specific scenarios. This would mean that the value chain 

benefits of the same PA application are variable, for instance, between 

different workcenters or different operations (hypothesis 2). A deeper 

understanding of these assertions would support production managers and 

engineers to overcome the discussed challenges in SI value chains by 

implementing a PA application under consideration of transitive effects. The 
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thesis tests these hypotheses by applying a research methodology that is 

presented in Chapter 3.  

Finally yet importantly, the framework suggests that there are challenges in 

SI value chains that cannot be overcome by applying the presented PA 

applications. Such challenges are, for instance, the inverted bill of materials, 

the short product lifecycles, and complex master data structures. The 

investigation of which methods would master these challenges is out of the 

scope of this research project.  

2.7 Summary and Importance of This Thesis 

This chapter has presented the literature review. Since this thesis is 

employed with the implications of PA on SI PS performance, the chapter 

firstly considered SI and PA independently before particular PA applications 

for semiconductor manufacturing were reviewed.  

With regard to SI, the chapter has presented the literature review in the 

following areas: history and industry overview, optoelectronic industry, SI 

value chains and particular challenges in semiconductor manufacturing. The 

Following key issues could be identified from SI-related literature:  

 The historical development of SI was not commonly defined. 

Therefore, a separation into three historical perspectives was 

proposed: semiconductor technology, semiconductor-based 

applications, and the industrial development of the semiconductor 

market. 

 SI is diverse and separated by business models that differ significantly 

from each other in scope and economic profit. To evaluate meaningful 

benefits of PA, it is suggested that a particular area is focussed on, 

which is the wafer fabrication.  

 The Covid-19 pandemic has had a negative impact on the economic 

profit in 2020; however, recent trends suggest that the previously 

forecasted positive trend is expected to continue.  

 Though SI value chains are globally distributed, they are 

geographically concentrated. Possible implications of the Covid-19 



 
 

 

84 2.7 Summary and Importance of This Thesis 

pandemic on this type of value chain design were criticized as not 

being economical. 

 SI value chains are complex and differ from value chains in other 

businesses. It was suggested that Porter’s established value chain 

model does not meet the requirements of SI. Hence, an alternative 

model was proposed that covers the primary activities.  

 Most manufacturing-related challenges in SI value chains are 

associated with logistics. However, it is believed that these challenges 

are mostly driven by challenges in other areas such as product 

management and engineering because of volatile market situations, 

diverse product lifecycles and variability in single processes.  

 SI suffers from a lack of standardization in data and IT solutions 

caused by urgent operational needs that lead to ‘quick fixes’ instead of 

sustainable solutions. It is believed that this issue reinforces 

challenges in other areas, because solutions are isolated, area-

specific IT systems are not integrated sufficiently, and the risk of data 

inconsistency increases. 

The area of PA has been employed with the definition and overview of PA in 

general and with associated relevant methods. The Following key issues 

could be identified from PA-related literature: 

 The importance of PA has increased significantly over recent years, 

though the term is not clearly defined by the literatures. Several 

explanations for this development have been proposed, for instance, 

the relation to other technological trends in the area of manufacturing.  

 PA did not provide fundamental contributions to science as it only 

reuses previously existing methods from statistics or ML. Therefore, it 

is seen as valid to call it a buzzword.   

 A demarcation between PA and DM is not necessary since both terms 

apply the same type of methods to overcome similar problems. 

However, it can be stated that PA mainly considers the predictive 

parts of DM, whereas DM is also concerned with finding new 

relationships in large amounts of data.  

 A demarcation between PA and other types of analytics is useful to 

address the goals and expectations of a PA application. However, it 
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showed that the term ‘analytics’ overlaps with other disciplines such as 

artificial intelligence.  

 Relevant methods for PA could not be clearly associated due to the 

inconsistent definition of PA itself. To overcome this challenge, it was 

proposed to divide the methods into supportive and core while 

considering both as integral parts of a PA solution. Furthermore, 

particular PA core methods were mentioned in the context of PA 

applications.  

 Due to the inconsistent definition of PA and the variety of methods, it 

is not likely that a benefit calculation on this broad level would 

generate meaningful results. 

 It was further concluded that a benefit evaluation is not possible for 

single predictive techniques since their selection depends on the 

specific problem statement, given dataset and type of data 

preparation. Instead, it was proposed to identify PA applications that 

gained attention in the literature and that could be applied to master 

challenges in SI value chains. By analysing in which way these PA 

applications would improve business processes, it is expected to be 

able to calculate particular benefits.  

In order to discover possible areas for benefit evaluation in semiconductor 

manufacturing, the following PA applications have been identified and 

critically reviewed: PdM, SM, predictive process control, PQ, as well as 

predictive dispatching and scheduling. The Following key issues could be 

identified for PdM:  

 Though PdM as a term has been established for many years, the 

scope and targets of a PdM solution are not commonly defined by the 

literature. Nevertheless, a positive economic trend is forecasted 

beyond SI that underpins the importance of predictive capabilities to 

reduce equipment downtimes. 

 PdM is not clearly related to other maintenance strategies; to gain a 

clear understanding in this thesis, it was proposed to treat PdM as a 

technique for both preventive and aggressive maintenance that 

supplements other strategies.  
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 Existing studies on the selection of suitable machines for PdM did not 

consider logistics aspects, though these were identified as the most 

challenging in semiconductor manufacturing.   

 Existing studies on benefit calculation for PdM show various 

weaknesses, especially the missing consideration of influences on 

logistics.  

The Following key issues could be identified for SM:  

 The term SM was not clearly defined in the literature and showed the 

characteristics of a buzzword.  

 Several applications that were referred to SM showed significant 

overlaps with PdM or process control. Therefore, it could be implied 

that SM itself is not one PA application, but combines several PA 

applications to meet various requirements from multiple participants 

within the value chain. 

 Benefits from SM can only be generated if it is built on collaborative 

standards. Since standardization was identified as a weak point in SI 

value chains, the implementation and utilization of SM in SI is seen as 

risky and challenging. 

The Following key issues could be identified for predictive process control:  

 R2R is not directly relevant to PA; however, it could benefit indirectly 

from PA methods that are applied to improve FDC results. 

 SPC was found to be an established approach in SI using statistical 

techniques. Though experiments suggest that ML generates better 

results for anomaly detection, it was not evident from the literature if 

there is a trend in SI to replace traditional SPC by ML-based solutions. 

 FDC appeared to be commonly defined. Studies were employed to 

identify optimal architectures and methods by which convolutional 

neural networks were identified to outperform other ML techniques.  

 Fault prediction showed an overlap with PdM. To overcome this issue, 

it was divided into equipment-oriented and product-oriented fault 

prediction. The latter one is capable of predicting wafer or chip 

defects.  
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 Generally, the implications that PA applications in the area of process 

control have on the logistics performance of an SI PS were not 

studied. 

The Following key issues could be identified for PQ:  

 The term PQ was not commonly defined. Furthermore, the majority of 

the literature considered PQ as a result from PdM. Nevertheless, the 

review revealed applications beyond this limited view.  

 The differentiation between quality and reliability in order to gain 

realistic expectations from a PQ application was highlighted. Indeed, it 

was found that the studies on both types of PQ differ in scope and 

applicability.  

 PQ could be applied to gain quality by design. However, such a PQ 

solution involves and connects several stages in the value. Similar to 

SM, this type of integration is seen as a challenging venture due to the 

lack of standardization in SI. Nonetheless, it is expected that 

increased quality by design would lead to positive implications for the 

PS performance due to increased stability of single processes and 

reduced rework rates.  

 Predictive probing was identified to be a promising solution in order to 

reduce testing efforts and to keep testing quality of full probing at the 

same time. Reduced testing efforts might have a positive impact on 

the PS performances, however, this type of implication was not 

studied so far.  

 Reliability-oriented PQ appeared to be mainly important to gain a 

reduction in recall or replacement costs. Though manufacturing data is 

part of the source dataset for PA, they are not considered to have 

influence on the SI PS performance.  

 

The Following key issues could be identified for predictive dispatching and 

scheduling:  

 The review showed that scheduling and dispatching refer to different 

scopes and targets. Thus, it is important to differentiate related 
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predictive solutions in order to discover realistic implications on the PS 

performance.  

 PA showed significant improvements for various dispatching use 

cases. Since established dispatching tools mostly apply rule-based or 

analytical approaches, it can be seen that there are opportunities to 

improve SI PS performance by applying PA.  

 In addition, the application of ML for scheduling purposes was proved 

to outperform traditional approaches, which is also expected to 

improve logistics performance. However, it was found that approaches 

are often called ‘predictive’ without applying PA as considered in this 

thesis context. Therefore, future research regarding benefits in this 

area must consider an appropriate demarcation.  

 

The various issues that have been detected from the reviewed areas 

underpin the relevance and importance of this thesis that is employed with 

the impacts of PA on SI PS performance. In particular, the following 

arguments support its importance:  

 Special challenges exist in SI that differ from other industries. 

Therefore, it seen as important to study in particular the implications of 

PA on the SI.  

 None of the frameworks from reviewed articles considered 

implications of PA to overcome challenges in SI value chains.  

 Logistics was identified to be the most challenging area in SI PS, 

however, it was not studied previously in which way PdM would affect 

logistics performance. 

 There is growing attention on PA and PdM in particular that is 

forecasted to continue over the upcoming years. This trend was also 

verified for SI. Therefore, the results from this thesis are expected to 

gain further attention in future.  

 PA and PdM were not clearly defined in the literature. It is expected 

that the results from the benefit analysis and evaluation in this thesis 

will help future researchers to narrow down the scope for PdM in SI.  

 Selecting suitable machines for PdM was identified to be an important 

capability, since this approach can only be applied to a limited number 
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of machines due to the time-consuming implementation process. 

However, existing approaches did not consider logistic aspects, which 

are explicitly examined by this thesis.  

 Implications of predictive process control and PQ on SI PS 

performance have not been studied previously. Though these 

applications are not particularly considered in this project, they are 

seen as important for future work that can build on the models from 

this thesis.  

Finally, a conceptual framework has been proposed that supports this study. 

The results of this chapter indicate a gap in the literature that is addressed by 

this thesis.   
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Chapter 3 Research Methodology and Design 

3.1 Research Methodology 

The development of a research methodology is a process that covers several 

phases. Figure 3-1 provides a comprehensive overview of these phases. The 

development process starts at the outer layer that addresses the selection of 

an appropriate research philosophy. Then, the most appropriate approach 

and strategies must be identified. Afterwards, the researcher must define the 

choices, the time horizon plus techniques and procedures for data collection 

and analysis.  

 

Figure 3-1: Research Onion inspired by Saunders et al. (2009) 

 

The following sub-sections discuss each phase in order to develop the 

research methodology for this thesis.  

3.1.1 Research Philosophy 

A research philosophy refers to a system of beliefs and assumptions about 

the development of knowledge. The selected philosophy underpins the 

methodological choice, research strategy as well as data collection 

techniques and analysis procedures. These aspects support the planning of 

a coherent research project (Saunders et al., 2009).  



 

 

 

91 3.1 Research Methodology 

According to Galliers (1991), there are two major research philosophies, 

which are positivist (or scientific) and interpretive. Positivist research is 

characterised by repeatability, reductionism and refutability. In addition, it is 

assumed that phenomena under study can be observed objectively and 

rigorously. In contrast, interpretive research considers many different 

interpretations of social phenomena as well as the impact of the researcher 

on the social system under investigation. Jeffery (1993) concluded that 

interpretivism is a necessary approach for ’areas in which social activities 

make up a significant component of the process problem type’ (p. 115). 

Examples for these areas are the specification of requirements, project 

management or user relationships. Positivism is considered to support 

research projects that have a high technical component and lower social 

component, e.g. those projects with the aim of re-engineering decisions. 

Table 3-1 shows a comparison of the crucial characteristics of positivism, 

which are also valid for post-positivism, and interpretivism. 

Table 3-1: Comparison of Research Paradigms based on Chilisa (2012) 

Characteristic Positivism / Post-Positivism Interpretivism  

Reason for doing the 

research 

To discover laws that are 

generalizable and govern the 

universe 

To understand 

human nature 

and describe 

Philosophical 

underpinnings 

Informed mainly by realism, 

idealism and critical realism 

Informed by hermeneutics and 

phenomenology 

Ontological 

assumptions 

One reality, knowable within 

probability 

Multiple socially constructed 

realties 

Place of values in the 

research process 

Science is value free, and values 

have no place except when 

choosing a topic 

Values are an integral part of 

social life; no group’s values are 

wrong, only different 

Nature of knowledge Objective Subjective; idiographic 

What counts as truth Based on precise observation 

measurement that is verifiable 

and Truth is context dependent 

Methodology Quantitative; correlational; quasi-

experimental; experimental; causal 

comparative; survey 

Qualitative; phenomenology; 

ethnographic; symbolic 

interaction; naturalistic 

Techniques of 

gathering data 

Mainly questionnaires, 

observation, tests and experiments 

Mainly interviews, participant 

observation, pictures, 

photographs, diaries and 

documents 
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The characteristics of this research project are similar to those of positivism 

and post-positivism. The project discovers generalizable laws that support 

decision-making in SI manufacturing regarding PA and considers SI as one 

reality that is known to some extent. The research suggests that truth is 

based on the precise observation of the subject matter by experts, and 

measurement via IT-integrated manufacturing processes. However, the 

research is concerned with questions that can only be answered with specific 

probability instead of absolute certainty. Furthermore, the research project 

constructs new knowledge instead of passively noting laws of nature. These 

characteristics indicate that post-positivism fits better to this research 

compared to positivism (Crotty, 2015). Botha et al. (2012) considered the 

following aspects in order to identify the correct paradigm: ontology (“What 

do we believe about the nature of reality?”), epistemology (“How do we know 

what we know?”) and axiology (“what do we believe is true”). From an 

ontological viewpoint, it is believed that the researcher can only discover the 

reality within a certain area of probability due to human limitations. From an 

epistemological position, perfect objectivity is not believed to be achievable. 

The axiological viewpoint is that the researcher is not value-free and neutral 

in this project and that his personal and professional background influences 

the outcome of what is observed. Therefore, these assessments support the 

conclusion that post-positivism is the appropriate paradigm for this thesis.  

3.1.2 Research Approach 

The research approach sets the starting point and direction of a research 

project. Bryman and Bell (2015) discussed three research approaches: 

deductive, inductive and abductive. They explained that the main distinctive 

point between induction and deduction is the relevance of hypothesis to the 

study. A deductive approach tests whether or not the hypothesis is valid, 

whereas the inductive approach supports the creation of new theories and 

generalisations. The abductive approach produces explanations for 

‘surprising facts’ or ‘puzzles’ that are known at the beginning of the study. 

According to Saunders et al. (2009), deduction starts with a theory that is 

developed from the literature review results. In contrast, induction starts with 

the collection of data to explore a phenomenon to generate or build a theory. 
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The third approach, abduction, starts with data collection to explore a 

phenomenon in order to identify themes and to explain patterns. Abductive 

research intends to generate a new, or to modify, an existing theory that is 

tested by additional data collection. Collis and Hussey (2014) specified the 

characteristics of deduction and induction in more detail. They stated that 

deductive research requires the development of a conceptual or theoretical 

framework, which is then tested by empirical observation. Particular 

instances are deduced from general inferences, for which reason deduction 

is seen as moving from the general to the particular. With inductive research, 

theory is developed from the observation of empirical reality. This means that 

general inferences are induced from particular instances and this is why 

induction is seen as moving from the particular to the general. Figure 3-2 

visualises the different directions of both research approaches.  

 

Figure 3-2: Comparison of Deductive and Inductive Approach adapted from 
Burney and Saleem (2008) 

 

The appropriate approach for this thesis is deductive research. It starts with 

the development of a conceptual framework that associates theories of PA 

and SI value chains. The aim of the research project is to explore the benefits 

of PA in SI in detail, as it is assumed that the benefits vary depending on 

environmental factors. An additional aim is to identify the transitive impacts of 

PA on various aspects of SI manufacturing and to compare the potential 

benefits when applying PA to different workcenters and operations. 

Furthermore, the thesis intends to gain new insights when PA applications 



 
 
have only limited benefits, or may even contribute to the deterioration in 

production performance. For this purpose, observations at a real SI company 

are required to collect data. After several steps of data analysis, modelling 

and simulation, the hypotheses can be either confirmed or rejected.  
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3.1.3 Research Strategies 

The aim of research strategies is to determine the method of gathering data 

for a thesis. Galliers (1991) compiled methods that positivist researchers in 

the area of information systems have selected and applied in their studies. 

As shown in Table 3-1, the techniques for data collection and the general 

methodology are valid for both positivism and post-positivism. Therefore, 

these methods are considered to be valid for this thesis as well. From the 

overall set of methods, Table 3-2 lists and describes the ones that have been 

applied in this research.  

Table 3-2: Crucial Methods for Data Collection in Positivist Research 
based on Galliers (1991, pp. 333–336) 

Method Characteristics 

Case  Application to real world situations 

studies  Enables the capture of reality in greater detail than the previously listed methods 

 Results in a greater number of variables that can be considered for analysis  

 Usually restricted to a single event or organisation 

 Difficulty exists to acquire a statistically meaningful number of similar 

organisations; therefore, limited ability to build generalisations  

 Limited control of variables under study and hence limited differentiation between 

causes and effects 

 Different interpretations may exist on observations by stakeholders or researcher 

Theorem  Enables the identification of application areas from fields such as computer 

Proof science; other methods were not able to capture these areas 

 Strengths of the method are its repeatability, reductionism and refutability, as well 

as the precision of results 

 Limited applicability in positivist research because researchers move towards the 

social pole of the socio-technical spectrum 

Simulation   Applicable to problems that are difficult or impossible to solve by analytical 

methods 

 Behaviours of the system under study are copied by generating appropriate 

random variables 

 Same limitations as for experimental methods e.g., no consideration of excluded 

variables that exist in the real-world system 
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Each of the methods has its strengths and weaknesses. A researcher must 

select a method in order to gather suitable data to solve the particular 

research objectives. Based on the characteristics and goals of this study, the 

selected methods have been applied for the following targets:  

 Case study 

o To gather primary data from real world observations related to 

the hypotheses from the conceptual framework 

o To gather secondary data from internal company documents  

 Theorem proof (through ontology and first-order logic)  

o To test hypotheses qualitatively through logical inference  

o To provide a simple adoptable method for other researchers 

and SI manufacturing experts that enables them to understand 

the direct and transitive impacts of PA on SI PS 

 Simulation (through SD) 

o To test hypotheses quantitatively through dynamic simulation of 

SI PS behaviours  

o To provide a reproducible method to other researchers and SI 

manufacturing experts that enables them to explore 

workcenter- and operation-specific benefits of PA applications 

Another strength of case study is that it allows the understanding of dynamics 

present within single settings (Eisenhardt, 1989). According to Harrison et al. 

(2017), case study as a method is not associated with a specific 

philosophical orientation, but it can be applied to multiple perspectives, such 

as realism, positivism, relativism or interpretivism. Table 3-3 shows the key 

elements and their descriptors of case study research. 

As an additional strategy, the literature review is applied to narrow down and 

connect the areas that are relevant to this research project. This is an 

important prerequisite for stating the research objectives. The review process 

is designed as follows (Guthrie, 2010):  

1. Analysing literature 

2. Evaluating its relevance  

3. Creating a conceptual framework.  
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Table 3-3: Case Study Elements and Descriptors adapted from Harrison 
et al. (2017, pp. 13–14) 

Element Description 

The case  Object of the case study identified as the entity of interest or unit of analysis 

 Program, individual, group, social situation, organization, event, phenomena, 

or process 

A bounded  Bounded by time, space, and activity 

system  Encompasses a system of connections 

 Bounding applies frames to manage contextual variables 

 Boundaries between the case and context can be blurred 

Studied in  Studied in its real life setting or natural environment 

context  Context is significant to understanding the case 

 Contextual variables include political, economic, social, cultural, historical, 

and/or organizational factors 

In-depth  Chosen for intensive analysis of an issue 

study  Fieldwork is intrinsic to the process of the inquiry 

 Subjectivity a consistent thread—varies in depth and engagement depending 

on the philosophical orientation of the research, purpose, and methods 

 Reflexive techniques pivotal to credibility and research process 

Selecting  Based on the purpose and conditions of the study 

the case  Involves decisions about people, settings, events, phenomena, social 

processes 

 Scope: single, within case and multiple case sampling 

 Broad: capture ordinary, unique, varied and/or accessible aspects 

 Methods: specified criteria, methodical and purposive; replication logic: 

theoretical or literal replication  

Multiple  Multiple sources of evidence for comprehensive depth and breadth of inquiry 

sources of  Methods of data collection: interviews, observations, focus groups, artefact 

evidence and document review, questionnaires and/or surveys 

 Methods of analysis: vary and depend on data collection methods and cases; 

need to be systematic and rigorous 

 Triangulation highly valued and commonly employed 

Case study  Descriptive, exploratory, explanatory, illustrative, evaluative 

design  Single or multiple cases 

 Embedded or holistic  

 Particularistic, heuristic, descriptive  

 Intrinsic, instrumental, and collective 

 

The conceptual framework is applied to illustrate the expected insights 

gained by the thesis. It is used to formulate hypotheses that will be tested by 

solving the research objectives. For this purpose, the conceptual framework 

explains the major cause-effect relationships between the identified variables 
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(Swaen, 2015). Furthermore, the thesis applies semi-systematic review to 

solve RO 1. The purpose of this approach is to create an overview of the 

research area and is applied to rather broad research questions. It is 

focussed on research articles and review results that contribute, for instance, 

to the presentation of the state of knowledge in the research area (Snyder, 

2019).  

The particular methods for theorem proof (ontologies, first-order logics) and 

simulation (SD) will be discussed in more detail in Section 3.2.   

3.1.4 Research Choice 

As discussed in the previous sub-section, the thesis applies multiple methods 

to gather and analyse data and to solve the research objectives. These 

methods can be characterised as either qualitative (e.g., expert interviews as 

part of the case study) or quantitative (e.g., simulation). According to Roch 

(2017), this type of selection describes a mixed-method approach and 

enables a researcher to examine the topic under study from various 

perspectives. As applied in this thesis, the mixed-method approach can be 

derived from the particular research objectives. To apply quantitative 

techniques, the collected information must consist of any type of numeric 

data or must be transferable into a numeric form. Therefore, the preparation 

prior to the data collection must consider these criteria by considering in the 

questionnaire that interviews must supply numeric values in addition to 

qualitative answers. The qualitative techniques require information in written 

statements that can be interpreted by the researcher. Sources for this type of 

information include expert interviews or existing literature and documentation. 

Yin (2009) pointed out that mixed-methods may improve research in complex 

environments on a broader level than one research method allows. 

3.1.5 Time Horizon 

The time horizon of this research project is cross-sectional, because it 

presents a snapshot view of a particular situation at a specific point in time. 

Furthermore, it confines the duration of data collection and research to a 

short period of time (Saunders et al., 2009). The case study is performed 
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within a limited timeframe and observes the behaviours of a SI PS that are 

present during this timeframe based on expert interviews and company-

internal documentations. Consequently, the newly developed models in this 

thesis are valid for the present day impacts of PA on SI PS performance. 

3.1.6 Techniques for Data Collection and Analysis 

At a manufacturing facility of the case study partner, a real SI PS will be 

analysed. Different methods per PS aspect are used for data collection. The 

project uses semi-structured interviews (SSI) to collect primary data and 

Business Process Model and Notation (BPMN) to present secondary data 

based on internal documentation from the case study company. 

The application of SSI provides the flexibility to experience the independent 

thoughts of each individual in a group (Adams, 2015). It enables the 

researcher to gain deeper insights into an expert’s knowledge compared to a 

structured interview. Despite this flexibility, it supports the comparability of 

answers between interviewees better than unstructured interviews. The 

design of the questions are discussed in Chapter 5. BPMN is an industry 

standard that allows the illustration of business process models that can be 

understood by both process users and analysts. BPMN models describe a 

timely and logically dependent flow of events, decisions and activities 

(Schlauderer and Overhage, 2017).  

The qualitative part of the raw primary data is analysed through thematic 

coding. This technique breaks up data into parts of the same kind. Coding 

finds themes in text by analysing the meaning of words and sentence 

structure. A researcher identifies themes that are most frequent in interview 

results to understand the importance to the object under study (Medelyan, 

2019). Coding involves description of raw data, categorisation of descriptive 

codes and development into analytic codes (Gibbs, 2010). Thematic coding 

has been applied to secondary data that has been collected through the 

literature review, as well as to the primary data from the expert interviews. 

Roch (2017) suggested performing basic quantitative analyses of the primary 

data independent of the actual research objectives. Typical techniques are 

descriptive statistics and visualisation in charts to gain insights, such as 
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frequencies of terms or the mean and standard deviation of a variable. These 

results provide a first overview of the collected data and prevents the 

researcher from failures due to unsound interpretations of results in the later 

research process.  

3.2 Specific Research Methods 

3.2.1 Ontology 

Ontology is a method to model the structure of a system, which includes, for 

instance, essential entities and their mutual relations. Some characteristics 

are similar to the concept of models that are designed upfront to implement 

databases or software. However, Haidegger et al. (2013) discussed some 

significant differences that are compared in Table 3-4. Ontologies are used in 

computer sciences since the end of 1980s to represent knowledge in an 

explicit and formal way. At that time, the main focus was on high reusability 

of knowledge during the system design phase and not on direct user or 

external system interaction (Dengel, 2012).  

Table 3-4: Comparison of Models and Ontologies adapted from 
Haidegger et al. (2013, p. 1218) 

Feature Model Ontology 

Deployment 

Open/Closed 

Transformable 

Propagation of 

constraints 

No need to be shared openly or 

only shared within a small group 

of developers. 

Shared by all people in a domain or 

across many domains. 

Closed world (can be descriptive 

or prescriptive) 

Open world assumption 

descriptive models only. 

leads 

 

to 

Can be transformed from one 

another. Meta-models can be 

bridged between them.  

to Can only be mapped from one to 

another by using additional axioms. 

They need to be aligned to create a 

shared ontology.  

Can be 

ways. 

propagated in both One way only.  

Implementation 

level 

At lower abstraction levels.  At computation-independent model 

levels.  

Possibility of 

integration 

Can be done via transformation 

and generation.  

More difficult and done via lifting and 

bridging.  

Abstraction level More concrete. Models result in 

actual implementation. 

More descriptive and abstract. 

Ontologies can be used for Knowledge 

representation and reasoning. 
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An ontology consists of a generalization or specialization hierarchy of 

concepts (also called classes or entities), which can be implemented as a 

taxonomy (Staab and Studer, 2009). Relations between concepts can also 

be inherited. Taxonomies are  methods for classifying entities by their 

characteristics, and can refer to both the process and the end result (Bailey, 

1994). The difference with normal taxonomies (e.g., dinosaur classifications) 

is that ontology classifications are not limited to a single hierarchy. 

Furthermore, they always specify the meaning of an association between two 

entities. In this way, it is possible to classify an entity by multiple aspects in 

parallel.  

Nowadays, ontologies are an important method and widely used in the areas 

of knowledge sharing, artificial intelligence, robotics or autonomous systems 

in general. The Institute of Electrical and Electronics Engineers (IEEE) 

recommends ontologies as a major knowledge base for autonomous robots 

for the following reasons (Haidegger et al., 2013): 

 Development and deployment of robots require standardization in 

terms of safety, liability and quality.  

 Ontologies allow the description of the robot’s world, tasks and 

services precisely and unambiguously. 

 Ontologies using formal standards such as Web Ontology Language 

(OWL) and can be easily shared between systems.  

 The knowledge is not limited to the technical system, but extendible 

also to the human world around.  

Ontology as a method will be applied to develop the core of the PPES. This 

core is extended by first-order logical rules that are discussed in the following 

sub-section.  

3.2.2 First-Order Logic 

The First-Order Logic (FOL) is a method related to model theory. It allows the 

unambiguous definition and interpretation of statements (so called axioms) 

and the generation of inferences based on those axioms. For this purpose, it 



 

 
uses a formal language. A formal language can be defined without any 

reference to an interpretation since it is based on well-formed formulas 

(Hunter, 1996, cop. 1971). The FOL can be seen as next step in the 

evolution of the propositional calculus. The propositional calculus is the 

formal basis of logic dealing with the notation and usage of logical symbols. 

Further, it is also employed with the definition of axioms and rules of 

inference as part of the discipline proof theory (Weisstein and Sakharov, 

n.d.). 

FOL is using following basic expressions (Dangelmaier, 2017):  

1) All symbols from the propositional calculus:  

a. logical negation:  

b. logical implication: → 

c. logical equivalence:  ↔ 

d. logical conjunction (“and”):  

e. logical disjunction (“or”): ∨ 

2) Logical symbols to quantify an expression: 

a. universal quantifier:  

b. existential quantifier:  

3) Variables that represent individuals as model participants generically.  

4) Constants that represent, for instance, a specific individual.  

5) First-order predicates which act as classifiers on or relations between 

individuals. 

6) Higher-order predicates that denote the attributes of attributes or 

relations or relations between attributes and relations. In fact, they are 

not part of the FOL but of the higher-order logic, which is not 

separated strictly from FOL in some German literature.  
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Single FOL expressions can be combined using the logical symbols to create 

new axioms. An example on the production environment demonstrates this 

approach with initially independent expressions:  

a: “Production machines are located within the factory building.”  

b: “The factory building roof is water-resistant.” 
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c: “It rains.” 

d: “Production machines get wet.” 

A major aspect of propositional calculus is the declaration of whether an 

expression is true or false. Depending on the truth-value of expressions, 

there exists several rules for logical connectives to build compound 

expressions. Usually, the rules can be visualized at one glance within a truth 

table, for instance, to characterize the logical implication between two 

expressions as shown in Table 3-5. A noteworthy rule is indicated by the 

second row: it is impossible to infer an expression, which is wrong, based on 

a true statement. 

Table 3-5: Example of a Logical Implication 

a b a  b 

TRUE TRUE TRUE 

TRUE FALSE FALSE 

FALSE TRUE TRUE 

FALSE FALSE TRUE 

 

Looking at the previously stated expressions, the following statement could 

be created: “As long as the machines are within the factory building and the 

roof is water-resistant, they will not get wet while it is raining“. Equation (3.1) 

shows the propositional calculus for this statement. 

𝑎 ∧ 𝑏 ∧ 𝑐 →  ¬𝑑 (3.1) 

 

Though the derived expression is negated, its truth-value is ‘true’ since 

expression d is false. Thus, the compound expression is true.  

Propositional calculus is limited when the expression complexity is growing. 

More differentiated expressions require the consideration of objects and 

individuals as well as properties and mutual relationships (Avigad et al., 

2017). Looking at the previous example, there could be scenarios that 

require more differentiation. Examples can be: 

a) There are sub-parts of the factory, where the roof is not water-

resistant. 

b) There are machines that do not require such a protection.  

c) There are other water-protections within the factory except the roof.  



 

 

 

103 3.2 Specific Research Methods 

Equation (3.2) applies FOL using predicates and the existential quantifier to 

state that machines exist that do not require water-protection. 

∃𝑚[𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠(𝑚) ∧ ¬𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑊𝑎𝑡𝑒𝑟𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝑚)] (3.2) 

 

In this formula, m is a variable that represents individual objects. The formula 

indicates indirectly that there are also machines, which do require water-

protection or other objects, which are no machines (e.g., transportation 

vehicles) that do not require water-protection. 

In addition, the relationship between machines and factory can be expressed 

in more detail in terms of water-protection. Equation (3.3) shows this 

expression.  

∃𝑚[𝑖𝑠𝑃𝑎𝑟𝑡𝑂𝑓(𝑚, 𝐹𝑎𝑐𝑡𝑜𝑟𝑦) ∧ ¬(𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑊𝑎𝑡𝑒𝑟𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝑚))] (3.3) 

 

The formula says that objects exist that are part of the factory, but do not 

require water-protection. Factory is a constant which represents the single 

building and the predicate isPartof specifies the relation between any object 

and a particular Factory. In addition, the existential quantifier says that there 

are such objects, but there may also be others with different requirements.  

A strength of FOL is the precise formulation of inference rules. Equation (3.4) 

demonstrates this capability and says that if an object m is part of another 

object a and a is part of Factory, then must m also be part of Factory. 

∀𝑎 ∀𝑚[𝑖𝑠𝑃𝑎𝑟𝑡𝑂𝑓(𝑎, 𝐹𝑎𝑐𝑡𝑜𝑟𝑦) ∧ 𝑖𝑠𝑃𝑎𝑟𝑡𝑂𝑓(𝑚, 𝑎) ⟶ 𝑖𝑠𝑃𝑎𝑟𝑡𝑂𝑓(𝑚, 𝐹𝑎𝑐𝑡𝑜𝑟𝑦)] (3.4) 

 

The results of this thesis shall be shared with the research community. 

Hence, a global standard has been used to produce and store the rules, 

understandable by multiple persons, executable by multiple software tools, 

easy to exchange and capable of being extended. The literature research 

has led to the conclusion that the previously discussed OWL standard 

combined with a rule language based on FOL fulfils all of these requirements. 

With this approach, some of the logic expressions are modelled as part of the 

core ontology and others as explicit FOL rules.  

For this purpose, the Semantic Web Rule Language (SWRL) has been 

applied, which is a common standard for rule-based development in 

combination with the ontology language OWL. The successful combination of 
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these techniques has been proved by previous research projects in different 

environments, for instance: 

 To model the management behaviour and information of IT network 

architectures in a semantic way (Guerrero et al., 2005) 

 To imply the soil productivity grade (Ma et al., 2012).  

 To model the knowledge about supply chain scenarios (Matheus et al., 

2005). 

SWRL was initially proposed to the World Wide Web Consortium (W3C) in 

2004 as a combination of OWL and the Rule Markup Language. It includes 

high-level abstract syntax for Horn-like rules, an important type of FOL 

formula, and is also XML-based as is OWL (Horrocks et al., 2004). From a 

feature perspective, SWRL is a subset of FOL. For instance, negations and 

disjunctions cannot be written explicitly in expressions. However, these types 

of expressions can be modelled via OWL and, therefore, the full spectrum of 

FOL can be applied in combination with OWL and SWRL.  

The following example demonstrates the implementation of ontology-based 

rules. Individuals (people) are classified into male or female. In addition, a 

connection between individuals states a parent-child relationship. From the 

FOL perspective, male, female and isParent are predicates. Figure 3-3 

shows the graphical representation of this ontology. 

 

Figure 3-3: Example Ontology on People 
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In a separate section, additional rules are created to derive advanced 

information about the family relations:  

R1: isParent(?x, ?y) ^ isParent(?x, ?z) ^ differentFrom(?y, ?z) -> hasSibling(?y, ?z) 

R2:  Male(?y) ^ hasSibling(?y, ?x) -> isBrother(?y, ?x) 

R3:  Female(?y) ^ hasSibling(?y, ?x) -> isSister(?y, ?x) 

R4: isParent(?x, ?y) ^ isBrother(?z, ?x) -> isUncle(?z, ?y) 

 

The rules describe formally when individuals are siblings (R1), what exactly 

makes a brother different from a sister (R2+R3) and when an individual is an 

uncle (R4). This type of description is a major difference to imperative 

programming languages like Java or C#, where only the calculation is 

defined, but not the meaning of the calculation. This gap prevents the 

calculations from being reused for similar use cases within a software, which 

were not considered by the programmers. With declarative programming 

languages like SWLR, the semantic of the calculation is understandable by 

the rule engine and further inferences can be created automatically. Once the 

rule engine is executed, new relationships are added to the ontology as 

visualized in Figure 3-4. 

 

Figure 3-4: Example Ontology extended by Family Relations 

 

The rule engine may create inferred axioms based on the ontology structure 

and characteristics. This is a powerful function either to generate new 

knowledge or – in case of wrong inferences – to confirm the ontology logics.  
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3.2.3 System Dynamics 

According to Sterman (2000), SD is  

a method to enhance learning in complex systems. Just as an airline 

uses flight simulators to help pilots learn, system dynamics is, partly, a 

method for developing management flight simulators, often computer 

simulation models, to help us learn about dynamic complexity, 

understand the sources of policy resistance, and design more effective 

policies (p. 4). 

Grösser (2018) defined SD as a methodology that is capable of modelling, 

simulating, analysing and designing dynamic-complex facts in socioeconomic 

systems. It was developed by Jaw W. Forrester in the 1950s to support 

managers within complex development of their enterprises and to improve 

the decision-making process. In economic studies, SD is also known as 

‘Business Dynamics’ or ‘Strategy Dynamics’.  

Figure 3-5 presents a modelling process that is based on the proposal of 

Sterman (2000) to develop and apply a SD model. A modeller starts with 

articulating the problem under study, e.g., by defining why describing the 

problem and defining the key variables that must be considered for this 

problem. Once the problem is defined, a dynamic hypothesis can be 

formulated. This step explores the causal relationships of the key variables 

and maps them into a CLM.  

Once the CLM is defined, the actual simulation model can be developed. 

This step includes the design of model structure and decision rules, the 

estimation of parameters and the general consistency tests. The final step 

applies the model to generate new insights into a system’s behaviour. These 

insights allow the definition of new decision rules for the real system under 

study and the analysis of effects of these rules on the system. 

According to Bossel (2004), the prediction ability of a SD model is principally 

not based on historically collected data, but on the clear definition of causes 

and effects. Therefore, system knowhow owners need to be interviewed to 

retrieve the structure and function of the system. The data demand for 

explanatory models is therefore:  



 

 
 A set of data about causes and effects in the system structure. 

 A set of characteristic parameters of single processes within the 

system. 

However, Bossel emphasizes that though the data of time series is not 

required to create the model, the data is important for the succeeding model 

validation. 
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Figure 3-5: SD Modelling Process based on Sterman (2000) 

 

Figure 3-6 shows a schematic of a CLM that consists of three nodes that 

influence each other. An arrow connects a source node to a target node, 

where the arrowhead points to the target node that is influenced by the 

source node. An influence can be positive or negative and is marked by the 

according sign ‘+’ or ‘–‘. A positive influence increases the value of the target 

node, whereas a negative decreases the value. For instance, the model 

states that if node 1 increases, it would increase node 2 and node 2 would, in 

turn, increase node 3. However, by increasing node 2, node 1 is decreased. 

To understand the overall system behaviour, these feedback loops must be 

considered. The effect of a feedback loop is marked by a feedback signal in 

the middle of an arrow circle as shown in Figure 3-6. 
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Figure 3-6: Example System Constellation with Feedback 

A feedback signal only has the same sign as the initial arrow if the entire 

arrow circle consists of an even number of negative signs. Otherwise, with an 

odd number of negative signs, the feedback signal turns into the opposite. A 

negative feedback tends to stabilise the system whereas a positive feedback 

tends to lead to the destabilisation of the system (Bossel, 2004). This rule is 

also applied in Figure 3-6, where the feedback between node 1 and node 2 is 

negative, and therefore, a destabilisation of the system is expected.  

According to Forrester (2013), the basic elements of SD models are stock 

variables (also known as level), flows and decision functions. Flows are 

elements that transport the required information between stocks and are 

controlled by decision functions. Stocks and flows have a clear mathematical 

dependency that is defined by the differential calculus. Equation (3.5) defines 

the flow v that is associated with a stock variable z over time. It means that v 

is the first derivative of z. 

𝑑𝑧 (3.5) 
𝑣 =  

𝑑𝑡

 

Due to this relationship, the value of z over a certain time span (from tA to tE) 

is defined as an integration shown in Equation (3.6). 

𝑡𝐸 (3.6) 
𝑧 = ∫ 𝑣 ∗ 𝑑𝑡 

𝑡𝐴

 

From a system model perspective, the flow v can be the difference between 

an additive flow and a subtracting flow as shown in Equation (3.7). 
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𝑡𝐸 (3.7) 
𝑧 = ∫ (𝑣𝑎𝑑𝑑 − 𝑣𝑠𝑢𝑏) ∗ 𝑑𝑡 

𝑡𝐴

 

The system knowledge about causal relationships is expressed through the 

decision functions of the flows. If a feedback loop exists, v is dependent on 

the value of z. Forrester (2013) highlights, that system elements in reality are 

usually not dependent on the most recent value a stock, because a change 

cannot be applied infinitely fast. In any required case, this situation must be 

solved via an auxiliary variable as a transition layer. Stock-dependent flow 

functions can be formally written as shown in Equation (3.8). It represents an 

additive flow that applies the value of z from the previous period for both 

value calculation and case distinction. 

(𝑎𝑑𝑑 𝑎 + 1) ∗ 𝑧(𝑡 − 1) ∗ 𝑡, 𝑧(𝑡 − 1) < 50 (3.8) 
𝑣(𝑡) = {  

(𝑎 − 1) ∗ 𝑧(𝑡 − 1) ∗ 𝑡, 𝑧(𝑡 − 1) ≥ 50

 

Though the additive flow function is stock-dependent, the according 

subtractive flow function does not have to be as shown in Equation (3.9). 

𝑣(𝑡)𝑠𝑢𝑏 = 𝑏 ∗ 𝑧(𝑡 − 1) ∗ 𝑡 (3.9) 

 

The according SD diagram consists of stock z, flows 𝑣𝑎𝑑𝑑and 𝑣𝑠𝑢𝑏 and two 

parameters a and b and is visualised in Figure 3-7. 

 

Figure 3-7: System Dynamic Model with two Feedbacks 

 

Over the past few decades, SD has been applied to a large number of 

projects in various disciplines, for instance to examine the sustainable 

utilisation of water resources in China (Sun et al., 2017), challenges and 

opportunities in transportation (Shepherd, 2014), or to evaluate the 

investment risk of renewable energy (Liu and Zeng, 2017). SD is also applied 

to the area of manufacturing, for example: 
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 to analyse lean manufacturing strategies (Segura et al., 2019),  

 to investigate the impact of additive manufacturing on the spare parts 

supply chain (Li et al., 2017),  

 to design cost-effective Internet-of-Things solutions for production 

logistics (Qu et al., 2017),  

 to support the decision-making process for the purchase of industrial 

robots (Elizondo-Noriega et al., 2019).  

Admittedly, there are also limitations and drawbacks that have been 

discovered through the application of SD in several studies. These are based 

on the collection and classification of Sandrock (2006), and the noteworthy 

issues can be summarised as follows:  

1. General criticism: SD does not consider established theories or 

approaches of system theory, and shows a limited system-theoretical 

foundation. 

2. Modelling process: The process is less formalised; the validation is 

incomplete and misses a sensitivity analysis.  

3. Evaluation: Value of simulation result is unclear because of issues in 

the modelling process. 

4. Technical aspects: The execution of simulation runs requires long 

runtimes; models are functionally incomplete and some models are 

not sufficiently documented.  

However, most of the critical articles are 30 to 50 years old. At least for 

modelling process and evaluation, Sterman (2000) and Bossel (2004) 

present comprehensive methods that overcome the mentioned issues.  

3.3 Software Tools for the Research Project 

3.3.1 Microsoft Excel 

Microsoft Excel is a software program for organising, formatting and 

calculating data with formulas using a spreadsheet system. It is part of the 

Microsoft Office suite and produced by software company Microsoft. Further 

capabilities are the creation of several types of graphs, pivot tables and self-
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programmed macros using an integrated Visual Basic editor (Techopedia, 

2019). The tool is applied to this project for several purposes such as 

consolidating the raw interview data, preparing SWRL rules, and comparing 

PdMSM results from different simulation runs.  

Rationale for selection: Excel is an established and powerful calculation tool, 

which is also used at the case study company. All other selected tools in this 

research support Excel formats for importing or exporting data.  

3.3.2 Cytoscape 

Cytoscape is an open source software application that allows users to 

visualise molecular interaction networks and biological pathways. These 

networks can be integrated with annotations, gene expression profiles and 

other state data. Initially developed for biological research, Cytoscape 

became a general platform for complex network analysis and visualisation. 

Several plugins allow the configuration of network layouts (Cytoscape, 2018). 

This software is used to generate and visualize the CLM, which is one of the 

research objectives of this project.  

Rationale for selection: The major advantage against ordinary graphic tools 

such as Microsoft Visio or draw.io is that the generated CLM is interactive 

and can also be exported as interactive web application. Hence, the CLM can 

be applied independently from the other created tools in this thesis, which 

underpins its relevance as single research objective. 

3.3.3 Protégé 

Protégé is an open source ontology editor and framework for building 

knowledge-based systems in several areas such as biomedicine, e-

commerce and organisational modelling.  The tool was originally developed 

at Stanford University.. It is based on java and provides a plug-and-play 

environment, which allows rapid prototyping and application development 

(Stanford University, n.d.).  Protégé is applied in this project to develop and 

evaluate the PPES.  
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Rationale for selection: Protégé was found to be one of the most established 

ontology editors with particular strengths in building knowledge-based 

systems. In addition, an active community that consists of developers and 

users write documentations, contribute plug-ins and answer questions. 

Protégé fully supports OWL 2 and RDF specifications from the world wide 

web consortium, which fosters the reusability of PPES in further research 

projects.  

3.3.4 PyCharm 

PyCharm is a software produced by software company Jetbrains, which 

provides a professional edition as well as an open source community edition. 

For the scope of Python programming, the tool supports developer, for 

instance, by code completion, code inspection and code refactoring. It can be 

integrated with several scientific tools such as NumPy, IPython Notebook and 

matplotlib (Jetbrains, n.d.). The use of PyCharm in this research is to 

compare clustering-based term classifications against manually created 

classifications.  

Rationale for selection: PyCharm is one of the most established integrated 

development environments for Python and even used at large companies 

such as Twitter and HP (Mindfire Solutions, 2018). Python itself counts to the 

most used programming languages and surpasses other languages 

especially in the area of machine-learning, e.g. R and Java (Developer 

Economics, 2017).  

3.3.5 AnyLogic 

AnyLogic is a simulation tool that is produced by a company of the same 

name. The company provides a professional edition for enterprises and a 

free edition for personal use. The tool consists of a graphical user interface 

for modelling complex environments in areas such as manufacturing, supply 

chain and healthcare. AnyLogic provides a so-called multi-method modelling 

approach, where different simulation techniques can be integrated 

seamlessly. AnyLogic provides agent-based, discrete event and SD 

simulation models (AnyLogic, n.d.-b). AnyLogic is used in this project to 
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develop PdMSM and to perform experiments in order to discover and 

quantify the dynamic impacts of PA on SI PS performance.  

Rationale for selection: During the case study, it was found that AnyLogic is 

used for simulation purposes at the case study company. Hence, it was 

concluded that the PdMSM could be efficiently applied, because the software 

and modelling knowledge are present and there are no further licensing 

costs. In addition, due to the multi-method approach, other existing models 

could be potentially integrated with the PdMSM. 

3.4 Research Design 

Based on the previously discussed sections, the design of the research 

project can be developed that composes research methodology and methods 

in order to resolve the research objectives of this thesis. Figure 3-8 presents 

the research design for this thesis.  

The research design presents a comprehensive overview of which methods 

are used in which order to achieve which specific research objective. The 

method sequence is organised as proposed by the deductive approach and 

supports the SD modelling process. The research project starts with the 

literature review that provides specific insights into SI industry and value 

chains as well as PA methods and applications in SI. These results are used 

to develop a conceptual framework, which underpins the formulation of the 

research objectives for this thesis. 

Through the semi-systematic review of research articles, existing 

performance models in SI manufacturing are examined to understand their 

goals and techniques and to verify whether any existing model is suitable for 

this research project. These results solve RO 1.  

The next phase in the project is the case study that is performed at a real SI 

company. Primary data is collected through semi-structured interviews and 

secondary data from company-internal documents. After basic data analysis 

and evaluation, a CLM is developed that presents the direct influences 

between PS elements and PA characteristics. This model solves RO 2 and is 

the basis for the verification phase of the project. 
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Figure 3-8: Research Design 

After developing a PPES by application of ontology and first-order logic, the 

transitive effects of PA on PS performance can be analysed and evaluated 

qualitatively. These results solve RO 3. Finally, a SD-based simulation model 

has been developed to examine workcenter- and operation-specific impacts 

of PA on the overall PS performance. These quantitative results are analysed 

and evaluated to gain new knowledge about differentiated benefits and 

limitations of PA in semiconductor manufacturing. By completing this activity, 

RO 4 is solved.  

3.5 Ethical issues 

According to Strandberg (2019) poor research ethics could lead to the 

distrust of research results, lost funding and retraction of publications. The 

study summarises major ethical principles from previous and related 
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research that must be addressed. Table 3-6 lists these principles and 

summaries. 

Table 3-6: Important Ethical Principles (Strandberg, 2019, p. 2) 

Ethical Principle Summary 

Consent Participation should be voluntary and withdrawal possible at any time. 

Participants should be informed of this in a way that they can 

understand. 

Beneficence The welfare of participants 

considered. 

and the greater good for society should be 

Confidentiality  The privacy and confidentiality of the participants must be protected in 

order to minimize the impact of the study on their integrity.  

Scientific value  Research should yield fruitful results for the good of society and not 

be random or unnecessary. 

Researcher skill The researcher should have adequate skills. 

Justice It is unjust to let one group 

benefits from the research. 

carry the burden of research while another 

Respect for law Relevant laws should be obeyed. 

Ethical reviews An independent ethics board 

studies involving humans. 

should comment on, guide and approve 

 

It has been ensured that each of these principles has been applied to this 

thesis.  

Singer and Vinson (1999) pointed out that traditional ethical standards cannot 

immediately be applied in research that is conducted in industrial 

environments. This is because, in addition to the researcher, industrial 

representatives need to ensure that ethical codes are applied in order to 

protect themselves from litigation. For this purpose, the researcher must 

inform the representatives about the research content. This information 

consists of at least how the researcher plans to use the data, how the data 

will be stored and who will have access to it. To address these issues, this 

research project was presented to the workers’ council at the case study 

company prior to the start of the study. The workers’ council together with the 

researcher agreed on the standards and boundaries that had to be 

considered for data acquisition that would affect employees. In addition, the 

researcher presented the research content to the responsible department 

managers who were to evaluate the criticality of the data and use.   
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4.1 Introduction 

In the context of this thesis, performance models (PMs) are a technique that 

is capable of predicting and evaluating the future execution of a 

manufacturing process under varying circumstances. PMs can be applied to 

simulation studies to forecast the values of key performance indicators 

(KPIs). The predicted development of KPI values enables a company to 

understand causes and effects within the PS and to make appropriate 

decisions in order to achieve predicted improvements in reality.  

In this chapter, the definition and components of a PS are firstly presented. 

Then, an appropriate way of evaluating PS performance is narrowed down 

for this thesis. The following section discusses the SI PS performance 

indicators and metrics that are relevant to this thesis. Finally, PMs in the SI 

are presented and discussed.  

4.2 Production System  

The PS is a core component of any company that produces physical 

products. The literature describes different ways to define a PS depending on 

the context and goal. According to Porter’s model, a PS is part of the primary 

activities along the value chain. Other primary activities are inbound and 

outbound logistics, marketing and sales, as well as after sales service. These 

activities are separated from so-called support activities such as human 

resource management and firm infrastructure, which do not have a direct 

impact on the creation or logistics of material and products (Barnes, 2001). 

As discussed in Chapter 2, this model is not seen as suitable to SI PS. In the 

1950s, Ishikawa invented the widely known manufacturing fishbone diagram 

that consists of the 4M method to evaluate the factors that affect the waste, 

as shown in Figure 4-1. Each M stands for a participant of the PS that is, 

from a lean perspective, also a candidate for waste (Chiarini, 2013).  
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Figure 4-1: Ishikawa Manufacturing Fishbone Diagram (own visualization) 

The main idea of this method is to reduce as much as possible the waste 

factors of each participant of the PS. These factors must be identified during 

a cause-and-effect analysis. The fishbone diagram supports classifying 

causes and effects per participant at a company and reveals dependencies 

between main causes and secondary causes. Generally, the Toyota 

Production System highlighted seven general kinds of waste, called Muda. 

These are transportation, inventory, motion, waiting, over-production, over-

engineering and defects (Refa, 2019). In the semiconductor industry, there 

are waste factors such as handling and clothing for the category ‘man’, size 

and electrical properties for the category ‘material’, humidity and temperature 

for the category ‘machine’ and testing and protective structures for the 

category ‘method’ (Sood, 2013). Each of these participants plays a specific 

role during production. Therefore, waste analysis and optimisation require 

comprehensive knowledge about the core business processes that are 

related to production. To access this knowledge, experts from different 

disciplines, such as process engineering, production planning and 

operations, have to participate in workshops and work together.  

The supply chain operations reference (SCOR) model provides a 

standardised way to collect and define such processes on three levels. This 

is not limited to the flow of a process, but includes also the participants, the 

recommended skills and common ways for measuring the process 

performance. On the first level, the SCOR model consists of five general 

management processes: plan, source, make, deliver and return. The PS 
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processes are part of the make management process, and thus, they form 

the second level. The SCOR model principally allows the definition of 

interactions between single processes, which prevents process designers 

from building redundant flow designs. On the third level, the detailed flows, 

participants, inputs, outputs, performance metrics and even best practices 

are defined (Stephens, 2001). 

A further view of a PS, especially in this project’s context, refers to a closed-

loop system that allows the analysis of causes and effects during a material 

transformation. Figure 4-2 shows this approach (Kaufmann and Hülsebusch, 

2015).  

 

Figure 4-2: Cybernetic Model of a Production System inspired by Kaufmann 
and Hülsebusch (2015) 

 

Such a model depicts interdependencies between PS elements and their 

characteristics. Whereas the 4M method points to single participants and the 

Value Chain and SCOR model concentrate on single processes, this way of 

modelling seeks causal relationships between participants and processes to 

control their execution continuously. These relationships enable a different 

interpretation of measured KPIs since they also include unexpected side 



 

 
effects from other processes. Kaufmann and Hülsebusch (2015) considered 

a production process to be controlled if the impact factors have been 

analysed and classified as controllable or uncontrollable. In this context, 

uncontrollable factors are effects from outside the PS, which cannot be 

changed actively, such as weather conditions and economic trends. 

Furthermore, possible actions that can change the controlled factors must be 

categorised. Values from an automated generation of data can be observed 

regularly and compared against target values. A knowledge base that 

consists of assumptions on cause-and-effect relations supports managers 

during the comparison and decision-making process. Depending on the 

results, the decisions may lead to a control action that directly affects 

controllable factors. In a simple way, this cybernetic approach is similar to a 

thermostat as a component of an ordinary heater. 
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This thesis focuses on qualitative as well as quantitative effects based on 

causal relationships, and thus, a PS is treated similarly in this thesis to the 

definition of Kaufmann and Hülsebusch (2015). In addition, it involves 

knowledge from the other described models if applicable. In this sense, a PS 

can be formally defined as the sextuple in Equation (4.1).  

𝑃𝑆 = 〈𝐵𝑃, 𝑃, 𝑅, 𝐼, 𝑂, 𝑇〉 (4.1) 

 
 

Where:  

BP:  The core business processes that directly affect the material transformation.  
P:  All factory objects that can be classified as one of the four partners. They are 

primarily involved in creating a product.  
R:  The relations between partners of the PS. They are used for the cause-and-effect 

knowledge base.  
I:  All controllable input factors for partners to execute. 
O:  All measurable output from a transformation process.  
T:  Target values for performance indicators.  

 

Possibly, PS PMs consider only parts from Equation (4.1) based on selected 

targets. For instance, projects for quality assurance seek for different insights 

than cost optimization projects. Hence, a PM does not need to depict the full 

PS in every case. 

4.3 Evaluation of PS Performance 

In order to manage and improve the performance of a SI PS in a targeted 

manner, a company must be clear about what ‘performance’ actually means 
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and which performance characteristics are important to them. Though this 

assertion sounds trivial, Iannone and Elena (2013) pointed out that terms in 

this context are often mixed-up. Therefore, they proposed a delimitation to 

evaluate a transformation process from different perspectives: (1) efficiency, 

which stands for the ratio between actual input and a reference input, (2) 

effectiveness, which refers to the ratio between actual output and a reference 

output, and (3) productivity, which means the ratio between actual input and 

actual output. In particular, the authors considered downtime losses, speed 

losses and quality losses to have negative effects on the effectiveness. 

However, this demarcation is not commonly shared in literature. Oechsner et 

al. (2002) discussed an overall fab effectiveness (OFE) as a measure to 

evaluate an entire wafer fabrication facility. This measure was derived from 

the previously established overall equipment effectiveness (OEE) that is only 

valid on machine-level. They considered metrics such as cycle time 

efficiency, percentage of rework, yield and capacity utilization. It is seen as 

noteworthy that the authors defined ‘performance’ very limited as an aspect 

of OEE as defined in Equation (4.2). 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒
𝑡 𝑛𝑎𝑐𝑡𝑢𝑎𝑙 (4.2) 

𝑚
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑚 = 𝑢𝑝 ∗   

𝑡 𝑛𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
𝑚

 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑢𝑝
Where: m refers to a particular machine, 𝑡𝑚  is the productive time of a machine, 𝑡𝑚  is the 

overall uptime of a machine,  𝑛𝑎𝑐𝑡𝑢𝑎𝑙 is the number of units that was actually produced, and 𝑛𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 

is the number of units that could be produced theoretically. 

Nicholds et al. (2018) demarcated ‘performance’ from the ‘overall system 

effectiveness’ (OSE). According to the authors, OSE includes measures such 

as availability, utilization and production efficiency, whereas ‘performance’ 

was narrowed down to characteristics that influence the OSE, e.g. average 

line staff and maximum output capacity. In contrast, Toni and Tonchia (2001) 

used the term ‘performance’ to evaluate operations more generally and 

divided it into cost performance and non-cost performance that includes time, 

flexibility and quality. Cost performance can be measured, for instance, by 

machinery saturation and work-in-process level, whereas non-cost 

performance considers measures such as machine availability, process 

speed and reworks. This type of performance distinction is also supported by 

Neely et al. (1995), who proposed to evaluate PS performance from following 
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perspectives: (1) time, (2) quality, (3) flexibility, and (4) costs. For SI PS, 

typical KPIs from these perspectives are cycle time (time), yield (quality), 

flexibility in product mix (flexibility), and product costs (costs).  

The literature review indicates an inconsistent definition of the term 

‘performance’ in the area of manufacturing. It is not commonly agreed in 

which way it is related to ‘efficiency’, ‘effectiveness’ and ‘productivity’. In 

addition, whereas Iannone and Elena (2013) delimitated ‘efficiency’ from 

‘effectiveness’, Nicholds et al. (2018) considered ‘production efficiency’ as 

part of OSE as a measure of effectiveness. A similar issue was detected for 

the term OEE, that some authors called a measure for efficiency (e.g. 

Oechsner et al. (2002) and Azizi (2015)) and others considered as a 

measure of effectiveness (e.g. deRon and Rooda (2005) and Nicholds et al. 

(2018)).  

Therefore, a clear definition must be established within this project. It is 

proposed to focus only on the term ‘performance’ and to narrow it down for 

the scope of this thesis. With regards to the conceptual framework that 

proposes challenges in SI value chains that are expected to be mastered by 

PA and PdM in particular, ‘performance’ will be evaluated from following non-

cost perspectives:  

1) Logistics 

2) Quality 

3) Engineering 

4) Maintenance  

These perspectives are a subset of the categories that comprise SI value 

chain challenges as proposed in Chapter 2. It is implied that the actual values 

of PS KPIs reflect the ability of a SI company to master particular challenges 

in SI value chains. For instance, the ability to overcome the challenge that 

high utilization is required due to cost-intensive equipment can be measured 

by the KPI ‘utilization’ that refers to a specific workcenter. If PA is capable of 

increasing this KPI, it is concluded that PA supports to overcome the 

underlying challenge. Hence, the following section presents the KPIs and 

metrics in SI that are most relevant to this project based on the four 

perspectives mentioned above.  
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4.4 Performance Indicators and Metrics in the SI 

KPIs are customisable business metrics utilised to visualise statuses and 

trends in an organisation. They allow a company to measure progress toward 

these objectives. Key performance metrics usually consist of a target value 

and an actual value; the target value represents a quantitative goal that is 

important for a company to successfully run its business (Guzik, et al., 2004). 

Most KPIs in this thesis have been officially defined by or based on standards 

from the SEMI organisation (SEMI, 2017). Others are based on the common 

standards from Little’s Law (Little and Graves, 2008) and Factory Physics 

(Hopp and Spearman, 2011). Due to this foundation, the results of the thesis 

are expected to be valid to other SI companies as well. Due to the focus of 

the research project, KPIs related to man, method and material are only 

marginally relevant to this thesis and will be excluded. Each KPI is presented 

in detail including the rules for calculation. The correct understanding of each 

KPI is important to this project, since these indicators will be part of the PPES 

and the PdMSM. Prior to the detailed discussion, Table 4-1 lists the selected 

KPIs, their units of measure and associated category of challenge.  

Table 4-1: Overview of the relevant KPIs for this project 

Indicator Unit Category 

Equipment availability Percentage Engineering 

Operational efficiency  Percentage Engineering 

Overall equipment Efficiency Percentage Engineering 

Cycle time Time Logistics 
Flow factor Factor Logistics 
Going rate Units/time Logistics 
Operating curve Function Logistics 
PS availability Percentage Logistics 
Rate efficiency  Percentage Logistics 

Utilisation Percentage Logistics 
Variability / Alpha Coefficient Logistics 
Mean time between failures and mean time to failure Time Maintenance 
Mean time offline Time Maintenance 
Mean time to repair Time Maintenance 

Quality efficiency 

Yield 

Percentage Quality 

Percentage Quality 

 

This section presents the most relevant KPIs to evaluate SI PS performance 

as defined in Section 4.3.  
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4.4.1 Logistics-Oriented KPIs 

PS Availability (APS) 

Based on the 4M method from Ishikawa, Hansch and Schober (2015) 

developed the four-partner model to quantify PS performance based on the 

availability A of each partner. They specified the 4M method in more detail to 

gain clear results: ‘man’ is the operator, ‘machine‘ is the production tool 

(abbreviated as m in the formulas), ‘material‘ is the work in process (WIP) 

and ‘method‘ is the process. In this context, process refers to a single 

process entity that is part of a production route and not to the entire 

production process. Each partner refers to a particular availability metric: 

𝐴𝑚, 𝐴𝑊𝐼𝑃 , 𝐴𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟, and 𝐴𝑃𝑟𝑜𝑐𝑒𝑠𝑠. 

Prior to the calculation of the APS, it needs to be identified whether the four 

partners are statistically independent. If this is the case, the formula is as 

follows in Equation (4.3) (Hansch and Schober, 2015). 

𝐴𝑃𝑆 = 𝐴𝑚 ∗ 𝐴𝑊𝐼𝑃 ∗ 𝐴𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ∗ 𝐴𝑃𝑟𝑜𝑐𝑒𝑠𝑠 (4.3) 

 

If the downtimes of the four partners are synchronised, the formula is as 

follows in Equation (4.4) (Hansch and Schober, 2015). 

𝐴𝑃𝑆 = 𝑀𝑖𝑛{𝐴𝑚; 𝐴𝑊𝐼𝑃; 𝐴𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟; 𝐴𝑃𝑟𝑜𝑐𝑒𝑠𝑠} (4.4) 

 

According to this formula, a synchronised PS always leads to higher 

productive time, assuming realistic percentages. The productive hours per 

day can be calculated by Equation (4.5) (Hansch and Schober, 2015). 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝐻𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝐷𝑎𝑦 = 24[ℎ𝑜𝑢𝑟𝑠] ∗ 𝐴𝑃𝑆 (4.5) 

 

Cycle Time 

Cycle time (CT) is measured as the average time from a job being released 

into a station or onto a line to the time it is created (Hopp and Spearman, 

2011). There are two established ways to calculate the CT. The first is based 

on Little’s Law and was created by John D. Little from research in the field of 

queuing theory. Equation (4.6) relates the work in progress (WIP) to the 

going rate (GR). 



 
 

𝑊𝐼𝑃 (4.6) 
𝐶𝑇 =  

𝐺𝑅

 

With the second method of calculation, the meaning of CT is more clearly 

highlighted. The CT is a value that can be compared to a theoretical time that 

is the minimum time required to execute a certain process. This time is called 

raw process time (RPT) or, in some literature, raw cycle time. More 

specifically, the RPT is the shortest time required to fabricate a product and 

is thus the sum of all production timeframes te, as defined by Equation (4.7) 

(Hansch and Schober, 2015). 

(4.7) 𝑅𝑃𝑇 = ∑ 𝑡𝑒 

 

Where: te  is a particular production time 

In practise, the RPT is captured using time-recording methods when a new 

single process is released for the very first time at a machine. As defined by 

Equation (4.8), the CT is then defined as the sum of production time 𝑡𝑒 and 

wait time 𝑇𝑊 (Hansch and Schober, 2015). 

(4.8) 𝐶𝑇 = ∑ 𝑇𝑊 + ∑ 𝑡𝑒 

 

Where: te  is a particular production time and 𝑇𝑊 is the according wait time 
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However, it can be complicated and time-consuming in practice to measure 

wait times and calculate the CT using the second method of calculation. This 

is mainly due to complex production lines with a mix of various products and 

product-specific process characteristics. In such scenarios, companies must 

analyse whether it is possible to identify an overall CT or whether they must 

go for a product-specific CT (Hansch and Schober, 2015). 

Going Rate 

GR is also known as throughput and is measured as the average output of a 

production process per unit time. A process can be a single process entity at 

a machine or even the overarching production process at one plant (Hopp 

and Spearman, 2011). The correct dimension depends on the actual 

measurement goal, such as sales forecast or optimizing single process 

steps. According to Hansch and Schober (2015), GR can be either measured 

or calculated based on Little’s Law, which is a transformation of Equation 



 

 
(4.6). The generic formula to measure the throughput is defined by Equation 

(4.9). 

𝑛𝑎𝑐𝑡𝑢𝑎𝑙 (4.9) 
𝐺𝑅 =  

𝑡

 

Where: 𝑛𝑎𝑐𝑡𝑢𝑎𝑙 is the number of units that was actually produced and t refers to a specific period.  

If the GR is used as a tool metric, it specifies a certain tool’s speed. The daily 

going rate (DGR) can be calculated as an indicator for potential performance 

loss compared to the theoretical GR In combination with APS. It specifies the 

number of units that can be manufactured in one day under certain 

circumstances of availability. It must be noted that the DGR is also 

dependent on the synchronicity of the PS partners. Inspired by Hansch and 

Schober (2015), the formula can be shortened and defined by Equation 

(4.10).  

𝑛𝑎𝑐𝑡𝑢𝑎𝑙 (4.10) 
𝐷𝐺𝑅[𝑢𝑛𝑖𝑡𝑠] = ∗ 𝐴𝑃𝑆 ∗ 24[ℎ𝑜𝑢𝑟𝑠] 

𝑡

 

Where: 𝑛𝑎𝑐𝑡𝑢𝑎𝑙 is the number of units that was actually produced,  t refers to a specific period and APS 

is the PS availability  
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Flow Factor 

The flow factor (FF) is a multiplier, which specifies how much the CT exceeds 

the RPT. Thus, it describes how much longer the fabrication time is 

compared to the theoretically best value. Since it is a rather generic metric, it 

can be used to compare the execution performance of different tools, 

production lines or plants independently from process details (Hansch and 

Schober, 2015). The formula is as follows in Equation (4.11). 

𝐶𝑇 (4.11) 
𝐹𝐹 =  

𝑅𝑃𝑇

 

Variability (Alpha / 𝜶)  

Variability 𝛼 is a statistical metric that specifies the stability of a process. It 

quantifies the deviation of serving times for production lots that arrived at a 

new operation (Hansch and Schober, 2015). There are several statistical 

metrics required for calculating 𝛼: 

 The mean values µe and µa for serving time e and arrival time a. 
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 The standard deviations 𝜎𝑒and 𝜎𝑎. 

 The coefficients of variation ce and ca. 

The formula to calculate 𝛼 is as follows in Equation (4.12). 

𝑐2
𝑎 + 𝑐2

𝑒 (4.12) 
𝛼 =  

2

 

Where: ce is the coefficient of variation for serving time and ca is the coefficient of variation for arrival 

time 

In this context, variability is seen as related to logistics. The variability of 

production processes in terms of less determinable results of a single 

process is related to engineering challenges but is not in the scope of this 

thesis.  

Utilisation 

Utilisation (U) is a dynamic performance parameter which sets the GR in 

relation to the maximum throughput per production unit; this maximum 

throughput is called ‘capacity’ (Hansch and Schober, 2015). If a machine is 

processing fewer wafers per run than is theoretically possible, the machine’s 

capacity is not fully utilised. The reasons for this can be various. For 

instance, many wafers may have entered a limited timeframe where a single 

production process has to be executed within. There is a maximum timespan 

between a pre-process and a final process. If this timespan is exceeded, the 

wafers may be damaged due to chemical reactions. Thus, even if the 

machine capacity is higher than the number of wafers that is currently 

loaded, the process must be started even though the machine is not fully 

utilised. 

First, the possible capacity must be determined. The literature lists two types 

of capacities: a) capacity of a single machine and b) capacity of an 

overarching production unit. Equation (4.13) defines the calculation for a 

single machine (Hansch and Schober, 2015). 

𝐶𝑎𝑝𝑎𝑇𝑜𝑜𝑙 = 24[ℎ𝑜𝑢𝑟𝑠] ∗ 𝐺𝑅𝑇𝑜𝑜𝑙 ∗ 𝐴𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ∗ 𝐴𝑇𝑜𝑜𝑙 (4.13) 

 

Equation (4.14) defines the calculation for an overarching production unit 

(Hansch and Schober, 2015). 



 

 
𝐶𝑎𝑝𝑎𝑃𝑟𝑜𝑑 𝑈𝑛𝑖𝑡 = 24[ℎ𝑜𝑢𝑟𝑠] ∗ 𝐺𝑅𝑃𝑟𝑜𝑑 𝑈𝑛𝑖𝑡 ∗ 𝐴𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ∗ 𝐴𝑇𝑜𝑜𝑙 ∗ 𝐴𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (4.14) 

 

Even if the capacity can be calculated on a regular basis, the literature 

proposes taking the value as fixed since it acts as an input variable in PMs. 

With the capacity and the GR, utilisation can be calculated using Equation 

(4.15) (Hansch and Schober, 2015). 

𝐺𝑅 (4.15) 
𝑈 =  

𝐶𝑎𝑝𝑎

 

Depending on the chosen dimensions of capacity and GR, the value of U 

must be correctly interpreted. 
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Operating Curve 

The operating curve (OC) is an indicator to describe the performance of an 

entire production unit and was developed based on the results of queuing 

theory. Its calculation basis allows deeper study of PS behaviour under 

varying conditions. Thus, it is an important component of simulation models 

that are concerned with theoretical PS improvements (Weigert, 2013). The 

OC relates two KPIs, with one acting as a dependent (d) variable and the 

other acting as an independent (i) variable. Various associations are 

described in the literature on Little’s Law (Hansch and Schober, 2015):  

 GR (d) and WIP (i)  

 CT (d) and GR (i)  

 GR (d) and CT (i) 

 WIP (d) and CT (i) 

 WIP (d) and GR (i) 

 CT (d) and WIP (i)  

 FF (d) and U (i)  

Depending on the associating variables, the OC can be calculated using a 

specific formula. For instance, Equation (4.16) shows the calculation of CT 

(d) based on GR (i), where U is calculated based on GR (Hansch and 

Schober, 2015). 

𝑈 (4.16) 
𝐶𝑇 = 𝛼 ∗ ∗ 𝑅𝑃𝑇 + 𝑅𝑃𝑇 

1 − 𝑈
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A further example is the calculation of FF (d) based on U (i) as shown in 

Equation (4.17) (Hansch and Schober, 2015). 

𝑈 (4.17) 
𝐹𝐹 = 𝛼 ∗ + 1 

1 − 𝑈

 

Due to the logics of equation, every point on one OC represents the same 

level of performance. To improve a factory’s performance, the entire OC 

must be moved onto the x-axis (Weber and Fayed, 2010).  

Rate efficiency 

Rate efficiency (RE) defines the relation between the produced units 𝑛𝑎𝑐𝑡𝑢𝑎𝑙 

and the theoretically produced units 𝑛𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 that were realistic during the 

production time (Pomorski, 1997). It is defined by Equation (4.18). 

𝑛𝑎𝑐𝑡𝑢𝑎𝑙 (4.18) 
𝑅𝐸 =  

𝑛𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

 

Where: 𝑛𝑎𝑐𝑡𝑢𝑎𝑙 is the number of units that was actually produced and and 𝑛𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 is the number of 

units that could be produced theoretically. 

4.4.2 Quality-Oriented KPIs 

Yield 

In general, yield is a percentage indicator that shows the relation between the 

units that fulfil the desired product specification and the units that do not meet 

this specification. Hilsenbeck (2005) pointed out that yield can decrease due 

to random defects during the fabrication (e.g. particles on the wafer that 

cause disconnections of a chip) or due to systematic issues (e.g. incorrect 

layers or poor chip design). Yield can be measured as ‘line yield’ 𝑌𝑙𝑖𝑛𝑒 and 

‘die yield’ 𝑌𝑑𝑖𝑒. These two measures have a different granularity and 

complement one another. ‘Line yield’ is on wafer level and refers to the 

percentage of wafers that successfully passed the manufacturing process 

(Hilsenbeck, 2005). It is defined by Equation (4.19) 

𝐿
∑𝑃 ∑ 𝑝 (

𝑝 𝑛𝑜𝑢𝑡 4.19) 
=1 𝑙𝑝

𝑌𝑙𝑖𝑛𝑒 = 𝑙=1  𝐿
∑𝑃 ∑ 𝑝 𝑛𝑖𝑛

𝑝=1 𝑙=1 𝑙𝑝
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Where: P refers to the number of products, L refers to the number of lots that belong to a product, 𝑛𝑜𝑢𝑡
𝑙𝑝  

is the number of wafers that passed the manufacturing process and 𝑛𝑖𝑛
𝑙𝑝  is the number of wafers that 

have entered the manufacturing process. 

‘Line yield’ is typically measured prior to the wafer test, where every chip on a 

wafer is tested against the functional specification. Based on the result of 

these tests, the ‘die yield’ can be calculated using Equation (4.20) 

(Hilsenbeck, 2005). 

𝑝𝑎𝑠𝑠𝑒𝑑
𝐿 𝑚 (4.20) 

∑𝑃 ∑ 𝑝 𝑙𝑝
𝑝=1 𝑙=1 𝑚𝑝

𝑌𝑙𝑖𝑛𝑒 =  𝐿
∑𝑃 𝑝 𝑛𝑡𝑒𝑠𝑡𝑒𝑑

𝑝=1 ∑
𝑙=1 𝑙𝑝

 

Where: P refers to the number of products, L refers to the number of lots that belong to a 

𝑝𝑎𝑠𝑠𝑒𝑑
product, 𝑚  is the number of chips on a particular wafer within a specific lot that belongs to a 𝑙𝑝

particular product that passed the test, 𝑚𝑝 is the number of chips per wafer for a particular product, 

𝑛𝑜𝑢𝑡
𝑙𝑝  is the number of wafers that passed the manufacturing process and 𝑛𝑖𝑛

𝑙𝑝  is the number of wafers 

that have entered the manufacturing process. 

To calculate the overall yield 𝑌 that considers the total losses of wafers as 

well as the functional failures per chip, both measures need to be 

consolidated as defined by Equation (4.21) (Hilsenbeck, 2005). 

𝑌 = 𝑌𝑙𝑖𝑛𝑒 ∗ 𝑌𝑑𝑖𝑒 (4.21) 

 

Quality efficiency 

Quality efficiency (QE) defines the relation between the units approved by 

quality control, which excludes units to rework 𝑛𝑟𝑒𝑤𝑜𝑟𝑘 as well as units to 

scrap 𝑛𝑠𝑐𝑟𝑎𝑝, and all produced units 𝑛𝑎𝑐𝑡𝑢𝑎𝑙 (Pomorski, 1997). It is defined by 

Equation (4.22). 

𝑛𝑎𝑐𝑡𝑢𝑎𝑙 − (𝑛𝑟𝑒𝑤𝑜𝑟𝑘 + 𝑛𝑠𝑐𝑟𝑎𝑝) (4.22) 
𝑄𝐸 =  

𝑛𝑎𝑐𝑡𝑢𝑎𝑙

 

Where: 𝑛𝑎𝑐𝑡𝑢𝑎𝑙 is the number of units that was actually produced, 𝑛𝑟𝑒𝑤𝑜𝑟𝑘 is the 

number of units that requires rework and 𝑛𝑠𝑐𝑟𝑎𝑝 is the number of units that failed.  

 

In contrast to yield, QE considers also the number of units that require 

rework. Therefore, it provides a different view from quality perspective.  
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4.4.3 Engineering-Oriented KPIs 

Machine availability  

According to Pomorski (1997), machine availability (Am) defines the relation 

𝑢𝑝
between a machine’s uptime 𝑡𝑚  and the total time 𝑡𝑡𝑜𝑡𝑎𝑙  of a considered 

period as defined in Equation (4.23).   

𝑢𝑝
𝑡 (4.23) 𝑚

𝐴𝑚 =  
𝑡𝑡𝑜𝑡𝑎𝑙

 

𝑢𝑝
Where: 𝑡𝑚  is the overall uptime of a machine and 𝑡𝑡𝑜𝑡𝑎𝑙 is the total time. 

Machine availability is also a part of the overall PS availability that was 

discussed in 4.4.1.  

 

Operational efficiency 

Operational efficiency (OE) defines the relation between a machine’s overall 

𝑢𝑝
uptime, which includes a machine’s pure uptime 𝑡𝑚  as well as its idle 

time 𝑡𝑖𝑑𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒
𝑚 , and the time used for production 𝑡𝑚  (Pomorski, 1997). It is 

defined by Equation (4.24). 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒
𝑡 (4.24) 

𝑚
𝑂𝐸 = 𝑢𝑝  

𝑡 𝑖𝑑𝑙𝑒
𝑚 − 𝑡𝑚

 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑢𝑝
Where: 𝑡𝑚  is the productive time of a machine, 𝑡𝑚  is the overall uptime of a machine and 𝑡𝑖𝑑𝑙𝑒

𝑚  

is the idle time of a machine.  

Overall Equipment Efficiency or Effectiveness  

Overall equipment efficiency or effectiveness (OEE) is the key metric of total 

productive manufacturing and represents the productivity of a machine. It is 

defined by SEMI E79 and compares the actual performance of a particular 

machine m to its performance capabilities under ideal manufacturing 

conditions. Overall equipment effectiveness considers not only the machine 

uptime but also surrounding factors such as quality efficiency and rate 

efficiency. It consists of three generic elements: availability, performance 

efficiency and rate of quality. Overall equipment effectiveness is calculated 

by multiplying single metrics, which each represent a certain aspect of 

productivity (Pomorski, 1997). OEE itself is seen as a KPI that is related to 
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engineering, since observations at the case study company showed that 

engineering departments own the key responsibility over a machine and are 

the main audience for OEE reports. However, some of its sub-KPIs refer to 

challenges and perspectives that are related to logistics and quality. 

Therefore, these sub-KPIs are discussed within the according sub-sub-

section. According to Pomorski (1997), OEE is calculated using Equation 

(4.25). 

𝑂𝐸𝐸 = 𝐴𝑚 ∗ 𝑅𝐸 ∗ 𝑂𝐸 ∗ 𝑄𝐸 (4.25) 

 

Where: 𝐴𝑚 is the machine availability, RE is the rate efficiency, OE is the operational efficiency and QE 

is the quality efficiency.  

4.4.4 Maintenance-Oriented KPIs 

Mean Time to Repair 

The mean time to repair (MTTR) measures the maintainability of a machine. 

As defined in Equation (4.26), it represents the average time required to 

repair a failed machine component. It sets the overall time that was required 

for repair actions in relation to the overall number of failures over a certain 

amount of time (Hilsenbeck, 2005). 

𝑛
1 (4.26) 

𝑟𝑒𝑝𝑎𝑖𝑟
𝑀𝑇𝑇𝑅 = ∗ ∑ 𝑡  

𝑛 𝑖

𝑖=1  

 

𝑟𝑒𝑝𝑎𝑖𝑟
Where: n is the number of failures and 𝑡  is the time required to repair a particular failure. 𝑖

Mean Time to Failure and Mean Time Between Failures 

Machine components can be repairable or not. If a component must be 

replaced completely (either due to a failure or planned lifecycle end), the 

meantime to failure (MTTF) is applied. If a component can be repaired after a 

failure, the meantime between failures (MTBF) is applied. Both KPIs are 

calculated using Equation (4.27) and represent the average time that passes 

between two failures (Olofsson, 2018).  

t𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 (4.27) 
𝑀𝑇𝑇𝐹/𝑀𝑇𝐵𝐹 =  

𝑛
 

 

Where: n is the number of failures and t𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 is the time where the machine was productive. 
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Mean Time Offline 

To evaluate a machine’s downtime history in combination with the number of 

issues, the meantime offline (MTOL) is applied. It calculates the relation 

between the overall downtime period and the number of interruptions within a 

certain timespan, as shown in Equation (4.28) (Hilsenbeck, 2005). 

𝑛
1 (4.28) 

𝑀𝑇𝑂𝐿 = ∗ ∑ 𝑡𝑑𝑜𝑤𝑛

𝑛 𝑖  

𝑖=1  

 

Where: n is the number of failures and 𝑡𝑑𝑜𝑤𝑛
𝑖  is the time where the machine was down per failure. 

4.5 Performance Models with Focus on SI 

In computer science, a PM is a model created to define the significant 

aspects of how a proposed or actual system operates in terms of resources 

consumed, contention for resources and delays from processing or physical 

limitations. Such models can be interpreted by a software tool to simulate the 

system’s behaviour based on the information contained in the PM (Illingworth 

and Pyle, 2004). Through simulation runs, the model results can be tested 

against varying circumstances. Thus, a PM allows the prediction of future 

KPIs under changing conditions without the necessity of applying these 

changes to the real system. The main difference between performance 

measurement systems (PMSes) and PMs is, therefore, that PMSes serve to 

analyse actual performance values from the real system’s processes, 

whereas PMs serve to forecast future performance values.  

To find existing models from academic publications, several global literature 

databases were searched. To focus on current and relevant models and 

methods, the earliest publication date was set to the year 2005. The following 

are the reasons for this limitation of publication date:  

1) The research context of PA is quite new, and the initial literature 

review showed that scientific results have been published mainly 

during the past several years.  
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2) If a PM from an older publication is important, it has probably become 

a standard in the SI. If it could solve the project’s challenges, it would 

be revealed during the case study. 

3) The study seeks to demonstrate that none of the current research 

projects employed with PM in the SI has presented a solution to the 

challenges from this study.  

 

Since the pure database research also showed results that were not relevant, 

further criteria for manual analysis were required to identify relevant models 

for this study:  

1) A publication must present a PM according to the specification above 

(e.g., no frameworks, online control systems or fixed algorithms).  

2) A model must cover the entire PS, not only one of the four partners 

(e.g., not only OEE for production machines). 

3) A model must be concerned primarily with simulating PS KPI values 

as discussed in section 4.3 (e.g., no pollutant emission or delivery 

dates).  

4) A model must focus on the overarching production process (e.g., not 

the introduction of new products, single sub-processes or IT system 

performance).  

Under these criteria, the literature study identified 18 models from 183 

relevant publications. Table 4-2 lists the titles and references of the relevant 

publications as well as the evaluated type of model that will be discussed in 

the following paragraphs. 

In the next step, these models were analysed and classified according to the 

following categories: calculation type, core method for simulation and 

simulation goal. Furthermore, the models were examined against 

environment scalability, their ability to extend input parameters and output 

variables and their applicability to the evaluation of PA applications.  
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Table 4-2: List of Publications about Relevant Models 

# Title of Publication Reference of 
Publication 

Type of Model 

1 “A Performance Analytical Model of Automated 
Material Handling System for Semiconductor 
Wafer Fabrication System” 

(Zhang et al., 2015) Analytical 

2 “The Construction of Production Performance 
Prediction System for Semiconductor 
Manufacturing with Artificial Neural Networks “ 

(Huang, 1999) MLB 

3 “An Economic Manufacturing Quantity Model for a 
Two-Stage Assembly System with Imperfect 
Processes and Variable Production Rate“ 

(Chang et al., 
2012) 

Deterministic 

4 “Impact 
Factors

of Production Control and System 
 in Semiconductor Wafer Fabrication“ 

(Qi et al., 2008) Deterministic 

5 “The Influence of Lot Size on Production 
Performance in Wafer Fabrication Based on 

(Tu and Lu, 2017) Other 

Simulation“ 

6 “Scheduling Policies in Multi-Product 
Manufacturing Systems with Sequence-
Dependent Setup Times“ 

(Feng et al., 2011) Statistical 

7 “Mathematical Programming Approach to 
Optimise Material Flow in an AGV-Based Flexible 
Jobshop Manufacturing System with Performance 
Analysis“ 

(Fazlollahtabar et 
al., 2010) 

Deterministic 

8 “Impacts of Quality and Processing Time 
Uncertainties in Multistage Production System“ 

(Wazed et al., 
2010) 

Statistical 

9 “An Integrated Performance Driven Manufacturing 
Management Strategy Based on Overall System 
Effectiveness“ 

(Nicholds et al., 
2018) 

Other 

10 “Standard WIP Determination 
Control with Time Constraints 

and WIP Balance 
in Semiconductor 

(Kuo et al., 2008) Deterministic 

Wafer Fabrication“ 

11 “Tractable Nonlinear Production Planning Models 
for Semiconductor Wafer Fabrication Facilities“ 

(Asmundsson et 
al., 2006) 

Analytical 

12 “Lot Cycle Time Prediction in a Ramping-Up 
Semiconductor Manufacturing Factory with a 
SOM–FBPN-ensemble Approach with Multiple 
Buckets and Partial Normalisation“ 

(Chen et al., 2009) MLB 

13 “Simulation-Based Optimisation of Dispatching 
Rules for Semiconductor Wafer Fabrication 

(Zhang et al., 2009) Other 

System Scheduling by the Response Surface 
Methodology“ 

14 “Performance Prediction and Evaluation Based 
on the Variability Theory in Production Lines 
Using ARENA Simulation“ 

(Li et al., 2018) Statistical 

15 “Towards Zero-Defect Manufacturing (ZDM)—A 
Data Mining Approach“ 

(Wang, 2013) Statistical 

16 “Manufacturing Intelligence to 
Reduce Semiconductor Cycle 

Forecast 
Time“ 

and (Chien et al., 2012) MLB 

17 “Performance Improvement of 
Assembly Shop by Integrated 
Approach“ 

a Multi Product 
Fuzzy Simulation 

(Azadeh et al., 
2012) 

Other 

18 “Estimation of the Mean Waiting Time of a 
Customer Subject to Balking: A Simulation Study“ 

(Jang et al., 2007) Other 

 

The study revealed the following calculation types: 

A) Analytical Models 

Analytical models use methods based on mathematical equations. These 

models can be used to predict the behaviour of certain elements of a system 
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and understand the current behaviour of a system. Thus, they can be used 

for both use cases of performance measurement and performance 

prediction. Analytical models use mathematical functions to express unique 

relationships between variables. A function is a map that takes values from 

the domain set and transforms them into values from the range set. Per 

calculation instance, a function can only return one value (the value for the 

dependent variable), whereas the input parameters (the independent 

variables) can be any value. Functions can be characterised as linear and 

non-linear. Linear functions express a direct proportion between the input 

variables and the function value and only return a value from the range set 

once. Non-linear functions usually do not express a direct proportion and 

may return the range values multiple times, and thus, a different set of input 

parameters may lead to the same function result. The mathematical basis for 

many analytical models is the application of queuing theory. Queueing theory 

is defined as a mechanism to reflect the length of time that a product waits to 

be produced. Queue length times are calculated based on the speed that a 

service-providing unit operates and the number of requests to be processed. 

The formula for determining the average response time for a transaction is 

known as Little’s Law and is mentioned in section 4.3 as the foundation for 

several KPIs (Caliri, 2000). In the case of a performance prediction, a 

function is considered to represent a specific KPI. The calculated value is 

then dependent on the given input parameters, or more precisely, quantified 

attributes which specify a process at a certain point in time. To study different 

scenarios and to gain a broader set of results, the calculation is executed 

several times using varying input parameter values.  

B) Statistical Models 

Statistical models are a technique in mathematical statistics and are usually 

specified by mathematical equations. Though there exists no general 

definition in literature, a statistical model is commonly described by two sets 

S and P. S is the set of possible observations from a process, and P is the 

set of probability distributions on S. The set P is mostly parametrised 

(McCullagh, 2002). Statistical models are used to test statistical hypotheses 

against sample data. The calculated results of a statistical-hypothesis test 

are not certain. Therefore, the chosen significance level and the probability 



 
 
distributions according to the sample data are used to reduce the number of 

wrong decisions against the hypothesis. In contrast to results from analytical 

models, these prediction values must be possible values with a certain 

degree of probability and within a certain error interval. A test procedure 

generally begins with the formulation of the null hypothesis H0 and the 

alternative hypotheses HA. To gain meaningful results, the next step of 

determining the correct probability distribution function is very important. 

Then, the significance level must be selected prior to the observation of the 

sample data and the definition of the critical region. Based on the sample 

data, the observed value tobs is calculated from the test statistic T. Finally, a 

decision must be made whether to reject H0and consequently accept HA or to 

not reject H0. The rule for this decision states that if tobs is in the critical 

region, the null hypothesis must be rejected. In addition to hypothesis testing, 

there exist other methods to gain statistical results, such as Markov chains.  
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C) Machine-Learning–Based Models 

Machine-learning–based (MLB) models use methods and techniques from 

the discipline of machine learning. It is a term used in the artificial-intelligence 

community to indicate automated improvement based on experience or 

empirical data in accomplishing a given task, such as optimising an objective 

function (Gass and Fu, 2013). The following learning types are described in 

the literature (Awad and Khanna, 2015):  

 Supervised learning: A learning mechanism is trained by pre-labelled 

input data. The label attribute value is the value that must be 

predicted. Thus, the learning mechanism must synthesise an accurate 

model function that attempts to generalise the relationship between 

input data (so-called feature vectors) and the predicted output (so-

called supervisory signals).  

 Unsupervised learning: To discover hidden structures in unlabelled 

datasets, unsupervised learning mechanisms are applied. Typical use 

cases are data compression, outlier detection and classification. The 

primary goal of such models is to reveal unknown relationships.  

 Semi-supervised learning: These algorithms use a combination of a 

small number of labelled and a large number of unlabelled datasets to 

generate a model function. The model goals tend to be those of 

 



 

 
supervised learning; however, they involve reduced human effort in 

labelling the masses of data.  

 Reinforcement learning: This methodology uses a control-theoretic 

trial-and-error learning paradigm with rewards and punishments 

associated with a sequence of actions. A machine may autonomously 

reconfigure its future actions using past experiences of observable 

changes in the state of its environment.  

 Inductive inference: Based on training datasets, the learning 

mechanism identifies general rules that represent the hypothesis 

space. The rules can then be applied to specific test cases to obtain a 

prediction. With continuously new datasets, the generalisation process 

may be an ongoing task to develop a richer hypothesis space.    

 Transductive learning: This learning mechanism attempts to predict 

exclusive model functions for specific test cases by using additional 

observations that are related to the new cases. Compared to the 

inductive inference, no generalisation takes place. Knowledge gained 

from specific training datasets is only meant to be applied to other 

specific test datasets.  

The MLB category includes, for instance, all models which use artificial 

neural networks, support vector machines or DM methods.  
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D) Deterministic Models 

Deterministic models are built on the assumption that changes in an 

environment are based on fixed parameters with no uncertainty, compared to 

statistical models, for example. If the environment is, for instance, a certain 

population, there are fixed parameters such as the selection coefficient, 

mutation pressure and migration (Rédei, 2008). Compared to analytical 

models, which usually also have a deterministic character, the deterministic 

models are not employed with the development of mathematical functions but 

with the development of algorithms. This can be achieved, for instance, 

through the application of imperative programming. As in any modern 

programming language such as Java or C#, the procedures or functions may 

have either an evaluative or an acting character. In either case, using a given 

set of input values, the model will always return the same result. 

Deterministic models process only in one direction. This means there are no 
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feedback signals within the model structure which would influence the 

process or the results. In control theory, such models are known as open-

loop controllers. A model can be formally defined by an ISO-normed 

flowchart that includes at minimum the respected input parameters, the 

desired output and the actual operations and decisions. The flowchart is a 

graphical representation of an algorithm, which is defined as a finite set of 

well-defined rules that specifies a sequence of operations for performing a 

specific task (Weik, 2000). Deterministic models are principally time-

independent, and thus, the input and output must be interpreted as an 

occurrence at a single point in time.  

E) Other Models 

The other category collects the types of models which do not match the 

criteria of the previously discussed categories. In this research project, the 

PPES and PdMSM would be classified as other. PdMSM is mainly 

characterised by the principles of cybernetics and overlaps with deterministic 

characteristics, such as a fixed set of input and operations. However, it uses 

time as an important model dimension and allows feedback loops within the 

model structure. From a control-theory perspective, this is called a closed-

loop model. PPES has some attributes from inductive learning, such as the 

rule-based knowledge database, however, it applies a deductive reasoning 

approach. Further calculation types which are sorted into this category are 

decision trees and general simulation.  

These models differ not only in their core calculation type but also in their 

concrete prediction goals. There are several perspectives how to gain 

improvement in production performance. The following categories of 

perspectives could be identified in this research: 

 To solve challenges from a logistics perspective  

Example: To predict the effect of changing lot sizes 

 To solve challenges from a quality perspective 

Example: To predict production yield based on changing influences 

 To solve challenges from an automation perspective 

Example: To predict the benefits of applying automated wafer handling  

 To solve challenges using patterns and causal relationships 



 

 
Example: To predict production performance using artificial neural 

networks 

 To solve challenges from a setup or maintenance perspective 

Example: To predict production performance with varying scheduling 

policies 
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Table 4-3 shows the number of models per calculation type and perspective 

as previously described. 

Table 4-3: Study Results Per Calculation Type and Perspective 
 

Analytical 

 

 

Deterministic 
 

 

 

MLB 
 

 

Other 
 

 

Statistical 
 

 

Sum 

1 

7 

7 

Automation 1 

   

 

Logistics 4 1 2 

Patterns and causal 1 2 3 1 

relationships 

2 

1 

18 

Quality 2 

Setup or maintenance 1 

Sum 2 4 3 5 4 

 

Beyond the chosen calculation type and perspective, there are further 

aspects for evaluating the models according to their possible application to 

this study. The analysis will inspect which input and output parameters are 

given per model, whether the examined environment is scalable and whether 

the model parameters are extendible to support this research project. The 

input parameters of the model refer to selected control factors to predict 

performance indicators as model output. The models were analysed based 

on the referenced literature to find out whether input or output are extendible. 

The set of parameters of a model is considered to be extendible, if further 

input or output parameters can be integrated with the model. Input is only 

marked as extendible, as long as the additional parameters have effect on 

the prediction results without the need of a model redesign. If a model would 

have to be redesigned to make use of the additional parameters, for 

instance, by changing equations, it is not considered to be extendible. Output 

is marked as extendible, if a model would produce results for additional KPIs, 

which could be extracted without a model redesign. An environment of the 

model is marked as scalable, if, for instance, the number of workcenters or 

operations can be increased or decreased without a model redesign but only 
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via configuration of the existing set of input parameters. Table 4-4 lists the 

results from this analysis: 

Table 4-4: Model Analysis by Possible Application  

# 

1 

2 

Model Input Parameters Model Output   Parameters 
Extendible  

Environment 
Scalable 

Paper not accessible, therefore, no 
analysis possible.  

N/A N/A N/A 

Historical WIP level; historical move Future WIP No No 

3 

4 

5 

6 

7 

8 

volume; disruptive factors (machine 
breakdowns, preventive 
maintenance, operator absence, etc.) 

level, future 
move volume 

Number of required components in 
automatic stage, production rate per 
component, demand rate, setup cost 
per cycle, holding cost per 
component, holding cost for an end 
product, shortage cost for an end 
product, defective rate per 
component in automatic stage, 
defective rate of end product in 
manual stage, rework cost for a 
defective component, rework cost for 
a defective end product, time period 
within which inventory of a 
component depletes, time period 
within which inventory of the end 
product depletes, time period within 
which backorder is replenished, CT, 
maximum inventory level per 
component, maximum inventory level 
of the end product, maximum 
backorder level of the end product 

Costs per unit No No 

MTTR (short and long); job release 
policies (shift release, CONWIP, 
WIPLOAD control); dispatching 
policies (first in, first out; earliest due 
date; critical ratio); batching policies 
with different wait times 

CT, WIP, 
lateness, fab 
output 

No No 

Lot size policies, fab capacity CT, GR, wait 
time 

No No 

Scheduling policies such as cyclic, 
longest queue, shortest queue 

GR No No 

Completion time per production step, 
processing time of a shop per 
product, transferring time between 
shops, velocity of automated guided 
vehicle, distance for product between 
shops, waiting time for product per 
shop, cycle time for product, total 
working time per day 

GR No Yes 

Batch size at the bottleneck station, Lead Time, No Yes 

9 

setup time, CT WIP 

Average line staff, labour hours per 
unit, maximum output capacity, 
maximum and average finished 
goods stock levels per year, 
expected stock out days per model 

Overall system 
effectiveness 

No 
 

Yes 

10 

per year  

WIP level and queue per workstation, 
inter-arrival time and service time of 

WIP No Yes 
 

material, arrival rate, number of  
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11 

12 

machines per workstation, availability 
rate of workstation 

 

Production plans, WIP, inventory, 
capacity, lead-times per workstation 

GR No Yes 
 

Historical data on normalised CT per 
lot, normalised CT forecast per lot, 
utilisation, lot release time, WIP, total 

CT No No 

queue length, total queue length 
before bottlenecks, total queue 
length in entire factory, wait time, 
future discounted workload on 

13 

14 

processing route, prediction error per 
lot, prediction error rate per lot 

GR-relevant aspects (e.g., dispatch-
rule parameters)  

CT, WIP No No 

Arrival coefficient of variation (CV) of 
the products, process CV, line CV, 
number of tandem stations, number 

GR No No 

of parallel machines at a station, set 
of parallel machine numbers at each 
station, buffer size between two 
adjacent stations, batch size of 
product waiting for processing, 
standard deviation of natural 
processing times at a station, 
standard deviation of the effective 

15 

16 

17 

18 

processing times at a station, MTTF, 
MTTR, CT, ATool, expected waiting 
time spent in queue, WIP, GR, arrival 
rate of the product, departure rate of 
the product, time required to process 
a single product, average natural 
processing times at a station, 
effective mean processing times at a 
station, time indicator of product 
arrival, parameters which indicate 
lower limit, peak location, upper limit 
of triangle distribution, shape 
parameter of the gamma function, 
rate parameter of the gamma 
function 

Visual pattern projection Yield No No 

WIP, capacity, utilisation, average 
layers, GR  

CT  No No 

Historical data on process operations GR Yes (input) No 

Statistical values on arrival and Wait time No No 
serving times 

4.6 Summary 

This chapter has provided a comprehensive overview of the various aspects 

of PS performance in the SI PS. Different methods of defining a PS have 

been presented, and the most proper definition for this research project has 

been determined, which is a cybernetic perspective. The problem of 

inconsistent evaluation of PS performance has been discussed and resolved 
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for this thesis. PS performance will be evaluated from four perspectives: (1) 

logistics, (2) quality, (3) engineering, and (4) maintenance. These 

perspectives are related to the challenges in SI value chains that could be 

mastered by PA as proposed by the conceptual framework in Chapter 2. 

The primary measures have been discussed, including the underlying 

formulas and relationships between measures. These measures are 

important for the PPES and PdMSM that will be developed and evaluated in 

this thesis. The PM review has presented a concise view of applications, 

parameters, calculation types and structural flexibility for the models, which 

have been identified as relevant to this study. Further, the underlying core 

methods have been classified by distinct calculation types. The review has 

also revealed that none of the relevant and published models has been 

employed to investigate PS behaviour from the perspective of PA. Due to the 

selected type of calculation, most of the models are not extendible to serve 

scenarios other than those initially intended. The model review has further 

shown that the fundamental associations and effects between PA and SI PS 

performance have not yet been analysed. Thus, this review supports the 

importance of this study, which is explicitly employed to investigate the 

impact of PA on the SI PS performance.  
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Chapter 5 Data Collection and Presentation  

5.1 Introduction  

5.1.1 Introduction 

To investigate realistic and meaningful impacts of PA on SI PS performance, 

the knowledge of the fundamental components, associations, and effects 

within a SI PS is required. As discussed in Chapter 4, most performance 

models are concerned with the established associations from Little’s Law and 

its application for calculating the operating curve. However, these models do 

not contain all the required data and cannot be directly applied to calculate 

potential benefits of PA. Therefore, the missing components, associations, 

and effects must be produced and analysed first. In this chapter, the data 

collection is presented that was conducted at a wafer fabrication facility of the 

case study company.  

5.1.2 Case Study Company and Products 

The company selected for the case study is one of the international market 

leaders in semiconductor-based illumination, visualisation, and sensor 

technology. Its business covers automotive, mobile, general lightning, and 

industrial applications. The final optoelectronic products are distributed to 

original equipment manufacturers to assemble high-end technology 

components, for instance, infrared distance sensors in cars or iris scanners in 

smartphones. Furthermore, typical products are car interior and exterior 

lights, smart illumination for horticulture and street lighting. The parent 

company employs over 24,000 people in Europe, Asia, and the United States 

and generates revenue of €1 billion.  

5.1.3 Aims of Data Collection  

The case study is used to collect, analyse, and evaluate critical data to 

understand the overall manufacturing process, performance criteria, and 

causal relationships between PS elements and EM challenges. The data 
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consists of the unique associations between influencing and influenced 

terms. This data is used as the basis for the PPES as well as for the PdMSM. 

The data were collected from the following sources:  

 Expert interviews 

 Business process documentation 

 IT system landscape documentation  

 Historical data from IT systems 

Since the focus of this project is on the maintenance and production 

processes, in this chapter the data that are concerned with the following 

problems has not been collected: 

 The empirical relationships between KPI results and corrective actions 

by the management and the consequences that these would produce 

over the following periods.  

 Simulations of production cost impacts for the questions such as “How 

much monetary savings can I expect when I reduce the WIP by a 

specific percentage?” 

 Simulations of other impacts beyond EM methods on PS performance.  

5.2 Data Collection Preparation  

This section presents the fundamental preparation of the data collection, the 

design of the questionnaire, and the selection of the experts.  

5.2.1 General Preparations 

The first step is to present the topics and objectives of this project to the 

related functional department managers. It is necessary to convince them 

that this project would bring benefits to the company in order to obtain official 

support. The followings are the main benefits for the company:  

1. The topic of PA in the context of big data is significantly relevant to 

semiconductor manufacturing; furthermore, a quantitative model for 

analysing the potential benefits would help to identify the most critical 

PS elements. 



 

 
2. The methodology is generic and can be either directly applied or 

further developed if the PS or parameters (e.g., capacity or new 

product technologies) are modified in the future.  

3. The methodology can also be applied to other production sites with 

minimised configuration efforts.  

4. The general ability of the company to understand and evaluate 

modern technologies is enhanced and the dependencies on external 

consultants are reduced.  
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5.2.2 Selection of the Experts  

On approval of the case study, the second step was to identify the most 

appropriate participants for the expert interviews. The selection criteria of the 

experts is principally based on their company role and specific work 

experience. Figure 5-1 presents the organigram of the related business 

functional departments of the case study company. 

 

Figure 5-1: Company Organigram (partial) 

 

From the figure, it can be seen that the frontend production area is divided 

into several major departments, each of which is again split into subgroups. 

The relevant groups for this case study are organized within the 

manufacturing department and the operations planning and controlling (OPC) 

department. All PS performance experts are consolidated in one group under 
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OPC. These are the IE experts. The operational EM experts are divided into 

several manufacturing modules. The strategic EM experts are consolidated in 

a so-called shared service centre. The green boxes in the organigram are the 

relevant groups for the case study.  

The organigram and its identified sub-departments is used to decide the 

number of potential experts for this study. Furthermore, the selection of 

experts has been discussed with the department heads for their approval. 

Finally, 13 experts were identified to support the case study. Two of them 

rejected participating because of personal reasons. Table 5-1 lists the 

participating experts and their expertise.  

Table 5-1: Selected Experts and Expertise 

Expert 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Expert Area Expertise 

IE  General front-of-line processes 

 Grinding and polishing processes 

 Lithography processes 

 Chemical processes 

 Cluster tools 

 Batch processes in combination with time loops 
 

IE  Sputtering tools and processes 

 Evaporation tools and processes 

 Bonding, baking, and atomic layer deposition technologies 

 Plasma processes and tools 

IE  Entire frontend production  

IE  Sputtering processes, especially cluster tools 

 Measurement equipment and processes 

 Wafer probing equipment and processes 

 Chip dicing equipment and processes 

 Ageing analysis equipment and processes 

 Optical control equipment and processes 

 Volume and capacity planning for new products after the 
development phase 

IE  Entire frontend production 

IE  At tool level, especially cluster tools for simulation  

 Other applications for the entire frontend production  

EM  All types of equipment except end-of-line (e.g., wafer probing), 
including epitaxy, evaporation, sputtering, lithography, and 
many more.  

EM  Equipment, particularly in automotive production processes  

 Lithography equipment, especially cluster tools 

 Equipment for chemical processes 

EM  Equipment in epitaxy and analytics processes 

 Robots for automated wafer stock handling  

EM  Equipment for laser-based lift-off processes 

 Equipment for laser-based scribing and breaking processes  

EM  All types of equipment for end-of-line processes, including 
wafer probing, automated optical inspection, laser-based 
wafer dicing, taping, and many more. 
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As a prerequisite to collecting personal data from interviews, the workers’ 

council has to be informed to request its official approval of the interview. 

During a meeting with the data protection committee, the research project 

was presented along with the goals and case study as a core method. In 

addition, the two questionnaires were discussed to clarify potential critical 

information. Finally, the committee approved the case study and released a 

company agreement. However, there were some constraint conditions, such 

as the agreement only allowing the interviews to be recorded in writing and 

not in voice recording. Moreover, all of the interviewed experts have to 

remain anonymous, and thus, the published data cannot include any details 

that would link the answers to any individual person.  

Before the formal interview, all identified experts were invited to a short kick-

off meeting. In this meeting, the research project and essential goals were 

summarised and the aims of the case study and interview contents were 

presented. The experts were provided with the opportunity to clarify any 

questions or raise concerns about the interviews. Thus, the formal interview 

focussed on the interview questions. Furthermore, the selected experts knew 

the other experts taking part in the interviews.  

5.2.3 Design of the Questionnaires 

To consider the particular areas of expertise, two different interview 

questionnaires were prepared: one IE-oriented and one EM-oriented 

questionnaire. Both questionnaires consist of ten questions and start with a 

question about the personal experiences with either IE or EM methods. This 

acted as a warm-up and linked the interviewee’s personal background to the 

research project. Due to the semi-structured interview approach, succeeding 

questions were dependent on the particular answers of previous questions. 

Thus, the single interview results can differ in content and size. For instance, 

each IE expert must state relevant performance factors based on his/her 

personal experience. In a later question, the expert must define logical 

associations between these factors that he/she has stated previously. The 

main goal of the questionnaire is to identify the relevant PS elements and 

performance factors and how they are associated with each other. These 

elements and factors can be at factory and machine level.  
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For the interview, it is most important to design an answer schema that is 

generic and extendible. This semi-structured approach helps to keep the 

expert answers aligned between the different appointments without losing the 

opportunity to add personal experiences. However, if an interviewee was not 

able to be convinced by the answer schema or was unable to follow the 

schema, the schema could be rejected for that particular question and the 

answer be recorded as plain text. Therefore, the applied data analysis 

methods have to be suitable for the deviations in the answer schemas of EM 

and IE.  

5.2.4 Experiences from a PdM Pilot Project 

Independent from the case study, the manufacturing department initiated a 

small PdM pilot project. This provided a good opportunity to add these 

experiences to the thesis project and use them for the model design. The 

experts involved in the pilot hold the following roles in the company:  

 EM Engineer: A technical expert for a specific group of production 

machines that were analysed during the pilot project.  

 Data Scientist: An expert on PA methods and their applications in 

machine sensor data with an academic background in mathematics.  

 IT Engineer: An expert in big-data analytics software that was used to 

implement the PdM use case.  

The experts took part in a combined interview session to answer questions 

about their general and technical background, project intentions, results, and 

experiences. Because the background information prior to the appointment 

was highly limited, the technique of an unstructured interview has been 

selected. Thus, only a few major questions were prepared to focus on the 

pilot project contents and to allow open responses from the interviewees. 

Afterwards, some documents, such as management presentations and data 

results, were shared to use their contents for the thesis.  

The pilot project was initiated one year before the case study. At the time, the 

company was already working on a global solution to optimise the production 

yield and increase the traceability of manufacturing issues along the overall 

process. This solution employs PA methods to obtain new patterns from data 



 

 
and derives recommendations for engineers and managers on how to 

improve the yield. To support the PA methods efficiently, a suitable software 

package is required to create analytical models and to apply the methods in 

an automated fashion. However, such a software package was not part of the 

company’s IT portfolio. Therefore, an IT project has been initiated in parallel 

to select a professional big-data analytics software package from the market 

and to procure, install, and configure it for first use cases. After the first PA 

project was completed, the responsible persons from the IT department 

searched for other opportunities to demonstrate the capabilities of PA. During 

an in-house workshop on big-data technologies, the experts came together 

for the first time and planned the pilot PdM project.  
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The analysed machine group is part of the production area ‘physical 

deposition’, and performs thermic evaporation of metals. The single 

evaporation chamber of a machine consists of a dome for calottes with 

wafers, an e-gun for evaporation of the material, and an ion beam source 

with a filament. Figure 5-2 presents a schematic of an evaporation chamber 

and its components. 

 

Figure 5-2: Schematic of the Evaporation Chamber (own visualization) 

 

The central component that is analysed using PdM methods is the filament 

within the ion beam source, which may break on occasion. The ion beam 

source transforms argon as a raw material into single ions through the 

filament. Because, thus far, no method exists for predicting breakage, it 

typically occurs during a production process. This means, however, that the 

affected single process cannot accomplish the intended quality of processed 

wafers. Therefore, the goal of the PdM activity is to predict the point in time 
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when the next filament breakage is most likely to occur, and then replace it 

prior to the breakage and between the value-adding processes.  

The data are exported from the CIM database and consist of alarms, 

equipment-specific variable values, equipment events, and equipment 

downtimes. Because CIM uses a relational Oracle database, the data are 

collected, prepared (e.g., handling NULL values), and exported via SQL to a 

CSV file. The responsible data scientist mentioned that the SQL 

programming was challenging because of his lack of knowledge about the 

concrete database model. The raw data are imported via CSV into the 

analytical modelling software. Here, further data preparation procedures are 

applied, such as how to handle different floating number formats. The target 

variables such as temperature, pressure, gas flow, and voltage are selected, 

which should be predicted by applying PA methods. The modelling software 

allows the use of different methods as well as comparing the prediction 

quality based on test data. The aim is to find patterns in the variables that 

might potentially lead to filament breakage. Finally, the model can be used to 

monitor the physical deposition machines online using the patterns as well as 

trigger an alarm for the responsible EM engineers. The following features 

were identified as highly relevant for filament breakage:  

 Cathode current level distinction in high and low etch recipes  

 Recipe types (mix of etch intensities and evaporated alloys) 

 Discharge voltage level prior to an unscheduled downtime 

 Type of power supply unit 

In addition, some patterns could be recognised when comparing expected 

data with suspicious data. One example was the expected cathode current 

versus a suspicious cathode current during the etch conditioning phase. 

Although features and suspicious patterns could be found, the prediction 

quality remained low and the model could not be used to reliably trigger 

filament replacements. To increase the reliability, the experts needed to 

define an approach to determine the optimal cut-off value and define how to 

handle equipment standby time or non-etching recipes. This could not be 

achieved during the pilot project. A further challenge was to specify the target 

timeframe when an EM engineer should be notified about the probable 

downtime of a machine in future. Typically, the wider the configured 

 



 

 
timeframe the less reliable the prediction. The involved data scientist 

indicated that different PA methods should be applied to prove the prediction 

quality before any productive usage. At least one unique characteristic for 

identifying filament breakages that was not known before could be detected. 

Common feedback from all experts was that the effort for data preparation 

was extraordinarily high compared with actual PA modelling. To restrict the 

number of relevant characteristics in the data, it was necessary to involve 

process engineers who understood the single processes on the machines. 

Selecting relevant characteristics and reducing the dimensions of the 

datasets were time-consuming but a crucial part of the pilot project; this was 

also proved by passing a complete data dump to a student research group 

from the local university. The aim was to allow the students attempt to find 

meaningful patterns in the data without any machine or process knowledge. 

The students were ultimately unable to derive any valuable pattern. The 

project members concluded that data preparation based on deep process 

understanding is a mandatory step for successful PA activities.  
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5.3 Data Collection 

This section presents the data collection process during the case study. 

Furthermore, it discusses the experiences of the interviewed experts in terms 

of applied methods in IE or EM. Each expert interview was conducted as a 

face-to-face meeting in a closed office room at the case study company. The 

total time spent on all the interviews was about 18 hours, excluding any of 

the preparation or analysis. Table 5-2 presents the interview dates and the 

duration of each interview. 

Table 5-2: Interviews – General Overview 

Expert Area of expertise Date of interview Duration (min) 

1 IE 17.04.2018 115 

2 IE 18.04.2018 124 

3 IE 19.04.2018 95 

4 IE 24.04.2018 90 

5 IE 23.05.2018 93 

6 IE 28.05.2018 101 

7 EM 03.05.2018 68 

8 EM 08.05.2018 88 

9 EM 09.05.2018 35 

10 

11 

EM 14.05.2018 65 

EM 22.05.2018 52 

 



EM experts were asked about their concrete experiences, particularly those 

focussed on data-based methods such as PdM. The applied methods of the 

interviewed EM experts are listed in Table 5-3. 
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Table 5-3: Applied Methods of EM Experts 

Expert Applied EM Methods 

7  Time-triggered/interval-based maintenance plans

 Partially usage-dependent maintenance plans

 Widely used: ‘fire-fighting mode’. This is partially planned (e.g., in laser dicing

equipment) because the components are non-repairable and the risks are very low.

 Indicator-driven maintenance based on equipment status that is generated from CIM

software

 Communication and control of maintenance actions via an ‘equipment-down list’, an in-

house developed HTML overview, which is currently being replaced by a SAP standard

solution.

8  Participated in a pilot project for PdM from previous job in the automotive industry

 Condition-based maintenance, such as monitoring equipment states via sensors and

applying systematic analysis on data to prove conditions

 Statistical analysis of data, including outlier analysis and pattern recognition for

equipment states

 Use of an envelope detector for determining a violation of a given specification from

reference-run data

 Post-processing ‘offline’ to recognise new patterns for scrap reduction during a

production route (e.g., different process and machine combinations)

 Time-triggered/interval-based maintenance plans

9  Time-triggered/interval-based maintenance plans

 Parameter-based maintenance plans (e.g., based on the number of runs on an epitaxy

machine, sum of kilometres in transportation, and number of clock rates in valves)

 Measurement value-based maintenance plans (e.g., increasing the rate of power

consumption for pumps)

 State-based maintenance plans (e.g., specification violation of pressure values in

particulate filters can be used to predict the point in time when it will crash)

10  Time-triggered/interval-based maintenance plans

 Application of ERP software maintenance plans

 Reactive maintenance where applicable

 Comparison of historical data from equipment of similar types to gain new insights

about failure patterns (e.g., the lifecycle of laser-based equipment). This is especially

required if the machine itself does not yet write any state information

11  State-based maintenance plans (usually manual state identification)

 Time-triggered/interval-based maintenance plans

A wide range of methods exists in the area of PS performance management. 

Therefore, the questionnaire is designed to collect the experts’ concrete 

experiences of these methods. The applied methods of the IE experts are 

listed in Table 5-4. 
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Table 5-4: Applied Methods of IE Experts 

Expert Applied IE Methods 

1  Equipment performance measurements: MTBF, MTOL, and OEE 

 WIP deviation and line profiles 

 Operating curve 

 Variabilities  

 Synchronicity of 4M 

 Compliance with the dispatching tool 

 Control of production rework rates 

 Number of moves over equipment or aggregations 

2  Golden tool matching (e.g., identifying fastest or optimal equipment for a certain 

process and improving low-performing equipment according to the golden tool) 

 Shop floor reporting 

 Equipment uptime variability 

3  Equipment uptime analysis 

 Equipment downtime gap analysis  

 Reduction of unscheduled equipment downs 

 Process stability (e.g., controlling recipe and measurement parameters from statistical 

process control software and reducing the variability of process results for the same 

recipes) for epitaxy tools 

 Reduction of equipment standby time through increasing operator availability  

 WIP balancing via dispatching software 

 Flow factor analysis in relation to factory utilisation (performance evaluation via 

operating curve) 

 Cycle time spread (variability) to evaluate the logistics stability of a single product 

4  Equipment utilisation via the TR25 guideline 

 Analysis of equipment states  

 Performance of scheduled maintenance within planned timeframe 

 Comparison of scheduled vs. unscheduled equipment downtimes 

 Analysis of single downtimes and improvement of future equipment stability 

 Equipment efficiency analysis via comparison of standby time vs. productive time 

 Analysis of operators’ way of working  

 Calculation of optimum number of operators (avoid standby and waiting times based 

on lack of operators)  

5  Operating curve management 

 Efficiency measurements (personal, material, and capital) 

 Performance management based on weighted cycle time deviation  

 Comparisons of planned and current values for throughput, process 

monthly controlling 

stability, and 

 Fab loading analysis  

 Flow factor and efficiency  

 Cost and yield 

6  Simulations of flow factor, cycle time spread, throughput, capacity, and impacts of lot 

start mode on production performance 

 Operating curve management  

 Linear optimisation models for lot and process scheduling 

 Performance comparisons of different production sites based on flow factor, cycle time 

spread, throughput, and capacity at workshop level 

 Alpha analysis (variability) 

 

The IE-oriented interviews provide following raw data:  

1) The collection of factors that have an impact on the PS performance. 



 
 

2) The weighted performance influences of the collected factors on a 

production machine from the area of expertise of each expert.  

3) The causal relationships and weighted impacts between: 

a. The KPIs of a production machine and KPIs of the entire 

factory; 

b. The collected factors and the factory KPIs; 

c. The collected factors with each other; and 

d. PdM applications and a production machine.  

4) The rating of suggested expectations of how PdM might affect core 

performance in an SI PS.  
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The EM-oriented interviews provide the following raw data:  

1) Expectations of online versus offline analytics for PdM.  

2) Expected and weighted savings and benefits from transforming 

reactive maintenance into preventive maintenance.  

3) Identification of relevant machines or machine components for PdM 

applications.  

4) Expected and weighted impacts of PdM on the spare part inventory 

level, machine or component life cycle, and general maintenance 

operations. 

5) Expectations of challenges and chances for automation of EM 

operations through ERP integration of PdM applications.  

6) The rating of suggested expectations of how PdM might influence core 

maintenance challenges in an SI PS. 

 

General feedback from the IE experts was that the causal relationships 

between the PS elements are partially difficult to quantify and make clear to 

other engineers or managers. Thus, a simulation-based PS analysis tool, 

including the documented effects, may help to reveal fundamental 

relationships prior to any corrective action. Such applications would exist 

beyond the question of what potential benefits might be achieved through 

predictive analytics. The EM experts widely agree on the benefits of PA 

methods, about which their expectations were optimistic. However, they also 



 

 
indicated the high initial effort for data cleansing or even data generation in 

some areas.  

As discussed in 5.2, due to the company agreement, the records of the 

interviews are not allowed to be published. 
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5.4 Manufacturing Process  

This section is based on the internal documentation concerning the 

manufacturing processes. The company owns several manufacturing sites in 

Germany and Asia; each site is concentrated on specific areas, for which one 

purpose is to bundle expert knowledge for certain technologies. The plant 

used in this study is responsible for the frontend process steps. The overall 

and high-level production processes for an opto-semiconductor device are 

shown in Figure 5-3. 

 

 

Figure 5-3: High-level Overall Production Process  

 

The substrate fabrication itself does not belong to the actual semiconductor 

fabrication. Thus, the raw substrates are procured from external companies. 

All other frontend steps are performed in-house. Although outsourcing to 

subcontractor companies from single production steps up to entire products 

is an established method in SI (see 2.2.3), the studied company does not 

make use of it in the frontend area. The main reason for this is that LED and 

laser manufacturing in particular require much greater effort to configure, as 

well as to adjust equipment and recipes, in order to achieve stable processes 

compared with classic silicon-based products. Therefore, a further transfer to 

external partners is typically not useful from an economic perspective. In this 

study, the backend sub-process is not part of the analysis. Figure 5-4 shows 
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the high-level frontend production process according to internal 

documentation at the case study company. 

 

Figure 5-4: High-level Frontend Production Process 

 

In the company’s jargon, the production steps within the frontend are 

separated into three areas: epitaxy, front-of-line (FoL), and end-of-line (EoL). 

This separation is not limited to a logical grouping of processes but is also 

used in logistics procedures. For instance, each area has its own route or bill 

of materials per product. In summary, a total of over 800 machines are 

involved in the frontend manufacturing process, and only a few can be 

treated as redundant tool groups, such as for sputtering and evaporation 

processes. This heterogenic machine park is a significant driver of 

complexity. Each department in the organigram is responsible for certain 

areas along the frontend manufacturing process.  

The epitaxy area is responsible for defining the final colour range of an LED 

device. Whereas silicon substrates are used for most SI products, such as 

CPU or RAM, optoelectronic devices do not use this type of material. 

Currently, the optoelectronic products use the following material systems: 

 Indium gallium nitride (InGan), which has a colour range of white–

blue–green. 

 Aluminium gallium indium phosphide (InGaAlP), which has a colour 

range of green–yellow–red. 

 Aluminium gallium arsenide (AlGaAs), which has a colour range from 

red to infrared 
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After epitaxy, the wafers run through a physical deposition process to create 

the p-contact. The metals used are usually noble metals such as gold or 

platinum. The following variants exist in the case study company:  

 Thermic evaporation of metals 

 Physical vapour deposition (sputtering of metals) 

 Plasma-enhanced chemical vapour deposition 

 Atomic layer deposition 

The actual application in a product route depends on various aspects; for 

instance, the required quality. Each type of process adds layers of metal to 

the loaded wafers using a procedure that principally wastes the material. 

However, it is possible and strongly recommended to recycle a large 

percentage of the noble metal from the chamber walls or inner equipment 

parts. The recycled material cannot be reused directly but is sent to a 

purification company. After the physical deposition, the wafers move to the 

lithography area, which consists of the following sub-processes in sequential 

order:  

 Baking  

 Coating 

 Stepping 

 Developing 

After the lithography process, the wafers run through a chemical structuring 

process. The actual process depends on the type of photoresist; a negative 

photoresist requires physical deposition and a chemical lift-off, whereas a 

positive photoresist requires an etching process followed by a photoresist 

detachment process. A typical characteristic in semiconductor manufacturing 

processes is the recurring lithography process. Based on technological 

requirements, multiple lithography layers are added to the wafers. The actual 

number varies from product to product. Thus, the overall manufacturing 

process becomes a loop until the maximum number of lithography layers is 

reached and all previously mentioned steps (usually with different single 

process configurations) are performed again. Other chemical processes that 

are usually required include cleaning (e.g., to remove particles), rinsing, and 

drying.  
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The final step in the FoL area is called thickness processing. Its target is to 

remove the bulk substrate and retain only the epitaxy layer, thereby 

achieving parallel surfaces and low material selectivity for all wafers.  

As the subsequent and final stage in the frontend process, the wafers turn 

into the EoL area. Here, the main logistic difference to the previous 

manufacturing steps is the consideration of single chips within single 

processes. 

The first step in EoL is called wafer probing. This process is the core method 

for quality control and binning; binning means sorting chips according to 

highly detailed product specifications, such as wavelength and brightness. 

After the probing, the collected data are exported from the machine to a 

structured file using a data format that can be processed further by analytical 

software systems. During the subsequent step, wafer dicing, the chips on a 

wafer are separated. Two established methods exist for performing this 

action, sawing and laser dicing; laser technology is the preferred method 

because of its higher accuracy. The final step in EoL is an automated visual 

inspection, where chips with optical defects are rejected from further 

processing in the backend. The effective chips are delivered to the backend 

plants depending on the underlying product. The backend plant creates an 

LED package as a saleable good for a market customer. In addition to the 

frontend chip as the core element, a package consists of several components 

for installing the LED product for further applications.  

The manufacturing process described above is valid for standard types of 

LED product. However, depending on single product technologies, the 

manufacturing process is not always that linear. For certain product types 

based on the InGan material system, pre-processes exist that involve the 

physical deposition of raw substrates prior to the actual epitaxy process. A 

rather new product technology requires  FoL processes, such as sputtering 

and lithography, on finished LED chips that have already passed the entire 

backend process. Because of the heterogenic product landscape, the PS, 

with its numerous processes, machines, and logistic specialities, is highly 

complex. As a result, many special solutions have been created either on the 

hardware side (e.g., for automation) or the software side (e.g., special data 

formats). A further speciality is the high percentage of research and 
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development WIP at the case study plant. To develop new processes or 

products, production machines are reserved and blocked for normal series 

production. Generally, processes at this early development stage are highly 

unstable and affect the production flow of other products because of 

temporary higher priority or required stop activities.  

5.5 Data from IT Systems 

To configure a simulation scenario and to prove the empirical validity of the 

simulation model, it is necessary to obtain relevant data from manufacturing 

IT systems. Various software or application systems are involved. There are 

four levels of the systems in the case study company’s internal IT 

architecture (where 1 means broader enterprise usage and 4 means highly 

machine-centric applications). Table 5-5 lists the high-level enterprise 

systems. 

Table 5-5: High-level Enterprise Architecture Landscape 

Level Description Tool areas 

1 Enterprise logistics  

 

 

 

 

 

 

 

Enterprise resource planning (ERP) 

Enterprise quality management 

Product lifecycle management 

Business intelligence (BI) 

Advanced planning and optimisation 

Standard office systems 

Master data management (MDM) 

Electronic data interchange 

2 Factory control  

 

 

Sense and response 

Dispatching and scheduling 

Planning and optimisation 

3 Manufacturing execution  

 

Shop floor control (SFC) 

Process control 

 Manufacturing quality management 

4 Equipment integration  Equipment integration (EI), also known as 

 

computer integrated manufacturing (CIM) 

Analytics  

 

None of the systems really works autonomously and each is connected 

through data or functional interfaces to other systems. These technical 

connections are useful because the business processes are also connected 
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logically. However, the number of the systems that are relevant for this study 

can be limited after considering those important business processes and their 

primary data sources. Figure 5-5 shows the most critical IT systems for this 

study and the data flows that connect them; it is noteworthy that no system 

from level two is involved.  

 

Figure 5-5: Primary IT Systems and Data Flows that are relevant to this study 

 

Some more data routes exist between the aforementioned systems as well 

as to or from other systems; however, these data are not relevant to this 

study. The important types of data from the primary IT systems per 

architecture level are as follows:  

1) Equipment master data (Level 1): Engineers with machine-specific 

knowledge create these data in the central MDM, which sends the 

data after a finished release process to the operational systems. 

Equipment master data consists of logistics and process abilities, such 

as how many wafers of particular diameters can be processed at the 

same time; technical specifications, such as the constitution of multi-

chamber machines, and many more.  



 

 

 

161 5.5 Data from IT Systems 

2) Product master data (Level 1): Product engineers create these data 

in the central ERP, which sends the data after a finished release 

process to SFC and BI. Product master data consists of a standard lot 

size, area diameter, and grid layout, as well as a plan yield per 

product. Further information includes multilevel product technology 

classifications, material status, and further logistics planning 

information.  

3) Logistics master data (Level 3): Process and IE engineers create 

these data within a software component of SFC. The data is directly 

used by the SFC itself (e.g., to generate single lot travellers) as well as 

being sent to BI for mid- and long-term analyses. Logistics master 

data consist mainly of product routes that consolidate the production 

sequence of single processes, recipes, process-oriented planning 

data, and released equipment per single process. The data records 

reference the product master data from ERP and the equipment 

master data from MDM. Logistics master data are used in BI; for 

instance, to generate reports on CT per product or factory area 

compared with the RPT from planning data.  

4) Logistics tracking data (Level 3): SFC creates these data by 

capturing process activities, which is usually performed manually by 

the responsible operators or automatically by involved machines. The 

data are sent to BI on a regular basis according to a scheduled 

frequency. Logistics tracking data can be stored at the lot, wafer, or 

chip level depending on the base unit of a single process. They 

consist mainly of time stamps that are referenced to certain activities, 

such as the start of a single process on a specific machine, or the end 

of it. The data are partially used in SFC to maintain control over 

timeframe conditions between single processes. If several single 

processes in a sequence are highly dependent on each other (e.g., 

because of chemical reactions that should be avoided), then the 

process time stamps can be used to monitor the remaining time. Thus, 

a lot can be assigned temporarily with higher priority when the 

timeframe condition is at risk. Logistics tracking data are used in BI to 

analyse various aspects of the PS performance, such as WIP per 

production area or FF per product technology.  
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5) Raw equipment status (Level 4): A production machine creates 

these data directly during an operation and sends via the SECS-GEM 

interface to CIM. The raw data can differ between single items of 

equipment; for example, because of different machine manufacturers 

or equipment generations. Not all equipment is able to send data via 

SECS-GEM; for instance, because of missing procurement 

specifications in the past. In such cases, the equipment status is 

generated either through a software interface manually controlled by 

an operator or derived from logistics tracking events from SFC. This is 

sufficient for uptime/downtime analyses but prevents EM engineers 

from obtaining deeper insights into downtime patterns because of 

missing raw data.  

6) Standardised equipment status (Level 4): CIM software creates 

these data after transforming the raw equipment status information. 

The software does not push the data actively to any other system, but 

SFC requests it online on demand, such as when the dispatching 

software plans the next free equipment for a certain single process 

from a lot traveller. The standardised equipment status is required to 

support machine-overarching analyses because the single machines 

typically send different raw status data. The IE experts configure rules 

for every piece of equipment during the CIM release process to 

translate automatically the raw data into standardised data once the 

machine is productive.  

7) Historical equipment status (Level 4): These data are sent regularly 

to BI according to a scheduled frequency. They are based on single 

standardised statuses after transformation in CIM. The data are 

analysed in BI according to SEMI standards to generate uptime and 

downtime information over a certain operating period. This information 

can be used to reveal critical downtime patterns or unnecessary 

standby periods to increase equipment capacity.  

Finally, all of these data are used to analyse historical courses of KPIs, such 

as capacity, moves, machine uptimes, and WIP. These types of reporting 

data are created and stored in BI and extracted for the past year. Thus, the 
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simulation model can be configured and approximated to the realistic courses 

based on these data extracts.  

5.6 Summary 

The case study reveals valuable insights into the research topic, which 

influences PA applications could generate on SI PS. A typical challenge in SI 

manufacturing is the heterogenic machine park as well as the process 

landscape. This leads to a complex PS and difficult resolution of insufficient 

performance indicators. In particular, in optoelectronic wafer fabrication, great 

effort is required to adjust the process and machine parameters to achieve a 

stable series production. This is the main reason why outsourcing to 

foundries is not profitable from an economic perspective, and therefore, the 

entire frontend process is performed internally.  

The manufacturing process is supported by several IT systems that grew 

mostly independent from each other over 10 or even 15 years. Each system 

is optimised in special process aspects such as ERP, MDM, SFC, and 

equipment integration. Because the systems are managed and supported by 

different groups within the business and IT departments, a typical challenge 

is the missing standardisation between data formats, naming conventions, 

detail levels, and specification requirements. Major functionalities from each 

system are connected through interfaces to serve the production flow. 

However, BI and analytics projects struggle with the resulting 

inconsistencies, which impede the generation of standardised reports or 

analytical models.  

Because nearly all aspects of the manufacturing process are covered by IT 

systems from long-term logistics planning down to equipment-internal state 

monitoring, missing data is not the reason for failing or postponing PA 

initiatives in SI. As mentioned by the experts who performed a PdM pilot at 

the case study company, the efforts required for data preparation were 

extraordinarily high compared with the actual PA modelling. Thus, the pure 

amount and variety of data captured by different IT systems without common 

standards for data generation can be seen as the greatest problem. Despite 

the efforts, the PdM pilot was rated as a success by the project team 
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members because features for machine component breakage were identified 

that were not known before.   
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Chapter 6 Data Analysis and Evaluation 

6.1 Introduction 

This chapter presents the data analysis and evaluation for the purpose of 

formulating a dynamic hypothesis that will result in a CLM. This formulation is

an important step in the overall modelling process and prerequisite to the 

PPES and the PdMSM. Sterman (2000) describes it as dynamic, because it 

must provide an explanation of the dynamics within a system based on the 

underlying feedback structure. He explains that the CLM is a hypothesis 

because it is always provisional and the model engineer can improve it over 

time as he/she learns from the real world. The results of this chapter provide 

the answers for RO2 to specify the causal relationships between the 

application of PdM and the performance-critical characteristics of an SI PS.  

 

As discussed in Chapter 5, the interview questionnaires are designed to 

collect data to obtain direct effects between SI PS elements and factors, as 

well as expected impacts of the application of PdM on the SI PS 

performance. A particular group of selected experts covered one perspective 

each. Therefore, the consolidation of both perspectives is a significant part of 

the data analysis and evaluation. The raw data from the interview sessions 

must be analysed and evaluated to extract meaningful results for the entire 

research project. The secondary data gained from the manufacturing process 

and IT systems documentation is used in chapter 8 to shape the simulation 

model and to configure a particular scenario. Because the case study 

employed semi-structured interviews, each answer has to be analysed 

depending on the type of each specific question. For the more open 

questions, the coding method is applied in order to generate common themes 

between the different interview results. Such themes form the basis for the 

transformation of the interview results into variables as part of the advanced 

analysis methods. Data preliminary cleansing methods are applied to remove 

inconsistencies from the coded results. A potential use case is that multiple 

interviewees responded with the same association between terms but one 

group mentioned a negative effect whereas the other group mentioned a 

positive effect. Whereas the PPES can be used to reveal contradictory but 

logically correct effects through transitive impact analysis, the direct effects 



 
 
as primary model information must be clear. Therefore, it is necessary to 

define and apply rules for resolving such inconsistencies. By contrast, for 

rather quantifiable questions such as how much the interviewee agreed with 

a statement from 0 to 10, the answers can be aggregated and interpreted 

directly. 
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This chapter is organised in the following order:  

1) Analysis of the expert interviews from IE: the effect associations 

between SI PS elements and other PS-relevant factors are analysed.  

2) Analysis of the expert interviews from EM: the impacts of different 

maintenance strategies as well as PdM approaches on machine-

oriented performance indicators are analysed.  

3) Analysis of expectations regarding PdM: This section presents the 

analysis of an expectation rating for both expert groups. The 

predefined expectations focus on the impacts of PdM on PS- or 

machine-oriented KPIs.  

4) Consolidation and Evaluation: All individual results from the 

previous sections are consolidated into a common CLM. The 

generated associations are evaluated in order to identify most 

influenced and influencing terms.  

6.2 Analysis of Interviews with Experts in IE 

Because the interviews were conducted in German, the answers were also 

recorded in German. This was a decision made to save time during the 

meetings by saving the translation for a later time. Only common English 

terms or abbreviations that are typically used in the company as well as in 

German conversation were recorded directly in English. The first step in the 

data cleansing stage is to translate all parts of the interview answers into 

English, which also provides for the harmonisation of technical terms that are 

either named differently or paraphrased in other words. This allows a clearer 

combination and comparison of terms for analysis. The harmonisation also 

includes a transformation of different perspectives of a term. For instance, 

one term that was recorded numerous times was ‘operator qualification level’. 

However, the interview responses differed slightly in perspectives on this 
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term. For some of the experts, the actual operator qualification level is 

considered as either an impacted or impacting term, whereas for others the 

‘importance of operator qualification level’ needed to be considered instead. 

It was crucial to maintain clear naming of such concatenated terms for the 

model development; this is because parts of terms such as ‘importance’ are 

candidates for first-order logic predicates. Thus, only the term ‘operator 

qualification level’ would be transformed into an atomic model variable, 

whereas the term ‘importance of operator qualification level’ would be 

transformed into a functional statement such as ‘operator qualification level 

has importance’. The benefit of this for the model development is that 

‘operator qualification level’ remains the focus on the impact analysis, 

whereas ‘importance of operator qualification level’ as an atomic term would 

be treated as a completely different variable. The variable and predicate 

transformation is presented in Chapter 7.  

The following sub-sections present the aggregated results from the particular 

interview questions.  

6.2.1 Factors with Impact on PS Performance 

After the data consolidation, translation and harmonization have been 

performed, 36 factors are identified that influence the PS performance in SI. 

Primary aspects such as availability and bottleneck can group the factors in 

order to identify crucial aspects of influencing factors. Table 6-1 lists the 

aspects and number of factors that influence PS performance.  

Table 6-1: Identified Aspects and Number of Factors that influence PS 
Performance 

Aspects of 
Factor 

Number of associated  
Factors 

Aspects of Factor Number of 
associated  
Factors 

Availability 6 Synchronicity 1 

Bottleneck 5 Prediction 
Capabilities 

1 

Variety 3 Automation 1 

Strategy 3 Utilization  1 

Variance 2 Compliance 1 

Stability 2 Orders 1 

Maturity 2 Yearly Activities 1 

Qualification 2   

Material Flow 2   

Transparency 2   
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6.2.2 Influences of Performance Factors on Production Machines 

The experts were asked to declare which of the previously identified factors 

have an influence on which characteristic of production machines. In 

addition, the significance of each influence must be weighted from 1 to 10 

based on their experiences. The significance of the influence indicates to 

which extent a target aspect would increase or decrease if the source factor 

would increase. Table 6-2 lists the identified associations, the number of 

responses and the average weight of the influence that is called impact 

(mean). Because of the characteristics of semi-structured interviews, the 

number of responses can differ between the records. The number indicates 

how many interviewees experienced the same association in reality 

independent from each other. For records that present an association that 

was only identified by one expert, the mean impact value is the single impact 

value that was captured during the interview. 

Table 6-2: Effect Associations between PS Performance Factors and 
Machine Characteristics 

PS Performance Factor Machine 

Characteristic 

Number of 

Responses 

Impact 

(Mean) 

4M Synchronicity Standby Time Duration 1 −10.00 

Dispatcher Compliance Standby Time Duration 3 −5.33 

Dispatcher Maturity Standby Time Duration 3 −6.00 

EM Availability Standby Time Duration 3 −6.00 

EM Availability Unscheduled Down 

Duration 

5 −7.60 

EM qualification level Scheduled Down 

Duration 

1 −5.00 

EM qualification level Unscheduled Down 

Frequency 

1 −1.00 

Equipment Reservations Engineering Time 

Duration 

1 10.00 

Equipment Reservations Standby Time Duration 3 3.33 

Fab Utilization Downtime Frequency 1 7.00 

Fab Utilization Scheduled Down 

Percentage 

1 3.00 

Maintenance Strategy Equipment Going Rate 1 4.00 

Maximum Wait Time for Batches Standby Time Duration 1 2.00 

Operator Availability Standby Time Duration 5 −3.20 

Operator Qualification Level Standby Time Duration 2 −6.00 
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Process Development at Production 

Equipment 

Engineering Time 

Duration 

1 10.00 

Process Development at Production 

Equipment 

Equipment Capacity 3 −7.67 

Process Development at Production 

Equipment 

Unscheduled Down 

Frequency 

3 1.67 

Process Maturity Standby Time Duration 1 −2.00 

Process Maturity Unscheduled Down 

Frequency 

6 −5.83 

Process Stability Standby Time Duration 1 −2.00 

Process Stability Unscheduled Down 

Frequency 

4 −8.00 

Process Variety Scheduled Down 

Percentage 

1 5.00 

Rest 3M Availability Standby Time Duration 4 −4.00 

Setup Frequency Equipment Capacity 3 −4.67 

Setup Frequency Scheduled Down 

Duration 

1 5.00 

Single Process Variety Equipment Capacity 1 −4.00 

Tool Dedication Equipment Capacity 3 −1.00 

Tool Dedication Standby Time Duration 2 −0.50 

Transportation Variability Equipment Capacity 1 −5.00 

WIP Variance Standby Time Duration 1 6.00 

Wafer starts per week (WSPW) 

Variance 

Risk of Equipment 

Bottleneck 

3 2.67 

WSPW Variance Standby Time Duration 3 4.67 

 

6.2.3 Influences of Production Machines on Performance Factors 

In the same way as performance factors of the surrounding PS may influence 

a production machine, the machines influence the performance of the 

surrounding PS. Table 6-3 lists the captured associations from the interviews, 

the number of responses of each association and the logical impact. The 

interviewees did not state a weighted impact, because the effects differ from 

machine to machine. Without considering single machines, a numeric impact 

would not present a meaningful result. Therefore, the experts only mentioned 

the logical impact in general, where ‘+’ refers to an increasing effect and ‘−‘ 

refers to a decreasing effect.  
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Table 6-3: Influence of Machine Performance on PS Performance 

Machine performance indicator PS performance 

indicator 

Number of 

Responses 

Impact 

(logical) 

Alpha Tool Alpha PS 1 + 

Batch Size Alpha PS 1 + 

Equipment Uptime DGR 1 + 

MTBA Alpha PS 3 − 

MTBF Alpha PS 2 − 

MTBF Equipment 

Availability 

2 + 

MTOL Alpha PS 4 + 

MTTR Alpha PS 4 + 

OEE Alpha PS 2 − 

OEE Capacity 1 − 

Performance Synchronicity of similar 

Machines 

FF 1 − 

Processing Time Variance FF 1 + 

Rate Efficiency DGR 1 + 

Scheduled Down Frequency Alpha PS 1 + 

Single Process Variety Alpha PS 1 + 

Tool Dedication Alpha PS 1 + 

6.2.4 Influences of PS Performance Factors on Factory KPIs 

Each expert was asked to state which of his/her mentioned PS performance 

factor has an influence on the entire factory performance. The captured 

impact associations support the understanding of which factor affects which 

aspect of PS performance, in particular. In addition, the experts must weigh 

the declared influences. Table 6-4 presents the associations, the number of 

responses and the average impact.  

Table 6-4: Influences of PS Performance Factors on Factory 
Performance Indictors 

PS performance factor Factory performance 

indicator 

Number of 

Responses 

Impact 

(Mean) 

4M Synchronicity CT Variance 4 −9.00 

Degree of Knowledge of Engineers 

about Factory Physics 

Material Flow Variance 4 −5.25 

Degree of Operator Qualification Level CT 1 −8.00 

Degree of Operator Qualification Level FF 1 −7.00 

Degree of Operator Qualification Level GR 2 4.00 

Degree of Production Staff Motivation CT 4 −4.50 
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Degree of Unevenness in WIP 

distribution 

GR 1 −10.00 

Dispatcher Compliance FF 1 −3.00 

EM Availability Equipment Availability 1 5.00 

Equipment Availability FF 1 −4.00 

Equipment Availability GR 1 10.00 

Equipment Reservations Capacity 1 −3.00 

Equipment Reservations FF 1 3.00 

Flexibility of Operator Qualification Level  CT 1 −8.00 

High Percentage Process Inspections CT 3 3.00 

Lot Prioritizations CT Spread 1 6.00 

Lot Prioritizations GR 2 −5.00 

Operator Availability CT 4 −6.75 

Operator Availability FF 1 −8.00 

Operator Availability GR 1 10.00 

Operator Qualification Level FF 1 −3.00 

Percentage of Bottleneck Equipment CT 3 8.67 

Process Availability GR 1 10.00 

Process Development at Production 

Equipment 

CT  1 2.00 

Process Development at Production 

Equipment 

GR 2 −6.00 

Process Maturity Equipment Availability 1 2.00 

Process Stability CT 2 −4.50 

Process Stability CT  1 −10.00 

Process Stability Equipment Availability 1 2.00 

Process Stability FF 1 −4.00 

Rework GR 1 −10.00 

Single Tools CT 1 8.00 

Single Tools Deliverability 1 −10.00 

Single Tools Line Down (Product) 1 10.00 

Single Tools Material Flow Variance 1 −10.00 

Single Tools Risk of Product Line 

Down 

3 7.67 

Tool Dedication CT 1 7.00 

Tool Dedication FF 1 −2.00 

Utilization Profile Variance CT 1 10.00 

WIP Variance CT Variance 4 4.75 

WIP Variance FF 1 −3.00 

WSPW Variance FF 1 2.00 

 



 
 

 

172 6.2 Analysis of Interviews with Experts in IE 

6.2.5 Influences between PS Performance Factors  

The literature study and observations suggest that PS performance factors 

may influence each other. This information is important in order to generate 

knowledge about transitive effects using the PPES. The experts had to 

identify causal relations between PS performance factors that they initially 

mentioned, including the weighted impact. Table 6-5 presents the 

associations, the number of responses and the average impact.  

Table 6-5: Relationships between PS Performance Factors 

PS performance factor 

(from) 

PS performance factor (to) Number of 

Responses 

Impact 

(Mean) 

Automation Degree Importance Of Operator 

Qualification Level 

1 −10.00 

Automation Degree Operator Qualification Level 4 −6.00 

Dispatcher Compliance WIP Variance 1 −3.00 

Dispatcher Maturity 4M Synchronicity 1 6.00 

EM Availability Equipment Availability 1 4.00 

Equipment Availability WIP Variance 1 −3.00 

Equipment Reservations WIP Variance 1 2.00 

Operator Availability WIP Variance 1 −4.00 

Operator Qualification 

Level 

Flexibility of Operator Qualification 

Level  

2 8.00 

Process Maturity Process Stability 4 9.50 

Process Maturity Rest 3M Availability 1 8.00 

Process Stability Degree of Automation 1 8.00 

Process Stability High Percentage Process 

Inspections 

3 −8.33 

Process Stability WIP Variance 1 −3.00 

SCM Order Patterns 

Variance 

WSPW Variance 1 10.00 

Setup Frequency Importance Of EM Availability 3 7.33 

Single Process Variety Setup Frequency 3 5.67 

Tool Dedication Importance Of Equipment 

Availability 

1 3.00 

Tool Dedication WIP Variance 1 8.00 

Utilization Profile 

Variance 

Percentage of Bottleneck 

Equipment 

1 5.00 

WSPW Variance WIP Variance 5 4.60 

Yearly WIP reductions WSPW Variance 1 3.00 
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6.2.6 Influences of PdM on Production Machine Performance 

The experts were asked to declare their expected influence of PdM on 

production machine performance in general. Table 6-6 lists the influenced 

production machine KPIs, the number of responses that state this type of 

association and the average impact.  

Table 6-6: Production Machine KPIs that are influenced by PdM 

Machine performance indicator Number of Responses Impact (Mean) 

Alpha Tool 4 −1.00 

Degree of Production Staff Motivation 1 6.00 

EM Availability 5 8.60 

Equipment Uptime 5 7.00 

GR 5 6.00 

Material Flow 1 10.00 

MTBO 2 0.00 

MTOL 2 −7.50 

Scheduled Down Frequency 5 3.80 

Scheduled Down 1 10.00 

Synchronicity Of EM Availability 1 4.00 

Unscheduled Down (UD) 1 −10.00 

Unscheduled Down Frequency 5 −3.00 

 

In some cases, the logical relation between PdM and a production machine 

KPI can be refined. The experts considered other factors such as effect 

mediator that are directly influenced by PdM and that have direct impact on 

the machine KPI. Table 6-7 presents the mediators between PdM and the 

particular machine KPIs.  

Table 6-7: Mediators between PdM and Influences on Machine KPIs 

Machine performance indicator Mediator 

Alpha Tool 

 

MTOL 

Reduction Of Unscheduled Down Frequency 

Reduction Of Scheduled Down Duration 

EM Availability 

 

Reduction Of Unscheduled Down Frequency 

Unscheduled Down Duration 

Equipment Uptime Optimized Maintenance Intervals 

Material Flow WIP Forecast 

MTBO Unscheduled Down Frequency 

MTOL Unscheduled Down Frequency 

Scheduled Down Frequency Optimized Maintenance Intervals 
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The results from the rating of suggested expectations of how PdM might 

affect core performance in a SI PS are presented and discussed in Section 

6.4. 

6.2.7 IE Data Cleansing and Consolidation 

As discussed at the beginning of this section, the first activity in data 

cleansing is the translation of German recordings into English. The 

translation also considered the harmonization of similar terms to achieve a 

consistent vocabulary. The next cleansing work is to remove redundancies 

between raw terms by continuous application of the coding technique. This is 

crucial to generate a common denominator in order to describe the same 

effect recorded from different interviews. To resolve the redundancy issue, 

the operating curve management practices at the partner company is taken 

into account. The following cases of redundancy have been identified:  

a) Different wording for the same meaning (e.g., ‘Tool Dedication’ and 

‘Single Tool’) 

b) Inadequate wording for the actual meaning in the specific context 

(e.g., ‘Equipment Uptime’ and ‘Equipment Availability’ 

c) Different aggregation levels of the same term (e.g., ‘GR’ for a 

aggregated unit within the PS and ‘Equipment GR’ as particular KPI of 

a machine or machine group) 

As a further step in data cleansing, the quantitative interview results are 

required to be organised into a matrix that only consists of positive and 

negative effects between terms. Each association between terms becomes 

one record of the matrix. Generally, each record of the matrix states that if 

the impacting term is increased, the impacted term is increased or 

decreased. Using this matrix, the data can be analysed against 

inconsistencies when the same association between terms has both positive 

and negative impacts. First, the interview responses of all participants were 

clustered by questions, including the quantitative impacts. Then, all 

associations between terms from all questions and the answers were 

consolidated into one common matrix; 120 unique associations were 

identified. Subsequently, a formula was applied to determine whether an 
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association has an increasing or decreasing character. All impact values 

lower than zero were interpreted as ‘decrease’, whereas all impact values 

greater than zero were interpreted as ‘increase’. Zero is not possible as a 

value because the association would not exist at all. As a next step, all 

duplicates were removed from the matrix so that each constellation of 

impacting terms, impacted terms, and types of impacts only existed once. 

Having the data prepared at this stage, the inconsistencies can be revealed 

when grouping by impacting and impacted terms and the counting of 

occurrences. If there is more than one occurrence, there is a problem in the 

data and the type of impact is not unique. Table 6-8 lists the term 

associations that were identified as inconsistent.  

Table 6-8: Inconsistent Impacts between Terms 

# Impacting Term Type of Impact Impacted term 

1 
Degree of Automation 

increase/ 
decrease 

Operator Qualification 
Level 

2 
Degree of Production Staff Motivation 

increase/ 
decrease CT 

3 
Lot Prioritisations 

increase/ 
decrease GR 

4 
Operator Availability 

increase/ 
decrease Standby Time Duration 

5 Process Development at Production 
Equipment 

increase/ 
decrease GR 

6 
Process Stability 

increase/ 
decrease 

High Percentage Process 
Inspections 

7 
Rest 3M Availability 

increase/ 
decrease Standby Time Duration 

8 
WIP Variance 

increase/ 
decrease CT Variance 

9 
WSPW Variance 

increase/ 
decrease WIP Variance 

10 Process Development at Production 
Equipment 

increase/ 
decrease 

Unscheduled Down 
Frequency 

11 

 Tool Dedication 
increase/ 
decrease Equipment Capacity 

12 
Tool Dedication 

increase/ 
decrease Standby Time Duration 

 

To make the data reliable, the inconsistency issues have to be resolved. 

Otherwise, the final model would not work in the expected way. It was likely 

that individual interviewees confused the meaning of plus or minus signs 
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despite the explanations of the interviewer. Thus, to resolve inconsistencies, 

the raw data has to be searched for the affected associations to determine 

the most applicable sign. The method used has two procedures to identify 

the root causes and determine a solution:  

 Outlier analysis: This looks for the majority of responses and treats the 

single difference as an outlier. Because of the small amount of data, 

even a confrontation of 2 versus 1 is seen as significant enough to 

decide the majority’s answer. The type of impact of the outlier 

association is changed in the data matrix according to the majority.  

 Draw: If associations between terms are rarely stated, this can lead to 

a draw. Here, the most applicable interpretation must be determined 

considering the context and logical inference. The type of impact is 

changed in the data matrix according to the most appropriate 

interpretation.  

Generally, the interviewees attempted to make accurate evaluations based 

on their experiences; thus, the signs were neither completely ignored nor 

continually wrong. Deviations only appeared in a limited number of cases. 

Some responses consisted of comments in prose that also describe the 

sense of the association. Such comments helped to identify whether a sign 

was merely recorded incorrectly while the meaning matched other 

responses.  

After resolving the inconsistencies by applying the discussed procedures, the 

types of the impacts in the data matrix are clean. Table 6-9 lists the cleaned 

types of impacts for the affected associations. 

In addition, for the final simulation model, the signs in the raw values of each 

response are required to be modified. After the inconsistent records were 

removed and the two additional records were added, the matrix consists of 

123 unique records. The matrix with the IE-oriented associations is in 

appendix A1.  
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Table 6-9: Cleaned Effects between Terms 

# 

Impacting Term 

Type of 

Impact Impacted term 

1 Degree of Automation decrease Operator Qualification Level 

2 Degree of Production Staff Motivation decrease CT 

3 Lot Prioritisations decrease GR 

4 Operator Availability decrease Standby Time Duration 

5 Process Development at Production 

Equipment 

decrease 

GR 

6 

Process Stability 

decrease High Percentage Process 

Inspections 

7 Rest 3M Availability decrease Standby Time Duration 

8 WIP Variance increase CT Variance 

9 WSPW Variance increase WIP Variance 

10 Process Development at Production 

Equipment increase Unscheduled Down Frequency 

11 

 Tool Dedication decrease Equipment Capacity 

12 Tool Dedication increase Standby Time Duration 

6.3 Analysis of Expert Interviews from Equipment 
Maintenance 

The EM interviews were also conducted in German. Thus, the first task was 

to translate each answer into English. Because the EM interview questions 

did not focus on individual associations between a limited set of factors and 

KPIs, the spectrum of answers is much wider than that for IE. Due to this less 

structured interview, the coding techniques have to be applied for data 

analysis to identify logical relationships between the different answers. The 

first run of coding searched for common perspectives and opinions to 

formulate harmonised terms. Because the open answers did not directly state 

any association to a machine KPI, the second run of coding attempted to 

identify matches between the harmonised terms and suggested expectations 

from the questionnaire. Here, the EM experts were asked to state the impact 
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of an expected result from PdM on crucial performance indicators. With these 

codes, it is possible to derive the associations between a principally open 

answer and concrete KPI, including an expected degree. A further step in the 

coding procedure is to search for logical associations between the core 

terms, for instance, a higher monitoring quality leading to the avoidance of 

machine failures. Thus, it is possible to build concatenated logical 

associations between core terms as well as analyse transitive effects. As a 

final step in the coding procedure, individual terms were transformed to 

express an atomic meaning based on the given association. It was crucial to 

limit each association between terms to simple ‘decrease’ or ‘increase’ 

relationships in order to generate a CLM as a basis for the simulation model 

(Bossel, 2004). For instance, to quantify the term ‘EM strategy’ requires 

indicating which aspect of the term is affected by a specific aspect from 

another term. A more appropriate aspect might be the ‘Maturity of EM 

strategy’ or the ‘Importance of EM strategy’. 

The following sub-sections present the aggregated results from the particular 

interview questions. 

6.3.1 Expectations of Online versus Offline Analytics for PdM 

PdM applications may have online or offline characters. Where online PdM 

applications focus on high-performance monitoring of current data streams, 

offline PdM applications are instead concentrated on high-quality failure 

pattern analytics considering a larger timeframe. Though both types of 

applications supplement one another in order to improve the EM processes, 

each type may have strengths and weaknesses from a practical perspective. 

The experts were asked to evaluate both types based on their experiences; 

they were able to state more than one argument per type. Table 6-10 shows 

the aggregated results of the answers.  

The experts stated 31 arguments in total with 17 as the offline PdM and 14 

as the online PdM. Comparing the number of pro and contra arguments, 

offline PdM was viewed as much more beneficial than online PdM. Generally, 

the quality of monitoring, planning, and statistics could be improved. 
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Table 6-10: Comparison of PdM Online vs Offline Applications 

PdM application type Number of responses 

Offline 17 

Contra 3 

Slower reaction. 3 

Pro 14 

Combine multiple data sources to find new patterns.  4 

Find new failure patterns from single machines.  1 

Higher monitoring quality. 1 

Higher planning quality. 2 

Higher statistics quality. 1 

Independency in running analyses.  1 

Prove the effectiveness of EM activities. 1 

Understanding historical failure patterns.  3 

Online 14 

Contra 5 

Dependency on existing knowledge. 1 

Dependency on EM processes. 1 

Higher data traffic. 1 

Weak statistics. 2 

Neutral 3 

Dependency on algorithm quality. 1 

High efforts to prepare data and algorithm. 2 

Pro 6 

Avoid failures. 2 

Faster reaction.  4 

Total 31 

 

Additionally, the analytic models helped to understand historical failures, find 

new failure patterns, and prove the effectiveness of past EM activities. The 

experts did not expect any more negative aspects than a potentially slower 

reaction. Compared with the offline PdM, online PdM applications were 

evaluated much more diversely. In terms of positive aspects, the faster 

reaction on monitored abnormalities and the possibility of avoiding failures 

were identified. However, the experts faced challenges since their existing 

knowledge differs and the statistics are potentially weak. Thus, it would either 

affect the algorithm quality in a negative way or the EM experts would have 

to spend much effort to prepare the data and algorithms to cover an 

extensive repository of failure patterns. The analysis results imply that the 

combination of offline and online PdM applications would eliminate some of 
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the weaknesses of each other, at least the weak statistics of online PdM and 

the slow reaction of offline PdM.  

6.3.2 Savings and Benefits gained by Preventive Maintenance 

Generally, PdM transforms reactive maintenance into preventive 

maintenance. The experts were asked what savings in terms of repair and 

maintenance time they expect because of this behavioural change, as well as 

how significant the improvement would be. It was possible to have more than 

one answer. Table 6-11 shows the aggregated results from this question. For 

savings that were mentioned by multiple experts, the mean significance is 

used in this table. 

Table 6-11: Expected Savings by Increasing Preventive Maintenance 

Saving Significance of 

saving  

Number of responses for this 

saving  

MTTR 5 1 

Increased speed of analysis 8 1 

Increased speed of reactions 10 1 

Reduced unscheduled downtime 

frequency 

9 1 

Reduced equipment downtime 

duration 

7 5 

 

The greatest match within the responses can be summarised as a reduction 

in the duration of equipment downtime. This saving can have different 

aspects:  

 A reduction through improving planning of EM personnel and materials 

to ensure just-in-time maintenance activities.  

 A reduction through avoiding late effects due to preventive activity.  

 A reduction through avoiding collateral damage with greater impacts 

than the original failure.  

Further savings can be achieved by increasing the speed of analysis of data 

as well as of reactions after abnormalities have been monitored.  

In addition to the savings that can be achieved by fostering preventive 

maintenance, problems and costs can be reduced by minimising reactive 
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maintenance. The experts were asked to provide from one to many expected 

benefits. The answers were classified by their primary benefit, and thus, 

answers that only transitively led to cost savings were not classified under 

‘cost reduction’ but under their primary benefit. Table 6-12 shows the 

aggregated results.  

Table 6-12: Expected Benefits from Minimising Reactive Maintenance 

Benefits Significance of benefit 

(mean) 

Number of responses for this 

benefit 

Cost reduction 6.6 10 

Avoidance of collateral damage 5.5 2 

Avoidance of total failure, foster 

refurbishment 

6 3 

EM process efficiency 10 1 

Less EM staff required 6.5 2 

Reduction of new equipment invests 6 1 

Increase equipment lifespan 8 1 

Increase EM efficiency 4.67 3 

Higher monitoring quality 5 1 

More efficient spare part logistics 6 1 

More even distribution of equipment 

downtimes 

3 1 

Increase equipment efficiency 8.33 3 

Make better use of wear limits 8 1 

Reduced Equipment Downtime 

duration 

8.5 2 

Increase process stability 10 1 

Rework reduction. 10 1 

Overall result 6.76 17 

 

Although the reduction of reactive maintenance can be seen simply as 

equivalent to the increase of preventive maintenance, the experts saw a 

more diverse portfolio of improvements when concretely minimising reactive 

maintenance activities. A possible interpretation for this result is that PdM as 

an enabler for reduction of reactive maintenance already leads to a 

tremendous improvement for a manufacturing department, even though the 

quality of predictions for preventive activities is not yet optimal. The benefits 

of highly reliable preventive maintenance can be seen as an additional 

benefit for the company, which can be achieved by applying PdM. 
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Cost reduction appears the most significant benefit with various drivers from 

equipment, EM staff, and EM process perspectives. The experts also saw 

chances of improving the overall EM efficiency because spare part demands 

and downtimes per shift can be controlled much more effectively than that in 

the current situation. Furthermore, the equipment efficiency could be 

enhanced by reducing downtime durations and optimising the lifespan of 

replaceable machine parts. Only one expert mentioned the possibility of 

increasing process stability. In cases of machine failure during a wafer 

process, the wafers typically require a rework procedure as long as they are 

not damaged beyond repair. Assuming the equipment failures are under 

more effective control, such cases could be eliminated and the overall rework 

rate would decrease.  

6.3.3 Influence of PdM on Machine Component Performance 

Because of the heterogeneous machine park and process landscape at the 

case study company, it is not possible or practically feasible to have one 

standard procedure for applying PdM to all areas. Furthermore, it is important 

to identify the relevant machines and their concrete components where PdM 

can be applied in order to gain relevant benefits. The experts considered that 

18 use cases exist where PdM can be applied. Table 6-13 shows the 

machine component characteristics procedures for verifying the prediction 

quality.  

The analysis shows that most of the components would not see their lifespan 

increase significantly. Only the handling robot, diamond scratch tool, and 

evaporation filament were seen as candidates where PdM would directly 

have a positive effect on the component itself, in addition to the surrounding 

equipment. A further result is that procedures exist for most of the cases to 

verify the prediction quality. Only two of the 18 use cases do not have either 

simple or accurate procedures. The existence of adequate verification 

procedures is a necessary criterion for starting a PdM project. The prediction 

algorithms must be adjusted, most probably in the early phase based on 

these verifications, until a long-term high prediction quality can be 
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established. However, all of the verification procedures must be performed 

manually, and thus the manual effort of EM staff must be considered. 

Table 6-13: Machine Component Characteristics and Procedures for 
Verifying Prediction Quality 

Machine component 
characteristics 

Increase of component lifespan 
(0–10 / Mean) 

Verification procedure 

Epitaxy 3 Not answered 

Handling robot accuracy 10 Inspection of accuracy 
deviation 

Mass flow controller 
adjustment 

0 Measure tool  

Metal organyl consumption 4 Weight of bubblers 

Process pump current 
consumption 

0 Inspection of current 
consumption 

Temperature deviation for 
metal organyl 

0 Inspection of temperature 
deviation 

Evaporation 3.33 Not answered 

Cryo regeneration 0 Not existing 

Filament crack 5 Inspection of crack 

Lamination 1 Not answered 

Lamination knife sharpness 1 Measurement of knife 
sharpness 

Laser Dicing 3 Not answered 

Laser wear 3 Measurement of laser 
power 

Lift-off 2 Not answered 

Filter wear 2 Yes, but not specified 

Lithography cluster 2 Not answered 

Vacuum quality 2 Yes, but not specified 

Plasma 1.5 Not answered 

Exhaust blockage 0 Yes, but not specified 

Turbo pumps wear 3 Yes, but not specified 

Scratching 6 Not answered 

Diamond scratch sharpness 6 Test prints on dummy 
material 

Spray acid cleaning 2 Not answered 

Filter wear 2 Yes, but not specified 

Sputtering 1 Not answered 

Shielding wear 1 Not existing 

Stepping and coating  2 Not answered 

Vacuum quality 2 Yes, but not specified 

Thickness 2 Not answered 

Filter wear 2 Yes, but not specified 

Overall result 2.62 
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6.3.4 Influence of PdM on Spare Part Stock 

One of the purposes of this study is to identify whether a higher percentage 

of preventive maintenance caused by PdM could lead to an increased spare 

part stock. The reason might be that equipment components are typically not 

used until their life cycle ends in order to avoid equipment failures and 

reactive maintenance. Thus, the replacement would be required earlier to 

avoid a failure. Throughout a certain timeframe, the number of component 

changes could be higher than that in the current situation, which would 

possibly require more spare parts on stock. Table 6-14 shows the 

components where an increased spare part stock is expected after 

application of PdM. 

Table 6-14: Machine Components with Impact on Spare Part Stock 

Machine component characteristics Minimum Stock 

Increase (0–10) 

Maximum 

Stock 

Increase 

(0–10) 

Increase 

of Spare 

Part Costs 

(0–10) 

Plasma 3.5 3.5 2 

Exhaust blockage 2 2 1 

Turbo pumps wear 5 5 3 

Sputtering 1 1 2 

Shielding wear 1 1 2 

Overall result 0.38 0.38 0.29 

 

The analysis of the results demonstrates that a negative effect of PdM on the 

company’s spare part stock is principally not expected. Only for a few tool 

components from plasma and sputtering did the experts see a possible stock 

increase, although with low impact on the associated costs. Generally, an 

accurate prediction of failures allows just-in-time spare part procurement. 

This would lead to a decreased spare part stock.  

6.3.5 Influence of PdM on EM Operations 

Another aspect of applying PdM is its integration into operational EM 

processes. The experts were asked about their expectations regarding the 

challenges and opportunities for automation of EM operations through ERP 

integration into PdM applications. One typical activity that could be 
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transferred to PdM software is autonomously starting maintenance orders 

without human interaction. Table 6-15 shows the aggregated results of this 

question. 

The results show that all experts generally wish to have autonomous PdM 

and ERP integration without human interaction after the stabilisation phase. 

PdM applications would have a significant effect on the daily operations of 

EM staff because decisions would be transferred from humans to the 

software. 

Table 6-15: Expectations regarding PdM Integration into EM Operations 

Expectation Number of 

agreements 

Number of 

disagreements 

The PdM software shall autonomously start 

maintenance orders without human interaction. 

5 0 

If human experts are required to finally decide, 

it shall be only until the stabilisation phase has 

been closed successfully. 

5 0 

 

To evaluate how this change would be supported by the EM staff, a similar 

project from the past can be used as a comparison. A few years ago, a 

factory-wide dispatching software was introduced. Prior to that, operators had 

great freedom in their decisions regarding which lot box they intended to use 

next for their responsible process. Now, the dispatching software provides 

the top three lot boxes per process area, which must be processed in the 

exact order to fulfil PS performance targets. However, the operators did not 

support this new behaviour by themselves. To increase dispatcher 

compliance, regular monitoring has been developed to address compliance 

violations to the responsible managers. Although PdM and dispatching refer 

to a different community, it can be expected that the currently autonomous 

EM staff are not wholly convinced when introducing a software package that 

takes over the decisions. Manufacturing or EM managers must prepare such 

a competency change to avoid compliance issues.  



 
 

 

186 6.3 Analysis of Expert Interviews from Equipment Maintenance 

6.3.6 Automation of EM Operations through PdM and ERP 
integration  

Furthermore, despite the general intention of passing decisions to software, 

the EM experts stated that cases exist where fully autonomous PdM and 

ERP integration is not possible or useful. It was possible for them to state 

from one to many criteria to support these findings. Table 6-16 shows the 

aggregated results.  

Table 6-16: Criteria for where Autonomous PdM and ERP Integration is 
not useful 

Criteria Expert decision due 

to a lack of machine 

intelligence 

Manual inspection by 

EM staff required 

Missing cost 

transparency  

None Total 

Costs 
  

1 
 

1 

Missing data 3 1 
  

4 

None 
   

1 1 

Process 

complexity 

2 1 
  

3 

PS 

performance 

2 
   

2 

Total 7 2 1 1 11 

 

Most of the answers refer to a possible lack of machine intelligence that 

requires an expert decision. Reasons for this can be missing data, 

surrounding process complexity, or overall PS performance that could not be 

considered sufficiently by PdM algorithms. Another criterion is manual 

inspection that can only be performed by EM staff. This can be required 

because of missing data or high process complexity, such as from product-

related nuances that cannot be differentiated by machine sensors. The costs 

were not considered the principle issue; however, one expert indicated that 

automatic spare part orders could lead to less cost transparency. Only one 

expert did not see any case in his area of responsibility where fully 

autonomous PdM and ERP integration would not be possible. 

The results from the rating of suggested expectations of how PdM might 

affect core performance in an SI PS are presented and discussed in Section 

6.4. 
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6.3.7 EM Data Consolidation 

The several associations collected from the EM expert interviews were 

collected and harmonised to generate a data matrix similar to that in the IE 

case study part of the thesis. Because of the rather unstructured design of 

questionnaires for the EM interviews and the approach selected for the data 

analysis, it was not necessary to further resolve inconsistent data. The 

consistency checks were directly applied during the coding procedure. The 

EM-oriented data matrix that consists of 37 associations is in appendix A2.  

6.4 Analysis of Expectations Regarding Predictive 
Maintenance 

Both the IE and EM experts were asked for their expectations regarding 

PdM. The questionnaires were slightly different to those for the expert-

specific knowledge. The experts had to evaluate suggested expectations 

using the following pre-defined patterns:  

1) How much do you agree with the expectation (from 1 = do not agree 

to 5 = fully agree)? 

2) How significant is this expectation on the production (from 1 = not 

significant to 5 = highly)? 

3) Which PS KPI or other factor is directly affected by this expectation? 

4) Which intensity of impact of the expectation on the listed KPI or factor 

do you see (+/− 1–10)?  

In the final simulation model, the degree of intensity was adjusted by the level 

of agreement and importance to production. Although the intensity of an 

expected effect might be rated as high, this would not necessarily mean that 

the suggested effect would in fact apply to the SI PS. Thus, the data has to 

be smoothed to achieve realistic effects during the simulation study. Table 

6-17 shows the mean and standard deviation of the IE expert responses on 

how much they agreed with the expectations. 
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Table 6-17: Results of IE Expectations on PdM (level of agreement) 

# Expectation Level of 
agreement 
(mean) 

Level of agreement 
 (standard 
deviation) 

1. Reduction of Machine Downtimes (not the number 
but duration) 

4.67 0.47 

2. Avoidance of Machine Downtimes (number) 3.17 1.21 

3. Harmonisation of production logistics over affected 
machines by production route 

4.33 0.75 

4. Reduction of WIP per work centre over a fiscal year 3.17 1.07 

5. Reduction of average cycle time per work centre 
over a fiscal year 

3.33 1.25 

6. Reduction of bottlenecks at work centres  3.60 1.50 

7. Increase in wafer throughput at work centres 3.50 0.96 

8. Increase in yield because of fewer machine-related 
process failures 

4.17 0.90 

 

Table 6-18 shows the mean and standard deviation of the IE expert 

responses on how significant the expectations are to production. 

Table 6-18: Results of IE Expectations on PdM (level of significance to 
production) 

# Expectation Level of 
significance 
to production 
(mean) 

Level of 
significance to 
production 
 (standard 
deviation) 

1. Reduction of Machine Downtimes (not the number 
but the duration) 

5.00 0.00 

2. Avoidance of Machine Downtimes (the number) 4.00 1.41 

3. Harmonisation of production logistics over affected 
machines by production route 

4.33 1.11 

4. Reduction of WIP per work centre over a fiscal year 3.33 1.37 

5. Reduction of average cycle time per work centre 
over a fiscal year 

3.33 1.37 

6. Reduction of bottlenecks at work centres 4.33 1.49 

7. Increase in wafer throughput at work centres 4.17 1.07 

8. Increase in yield because of fewer machine-related 
process failures 

3.83 0.90 

 

Figure 6-1 presents a comparison between the IE experts’ agreement with, 

and opinions of, regarding the suggested expectations’ significance to 

production. 

The deviations show the clear differences between the importance of 

expectations and their probability of occurrence. PdM would help to reduce 

the downtime duration but would not support the avoidance of downtimes in 

general. Among the IE experts, there is only restrained agreement that PdM 

directly affects PS performance indicators such as WIP, CT, and GR. 
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Figure 6-1: IE Expert Summary on PdM Expectations 

 

Table 6-19 shows the KPIs or factors that were seen as impacted by the 

suggested effects triggered by a PdM application. Moreover, it contains the 

mean and standard deviation of the intensity of these effects. Each 

expectation may affect multiple KPIs or factors or none; thus, the experts 

were allowed to respond with ‘0’ to many questions. The terms were partially 

translated into English first, and then harmonised into common terms from 

the previously developed association matrix. When terms were named 

together without the intensity being differentiated, there were cases where 

the sign was not logically correct. A typical example was CT and GR, which 

ran synchronously to the mathematics from Little’s law. However, the signs 

were different in consideration of the same effect: a positive effect for GR 

meant ‘+’, whereas it meant ‘–‘ to CT. These cases were resolved directly 

before calculating the mean values of each effect. 
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Table 6-19: IE Expert Expectations on PdM 

# Expectation 
Impacted KPIs 
or factors 

Number of 
responses 
for effect Intensity (mean) 

1. 

Reduction of Machine Downtimes 
(not the number but duration) 

Alpha Tool 2 −9 

CT 2 −9 

FF 2 −8.5 

GR 3 8.33 

Equipment 
Availability 1 8 

MTOL 1 10 

2. 

Avoidance of Machine Downtimes 
(number) 

Alpha Tool 2 −9 

CT 2 −7.5 

FF 2 −5 

GR 2 6 

Equipment 
Availability 1 8 

MTOL 1 10 

3. 

Harmonisation of production 
logistics over affected machines by 
production route 

Alpha Tool 2 −10 

CT 2 −8.5 

FF 2 −7.5 

GR 2 6 

Equipment 
Availability 1 10 

Alpha WIP 2 −10 

4. 

Reduction of WIP per work centre 
over a fiscal year 

Alpha PS 0 −9 

FF 2 −8.5 

CT 2 −5.5 

WIP 1 −7 

Little's law 1 N/A 

5. 

Reduction of average cycle time per 
work centre over a fiscal year 

Alpha PS 1 −10 

FF 2 −8 

CT 3 −6.67 

Little’s law 1 N/A 

6. 

Reduction of bottlenecks at work 
centres 

Alpha WIP 1 −8 

FF 1 −7 

CT 2 −9.5 

GR 1 9 

7. 

Increase in wafer throughput at work 
centres 

Alpha PS 2 −8.5 

CT 1 −8 

GR 2 7.5 

WIP 1 −2 

WSPW 1 8 

Equipment 
Availability 1 8 

Little’s law 1 N/A 

8. 

Increase in yield because of fewer 
machine-related process failures 

Percentage of 
Rework 1 −6 

Yield 2 6 

Scrap 1 −5 

CT 1 −4 

GR 1 4 

 

Table 6-20 shows the mean and standard deviation of the EM expert 

responses to how much they agreed with the expectations.  
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Table 6-20: Results of EM Expectations on PdM (level of agreement) 

# Expectation Level of agreement 
(mean) 

Level of agreement 
(standard deviation) 

1. Increased coordination of maintenance 

processes 
4.40 0.80 

2. More efficient spare part logistics 3.20 1.17 

3. Reduction of repair time 3.20 0.98 

4. Reduction of Machine Downtimes because of 

maintenance (not the number but duration) 
4.50 0.87 

5. Avoidance of Machine Downtimes (number) 2.00 0.89 

6. Machine parts will be used nearly until end of 

their life cycle though application of preventive 

maintenance 

4.20 0.75 

7. Increase in yield because of fewer machine-

related process failures 
4.20 1.17 

 

Table 6-21 shows the mean and standard deviation of the EM expert 

responses to how significant the expectations are to production. 

Table 6-21: Results of EM Expectations on PdM (level of significance to 
Production) 

# Expectation Level of 
significance to 
production 
(mean) 

Level of 
significance to 
production 
 (standard 
deviation) 

1. Increased coordination of maintenance 

processes 

4.20 0.75 

2. More efficient spare part logistics 2.80 0.98 

3. Reduction of repair time 3.80 0.75 

4. Reduction of Machine Downtimes due to 

maintenance (not the number but duration) 

4.75 0.43 

5. Avoidance of Machine Downtimes (number) 3.60 1.50 

6. Machine parts will be used nearly until end of 

their life cycle though application of preventive 

maintenance 

3.80 0.40 

7. Increase in yield because of fewer machine-

related process failures. 

4.20 1.17 

 

Figure 6-2 presents a comparison between the EM experts’ agreement with 

and opinions regarding the suggested expectations’ significance to 

production. Although the effects from single expectations would have a 

significant impact on PS performance, not all of them could be achieved 

through applying PdM. An obvious difference was found for expectation #5 

(‘Avoidance of Machine Downtimes’), which the experts tended to assign a 

medium to high significance to production, without believing that PdM would 

support such an improvement. The biggest positive overlap in levels of 

agreement as well as level of significance to production was found for the 

increased coordination of EM processes, reduction of machine downtime 



 
 

 

192 6.4 Analysis of Expectations Regarding Predictive Maintenance 

durations, and the exhausting of machine component wear limits. The 

experts saw PdM as an effective tool for improvement for these aspects. 

Table 6-22 shows the KPIs or factors that were seen as being impacted by 

the suggested effects that were triggered by a PdM application. Furthermore, 

it contains the mean and standard deviation of the intensity of the effects. 

Data cleansing was performed in the same manner as described in the IE 

part of the thesis.  

Table 6-22: EM Expert Expectations on PdM 

# Expectation Impacted KPIs or 
factors 

Number of 
responses for 
effect  

Intensity (mean) 

1. 

Increased coordination of 
maintenance processes 

FF 2 −5 

MTBF 1 5 

MTOL 1 −7 

QE 1 7 

Equipment 
Availability 

2 8 

EM costs 2 −5.5 

MTTR 3 −6.67 

Personnel costs 1 −8 

2. 

More efficient spare part logistics EM costs 2 −6 

Inventory costs 1 −4 

Spare part costs 1 −5 

Equipment 
Availability 

3 7 

MTTR  1 −8 

3. 

Reduction of repair time FF 1 −10 

MTOL 2 7.5 

Equipment 
Availability 

2 5.5 

MTTR 4 −5.25 

4. 

Reduction of Machine Downtimes 
due to maintenance (not the 
number but duration) 

Equipment 
Availability 

2 6 

MTOL 3 −9 

MTTR 1 −4 

OEE 1 10 

MTBF 1 10 

5. 

Avoidance of Machine Downtimes 
(number) 

Equipment 
Availability 

2 5.5 

FF 1 −5 

MTBF 2 7 

MTOL 2 −7 

MTTR 1 −5 

OEE 1 5 

6. 

Machine parts will be used nearly 
until end of their life cycle though 
application of preventive 
maintenance 

EM costs 3 −7 

Equipment 
Availability 

2 7.5 

MTBF 1 5 

Spare part costs 2 −7.5 

7. 
Increase in yield because of fewer 
machine-related process failures 

Product costs 1 −10 

Yield 6 8.67 
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Figure 6-2: EM Expert Summary on PdM Expectations 

 

6.5 Consolidation and Evaluation 

This section consolidates the individual analysis results to support an overall 

data evaluation. The goal of this section is to create a comprehensive CLM 

that stores the identified influences between SI PS elements mutually and 

influences of PdM on these elements. This model will act as an existential 

basis for the PPES development as well as for the PdMSM development. 

First, the identified terms from both the IE and EM have to be harmonised to 

concatenate them. The following aspects should be considered:  

1. Different naming conventions (e.g., ‘variance of xy’ vs. ‘xy variance’) 

2. Usage of abbreviations (e.g., ‘EM’ vs. ‘maintenance’) 

3. Missing or different transformations (e.g., ‘xy’ vs. ‘Importance of xy’) 

4. Different text style for upper and lower case (all terms were 

harmonised to camel case) 

Because the fourth aspect affects nearly all terms and the resolution 

procedure is trivial, it will not be discussed in details. Table 6-23 lists the 
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required transformations from rules 1 to 3 to achieve a harmonised set of 

terms between the IE and EM data.  

Table 6-23: Term Transformation for IE and EM harmonised Data 

# Original Transformed To 

1 Capacity Equipment Capacity 

2 Dispatcher Compliance Degree Of Dispatcher Compliance 

3 Downtime Frequency Equipment Downtime Frequency 

4 Duration Of Machine Downtimes Equipment Downtime Duration 

5 Equipment Going Rate Equipment GR 

6 Evenness Of Distribution Of Equipment 
Downtimes 

Degree Of Evenness Of Distribution Of 
Equipment Downtimes 

7 Frequency Of Unscheduled Machine 
Downtimes 

Unscheduled Down Frequency 

8 High Percentage Process Inspections Percentage Of Process Inspections 

9 Maintenance Strategy Maturity Of EM Strategy 

10 Performance Synchronicity Of Similar 
Machines 

Degree Of Performance Synchronicity Between 
Similar Machines 

11 Probability To Avoid Machine-Downtimes Probability To Avoid Machine Downtimes 

12 Process Development At Production 
Equipment 

Percentage Of Process Development At 
Production Equipment 

13 Rework Percentage Of Rework 

14 Tool Dedication Degree Of Tool Dedication 

 

Partially, the mathematical associations between factors and KPIs shown in 

Chapter 4 were also stated by the experts. However, not all of them are 

contained in the current data matrix. Because the PPES is intended to 

include all known associations to provide a full picture of the SI PS 

performance, the mathematical associations from the literature must be 

added in this section. Only trivial dependencies such as the overall time the 

factory exists or the overall number of items that have been fabricated are 

skipped for the further model development. It is not necessary to specify a 

certain impact value because the mathematical dependencies are well 

defined. Table 6-24 shows the mathematical associations that is added to the 

data matrix.  

To add the associations from the rated expectations on how PdM influences 

PS indicators, the given expectations have to be transformed into quantifiable 

but neutral terms. This transformation is primarily for searching the terms 

already named by the experts to foster concatenated effects. The source was 

constantly set as ‘PdM Application’ because it is the influencing part of this 

association. The impact was calculated based on the level of agreement by 
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the experts with that particular expectation because it describes the 

quantified impact of PdM on each expectation. 

Table 6-24: Mathematical Associations for PPES 

# Source Type Target 

1 Equipment Capacity decrease Equipment Utilisation 

2 GR increase Equipment Utilisation 

3 Equipment GR increase Equipment Capacity 

4 Equipment Availability increase Equipment Capacity 

5 Process Availability increase Equipment Capacity 

6 Raw Process Time decrease Alpha Tool 

7 Equipment Availability decrease Alpha Tool 

8 MTOL increase Alpha Tool 

9 Raw Process Time decrease FF 

10 CT increase FF 

11 GR decrease CT 

12 WIP increase CT 

13 Wait Time increase CT 

14 Fabricated Items Per Time increase GR 

15 Equipment Availability increase DGR 

16 Process Availability increase DGR 

17 Fabricated Items Per Day increase DGR 

18 Operator Availability increase DGR 

19 WIP Availability increase DGR 

20 Equipment Availability increase PS Availability 

21 Process Availability increase PS Availability 

22 Fabricated Items Per Day increase PS Availability 

23 Operator Availability increase PS Availability 

24 WIP Availability increase PS Availability 

25 OE increase OEE 

26 QE increase OEE 

27 RE increase OEE 

28 Equipment Availability increase OEE 

29 Number Of Wafers To Rework decrease QE 

30 Number Of Wafers To Scrap decrease QE 

31 Number Of Assists decrease MTBA 

32 Number Of Failures decrease MTOL 

33 Number Of Failures decrease MTBF 

34 Number Of Failures decrease MTTF 

35 Number Of Failures decrease MTTR 

 

 

Because of the different numbers of dimensions (0–5 vs. 0–10), the impact 

value has to be multiplied by 2 to add the equivalent significance, as with the 

other associations. Table 6-25 shows the transformation for the EM part.  
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Table 6-25: Transformed EM Expectations on PdM into Terms 

# Source Expectation Target 
(transformed) 

Impact 
(Level of 
agreement 
[mean]*2) 

1 PdM 
Application 

Increased coordination of 
maintenance processes 

Efficiency In 
Coordination Of 
Maintenance 
Process 

8.8 

2 PdM 
Application 

More efficient spare part logistics Efficiency Of Spare 
Part Logistics 

6.4 

3 PdM 
Application 

Reduction of repair time 
Repair Time 

−6.4 

4 PdM 
Application 

Reduction of Machine Downtimes 
because of maintenance (not the 
number but duration) 

Equipment Downtime 
Duration 

−9 

5 PdM 
Application 

Avoidance of Machine Downtimes 
(number) 

Probability To Avoid 
Machine Downtimes 

4 

6 PdM 
Application 

Machine parts will be used nearly 
until end of their life cycle though 
application of preventive 
maintenance 

Degree Of 
Exhausting Wear 
Limits 

−8.4 

7 PdM 
Application 

Increase in yield because of fewer 
machine-related process failures 

Degree Of Machine-
Related Process 
Failures 

8.4 

 

The same procedure is applied for the IE expectations on PdM. Table 6-26 

shows the transformation for the IE part.  

Table 6-26: Transformed IE Expectations on PdM into Terms 

# Source Expectation Target  
(transformed) 

Impact 
(Level of 
agreement 
[mean]*2) 

1 PdM 
Application 

Reduction of Machine 
Downtimes (not the number 
but duration) 

Equipment Downtime Duration −9.34 

2 PdM 
Application 

Avoidance of Machine 
Downtimes (number) 

Probability To Avoid Machine 
Downtimes 

6.34 

3 PdM 
Application 

Harmonisation of production 
logistics over affected 
machines by production 
route 

Material Flow Variance −8.66 

4 PdM 
Application 

Reduction of WIP per work 
centre over a fiscal year 

WIP −6.34 

5 PdM 
Application 

Reduction of average cycle 
time per work centre over a 
fiscal year 

CT −6.66 

6 PdM 
Application 

Reduction of bottlenecks at 
work centres 

Percentage Of Bottleneck Equipment −7.2 

7 PdM 
Application 

Increase in wafer 
throughput at work centres 

GR 7 

8 PdM 
Application 

Increase in yield because of 
fewer machine-related 
process failures 

Degree Of Machine-Related Process 
Failures 

−8.34 

 

After processing the harmonisation of terms, the IE and EM associations 

were merged into a common data matrix enriched by the mathematical 
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associations and transformed PdM expectations. Subsequently, the 

consolidated data has to be analysed against redundancies and 

inconsistencies (decrease vs. increase) between EM and IE experts. Only 

two inconsistencies were found in the associations between the following 

terms:  

1) ‘Probability To Avoid Machine Downtimes’ on ‘MTOL’  

a. This inconsistency can be resolved using ‘decrease’ following 

the majority of responses.  

2) ‘Equipment Downtime Duration’ on ‘MTOL’ 

a. This inconsistency can be resolved using ‘increase’ following 

the majority of responses. 

The redundant associations should be processed to be unique and require a 

harmonised impact value in order to generate clear logical rules and a 

consistent simulation model. To consider the number of experts behind the 

given impact value, the resolution procedure applied a weighted average of 

impacts using the numbers of responses from each association.  

Table 6-27 shows the redundant associations and the recalculated impact 

values.  

Table 6-27: Resolved Redundancies with Recalculated Impact Values 

# Source Type Target Impact 
(weighted 
average) 

1 Equipment Downtime 
Duration 

decrease Equipment Availability −6.67 

2 Equipment Downtime 
Duration 

increase MTOL 9.25 

3 Percentage Of Bottleneck 
Equipment 

increase CT 9.00 

4 PdM Application decrease Degree Of Machine-
Related Process 
Failures 

−8.37 

5 PdM Application decrease Equipment Downtime 
Duration 

−9.19 

6 PdM Application increase GR 6.55 

7 PdM Application increase Probability To Avoid 
Machine Downtimes 

5.28 

8 Probability To Avoid Machine 
Downtimes 

increase Equipment Availability 6.33 

9 Probability To Avoid Machine 
Downtimes 

decrease FF −5 

10 Probability To Avoid Machine 
Downtimes 

decrease MTOL −8 

11 Degree Of Machine-Related 
Process Failures 

decrease Yield −8 
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At this stage, the overall data matrix is finished. It will serve as the primary 

basis for developing PPES and PdMSM. The matrix consists of all identified 

associations relevant to this study. Figure 6-4 shows the overall CLM that is 

created from the data matrix. The figure is divided into four parts P1 to P4 

that are shown in more detail in the following Figures 6-4 to 6-7. The arrows 

indicate associations from a source term to a target term where a target term 

is connected to the arrowhead. Each arrow is marked with a sign: The minus 

sign (‘−‘) refers to decreasing influences, whereas the plus sign (‘+’) refers to 

increasing influences. 

Overall, the CLM consists of 134 harmonised terms, which are part of 272 

logical associations. However, the terms can be rated by their importance 

because their application within associations is spread widely. Figure 6-3 

shows this distribution.  

 

Figure 6-3: Distribution of Term Usage in Associations 

 

The blue bars visualise the number of occurrences of a term in associations 

(scale on the left side), whereas the orange line shows the number of terms 

that match this occurrence (scale on the right side). Both numbers consider 

only the harmonised overall results and not the sum of occurrences within all 

interviews.
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Figure 6-4: Overall CLM 
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Figure 6-5: P1 Part of the CLM 
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Figure 6-6: P2 Part of the CLM 
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Figure 6-7: P3 Part of the CLM 
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Figure 6-8: P4 Part of the CLM 
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This study suggests that the number of occurrences is an indicator of the 

importance of a specific term in this research context. This is justified by the 

fact that those terms either significantly influence other terms or are 

significantly impacted by other terms directly. Although the ranking is not 

intended to imply a general importance in terms of PS performance 

management, the terms are potentially the most critical factors and indicators 

when analysing the impact of PdM as a specific PA application on the PS 

performance in SI. This identified importance is used for the development of 

the simulation model for RO 4 to differentiate the weight of effects. The chart 

shows that only a few terms were used in many associations and a large 

number of terms were only used once. Table 6-28 shows the 21 most 

important terms that were included in 50% of all associations. 

 Table 6-28: Most important Terms rated by Occurrence in Associations 

# Terms Occurrence Percentage Accumulation 

1 GR 27 4.97% 4.97% 

2 CT 23 4.24% 9.21% 

3 PdM Application 23 4.24% 13.44% 

4 FF 21 3.87% 17.31% 

5 Equipment Availability 20 3.68% 20.99% 

6 Standby Time Duration 14 2.58% 23.57% 

7 Alpha PS 13 2.39% 25.97% 

8 Equipment Downtime Duration 12 2.21% 28.18% 

9 Percentage Of Reactive Maintenance 12 2.21% 30.39% 

10 Equipment Capacity 11 2.03% 32.41% 

11 Degree Of Tool Dedication 10 1.84% 34.25% 

12 
Efficiency In Coordination Of Maintenance 
Process 10 1.84% 36.10% 

13 Probability To Avoid Machine Downtimes 10 1.84% 37.94% 

14 WIP Variance 10 1.84% 39.78% 

15 Material Flow Variance 9 1.66% 41.44% 

16 Offline PdM Application 9 1.66% 43.09% 

17 Process Stability 9 1.66% 44.75% 

18 Alpha Tool 8 1.47% 46.22% 

19 MTOL 8 1.47% 47.70% 

20 MTTR 8 1.47% 49.17% 

21 OEE 8 1.47% 50.64% 

 

Another indicator for rating the importance of terms is the number and degree 

of impact on other terms. This helps to differentiate the terms as candidates 

for influencing parameters from terms that are instead candidates for KPIs. 

The source terms were evaluated by their occurrence in associations in order 

to generate an importance profile. Figure 6-9 presents the results from this 

evaluation for the influencing terms.  
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Figure 6-9: Distribution of Influencing Terms 

 

The blue bars visualise the number of occurrences of an influencing source 

term in associations (scale on the left side), whereas the orange line shows 

the number of terms that match this occurrence (scale on the right side). The 

result is similar to the overall distribution, showing that a few source terms 

have a high number of occurrences in all associations. The analysis reveals 

that 21% of all source terms are the influencing factors within 50% of all 

associations, and 56% only have an impact on one or two terms. Table 6-29 

lists the most influential source terms that have an impact on 50% of all 

identified associations. 

Table 6-29: Most Influential Source Terms 

# Source Term Occurrences  Percentage  Accumulation 

1 PdM Application 23 8.46% 8.46% 

2 Percentage Of Reactive Maintenance 12 4.41% 12.87% 

3 Degree Of Tool Dedication 10 3.68% 16.54% 

4 Equipment Downtime Duration 9 3.31% 19.85% 

5 GR 9 3.31% 23.16% 

6 Offline PdM Application 9 3.31% 26.47% 

7 Probability To Avoid Machine Downtimes 9 3.31% 29.78% 

8 Efficiency In Coordination Of Maintenance 
Process 8 2.94% 32.72% 

9 Equipment Availability 8 2.94% 35.66% 

10 Online PdM Application 8 2.94% 38.60% 

11 Percentage Of Preventive Maintenance 8 2.94% 41.54% 

12 Process Stability 8 2.94% 44.49% 

13 Operator Availability 7 2.57% 47.06% 

14 Degree Of Machine-Related Process 
Failures 6 2.21% 49.26% 

15 Material Flow Variance 6 2.21% 51.47% 

 

By contrast, Figure 6-10 shows the distribution of influenced terms to their 

occurrence in associations. Similarly, the blue bars visualise the number of 
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occurrences of an influenced target term in associations (scale on the left 

side), whereas the orange line shows the number of terms that match this 

occurrence (scale on the right side). The distribution tends even more toward 

unevenness compared with the influenced terms and shows that a smaller 

number of terms were impacted by many associations, whereas a larger 

number of terms were only impacted rarely. The calculation shows that 13% 

of all target terms were impacted by 50% of all associations, and 74% of all 

target terms were impacted only once or twice. Similarly, the blue bars 

visualise the number of occurrences of an influenced target term in 

associations (scale on the left side), whereas the orange line shows the 

number of terms that match this occurrence (scale on the right side). The 

distribution tends even more toward unevenness compared with the 

influenced terms and shows that a smaller number of terms were impacted 

by many associations, whereas a larger number of terms were only impacted 

rarely. The calculation shows that 13% of all target terms were impacted by 

50% of all associations, and 74% of all target terms were impacted only once 

or twice.  

 

Figure 6-10: Distribution of Influenced Terms  

 

Table 6-30 lists the 12 most influenced target terms that were impacted by 

50% of all identified associations. 
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Table 6-30: Most Influenced Target Terms 

# Target Term Occurrences  Percentage  Accumulation 

1 FF 21 7.72% 7.72% 

2 CT 19 6.99% 14.71% 

3 GR 18 6.62% 21.32% 

4 Standby Time Duration 14 5.15% 26.47% 

5 Alpha PS 13 4.78% 31.25% 

6 Equipment Availability 12 4.41% 35.66% 

7 Equipment Capacity 10 3.68% 39.34% 

8 Alpha Tool 7 2.57% 41.91% 

9 MTTR 7 2.57% 44.49% 

10 WIP Variance 7 2.57% 47.06% 

11 DGR 6 2.21% 49.26% 

12 MTOL 6 2.21% 51.47% 

 

With these two lists of evaluated terms, this study found the most relevant PS 

characteristics that are either influencing or influenced when applying PdM as 

a concrete PA application on SI PS. For instance, it can be expected from the 

evaluation that PdM in SI PS would not significantly influence the ‘Probability 

To Avoid Machine Downtimes’, whereas this characteristic itself would be a 

critical driver for PS performance improvement. By contrast, the GR is a PS 

characteristic that would be impacted significantly by PdM applications, and 

would also influence numerous other PS performance factors.  

6.6 Summary 

This chapter presented the analysis of the expert interview data and the 

development and evaluation of a CLM. This model states that the causal 

relationships between the application of PdM and its influences on the 

performance-critical characteristics of an SI PS can be identified. Prior to the 

overall CLM, two sub-models were developed independently. The sub-model 

from the IE perspective is concentrated on the causal relationships between 

elements and factors within the SI PS, whereas the sub-model from the EM 

perspective focusses on the causal relationships between maintenance 

strategies and machine-oriented performance indicators. The overall CLM 

combines both sub-models and consists of records that indicate which 

source term has an increasing or decreasing impact on a target term 

including the weight of the impact. This information is the basis for the 

advanced analysis methods that are developed and evaluated in Chapter 7 

and Chapter 8.  
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The direct benefits that PdM might facilitate have been pointed out, such as 

the reduction of machine downtimes or the increased coordination of 

maintenance processes. However, according to the IE and EM experts, PdM 

would not directly help to avoid machine downtimes. Based on the number of 

occurrences in impact associations, the most directly influenced terms as 

well as the most directly influencing terms were discovered. Although the IE 

experts did not believe that PdM would directly affect the PS performance, 

the causal loop relationships revealed high occurrences of FF, CT, and GR 

as target terms within all captured associations. However, the advanced 

analysis capabilities of PPES and PdMSM are required to reveal the 

transitive impacts of PdM on those indicators. 
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Chapter 7 A Production Performance Expert 
System for the SI 

7.1 Introduction 

The data analysis in Chapter 6 results in the CLM that establishes the 

relationships between the essential terms from SI PS and PdM. However, the 

data is not yet in the format that is required by software-based analysis 

procedures to generate transitive knowledge. The reason for this is that the 

majority of terms is a combination of single words, for instance ‘Importance 

Of EM Availability’. Whereas a human reader with the necessary expertise is 

able to split the term into useful atomic parts, a knowledge-based system 

requires additional descriptive characteristics. This chapter will discuss the 

transformation of these terms and associations into a knowledge-based 

system called PPES. The CLM represents the so-called ‘word model’ as a 

major prerequisite, which describes the model logic in a textual way. As 

discussed in 3.2.3, the CLM consists of a set of data on causes and effects in 

the system structure and a set of characteristic parameters of individual 

processes within the system. 

Though the data of time series is not required to create the model, the data is 

important for model validation. The required data has been identified during 

the case study and extracted from the IT systems. This data is used in a later 

stage of the project to prove the correctness simulation model.  

Stanford University researchers Noy and McGuinness (2000) published a 

methodology to develop ontologies using the software Protégé. According to 

Google Scholar, more than 5,700 publications cited this particular 

methodology. Due to its acceptance in science, it acts as inspiration for the 

PPES development procedure. The procedure consists of the following 

sequential steps:  

1) Define the scope and boundaries of the ontology. 

2) Transform the identified terms from the case study into ontology 

concepts. 

3) Create the class hierarchy and entity specifications.  

4) Define and develop the required object properties. 
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5) Define and develop the FOL rules to model the direct effect 

associations and to enable logical inference to derive additional 

knowledge. 

To prove the PPES logic is correct, and to extract new knowledge, the 

ontology and its inference engine require so-called ‘individuals’. These 

objects are specific instances of the concepts that are part of the class 

hierarchy. Finally, the new transitive knowledge regarding impacts of PdM on 

SI PS performance is presented. The results of the PPES have been used to 

further develop the simulation model.  

7.2 Scope and Boundaries 

To define the scope and boundaries of PPES as an ontology, Noy and 

McGuiness (2000) suggested asking the following questions:  

1) What domain will the ontology cover? 

2) For what are we going to use the ontology?  

3) For what types of questions should the information in the ontology 

provide answers? 

4)  Who will use and maintain the ontology? 

These questions are crucial to generate an unambiguous language within the 

ontology, especially for terms that have another meaning in different 

contexts. The high quality of the language is the foundation for the correct 

application of logical inference. Table 7-1 defines the characteristics that 

specify the PPES scope and boundaries. 

Table 7-1: PPES Scope and Boundaries 

Characteristic Value 

Ontology domain SI PS 

Ontology purpose Analysis of impacts of PdM on SI PS performances 

Types of questions to be 
answered 

 What are the critical characteristics of SI PS elements that 
influence the SI PS performance? 

 How are SI PS elements and characteristics connected, 
logically? 

 How does PdM directly affect SI PS performance? 

 Which transitive impacts of PdM on SI PS performance exist 
beyond the ones mentioned by the interviewees? 

 Which contradictory impacts exist that interviewees did not 
mention? 

Ontology user group Business Analysts, Industrial Engineers, EM Engineers, Academic 
Researchers 



 

 

 

211 7.3 Term Transformation into Ontology Concepts 

7.3 Term Transformation into Ontology Concepts 

This section presents the process of concept generation based on the case 

study results.  The identified terms in the data matrix have been transformed 

into quantifiable variables. This procedure requires a separation of multiple 

aspects from the core variable to gain unique elements. Only with unique 

elements is it possible to generate knowledge within the given term 

relationships. Otherwise, terms that refer to the same core element would not 

be logically connected. Ressler et al. (2007) described a software-based 

transformation and propose a separation by following types of data within an 

ontology: 

 Individual variables (in Protégé known as classes or concepts) 

 Data-valued variables (in Protégé known as data properties) 

 Literal variables (in Protégé known as individuals) 

 Relationships (can be either object properties or class hierarchies in 

Protégé) 

 Built-in operators and functions  

All types of properties and classes are called ‘entities’ in Protégé. This project 

uses the naming conventions from Protégé within the thesis in terms of 

ontology generation. In contrast to an object-oriented class model, the single 

variables are associated rather loosely. In object-oriented class models, a 

certain attribute is only defined and valid within a certain class. However, in 

ontologies, an attribute is principally defined in a public way and can be 

shared by multiple classes. Figure 7-1 shows the principal data model 

conventions in ontology according to Ressler et al. (2007). 

There is always one generic root class for all subclasses that is named 

‘Thing’ by default. Protégé does not allow the creation of parallel classes at 

root level. Classes can have a hierarchical relationship including the 

inheritance of class definitions or relationships. A class hierarchy does not 

have to be balanced, thus, each branch may consist of individual levels and a 

number of sub-classes. Fortunately, there exists  best practice advice from 

literature on how to evaluate the quality of class hierarchies, which is 

summarised below (Noy and McGuinness, 2000):  
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1) If a class only consists of one direct subclass, there may be a 

modelling problem or the ontology is not complete. 

2) If there are more than a dozen subclasses for a given class, additional 

intermediate categories may be necessary. 

 

 

Figure 7-1: Ontology Data Model Conventions inspired by Ressler et al. 
(2007) 

 

All kinds of properties are defined individually and do not belong to any class 

by default. Thus, different classes can use the same property. The actual 

usage needs to be defined either by class or by property since the software 

allows both perspectives. Where data properties are used to store any kind of 

value, object properties are used to specify logical relationships between 

classes. Individuals can be instances of classes, but can also be independent 

to represent anything specific. Built-in functions are provided by the software 

and can be used to do mathematical operations or logical comparisons such 

as ‘is greater than’.  
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The transformation procedure needs to run the following steps in sequence:  

1. For each term:  

1.1. Extract terms, source/target information and relationship types from 

all associations. 

1.2. Split the terms into atomic elements as far as logically possible to 

create single concepts.  

2. For each concept: 

2.1. Categorize the concept by ontology object type. 

2.2. Ensure a standardized format of concepts and transform concepts 

into singular if required and possible. 

2.3. Identify common classifiers as the basis for the tree hierarchy. 

2.4. Search for equivalent concepts and store this information. 

2.5. Search for opposite concepts and store this information. 

Finally, a raw data model has been created from the transformed data to 

prove the correctness compared to the initial terms and relationships.  

As an example, the transformation procedure has been applied on the 

following records from the data matrix as shown in Table 7-2.  

Table 7-2: Sample Records from the Case Study Data Matrix 

Source Type Target 

WSPW Variance increase Risk of Equipment Bottleneck 

Percentage Of Bottleneck Equipment increase Alpha WIP 

 

First, the terms need to be extracted:  

1) ‘WSPW Variance’ 

2) ‘Risk of Equipment Bottleneck’ 

3) ‘Percentage Of Bottleneck Equipment’ 

4) ‘Alpha WIP’ 

5) ‘Increase’ 

Then, the atomic elements of all terms must be identified. The most 

appropriate split of elements depends on the intended way of modelling the 

final ontology. Thus, it might happen that atomic elements need to be 

changed or merged when processing the algorithm. The procedure uses the 

‘Maximum Matching Algorithm’, also known as ‘Greedy Algorithm’, to achieve 
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a standardized word segmentation. The algorithm starts with the first 

character of a term, iterates through the string and concatenates the 

characters. Each iteration checks the existence of the currently concatenated 

characters against a valid dictionary. As soon as an existing word has been 

found, the algorithm continues searching for the next word within the term 

using the same iterative approach. When the algorithm has reached the end 

of a term string, it continues with the next term until all words from all terms 

have been segmented accordingly (Cohen and Wahlster, 1997). As an 

additional rule, all prepositions are removed so that only nouns, verbs, 

established terms and phrases whose words belong together for the ontology 

are considered. For the sample terms from above, the word segmentation 

leads to following results:  

1) [WSPW] + [Variance] 

2) [Risk] + [Equipment] + [Bottleneck] 

3) [Percentage] +[Bottleneck] +[Equipment] 

4) [Alpha] + [WIP] 

5) [increase] 

Next, the atomic elements have to be classified by their ontology component 

type. The most fundamental question is whether an element is a class or a 

property. This can only be decided using the ontology domain specification 

and real-world target. This means that the decision could be different in 

another domain having other kinds of processes, products or challenges. Noy 

and McGuiness (2000) proposed a few guidelines to decide for the proper 

classification. Generally, if a class with different property values becomes a 

restriction for different properties in other classes, then an element should be 

created as new class for the distinction. Otherwise, it can be represented as 

distinction through a property value. Another aspect is if the element would 

be treated as single real-world object in the ontology domain, then it should 

be created as class. Further, the class has to be stable enough so that its 

individuals do not have to change classes often. Another distinction needs to 

be made between a class and an individual. According to Noy and 

McGuiness (2000), individuals are the most specific concepts represented in 

the knowledge base. Thus, other individuals cannot inherit their 

characteristics. Another limitation in knowledge databases is that the 

hierarchy model cannot manage individuals. Thus, it can make sense to 



 

 

 

215 7.3 Term Transformation into Ontology Concepts 

define terms as classes even if they do not  have any instance of their own in 

cases where they represent a valuable element of the domain (Noy and 

McGuinness, 2000). Since the ontology as a knowledge base shall be able to 

manage all concepts equally, it is mostly required to define concepts as 

classes.  

These guidelines lead to the following proposed classifications for the 

identified unique elements:  

1) [Variance]: Class  

2) [WSPW]: Class  

3) [Risk]: Class  

4) [Bottleneck]: Class  

5) [Equipment]: Class  

6) [Percentage]: Class 

7) [Alpha]: Class 

8) [WIP]: Class 

9) [Increase]: Object Property 

Depending on the actual usage of the ontology, it may be required to specify 

the concepts in more details. Such details could be attached via data 

properties to provide a basis for mathematical calculations. Since this 

ontology is not intended to perform such value-based calculations, a high-

level representation of real objects as classes is considered sufficient. The 

concepts ‘Percentage’ and ‘Risk’ are treated as equal to keep the example 

simple for demonstration reasons. The term ‘increase’ represents a pure 

relationship between two classes, and therefore, can be classified as object 

property. Depending on the ontology usage, it could be modelled as class as 

well. However, this example applies the typical approach of FOL inference. 

The further relationships have then been modelled through a FOL rule. To 

prove the decisions for the proposed classifications, a small class hierarchy 

as prototype of the PPES is created as shown in Figure 7-2. 

To ensure that no information is lost, the single concepts need to be 

associated using some additional object properties. The process only 

searches for concepts that have their root in the same original term. For each 

concept, a generic individual is assigned to differentiate whether the 

concepts refer to the same or to different individuals. 
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Figure 7-2: PPES Class Hierarchy Prototype 

The following generic individuals can be assigned for the chosen example 

grouped by term:  

1) Term 1:  

a. Individual of [Variance]: x 

b. Individual of [WSPW]: y 

2) Term 2: 

a. Individual of [Risk]: x  

b. Individual of [Bottleneck]: y 

c. Individual of [Equipment]: y 

3) Term 3: 

a. Individual of [Risk]: x  

b. Individual of [Bottleneck]: y 

c. Individual of [Equipment]: y 

4) Term 4: 

a. Individual of [Alpha]: x  

b. Individual of [WIP]: y 

Next, the grouped concepts are set into a logical order that follows the rule 

‘concept B is existentially dependent on concept A’. This procedure follows 

the modelling guidelines of object-oriented software using the concept of 

compositions in UML. An existentially dependent object may only exist in 

reality if the master object exists as well (Balzert, 2011). For instance, a 

particular value for a stochastic variance can only exist if the according 

random variable exists. Thus, the concept that represents the random 

variable is the master object, whereas the variance is the existentially 

dependent object. The standard nomenclature to name object properties that 

link concepts which refer to different individuals is ‘has’ + ‘concept B’, where 



 

 

 

217 7.3 Term Transformation into Ontology Concepts 

‘concept B’ refers to the existentially dependent class. For some cases, it 

might be necessary to differ from this standard to ensure a clear meaning of 

the relationship that should be modelled. For cases where two concepts point 

to the same individual, no extra object property is required. When applying 

this procedure, the current example leads to the following derived object 

properties:  

1) [hasVariance]: Object property that links [WSPW] to [Variance] 

2) [hasRisk]: Object property that links [Bottleneck] to [Risk] 

3) [hasAlpha]: Object property that links [WIP] to [Alpha] 

4) [increase]: Object property that acts as generic relation between all kinds of 

classes 

Figure 7-3 shows how the implementation of these associations works in 

Protégé. 

 

Figure 7-3: PPES Sample Relationships 

 

Each class may consist of one instance to represent actual data, except the 

sub-classes of ‘Logical Associations’ which only act as controlling classes for 

the SWRL rules. Figure 7-4 shows the list of individuals for this test case.  

 

Figure 7-4: PPES Sample Individuals 
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The initial association gained by the case study data analysis had to be 

transformed into a SWRL rule. The detailed process of this transformation is 

discussed in 7.6. For demonstration purposes, the test case uses the 

following rules: 

Rule 1: 

𝑊𝑆𝑃𝑊(? 𝑥) ∧  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(? 𝑦) ∧  ℎ𝑎𝑠𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(? 𝑥, ? 𝑦) ∧  𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡(? 𝑎) ∧  𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘(? 𝑎) ∧  𝑅𝑖𝑠𝑘(? 𝑏)

∧  ℎ𝑎𝑠𝑅𝑖𝑠𝑘(? 𝑎, ? 𝑏) →  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒(? 𝑦, ? 𝑏) 

Rule 2: 

𝐴𝑙𝑝ℎ𝑎(? 𝑥) ∧ 𝑊𝐼𝑃(? 𝑦) ∧ ℎ𝑎𝑠𝐴𝑙𝑝ℎ𝑎(? 𝑦, ? 𝑥) ∧ 𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘(? 𝑎) ∧ 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡(? 𝑎) ∧ 𝑅𝑖𝑠𝑘(? 𝑏)

∧ ℎ𝑎𝑠𝑅𝑖𝑠𝑘(? 𝑎, ? 𝑏) →  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒(? 𝑏, ? 𝑥) 

The case study equipment master data indicates whether logistic procedures 

must treat a piece of equipment as a potential bottleneck or not. Thus, a risk 

for bottleneck shall only exist for individuals that are classified as ‘Equipment’ 

and additionally as ‘Bottleneck’. Since both ‘WSPW’ and its ‘Variance’ only 

consist of one instance, it would also be sufficient to directly call the 

individual instance ‘wspw_variance’ within the ‘increase’ predicate. However, 

looking at the later ontology usage, individuals may be changed, added or 

removed. To be resistant against a changing environment on an individual 

level, this generic style is the recommended way of modelling the SWRL 

rules. To prove the correct application of the ontology model and rules, the 

Protégé-internal reasoner has been executed. Figure 7-5 visualizes the 

currently defined associations between classes and individuals. 

 

Figure 7-5: PPES Sample Associations between Classes and Individuals 

 

The figure shows that no effective association via the object property 

‘increase’ exists, at this time. By execution of the reasoner, Protégé 

computes these relations for the given individuals based on the specified 
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rules. Figure 7-6 shows the results of this implication for the two individuals 

‘wspw_variance’ and ‘risk’.  

 

Figure 7-6: Inferred Object Property Relations for ‘increase’ 

 

In fact, the specified rules only cover the relations between ‘wspw_variance’ 

and ‘risk’ as well as between ‘risk’ and ‘alpha_wip’. Nevertheless, since the 

‘increase’ property is marked as ‘transitive’, the inference engine 

automatically implies that ‘wspw_variance’ itself would increase ‘alpha_wip’. 

The Protégé reasoner also provides explanations for these kinds of 

inferences. In this case, it even finds five ways to confirm this conclusion. 

Figure 7-7 shows one of them. 

 

Figure 7-7: Explanation for inferred Relationships between Individuals 

 

This example demonstrates that the intended procedure to create the classes 

as well as the rules works as expected. This way of modelling the ontology 

makes use of the strengths of both OWL and SWRL. After defining and 

implementing the entire PPES in Protégé, it is possible to perform such direct 

and transitive effect analyses based on the manifold SWRL rules.  
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The above transformation procedure is applied on all records of the data 

matrix and generates 178 unique concepts. However, after manual 

verification, not all of the proposed concepts can be used in a meaningful 

way. The following conditions have been applied to skip proposed concepts 

and consolidated them into a phrase that consists of multiple words:  

1) Concepts are meaningless without further context. 

AND Concepts are not used in any further term. 

2) OR two or more concepts belong together to maintain the meaning. 

After applying these conditions, 56 concepts must be transformed into an 

expression that supports the standards of explicitness and importance to the 

study. All other generated concepts will be associated through object 

properties. The final list of concepts consists of 150 records. To achieve a 

standard speech within the ontology, each concept needs to be standardized 

into either plural or singular. A study on entity naming conventions for 

ontology leads to the recommendation to use singular. Reasons for this 

recommendation are the dominance of singular in existing ontologies and 

syntax restrictions in linear RDF notations such as N3³. However, the study 

also mentions that there might be cases where the plural is the more correct 

representation of a concept, for instance, if it indicates the proper noun or 

brand name of an object (Svátek and Sváb-Zamazal, 2010). Considering the 

naming and desired flexibility of object properties, it could potentially lead to 

grammatical or even logical confusion if the inference engine implies 

relations between individuals of different granularity. The transformation of 

concepts into singular applies the following rules:  

1) If the plural is the more proper specification of the concept, keep 

the plural. The only valid conditions are an established proper 

noun, since the case study was not undertaken with brand names, 

and grammatical reasons, for instance, if a singular does not exist. 

2) If a pure transformation into singular is possible without losing or 

distorting information, then use the simple kind of transformation 

based on the dictionary entry.  

3) If a pure singular of a concept does not meet the criteria of rule #2, 

the concept is substituted by a singular synonym. If possible, an 

existing singular concept from the concepts table is used.  
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4) If a concept specification consists of a phrase whose head noun 

refers to a plural of something, the phrase is rearranged to refer to 

a singular of something  

The analysis of the unique concepts leads to 118 singular records. According 

to the rules above, 27 concepts need to be modified. Figure 7-8 shows the 

distribution of the applied rules. 

 

Figure 7-8: Unique plural Concept Transformation by Rule 

 

As an additional result, the number of unique concepts could be reduced by 

four concepts due to substitution (rule #3), or since singular versions of the 

transformed concepts already exist (rule #2). As the next step, a newly 

created table associates the single concepts to their original terms using 

foreign keys on the term ID. The initial 134 terms are expressed through 281 

partially combined concepts. A transposed table groups the data by source 

term to count the number of concepts that are required to express a term. 

Figure 7-9  shows the distribution of this query. 

The figure visualizes that most of the terms can be verbalized either via one 

or two concepts. Only a minority of 25% requires three, four or even five 

concepts to cover the entire meaning of the term. For terms that require only 

one concept to cover their meaning, it is not necessary to create any linking 

object property. All other concepts will use object properties to refer to a 

parent term. 
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Figure 7-9: Number of Concepts to express Terms 

 

As prerequisite to generate the entity tree as the primary hierarchy within the 

PPES, the identified concepts need to be classified by uniting classes. The 

project applies a hybrid approach to build the ontology hierarchy by applying 

bottom-up as well as top-down techniques. First, the bottom-up technique 

classifies the concepts at the lowest level. These classes later act as 

hierarchical groups within the tree. The process of classification is similar to 

the coding procedure and runs iteratively. Per procedure run, each concept is 

marked with a class that potentially unites multiple concepts into a common 

logical group. With this information in the ontology, the rules engine is able to 

consider individuals as similarly based on their common upper class, though 

the concept itself is different. Technically, a grouping class is also a concept. 

Such classifying concepts are not located at the deepest level of the ontology 

tree and have only a grouping function. By performing iterative runs, the 

procedure identifies relationships between classes. Each step in the 

procedure generates a more appropriate classification for the concepts 

because it introduces, modifies or rejects classifications. The procedure also 

reveals if some of the concepts are hierarchically related. After final 

evaluation of the classifications, the hierarchy tree can be developed in 

Protégé. This procedure is described in the next subsection when discussing 

the class hierarchy in particular.  

Table 7-3 shows the first-level classifiers that are directly applied to the single 

concepts along with the number of associated concepts. 
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Table 7-3: First-level Classifiers on single Concepts 

# Classifier Number of Concepts associated to Classifier 

1 Machine-oriented Performance Indicator 20 

2 PS Participant 18 

3 Generic Characteristic 12 

4 PS-oriented Performance Indicator 7 

5 Calculation Result 7 

6 Unit of Measurement 7 

7 Employee-oriented Characteristic 7 

8 Machine-oriented Characteristic 6 

9 Manufacturing Incident 5 

10 PdM Goal 4 

11 EM 4 

12 Manufacturing Method 4 

13 Manufacturing Activity 4 

14 Process-oriented Performance Indicator 4 

15 PdM Element 4 

16 Process-oriented Characteristic 3 

17 Generic Performance Indicator 3 

18 Success Factor 3 

19 Downtime 3 

20 WIP-oriented Characteristic 3 

21 Logistics Method 3 

22 Logistics Activity 3 

23 PA 2 

24 EM Strategy 2 

25 PdM Characteristic 2 

26 Research Method 2 

27 PS Parameter 2 

28 PdM Activity 2 

29 PA Application 1 

30 Thing 1 

31 Business Performance Indicator 1 

32 EM Process 1 

 

These classifiers  act as the major inputs to build the class hierarchy. The 

final step of the term transformation procedure is to mark single concepts as 

far as they are either equivalent or opposite to each other. Though the 

original terms have already been harmonized during the data analysis, the 

segmentation into concepts generates sub-terms, which can be logically 

related to other sub-terms. These associations support the ontology rules 

engine and increase the inference quality. For instance, the terms ‘Alpha 

Tool’ and ‘Equipment Reservations’ are not related up to now since no 

association has been stated by the experts. However, the word segmentation 

leads to following concepts:  

1) [Alpha] + [Tool] 

2) [Equipment] +[Reservations] 
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The case study results pointed out that the words ‘Tool’ and ‘Equipment’ are 

equivalent. Both concepts are classified as ‘Participant’ of the SI PS based 

on the 4M definition of Ishikawa. By storing this information in the ontology, 

the rules engine makes use of it to derive further axioms that experts have 

not yet identified. The previously assigned classes act as entry point for the 

algorithm that compares only concepts within the same class against each 

other. Based on the classification procedure, there is a high probability of 

finding logical relationships between single concepts from the same class. 

Moreover, it is expected that concepts from different classes are principally 

not related in terms of equivalence or opposition. Table 7-4 shows the 

concepts that have been marked as equivalent based on the case study 

information and context:  

Table 7-4: Equivalent Concepts for PPES 

Concept Equivalent Concept Reason 

Alpha Variability From the Operating Curve formulas, ‘alpha’ is 
synonym to the variability of the 4M 

Degree Level Both concepts express the maturity of 
something.  

Equipment Machine; Tool All three concepts refer to the machine as 
participant of the 4M. 

Failure (Machine-Related) Process Failure A ‘Machine-Related Process Failure’ is only 
some kind of failure of within a PS.   

Inventory WIP ‘WIP’ quantifies the shop floor inventory of 
wafers during the production process. 

Process Single Process From the given term associations, ‘process’ 
always means ‘single process’.  

 

The equivalence between concepts needs to be configured only in one 

direction. Protégé automatically derives the vice versa configuration for the 

second concept. Table 7-5 shows the concepts that have been marked as 

equivalent based on the case study information and context. 

Like the equivalence, the contrariness between concepts needs only to be 

configured in one direction and Protégé adds the vice versa configuration to 

the second concept. At this stage, the term transformation into concepts is 

finished based on the proposed procedure. The generated data is then 

applied to build the class hierarchy for the ontology as discussed in 7.2.3.  
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Table 7-5: Opposite Concepts for PPES 

Concept Opposite Concept Reason 

Offline Online Both concepts are linguistic antonyms.  

Dependency Independency Both concepts are linguistic antonyms. 

Downtime Uptime Both concepts are linguistic antonyms. 

Evenness Unevenness Both concepts are linguistic antonyms. 

Preventive Maintenance Reactive Maintenance In EM, preventive means a strategy where 

maintenance actions are performed prior to the 

failure, whereas reactive means that 

maintenance actions get performed once a 

failure has happened. In this context, both 

concepts are opposite. 

Scheduled Down Unscheduled Down If machine downtimes are consciously planned 

by responsible persons, they are called 

‘scheduled’. Otherwise, an unplanned downtime 

is called ‘unscheduled’.  

Scrap Yield Yield quantifies the good parts of a wafer, 

whereas scrap quantifies the bad parts.  

Stability Variability; Alpha 

 

From mathematical perspective, the variability is 

the extent to which a distribution is stretched or 

squeezed. ‘More variable’ means that data from 

a random variable is spread by a higher factor. 

In the context of operating curve, ‘more stable’ 

means that the data is less spread. Thus, 

stability is treated as antonym against variability 

and alpha.  

7.4 Class Hierarchy and Specifications 

The class hierarchy is an important aspect of the ontology since it owns the 

fundamental information about the similarity of concepts. Different 

approaches exist to build hierarchies for an ontology. Depending on the 

number of unique concepts, a hierarchy can be generated manually by 

defining generalizing classes or connecting concepts in terms of hierarchical 

dependency. Automatic approaches are the flat clustering and the 

hierarchical clustering as methods from DM and machine learning. This 

section discusses the different ways of generating ontology hierarchies to 

identify the method that best meets the requirements.  

An established method for flat clustering is the k-means algorithm. A given 

training set 𝑥(1), … , 𝑥(𝑚) needs to be grouped into a few cohesive clusters. 

Each data point 𝑥(𝑖) ∈ ℝ𝑛 consists of a feature vector but no label. Thus, this 

kind of procedure is called unsupervised learning. The goal of the algorithm 

is to predict k centroids and a label 𝑐(𝑖) for each data point. Thus, concepts 

with less distance in between are candidates for the same cluster. A distance 
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can be expressed through the feature vector that is part of an n-dimensional 

data matrix. The algorithm works as follows (Ng and Piech, 2013):  

1) Initialize cluster centroids µ1, µ2, … µ𝑘 ∈ ℝ𝑘 randomly 

2) Repeat until convergence:  

{ 

 For every i, set 

  𝑐(𝑖) ≔ arg 𝑚𝑖𝑛 ||𝑥(𝑖) − µ𝑗||
2
 

𝑗 

 

 For each j, set 

µ𝑗 =
∑ 1{𝑐(𝑖) = 𝑗}𝑚

𝑖=1 𝑥(𝑖)

∑ 1{𝑐(𝑖) = 𝑗}𝑚
𝑖=1

 

} 

 

 

First, the data must be prepared to apply the algorithm. K-means algorithm 

requires feature vectors to measure the distances. A data matrix needs to 

provide vectors that describe the relationships between concepts and term 

associations as visualized in Table 7-6:  

Table 7-6: Schematic on Clustering Data Matrix 

  Assoc X Assoc Y Assoc Z 

Concept A 0 0 1 

Concept B 1 0 0 

Concept C 1 0 1 

 

If a concept is part of an association, the cell value equals 1, otherwise it 

equals 0. The procedure generates the following vectors for this example:  

𝐴 = (0 0 1) 

𝐵 = (1 0 0) 

𝐶 = (1 0 1) 

When applying this procedure to the real concepts and terms, it creates a 

150x272 data matrix. A particular k-means algorithm has been developed in 

Python. As the first step, the most accurate value for k needs to be identified 

as the number of target clusters for the bottom level. To evaluate the best 

value for k, the Python program runs several iterations on the matrix. Figure 

7-10 shows how the cluster score improves by increasing k from 1 to 150. 
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Figure 7-10: Clustering Score for different k 

 

The error distance to zero is an indicator for the matching accuracy of the 

calculated clusters. A small distance means little deviation, and the clustering 

score tends to zero by increasing k. The mathematical reason for this is that 

k=150 means that 150 concepts are grouped into 150 clusters. Thus, no 

error occurs since each concept is associated with itself. However, such 

detailed clusters would not produce any benefit to the ontology. Assuming 

that the k-means algorithm groups the concepts only by one hierarchy level, 

a smaller value for k needs to be identified to generate useful and disjoint 

clusters. Python allows for running further iterations on the data matrix that 

have the same value for k. This is important to find the best fitting positions 

for the centroids and to analyse whether the error distance is stable or 

spread. A sufficient value for k means that the error distances are near to 

zero among the iterations. With this iterative procedure, the k-means 

algorithm is continuously refining the clusters and altering the centroids. 

Figure 7-11 shows the results of 15 iterations for k=20 on the data matrix. 

The maximum error distance between all iterations is approximately 20 and, 

compared to the overall trend from Figure 7-10, relatively stable. Figure 7-12 

shows the results from a further scenario with k=50. This scenario could 

reduce the error distance to approximately 3 over all iterations, which is a 

significant improvement compared to k=20. When the number of target 

clusters were increased by a factor of 2.5 the error distance was reduced by 

the factor of 0.85. 
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Figure 7-11: Clustering Score for k=20 

 

 

Figure 7-12: Clustering Score for k=50 

 

Another scenario with k=100 demonstrates what happens to the error 

distance with an increasing number of target clusters. Figure 7-13 shows the 

results from the calculation. The scenario shows that the error distance is 

only approximately 1, which again shows a significant reduction compared to 

k=50.  

Next, an evaluation of how useful the generated clusters are for this 

particular ontology was carried out. Since the algorithm input comes from 

linguistic data, different criteria are required to measure the cluster quality 

than that for numerical data.  
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Figure 7-13: Clustering Score for k=100 

 

Schulte im Walde (2003) pointed out that the size of a cluster is an important 

criterion. The entire data set should not be associated to only one single 

cluster. Further, the algorithm should not only generate clusters that consist 

of only one concept. It is rather intended to find a result that provides a well-

balanced clustering in combination with a minimum of prediction errors. 

When  | Cx | is the number of concepts per cluster Cx, n is the number of 

clusters generated from the algorithm, and m is the number of all existing 

concepts, then, following cumulative functions qcl and qco can be defined: 

Accumulation of the single cluster percentages as defined in Equation (7.1). 

𝑞𝑐𝑙 = ∑
1

𝑛

𝑛

𝑥=1

 

 

(7.1) 

Accumulation of the concept per cluster percentages as defined in Equation 

(7.2). 

𝑞𝑐𝑜 = ∑
|𝐶𝑥|

𝑚

𝑛

𝑥=1

 

 

(7.2) 

In a theoretical scenario where the degree of balance is at its maximum, the 

course of both functions is identically linear and they are fully overlapping in 

the case that n < m. However, having linguistic data, there can be concepts 

that the algorithm cannot group together with others. Thus, the theoretical 

optimum for clustering is not realistic for this type of data. The algorithm 

results are analysed according to their quality to find the best fitting one for 
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this project. To make the results comparable despite the different number of 

clusters, the absolute results are transformed into percentages. Figure 7-14 

shows the courses of qcl and qco for different values of k as pareto chart to 

compare the results. 

 

Figure 7-14: Pareto Comparison of k-means Results 

 

For each scenario, the generated clusters are ordered by | Ci | descending. 

Thus, the largest clusters are listed first. The courses of the different curves 

for qcl show that the algorithm results in an unbalanced clustering for the 

given data matrix. The biggest 10% of all clusters  already consist of 41%, 

67% and 84% of all concepts. To measure the quality, the average distance 

of each curve to the optimum curve is calculated.  

An additional criterion for the quality is the percentage of clusters that only 

consist of one concept. Figure 7-15 shows the results from this evaluation. 

The lowest average error can be found for k=100. Admittedly, the reason for 

this is the relatively high number of generated clusters. This leads to 83% of 

all clusters that consist of only one concept and the accumulation is 

increased quite linearly for them. Though the error is even higher for k=50, 

the percentage of single clusters is almost the same. The significant 

disadvantage of k=20 is the generation of fewer but very large clusters. Thus, 
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a majority of all concepts is clustered together and the rest is grouped into 

clusters that consist of only one concept. The comparison demonstrates that 

an increasing value of k tends to result in a high percentage of clusters that 

consist only of one concept, whereas a decreasing value of k tends to show a 

high percentage of concepts which are part of one single cluster. From the 

given results, the candidate for the most appropriate ontology classification is 

k=20.   

 

Figure 7-15: K-means Result Evaluation 

 

In the next step, one can test if the hierarchical clustering generates better 

results. The idea of this approach is to build a multi-level binary tree of the 

data that successively merges similar groups of points. The so-called 

agglomerative clustering (AC), firstly, places each data point into its own 

singleton group and, then, merges iteratively the two closest groups until all 

the data are merged into a single cluster. This kind of approach is bottom-up 

since it starts at the single concept (Blei, 2008). It is also possible to start this 

kind of automatic clustering top-down with a technique called divisive 

clustering. Here, all concepts are firstly put together into one cluster. Then, 

the cluster is split using a flat clustering algorithm. The algorithm repeats this 

procedure recursively until each concept is in its own singleton cluster. Due 

to the need for a flat clustering algorithm as subroutine, the top-down 

approach is conceptually more complex than bottom-up. In fact, both 
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approaches are useful for mass data and text mining challenges and require 

knowledge of distances between data points. The less expensive bottom-up 

approach was selected for this study since the literature does not provide 

significant advantages for the top-down approach with regards to this project. 

AC does not necessarily require a target value for k. However, depending on 

the particular use case, it can make sense to define a meaningful number of 

partitions to cut the data. Based on the literature, the following criteria can be 

considered when choosing a value for k (Manning et al., 2018):  

1. Data may be cut at a pre-specified level of similarity that can be high 

or low.  

2. Data may be cut where the gap between two successive combination 

similarities is largest. Such large gaps are typical indicators for natural 

clusters and the addition of one more cluster would decrease the 

algorithm quality significantly.  

3. Identify k via a specific equation that is published in literature.  

As in flat clustering, k can also be pre-specified manually to generate the 

cutting points.  

Through software tools such as Python and its scientific libraries, it is 

possible to perform several runs on the data with varying values for k to 

identify the best result quality. Particularly with a small amount of data, it 

does not require many computing resources. Thus, the approach mentioned 

in point 3 can be easily applied to this study if a target value for k is seen as 

required. The most relevant aspects of the AC are the selection of metric and 

linkage criteria. Linkage is a required parameter for the AC algorithm to 

determine which distance should be used preferably between two sets of 

observations. The scikit-learn library provides following criteria (Pedregosa et 

al., 2011): 

 Ward (only applicable for Euclidean distance as metric): minimizes the 

variance of the clusters being merged. 

 Average: uses the average of the distances of each observation of the 

two sets.  

 Maximum (or complete): uses the maximum distances between all 

observations of the two sets. 
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 Single: uses the minimum of the distances between all observations of 

the two sets. 

Metrics are important to select the mathematical method of distance 

calculation and to compute the linkage. While some more equations are 

mentioned in literature, the scikit-learn library for Python has the following 

metrics for AC distances: 

 Euclidean 

 Manhattan 

 I1  

 I2  

 Cosine  

 Precomputed 

Testing was carried out on which of the metrics, linkages and different 

combinations of both generates the best results for the given data matrix. A 

simple AC algorithm requires following variables and parameters:  

 A N x N similarity matrix C 

 A list of merges from the clustering A 

 An identifier I to recognize clusters that are still available  

 A function SIM(I, m, j) that computes the similarity of cluster j with the 

merge of clusters i and m 

Figure 7-16 (Manning et al., 2018, p. 381) shows an AC algorithm using this 

information:  

 

Figure 7-16: AC Algorithm (Manning et al., 2018, p. 381) 
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Next, the AC algorithm from the scikit-learn library for Python is applied to the 

to the data matrix using different configuration scenarios. Beyond the 

particular clusters and associations with the concepts, an AC result can also 

be visualized in much more detail as a hierarchical dendrogram. Figure 7-17 

shows a dendogram that Python generated based on the data matrix using 

the metric ‘precomputed‘ and the linkage ‘average‘.   

 

Figure 7-17: Specific Dendrogram for the AC on the Data Matrix using Pre-
computed and Average 

 

In a dendrogram, each horizontal line refers to one merge. The value of the 

horizontal line on the y-axis represents the similarity between the two 

clusters. The higher the value, the less similar are the two clusters. With 

these results, AC does not only provide knowledge about the similarity 

between single concepts, but furthermore between clusters. A dendrogram 

also reveals the significant differences between the single configurations.  

When applying an AC using the metric “Manhattan” and the linkage 

“complete”, the cluster hierarchy looks very different. Figure 7-18 shows the 

dendrogram that was created from this configuration. Obviously, the 

distribution of the clusters and merges appear different to the previous 

configuration. A comparison of the results of AC in a quantitative way 

requires analysing the quality of the clustering result using the same 

procedure as for k-means. Furthermore, this standardized procedure allows a 

direct comparison of AC to k-means. The comparison is limited to only a few 
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ways of configuration to demonstrate the different results. In the case of a 

well-fitting result, the particular configuration could be refined to improve the 

clustering.  

 

Figure 7-18: Specific Dendrogram for the AC on the Data Matrix using 
Manhattan and Complete 

 

Figure 7-19 shows the courses of qcl and qco for different AC configurations 

as a Pareto chart to compare the results. 

 

Figure 7-19: Pareto Comparison of AC Results 

 

The configurations differ in metric, linkage as well as target number of 

clusters. In particular, for AC with only 10 target clusters, a similar course for 
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qco can be identified: A very small number of clusters already contains the 

most concepts. For the metric “precomputed”, it is not necessary to specify 

target clusters since it generates an optimum number of clusters by itself. AC 

configurations with k=50 tend to give a rather linear course for 70% of the 

largest clusters. Next, the mean errors of each configuration are calculated 

and combined with the percentage of clusters that consist of only one 

concept. Figure 7-20 presents the AC result evaluation.  

 

Figure 7-20: AC Result Evaluation 

 

The evaluation shows that configurations with k=50 tend to give a more 

balanced clustering. However, the percentage of clusters with only one 

concept is perceptibly high. Compared to k-means, this effect cannot be 

reduced by decreasing the value of target clusters – the percentage grows 

even more. The most effective results can be achieved with the metric “pre-

computed” and the linkage “complete” as this configuration leads to the 

lowest average error and lowest percentage of single clusters. Thus, it is a 

candidate for the final classification structure of the ontology.  

As discussed in 7.3, another method to create clusters is the manual creation 

by applying coding techniques. Table 7-3 lists the manually generated 

clusters at the lowest level and the number of concepts per cluster. This 

result can be compared with the candidates from k-means and AC to find the 

most effective clustering approach for this ontology. Figure 7-21 depicts this 

result comparison. 
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The figure clearly illustrates that the manually generated clusters provide the 

best results in terms of balancing and percentage of single clusters. Thus, 

the project will apply the classifiers from Table 7-3 to build a bottom-up 

hierarchy. This process will apply the coding technique iteratively on the 

classifiers until no further grouping is logically possible or useful. 

 

Figure 7-21: Final Comparison of all Clustering Approaches 

 

Table 7-7 shows the results from this iterative coding process from the lowest 

class level 1 until the root class level 6.  

Since the creation strategy is bottom-up, each class level represents the level 

of the hierarchy from a single concept perspective. An ‘x’ is used to specify 

that the classifier to the left is already at the highest level of the ontology 

hierarchy, and it will not be clustered anymore. The final PPES hierarchy 

consists of 182 entities, which are consistently connected through six levels. 

The definition of the PPES hierarchy is imported to Protégé to technically 

generate the PPES entities and hierarchical relationships. Next, the 

definitions of synonyms and antonyms from the previous chapter need to be 

configured. For synonyms, Protégé provides the default setting ‘Equivalent 

To’ per concept. For antonyms, there exists no direct setting in the software, 

however, ‘Disjoint With’ can be used instead. It does not particularly state 

that two concepts are opposite; nevertheless, an instance of one concept is 

not allowed to be an instance of the other concept at the same time. After this 

configuration, the class hierarchy and entity specification is finished. The next 
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subsection discusses the creation of object properties and their technical 

integration to the PPES. 

Table 7-7: Manually created Class Hierarchy  

# Class Level1 Class Level2 Class Level3 Class 
Level4 

Class 
Level5 

Class 
Level6 

1 Machine-oriented 
Performance 
Indicator 

Performance Indicator PS x x x 

2 PS Participant PS x x x x 

3 Generic 
Characteristic 

Characteristic PS x x x 

4 Unit of Measurement X x x x x 

5 PS-oriented 
Performance 
Indicator 

Performance Indicator PS x x x 

6 Calculation Result X x x x x 

7 Employee-oriented 
Characteristic 

Characteristic PS x x x 

8 Machine-oriented 
Characteristic 

Characteristic PS x x x 

9 Manufacturing 
Incident 

X x x x x 

10 PdM Goal PA Application PA x  x 

11 Manufacturing 
Method 

Method PS x x x 

12 Process-oriented 
Performance 
Indicator 

Performance Indicator PS x x x 

13 PdM Element PA Application PA x x x 

14 Manufacturing 
Activity 

Activity PS x x x 

15 EM Method PS x x x 

16 Generic 
Performance 
Indicator 

Performance Indicator PS x x x 

17 Logistics Activity Activity PS x x x 

18 Process-oriented 
Characteristic 

Characteristic PS x x x 

19 WIP-oriented 
Characteristic 

Characteristic PS x x x 

20 Success Factor Manufacturing Method Method PS x x 

21 Logistics Method Method PS x x x 

22 Downtime Machine-oriented 
Performance Indicator 

Performance 
Indicator 

PS x x 

23 PdM Activity PA Application PA x x x 

24 PA x x x x x 

25 PS Parameter PS x x x x 

26 PdM Characteristic PA Application PA x x x 

27 EM Strategy EM Manufacturing 
Method 

Method PS x 

28 Research Method Method PS x x x 

29 PA Application PA x x x x 

30 EM Process EM Manufacturing 
Method 

Method PS x 

31 Business 
Performance 
Indicator 

Performance Indicator PS x x x 
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7.5 Object Properties 

Concepts may have different purposes within an ontology depending on the 

overall use case. When associating concepts through object properties, it is 

important to think of a specific individual that is assigned to these concepts. 

The PPES ontology needs to distinguish between two cases:  

1) An individual can be classified as concept A and, in parallel, as 

concept B. 

a. Example: An individual can be an employee and can also have 

the job role of engineer. Thus, one individual is classified as 

concept ‘Employee’ plus as concept ‘Engineer’.  

b. In such cases, no object property is required to associate both 

concepts. The association in SWRL is realized via logical 

conjunction. In OWL such concepts are mostly part of the same 

hierarchy branch.  

2) An individual can be classified as concept A and is additionally 

described via an individual that is classified as concept B.  

a. Example: An individual can be an operator and can have a 

certain qualification level. An individual from a concept 

‘Qualification Level’ refers to a set of professional skills or 

certificates that can be assigned to many individuals who are 

classified as concept ‘Operator’. Thus, the sets of individuals of 

both concepts are disjoint.  

b. In such cases, an object property is required to assign the 

major concept ‘Operator’ to the existentially dependent concept 

‘Qualification Level’. This concrete object property is named 

‘hasQualificationLevel’.  

The analysis leads to 19 relationships between concepts from 16 terms that 

point to the same individual per term. These concepts do not require any 

object property. For the other groups of concepts that consist of more than 

one concept and different individuals, 55 unique object properties have to be 

generated. Some of the object properties are also shared between different 

concepts. Figure 7-22 shows the distribution of shared object property usage 

over all terms.  
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Figure 7-22: Distribution of shared Object Property usage over all Terms 

 

The figure shows that a significant percentage of 43% of all object properties 

is shared between more than one pair of concepts. Thus, it is important to 

configure these relationships properly in order to gain high quality results 

from the inference engine. Protégé provides the following characteristics 

which need to be considered for each property (Musen, 2018):   

1) Functional: The property is treated as a function that can only return 

one specific value for any given individual. If such a property points 

from a certain individual to more than one target individual, the 

inference engine implies that all target individuals denote the same 

object.  

2) Inverse Functional: If the property has defined an inverse property, 

this inverse property is treated as functional, even though it would not 

be specified like that explicitly. Inverse functional properties are 

considered to have only one ingoing association, thus, a target 

individual may only be associated with one source individual. If more 

than one source individual points to the same target individual, the 

inference engine implies that those source individuals denote the 

same object.  

3) Transitive: If an object property is marked as transitive and defines 

relations between three individuals x, y and z, where x is related to y 

and y is related to z, then the inference engine automatically creates a 
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relationship between x and z. This feature is useful for object 

properties with very generic purposes.  

4) Symmetric: This characteristic specifies that if an individual x is 

related to an individual y, then y must also be related to x having the 

same property.  

5) Asymmetric: This kind of setting is the opposite of symmetric and, 

consequently, means that two individuals can only be related to each 

other in one direction along the same property.  

6) Reflexive: If an individual has a relation to itself, an object property 

needs to be set as reflexive. This means that this object property is not 

intended to point to any different target individual. Otherwise, the 

inference engine will assume that both individuals denote the same 

object.  

7) Irreflexive: This characteristic specifies that an object cannot be 

related to itself via this particular object property.  

Object properties can be further described by domain and range. This is 

important to support the inference engine. A domain is defined as one or 

many classes from the ontology hierarchy whose individuals are able to act 

as source within this particular relation. The range of a property is defined as 

one or many classes from the ontology hierarchy whose individuals are 

allowed to be related to an individual from the specified domain. However, 

domains and ranges are no restrictions. The inference engine uses this 

information to imply that different individuals from different classes are also 

part of the other class. Since the ontology makes use of disjoint classes, this 

might lead to inconsistencies (Horridge et al., 2007). Thus, this specification 

will not be applied. An accurate way to specify relations between concepts 

through object properties and to restrict inconsistent usage of individuals is 

the proper selection of cardinalities. OWL allows the description whether a 

class of individuals has at least, at most, or exactly a specified number of 

relationships with other individuals. The particular features in Protégé which 

support this kind of specification are called ‘Minimum Cardinality Restriction’ 

(𝑥 ≥ 𝑦), ‘Maximum Cardinality Restriction‘ (𝑥 ≤ 𝑦) and ‘Cardinality 

Restriction‘ (𝑥 = 𝑦). This kind of setting, however, is only optional. It does not 

have to be configured if there is no realistic count of relationships that it 
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should be checked against. Restrictions on object properties can also be 

generated through logical quantifiers. Similar to FOL, OWL provides an 

existential and universal quantifier restriction. Existential restrictions describe 

classes of individuals that participate in at least one relationship along a 

specified property to individuals that are members of a specified class. The 

keyword to denote this kind of restriction in Protégé is ‘some’. Universal 

restrictions describe classes of individuals that for a given property only have 

relationships along this property to individuals that are members of a 

specified class. The keyword to denote this kind of restriction in Protégé is 

‘only’ (Horridge et al., 2007). 

All of these specifications need to be considered for the identified object 

properties. Nearly all of the properties share the same selection of 

characteristics, which is functional, asymmetric and irreflexive. The main 

reason for this is the word segmentation procedure and the narrow way of 

describing the relations. This leads to the following restrictions:  

 Only one target individual is allowed for a certain source individual.  

 Properties are not intended to express transitive relations.  

 Properties define a certain direction, thus, only one direction is allowed 

for a relation between two individuals.  

 Individuals are not allowed to become associated recursively.  

Only for the object properties ‘increase’ and ‘decrease’ which are derived 

from the causal loop associations are the characteristics different, in order to 

support the generic usage within the PPES. They do not follow the previous 

restrictions to perform concatenated impact analyses. Although both 

properties could generate transitive information, the particular characteristic 

would not work correctly in this case. The reason for this is that OWL does 

not allow a proper definition of negations between object properties. Thus, 

the reasoner ignores the actual semantics of ‘increase’ and ‘decrease’ as 

well as their opposite character. However, Section 7.6 describes the 

modelling technique for this type of transitive concatenation with FOL. 

The object properties use only existential quantifiers with a cardinality of x = 

1 or x >=1 depending on the business requirement. For instance, a particular 

failure can have exactly one probability whereas it can have multiple risks. 
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Although each ontology class may consist of multiple individuals, a specific 

individual from a domain class is only allowed to be related to exactly one 

individual from the given range class using these object properties. For the 

object properties ‘increase’ and ‘decrease’, no further specification is required 

in terms of quantification and cardinality during the initial configuration. Since 

the concrete relationships between concepts are modelled with SWRL, this 

kind of specification is added to the rules.  

After finalizing the object property specifications, the object properties can be 

created technically in Protégé.  

7.6 First-Order Logical Model Propositions 

This section describes the process to consolidate the previous results and 

explains how to develop a first-order logical PPES. Based on the steps that 

have been presented in the previous sections, it is possible to transform the 

initial terms into FOL language. These transformed terms can be set into 

relation using the identified associations from the case study. The terms are 

classified by PS, machine, process, EM, operator, costs and others. Table 

7-8 shows the raw terms and their FOL transformations for general PS-

oriented terms.  

Table 7-8: PS-oriented Terms and FOL Transformation 

Raw Term FOL Transformed Term 

4M Synchronicity  4M(?a) ^ Synchronicity(?b) ^ hasSynchronicity(?a,?b) 

Alpha PS  PS(?b) ^ Alpha(?a) ^ hasAlpha(?b,?a) 

Alpha WIP  WIP(?b) ^ Alpha(?a) ^ hasAlpha(?b,?a) 

CT  CT(?a) 

CT Variance  CT(?a) ^ Variance(?b) ^ hasVariance(?a,?b) 

Degree Of Dispatcher 
Compliance 

 DispatcherCompliance(?b) ^ Degree(?a) ^ hasDegree(?b,?a) 

Degree Of Knowledge Of 
Engineers About Factory 
Physics 

 Engineer(?c) ^ Knowledge(?a) ^ hasKnowledge(?c,?a) ^ 
FactoryPhysics(?a) ^ Degree(?b) ^ hasDegree(?a,?b) 

Degree Of Performance 
Synchronicity Between Similar 
Machines 

 MachineGroup(?b) ^ PerformanceSynchronicity(?a) ^ 
hasPerformanceSynchronicity(?b,?a) ^ Degree(?c) ^ 
hasDegree(?a,?c) 

Degree Of Unevenness In WIP 
Distribution 

 WIPDistribution(?c) ^ Unevenness(?b) ^ hasUnevenness(?c,?b) 
^ Degree(?a) ^ hasDegree(?b,?a) 

Deliverability  Deliverability(?a) 

DGR  DGR(?a) 

Dispatcher Maturity  Dispatcher(?a) ^ Maturity(?b) ^ hasMaturity(?a,?b) 

Fab Utilization  Fab(?a) ^ Utilization(?b) ^ hasUtilization(?a,?b) 

Fabricated Items Per Day  FabricatedItemsPerDay(?a) 

Fabricated Items Per Time  FabricatedItemsPerTime(?a) 

FF  FF(?a) 

GR  GR(?a) 

Little's Law  LittlesLaw(?a) 



 
 

 

244 7.6 First-Order Logical Model Propositions 

Raw Term FOL Transformed Term 

Lot Prioritizations  LotPrioritization(?a) 

Material Flow  MaterialFlow(?a) 

Material Flow Variance  MaterialFlow(?a) ^ Variance(?b) ^ hasVariance(?a,?b) 

Maximum Wait Time For 
Batches 

 WaitTime(?b) ^ Maximum(?a) ^ hasMaximum(?b,?a) 

Percentage Of Bottleneck 
Equipment 

 Equipment(?b) ^ Bottleneck(?b) ^ Percentage(?a) ^ 
hasPercentage(?b,?a) 

PS Availability  PS(?a) ^ Availability(?b) ^ hasAvailability(?a,?b) 

Quality Of Planning Procedures  PlanningProcedure(?b) ^ Quality(?a) ^ hasQuality(?b,?a) 

Rest 3M Availability  Rest3M(?a) ^ Availability(?b) ^ hasAvailability(?a,?b) 

Risk Of Product Line Down  Product(?a) ^ LineDown(?b) ^ hasLineDown(?a,?b) ^ Risk(?c) ^ 
hasRisk(?b,?c) 

SCM Order Patterns Variance  SCMOrderPattern(?b) ^ Variance(?a) ^ hasVariance(?b,?a) 

Transportation Variability  Transportation(?a) ^ Variability(?b) ^ hasVariability(?a,?b) 

Utilization Profile Variance  UtilizationProfile(?a) ^ Variance(?b) ^ hasVariance(?a,?b) 

Wait Time  WaitTime(?a) 

WIP  WIP(?a) 

WIP Availability  WIP(?a) ^ Availability(?b) ^ hasAvailability(?a,?b) 

WIP Variance  WIP(?a) ^ Variance(?b) ^ hasVariance(?a,?b) 

WSPW  WSPW(?a) 

WSPW Variance  WSPW(?a) ^ Variance(?b) ^ hasVariance(?a,?b) 

Yearly WIP Reductions  WIP(?a) ^ Yearly(?b) ^ hasReductionFrequency(?a,?b) 

 

Table 7-9 lists the terms and their FOL transformation that are related to 

machine-oriented aspects of a SI PS.  

Table 7-9: Machine-oriented Terms and FOL Transformation 

Raw Term FOL Transformed Term 

Alpha Tool  Tool(?b) ^ Alpha(?a) ^ hasAlpha(?b,?a) 

Degree Of Automation  Automation(?b) ^ Degree(?a) ^ hasDegree(?b,?a) 

Degree Of Evenness Of 
Distribution Of Equipment 
Downtimes 

 Downtime(?d) ^ Evenness(?b) ^ hasEvenness(?d,?b) ^ 
Distribution(?c) ^ hasDistribution(?b,?c) ^ Degree(?a) ^ 
hasDegree(?c,?a) 

Degree Of Exhausting Wear 
Limits 

 MachineComponent(?a) ^ WearLimit(?b) ^ hasWearLimit(?a,?b) 
^ Degree(?c) ^ hasDegree(?d,?c) ^ Exhausting(?d) ^ 
hasExhausting(?b,?d) 

Degree Of Machine-Related 
Process Failures 

 ProcessFailure(?a) ^ Machine-Related(?a) ^ Degree(?b) ^ 
hasDegree(?a,?b) 

Engineering Time Duration  EngineeringTime(?a) ^ Duration(?b) ^ hasDuration(?a,?b) 

Equipment Availability  Equipment(?a) ^ Availability(?b) ^ hasAvailability(?a,?b) 

Equipment Capacity  Equipment(?a) ^ Capacity(?b) ^ hasCapacity(?a,?b) 

Equipment Downtime Duration  Equipment(?a) ^ Downtime(?b) ^ hasDowntime(?a,?b) ^ 
Duration(?c) ^ hasDuration(?b,?c) 

Equipment Downtime Frequency  Equipment(?a) ^ Downtime(?b) ^ hasDowntime(?a,?b) ^ 
Frequency(?c) ^ hasFrequency(?b,?c) 

Equipment GR  EquipmentGR(?a) 

Equipment Lifespan  Equipment(?a) ^ Lifespan(?b) ^ hasLifespan(?a,?b) 

Equipment Reservations  Equipment(?a) ^ Reservation(?b) ^ hasReservation(?a,?b) ^ 
Percentage(?c) ^ hasPercentage(?b,?c) 

Equipment Uptime  Equipment(?a) ^ Uptime(?b) ^ hasUptime(?a,?b) 

Equipment Utilization  Equipment(?a) ^ Utilization(?b) ^ hasUtilization(?a,?b) 

Importance Of Equipment 
Availability 

 Equipment(?b) ^ Availability(?c) ^ hasAvailability(?b,?c) ^ 
Importance(?a) ^ hasImportance(?c,?a) 

MTBA  MTBA(?a) 

MTBF  MTBF(?a) 

MTBO  MTBO(?a) 

MTOL  MTOL(?a) 

MTTF  MTTF(?a) 

MTTR  MTTR(?a) 

Number Of Assists  Assist(?b) ^ Number(?a) ^ hasNumber(?b,?a) 

Number Of Failures  Failure(?b) ^ Number(?a) ^ hasNumber(?b,?a) 
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Raw Term FOL Transformed Term 

OEE  OEE(?a) 

Percentage Of New Equipment 
Invests 

 Equipment(?b) ^ NewInvest(?b) ^ Percentage(?a) ^ 
hasPercentage(?b,?a) 

Percentage Of Process 
Development At Production 
Equipment 

 ProcessDevelopment(?a) ^ Equipment(?b) ^ hasUser(?b,?a) ^ 
Percentage(?d) ^ Manufacturing(?c) ^ hasOwner(?b,?c) ^ 
hasPercentage(?a, ?d) 

Probability To Avoid Collateral 
Damages 

Prevention(?b)  ^ CollateralDamage(?a) ^ hasPrevention(?a,?b) 
^ Probability(?c)  ^ hasProbability(?b,?c) 

Probability To Avoid Failures Failure(?a) ^ Prevention(?b) ^ hasPrevention(?a,?b) ^ 
Probability(?c) ^ hasProbability(?b,?c) 

Probability To Avoid Late Effects LateEffect(?a) ^ Prevention(?b) ^ hasPrevention(?a,?b) ^ 
Probability(?c) ^ hasProbability(?b,?c) 

Probability To Avoid Machine 
Downtimes 

 Machine(?a)  ^ Downtime(?c) ^ hasDowntime(?a,?c) ^ 
Prevention(?d) ^ hasPrevention(?c,?d) ^ Probability(?b) ^ 
hasProbability(?d,?b) 

Probability To Avoid Total 
Failures 

Total(?a) ^ Failure(?a) ^ Prevention(?b) ^ hasPrevention(?a,?b) 
^ Probability(?c) ^ hasProbability(?b,?c) 

Probability To Find New Failure 
Patterns 

Pattern(?b) ^  Failure(?a) ^ Pattern(?b) ^ hasPattern(?a,?b) ^ 
New(?b) ^ Discoverability(?c) ^ hasDiscoverability(?b,?c) ^ 
Probability(?d) ^ hasProbability(?c,?d) 

Risk Of Equipment Bottleneck  Equipment(?b) ^ Bottleneck(?b) ^ Risk(?a) ^ hasRisk(?b,?a) 

Scheduled Down Duration  ScheduledDown(?a) ^ Duration(?b) ^ hasDuration(?a,?b) 

Scheduled Down Frequency  ScheduledDown(?a) ^ Frequency(?b) ^ hasFrequency(?a,?b) 

Scheduled Down Percentage  ScheduledDown(?a) ^ Percentage(?b) ^ hasPercentage(?a,?b) 

Setup Frequency  Setup(?a) ^ Frequency(?b) ^ hasFrequency(?a,?b) 

Standby Time Duration  StandbyTime(?a) ^ Duration(?b) ^ hasDuration(?a,?b) 

Unscheduled Down Duration  UnscheduledDown(?a) ^ Duration(?b) ^ hasDuration(?a,?b) 

Unscheduled Down Frequency  UnscheduledDown(?a) ^ Frequency(?b) ^ hasFrequency(?a,?b) 

 

Table 7-10 lists the terms and their FOL transformation that are related to 

operation-oriented aspects of a SI PS.  

Table 7-10: Operation-oriented Terms and FOL Transformation 

Raw Term FOL Transformed Term 

Batch Size  BatchSize(?a) 

Degree Of Tool Dedication  ToolDedication(?b) ^ Degree(?a) ^ hasDegree(?b,?a) 

Number Of Wafers To Rework Rework(?a) ^ Number(?b) ^ hasNumber(?a,?b) 

Number Of Wafers To Scrap  Scrap(?b) ^ Percentage(?a) ^ hasPercentage(?b,?a) 

OE  OE(?a) 

Percentage Of Process 
Inspections 

 Process(?a) ^ Inspection(?b) ^ hasInspection(?a,?b) ^ 
Percentage(?c) ^ hasPercentage(?b,?c) 

Percentage Of Rework  Rework(?b) ^ Percentage(?a) ^ hasPercentage(?b,?a) 

Process Availability  Process(?a) ^ Availability(?b) ^ hasAvailability(?a,?b) 

Process Maturity  Process(?a) ^ Maturity(?b) ^ hasMaturity(?a,?b) 

Process Stability  Process(?a) ^ Stability(?b) ^ hasStability(?a,?b) 

Process Variety  Process(?a) ^ Variety(?b) ^ hasVariety(?a,?b) 

Processing Time Variance  ProcessingTime(?a) ^ Variance(?b) ^ hasVariance(?a,?b) 

QE  QE(?a) 

Raw Process Time  RawProcessTime(?a) 

RE  RE(?a) 

Scrap  Scrap(?a) 

Single Process Variety  SingleProcess(?a) ^ Variety(?b) ^ hasVariety(?a,?b) 

 

Table 7-11 lists the terms and their FOL transformation that are related to 

EM-oriented aspects of a SI PS.  
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Table 7-11: EM-oriented Terms and FOL Transformation 

Raw Term FOL Transformed Term 

Dependency On Algorithm 
Quality 

 Algorithm(?b) ^ Quality(?c) ^ hasQuality(?b,?c) ^ 
Dependency(?a) ^ hasDependency(?c,?a) 

Dependency On EM Processes  EMProcess(?b) ^ Dependency(?a) ^ hasDependency(?b,?a) 

Dependency On Existing 
Knowledge 

 ExistingKnowledge(?b) ^ Dependency(?a) ^ 
hasDependency(?b,?a) 

Efficiency In Coordination Of 
Maintenance Process 

 EMProcess(?c) ^ Coordination(?b) ^ hasCoordination(?c,?b) ^ 
Efficiency(?a) ^ hasEfficiency(?b,?a) 

Efficiency Of Spare Part 
Logistics 

 SparePartLogistics(?b) ^ Efficiency(?a) ^ hasEfficiency(?b,?a) 

Efforts To Prepare Data And 
Algorithm 

 PrepareDataAndAlgorithm(?b) ^ Effort(?a) ^ hasEffort(?b,?a) 

EM Availability  EM(?a) ^ Availability(?b) ^ hasAvailability(?a,?b) 

EM Qualification Level  EM(?a) ^ QualificationLevel(?b) ^ hasQualificationLevel(?a,?b) 

Importance Of EM Availability  EM(?b) ^ Availability(?c) ^ hasAvailability(?b,?c) ^ 
Importance(?a) ^ hasImportance(?c,?a) 

Independency In Running 
Analyses 

Analysis(?b) ^ Independency(?a) ^ hasIndependency(?b,?a) 

Level Of Understanding 
Historical Failure Patterns 

 Failure(?a) ^ Pattern(?b) ^ hasPattern(?a,?b) ^ Historical(?b) ^ 
Understanding(?d) ^ hasUnderstanding(?b,?d) ^ Level(?e) ^ 
hasLevel(?d,?e) 

Maturity Of EM Strategy  EMStrategy(?b) ^ Maturity(?a) ^ hasMaturity(?b,?a) 

Number Of EM Persons Per 
Shift 

 EMStaff(?b) ^ OnShift(?b) ^ Number(?a) ^ hasNumber(?b,?a) 

Offline PdM Application  PdM(?a) ^ PAApplication(?a) ^ Offline(?a) 

Online PdM Application  PdM(?a) ^ PAApplication(?a) ^ Online(?a) 

Percentage Of Preventive 
Maintenance 

 PreventiveMaintenance(?b) ^ Percentage(?a) ^ 
hasPercentage(?b,?a) 

Percentage Of Reactive 
Maintenance 

 ReactiveMaintenance(?b) ^ Percentage(?a) ^ 
hasPercentage(?b,?a) 

 PdM Application  PdM(?a) ^ PAApplication(?a) 

Quality Of Monitoring  Monitoring(?b) ^ Quality(?a) ^ hasQuality(?b,?a) 

Quality Of Statistics  Statistics(?b) ^ Quality(?a) ^ hasQuality(?b,?a) 

Repair Time  RepairTime(?a) 

Speed Of Analysis  Analysis(?b) ^ Speed(?a) ^ hasSpeed(?b,?a) 

Speed Of Reactions  Reaction(?b) ^ Speed(?a) ^ hasSpeed(?b,?a) 

Synchronicity Of EM Availability  EM(?b) ^ Availability(?c) ^ hasAvailability(?b,?c) ^ 
Synchronicity(?a) ^ hasSynchronicity(?c,?a) 

Transparency In Effectiveness 
Of EM Activities 

 EMActivity(?c) ^ Effectiveness(?b) ^ hasEffectiveness(?c,?b) ^ 
Transparency(?a) ^ hasTransparency(?b,?a) 

 

Table 7-12 lists the terms and their FOL transformation that are related to 

EM-oriented aspects of a SI PS.  

Table 7-12: Production Staff-oriented Terms and FOL Transformation 

Raw Term FOL Transformed Term 

Degree Of Operator 
Qualification Level 

 Operator(?b) ^ QualificationLevel(?c) ^ 
hasQualificationLevel(?b,?c) ^ Degree(?a) ^ hasDegree(?c,?a) 

Degree Of Production Staff 
Motivation 

 ProductionStaff(?c) ^ Motivation(?b) ^ hasMotivation(?c,?b) ^ 
Degree(?a) ^ hasDegree(?b,?a) 

Flexibility Of Operator 
Qualification Level 

 Operator(?b) ^ QualificationLevel(?c) ^ 
hasQualificationLevel(?b,?c) ^ Flexibility(?a) ^ 
hasFlexibility(?c,?a) 

Importance Of Operator 
Qualification Level 

 Operator(?b) ^ QualificationLevel(?c) ^ 
hasQualificationLevel(?b,?c) ^ Importance(?a) ^ 
hasImportance(?c,?a) 

Operator Availability  Operator(?a) ^ Availability(?b) ^ hasAvailability(?a,?b) 

Operator Qualification Level  Operator(?a) ^ QualificationLevel(?b) ^ 
hasQualificationLevel(?a,?b) 
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Table 7-13 lists the terms and their FOL transformation that are related to 

EM-oriented aspects of a SI PS. 

Table 7-13: Cost-oriented Terms and FOL Transformation 

Raw Term FOL Transformed Term 

EM Costs  EM(?a) ^ Costs(?b) ^ hasCosts(?a,?b) 

Inventory Costs  Inventory(?a) ^ Costs(?b) ^ hasCosts(?a,?b) 

Personnel Costs  Personnel(?a) ^ Costs(?b) ^ hasCosts(?a,?b) 

Product Costs  Product(?a) ^ Costs(?b) ^ hasCosts(?a,?b) 

Spare Part Costs  SparePart(?a) ^ Costs(?b) ^ hasCosts(?a,?b) 

 

Table 7-14 lists the terms and their FOL transformation that are related to 
data-oriented aspects of a SI PS. 

Table 7-14: Data-oriented Terms and FOL Transformation 

Raw Term FOL Transformed Term 

Data Traffic  DataTraffic(?a) 

Number Of Relevant Data 
Sources 

 RelevantDataSource(?b) ^ Number(?a) ^ hasNumber(?b,?a) 

 

To ensure a consistent rule model, it is important to differentiate the variables 

clearly. Since each rule represents the logical association between two 

terms, the variables are separated by the postfix ‘1’ and ‘2’. This postfix 

allows human analysts to clearly see which concept and object property 

belongs together as a term. A term itself may consist of multiple logical 

associations to express the original meaning in a logical and atomic 

standard. If such complex terms are set in a relationship within a FOL rule, it 

is required to select the correct pair of variables. The following sample FOL 

rule demonstrates the problem:   

MachineComponent(?a1) ^ WearLimit(?b1) ^ hasWearLimit(?a1,?b1) ^ Degree(?c1) ^ 

hasDegree(?d1,?c1) ^ Exhausting(?d1) ^ hasExhausting(?b1,?d1) ^  EM(?a2) ^ Costs(?b2) ^ 

hasCosts(?a2,?b2) → decrease(?c1, ?b2) 

 

The first term is expressed by four concepts and two object properties that 

use four variables a1, b1, c1 and d1. The second term is simpler and 

consists of only two concepts and one object property, which use two 

variables a2 and b2. From the case study evaluation, it is known that the first 

term decreases the second term. In FOL language, the particular interfering 

variables from both terms must be identified. In this case, the variable c1 that 

represents a certain ‘Degree’ will decrease the variable b2 that represents 
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‘Costs’. Based on the case study association matrix, 272 FOL rules need to 

be created, accordingly. Each rule must be verified to ensure the correct pair 

of variables. To present the list of rules in a clear way, the list is divided by 

those classes that were assigned to the source term of each rule. Table 7-15 

shows the PS-oriented SWRL rules for PPES. 

Table 7-15: PS-oriented SWRL Rules for PPES 

# Rule 

1  4M(?a1) ^ Synchronicity(?b1) ^ hasSynchronicity(?a1,?b1) ^  CT(?a2) ^ Variance(?b2) ^ 
hasVariance(?a2,?b2) → decrease(?b1, ?b2) 

2  4M(?a1) ^ Synchronicity(?b1) ^ hasSynchronicity(?a1,?b1) ^  StandbyTime(?a2) ^ 
Duration(?b2) ^ hasDuration(?a2,?b2) → decrease(?b1, ?b2) 

3  CT(?a1) ^  FF(?a2) → increase(?a1, ?a2) 

4  CT(?a1) ^  LittlesLaw(?a2) → increase(?a1, ?a2) 

5  CT(?a1) ^  PS(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → increase(?a1, ?a2) 

6  Dispatcher(?a1) ^ Maturity(?b1) ^ hasMaturity(?a1,?b1) ^  4M(?a2) ^ Synchronicity(?b2) ^ 
hasSynchronicity(?a2,?b2) → increase(?b1, ?b2) 

7  Dispatcher(?a1) ^ Maturity(?b1) ^ hasMaturity(?a1,?b1) ^  StandbyTime(?a2) ^ 
Duration(?b2) ^ hasDuration(?a2,?b2) → decrease(?b1, ?b2) 

8  DispatcherCompliance(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  FF(?a2) → 
decrease(?a1, ?a2) 

9  DispatcherCompliance(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  StandbyTime(?a2) ^ 
Duration(?b2) ^ hasDuration(?a2,?b2) → decrease(?a1, ?b2) 

10  DispatcherCompliance(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  WIP(?a2) ^ 
Variance(?b2) ^ hasVariance(?a2,?b2) → decrease(?a1, ?b2) 

11  Engineer(?c1) ^ Knowledge(?a1) ^ hasKnowledge(?c1,?a1) ^ FactoryPhysics(?a1) ^ 
Degree(?b1) ^ hasDegree(?a1,?b1) ^  MaterialFlow(?a2) ^ Variance(?b2) ^ 
hasVariance(?a2,?b2) → decrease(?b1, ?b2) 

12  Equipment(?b1) ^ Bottleneck(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
CT(?a2) → increase(?a1, ?a2) 

13  Equipment(?b1) ^ Bottleneck(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
FF(?a2) → increase(?a1, ?a2) 

14  Equipment(?b1) ^ Bottleneck(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
GR(?a2) → decrease(?a1, ?a2) 

15  Equipment(?b1) ^ Bottleneck(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
WIP(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → increase(?a1, ?a2) 

16  EquipmentGR (?a1) ^  Equipment(?a2) ^ Availability(?b2) ^ hasAvailability(?a2,?b2) → 
increase(?a1, ?b2) 

17  Fab(?a1) ^ Utilization(?b1) ^ hasUtilization(?a1,?b1) ^  Equipment(?a2) ^ Downtime(?b2) ^ 
hasDowntime(?a2,?b2) ^ Frequency(?c2) ^ hasFrequency(?b2,?c2) → increase(?b1, ?c2) 

18  Fab(?a1) ^ Utilization(?b1) ^ hasUtilization(?a1,?b1) ^  ScheduledDown(?a2) ^ 
Percentage(?b2) ^ hasPercentage(?a2,?b2) → increase(?b1, ?b2) 

19  FabricatedItemsPerDay(?a1) ^  DGR(?a2) → increase(?a1, ?a2) 

20  FabricatedItemsPerDay(?a1) ^  PS(?a2) ^ Availability(?b2) ^ hasAvailability(?a2,?b2) → 
increase(?a1, ?b2) 

21  FabricatedItemsPerTime(?a1) ^  GR(?a2) → increase(?a1, ?a2) 

22  GR(?a1) ^  CT(?a2) → decrease(?a1, ?a2) 

23  GR(?a1) ^  DGR(?a2) → increase(?a1, ?a2) 

24  GR(?a1) ^  Equipment(?a2) ^ Utilization(?b2) ^ hasUtilization(?a2,?b2) → increase(?a1, 
?b2) 

25  GR(?a1) ^  GR(?a2) → increase(?a1, ?a2) 

26  GR(?a1) ^  LittlesLaw(?a2) → increase(?a1, ?a2) 

27  GR(?a1) ^  PS(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → decrease(?a1, ?a2) 

28  GR(?a1) ^  WIP(?a2) → decrease(?a1, ?a2) 

29  GR(?a1) ^  WSPW(?a2) → increase(?a1, ?a2) 

30  LotPrioritization(?a1) ^  CT(?a2) ^ Variance(?b2) ^ hasVariance(?a2,?b2) → increase(?a1, 
?b2) 

31  LotPrioritization(?a1) ^  GR(?a2) → decrease(?a1, ?a2) 

32  MachineGroup(?b1) ^ PerformanceSynchronicity(?a1) ^ 
hasPerformanceSynchronicity(?b1,?a1) ^ Degree(?c1) ^ hasDegree(?a1,?c1) ^  FF(?a2) → 
decrease(?c1, ?a2) 
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# Rule 

33  MaterialFlow(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  CT(?a2) → increase(?b1, 
?a2) 

34  MaterialFlow(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  Equipment(?a2) ^ 
Availability(?b2) ^ hasAvailability(?a2,?b2) → decrease(?b1, ?b2) 

35  MaterialFlow(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  FF(?a2) → increase(?b1, 
?a2) 

36  MaterialFlow(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  GR(?a2) → decrease(?b1, 
?a2) 

37  MaterialFlow(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  Tool(?b2) ^ Alpha(?a2) ^ 
hasAlpha(?b2,?a2) → increase(?b1, ?a2) 

38  MaterialFlow(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  WIP(?b2) ^ Alpha(?a2) ^ 
hasAlpha(?b2,?a2) → increase(?b1, ?a2) 

39  Rest3M(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  StandbyTime(?a2) ^ 
Duration(?b2) ^ hasDuration(?a2,?b2) → decrease(?b1, ?b2) 

40  SCMOrderPattern(?b1) ^ Variance(?a1) ^ hasVariance(?b1,?a1) ^  WSPW(?a2) ^ 
Variance(?b2) ^ hasVariance(?a2,?b2) → increase(?a1, ?b2) 

41  Transportation(?a1) ^ Variability(?b1) ^ hasVariability(?a1,?b1) ^  Equipment(?a2) ^ 
Capacity(?b2) ^ hasCapacity(?a2,?b2) → decrease(?b1, ?b2) 

42  UtilizationProfile(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  CT(?a2) → 
increase(?b1, ?a2) 

43  UtilizationProfile(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  Equipment(?b2) ^ 
Bottleneck(?b2) ^ Percentage(?a2) ^ hasPercentage(?b2,?a2) → increase(?b1, ?a2) 

44  WaitTime(?a1) ^  CT(?a2) → increase(?a1, ?a2) 

45  WaitTime(?b1) ^ Maximum(?a1) ^ hasMaximum(?b1,?a1) ^  StandbyTime(?a2) ^ 
Duration(?b2) ^ hasDuration(?a2,?b2) → increase(?a1, ?b2) 

46  WIP(?a1) ^  CT(?a2) → increase(?a1, ?a2) 

47  WIP(?a1) ^  FF(?a2) → increase(?a1, ?a2) 

48  WIP(?a1) ^  LittlesLaw(?a2) → increase(?a1, ?a2) 

49  WIP(?a1) ^  PS(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → increase(?a1, ?a2) 

50  WIP(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  DGR(?a2) → increase(?b1, ?a2) 

51  WIP(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  PS(?a2) ^ Availability(?b2) ^ 
hasAvailability(?a2,?b2) → increase(?b1, ?b2) 

52  WIP(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  CT(?a2) ^ Variance(?b2) ^ 
hasVariance(?a2,?b2) → increase(?b1, ?b2) 

53  WIP(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  FF(?a2) → increase(?b1, ?a2) 

54  WIP(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  StandbyTime(?a2) ^ Duration(?b2) ^ 
hasDuration(?a2,?b2) → increase(?b1, ?b2) 

55  WIP(?a1) ^ Yearly(?b1) ^ hasReductionFrequency(?a1,?b1) ^  WSPW(?a2) ^ 
Variance(?b2) ^ hasVariance(?a2,?b2) → increase(?b1, ?b2) 

56  WIPDistribution(?c1) ^ Unevenness(?b1) ^ hasUnevenness(?c1,?b1) ^ Degree(?a1) ^ 
hasDegree(?b1,?a1) ^  GR(?a2) → decrease(?a1, ?a2) 

57  WSPW(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  Equipment(?b2) ^ Bottleneck(?b2) 
^ Risk(?a2) ^ hasRisk(?b2,?a2) → increase(?b1, ?a2) 

58  WSPW(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  FF(?a2) → increase(?b1, ?a2) 

59  WSPW(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  StandbyTime(?a2) ^ 
Duration(?b2) ^ hasDuration(?a2,?b2) → increase(?b1, ?b2) 

60  WSPW(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  WIP(?a2) ^ Variance(?b2) ^ 
hasVariance(?a2,?b2) → increase(?b1, ?b2) 

 

Table 7-16 shows the SWRL rules for PPES whose source terms are 

classified as machine-oriented. 

Table 7-16: Machine-oriented SWRL Rules for PPES 

# Rule 

1  Assist(?b1) ^ Number(?a1) ^ hasNumber(?b1,?a1) ^  MTBA(?a2) → decrease(?a1, ?a2) 

2  Automation(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  Operator(?a2) ^ 
QualificationLevel(?b2) ^ hasQualificationLevel(?a2,?b2) → decrease(?a1, ?b2) 

3  Automation(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  Operator(?b2) ^ 
QualificationLevel(?c2) ^ hasQualificationLevel(?b2,?c2) ^ Importance(?a2) ^ 
hasImportance(?c2,?a2) → decrease(?a1, ?a2) 

4  Equipment(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  DGR(?a2) → 
increase(?b1, ?a2) 
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# Rule 

5  Equipment(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  Equipment(?a2) ^ 
Capacity(?b2) ^ hasCapacity(?a2,?b2) → increase(?b1, ?b2) 

6  Equipment(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  FF(?a2) → decrease(?b1, 
?a2) 

7  Equipment(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  GR(?a2) → increase(?b1, 
?a2) 

8  Equipment(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  OEE(?a2) → increase(?b1, 
?a2) 

9  Equipment(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  PS(?a2) ^ Availability(?b2) 
^ hasAvailability(?a2,?b2) → increase(?b1, ?b2) 

10  Equipment(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  Tool(?b2) ^ Alpha(?a2) ^ 
hasAlpha(?b2,?a2) → decrease(?b1, ?a2) 

11  Equipment(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  WIP(?a2) ^ Variance(?b2) 
^ hasVariance(?a2,?b2) → decrease(?b1, ?b2) 

12  Equipment(?a1) ^ Capacity(?b1) ^ hasCapacity(?a1,?b1) ^  Equipment(?a2) ^ 
Utilization(?b2) ^ hasUtilization(?a2,?b2) → decrease(?b1, ?b2) 

13  Equipment(?a1) ^ Downtime(?b1) ^ hasDowntime(?a1,?b1) ^ Duration(?c1) ^ 
hasDuration(?b1,?c1) ^  CT(?a2) → increase(?c1, ?a2) 

14  Equipment(?a1) ^ Downtime(?b1) ^ hasDowntime(?a1,?b1) ^ Duration(?c1) ^ 
hasDuration(?b1,?c1) ^  Equipment(?a2) ^ Availability(?b2) ^ hasAvailability(?a2,?b2) → 
decrease(?c1, ?b2) 

15  Equipment(?a1) ^ Downtime(?b1) ^ hasDowntime(?a1,?b1) ^ Duration(?c1) ^ 
hasDuration(?b1,?c1) ^  FF(?a2) → increase(?c1, ?a2) 

16  Equipment(?a1) ^ Downtime(?b1) ^ hasDowntime(?a1,?b1) ^ Duration(?c1) ^ 
hasDuration(?b1,?c1) ^  GR(?a2) → decrease(?c1, ?a2) 

17  Equipment(?a1) ^ Downtime(?b1) ^ hasDowntime(?a1,?b1) ^ Duration(?c1) ^ 
hasDuration(?b1,?c1) ^  MTBF(?a2) → decrease(?c1, ?a2) 

18  Equipment(?a1) ^ Downtime(?b1) ^ hasDowntime(?a1,?b1) ^ Duration(?c1) ^ 
hasDuration(?b1,?c1) ^  MTOL(?a2) → increase(?c1, ?a2) 

19  Equipment(?a1) ^ Downtime(?b1) ^ hasDowntime(?a1,?b1) ^ Duration(?c1) ^ 
hasDuration(?b1,?c1) ^  MTTR(?a2) → increase(?c1, ?a2) 

20  Equipment(?a1) ^ Downtime(?b1) ^ hasDowntime(?a1,?b1) ^ Duration(?c1) ^ 
hasDuration(?b1,?c1) ^  OEE(?a2) → decrease(?c1, ?a2) 

21  Equipment(?a1) ^ Downtime(?b1) ^ hasDowntime(?a1,?b1) ^ Duration(?c1) ^ 
hasDuration(?b1,?c1) ^  Tool(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → increase(?c1, ?a2) 

22  Equipment(?a1) ^ Reservation(?b1) ^ hasReservation(?a1,?b1) ^ Percentage(?c1) ^ 
hasPercentage(?b1,?c1)  ^  EngineeringTime(?a2) ^ Duration(?b2) ^ hasDuration(?a2,?b2) 
→ increase(?c1, ?b2) 

23  Equipment(?a1) ^ Reservation(?b1) ^ hasReservation(?a1,?b1) ^ Percentage(?c1) ^ 
hasPercentage(?b1,?c1)  ^  Equipment(?a2) ^ Capacity(?b2) ^ hasCapacity(?a2,?b2) → 
decrease(?c1, ?b2) 

24  Equipment(?a1) ^ Reservation(?b1) ^ hasReservation(?a1,?b1) ^ Percentage(?c1) ^ 
hasPercentage(?b1,?c1)  ^  FF(?a2) → increase(?c1, ?a2) 

25  Equipment(?a1) ^ Reservation(?b1) ^ hasReservation(?a1,?b1) ^ Percentage(?c1) ^ 
hasPercentage(?b1,?c1)  ^  StandbyTime(?a2) ^ Duration(?b2) ^ hasDuration(?a2,?b2) → 
increase(?c1, ?b2) 

26  Equipment(?a1) ^ Reservation(?b1) ^ hasReservation(?a1,?b1) ^ Percentage(?c1) ^ 
hasPercentage(?b1,?c1)  ^  WIP(?a2) ^ Variance(?b2) ^ hasVariance(?a2,?b2) → 
increase(?c1, ?b2) 

27  EquipmentGR(?a1) ^  Equipment(?a2) ^ Capacity(?b2) ^ hasCapacity(?a2,?b2) → 
increase(?a1, ?b2) 

28  EquipmentGR(?a1) ^  GR(?a2) → increase(?a1, ?a2) 

29  Failure(?b1) ^ Number(?a1) ^ hasNumber(?b1,?a1) ^  MTBF(?a2) → decrease(?a1, ?a2) 

30  Failure(?b1) ^ Number(?a1) ^ hasNumber(?b1,?a1) ^  MTOL(?a2) → decrease(?a1, ?a2) 

31  Failure(?b1) ^ Number(?a1) ^ hasNumber(?b1,?a1) ^  MTTF(?a2) → decrease(?a1, ?a2) 

32  Failure(?b1) ^ Number(?a1) ^ hasNumber(?b1,?a1) ^  MTTR(?a2) → decrease(?a1, ?a2) 

33  Machine(?a1)  ^ Downtime(?c1) ^ hasDowntime(?a1,?c1) ^ Prevention(?d1) ^ 
hasPrevention(?c1,?d1) ^ Probability(?b1) ^ hasProbability(?d1,?b1) ^  CT(?a2) → 
decrease(?b1, ?a2) 

34  Machine(?a1)  ^ Downtime(?c1) ^ hasDowntime(?a1,?c1) ^ Prevention(?d1) ^ 
hasPrevention(?c1,?d1) ^ Probability(?b1) ^ hasProbability(?d1,?b1) ^  Equipment(?a2) ^ 
Availability(?b2) ^ hasAvailability(?a2,?b2) → increase(?b1, ?b2) 

35  Machine(?a1)  ^ Downtime(?c1) ^ hasDowntime(?a1,?c1) ^ Prevention(?d1) ^ 
hasPrevention(?c1,?d1) ^ Probability(?b1) ^ hasProbability(?d1,?b1) ^  FF(?a2) → 
decrease(?b1, ?a2) 
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# Rule 

36  Machine(?a1)  ^ Downtime(?c1) ^ hasDowntime(?a1,?c1) ^ Prevention(?d1) ^ 
hasPrevention(?c1,?d1) ^ Probability(?b1) ^ hasProbability(?d1,?b1) ^  GR(?a2) → 
increase(?b1, ?a2) 

37  Machine(?a1)  ^ Downtime(?c1) ^ hasDowntime(?a1,?c1) ^ Prevention(?d1) ^ 
hasPrevention(?c1,?d1) ^ Probability(?b1) ^ hasProbability(?d1,?b1) ^  MTBF(?a2) → 
increase(?b1, ?a2) 

38  Machine(?a1)  ^ Downtime(?c1) ^ hasDowntime(?a1,?c1) ^ Prevention(?d1) ^ 
hasPrevention(?c1,?d1) ^ Probability(?b1) ^ hasProbability(?d1,?b1) ^  MTOL(?a2) → 
decrease(?b1, ?a2) 

39  Machine(?a1)  ^ Downtime(?c1) ^ hasDowntime(?a1,?c1) ^ Prevention(?d1) ^ 
hasPrevention(?c1,?d1) ^ Probability(?b1) ^ hasProbability(?d1,?b1) ^  MTTR(?a2) → 
decrease(?b1, ?a2) 

40  Machine(?a1)  ^ Downtime(?c1) ^ hasDowntime(?a1,?c1) ^ Prevention(?d1) ^ 
hasPrevention(?c1,?d1) ^ Probability(?b1) ^ hasProbability(?d1,?b1) ^  OEE(?a2) → 
increase(?b1, ?a2) 

41  Machine(?a1)  ^ Downtime(?c1) ^ hasDowntime(?a1,?c1) ^ Prevention(?d1) ^ 
hasPrevention(?c1,?d1) ^ Probability(?b1) ^ hasProbability(?d1,?b1) ^  Tool(?b2) ^ 
Alpha(?a2) ^ hasAlpha(?b2,?a2) → decrease(?b1, ?a2) 

42  MachineComponent(?a1) ^ WearLimit(?b1) ^ hasWearLimit(?a1,?b1) ^ Degree(?c1) ^ 
hasDegree(?d1,?c1) ^ Exhausting(?d1) ^ hasExhausting(?b1,?d1) ^  EM(?a2) ^ Costs(?b2) 
^ hasCosts(?a2,?b2) → decrease(?c1, ?b2) 

43  MachineComponent(?a1) ^ WearLimit(?b1) ^ hasWearLimit(?a1,?b1) ^ Degree(?c1) ^ 
hasDegree(?d1,?c1) ^ Exhausting(?d1) ^ hasExhausting(?b1,?d1) ^  Equipment(?a2) ^ 
Availability(?b2) ^ hasAvailability(?a2,?b2) → increase(?c1, ?b2) 

44  MachineComponent(?a1) ^ WearLimit(?b1) ^ hasWearLimit(?a1,?b1) ^ Degree(?c1) ^ 
hasDegree(?d1,?c1) ^ Exhausting(?d1) ^ hasExhausting(?b1,?d1) ^  MTBF(?a2) → 
increase(?c1, ?a2) 

45  MachineComponent(?a1) ^ WearLimit(?b1) ^ hasWearLimit(?a1,?b1) ^ Degree(?c1) ^ 
hasDegree(?d1,?c1) ^ Exhausting(?d1) ^ hasExhausting(?b1,?d1) ^  SparePart(?a2) ^ 
Costs(?b2) ^ hasCosts(?a2,?b2) → decrease(?c1, ?b2) 

46  MTBA(?a1) ^  PS(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → decrease(?a1, ?a2) 

47  MTBF(?a1) ^  Equipment(?a2) ^ Availability(?b2) ^ hasAvailability(?a2,?b2) → 
increase(?a1, ?b2) 

48  MTBF(?a1) ^  PS(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → decrease(?a1, ?a2) 

49  MTOL(?a1) ^  PS(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → increase(?a1, ?a2) 

50  MTOL(?a1) ^  Tool(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → increase(?a1, ?a2) 

51  MTTR(?a1) ^  PS(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → increase(?a1, ?a2) 

52  OEE(?a1) ^  Equipment(?a2) ^ Capacity(?b2) ^ hasCapacity(?a2,?b2) → increase(?a1, 
?b2) 

53  OEE(?a1) ^  PS(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → decrease(?a1, ?a2) 

54  ProcessDevelopment(?a1) ^ Equipment(?b1) ^ hasUser(?b1,?a1) ^ Percentage(?d1) ^ 
Manufacturing(?c1) ^ hasOwner(?b1,?c1) ^ hasPercentage(?a1, ?d1) ^  CT(?a2) → 
increase(?d1, ?a2) 

55  ProcessDevelopment(?a1) ^ Equipment(?b1) ^ hasUser(?b1,?a1) ^ Percentage(?d1) ^ 
Manufacturing(?c1) ^ hasOwner(?b1,?c1) ^ hasPercentage(?a1, ?d1) ^  
EngineeringTime(?a2) ^ Duration(?b2) ^ hasDuration(?a2,?b2) → increase(?d1, ?b2) 

56  ProcessDevelopment(?a1) ^ Equipment(?b1) ^ hasUser(?b1,?a1) ^ Percentage(?d1) ^ 
Manufacturing(?c1) ^ hasOwner(?b1,?c1) ^ hasPercentage(?a1, ?d1) ^  Equipment(?a2) ^ 
Capacity(?b2) ^ hasCapacity(?a2,?b2) → decrease(?d1, ?b2) 

57  ProcessDevelopment(?a1) ^ Equipment(?b1) ^ hasUser(?b1,?a1) ^ Percentage(?d1) ^ 
Manufacturing(?c1) ^ hasOwner(?b1,?c1) ^ hasPercentage(?a1, ?d1) ^  GR(?a2) → 
decrease(?d1, ?a2) 

58  ProcessDevelopment(?a1) ^ Equipment(?b1) ^ hasUser(?b1,?a1) ^ Percentage(?d1) ^ 
Manufacturing(?c1) ^ hasOwner(?b1,?c1) ^ hasPercentage(?a1, ?d1) ^  
UnscheduledDown(?a2) ^ Frequency(?b2) ^ hasFrequency(?a2,?b2) → increase(?d1, ?b2) 

59  ProcessFailure(?a1) ^ Machine-Related(?a1) ^ Degree(?b1) ^ hasDegree(?a1,?b1) ^  
CT(?a2) → increase(?b1, ?a2) 

60  ProcessFailure(?a1) ^ Machine-Related(?a1) ^ Degree(?b1) ^ hasDegree(?a1,?b1) ^  
GR(?a2) → decrease(?b1, ?a2) 

61  ProcessFailure(?a1) ^ Machine-Related(?a1) ^ Degree(?b1) ^ hasDegree(?a1,?b1) ^  
Product(?a2) ^ Costs(?b2) ^ hasCosts(?a2,?b2) → increase(?b1, ?b2) 

62  ProcessFailure(?a1) ^ Machine-Related(?a1) ^ Degree(?b1) ^ hasDegree(?a1,?b1) ^  
Rework(?b2) ^ Percentage(?a2) ^ hasPercentage(?b2,?a2) → increase(?b1, ?a2) 

63  ProcessFailure(?a1) ^ Machine-Related(?a1) ^ Degree(?b1) ^ hasDegree(?a1,?b1) ^  
Scrap(?a2) → increase(?b1, ?a2) 

64  ProcessFailure(?a1) ^ Machine-Related(?a1) ^ Degree(?b1) ^ hasDegree(?a1,?b1) ^  
Yield(?a2) → decrease(?b1, ?a2) 
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# Rule 

65  ScheduledDown(?a1) ^ Frequency(?b1) ^ hasFrequency(?a1,?b1) ^  PS(?b2) ^ Alpha(?a2) 
^ hasAlpha(?b2,?a2) → increase(?b1, ?a2) 

66  Setup(?a1) ^ Frequency(?b1) ^ hasFrequency(?a1,?b1) ^  EM(?b2) ^ Availability(?c2) ^ 
hasAvailability(?b2,?c2) ^ Importance(?a2) ^ hasImportance(?c2,?a2) → increase(?b1, 
?a2) 

67  Setup(?a1) ^ Frequency(?b1) ^ hasFrequency(?a1,?b1) ^  Equipment(?a2) ^ 
Capacity(?b2) ^ hasCapacity(?a2,?b2) → decrease(?b1, ?b2) 

68  Setup(?a1) ^ Frequency(?b1) ^ hasFrequency(?a1,?b1) ^  ScheduledDown(?a2) ^ 
Duration(?b2) ^ hasDuration(?a2,?b2) → increase(?b1, ?b2) 

69  Tool(?b1) ^ Alpha(?a1) ^ hasAlpha(?b1,?a1) ^  PS(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) 
→ increase(?a1, ?a2) 

 

Table 7-17 shows the SWRL rules for PPES whose source terms are 

classified as operation-oriented. 

Table 7-17: Operation-oriented SWRL Rules for PPES 

# Rule 

1  BatchSize(?a1) ^  PS(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → increase(?a1, ?a2) 

2  OE(?a1) ^  OEE(?a2) → increase(?a1, ?a2) 

3  Process(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  DGR(?a2) → increase(?b1, 
?a2) 

4  Process(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  Equipment(?a2) ^ 
Capacity(?b2) ^ hasCapacity(?a2,?b2) → increase(?b1, ?b2) 

5  Process(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  GR(?a2) → increase(?b1, 
?a2) 

6  Process(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  PS(?a2) ^ Availability(?b2) ^ 
hasAvailability(?a2,?b2) → increase(?b1, ?b2) 

7  Process(?a1) ^ Inspection(?b1) ^ hasInspection(?a1,?b1) ^ Percentage(?c1) ^ 
hasPercentage(?b1,?c1) ^  CT(?a2) → increase(?c1, ?a2) 

8  Process(?a1) ^ Maturity(?b1) ^ hasMaturity(?a1,?b1) ^  Equipment(?a2) ^ Availability(?b2) 
^ hasAvailability(?a2,?b2) → increase(?b1, ?b2) 

9  Process(?a1) ^ Maturity(?b1) ^ hasMaturity(?a1,?b1) ^  Process(?a2) ^ Stability(?b2) ^ 
hasStability(?a2,?b2) → increase(?b1, ?b2) 

10  Process(?a1) ^ Maturity(?b1) ^ hasMaturity(?a1,?b1) ^  Rest3M(?a2) ^ Availability(?b2) ^ 
hasAvailability(?a2,?b2) → increase(?b1, ?b2) 

11  Process(?a1) ^ Maturity(?b1) ^ hasMaturity(?a1,?b1) ^  StandbyTime(?a2) ^ Duration(?b2) 
^ hasDuration(?a2,?b2) → decrease(?b1, ?b2) 

12  Process(?a1) ^ Maturity(?b1) ^ hasMaturity(?a1,?b1) ^  UnscheduledDown(?a2) ^ 
Frequency(?b2) ^ hasFrequency(?a2,?b2) → decrease(?b1, ?b2) 

13  Process(?a1) ^ Stability(?b1) ^ hasStability(?a1,?b1) ^  Automation(?b2) ^ Degree(?a2) ^ 
hasDegree(?b2,?a2) → increase(?b1, ?a2) 

14  Process(?a1) ^ Stability(?b1) ^ hasStability(?a1,?b1) ^  CT(?a2) → decrease(?b1, ?a2) 

15  Process(?a1) ^ Stability(?b1) ^ hasStability(?a1,?b1) ^  Equipment(?a2) ^ Availability(?b2) 
^ hasAvailability(?a2,?b2) → increase(?b1, ?b2) 

16  Process(?a1) ^ Stability(?b1) ^ hasStability(?a1,?b1) ^  FF(?a2) → decrease(?b1, ?a2) 

17  Process(?a1) ^ Stability(?b1) ^ hasStability(?a1,?b1) ^  Process(?a2) ^ Inspection(?b2) ^ 
hasInspection(?a2,?b2) ^ Percentage(?c2) ^ hasPercentage(?b2,?c2) → decrease(?b1, 
?c2) 

18  Process(?a1) ^ Stability(?b1) ^ hasStability(?a1,?b1) ^  StandbyTime(?a2) ^ Duration(?b2) 
^ hasDuration(?a2,?b2) → decrease(?b1, ?b2) 

19  Process(?a1) ^ Stability(?b1) ^ hasStability(?a1,?b1) ^  UnscheduledDown(?a2) ^ 
Frequency(?b2) ^ hasFrequency(?a2,?b2) → decrease(?b1, ?b2) 

20  Process(?a1) ^ Stability(?b1) ^ hasStability(?a1,?b1) ^  WIP(?a2) ^ Variance(?b2) ^ 
hasVariance(?a2,?b2) → decrease(?b1, ?b2) 

21  Process(?a1) ^ Variety(?b1) ^ hasVariety(?a1,?b1) ^  ScheduledDown(?a2) ^ 
Percentage(?b2) ^ hasPercentage(?a2,?b2) → increase(?b1, ?b2) 

22  ProcessingTime(?a1) ^ Variance(?b1) ^ hasVariance(?a1,?b1) ^  FF(?a2) → increase(?b1, 
?a2) 

23  QE(?a1) ^  OEE(?a2) → increase(?a1, ?a2) 

24  RawProcessTime(?a1) ^  FF(?a2) → decrease(?a1, ?a2) 

25  RawProcessTime(?a1) ^  Tool(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → decrease(?a1, 
?a2) 
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# Rule 

26  RE(?a1) ^  GR(?a2) → increase(?a1, ?a2) 

27  RE(?a1) ^  OEE(?a2) → increase(?a1, ?a2) 

28  Rework(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  GR(?a2) → decrease(?a1, 
?a2) 

29  Scrap(?b1) ^ Number(?a1) ^ hasNumber(?b1,?a1) ^  QE(?a2) → decrease(?a1, ?a2) 

30  SingleProcess(?a1) ^ Variety(?b1) ^ hasVariety(?a1,?b1) ^  Equipment(?a2) ^ 
Capacity(?b2) ^ hasCapacity(?a2,?b2) → decrease(?b1, ?b2) 

31  SingleProcess(?a1) ^ Variety(?b1) ^ hasVariety(?a1,?b1) ^  PS(?b2) ^ Alpha(?a2) ^ 
hasAlpha(?b2,?a2) → increase(?b1, ?a2) 

32  SingleProcess(?a1) ^ Variety(?b1) ^ hasVariety(?a1,?b1) ^  Setup(?a2) ^ Frequency(?b2) 
^ hasFrequency(?a2,?b2) → increase(?b1, ?b2) 

33  ToolDedication(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  CT(?a2) → increase(?a1, 
?a2) 

34  ToolDedication(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  Deliverability(?a2) → 
decrease(?a1, ?a2) 

35  ToolDedication(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  Equipment(?a2) ^ 
Capacity(?b2) ^ hasCapacity(?a2,?b2) → decrease(?a1, ?b2) 

36  ToolDedication(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  Equipment(?b2) ^ 
Availability(?c2) ^ hasAvailability(?b2,?c2) ^ Importance(?a2) ^ hasImportance(?c2,?a2) → 
increase(?a1, ?a2) 

37  ToolDedication(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  FF(?a2) → increase(?a1, 
?a2) 

38  ToolDedication(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  MaterialFlow(?a2) ^ 
Variance(?b2) ^ hasVariance(?a2,?b2) → increase(?a1, ?b2) 

39  ToolDedication(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  Product(?a2) ^ 
LineDown(?b2) ^ hasLineDown(?a2,?b2) ^ Risk(?c2) ^ hasRisk(?b2,?c2) → increase(?a1, 
?c2) 

40  ToolDedication(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  PS(?b2) ^ Alpha(?a2) ^ 
hasAlpha(?b2,?a2) → increase(?a1, ?a2) 

41  ToolDedication(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  StandbyTime(?a2) ^ 
Duration(?b2) ^ hasDuration(?a2,?b2) → decrease(?a1, ?b2) 

42  ToolDedication(?b1) ^ Degree(?a1) ^ hasDegree(?b1,?a1) ^  WIP(?a2) ^ Variance(?b2) ^ 
hasVariance(?a2,?b2) → increase(?a1, ?b2) 

43 Rework(?a1) ^ Number(?b1) ^ hasNumber(?a1,?b1) ^  QE(?a2) → decrease(?b1, ?a2) 

 

Table 7-18 shows the SWRL rules for PPES whose source terms are 

classified as EM-oriented. 

Table 7-18: EM-oriented SWRL Rules for PPES 

# Rule 

1  EM(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  Equipment(?a2) ^ Availability(?b2) 
^ hasAvailability(?a2,?b2) → increase(?b1, ?b2) 

2  EM(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  StandbyTime(?a2) ^ Duration(?b2) 
^ hasDuration(?a2,?b2) → decrease(?b1, ?b2) 

3  EM(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  UnscheduledDown(?a2) ^ 
Duration(?b2) ^ hasDuration(?a2,?b2) → decrease(?b1, ?b2) 

4  EM(?a1) ^ QualificationLevel(?b1) ^ hasQualificationLevel(?a1,?b1) ^  
ScheduledDown(?a2) ^ Duration(?b2) ^ hasDuration(?a2,?b2) → decrease(?b1, ?b2) 

5  EM(?a1) ^ QualificationLevel(?b1) ^ hasQualificationLevel(?a1,?b1) ^  
UnscheduledDown(?a2) ^ Frequency(?b2) ^ hasFrequency(?a2,?b2) → decrease(?b1, 
?b2) 

6  EMProcess(?c1) ^ Coordination(?b1) ^ hasCoordination(?c1,?b1) ^ Efficiency(?a1) ^ 
hasEfficiency(?b1,?a1) ^  EM(?a2) ^ Costs(?b2) ^ hasCosts(?a2,?b2) → decrease(?a1, 
?b2) 

7  EMProcess(?c1) ^ Coordination(?b1) ^ hasCoordination(?c1,?b1) ^ Efficiency(?a1) ^ 
hasEfficiency(?b1,?a1) ^  Equipment(?a2) ^ Availability(?b2) ^ hasAvailability(?a2,?b2) → 
increase(?a1, ?b2) 

8  EMProcess(?c1) ^ Coordination(?b1) ^ hasCoordination(?c1,?b1) ^ Efficiency(?a1) ^ 
hasEfficiency(?b1,?a1) ^  FF(?a2) → decrease(?a1, ?a2) 

9  EMProcess(?c1) ^ Coordination(?b1) ^ hasCoordination(?c1,?b1) ^ Efficiency(?a1) ^ 
hasEfficiency(?b1,?a1) ^  MTBF(?a2) → increase(?a1, ?a2) 
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# Rule 

10  EMProcess(?c1) ^ Coordination(?b1) ^ hasCoordination(?c1,?b1) ^ Efficiency(?a1) ^ 
hasEfficiency(?b1,?a1) ^  MTOL(?a2) → decrease(?a1, ?a2) 

11  EMProcess(?c1) ^ Coordination(?b1) ^ hasCoordination(?c1,?b1) ^ Efficiency(?a1) ^ 
hasEfficiency(?b1,?a1) ^  MTTR(?a2) → decrease(?a1, ?a2) 

12  EMProcess(?c1) ^ Coordination(?b1) ^ hasCoordination(?c1,?b1) ^ Efficiency(?a1) ^ 
hasEfficiency(?b1,?a1) ^  Personnel(?a2) ^ Costs(?b2) ^ hasCosts(?a2,?b2) → 
decrease(?a1, ?b2) 

13  EMProcess(?c1) ^ Coordination(?b1) ^ hasCoordination(?c1,?b1) ^ Efficiency(?a1) ^ 
hasEfficiency(?b1,?a1) ^  QE(?a2) → increase(?a1, ?a2) 

14  EMStrategy(?b1) ^ Maturity(?a1) ^ hasMaturity(?b1,?a1) ^  EquipmentGR(?a2) → 
increase(?a1, ?a2) 

15  PdM(?a1) ^ Application(?a1) ^ Offline(?a1) ^Failure(?a2) ^ Pattern(?b2) ^ 
hasPattern(?a2,?b2) ^ Historical(?b2) ^ Understanding(?d2) ^ hasUnderstanding(?b2,?d2) 
^ Level(?e2) ^ hasLevel(?d2,?e2) → increase(?a1, ?e2) 

16  PdM(?a1) ^ PAApplication(?a1) ^  CT(?a2) → decrease(?a1, ?a2) 

17  PdM(?a1) ^ PAApplication(?a1) ^  EM(?a2) ^ Availability(?b2) ^ hasAvailability(?a2,?b2) → 
increase(?a1, ?b2) 

18  PdM(?a1) ^ PAApplication(?a1) ^  EM(?b2) ^ Availability(?c2) ^ hasAvailability(?b2,?c2) ^ 
Synchronicity(?a2) ^ hasSynchronicity(?c2,?a2) → increase(?a1, ?a2) 

19  PdM(?a1) ^ PAApplication(?a1) ^  EMProcess(?c2) ^ Coordination(?b2) ^ 
hasCoordination(?c2,?b2) ^ Efficiency(?a2) ^ hasEfficiency(?b2,?a2) → increase(?a1, ?a2) 

20  PdM(?a1) ^ PAApplication(?a1) ^  Equipment(?a2) ^ Downtime(?b2) ^ 
hasDowntime(?a2,?b2) ^ Duration(?c2) ^ hasDuration(?b2,?c2) → decrease(?a1, ?c2) 

21  PdM(?a1) ^ PAApplication(?a1) ^  Equipment(?a2) ^ Uptime(?b2) ^ hasUptime(?a2,?b2) 
→ increase(?a1, ?b2) 

22  PdM(?a1) ^ PAApplication(?a1) ^  Equipment(?b2) ^ Bottleneck(?b2) ^ Percentage(?a2) ^ 
hasPercentage(?b2,?a2) → decrease(?a1, ?a2) 

23  PdM(?a1) ^ PAApplication(?a1) ^  GR(?a2) → increase(?a1, ?a2) 

24  PdM(?a1) ^ PAApplication(?a1) ^  Machine(?a2)  ^ Downtime(?c2) ^ 
hasDowntime(?a2,?c2) ^ Prevention(?d2) ^ hasPrevention(?c2,?d2) ^ Probability(?b2) ^ 
hasProbability(?d2,?b2) → increase(?a1, ?b2) 

25  PdM(?a1) ^ PAApplication(?a1) ^  MachineComponent(?a2) ^ WearLimit(?b2) ^ 
hasWearLimit(?a2,?b2) ^ Degree(?c2) ^ hasDegree(?d2,?c2) ^ Exhausting(?d2) ^ 
hasExhausting(?b2,?d2) → increase(?a1, ?c2) 

26  PdM(?a1) ^ PAApplication(?a1) ^  MaterialFlow(?a2) → increase(?a1, ?a2) 

27  PdM(?a1) ^ PAApplication(?a1) ^  MaterialFlow(?a2) ^ Variance(?b2) ^ 
hasVariance(?a2,?b2) → decrease(?a1, ?b2) 

28  PdM(?a1) ^ PAApplication(?a1) ^  MTBO(?a2) → decrease(?a1, ?a2) 

29  PdM(?a1) ^ PAApplication(?a1) ^  MTOL(?a2) → decrease(?a1, ?a2) 

30  PdM(?a1) ^ PAApplication(?a1) ^  ProcessFailure(?a2) ^ Machine-Related(?a2) ^ 
Degree(?b2) ^ hasDegree(?a2,?b2) → decrease(?a1, ?b2) 

31  PdM(?a1) ^ PAApplication(?a1) ^  ProductionStaff(?c2) ^ Motivation(?b2) ^ 
hasMotivation(?c2,?b2) ^ Degree(?a2) ^ hasDegree(?b2,?a2) → increase(?a1, ?a2) 

32  PdM(?a1) ^ PAApplication(?a1) ^  RepairTime(?a2) → decrease(?a1, ?a2) 

33  PdM(?a1) ^ PAApplication(?a1) ^  ScheduledDown(?a2) ^ Frequency(?b2) ^ 
hasFrequency(?a2,?b2) → increase(?a1, ?b2) 

34  PdM(?a1) ^ PAApplication(?a1) ^  SparePartLogistics(?b2) ^ Efficiency(?a2) ^ 
hasEfficiency(?b2,?a2) → increase(?a1, ?a2) 

35  PdM(?a1) ^ PAApplication(?a1) ^  Tool(?b2) ^ Alpha(?a2) ^ hasAlpha(?b2,?a2) → 
decrease(?a1, ?a2) 

36  PdM(?a1) ^ PAApplication(?a1) ^  UnscheduledDown(?a2) ^ Duration(?b2) ^ 
hasDuration(?a2,?b2) → decrease(?a1, ?b2) 

37  PdM(?a1) ^ PAApplication(?a1) ^  UnscheduledDown(?a2) ^ Frequency(?b2) ^ 
hasFrequency(?a2,?b2) → decrease(?a1, ?b2) 

38  PdM(?a1) ^ PAApplication(?a1) ^  WIP(?a2) → decrease(?a1, ?a2) 

39  PdM(?a1) ^ PAApplication(?a1) ^ Offline(?a1) ^  EMActivity(?c2) ^ Effectiveness(?b2) ^ 
hasEffectiveness(?c2,?b2) ^ Transparency(?a2) ^ hasTransparency(?b2,?a2) → 
increase(?a1, ?a2) 

40  PdM(?a1) ^ PAApplication(?a1) ^ Offline(?a1) ^  Monitoring(?b2) ^ Quality(?a2) ^ 
hasQuality(?b2,?a2) → increase(?a1, ?a2) 

41  PdM(?a1) ^ PAApplication(?a1) ^ Offline(?a1) ^  PlanningProcedure(?b2) ^ Quality(?a2) ^ 
hasQuality(?b2,?a2) → increase(?a1, ?a2) 

42  PdM(?a1) ^ PAApplication(?a1) ^ Offline(?a1) ^  Reaction(?b2) ^ Speed(?a2) ^ 
hasSpeed(?b2,?a2) → decrease(?a1, ?a2) 

43  PdM(?a1) ^ PAApplication(?a1) ^ Offline(?a1) ^  RelevantDataSource(?b2) ^ Number(?a2) 
^ hasNumber(?b2,?a2) → increase(?a1, ?a2) 
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# Rule 

44  PdM(?a1) ^ PAApplication(?a1) ^ Offline(?a1) ^  Statistics(?b2) ^ Quality(?a2) ^ 
hasQuality(?b2,?a2) → increase(?a1, ?a2) 

45  PdM(?a1) ^ PAApplication(?a1) ^ Offline(?a1) ^ Analysis(?b2) ^ Independency(?a2) ^ 
hasIndependency(?b2,?a2) → increase(?a1, ?a2) 

46  PdM(?a1) ^ PAApplication(?a1) ^ Offline(?a1) ^ Pattern(?b2) ^  Failure(?a2) ^ Pattern(?b2) 
^ hasPattern(?a2,?b2) ^ New(?b2) ^ Discoverability(?c2) ^ hasDiscoverability(?b2,?c2) ^ 
Probability(?d2) ^ hasProbability(?c2,?d2) → increase(?a1, ?d2) 

47  PdM(?a1) ^ PAApplication(?a1) ^ Online(?a1) ^  Algorithm(?b2) ^ Quality(?c2) ^ 
hasQuality(?b2,?c2) ^ Dependency(?a2) ^ hasDependency(?c2,?a2) → increase(?a1, ?a2) 

48  PdM(?a1) ^ PAApplication(?a1) ^ Online(?a1) ^  DataTraffic(?a2) → increase(?a1, ?a2) 

49  PdM(?a1) ^ PAApplication(?a1) ^ Online(?a1) ^  EMProcess(?b2) ^ Dependency(?a2) ^ 
hasDependency(?b2,?a2) → increase(?a1, ?a2) 

50  PdM(?a1) ^ PAApplication(?a1) ^ Online(?a1) ^  ExistingKnowledge(?b2) ^ 
Dependency(?a2) ^ hasDependency(?b2,?a2) → increase(?a1, ?a2) 

51  PdM(?a1) ^ PAApplication(?a1) ^ Online(?a1) ^  PrepareDataAndAlgorithm(?b2) ^ 
Effort(?a2) ^ hasEffort(?b2,?a2) → increase(?a1, ?a2) 

52  PdM(?a1) ^ PAApplication(?a1) ^ Online(?a1) ^  Reaction(?b2) ^ Speed(?a2) ^ 
hasSpeed(?b2,?a2) → increase(?a1, ?a2) 

53  PdM(?a1) ^ PAApplication(?a1) ^ Online(?a1) ^  Statistics(?b2) ^ Quality(?a2) ^ 
hasQuality(?b2,?a2) → decrease(?a1, ?a2) 

54  PdM(?a1) ^ PAApplication(?a1) ^ Online(?a1) ^ Failure(?a2) ^ Prevention(?b2) ^ 
hasPrevention(?a2,?b2) ^ Probability(?c2) ^ hasProbability(?b2,?c2) → increase(?a1, ?c2) 

55  PreventiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
Analysis(?b2) ^ Speed(?a2) ^ hasSpeed(?b2,?a2) → increase(?a1, ?a2) 

56  PreventiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
Equipment(?a2) ^ Downtime(?b2) ^ hasDowntime(?a2,?b2) ^ Duration(?c2) ^ 
hasDuration(?b2,?c2) → decrease(?a1, ?c2) 

57  PreventiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  MTTR(?a2) 
→ decrease(?a1, ?a2) 

58  PreventiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
PlanningProcedure(?b2) ^ Quality(?a2) ^ hasQuality(?b2,?a2) → increase(?a1, ?a2) 

59  PreventiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
Reaction(?b2) ^ Speed(?a2) ^ hasSpeed(?b2,?a2) → increase(?a1, ?a2) 

60  PreventiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
UnscheduledDown(?a2) ^ Frequency(?b2) ^ hasFrequency(?a2,?b2) → decrease(?a1, 
?b2) 

61  PreventiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^ 
LateEffect(?a2) ^ Prevention(?b2) ^ hasPrevention(?a2,?b2) ^ Probability(?c2) ^ 
hasProbability(?b2,?c2) → increase(?a1, ?c2) 

62  PreventiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^ 
Prevention(?b2)  ^ CollateralDamage(?a2) ^ hasPrevention(?a2,?b2) ^ Probability(?c2)  ^ 
hasProbability(?b2,?c2) → increase(?a1, ?c2) 

63  ReactiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
Downtime(?d2) ^ Evenness(?b2) ^ hasEvenness(?d2,?b2) ^ Distribution(?c2) ^ 
hasDistribution(?b2,?c2) ^ Degree(?a2) ^ hasDegree(?c2,?a2) → increase(?a1, ?a2) 

64  ReactiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
EMProcess(?c2) ^ Coordination(?b2) ^ hasCoordination(?c2,?b2) ^ Efficiency(?a2) ^ 
hasEfficiency(?b2,?a2) → decrease(?a1, ?a2) 

65  ReactiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  EMStaff(?b2) 
^ OnShift(?b2) ^ Number(?a2) ^ hasNumber(?b2,?a2) → increase(?a1, ?a2) 

66  ReactiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
Equipment(?a2) ^ Downtime(?b2) ^ hasDowntime(?a2,?b2) ^ Duration(?c2) ^ 
hasDuration(?b2,?c2) → decrease(?a1, ?c2) 

67  ReactiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
Equipment(?a2) ^ Lifespan(?b2) ^ hasLifespan(?a2,?b2) → decrease(?a1, ?b2) 

68  ReactiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
Equipment(?b2) ^ NewInvest(?b2) ^ Percentage(?a2) ^ hasPercentage(?b2,?a2) → 
increase(?a1, ?a2) 

69  ReactiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
MachineComponent(?a2) ^ WearLimit(?b2) ^ hasWearLimit(?a2,?b2) ^ Degree(?c2) ^ 
hasDegree(?d2,?c2) ^ Exhausting(?d2) ^ hasExhausting(?b2,?d2) → decrease(?a1, ?c2) 

70  ReactiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
Monitoring(?b2) ^ Quality(?a2) ^ hasQuality(?b2,?a2) → decrease(?a1, ?a2) 

71  ReactiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  Rework(?b2) ^ 
Percentage(?a2) ^ hasPercentage(?b2,?a2) → increase(?a1, ?a2) 

72  ReactiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^  
SparePartLogistics(?b2) ^ Efficiency(?a2) ^ hasEfficiency(?b2,?a2) → decrease(?a1, ?a2) 
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# Rule 

73  ReactiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^ 
Prevention(?b2)  ^ CollateralDamage(?a2) ^ hasPrevention(?a2,?b2) ^ Probability(?c2)  ^ 
hasProbability(?b2,?c2) → decrease(?a1, ?c2) 

74  ReactiveMaintenance(?b1) ^ Percentage(?a1) ^ hasPercentage(?b1,?a1) ^ Total(?a2) ^ 
Failure(?a2) ^ Prevention(?b2) ^ hasPrevention(?a2,?b2) ^ Probability(?c2) ^ 
hasProbability(?b2,?c2) → decrease(?a1, ?c2) 

75  RepairTime(?a1) ^  Equipment(?a2) ^ Availability(?b2) ^ hasAvailability(?a2,?b2) → 
decrease(?a1, ?b2) 

76  RepairTime(?a1) ^  FF(?a2) → increase(?a1, ?a2) 

77  RepairTime(?a1) ^  MTOL(?a2) → increase(?a1, ?a2) 

78  RepairTime(?a1) ^  MTTR(?a2) → increase(?a1, ?a2) 

79  SparePartLogistics(?b1) ^ Efficiency(?a1) ^ hasEfficiency(?b1,?a1) ^  EM(?a2) ^ 
Costs(?b2) ^ hasCosts(?a2,?b2) → decrease(?a1, ?b2) 

80  SparePartLogistics(?b1) ^ Efficiency(?a1) ^ hasEfficiency(?b1,?a1) ^  Equipment(?a2) ^ 
Availability(?b2) ^ hasAvailability(?a2,?b2) → increase(?a1, ?b2) 

81  SparePartLogistics(?b1) ^ Efficiency(?a1) ^ hasEfficiency(?b1,?a1) ^  Inventory(?a2) ^ 
Costs(?b2) ^ hasCosts(?a2,?b2) → decrease(?a1, ?b2) 

82  SparePartLogistics(?b1) ^ Efficiency(?a1) ^ hasEfficiency(?b1,?a1) ^  MTTR(?a2) → 
decrease(?a1, ?a2) 

83  SparePartLogistics(?b1) ^ Efficiency(?a1) ^ hasEfficiency(?b1,?a1) ^  SparePart(?a2) ^ 
Costs(?b2) ^ hasCosts(?a2,?b2) → decrease(?a1, ?b2) 

84  PdM(?a1) ^  PreventiveMaintenance(?b2) ^ Percentage(?a2) ^ hasPercentage(?b2,?a2) 
→ increase(?a1, ?a2) 

85  PdM(?a1) ^  ReactiveMaintenance(?b2) ^ Percentage(?a2) ^ hasPercentage(?b2,?a2) → 
decrease(?a1, ?a2) 

 

Table 7-19 shows the SWRL rules for PPES whose source terms are 

classified as production staff-oriented. 

Table 7-19: Production Staff-oriented SWRL Rules for PPES 

# Rule 

1  Operator(?b1) ^ QualificationLevel(?c1) ^ hasQualificationLevel(?b1,?c1) ^ Degree(?a1) ^ 
hasDegree(?c1,?a1) ^  CT(?a2) → decrease(?a1, ?a2) 

2  Operator(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  CT(?a2) → decrease(?b1, 
?a2) 

3  Operator(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  DGR(?a2) → increase(?b1, 
?a2) 

4  Operator(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  FF(?a2) → decrease(?b1, 
?a2) 

5  Operator(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  GR(?a2) → increase(?b1, 
?a2) 

6  Operator(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  PS(?a2) ^ Availability(?b2) ^ 
hasAvailability(?a2,?b2) → increase(?b1, ?b2) 

7  Operator(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  StandbyTime(?a2) ^ 
Duration(?b2) ^ hasDuration(?a2,?b2) → decrease(?b1, ?b2) 

8  Operator(?a1) ^ Availability(?b1) ^ hasAvailability(?a1,?b1) ^  WIP(?a2) ^ Variance(?b2) ^ 
hasVariance(?a2,?b2) → decrease(?b1, ?b2) 

9  Operator(?a1) ^ QualificationLevel(?b1) ^ hasQualificationLevel(?a1,?b1) ^  FF(?a2) → 
decrease(?b1, ?a2) 

10  Operator(?a1) ^ QualificationLevel(?b1) ^ hasQualificationLevel(?a1,?b1) ^  Operator(?b2) 
^ QualificationLevel(?c2) ^ hasQualificationLevel(?b2,?c2) ^ Flexibility(?a2) ^ 
hasFlexibility(?c2,?a2) → increase(?b1, ?a2) 

11  Operator(?a1) ^ QualificationLevel(?b1) ^ hasQualificationLevel(?a1,?b1) ^  
StandbyTime(?a2) ^ Duration(?b2) ^ hasDuration(?a2,?b2) → decrease(?b1, ?b2) 

12  Operator(?b1) ^ QualificationLevel(?c1) ^ hasQualificationLevel(?b1,?c1) ^ Degree(?a1) ^ 
hasDegree(?c1,?a1) ^  FF(?a2) → decrease(?a1, ?a2) 

13  Operator(?b1) ^ QualificationLevel(?c1) ^ hasQualificationLevel(?b1,?c1) ^ Degree(?a1) ^ 
hasDegree(?c1,?a1) ^  GR(?a2) → increase(?a1, ?a2) 

14  Operator(?b1) ^ QualificationLevel(?c1) ^ hasQualificationLevel(?b1,?c1) ^ Flexibility(?a1) 
^ hasFlexibility(?c1,?a1) ^  CT(?a2) → decrease(?a1, ?a2) 

15  ProductionStaff(?c1) ^ Motivation(?b1) ^ hasMotivation(?c1,?b1) ^ Degree(?a1) ^ 
hasDegree(?b1,?a1) ^  CT(?a2) → decrease(?a1, ?a2) 
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As highlighted in 7.5, additional rules are required to model the semantics of 

the object properties ‘increase‘ and ‘decrease‘, their logical relation and 

guidelines for transitivity. The Protégé reasoner needs to understand that 

both terms have an opposite meaning to each other. Thus, the FOL rules 

need to describe when a variable has a transitive impact on another variable 

and if this impact has a decreasing or increasing character. The captured 

associations from the case study are based on the question: what happens to 

the value of the target term if the value of the source term grows? Following 

this structure, it is possible to define the transitive relationships between 

variables that are associated through the object properties ‘increase‘ or 

‘decrease‘. Table 7-20 presents these SWRL rules and their meaning. 

Table 7-20: SWRL Modelling of transitive Relation between ‘increase’ 
and ‘decrease’ 

# Meaning FOL Rule 

1 Assuming that a growing value of variable b would 
decrease the value of variable c and a growing value of 
variable a would increase the value of variable b, a growing 
value of variable a would transitively decrease the value of 
variable c.  

increase(?a, ?b) ^ 
decrease(?b, ?c) →  
decrease(?a, ?c)  

2 Assuming that a growing value of variable b would 
decrease the value of variable c and a growing value of 
variable a would decrease the value of variable b, a growing 
value of variable a would transitively decrease the value of 
variable c. 

decrease(?a, ?b) ^ 
increase(?b, ?c) →  
decrease(?a, ?c)  

3 Assuming that a growing value of variable b would increase 
the value of variable c and a growing value of variable a 
would increase the value of variable b, a growing value of 
variable a would transitively increase the value of variable c. 

increase(?a, ?b) ^ increase(?b, 
?c) →  increase(?a, ?c)  

4 Assuming that a growing value of variable b would 
decrease the value of variable c and a growing value of 
variable a would decrease the value of variable b, a growing 
value of variable a would transitively increase the value of 
variable c. 

decrease(?a, ?b) ^ 
decrease(?b, ?c) →  
increase(?a, ?c) 

 

This way of modelling allows contradictory relations between the same pairs 

of variables and the object properties are not set as disjoint. Thus, the PPES 

may also reveal conflicts in PS performance optimization that are not visible 

at first glance, also not by the interviewed experts. However, the study has to 

ensure that these conflicts are not based on inconsistencies in the ontology. 

This can be analysed as soon as the ontology is populated with individuals. 

This procedure is be discussed in Section 7.7.  
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7.7 PPES Verification 

This section discusses the PPES verification to prove the validity of the 

expert system and its generated axioms. First, the current ontology is 

populated with individuals. These individuals are exemplary instances of the 

previously created concepts and are interconnected through object property 

relations. In the second step, based on the developed SWRL rules, the 

reasoner of Protégé is able to infer the direct and transitive impact 

associations between those individuals. As first part of the validation, the 

direct impact associations must fit to the records from the CLM in order to 

prove the overall correctness of the rules. In addition, the logics of transitivity  

are validated by testing selected axioms against historical data from the case 

study company.  

7.7.1 Ontology Population and Reasoning 

To prove the logical correctness and to generate new knowledge from the 

PPES, a technique called ontology reasoning is applied. Reasoning is based 

on the principle of logical inference and can be characterized by discovering 

new relationships. Automatic procedures are able to generate new 

relationships based on existing data and an additional set of rules. Protégé 

allows adding these new relationships to the existing ontology data, 

persistently, or to return them only at query time. The choice depends on the 

ontology application requirements (W3C, 2015). In addition, there is a 

difference between ontology-based reasoning and rule-based reasoning. 

Ontology-based reasoning is based on the specifications of concepts and 

object properties as discussed earlier in this chapter. The inference rules for 

RDF-S or OWL are standardized and fixed. Therefore, no explicit rules need 

to be created. This type of reasoning generates, for instance, relationships 

between concepts in terms of equivalency or parent classification. The rule-

based reasoning is purely dependent on the definition of semantic rules and 

allows forward- and backward-chaining classification of individuals. Rule-

based inference requires a language for representing the rules and a rule 

engine (Oleksiy, 2018). When following the rule-based approach, 

consideration needs to be given to the concept that new knowledge will only 
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be created at an individual level and not at a concept level. Thus, even if an 

ontology responsible person decides to store the new axioms persistently as 

additional ontology data, it will not affect the definition of concepts or their 

object property relations. Since FOL and, therefore, SWRL also, are always 

focussed on particular instances of a concept, the ontology needs to be 

populated with a set of individuals. Although the SWRL rules could be 

executed without individual data, the inference engine will not find any new 

axiom.  

The individuals are generated within a Microsoft Excel spreadsheet based on 

the given concepts and their relationships through object properties. It is 

necessary to split individuals from the same class if other individuals use 

them through the same object property but in a different context. For 

instance, there are several instances of the concept ‘Alpha’ since each of the 

4M has a specific and independent value. Each alpha-individual is unique 

and refers to a different object in the real world, thus, the reasoner needs to 

differentiate in order to generate meaningful new axioms. All individuals use 

the standard prefix ‘x’ to differentiate them clearly from similarly named 

concepts, for instance, ‘xTool’, ‘xMotivation’ or ‘xPattern’. To differ between 

individuals which belong to the same class, identifiers are created through 

concatenation of source concept name and target concept name per object 

property relation. Following this procedure, the alpha-individuals are called 

‘xAlpha_PS’, ‘xAlpha_WIP’, ‘xAlpha_Tool’, ‘xAlpha_Process’ and 

‘xAlpha_Operator’. The names of individuals, which refer to complex SWRL 

rules, may consist of multiple parts. For instance, 

‘xDegree_Exhausting_WearLimit_MachineComponent’ belongs to the class 

‘Degree’. It is important to the model quality that all individuals follow this 

standard; otherwise, the inference engine will not work properly. Once the 

individuals are prepared in the spreadsheet, they are imported to Protégé. 

During the import, the individuals are mutually associated using the given 

object property relations from the parent concepts. Figure 7-23 shows the 

sample relations between individuals. 

The figure shows that the individual ‘xEM’ is classified as ‘EM’ and has object 

property relations to individuals from the concepts ‘QualificationLevel’, ‘Costs’ 
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and ‘Availability’. After the import, and according to the count of logical 

associations, the ontology consists of 272 individuals.  

 

Figure 7-23: Imported Relations between Individuals in Protégé 

 

Protégé uses ‘HermiT’ as the standard reasoning software that supports all 

features of the OWL 2 ontology language as well as SWRL rules. ‘HermiT’ 

was written in Java and consists of components for loading, classification, 

realisation, blocking, existential expansion and reasoning. The architecture 

style also allows an easy integration into other applications. During the 

loading process of an ontology, the OWL format is converted into a set of 

assertions and descriptive-logical clauses. Thus, internally, ‘HermiT’ 

represents an ontology as a set of first-order logical rules. The reasoning 

itself applies a forward-chaining and backward-chaining inference procedure, 

which allows a comprehensive analysis of transitive effects. Thus, it is not 

required to specify any order for the execution of SWRL rules during the 

reasoning (Glimm et al., 2014). The tool allows specific configurations that 

affect the inference results and can be found in Figure 7-24.  

The configuration dialogue is separated into class inference, object property 

inference, data property inference and individual inference. Each section 

serves a specific reasoning goal. For instance, disjoint or equivalent classes 

can be implied from a particular OWL definition. The PPES is focussed on 

individual inferences and specifically on object property assertions between 

individuals. By deselecting the other settings that are not required, the 

reasoning performance improves. It is also possible to configure the 

initialization procedure by changing the priority of precomputations. However, 

since the initialization performs well, it is not necessary to change the default 

settings. Once the reasoning results are effective, it is possible to store them 
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permanently to the ontology. Otherwise, they will disappear as soon as the 

reasoner is deactivated again. 

 

Figure 7-24: Configuration for the Protégé Reasoner for PPES 

 

While the reasoner is active, the inferred object property assertions are 

highlighted and can be visually separated from the others that are explicitly 

defined. This is helpful during the analysis phase to distinguish between the 

term expressions and the inferred axioms. For practical usage of the PPES in 

a company, this separation is no longer important, thus, the inferred axioms 

can be persisted at the end of the study.  

7.7.2 Proof of Correctness of Inferred Axioms 

To prove the correctness of the SWRL rules and the populated ontology, the 

PPES has been separated into two single OWL files. One file consists only of 

SWRL rules that cover logical associations obtained from the case study and 

the other file includes the transitivity rules from Table 7-20 in addition. When 

running the inference engine, the file without transitivity rules needs to 

generate exactly those inferences, which are stated through the SWRL rules. 
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The absolute number of inferred axioms is 350, and therefore, differs from 

the number of SWRL rules, which is 272. However, the reason for this 

difference is the way of modelling the ontology with individuals, which can 

have different types as shown in Figure 7-25. The causal relationship 

diagram differs between offline PdM, online PdM and unspecified PdM. 

Though the SWRL rules and the class model differentiate between these, the 

related individuals ‘xOffline’ and ‘xOnline’ are also subclasses of ‘PdM’. Thus, 

the inference engine implies that the stated associations for unspecified PdM 

are also valid for online PdM and offline PdM. From the initial 40 explicit 

associations, the inference engine generated 88 axioms. This kind of 

transitivity was not explicitly specified within SWRL but is in OWL standard, 

and works correctly. 

 

Figure 7-25: Differentiation between Offline, Online and Unspecified PdM 

 

Implicit transitivity can also be found for individuals from classes that are 

specified as equivalent, for instance ‘xProcess’ and ‘xSingleProcess’. Thus, 

the inference engine generates 8 axioms from 4 explicit associations since 

both individuals are treated as equivalent. These and similar cases lead to a 

higher number of axioms compared to the explicitly stated associations. After 

the verification of each implication, the logical correctness of the PPES is 

proved.  

For the second file, which contains the explicit transitivity rules in addition, 

the inference engine generates 1045 object property assertions for 

individuals. To obtain the number of only transitive axioms, the 350 axioms 



 

 

 

263 7.7 PPES Verification 

from the first file need to be subtracted. This calculation leads to 695 implied 

logical associations between 60 source and 41 target individuals. This means 

that the interviewed experts did not identify these effects and that they were 

potentially not aware of their existence before. Concerning the count of 

individuals which take part in all associations, it is possible to rate the most 

influencing and influenced ones including these transitive effects. The 

analysis reveals that 18% of all source individuals are the influencing factors 

within 50% of all object property assertions. Table 7-21 lists the most 

influencing source terms.  

Table 7-21: Most Influential Individuals rated by Occurrence in 
Associations 

Source Occurrences in 
associations 

Percentage 
of 
occurrences 

Accumulation 

xOnline 62 6,03% 6,03% 

xOffline 60 5,83% 11,86% 

xPercentage_ReactiveMaintenance 59 5,73% 17,59% 

xPAApplication 53 5,15% 22,74% 

xPdM 53 5,15% 27,89% 

xMaturity_Process 32 3,11% 31,00% 

xPercentage_PreventiveMaintenance 31 3,01% 34,01% 

xStability_Process 30 2,92% 36,93% 

xEfficiency_Coordination_EMProcess 27 2,62% 39,55% 

xDegree_ToolDedication 26 2,53% 42,08% 

xNumber_Failure 26 2,53% 44,61% 

xDegree_Exhausting_WearLimit_ 
MachineComponent 24 2,33% 46,94% 

xDuration_Downtime_Equipment 24 2,33% 49,27% 

xEfficiency_SparePartLogistics 24 2,33% 51,60% 

 

Another aspect of the analysis is to identify the most influenced individuals. 

The analysis shows that 11% of all target individuals are influenced within 

50% of all object property assertions. Table 7-22 lists the most influenced 

target terms. 

Table 7-22: Most Influenced Individuals rated by Occurrence in 
Associations 

Target Occurrences in 
associations 

Percentage of 
occurrences 

Accumulation 

xLittle'sLaw 81 7,87% 7,87% 

xAlpha_PS 74 7,19% 15,06% 

xUtilization_Equipment 73 7,09% 22,16% 

xFF 57 5,54% 27,70% 

xCT 47 4,57% 32,26% 

xDuration_StandbyTime 39 3,79% 36,05% 

xDGR 39 3,79% 39,84% 

xWIP 37 3,60% 43,44% 

xInventory 37 3,60% 47,04% 

xWSPW 37 3,60% 50,63% 
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Overall, 135 individuals participate in effect associations either as target, 

source or both. In fact, they refer to the 134 terms that were obtained during 

the case study. Since ‘xInventory’ is not explicitly documented as a single 

term but specified as equivalent to ‘xWIP’, the actual number of individuals 

from distinct classes is equal to the number of terms. This result is a further 

indicator that the PPES is correctly representing the raw associations from 

the CLM.  

7.7.3 Empirical Validity 

After verifying the general correctness of the PPES, the transitively 

generated axioms can be validated against historical data. These types of 

data are gathered from the BI system that is applied at the case study 

company. The validation procedure works as follows:  

 Select a transitively generated effect association from the PPES that 

consists of two classified individuals. 

 Extract historical data from the last 6 months that quantify both 

individuals.  

 Analyse the historical trends of both variables by calculating the 

correlation coefficient r. 

 Evaluate r in order to state if the type of correlation fits to the result 

generated by PPES.  

The result for r indicates the strength and direction of an association between 

the selected variables. Generally, r can have a value ranging between –1.0 

and +1.0, where 0 means that there is no association between the selected 

variables. A negative value of r indicates that increasing values of variable a 

correlate to decreasing values of variable b. A positive value of r  means that 

increasing values of variable a correlate also to increasing values of variable 

b. A conventional approach to interpret r considers values from 0 to 0.09 (or 

0 to –0.09) as negligible relationships, whereas 0.9 to 1.0 (or –0.9 to –1.0) 

indicate a very strong relationship. Further categories are weak correlation 

(0.10 to 0.39 or –0.10 to –0.39), moderate correlation (0.40 to 0.69 or –0.40 

to –0.69) and strong correlation (0.70 to 0.89 or –0.70 to –0.89) (Schober et 
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al., 2018). Though a correlation does not state the actual causal relation, it 

can be applied to verify the logical correctness of the axioms generated by 

PPES. The validation tests mainly against linear correlation between two 

variables; only if no linear relationship can be detected, the association is 

additionally tested using the Spearman’s Rank-Order Correlation (Laerd, 

n.d.). 

The validation procedure is applied to six selected transitive effect 

associations. It is expected that by validating the transitive axioms, the 

underlying axioms stated by experts are implicitly valid as well. Because the 

BI system does only contain measures for a subset of the PPES concepts, 

the selection of associations depends on the existence of historical data – 

otherwise, the validation would not be effective. Following associations have 

been selected to verify the empirical validity of the PPES:  

1) Impact of Percentage of Rework on Utilization 

2) Impact of Going Rate on Wafer Starts Per Week 

3) Impact of Work in Progress on Flow Factor 

4) Impact of Machine Downtime on Work in Progress 

5) Impact of Machine Uptime on Overall Equipment Efficiency  

6) Impact of Percentage of Rework on Going Rate 

The analysis and evaluation of each association is discussed in the following 

sub-sub-sections. To gain consistent test results, the historical data belongs 

to the same product and operations data for all test cases. The selected 

operations area is the evaporation workshop, whereas the selected product 

is one of the high-volume frontend product types that is manufactured at the 

case study facility. Since the PPES creates only qualitative axioms, even a 

weak correlation is seen as empirically valid if it points in the direction that 

was stated by PPES. 

7.7.3.1 Impact of Percentage of Rework on Utilization 
 

Based on the inference engine, the utilization of production machines 

decreases if the percentage of rework would increase. Figure 7-26 shows the 

visualized trends of the historical data for both variables. The value bars are 
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hidden since the data refers to sensitive performance information. This 

statement refers also to the following trend charts.  

The analysis shows that r = –0.28. This value indicates a weak correlation 

where increasing values of rework percentage are associated to decreasing 

values of utilization. This result verifies the correctness of the underlying 

axiom that was generated by PPES. 

  

Figure 7-26: Trend chart for Rework and Utilization 

 

7.7.3.2 Impact of Going Rate on Wafer Starts Per Week 
 

A further axiom states that an increasing GR leads to increasing WSPW. The 

test data for WSPW is not limited to single operation areas but logistically 

related to the entire FOL area. Figure 7-27 shows the visualized trends of the 

historical data for both variables. 

The analysis shows that r = 0.54. This value indicates a moderate correlation 

where increasing values of GR are associated to increasing values of 

WSPW. This result verifies the correctness of the underlying axiom that was 

generated by PPES. 
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Figure 7-27: Trend chart for GR and WSPW 

 

7.7.3.3 Impact of Work in Progress on Flow Factor 
 

The PPES generated an axiom saying that an increasing level of WIP leads 

to increasing values of FF. Figure 7-28 shows the visualized trends of the 

historical data for both variables. 

 

Figure 7-28: Trend chart for WIP and FF 

 

The analysis shows that r = 0.89. This value indicates a strong and nearly 

very strong correlation where increasing values of WIP are associated to 

increasing values of FF. This result verifies the correctness of the underlying 

axiom that was generated by PPES. 

7.7.3.4 Impact of Machine Downtime on Work in Progress 
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Another axiom states that increasing machine downtimes cause increasing 

WIP. Figure 7-29 shows the visualized trends of the historical data for both 

variables. 

The analysis could not detect a linear relationship. Therefore, the data is 

tested against non-linear associations. This additional analysis results in r = 

0.26, which indicates a weak correlation where increasing machine 

downtimes are associated to increasing values of WIP. This result verifies the 

correctness of the underlying axiom that was generated by PPES. 

 

Figure 7-29: Trend chart for Downtime and WIP 

 

7.7.3.5 Impact of Machine Uptime on Overall Equipment Efficiency  
 

The PPES suggests that an increasing machine uptime causes an increasing 

OEE. Figure 7-30 shows the visualized trends of the historical data for both 

variables. 

 

Figure 7-30: Trend chart for Uptime and OEE 
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The analysis shows that r = 0.23. This value indicates a weak correlation 

where increasing values of uptime are associated to increasing values of 

OEE. This result verifies the correctness of the underlying axiom that was 

generated by PPES. 

 

 

7.7.3.6 Impact of Percentage of Rework on Going Rate 
 

The final selected axiom indicates that an increasing percentage of rework 

leads to a decreasing going rate. Figure 7-31 shows the visualized trends of 

the historical data for both variables. 

 

Figure 7-31: Trend chart for Rework and GR 

 

The analysis shows that r = –0.58. This value indicates a moderate 

correlation where an increasing percentage of rework is associated to 

increasing values of GR. This result verifies the correctness of the underlying 

axiom that was generated by PPES. 

After executing and passing all test cases, the verification of the empirical 

validity of PPES is fulfilled. 

7.8 PPES Analysis and Evaluation 

This section discusses the PPES analysis and evaluation and presents new 

knowledge about the impacts of PdM on PS elements generated through 
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transitive logical inference, which experts did not mention. To analyse the 

new transitive knowledge, it is necessary to distinguish between inferred 

axioms from the explicit effect associations and the transitive dependencies. 

For this purpose, the already separated PPES OWL files need to be queried 

independently. Each ontology executes the reasoner and stores the inferred 

axioms to the ontology files persistently. To extract the individuals and their 

effect associations, the project applies the Simple Protocol and Rdf Query 

Language (SPARQL). The Structured Query Language (SQL), which is a 

standard for managing data in relational database management systems, 

inspires SPARQL. Both ontologies are queried using following script:  

SELECT DISTINCT ?source  ?decrease ?increase 

WHERE {  

{?source  prop:decrease ?b;  

prop:decrease ?decrease }  

UNION  {?source  prop:increase ?b ;  

 prop:increase ?increase} 

}  

ORDER BY ?source   

 

After executing the SPARQL script, Protégé returns the information in a table 

format for the file without transitivity rules as shown in Figure 7-32 . 

 

Figure 7-32: Sample Result for inferred Effect Associations using SPARQL 
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The records from both query results are copied into an Excel spreadsheet for 

detailed comparison. A created formula searches for matching records within 

both lists and returns an ‘x’ if it does not find any matching. An ‘x’ states that 

the record is a transitively inferred axiom. Figure 7-33 shows an excerpt from 

the comparison results where the column ‘Transitive’ marks the relevant 

records. 

 

Figure 7-33: Record Comparison to reveal only Transitive Associations 

 

To limit the analysis to PdM only, the records are filtered by the source 

individuals ‘xPdM’, ‘xOffline’ and ‘xOnline’. As mentioned in the previous 

chapter, ‘xOffline’ and ‘xOnline’ contain all logical associations of ‘xPdM’, 

thus, the redundant associations need to be removed.  

The analysis classifies the records based on the impact of PdM on the SI PS 

as positive or negative. As expected in Section 7.6, PPES generated 

contradictory results. Because the model has been verified as logically 

correct, this kind of conflict is not based on an inconsistency in data or rules, 

but rather indicates that the application of PdM might lead to positive as well 

as negative effects on a certain PS element (depending on the involved 

nodes in the transitive network).This finding confirms one part of hypothesis 1 

that was stated in 2.6.2. Table 7-24 shows the inferred axioms with conflicts 

where a qualified effect is not possible to state clearly. These records show 

transitively generated associations where PdM as source individual points to 

the same target individual but with an opposite effect. 
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Table 7-23: Transitive Impacts of PdM on SI PS with Conflicts 

# Source Type Target 

1 xPdM decrease + increase xAlpha_PS 

2 xPdM decrease + increase xUtilization_Equipment 

3 xOffline decrease + increase xSpeed_Reaction 

4 xPdM decrease + increase xLittle'sLaw 

 

To understand the reasons for these contradictions, the records are analysed 

in more detail. Record #1 states that PdM would have a contradictory impact 

on the PS variability (Alpha PS). Figure 7-34 shows the explanation from the 

inference engine for the decreasing effect. Unfortunately, the order of the 

statements in the explanation does not cover the exact logical dependencies. 

Hence, the prose explanation may neither start with the first line nor 

continues in the order of the Protégé reasoner explanation. This 

consideration is valid for all following explanations as well.  

 

Figure 7-34: Explanation for inferred Axiom: xPdM decrease xAlpha_PS 

 

The explanation shows that the application of PdM deceases the percentage 

of reactive maintenance (line 23). Actually, an increasing percentage of 

reactive maintenance would decrease the efficiency of coordination of EM 

processes. Due to the transitivity rule in line 14, this effect is reversed. As the 

efficiency increases, the equipment availability increases as well (line 26), 

which causes an increasing OEE (line 25). By improving the OEE, the PS 

variability decreases (line 20). This is why PdM would transitively decrease 

Alpha PS, which is a positive effect.  
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There are also explanations for the axiom that PdM would increase Alpha 

PS, which is a negative effect. Figure 7-35 shows one selected explanation. 

It says that the frequency of scheduled downtimes would increase by 

application of PdM (line 2). An increased frequency would lead to an 

increased PS variability (line 10). Due to the transitivity rule in line 5, PdM 

would have an increasing influence on Alpha PS. Though the underlying 

axiom in line 10 was stated by experts, it must be highlighted that PPES also 

suggests that PdM would decrease the frequency of unscheduled downtimes 

and that the reduction of downtimes would also decrease the Alpha PS. This 

finding indicates that a production manager must find the right balance 

between a higher frequency of scheduled downtimes and the overall 

equipment downtime in order to gain benefits from PdM.  

 

Figure 7-35: Explanation for inferred Axiom: xPdM increase xAlpha_PS 

 

Record #2 mentions that PdM could decrease and increase equipment 

utilization. To understand from where the conflicting effects come, the 

inference engine provides several explanations. Figure 7-36 shows one 

explanation for the statement that: PdM decreases the equipment utilization. 
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Figure 7-36: Explanation for inferred Axiom: xPdM decrease 
xUtilization_Equipment 

 

The explanation indicates that an application of PdM would directly decrease 

the percentage of reactive maintenance (line 14). This percentage would 

normally increase the downtime duration (line 1), whereby the equipment 

availability would be decreased (line 2). If the equipment availability 

increased, the equipment capacity would also increase (line 20). An 

increasing equipment capacity decreases the utilization of this equipment 

(line 6). The reason for generating this axiom is that PPES does not consider 

that production planning experts could increase the weekly wafer starts to 

enhance the production volume in order to utilize the advanced equipment 

capacity. Indeed, other transitive effects created by PPES suggest that PdM 

would lead to increased WSPW. Though this effect is expected to increase 

the production volume, it was not explicitly stated by the IE experts and is 

therefore missing in the SWRL rules. Hence, it cannot be considered when 

the equipment capacity is increased. Assuming that experts retrieve this type 

of impact of PdM from PPES, a reduced equipment utilization caused by 

PdM could be avoided. Nevertheless, as it was discussed in Sub-Section 

2.5.2, PdM can only be applied to a limited number of machines within an 

economically useful timeframe. Therefore, the production volume cannot be 

simply increased without considering the capacity situations at other 

workcenters that are not managed via PdM. Otherwise, the percentage of 

bottleneck machines could increase, which has negative effects on the 

material flow: PPES implied negative effects such as decreased number of 



 

 

 

275 7.8 PPES Analysis and Evaluation 

weekly wafers starts, increased flow factor and increased variability (alpha) of 

the entire production system. In addition, if those machines that serve 

upstream operations on a production route become bottlenecks, the 

utilization of the PdM-managed machine may not be affected at all. Due to 

this complexity, the effect cannot be simply eliminated without further 

research that involves production planning experts. Hence, the concept 

‘ProductionPlanning’ was added to the ontology tree as a new grouping 

concept consisting of the already existing concept ‘PlanningProcedure’. This 

new concept can be used as interface to add further knowledge from the 

production planning domain in future research projects. Nevertheless, for this 

PhD project it was argued that the inferred axiom is logically correct: if the 

equipment capacity increases at a constant production volume, the 

equipment utilization decreases accordingly.   

There are also several explanations for the statement that an application of 

PdM would increase the equipment utilization. Figure 7-37 shows an 

example for this kind of transitivity.  

 

Figure 7-37: Explanation for inferred Axiom: xPdM increase 
xUtilization_Equipment 

 

The explanation again shows that the application of PdM reduces the 

percentage of reactive maintenance (line 11). Usually, a higher percentage of 

reactive maintenance would increase the percentage of rework (line 8). 

However, due to the transitivity rule in line 13, PdM decreases transitively the 

percentage of rework. Based on the transitivity rule in line 15, a decreased 

percentage of rework increases the GR (which is the opposite of the rule in 
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line 6). An increased GR leads to an increased equipment utilization (line 16), 

and this is why the application of PdM transitively increases the equipment 

utilization.  

Record #3 indicates contradictory effects regarding speed of reactions when 

applying ‘offline’ PdM in particular. Basically, an increased speed would 

mean a positive effect. The peculiarity of this record is that the transitive 

axiom contradicts an expert statement. Figure 7-38 shows the explanation for 

offline PdM decreases the speed of reaction. It only refers to the underlying 

SWRL rule that is stated in line 6 and which is based on the expert 

responses. 

 

Figure 7-38: Explanation for inferred Axiom: xPdM decrease 
xSpeed_Reaction 

 

Figure 7-39 shows one selected explanation for the axiom that offline PdM 

would increase the speed of reaction.  

 

Figure 7-39: Explanation for inferred Axiom: xPdM increase 
xSpeed_Reaction 

 

It states that PdM would increase the percentage of preventive maintenance 

(line 10). An increased percentage would also increase the speed of 

reactions (line 9). Due to the transitivity rule in line 5, PdM increases the 
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speed of reaction. Since the individual ‘xOffline’ was classified as sub-type of 

the concept ‘PdM’ in the ontology (line 4), the reasoner implies that this 

axiom is also valid for offline PdM. Probably, the contradiction is based on 

the fact that experts compared the direct benefits and drawbacks of offline 

versus online PdM; in this direct comparison, the experts had the impression 

that the EM staff might react slower if they would only rely on offline PdM 

solutions without consideration of the current machine performance. 

However, as offline PdM helps to detect new failure patterns (see 6.3.1), 

these insights can be used to avoid these types of failures by preventive 

actions. Hence, the core statement that offline PdM leads to slower reaction 

is only true in the context of comparing the capabilities of different PdM 

applications, but not in general.    

Record #4 is generally not seen as reasonable though the underlying axioms 

were stated by experts. A tool or strategy like PdM is not expected to 

influence a general ‘law’. Since Little’s Law defines the relation between GR, 

WIP and CT (see Equation 4.6 in 4.4.1), the effects implied from PPES 

cannot be qualified even without contradiction: it is not useful to ‘increase’ or 

‘decrease’ a law. However, PPES suggests that PdM has straight positive 

impacts on the components of this formula.  

In reality, all of these conflicting effects are most probably not of the same 

value, thus, they will not cancel each other out. A simulation model can 

perform quantified analyses to differentiate the value of the effects. This 

method is  described in Chapter 8. 

Table 7-24 lists the transitively inferred axioms for PdM without any conflict 

including their qualified effect on SI PS performance and the associated area 

of challenge.The table shows that all of the non-conflicting transitive 

associations have a positive effect on the PS performance in SI. Based on 

the logics of PPES, this means that an application of PdM would not lead to 

any hidden negative effect on SI PS performance. In addition, the results 

prove that PdM is able to support SI companies in mastering challenges in SI 

value chains. Figure 7-40 consolidates in which way the abovementioned 

transitive improvements influence the ability to overcome particular 

challenges. 
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The aggregated results reveal that PdM is capable of supporting all 

categories of selected challenges plus ‘Costs’, which is beyond the thesis 

scope but seen as noteworthy based on the PPES assessment. As expected, 

PdM has the most significant influence on maintenance-oriented challenges. 

However, the performance in the areas of logistics, engineering and quality is 

likely to improve as well, which indicates a more effective handling of related 

challenges.  

 

 

Figure 7-40: Number of Aspects improved by SI Value Chain Challenge 

 

Table 7-24: Qualified transitive Impacts of PdM on SI PS without 
Conflicts 

# Sour
ce 

Type Target Qualified 
Effect 

Area of 
Challenge  

1 xPdM increase xWSPW Positive Logistics 

2 xPdM increase xQE Positive Quality 

3 xPdM increase xYield Positive Quality 

4 xPdM increase xDGR Positive Logistics 

5 xPdM increase xMTBF Positive Maintenance 

6 xPdM increase xAvailability_PS Positive Logistics 

7 xPdM increase xAvailability_Equipment Positive Engineering 

8 xPdM increase xOEE Positive Engineering 

9 xPdM increase xCapacity_Equipment Positive Logistics 

10 xPdM increase xQuality_Monitoring Positive Maintenance 

11 xPdM increase xProbability_Prevention_TotalFailure Positive Maintenance 

12 xPdM increase xQuality_PlanningProcedure Positive Maintenance 

13 xPdM increase xSpeed_Analysis Positive Maintenance 

14 
xPdM increase xProbability_Prevention_CollateralDa

mage 
Positive Maintenance 

15 xPdM increase xLifespan_Equipment Positive Engineering 

16 xPdM increase xSpeed_Reaction Positive Maintenance 

17 
xPdM increase xDegree_Distribution_Evenness_Dow

ntime 
Positive Engineering 

18 xPdM increase xProbability_Prevention_LateEffect Positive Maintenance 

19 xPdM decrease xCosts_Personnel Positive Costs 
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# Sour
ce 

Type Target Qualified 
Effect 

Area of 
Challenge  

20 xPdM decrease xCosts_Product Positive Costs 

21 xPdM decrease xVariance_CT Positive Logistics 

22 xPdM decrease xPercentage_Rework Positive Quality 

23 xPdM decrease xCosts_Inventory Positive Costs 

24 xPdM decrease xDuration_StandbyTime Positive Engineering 

25 xPdM decrease xScrap Positive Quality 

26 xPdM decrease xCosts_EM Positive Costs 

27 xPdM Decrease xWafersToScrap Positive Quality 

28 xPdM decrease xMTTR Positive Maintenance 

29 xPdM decrease xCosts_SparePart Positive Costs 

30 xPdM decrease xVariance_WIP Positive Logistics 

31 xPdM decrease xFF Positive Logistics 

32 xPdM decrease xAlpha_WIP Positive Logistics 

33 xPdM decrease xPercentage_NewInvest Positive Costs 

34 xPdM decrease xNumber_OnShift Positive Maintenance 

 

7.9 Summary 

The creation process of the PPES has shown the importance of being 

precise in defining core terms and their mutual relationships. A human reader 

is able to set the meaning of more complex terms such as ‘Degree Of 

Evenness Of Distribution Of Equipment Downtimes’ in relation to the term 

‘Equipment’. An inference engine, however, requires specific and precise 

information about the inner logics of such a term. Thus, the generation of 

distinct concepts, such as ‘Equipment’, ‘Degree’ and ‘Evenness’ was the 

necessary first step in this research. Several methods have been discussed 

to group concepts based on mathematical distance and human evaluation. 

This step was required to model the similarity between concepts of an 

ontology. Object properties serve two major goals: to model complex terms 

as logically associated concepts and to model the influences between 

concepts as collected during the case study. Several techniques have been 

discussed to configure the object property meanings correctly as the basis for 

the logical inference. Concepts, ontology tree and object property 

associations between concepts build the framework of the PPES. This 

framework defines the participants of the model and their fundamental 

relations.  

To design the effects between concepts, the FOL-oriented SWRL was 

applied to the ontology. Each direct effect was modelled as SWRL rule. In 

addition, four rules were created to describe the specific logics of transitivity 
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for PPES. These rules are essential to gain results for transitive effects 

between instances of particular concepts. To analyse and evaluate the 

PPES, a set of individuals was created where each individual refers to one or 

many concepts. The inference engine generated transitive effects from the 

SWLR rules only on an individual level, not on a concept level. Since 

individuals can have multiple concepts as types, the identified transitive 

effects could not be mapped directly to single concepts in each case. The 

effects are only valid for individuals that share the exactly same parent 

concepts. The PPES calculated 38 transitive effects, where four are 

conflicting. These effects represent new knowledge beyond the expert 

interview results and confirm hypothesis 1 from the conceptual framework. 

With its capabilities as ontology and its properly modelled content, the 

generated PPES solves RO 3.  
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Chapter 8 A Simulation Model for Evaluating 
Impacts of PdM on SI PS Performance 

8.1 Introduction 

The knowledge-based PPES provides important insights to understand the 

logical influences of PdM applications on SI PS performance in general. 

However, PPES cannot distinguish between single workcenters and to what 

degree they can be used to improve the PS performance. Furthermore, the 

new transitive knowledge reveals that there might be scenarios where the 

effects of PdM are negative, for instance, where equipment utilization is 

reduced.  

To investigate the strengths and limitations of PdM, and in addition, to 

identify the preferable workcenter where an application of PdM would mostly 

improve the PS performance, a quantitative analysis is required. This chapter 

will propose a method based on a predictive maintenance simulation model 

(PdMSM) for the above problem. The methodology for developing and 

validating SD models is based on the methods proposed by Bossel (2004), 

Sterman (2000) and Forrester (2013). In addition, the online documentation 

of AnyLogic provides methods and best practices to implement the model 

and a particular user interface that allows configuring different scenarios. 

Using this methodology, the following tasks should be carried out:  

1) To propose the method that must be applied to identify the preferable 

workcenter for PdM application based on the simulation results.  

2) To specify the model scope and considerations as a prerequisite for 

the development process. 

3) To develop the simulation model including a user interface to perform 

parameter value-dependent experiments. 

4) To verify the model.  

In addition, the new knowledge is presented and discussed based on the 

application of PdMSM to real SI PS configuration data. The new knowledge 

is concerned with the confirmation of the hypothesis that benefits of PdM are 

not static, but dependent on particular scenarios. For instance, those 
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situations in which PdM would reduce the production performance have been 

examined and discussed.  

8.2 Proposition of a Method for the Model Application 

The identification of the ideal workcenter for a PdM project requires several 

tasks beyond the execution of the simulation model. These tasks were 

identified during a design phase that was carried out prior to the model 

development. The goal of this design phase was to create a method that can 

be applied at any SI company in order to identify the workcenter where PdM 

shall be applied to gain significant SI PS performance improvements. Figure 

8-1 shows the task sequence of this method. 

The main challenge is to find a valid connection between workcenters and 

PS performance that allows effective investigation with minimum noise in the 

simulation. The more product lines are involved in a scenario, the more noise 

and lack of transparency are expected due to the product and process variety 

in SI PS. Therefore, this method requires the selection of one product line 

that is analysed against performance improvements when applying PdM to 

the involved workcenters. In this thesis, a high-volume product has been 

selected because a performance improvement would then generate the most 

significant and positive implications for the entire factory. As soon as the 

product is selected, different types of data must be gathered in order to 

initialise the simulation model. The model requires master data for 

workcenters and logistics, historical performance data, and soft information 

from expert assessment. Next, operations from the product route are 

selected that are compared with regard to performance improvement. These 

operations are the link to the workcenters that are affected by the application 

of PdM. The selection of operations must be performed based on expert 

advice; however, Section 8.7 presents some considerations for selection that 

have been identified through various experiments. Prior to the experiments 

and evaluations, the company must be clear about the goals they want to 

achieve by applying PdM. There are multiple KPIs as discussed in Chapter 4 

with different audiences and objectives. For instance, the FF of the entire 

product line may be improved or only the yield of the some selected 
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operations. Another goal could be the reduction of costs. The simulation 

generates results for all KPIs, however, it is not expected that all KPIs 

improve at the same level. To reduce the later efforts for analysis, evaluation 

and comparison, the goals are set beforehand. 

 

Figure 8-1: Proposed Method for applying PdMSM  

 

Once these prerequisites are accomplished, the experiments can be 

performed using PdMSM. Each selected operation requires the execution of 

one experiment. Afterwards, the simulated results can be analysed and 

evaluated per experiment. The evaluation reveals the influences of PdM 

application on the selected KPIs for each operation. The degree of influences 

of PdM on KPIs can be compared between all selected operations. With the 

results from the comparison, a company can identify the preferable 

workcenter where a PdM project shall be initiated. Due to the looping 
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processes that are required for adding multiple lithographic layers to a wafer 

(see 5.4), the same workcenters are likely to be used by different operations 

within a production route. Hence, it is suggested to execute the PdMSM for 

all operations that use the same machines. The single results can be merged 

afterwards in order to gain the full picture of influences of the application of 

PdM at a particular workcenter on the PS performances for the whole 

production route.   

8.3 Model Scope and Considerations 

According to Keating (1999), a common issue in projects that apply the SD 

methodology is the insufficiently designed model scope and specification. 

Important factors to consider when building a SD model are the problem 

definition, boundary adequacy, the time horizon, the selection of the 

appropriate time step dt, the selected type of aggregation, the selected 

integration method and the usage of noise variables (Keating, 1999). In order 

to overcome these factors, this section discusses the model scope and 

specification for the new simulation model as part of this thesis.  

8.3.1 Problem Definition 

The problem definition is important in order to state the purpose of the model, 

and subsequently, the simulation goal, precisely. It must be clear which 

problem is addressed, who the audience is for the results of the study, what 

the policies one wishes to experiment with are, and how shall it be 

implemented (Richardson and Pugh, 1988). As responded by the EM experts 

who participated in the PdM prototype project, the implementation of a PdM 

application that predicts specific failures for single machine types means a 

significant effort to EM engineers and data scientists. It is not realistic to 

expect that a company could apply PdM to all workcenters simultaneously 

because of limited human resources who require in-depth knowledge about 

processes, machines, data management and data analytics. Therefore, it 

would be useful for production managers – the audience – to know which 

workcenters would generate the largest PS performance improvement if they 

would be managed through PdM. The goal of this simulation model is to 
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identify and quantify influences of the application of PdM on the various 

characteristics of PS performance over time. For practical application, 

PdMSM will support production managers to select the workcenter where the 

application of PdM would generate the largest benefit for PS performance 

under consideration of workcenter-, operation- and product-line-specific 

aspects. The model audience can experiment with policies as they can select 

different operations to be analysed for performance improvements. They can 

further change the weights of influences between model variables to 

generate a range from rather optimistic to rather pessimistic results. The 

simulation model shall visualize a trend how single performance indictors 

would evolve within the concrete PS when applying PdM to a specific 

workcenter. The simulated trends of multiple workcenters can be compared 

to identify the best one. The simulation model is partitioned into different sub-

models where each consists of variables that are related through a common 

subject, e.g., costs or operation. Despite this design decision, relations 

between variables from different sub-models can be created without any loss 

of functionality. For a potential user, it is much easier to view and understand 

details of the model and therefore to modify parameters compared to one 

comprehensive model such as the CLM from Chapter 6. The simulation 

frame acts as the entry point for the users to configure a simulation scenario. 

AnyLogic provides the feature of ‘shadow variables’ that are associated to a 

real variable. Shadow variables can be used in any sub-model without the 

necessity of creating redundant instances of the same variable (AnyLogic, 

n.d.-a).  

As specified by the method, the model focuses on a standard high-volume 

production route. The model calculates the impacts of PdM applications on a 

specific high-volume production route. If a company uses the model, an 

engineer must enter the concrete characteristics of a real production flow as 

model parameter values. In Section 8.6, the model is validated against 

several test procedures.  

8.3.2 Boundary Adequacy 

To define the system boundary, Richardson and Pugh (1988) pointed out that 

the modeller must include all concepts and variables in order to relate 
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significantly to the dynamics of the problem being addressed. To identify the 

mandatory elements, it is proposed to include the ones that are directly or 

transitively influenced by PdM. This information was gained during the 

evaluation of PPES. Terms can be ignored for the simulation model when 

they only participate on impact associations as targets and are not directly or 

transitively affected by the application of PdM. The existence of the terms in 

the simulation model does not generate deeper understandings regarding 

impacts of PA on manufacturing performance. Because they are only target 

terms, they do not affect any other PS element. In addition, they are not 

affected by PdM in any logical way, therefore the simulation would not 

provide any new insight. Finally, ten terms can be excluded from the 

simulation model as listed in Table 8-1. The numbers refer to the unique key 

that was generated during the raw data analysis.  

Table 8-1: Out-of-Scope Terms for the Simulation Model 

# Term 

43 Engineering Time Duration 

56 Scheduled Down Duration 

69 Deliverability 

91 Importance Of EM Availability 

92 Importance Of Equipment Availability 

93 Importance Of Operator Qualification Level 

104 MTTF 

121 Risk Of Equipment Bottleneck 

122 Risk Of Product Line Down 

 

Although the model connects multiple PS elements, it is not considered to 

support other production-relevant decision processes. Examples for out-of-

scope processes include the evaluation impacts of WSPW modifications on 

the WIP variance, or the evaluation of impacts of an additional machine on 

the GR. 

8.3.3 Time Horizon and Time Step 

According to Forrester (1973), the time horizon of the model needs to be 

related to the concrete issue under study as well as the decisions being 

considered. The issue under study is a SI PS with business-specific 
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challenges. These challenges may be unpredictable product differentiations, 

complex machines, high quality processes and related information. These 

challenges change continuously due to rather short product lifecycles 

compared to other industries such as the automotive industry (Forster et al., 

2013). Because of these considerations, the time horizon must not be too 

large otherwise, the simulated KPI trends may not be meaningful in a later 

period. The objective is to detect the preferred workcenter that should be 

selected for a PdM application. Based on the recorded effects in the CLM, it 

is expected that the effects of PdM application on the PS performance would 

appear with some delay after the application is released. However, it is not 

realistic to assume that the simulated PS performance trend, which was 

triggered by a single workcenter, would significantly change over more than 

one year. Based on this discussion, the simulation scenario was configured 

to analyse a SI PS over one year. This time horizon has been used to 

execute experiments and to validate the model; nevertheless, a user of the 

model is able to change the time horizon.  

The time step dt must be determined in accordance with the configured time 

horizon. Kampmann (1991) highlighted that if dt is too large, it may introduce 

an implicit delay in feedback. According to Forrester (2013), a too large a 

value for dt might lead to integration errors, which can be detected by 

observing rapid changes in variables that disappear after dt is decreased. 

Professional software such as AnyLogic supports modellers by configuring 

the time step automatically. A number of accuracies must be set, such as the 

time accuracy and a relative accuracy, which influences the implicit selection 

of the time step by the tool. To view the actual time step that is used by the 

simulation engine, the following statement can be executed during the 

runtime, for instance as part of a dynamic variable:  

getEngine().getNextStepTime()-time() 

However, it is important to select an appropriate time unit and to use it as the 

base unit for all values of the model. Based on the extracted data from the 

case study, using ‘week’ as the time unit is suggested because the influences 

of PdM would not significantly change within one day. For model elements 

such as the RPT that refers to an hour-based value, the model time unit must 

be considered within the according equations.  
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8.3.4 Methods for Differential Calculus 

AnyLogic provides two numerical methods for differential equations: Euler 

and RK4, which is an abbreviation for the 4th order Runge-Kutta. In general, 

the Euler method is a simple computational technique that performs fast in 

simulation software tools. RK4 is the preferred method for models that are 

concerned with oscillations (Keating, 1999). When applying the Euler 

method, stock variables are calculated at the beginning of a time interval and 

stay constant during the time step dt. This leads to approximation errors that 

can be reduced by decreasing dt. However, if the time step becomes too 

small, other numerical inaccuracies may appear that distort the simulation 

result. The RK4 method is more accurate but requires more resources for 

computation, and therefore, performs more slowly. The primary difference to 

the Euler method is that stock variables do not remain constant during a time 

step. The RK4 method uses four points in time within the configured time 

step interval to calculate a stock variable. At the end of the time step, the 

intermediate results per stock variable are totalled and the model time is 

increased by dt. The correct selection of the integration method must be 

tested against the model results. If no unacceptable difference is detected, 

the Euler method can be applied, as a general rule (Fleissner, 2005).  

8.3.5 Type of Aggregation 

The type of aggregation of model elements must be clear and valid. Senge 

and Forrester (1980) suggested aggregating phenomena together, which 

have a similar dynamic behaviour or underlying dynamic structures. 

However, phenomena with different response times may not be mixed 

together. They also highlight that the model purpose determines which level 

of aggregation is appropriate. Rahmandad and Sterman (2018) described the 

impact of the purpose on the level of aggregation in more detail. When 

analysing, for instance, the obesity at a population level, the population can 

be represented via one highly aggregated stock variable. However, when 

different groups of people need to be distinguished (e.g., by weight), it would 

be more appropriate to define one stock variable per population group. The 

most detailed level would be the single individual as part of the population. 
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Such an individual should not be represented as stock variable but as agent, 

which is a technical concept within simulation software. The selected type of 

aggregation influences the selection of a simulation method. Aggregated 

elements are easier to represent via differential equations whereas less or 

even non-aggregated elements are better represented by agents. 

Rahmandad and Sterman (2018) proposed the following considerations to 

choose an appropriate aggregation level:  

 The level of aggregation of an element in the model must conform to 

the level of aggregation in the available data. If the model component 

disaggregates below the data source, auxiliary and parameter 

assumptions would be required that are hard to justify. Aggregating 

above the level of aggregation in the data might discard useful 

information; however, this information can be ignored if those details 

are not relevant for the model purpose.  

 To facilitate a seamless integration of different model components, the 

level of aggregation between model components should be similar. 

The similarity fosters the ease of maintenance of the internal model 

consistency. 

 Disaggregating requires more detailed data and this leads to higher 

effort for data collection, analysis, new mechanisms and related 

activities. To keep the balance between the level of detail, quality of 

prediction and reasonable effort, a modeller should focus on those 

model components that add the most value to the project. 

Because the purpose of the model is to identify and quantify influences of a 

PdM application on the PS performance based on the performance changes 

of several selected workcenters, the model component ‘workcenter’ will act 

as basis to align the level of aggregation with other model components. The 

level of aggregation of ‘workcenter’ refers to a group of physical production 

machines that are redundant for a specific operation within a production 

route. In addition, the historical data from the case study supports the 

selection of this level of aggregation because the extracted TR25 availability 

records are also aggregated by workcenter. As observed from the equipment 

master data, production machines that are grouped by the same workcenter 

are mainly identical in construction (e.g., same equipment manufacturer and 
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same equipment platform). Therefore, it is expected that the failure patterns 

and preventive methods are valid for all machines within a common 

workcenter. With regards to the dynamics of the model, it must be considered 

that effects of a PdM application on a workcenter are delayed dependent on 

the number of machines that must be considered.  

8.3.6 Noise 

Beyond the previously discussed specifications, a SD modeller must consider 

the noise in a system. Forrester highlights that an understanding of noise is 

essential in working with models of information feedback systems. Noise is a 

trigger for those disturbances to which a system is sensitive and limits the 

ability of proper predictions. The future of a system under study can be   by 

unexplained factors. Noise may have influence on the decision functions 

within the model and on the results. Two types of noise can be identified in 

general (Forrester, 2013):  

a) The first type of noise refers to slight influences from variables that are 

part of the model. This type of noise is the result of eliminating some 

of the feedback paths between the model variables. Consequently, 

some of the model variables are not considered by decision functions, 

though the variable value changes might correlate in time with the 

decisions created by the decision functions. The reason for this type of 

noise is the necessity for simplification. This type of noise cannot be 

substituted by random variables. 

b) The second type of noise means factors that are not themselves 

affected by each other or by the other variables of the model. Their 

source (e.g., the weather) is outside of and independent of the system 

being represented. In principle, this type of noise can be approximated 

by random variables as input to a decision function. However, it 

depends on the knowledge of the system under study whether the 

proper and sufficient noise variables can be identified and added.  

Because the SI PS as the system under study is a physically isolated 

environment within a controlled cleanroom, the weather and similar external 

effects are not regarded as crucial to the prediction quality. Other external 
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factors that influence the PS execution, such as the delay in delivery of raw 

material, or loss of operator availability due to the flu season, could be 

substituted by random variables. A crucial factor that generates effects from 

the second type of noise is the deviation in the material flow. To cover these 

deviations that affect the PS performance, the model uses a statistic function. 

By contrast, effects from the first type of noise can have more significant 

influence on the decisions within the model. It is likely that the interviewed 

experts did not mention all logical associations that exist in reality, and thus, 

some model variables may not be considered sufficiently in decision 

functions. Furthermore, by aggregating physically independent system 

elements, some individual nuances are smoothed and their particular effect 

cannot be considered within decision functions.  

8.4 Transforming Terms into SD Variables 

SD models require the definition of types per system element. Similar to the 

PPES development, the terms from the CLM must be transformed into 

adequate variables to meet the requirements of SD simulation. Another 

option would be the transformation of PPES concepts into SD variables. 

However, it needs to be considered that the impact values are only available 

on term level. Because one term can be expressed by multiple concepts, 

there is partially no quantified association available between single concepts 

that are associated through object properties. Without the existence of a 

weighted association, the single concept will not add any insights during the 

simulation. Only the FOL representations from Section 7.6, where the single 

PPES concepts are associated with original terms, could be used to assign 

the original impact value information. Nevertheless, it would result in the 

same level of information – the original terms – but with additional complexity 

in the model design. Because of missing benefits and the chance to achieve 

a much clearer model design, the initial terms were selected. The link 

between terms, PPES elements and SD variables is ever present because 

the thesis refers consistently to the unique term ID.  

Forrester (2013) and Bossel (2004) define categories for model elements that 

are described as follows:  
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1) Initial variables: These represent the exogenous influences from the 

outer environment on the particular system. These impact factors are 

independent and cannot be altered by model elements during a 

simulation run. They can be modelled either as constant or as formula.  

2) Stock variables: At each point in time, stock variables return the state 

of the particular system. Their value cannot be derived from other 

system elements, and thus, they are irreplaceable. Stock variables are 

mathematically modelled as integral to corresponding flow equations. 

Depending on the literature, they are also known as state variables or 

levels.  

3) Auxiliary variables: The values of auxiliary variables are calculated 

from stock variables or initial variables. They can also be subdivisions 

of flow equations to reduce the complexity of functions. Auxiliary 

variable equations consist of algebraic and logical functions. During a 

simulation run, the simulation engine evaluates auxiliary variables 

after stock variables but before flow equations per time step.  

4) Supplementary variables: These are not relevant to the simulation 

model itself but used as aggregated information to summarize the 

results of a simulation scenario.  

5) Flows: Flows contain the decision functions that control what happens 

next in the system. They may refer to values of source and target 

stock variables. Flow equations are independent of one another. Initial 

and auxiliary variables only influence a specific stock variable if they 

are included in the related flow equation.  

Due to the calculus as the mathematical foundation of SD, stock variables 

and flows have a specific dependency. A flow equation represents the first 

derivative of a stock variable between two points in time. As described by 

Forrester (2013) and Bossel (2004), the mathematic functions that express 

the impact associations between system elements are dependent on the SD 

element type.  

A high percentage of the terms can be directly assigned to a variable 

category. For instance, ‘Number of Failures’ meets the criteria of a stock 

variable, whereas ‘FF’ can be modelled as an auxiliary variable. However, 

there are terms such as ‘Degree of Exhausting Wear Limits’ that rather meet 
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the criteria of an auxiliary variable but without a related stock variable where 

the information can be derived. For such cases, new model elements must 

be added. These elements allow deeper design of a logical background for 

an auxiliary variable, and therefore, enable a proper and transparent 

mathematic calculation. The ‘Degree of Exhausting Wear Limits’ can then be 

calculated based on a new stock variable that counts the number or spare 

part replacements over time. Stock variables can be grouped together as part 

of a sub-model. A sub-model depicts a specific area or perspective from the 

overall system under study. Other model components such as flows and 

auxiliary variables are also part of the sub-model where the corresponding 

stock variable is located.  

Terms require special treatment to generate consistent equations if they are 

targets in the CLM and characterized as KPI based on the discussion of 

Section 4.3. Because the experts are used to expressing the PS performance 

through KPIs, it was important to document their expectations of how these 

KPIs would be influenced by PS or PdM characteristics. However, a KPI is 

already based on a formula, so it could lead to inconsistencies in the 

simulation result if additional equations were created for the same variable. In 

this thesis, three approaches are identified to handle these cases:  

A) The documented impact is applied to the physical root elements of 

the KPI formula instead of the KPI itself. 

B) The documented impact is applied to the KPI equation result. 

C) The documented impact is applied to the KPI formula.  

To support the decision, the pro and contra arguments for each approach 

must be collected and compared. Table 8-2 lists the identified arguments. 

The evaluation and comparison of each argument leads to the decision to go 

for Approach A. This approach combines the most positive arguments with 

the least effective negative argument. Though the initial intention of the 

expert would be hidden in the simulation model, the documented effect must 

be still valid and identical based on the mathematical association within a KPI 

equation. Each impact association that consists of a KPI as a target term 

must be modified. The documented association will be redirected to the 

appropriate root element of the particular formula. A root element is 
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appropriate, if its growth or reduction influences the KPI value by the same 

factor as mentioned by the initial impact association. 

Table 8-2: Comparison of Approaches to treat Impact Associations 
between a Source Term and a KPI as a Target Term  

Approach Pro Contra 

A 

 The well-defined KPI formula will not 
change, and thus, the equations do not 
differ from literature. 

 The calculated result value of a KPI is 
only based on the underlying formula 
from literature and not modified through a 
second calculation.  

 From a logical point of view, it is more 
likely that root elements of KPI formulas 
are influenced by a PS element than the 
KPI value itself, without changing a root 
element’s value.  

 The intention of the experts who 
mentioned this particular impact 
association is not clear, and thus, 
the researcher could potentially 
misrepresent the impact 
association. 

B 

 The statement of the experts who 
mentioned this particular impact 
association remains.  

 The well-defined KPI formula will not 
change, and thus, the equations do not 
differ from literature. 

 

 The calculated result value of a KPI 
depends on two separated 
formulas. This makes the 
calculation inconsistent compared 
to equations from literature.  

 Each influenced KPI is represented 
by two variables in the simulation 
model. This type of doubling would 
inflate the model and reduce the 
transparency for analysis purposes. 

C 

 The statement of the experts who 
mentioned this particular impact 
association remains.  

 Only one variable and equation are 
required to specify a KPI result value.  

 The well-defined KPI formula is 
modified, and thus, the equations 
differ from literature. This 
modification reduces the 
applicability of the simulation model 
for real environments.  

 

The transformation is demonstrated by the following example:  

PdM Application increase GR by 6.55 

Based on Equation (4.14) that represents the formula of GR, the fabricated 

items 𝑛𝑎𝑐𝑡𝑢𝑎𝑙 are the appropriate root element that is influenced by the 

application of PdM instead of GR. The value of GR would change in the 

same way regardless of whether the impact value of PdM Application, which 

is 6.55, would be multiplied to 𝑛𝑎𝑐𝑡𝑢𝑎𝑙 or to GR directly. With this approach, 

the documented impact of PdM Application on GR remains; the equation for 

GR is still the same as in the literature and the simulation model does not 

require doubled variables. In cases where the KPI formula refers only to 

other KPIs as root elements (e.g., FF, which is based on CT), the appropriate 

root element in the formula of the ingoing KPI is searched. This procedure is 

repeated until the appropriate root element is identified in a source formula.  
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The selected approach works only for algebraic equations, but cannot be 

applied to statistical dispersions of PS parameters or KPIs, such as WIP 

variance, WSPW variance or all types of Alpha. For example, the variance of 

a random variable X is the expected value of the squared deviation from the 

mean of X. The mathematical foundation does not allow the direct 

combination of impact associations and statistical dispersions. To ensure a 

consistent and trusted simulation, all impact associations from the simulation 

model that consider statistical dispersions as either source or target are 

removed. The logical effects of those associations are visible in the PPES, 

thus, the information is available for production managers in addition to the 

quantified simulation results.  

8.5 Model Development 

The following sub-sections discuss the development of the simulation model, 

which consists of six sub-models as shown in Figure 8-2.  

 

Figure 8-2: Structure of the PdMSM 

 

Each sub-section presents one sub-model including its general structure, 

model elements as well as stock and flow equations. The equations for 

auxiliary variables are listed in appendix A3. The final sub-section presents 

the development of the simulation frame that an end-user would access to 

initialise and modify simulation scenarios. 
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8.5.1 Production Line Sub-Model 

8.5.1.1 General Model Structure  

Most of the PS-oriented KPIs depend on the flow of items through the 

production line, whose characteristics are set in relation to the according 

planning values. For instance, to calculate the GR for a product within a 

defined period, the number of items that pass a logistic unit per time unit 

must be measured. Such a logistic unit can be an operation, a group of 

operations or the entire production route – the actual selection depends on 

the required level of detail. In any case, the simulation model must contain 

the production flow as a basic component to simulate the flow of items and to 

calculate PS-oriented KPI values. The thesis selects the ‘production route’, 

which refers to a particular product, as an appropriate level of detail for the 

simulation scenario. The main reason for this decision is that PS 

performance as a whole shall be represented as stated by the thesis goal. 

Therefore, it is not sufficient to focus on single operations only. The 

production line sub-model is a logical connection point between other sub-

models whose variables influence the flow of items, such as equipment 

availability and yield. It represents the characteristics and dynamics of a 

particular production route that must be parameterized by the model user 

before starting the simulation. It sets the focus on a particular operation that 

is part of the production route plan. This operation is called ‘focus operation’ 

within this thesis. There is a generic pre-process as well as a generic post-

process that works with aggregated average values that must be set based 

on real historical data. The flows between the stock variables represent the 

flow of items along the production line.  

The number of operations within the focus production route must be used to 

weight the performance values of the focus operation correctly in relation to 

the performance values of all other operations. The focus operation refers to 

a defined group of machines and EM activities that are particularly improved 

by PdM within a simulation run. These improvements are expected to affect 

the logistic performance of the focus operation. To simulate the degree of 

performance improvement for the entire production route, the performance of 

the other operations must be considered as well. For this purpose, the 

generic pre-process and post-process are required. Figure 8-3 shows the 
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relation of the production line sub-model to a real production route and how 

two operations from the same route can be compared.  

 

Figure 8-3: Relation of the Production Line Sub-model to a Real Production 
Route 

 

The figure shows two different simulation scenarios for the same production 

route that consists of seven operations in sequence. In scenario 1, ‘Operation 

5’ is configured as focus operation whereas in scenario 2 it is ‘Operation 

4’.Both pre-process and post-process are groupings of operations. Per 

simulation run, one operation from a route is selected as the focus operation. 

This selected operation is excluded from the considerations of pre-process 

and post-process. With this approach, it is possible to compare multiple 

operations from a route to find out which one would generate the highest 

performance improvements for the overall production line when PdM is 

applied. 

Figure 8-4 shows the developed production line sub-model that implements 

the previously discussed approach. 
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Figure 8-4: Production Line Sub-Model 



 

 

 

299 8.5 Model Development 

The sub-model consists of following stock variables that are represented as a 

gold-coloured rectangle and that interact with other model elements:  

 PreProcess 

 FocusOperation 

 PostProcess 

 ScrapStock 

 PostProcessFinishedStock 

 PreProcessFinishedStock 

 

8.5.1.2 Model Elements and Equations 

The sub-model requires several input parameters that must be configured 

prior to the simulation execution. Table 8-3 lists and describes those 

parameters.  

Table 8-3: Parameters for Production Line Sub-Model 

Parameter Unit Description 

RPT_product Week The raw process time for the whole product 

including all operations. 

preProcCT Week The average cycle time for the set of 

operations prior to the focus operation.  

preProcBS Number of 

Wafers / 

Operation 

The average batch size for the set of 

operations prior to the focus operation. 

postProcCT Week The average cycle time for the set of 

operations that follow the focus operation. 

postProcBS Number of 

Wafers / 

Operation 

The average batch size for the set of 

operations that follow the focus operation. 

PreProcess_0 Number of 

Wafers 

Initial stock value that refers to the sum of 

WIP of all pre-processes.  

PostProcess_0 Number of 

Wafers 

Initial stock value that refers to the sum of 

WIP of all post-processes. 

FocusOperation_0 Number of 

Wafers 

Initial stock value that refers to the WIP at 

the focus operation.  

 

The stock variable ‘PreProcess’ counts the number of items that are currently 

in progress at any operation prior to the focus operation. The variable 

‘preProcessInFlow’ is only influenced by the WSPW that indicates how many 

wafers will enter the factory for this particular product within the defined 

period. The variable ‘focusOperationInFlow’ represents the number of items 

that are moved from the pre-process group to the focus operation within the 

defined period. Because the simulation can start at any time during the 
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lifetime of a PS, the stock variable must be assigned to an initial value 

‘PreProcess0’. This value represents the current WIP of all operations prior to 

the focus operation. Equation (8.1) defines the how the stock variable 

‘PreProcess’ is calculated.  

𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠0 + ∫ (preProcessInFlow − focusOperationInFlow) ∗ dt
𝑡

0

 
(8.1) 

Unit: Item  

 

From the case study data, it is known that the WSPW is not a static value but 

fluctuates per week. AnyLogic provides a function component called ‘Table 

Function’ that allows the storage of sample data to be used for simulation. An 

instance of this component is added to the model and named 

‘WSPW_Samples’. It consists of 53 records where each consists of a pair of 

ID and value. The ID refers to the current week within the simulation time and 

the value to the historical WSPW data. The 53rd record is only required to 

avoid null pointer exceptions during the simulation and has ‘0’ as value. The 

dynamic variable ‘WSPW’ accesses the sample data using Equation (8.2). 

𝑊𝑆𝑃𝑊 = 𝑊𝑆𝑃𝑊_𝑆𝑎𝑚𝑝𝑙𝑒𝑠(𝑟𝑜𝑢𝑛𝑑(𝑡𝑖𝑚𝑒())) 

Unit: Item 

(8.2) 

 
The flow variable ‘preProcessInFlow’ is only influenced by ‘WSPW’ and is 

calculated by Equation (8.3). 

𝑝𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝑛𝐹𝑙𝑜𝑤 = 𝑊𝑆𝑃𝑊 

Unit: Item 

(8.3) 

 
The next stock element within the production line flow is the FocusOperation. 

It is defined by Equation (8.4) that covers one ingoing and two outgoing 

flows. 

𝐹𝑜𝑐𝑢𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐹𝑜𝑐𝑢𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛0

+ ∫ (focusOperationInFlow − focusOperationOutFlow
𝑡

0

− focusOperationScrap) ∗ dt 

(8.4) 

Unit: Item  

 

The ingoing flow depends on the current stock of all the pre-processes, the 

average cycle time of all pre-processes and the average batch size of all pre-
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processes as well as the number of wafers that are selected for rework. 

Wafers to rework having already passed the focus operation have to be 

processed again due to quality issues. The flow is physically limited by CT 

and the batch size of the pre-processes and, in case this rate increases the 

stock, the PreProcess itself to avoid negative stock values. Equation (8.5) 

shows the flow definition. 

𝑓𝑜𝑐𝑢𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝐹𝑙𝑜𝑤

= 𝑙𝑖𝑚𝑖𝑡𝑀𝑎𝑥 ((
1

𝑢𝑛𝑖𝐶𝑇
) ∗ 𝑢𝑛𝑖𝐵𝑆, 𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠)

+ 𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑅𝑒𝑤𝑜𝑟𝑘 

Unit: Item 

(8.5) 

 

The stock variable consists of two outgoing flows, one for the good wafers 

that are sent to the next operation and one for the scrapped wafers that are 

removed from the production line. The outgoing flows are defined by 

Equation (8.6) and (8.7). 

focusOperationOutFlow = wafersToNextOperation 

Unit: Item 

(8.6) 

 

focusOperationScrap = wafersToScrap 

Unit: Item 

(8.7) 

 

Both variables wafersToScrap and wafersToNextOperation are filled within 

the operation sub-model that is described in 8.5.3. The good wafers are 

passed to the stock PostProcess that is defined by Equation (8.8). 

𝑃𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑃𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠0

+ ∫ (focusOperationOutFlow − postProcessOutFlow) ∗ dt
𝑡

0

 

(8.8) 

Unit: Item  

The initial value PostProcess0 stands for the sum of WIP for all operations 

that follow on the FocusOperation over the production line for the selected 

route. The stock is modified by the ingoing flow focusOperationOutFlow and 

the outgoing flow postProcessOutFlow, which is also the final part of the 

overall production line flow. The outgoing flow is defined by Equation (8.9). 
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𝑝𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑂𝑢𝑡𝐹𝑙𝑜𝑤

= 𝑙𝑖𝑚𝑖𝑡𝑀𝑎𝑥 ((
1

𝑝𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝐶𝑇
)

∗ 𝑝𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝐵𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, 𝑃𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠) 

Unit: Item 

 

(8.9) 

Similar to the focusOperationInFlow, the flow is physically limited either by 

the average CT and average batch size of all operations that follow the focus 

operation or by the PostProcess itself. The last stock variable within the 

direct production line flow is the ScrapStock, which stores all wafers that did 

not pass the focus operation. Subsequently, it does not consist of an 

outgoing flow. It is defined by Equation (8.10). 

𝑆𝑐𝑟𝑎𝑝𝑆𝑡𝑜𝑐𝑘 = 𝑆𝑐𝑟𝑎𝑝𝑆𝑡𝑜𝑐𝑘0 + ∫ (focusOperationScrap) ∗ dt
𝑡

0

 

Unit: Item 

(8.10) 

 

To calculate the KPIs for the whole production line, it is also necessary to 

store the number of wafers that were processed by the pre- and post-

operations. For this purpose, the sub-model consists of two stock variables 

PreProcessFinishedStock and PostProcessFinishedStock that are defined by 

Equations (8.11) and (8.12).  

𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑆𝑡𝑜𝑐𝑘 

= 𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑆𝑡𝑜𝑐𝑘 0 + ∫ (preProc_finished) ∗ dt
𝑡

0

 

Unit: Item 

(8.11) 

 

𝑃𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑆𝑡𝑜𝑐𝑘 

= 𝑃𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑆𝑡𝑜𝑐𝑘 0 + ∫ (postProc_finished) ∗ dt
𝑡

0

 

Unit: Item 

(8.12) 

 

Both stock variables only consist of ingoing flows that obtain their values 

directly from the outgoing flows from PreProcess and PostProcess. Due to 

this triviality, the equations are not shown in detail. 

The sub-model also consists of KPIs that express the performance of the 

whole production line. These KPIs are defined by algebraic equations. 
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Equation (8.13) shows the calculation of the GR that depends on the different 

finished stocks for pre-processes, focus operation and post-processes. The 

variable processedWafers refers to the focus operation and is filled within the 

operation sub-model.  

𝐺𝑅𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑛𝑒

=
PreProcessFinishedStock + PostProcessFinishedStock + processedWafers

time()
 

Unit: Item 

 

(8.13) 

The current WIP of the whole production line is calculated by Equation (8.14). 

𝑊𝐼𝑃𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑛𝑒 = PreProcess + FocusOperation + PostProcess 

Unit: Item 

 

(8.14) 

With WIP and GR, the CT can be calculated for this scenario by Equation 

(8.15). 

𝐶𝑇𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑛𝑒 =
WIPproductionLine

GRproductionLine
 

Unit: Time 

 

(8.15) 

Finally, the CT can be compared with the RPT for the selected product to 

calculate the FF as defined by Equation (8.16). 

𝐹𝐹𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑛𝑒 =
CTproductionLine

RPTproduct
 

Unit: N/A (Factor) 

 

(8.16) 

8.5.2 Workcenter Sub-Model 

8.5.2.1 General Model Structure  

The workcenter sub-model that is depicted in Figure 8-5 consolidates all 

variables that are directly related to equipment-oriented stock variables.  
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Figure 8-5: Workcenter Sub-Model
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It mainly contains machine-oriented KPIs from Section 4.4 whose calculation 

follows the described formulas. The sub-model is able to store the sum of 

different equipment times (e.g., uptime, unscheduled downtime) over the 

simulation horizon. It is possible to evaluate the impacts of PdM on the 

machine performance by comparing the final values of the stock variables 

from the two scenarios: normal execution of the SI PS and execution after 

application of PdM at the focus operation. Furthermore, it is possible to 

compare the trend charts of the machine-oriented KPIs between these two 

simulation scenarios. 

The sub-model consists of the following stock variables (gold-coloured in the 

sub-model) that interact with other model elements:  

 Uptime 

 UnscheduledDownTime 

 StandbyTime 

 RepairTime 

 Number_Assists 

 Number_Failures 

 Number_of_SparePartReplacements 

 Number_SetupActions 

 

8.5.2.2 Model Elements and Equations 

The sub-model requires a set of parameters as input for the equations. Table 

8-4 explains the meaning and unit of these variables.  

The core of the model is to obtain failures and unscheduled downtimes. 

These result values influence the majority of the other sub-model 

components. The stock variable UnscheduledDowntime is defined by 

Equation (8.17). 

𝑈𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑈𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒0 + ∫ (UD_flow) ∗ dt
𝑡

0

 

Unit: Weeks 

(8.17) 
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The corresponding flow UD_flow that increases the unscheduled downtime 

over the simulation horizon is influenced by several factors. An average 

unscheduled downtime must be preconfigured based on empirical insights. 

Based on the associations from the CLM, this percentage can change during 

a selected timeframe. Equation (8.18) shows these mathematical relations.  

𝑈𝐷_𝑓𝑙𝑜𝑤 = 𝑈𝐷_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 − 𝑈𝐷_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 7.5 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝐷𝑒𝑔𝑟𝑒𝑒_𝑂𝑓_𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑛𝑔_𝑊𝑒𝑎𝑟_𝐿𝑖𝑚𝑖𝑡𝑠 − 𝑈𝐷_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 7.5

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ ((𝑀𝑇𝑇𝑅_𝑃𝑙𝑎𝑛 − 𝑀𝑇𝑇𝑅) ∗ 100)

− 𝑈𝐷_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 5 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ (𝑃𝑟𝑜𝑏_𝐴𝑣𝑜𝑖𝑑_𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒)

− 𝑈𝐷_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 8 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ (𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝐼𝑛_𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑂𝑓_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑃𝑟𝑜𝑐𝑒𝑠𝑠)

− 𝑈𝐷_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 7 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ (𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒) − 𝑈𝐷_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

∗ 4.5 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ (𝐸𝑀_𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦) − 𝑈𝐷_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 7

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ (𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑂𝑓_𝑆𝑝𝑎𝑟𝑒_𝑃𝑎𝑟𝑡_𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑠)

− 𝑈𝐷_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 2 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦

− 𝑈𝐷_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 1 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 

Unit: Percentage / Week 

(8.18) 

 

Table 8-4: Parameters for the Machine Sub-Model 

Parameter Unit Description 

UD_Percentage 

 

Percentage 

[0-1] / Day 

Represents the average percentage of 

unscheduled downtime per day of the workcenter 

that is assigned to the focus operation. 

MTTR_Plan 

 

Percentage 

[0-1] / Day 

Represents the planned MTTR per day the 

workcenter that is assigned to the focus operation. 

failureRate 

 

Number of 

Failures / Day 

Represents the average number of failures per day 

of the workcenter that is assigned to the focus 

operation. 

SD_Percentage 

 

Percentage 

[0-1] / Day 

Represents the average percentage of scheduled 

downtime per day of the workcenter that is 

assigned to the focus operation. 

assistRate 

 

Number of 

Assist / Day 

Represents the average number of assists per day 

of the workcenter that is assigned to the focus 

operation. 

EQ_Reservations Percentage 

[0-1] / Day 

Represents the average percentage of equipment 

reservations for engineering purposes per day of 

the workcenter that is assigned to the focus 

operation. 

repairTimePercentage Percentage 

[0-1] / 

Downtime 

Represents the average percentage of workcenter 

downtimes that is purely required for repair 

activities.  

replaceSparePartPercentage Percentage 

[0-1] / 

Downtime 

Represents the average percentage of failures 

where spare parts must be replaced per day at the 

workcenter that is assigned to the focus operation. 

Prob_Avoid_Downtime Percentage 

[0-1]  

Represents the probability to avoid downtimes per 

day at the workcenter that is assigned to the focus 

operation. 
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Similar to the unscheduled downtime, the number of failures over the 

simulation period is represented as stock variable. The variable is defined by 

Equation (8.19). 

𝑁𝑢𝑚𝑏𝑒𝑟_𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟_𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠0 + ∫ (failures_flow) ∗ dt
𝑡

0

 

Unit: Number of Failures 

 

(8.19) 

The flow failure_flow increases the number of failures continuously. An 

average number of failures per day, which is called failureRate, is the main 

driver for increase. It can be reduced or increased by several factors. 

Equation (8.20) describes the mathematical dependencies.  

𝑓𝑎𝑖𝑙𝑢𝑟𝑒_𝑓𝑙𝑜𝑤 = 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑅𝑎𝑡𝑒 − 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑅𝑎𝑡𝑒 ∗ 5 ∗  𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝐷𝑒𝑔𝑟𝑒𝑒_𝑂𝑓_𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑛𝑔_𝑊𝑒𝑎𝑟_𝐿𝑖𝑚𝑖𝑡𝑠 − 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑅𝑎𝑡𝑒 ∗ 5

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ (𝑃𝑟𝑜𝑏_𝐴𝑣𝑜𝑖𝑑_𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒) − 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑅𝑎𝑡𝑒 ∗ 5

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ (𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝐼𝑛_𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑂𝑓_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑃𝑟𝑜𝑐𝑒𝑠𝑠)

− 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑅𝑎𝑡𝑒 ∗ 9 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ (𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒) + 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑅𝑎𝑡𝑒 ∗ 7

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝐹𝑎𝑏_𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 − 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑅𝑎𝑡𝑒 ∗ 5.83 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑅𝑎𝑡𝑒 ∗ 1.67 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑃𝑟𝑜𝑐𝑒𝑠𝑠_𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡_𝐴𝑡_𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

− 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑅𝑎𝑡𝑒 ∗ 7 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 

Unit: Number of Failures / Week 

(8.20) 

 

Another crucial time indicator for workcenter evaluation is the standby time 

that is defined by Equation (8.21). The SB_flow that adds standby time to the 

stock only influences it. 

𝑆𝑡𝑎𝑛𝑑𝑏𝑦𝑇𝑖𝑚𝑒 = 𝑆𝑡𝑎𝑛𝑑𝑏𝑦𝑇𝑖𝑚𝑒0 + ∫ (SB_flow) ∗ dt
𝑡

0

 

Unit: Weeks 

(8.21) 

 

The main driver for SB_flow is the SB_Percentage, which is an average 

percentage predefined by the simulation user. This percentage is influenced 

by several parameters as defined by Equation (8.22). 
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𝑆𝐵_𝑓𝑙𝑜𝑤 = 𝑆𝐵_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 − 6 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑆𝐵_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

∗ 𝐸𝑀_𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 5.3 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑆𝐵_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

∗ 𝐷𝑒𝑔𝑟𝑒𝑒𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑟𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 − (𝐹𝑜𝑢𝑟𝑀_𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑐𝑖𝑡𝑦 =

=  1 ?  10 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑆𝐵_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

∶  0) + 5.5 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑆𝐵_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

∗ 𝐷𝑒𝑔𝑟𝑒𝑒_𝑇𝑜𝑜𝑙_𝐷𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛 − 3.2 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑆𝐵_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑡𝑦 − 6 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑆𝐵_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝐷𝑒𝑔𝑟𝑒𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙 − 4

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑆𝐵_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

∗ 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑤𝑜𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡_𝑎𝑛𝑑_𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 − 4.67

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑆𝐵_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑠𝑒𝑡𝑢𝑝𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 − 2

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑆𝐵_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 3.33

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝐸𝑄_𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ∗ 𝑆𝐵_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 

Unit: Percentage / Week 

(8.22) 

 

Active parts in the model are the generation of unscheduled downtimes and 

standby times. Subsequently, the uptime of a workcenter can be derived from 

these values. The stock variable Uptime is defined by Equation (8.23). 

𝑈𝑝𝑡𝑖𝑚𝑒 = 𝑈𝑝𝑡𝑖𝑚𝑒0 + ∫ (UP_flow) ∗ dt
𝑡

0

 

Unit: Weeks 

(8.23) 

 

The flow UP_flow is defined by Equation (8.24) and shows the dependencies 

to the other types of equipment times.  

𝑈𝑃_𝑓𝑙𝑜𝑤 = 1 − (Down_Percentage + Standby_flow) 

Unit: Percentage / Week 

(8.24) 

In this equation, Down_Percentage is the dynamic sum of UD_flow and the 

parameter SD_percentage, which is predefined. The difference between 

uptime and standby time describes the productive time of the workcenter. It 

can be calculated from two stock elements and is configured as dynamic 

variable. The productive time is also required to calculate the MTBA. In 

addition, the KPI formula requires the number of assists that is configured as 

stock variable as defined by Equation (8.25). 

𝑁𝑢𝑚𝑏𝑒𝑟_𝐴𝑠𝑠𝑖𝑠𝑡𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟_𝐴𝑠𝑠𝑖𝑠𝑡𝑠0 + ∫ (performAssist_flow) ∗ dt
𝑡

0

 

Unit: Number of Assists 

(8.25) 
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Because the identified causal relationships do not contain any impact on the 

number of assists, the according flow equation only depends on a predefined 

assistRate as shown in Equation (8.26). 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝐴𝑠𝑠𝑖𝑠𝑡_𝑓𝑙𝑜𝑤 = assistRate 

Unit: Number of Assists / Week 

(8.26) 

 

A crucial goal of PdM is the reduction of the repair time in case of a machine 

failure. In the workcenter model, the RepairTime is a stock variable and 

defined by Equation (8.27). 

𝑅𝑒𝑝𝑎𝑖𝑟𝑇𝑖𝑚𝑒 = 𝑅𝑒𝑝𝑎𝑖𝑟𝑇𝑖𝑚𝑒0 + ∫ (repairTime_flow) ∗ dt
𝑡

0

 

Unit: Weeks 

(8.27) 

 

Only one ingoing flow exists that adds repair time to the stock. It is called 

repairTime_flow and is defined by Equation (8.28). The flow is mainly driven 

by the overall downtime percentage – both scheduled and unscheduled – 

and a realistic average percentage of repair time from this downtime.  

𝑟𝑒𝑝𝑎𝑖𝑟𝑇𝑖𝑚𝑒_𝑓𝑙𝑜𝑤 = 𝐷𝑜𝑤𝑛_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑟𝑒𝑝𝑎𝑖𝑟𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 − 𝐷𝑜𝑤𝑛_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

∗ 𝑟𝑒𝑝𝑎𝑖𝑟𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 6.67 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝐼𝑛_𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑂𝑓_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑃𝑟𝑜𝑐𝑒𝑠𝑠

− 𝐷𝑜𝑤𝑛_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑟𝑒𝑝𝑎𝑖𝑟𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 5 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 − 𝐷𝑜𝑤𝑛_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

∗ 𝑟𝑒𝑝𝑎𝑖𝑟𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 8 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑂𝑓_𝑆𝑝𝑎𝑟𝑒_𝑃𝑎𝑟𝑡_𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑠 − 𝐷𝑜𝑤𝑛_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

∗ 𝑟𝑒𝑝𝑎𝑖𝑟𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 6.4 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 

Unit: Percentage / Week 

(8.28) 

 

Another expected positive impact of PdM is on the degree of exhausting 

wear limits. To quantify this degree in a meaningful way, a stock variable is 

created that counts the spare part replacements over the simulation 

timeframe. Equation (8.29) shows the definition. 
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𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠

= 𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠0

+ ∫ (replaceSpareParts_flow) ∗ dt
𝑡

0

 

Unit: Number of Replacements 

(8.29) 

The associated flow is based on an expected percentage of spare part 

replacements based on the current number of failures. This number can be 

reduced by the application of PdM but increases by the percentage of 

reactive maintenance. Equation (8.30) shows the dependencies.  

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡𝑠_𝑓𝑙𝑜𝑤

= 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠_𝑓𝑙𝑜𝑤 + 8

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

∗ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠_𝑓𝑙𝑜𝑤 ∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 − 8.4

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

∗ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠_𝑓𝑙𝑜𝑤 ∗ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 

Unit: Number of Replacements / Week 

(8.30) 

 

As shown in Equation (8.31), the degree of exhausting wear limits is defined 

as the relation between the number of failures and the necessity to replace 

spare parts. The lower the number of spare part replacements, the higher is 

the degree of exhausting wear limits.  

𝐷𝑒𝑔𝑟𝑒𝑒_𝑂𝑓_𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑛𝑔_𝑊𝑒𝑎𝑟_𝐿𝑖𝑚𝑖𝑡𝑠 = Number_Failures 

>  0 ?  1 −  
𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟_𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠
: 0  

(8.31) 

 

The last stock variable in this sub-model stores the number of setup actions 

and is defined by Equation (8.32). 

𝑁𝑢𝑚𝑏𝑒𝑟_𝑆𝑒𝑡𝑢𝑝𝐴𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟_𝑆𝑒𝑡𝑢𝑝𝐴𝑐𝑡𝑖𝑜𝑛𝑠0 + ∫ (performSetup_flow) ∗ dt
𝑡

0

 

Unit: Number of setup actions 

(8.32) 

 

The associated flow performSetup_flow is mainly driven by a predefined 

setup rate that is increased by the single process variety. Equation (8.33) 

shows the dependencies. 
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𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑆𝑒𝑡𝑢𝑝_𝑓𝑙𝑜𝑤

= 𝑠𝑒𝑡𝑢𝑝𝑅𝑎𝑡𝑒𝑃𝑙𝑎𝑛 − 𝑠𝑒𝑡𝑢𝑝𝑅𝑎𝑡𝑒𝑃𝑙𝑎𝑛 ∗ 5.67 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑆𝑖𝑛𝑔𝑙𝑒_𝑃𝑟𝑜𝑐𝑒𝑠𝑠_𝑉𝑎𝑟𝑖𝑒𝑡𝑦 

Unit: Number of setup actions / Week 

(8.33) 

 

With the number of setup actions, the setup frequency over time can be 

calculated, which is an influencer to the workcenter standby time. Equation 

(8.34) shows the calculation.  

𝑠𝑒𝑡𝑢𝑝𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑡𝑖𝑚𝑒()

𝑁𝑚𝑏𝑟_𝑆𝑒𝑡𝑢𝑝𝐴𝑐𝑡𝑖𝑜𝑛𝑠
 

Unit: Timely Distance between setup action / week 

(8.34) 

 

The equipment lifespan is influenced by the percentage of reactive 

maintenance. The associations shown in Equation (8.35) are developed with 

dynamic variables. The simulation user must define a planned lifespan for the 

type of equipment from the analysed workcenter.  

𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡_𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛

= 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡_𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛_𝑃𝑙𝑎𝑛𝑛𝑒𝑑

− 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡_𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛_𝑃𝑙𝑎𝑛𝑛𝑒𝑑 ∗ 8 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 

Unit: Years 

(8.35) 

 

Another element from the workcenter sub-model that is influenced by the 

percentage of reactive maintenance is the percentage of new equipment 

investment. The impact calculation follows Equation (8.36). In addition,in this 

case, the simulation user must define a planned percentage of new 

equipment investments that is increased by the percentage of reactive 

maintenance. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑁𝑒𝑤_𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡_𝐼𝑛𝑣𝑒𝑠𝑡𝑠

= 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑁𝑒𝑤_𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡_𝐼𝑛𝑣𝑒𝑠𝑡𝑠_𝑃𝑙𝑎𝑛𝑛𝑒𝑑

+ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑁𝑒𝑤_𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡_𝐼𝑛𝑣𝑒𝑠𝑡𝑠_𝑃𝑙𝑎𝑛𝑛𝑒𝑑 ∗ 6

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 

(8.36) 

Unit: Percentage / Year 
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8.5.3 Focus Operation Sub-Model 

8.5.3.1 General Model Structure  

The focus operation sub-model consolidates all variables that are related to 

associations within the selected focus operation. It also contains the PS-

oriented KPIs on and operational level. The sub-model is mainly controlled 

through a processing rate that is applied to the current number of wafers that 

must be processed within the focus operation. Figure 8-6 shows the 

graphical sub-model structure.  

The sub-model consists of following stock variables (gold-coloured in the 

sub-model) that interact with other model elements:  

 InProcessWafers 

 ToReworkWafers 

 GoodWafers 

 ScrapWafers 
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Figure 8-6: Focus Operation Sub-Model
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8.5.3.2 Model Elements and Equations 

The sub-model requires a set of parameters as input for the equations. Table 

8-5 explains the meaning and units of these variables.  

Table 8-5: Parameters for the Focus Operation Sub-Model 

Parameter Unit Description 

RPT Week Represents the raw process time for the 
selected focus operation. 

Nmbr_ProcessReleased_Machines Number of 
Machines 

Represents the number of machines that 
are officially released to execute the 
focus operation. 

Nmbr_Similar_Machines Number of 
Machines 

Represents the number of machines that 
are able to execute the focus operation 
principally. 

Four_M_Synchronicity Boolean Indicates whether the four partners are 
synchronized for the focus operation or 
not. 

Batch Size Items / Machine Represents the planned number of 
wafers that are processed in parallel 
during the focus operation using one 
machine. 

expectedVolumePercentage Percentage [0-
1] /week 

Represents the planned percentage of 
the focus operation for the workcenter 
compared to other operations that also 
use the workcenter. 

wafersToReworkPercentage Percentage [0-
1]  

Represents the average percentage of 
wafers that must perform a rework 
process due to quality issues at the focus 
operation.  

wafersToScrapPercentage Percentage [0-
1]  

Represents the average percentage of 
wafers that are damaged and must be 
removed from the production line due to 
quality issues at the focus operation. 

processCapability Index value  Represents the value from the process 
capability index for the focus operation. 

DegreeAutomation_Plan Percentage [0-
1] 

Represents the planned degree of 
automation at the focus operation. The 
value indicates the percentage of 
activities to execute operation that are 
planned to be automated compared to 
manual activities.  

percentageProcessInspections_Plan Percentage [0-
1] 

Represents the planned percentage of 
wafers that must pass process 
inspections. 

percentageMRPF_Plan Percentage [0-
1] 

Represents the expected percentage of 
scrapped wafers that were damaged due 
to machine-related process failures.  

wasteFactor Factor [0-1] Represents the noise of the selected 
operation that cannot be influenced by 
any of the model elements. Examples for 
this are manual preparations or machine 
cleaning. The wasteFactor reduces the 
possible amount of runs per week. 
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The focus operation sub-model is driven by the process speed in which the 

current operation WIP can be processed. The wafers under process are 

stored in the stock variable InProcessWafers that is defined by Equation 

(8.37). 

𝐼𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑊𝑎𝑓𝑒𝑟𝑠 = 𝐼𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑊𝑎𝑓𝑒𝑟𝑠0

+ ∫ (𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑃𝑟𝑜𝑐𝑒𝑠𝑠 − 𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑅𝑒𝑤𝑜𝑟𝑘 − 𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑆𝑐𝑟𝑎𝑝
𝑡

0

− 𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑁𝑒𝑥𝑡𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛) ∗ dt 

Unit: Items 

(8.37) 

The ingoing flow wafersToProcess adds wafers to the stock and is defined by 

Equation (8.38). This flow controls the speed of the focus operation that is 

evaluated with performance KPIs. The terms ‘Process Stability’ and ‘Process 

Maturity’ are merged into ‘Process Capability’, which is the more established 

term in manufacturing. ‘Process Capability’ expresses both aspects implicitly, 

and thus, it can be treated as the same source effect. The quantified causal 

relationships are transferred to the merged term. The values of duplicate 

associations are averaged.  

 

𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑃𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑙𝑖𝑚𝑖𝑡𝑀𝑖𝑛(0, 𝑙𝑖𝑚𝑖𝑡𝑀𝑎𝑥(𝐹𝑜𝑐𝑢𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑅𝑎𝑡𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡 − 5

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝐷𝑒𝑔𝑟𝑒𝑒_𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒_𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑐𝑖𝑡𝑦_𝐵𝑒𝑡𝑤𝑒𝑒𝑛_𝑆𝑖𝑚𝑖𝑙𝑎𝑟_𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠

∗ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑅𝑎𝑡𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡 + 5 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝐼𝑛_𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑂𝑓_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑃𝑟𝑜𝑐𝑒𝑠𝑠

∗ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑅𝑎𝑡𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡 − 3 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ∗ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑅𝑎𝑡𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡 + 5.74

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑅𝑎𝑡𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡)) 

Unit: Items / Week 

(8.38) 

 

The variable processingRateCurrent provides the number of wafers that can 

be processed within the configured operation environment; these are the 

available operation WIP, the maximum processing rate based on physical 

limits and the rate reduction due to partner availability. The maximum 

processing rate results from the weekly number of runs based on the 

operation RPT, the expected percentage of production volume for this 
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particular operation and the average batch size that is used at the selected 

operation.  

One of the outgoing flows is called wafersToRework and addresses the 

wafers that must be reworked. The flow is influenced by the percentage of 

reactive maintenance and is defined by Equation (8.39) 

𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑅𝑒𝑤𝑜𝑟𝑘 = 𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑅𝑒𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑖𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑊𝑎𝑓𝑒𝑟𝑠

+ (𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑅𝑒𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑖𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑊𝑎𝑓𝑒𝑟𝑠) ∗ 10

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 

Unit: Items / Week 

(8.39) 

 

Another outgoing flow that is called wafersToScrap moves items from the 

stock InProcessWafers to the stock ScrapWafers. This flow is also influenced 

by the percentage of reactive maintenance, in addition to the degree of 

machine-related process failures. Equation (8.40) shows the definition.  

𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑆𝑐𝑟𝑎𝑝 = 𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑆𝑐𝑟𝑎𝑝𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑖𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑊𝑎𝑓𝑒𝑟𝑠

− (𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑆𝑐𝑟𝑎𝑝𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑖𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑊𝑎𝑓𝑒𝑟𝑠) ∗ 6 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

+ (𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑆𝑐𝑟𝑎𝑝𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑖𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑊𝑎𝑓𝑒𝑟𝑠) ∗ 8.67

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝐷𝑒𝑔𝑟𝑒𝑒_𝑂𝑓_𝑀𝑎𝑐ℎ𝑖𝑛𝑒_𝑅𝑒𝑙𝑎𝑡𝑒𝑑_𝑃𝑟𝑜𝑐𝑒𝑠𝑠_𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 

Unit: Items / Week 

(8.40) 

 

The third outgoing flow refers to the good wafers that are moved to the next 

operation of the product route. The difference between all wafers in the 

process and the wafers to rework and wafers to scrap is the value of this 

flow. Equation (8.41) shows the definition.  

𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑁𝑒𝑥𝑡𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

= 𝑖𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑊𝑎𝑓𝑒𝑟𝑠 − 𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑅𝑒𝑤𝑜𝑟𝑘 − 𝑤𝑎𝑓𝑒𝑟𝑠𝑇𝑜𝑆𝑐𝑟𝑎𝑝 

Unit: Items / Week 

(8.41) 

 

To compare the quantitative impact of PdM on the operation performance, 

the focus operation sub-model consists of the KPIs GR, CT, FF, CapaTool, 

Utilization and all types of availability. This collection allows a simulation user 

to compare the results at one glance. The calculation rules are partially 

modified compared to Chapter 4 to meet the simulation requirements. For 
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instance, the number of process-released machines multiplies CapaTool, 

because the operation GR includes multiple machines. Otherwise, the 

Utilization value would indicate a wrong result.  

8.5.4 Equipment Maintenance Sub-Model 

8.5.4.1 General Model Structure  

The EM sub-model consists of elements and characteristics that are crucial 

for maintenance activities within a SI PS. The core of the model is the 

percentages of reactive and preventive maintenance. These two values 

control all other variables. Another important element of the model is the 

variable that refers to the application of PdM. This variable calls a parameter 

‘PdM_Active’ that can be configured at the simulation start. Because the 

partner company did not provide any data on the speed of reactions, or the 

probability to avoid late effects and other EM performance indicators, these 

aspects are covered by dynamic variables, and therefore, algebraic 

equations primarily. There is no advantage for the simulation quality if a stock 

and flow structure would be applied instead. It would increase the model 

complexity without the provision of deeper insights how PdM influences the 

PS performance in SI. However, a further study that is concentrated on EM 

performance in SI can collect and model these details based on this thesis. 

Figure 8-7 shows the sub-model structure visually.  

The sub-model consists of following stock variables (gold-coloured in the 

sub-model) that are interacting with other model elements:  

 Nmbr_EM_Reserve 

 Nmbr_EM_OnShift 

 Nmbr_EM_OOS 
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Figure 8-7: EM Sub-Model 
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8.5.4.2 Model Elements and Equations 

The sub-model requires a set of parameters as input for the equations. Table 

8-6 explains the meaning and unit of these variables.  

Table 8-6: Parameters for the EM Sub-Model 

Parameter Unit Description 

requiredEM_Min Number of Persons Represents the minimum number of EM persons 

that are required to execute daily activities at the 

selected workcenter to keep the machines up and 

running. However, high risk of long downtimes 

remains in case of expensive and unplanned 

failures. 

requiredEM_Opt Number of Persons Represents the optimum number of EM persons 

that are required to execute daily activities at the 

selected workcenter to keep the machines up and 

running. The Risk of long downtimes in case of 

expensive and unplanned failures is reduced due 

to sufficient EM capacity. 

EM_Default_Values Array of 

Percentages [0-1] 

Represents an array of percentages from 0 to 1 

that can be assigned as default values to the 

dynamic variables. 

Nmbr_EM_OOS_0 Number of Persons Represents the initial value for the stock variable 

Nmbr_EM_OOS. 

Nmbr_EM_Reserve_0 Number of Persons Represents the initial value for the stock variable 

Nmbr_EM_Reserve. 

Nmbr_EM_OnShift_0 Number of Persons Represents the initial value for the stock variable 

Nmbr_EM_OnShift. 

 

The sub-model consists of three interacting stock variables that exchange a 

number of EM persons. The first stock variable is called Nmbr_EM_Reserve 

and stores the number of EM persons who are principally available at the 

company, who are qualified for the selected workcenter and who are not yet 

on shift. Equation (8.42) shows the definition.  

𝑁𝑚𝑏𝑟_𝐸𝑀_𝑅𝑒𝑠𝑒𝑟𝑣𝑒

= 𝑁𝑚𝑏𝑟_𝐸𝑀_𝑅𝑒𝑠𝑒𝑟𝑣𝑒0

+ ∫ (𝑠𝑒𝑛𝑑𝐸𝑀𝑇𝑜𝑅𝑒𝑠𝑒𝑟𝑣𝑒 − 𝑠𝑒𝑛𝑑𝐸𝑀𝑇𝑜𝑆ℎ𝑖𝑓𝑡) ∗ dt
𝑡

0

 

Unit: Number of Persons 

(8.42) 
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The second stock variable is called Nmbr_EM_OnShift and stores the 

number of EM persons that are currently on shift for the selected workcenter. 

The stock variable receives values from the Nmbr_EM_Reserve and sends 

values of the stock variable Nmbr_EM_OOS. Equation (8.43) shows the 

definition.  

𝑁𝑚𝑏𝑟_𝐸𝑀_𝑂𝑛𝑆ℎ𝑖𝑓𝑡

= 𝑁𝑚𝑏𝑟_𝐸𝑀_𝑂𝑛𝑆ℎ𝑖𝑓𝑡0

+ ∫ (𝑠𝑒𝑛𝑑𝐸𝑀𝑇𝑜𝑆ℎ𝑖𝑓𝑡 − 𝑟𝑒𝑚𝑜𝑣𝑒𝐸𝑀𝐹𝑟𝑜𝑚𝑆ℎ𝑖𝑓𝑡) ∗ dt
𝑡

0

 

Unit: Number of Persons 

(8.43) 

The flow that connects both stock variables is called sendEMToShift and is 

defined by Equation (8.44). The minimum number of required EM persons on 

shift and the percentage of reactive maintenance drive influence the flow. To 

be more specific, a growing percentage of reactive maintenance increases 

the required minimum number.  

𝑠𝑒𝑛𝑑𝐸𝑀𝑇𝑜𝑆ℎ𝑖𝑓𝑡 = 𝑁𝑚𝑏𝑟_𝐸𝑀_𝑂𝑛𝑆ℎ𝑖𝑓𝑡 

<  𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐸𝑀_𝑀𝑖𝑛 + 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐸𝑀_𝑀𝑖𝑛 ∗ 6.5 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑂𝑓_𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 ?  𝑁𝑚𝑏𝑟_𝐸𝑀_𝑅𝑒𝑠𝑒𝑟𝑣𝑒 ∶  0 

Unit: Number of Persons / Week 

(8.44) 

The stock variable Nmbr_EM_OOS stores the number of EM persons that 

are currently out of service, and therefore, unavailable for shift. Equation 

(8.45) shows the formula.  

𝑁𝑚𝑏𝑟_𝐸𝑀_𝑂𝑂𝑆 = 𝑁𝑚𝑏𝑟_𝐸𝑀_𝑂𝑂𝑆0

+ ∫ (𝑟𝑒𝑚𝑜𝑣𝑒𝐸𝑀𝐹𝑟𝑜𝑚𝑆ℎ𝑖𝑓𝑡 − 𝑠𝑒𝑛𝑑𝐸𝑀𝑇𝑜𝑅𝑒𝑠𝑒𝑟𝑣𝑒 −) ∗ dt
𝑡

0

 

Unit: Number of Persons 

(8.45) 

 

The outgoing flow removeEMFromShift assumes that EM persons have rest 

times and are not available every day within a year. Every week, the flow 

removes an estimated percentage (20%) of EM persons from the shift. To 

keep the EM persons on shift for at least one week, the flow applies a delay 

function. Equation (8.46) presents these logics.  

𝑟𝑒𝑚𝑜𝑣𝑒𝐸𝑀𝐹𝑟𝑜𝑚𝑆ℎ𝑖𝑓𝑡 = 𝑑𝑒𝑙𝑎𝑦(𝑙𝑖𝑚𝑖𝑡𝑀𝑖𝑛(0, 𝑁𝑚𝑏𝑟_𝐸𝑀_𝑂𝑛𝑆ℎ𝑖𝑓𝑡 ∗ 0.2), 1, 0) 

Unit: Number of Persons / Week 

(8.46) 
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Once the EM persons have completed their recovery, they are sent to the 

pool of staff that can be appointed to support any shift during the week. The 

simulation model also assumes in this case one week of recovery, therefore, 

a delay function is applied. The resulting flow is called sendEMToReserve 

and defined by Equation (8.47). 

𝑠𝑒𝑛𝑑𝐸𝑀𝑇𝑜𝑅𝑒𝑠𝑒𝑟𝑣𝑒 = 𝑑𝑒𝑙𝑎𝑦(𝑙𝑖𝑚𝑖𝑡𝑀𝑖𝑛(0, 𝑁𝑚𝑏𝑟_𝐸𝑀_𝑂𝑂𝑆), 1, 0) 

Unit: Number of Persons / Week 

(8.47) 

The stock variable Nmbr_EM_OnShift is one of the required elements to 

calculate the EM availability. To compare the number of EM persons on shift 

over the simulation horizon with and without PdM application, the weekly 

stock values are stored in a dataset. The variable avg_NmbrEMOnShift 

returns the mean value of these data points. This value can be compared for 

both simulation scenarios.  

8.5.5 Operator Sub-Model 

8.5.5.1 General Model Structure  

The operator sub-model consists of elements that are related to the 

operators who operate machines and perform manual actions as far as 

required by the focus operation. The direct influences of PdM are limited to 

the motivation of operators, which then influences the operator availability. 

Another influencing factor is the degree of automation at the selected 

workcenter that affects the degree of operator qualification level. This level 

has also influence on the operator availability. Figure 8-8 shows the visual 

structure of the sub-model.  

The sub-model consists of following stock variables (gold-coloured in the 

sub-model) that interact with other model elements:  

 UnmotivatedOperators 

 MotivatedOperators 
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Figure 8-8: Operator Sub-Model 

 

8.5.5.2 Model Elements and Equations 

The sub-model requires a set of parameters as input for the equations. Table 

8-7 explains the meaning and unit of these variables.  

The sub-model consists of two stock variables that represent operators that 

are either motivated or unmotivated. The stock variable 

UnmotivatedOperators is defined by Equation (8.48) and is reduced by a 

motivation flow. 

𝑈𝑛𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 = 𝑈𝑛𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 0 − ∫ (𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑙𝑜𝑤) ∗ dt
𝑡

0

 

Unit: Number of Persons 

(8.48) 

The receiving stock is called MotivatedOperators and is defined by Equation 

(8.49). 

𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 = 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 0 + ∫ (𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑙𝑜𝑤) ∗ dt
𝑡

0

 

Unit: Number of Persons 

(8.49) 
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Table 8-7: Parameters for the Operator Sub-Model 

Parameter Unit Description 

intrinsicMotivationFactor Percentage [0-1] Represents an intrinsic factor 

that increases motivation of the 

operator staff without external 

influences. 

required_nmbr_op_per_shift Number of Persons Represents the optimum 

number of operators that are 

required to execute the focus 

operation at the selected 

workcenter to keep the 

machines up and running. The 

risk of long standby times is 

reduced due to sufficient 

operator capacity. 

DegreeOperatorQualificationLevel_Plan Percentage [0-1] Represents the planned degree 

of operator qualification that is 

required for the focus operation.  

UnmotivatedOperator_0 Number of Persons Represents the initial value for 

the stock variable 

UnmotivatedOperators. 

MotivatedOperator_0 Number of Persons Represents the initial value for 

the stock variable 

MotivatedOperators.  

 

Both stock variables are directly connected through a flow that is called 

motivation_flow and defined by Equation (8.50).  

𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑙𝑜𝑤 = 𝑈𝑛𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 + 𝑈𝑛𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 ∗ 6

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 

Unit: Number of Persons / Week 

 

(8.50) 

The degree of production staff motivation is calculated based on the relation 

between these two stock variables. It influences the operator availability in 

addition to the degree of operator qualification.  
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8.5.6 Costs Sub-Model 

8.5.6.1 General Model Structure  

The costs sub-model contains elements that represent the different aspects 

of costs within the SI PS that a PdM application would influence. The 

different types of costs are modelled as stock variables that are driven by a 

fixed cost rate. Each cost rate is influenced by one or more variables from 

other sub-models. Based on the collected interview data, the details on cost-

specific associations are limited. Therefore, the sub-model does not consist 

of further intelligence beyond the impacts of these variables from the other 

sub-models. To compare the cost effects of PdM, it is not important to set an 

initial value for the stock variables. Thus, the initial value is zero for all costs. 

The analysis is performed by comparing the final values of the stock 

variables with and without applying PdM.  

The sub-model consists of following stock variables (gold-coloured in the 

sub-model) that are interacting with other model elements:  

 Personnel_Costs 

 EM_Costs 

 Inventory_Costs 

 Spare_Part_Costs 

 Product_Costs 
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Figure 8-9: Costs Sub-Model 

 

8.5.6.2 Model Elements and Equations 

The sub-model requires a set of parameters as input for the equations. Table 

8-8 explains the meaning and unit of these variables.  

Table 8-8: Parameters for the Costs Sub-Model 

Parameter Unit Description 

costDriveRatePersonnel Monetary 

Unit / Week 

Represents the weekly costs for production 

personnel. 

costDriveRateSparePart Monetary 

Unit / Week 

Represents the weekly costs for spare parts. 

costDriveRateEM Monetary 

Unit / Week 

Represents the weekly costs for EM beyond 

personnel. 

costDriveRateInventory Monetary 

Unit / Week 

Represents the weekly costs for inventory beyond 

spare parts. 

costDriveRateProduct Monetary 

Unit / Week 

Represents the weekly costs for product beyond all 

other mentioned above. 
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The sub-model stock variables are not directly associated and do not 

mutually pass or receive costs. The stock variable Personnel_Costs grows by 

a cost drivers flow and is defined by Equation (8.51). 

𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙_𝐶𝑜𝑠𝑡𝑠 = 𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙_𝐶𝑜𝑠𝑡𝑠 0 + ∫ (𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙) ∗ dt
𝑡

0

 

Unit: Monetary Unit  

(8.51) 

The associated flow is influenced by the efficiency in coordination of 

maintenance process and defined by Equation (8.52). 

𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙

= 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 − 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 ∗ 8

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝐼𝑛_𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑂𝑓_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑃𝑟𝑜𝑐𝑒𝑠𝑠 

Unit: Monetary Unit / Week 

 

(8.52) 

The EM costs are stored in the stock variable EM_Costs that is defined by 

Equation (8.53).  

𝐸𝑀_𝐶𝑜𝑠𝑡𝑠 = 𝐸𝑀_𝐶𝑜𝑠𝑡𝑠 0 + ∫ (𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝐸𝑀) ∗ dt
𝑡

0

 

Unit: Monetary Unit  

(8.53) 

The according flow costDriversEM is influenced by efficiency improvements 

and the degree of exhausting wear limits and is defined by Equation (8.54). 

𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝐸𝑀 = 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝐸𝑀 − 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝐸𝑀 ∗ 7 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝐷𝑒𝑔𝑟𝑒𝑒_𝑂𝑓_𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑛𝑔_𝑊𝑒𝑎𝑟_𝐿𝑖𝑚𝑖𝑡𝑠 − 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝐸𝑀 ∗ 5.5

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝐼𝑛_𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑂𝑓_𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑃𝑟𝑜𝑐𝑒𝑠𝑠

− 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝐸𝑀 ∗ 6 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑂𝑓_𝑆𝑝𝑎𝑟𝑒_𝑃𝑎𝑟𝑡_𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑠 

Unit: Monetary Unit / Week 

 

(8.54) 

The spare part costs are stored in the stock variable Spare_Part_Costs that 

is defined by Equation (8.55).  

𝑆𝑝𝑎𝑟𝑒_𝑃𝑎𝑟𝑡_𝐶𝑜𝑠𝑡𝑠 = 𝑆𝑝𝑎𝑟𝑒_𝑃𝑎𝑟𝑡_𝐶𝑜𝑠𝑡𝑠 0 + ∫ (𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡) ∗ dt
𝑡

0

 

Unit: Monetary Unit  

(8.55) 

 

The following flow costDriversSparePart is defined by Equation (8.56). 
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𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡

= 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡 − 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡 ∗ 7.5

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝐷𝑒𝑔𝑟𝑒𝑒_𝑂𝑓_𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑛𝑔_𝑊𝑒𝑎𝑟_𝐿𝑖𝑚𝑖𝑡𝑠

− 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝑆𝑝𝑎𝑟𝑒𝑃𝑎𝑟𝑡 ∗ 5 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟

∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑂𝑓_𝑆𝑝𝑎𝑟𝑒_𝑃𝑎𝑟𝑡_𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑠 

Unit: Monetary Unit / Week 

(8.56) 

Any other inventory costs beyond the actual spare part costs are stored in 

the stock variable Inventory_Costs that is defined by Equation (8.57).  

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦_𝐶𝑜𝑠𝑡𝑠 = 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦_𝐶𝑜𝑠𝑡𝑠 0 + ∫ (𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦) ∗ dt
𝑡

0

 

Unit: Monetary Unit  

(8.57) 

The according flow costDriversInventory is defined by Equation (8.58). 

𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦

= 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 − 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 ∗ 4

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑂𝑓_𝑆𝑝𝑎𝑟𝑒_𝑃𝑎𝑟𝑡_𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑠 

Unit: Monetary Unit / Week 

 

(8.58) 

The stock variable Product_Costs stores all other types of costs that are 

required to manufacture the selected product. It is defined by Equation 

(8.59).  

𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝐶𝑜𝑠𝑡𝑠 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝐶𝑜𝑠𝑡𝑠 0 + ∫ (𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑡) ∗ dt
𝑡

0

 

Unit: Monetary Unit  

(8.59) 

The associated flow costDriversProduct is defined by Equation (8.60). 

𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑡

= 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝑃𝑟𝑜𝑑𝑢𝑐𝑡 + 𝑐𝑜𝑠𝑡𝐷𝑟𝑖𝑣𝑒𝑅𝑎𝑡𝑒𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ∗ 10

∗ 𝐼𝑚𝑝𝑎𝑐𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝐷𝑒𝑔𝑟𝑒𝑒_𝑂𝑓_𝑀𝑎𝑐ℎ𝑖𝑛𝑒_𝑅𝑒𝑙𝑎𝑡𝑒𝑑_𝑃𝑟𝑜𝑐𝑒𝑠𝑠_𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 

Unit: Monetary Unit / Week 

 

(8.60) 

  

8.5.7 Creation of User Interface for Simulation  

To execute the simulation model and to configure the parameters for a 

particular scenario, a user interface is developed to support the model end-

users. There is one parameter box for each sub-model and for general model 

setting. The main benefits for a model user are that the simulation runs need 
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not to be cancelled and restarted to change parameter values and that the 

modification of values is much more convenient than in the AnyLogic editor. 

Figure 8-10 shows a part of the simulation frame where a user can configure 

the general settings and the workcenter-specific parameters. It represents 

the user interface at the runtime.  

As visualized in the figure, default values are configured for each parameter. 

This initial value set supports the model user to understand the value 

dimensions and ranges. In addition, the user can perform a demonstration 

run without any personal configuration just to understand the model logics 

and dynamics. The ‘General Model Specification’ section consists of two 

important parameters that affect all sub-models. If the checkbox ‘Predictive 

Maintenance Active’ is checked, the quantitative impacts that are caused by 

PdM are considered in the current simulation scenario. A model user must 

configure all sub-models by selection of the particular parameters and can 

execute the simulation at first without and then with consideration of PdM 

impacts. Both simulation results must be compared based on the selected 

indictors such as the number of failures, processed wafers or sum of EM 

costs. 

The other setting is called ‘Impact Factor’. This controls the weight of all 

impact associations including the PdM associations. A number of 

experiments have been carried out to refine the impact factor. The results of 

these experiments lead to a useful range from 0 to 0.03. Impact factor values 

beyond 0.03 lead to extraordinary effects that do not produce valid results. A 

differentiation between online and offline PdM has not been simulated since 

the association target terms do not have any impact on production 

performance. Therefore, the level of quantitative insight would not increase. 

Nevertheless, the PPES considers this differentiation in a logical way as 

discussed in Chapter 5. 

Where applicable, the input controls have minimum and maximum values 

stored. This prevents users from configuring the simulation model wrongly. 

This type of limitation is configured for all variables that depict a percentage 

or probability. Figure 8-11 demonstrates how a value range between zero 

and one is configured for the percentage of spare part replacements.  
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Figure 8-10: Part of the Simulation User Interface to Configure General and 
Workcenter-specific Parameters 

 

 

Figure 8-11: Configuration of Allowed Value Ranges 

 

Further limitations must be considered for parameters that are logically 

dependent. This consideration affects the percentages of equipment times as 

well as the percentages of wafer to scrap and wafer to rework. Each set of 
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parameters in the sum is not allowed to exceed the number one. Figure 8-12 

shows the proper configuration for the percentage of wafers to rework that 

considers the percentage of wafers to scrap in the maximum value formula.  

 

Figure 8-12: Configuration of Allowed Value Ranges with Dependency to 
other Parameters 

Input controls can be from different types, such as textbox, checkbox or 

slider. The most appropriate control must be selected for each parameter. 

Boolean parameters are configured as checkboxes and few parameters can 

be changed through sliders because a concrete value does not exist in 

reality. The majority of parameters is configured as textboxes that allow the 

entering of concrete values from company databases. After deselecting an 

input control or when clicking the simulation start button, AnyLogic simulation 

engine validates the user input and readjusts the values based on the given 

ranges.  

Although the simulation frame and the main agent type, which contains the 

sub-models, are part of the same AnyLogic model file, they are not fully 

connected. This leads to the restriction that an input control from the 

simulation frame cannot directly write to a model parameter. For this 

purpose, AnyLogic requires specific simulation variables as transfer 

elements. Each parameter and input control is connected through a 

simulation variable and all of these participants are created and configured 

independently. Figure 8-13 shows the basic configuration of a simulation 

variable.  

 

Figure 8-13: Configuration of Simulation Variables 

 



 

 

331 8.6 Model Verification 

A variable must have a data type that meets the requirements of the related 

parameter. The example from the figure uses ‘double’ because it refers to a 

percentage in decimal format. An initial value for an input control comes from 

this variable definition.  

Figure 8-14 shows the entire data binding process that must be configured 

for each parameter. The parameter default value from the lowest part of the 

figure is required if this described data binding is not configured. Once the 

data binding is configured properly, the default value is overwritten by the 

passed value from the input control.  

 

 

Figure 8-14: Data Binding from User Input to Sub-Model Parameter 

 

 

8.6 Model Verification 

Bossel (2004) pointed out that the overall correctness of a model cannot be 

proved in general. Even if the target application of this study generates 

reasonable results, it does not prove that other use cases beyond the scope 

of this thesis would generate correct results as well. However, the opposite 
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can be proven: By testing if model results are unrealistic (e.g., they differ 

from the real system) or illogical (e.g., the generated values are physically 

impossible), it can be stated that the model is inaccurate or wrong. Therefore, 

not the overall correctness but the validity of the developed model for the 

specific purpose shall be evaluated. According to Bossel (2004), the key 

aspects of validity are structure, behaviour, empiricism and application. 

Sterman (2000) described a set of test procedures against structural, 

empirical and behavioural validity. These ensure, for instance, that the 

relevant elements from the real system are considered in the model and that 

the model is robust against exhausting the specification limits or parameters 

(Sterman, 2000). Some of the validity aspects have already been discussed 

in Section 8.3 and are specifically considered during the model development. 

Therefore, it is not necessary to prove them again. In this thesis, a special 

validation method has been proposed for this particular model to test the 

crucial aspects based on Sterman’s and Bossel’s proposals. Table 8-9 lists 

the procedures, goals and test case specifications that are part of the 

validation method. The concrete test cases are discussed in the following 

sub-sections.  

Table 8-9: Verification Method for PdMSM 

Test 
Procedure 

Goal Test Case Specification Pass Condition 

Structure 
Assessment 

Verify that 
modelled and 
real system 
structure are 
consistent. 

Demonstrate that stock 
variables that refer to positive 
elements in reality cannot 
have negative values. 

Model results for selected 
variables and a particular 
scenario are consistent. 

Parameter 
Assessment 

Verify that 
parameter 
values can be 
determined 
quantitatively. 

Justify the parameter value 
retrieval.  

It is comprehensibly explained 
how to determine initial values 
for selected parameters in real 
world. 

Extreme 
Condition 

Verify that the 
model is robust 
against 
exhausting the 
specification 
limits or 
parameters 

Demonstrate that the model 
results are still consistent for 
extreme parameter values.  

Model does not produce 
inconsistent values when 
exhausting the specification 
limits of selected parameters. 

Empirical 
Validity 

Verify that the 
trend of 
simulated values 
is consistent to 
the real system. 

Compare core variables over 
one year between historical 
data and simulation results. 

The dimension and trend of 
selected simulated values are 
consistent to the real system 
over a specific period. 

Application 
Validity 

Verify that the 
model supports 
the practical 
application 
purpose. 

Demonstrate the comparison 
of two operations regarding 
the effects of PdM application.  

The model can be applied as 
designed to discover and 
compare quantitative scenario-
specific effects. 
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8.6.1 Structure Assessment 

To verify the structural validity, the following test cases have been selected 

that follow the test case specification. All test cases use the same set of initial 

parameter values. The tests cases consider the experiments with and without 

the application of PdM.  

1) Number of Failures is not negative.  

Figure 8-15 shows the evolution of the stock variable ‘Number_Failures’ 

with and without application of PdM over one year (in weeks). Since the 

simulated values are strongly related to the company performance, they 

are not allowed to be published. This stock variable is part of the 

workcenter sub-model and counts failures of a particular workcenter; it 

cannot be negative in reality.  

 

Figure 8-15: Structural Validity of Number of Failures 

 

The blue line refers to normal execution of the model without application 

of PdM, whereas the orange line refers to the scenario that applies PdM. 

The results show that the number of failures cannot become negative, 

neither without nor with application of PdM.  

2) Unscheduled Downtime is not negative.  

Figure 8-16 shows the evolution of the stock variable 

‘UnscheduledDownTime’ with and without application of PdM over one 



 

 

334 8.6 Model Verification 

year (in weeks). Since the simulated values are strongly related to the 

company performance, they are not allowed to be published. This stock 

variable is also part of the workcenter sub-model and sums unscheduled 

downtimes of a particular workcenter; it cannot be negative in reality.  

 

Figure 8-16: Structural Validity of Unscheduled Downtime 

 

The blue line refers to normal execution of the model without application 

of PdM, whereas the orange line refers to the scenario that applies PdM. 

The results show that the unscheduled downtime cannot become 

negative, neither without nor with application of PdM. 

3) WIP at Focus Operation is not negative.  

Figure 8-17 shows the evolution of the stock variable ‘FocusOperation’’ 

with and without application of PdM over one year (in weeks). Since the 

simulated values are strongly related to the company performance, they 

are not allowed to be published. This stock variable is part of the 

production line sub-model and counts wafers that are waiting to be 

processed; it cannot be negative in reality. The blue line refers to normal 

execution of the model without application of PdM, whereas the orange 

line refers to the scenario that applies PdM. 
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Figure 8-17: Structural Validity of WIP at Focus Operation 

 

The results show that the WIP cannot become negative, neither without 

nor with application of PdM. In this scenario, there is no impact of PdM on 

WIP at focus operation at all, hence, the two lines are completely 

overlapping (the blue line is hidden).  

8.6.2 Parameter Assessment 

The parameters can be divided into quantifiable information and soft 

information. All types of quantifiable data that are required to initialise the 

model can be extracted from the databases that were discussed in Section 

5.5. These are standard systems in SI PS. Therefore, the risk that other 

companies cannot collect the required information to configure the 

parameters is very low. The following cases were selected for the testing to 

investigate how to initialise the model for quantifiable parameters.  

1) Number of Similar Machines  

The case-study company uses a MDM system to manage machine-

related information. Each machine record has an association to a 

workcenter record. This association indicates the similarity from a process 

perspective. The number of similar machines is the number of machine 

records, which point to the same workcenter record.  
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2) Pre-Process Cycle Time 

The company’s BI system consists of a module called ‘CT & FF’, which 

analyses the performance of single operations, or entire product routes 

within a specified timeframe in the past. The operation-specific 

performance data from the selected product route for the previous 12 

months can be exported into an Excel file. After selecting the focus 

operation, the analyst knows the position of the operation within the 

product route, for instance, it could be on the 90th position out of a total of 

140 operations. The analyst must calculate the CT mean of all operations 

over the previous 12 months. Then, the percentage of all operations up to 

the position of the focus operation, which is 64%, is multiplied by the CT 

mean value. This value is used for the parameter. It is important to apply 

the same logic to set the Pre-Process WIP value to ensure consistency 

when comparing different operations from the route.  

3) Required EM Technicians per Shift (Minimum)  

The ERP consists of a plant maintenance module to manage the 

maintenance activities. Based on the historical maintenance records and 

the plant shift schedule, the number of EM technicians that is required per 

shift to execute the stored maintenance activities can be extracted. The 

maintenance activities must be categorised into ‘production-critical’ and 

‘postponing-optional’. When only production-critical activities are 

considered, the required number of persons is used for the minimal 

parameter.  

There is also soft information required to initialise the simulation model. This 

type of data is usually not extractable from databases but depends on expert 

assessment. For instance, the degree of operator qualification level must be 

expressed as a percentage from zero to one. Although the case study 

company uses a software-based qualification matrix to grant certificates to 

operators, a quantitative degree cannot be derived from the data because the 

specification limits are indeterminable. Therefore, a production leader with 

knowledge of the qualifications of his operator team must specify the degree 

based on his personal experience and opinion. A simulation user must apply 

this procedure for all parameters that require soft information.  
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8.6.3 Extreme Conditions 

The goal of this test is to demonstrate that the model is robust against 

extreme parameter values. However, extreme values shall still consider 

realistic scenarios. For instance, a RPT that equals zero is not useful for 

demonstration purposes because it does not exist in the real PS. The 

following test cases demonstrate the robustness. The rest of the model 

configuration is equal to the other tests if not explicitly mentioned.  

1) Verify the model behaviour for an operation with a very small 

RPT value and with a very big RPT value.  

The first experiment uses a RPT that equals 0.05 hours, which means 3 

minutes. For the second experiment, the RPT is set to 24 hours. To 

exclude other effects from overcapacity or low WIP availability, the 

number of process-released machines is set to one. Figure 8-18 shows 

the results of both experiments.  

 

Figure 8-18: Comparison of FF at Focus Operation for Extreme RPT Values 

 

The figure uses two vertical axes with different dimensions. The left axis 

belongs to the blue line (RPT=24), whereas the right axis belongs to the 

orange line (RPT=0.05). The courses of both lines are different and do 

not break out into unexpected directions. Both small and high RPTs lead 
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to extremely high FF values but with different growth measures. Although 

the high RPT generates a lower FF at the beginning of the experiment, 

the FF grows over time due to the backlog of wafers in the focus 

operation WIP that cannot be processed due to the long process duration 

and limited capacity of only one machine. The small RPT generates an 

extremely high FF already at the beginning of the experiment. Although 

the FF decreases significantly after a few weeks, it remains at an 

extremely high level over the entire simulation period. This effect comes 

mainly from overcapacity and relatively low WIP at the focus operation. 

Despite the short RPT, the operation is dependent on the ingoing flow 

from the pre-process stock variable. The operation processes the same 

number of items within a week as it would process with a higher RPT due 

to these physical restrictions. Only the FF expresses a poor performance 

due to the low RPT. 

 

2) Verify the equipment availability with high and low unscheduled 

downtimes.  

The optimum for a workcenter performance would be the complete 

avoidance of unscheduled downtime, for instance, based on intelligent 

prediction algorithms. The first experiment sets UD to zero. The second 

experiment uses an extraordinary high percentage of unscheduled 

downtime. The input box is limited to 0.25 as the maximum value because 

of consideration of other causal effects that increase the initial 

percentage. From a practical perspective, such an average percentage of 

unplanned downtime over all machines within a workcenter is an indicator 

for an extremely poor performance. Figure 8-19 shows the results of both 

experiments.  

An unscheduled downtime percentage of zero leads to an increased 

equipment availability. Because of existing standby time and scheduled 

downtime, the availability still does not reach 100%. In the second 

experiment, the level of equipment availability decreases by the difference 

of approximately 0.25. Both experiments generate reasonable values for 

equipment availability. These results demonstrate the model is robust 

against extreme UD values.  
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Figure 8-19: Comparison of Equipment Availability for Extreme UD Values 

 

Further experiments have been performed to verify the robustness by 

applying extreme values for the percentage or reactive maintenance, the 

repair time, the cost rates and more. All of these experiments generated 

convincing results. This leads to the finding that the model is robust against 

extreme values, because the model does not produce inconsistent values 

when exhausting the specification limits of selected parameters.  

8.6.4 Empirical Validity 

To prove the empirical validity, the following test cases were executed to 

compare the results over one year between historical data from the case 

study company and simulation results. 

1) Compare dimension and development of WIP at focus operation.  

Figure 8-20 shows the visual comparison of simulated and empirical 

values. The blue line refers to the simulated results without application of 

PdM, whereas the grey line represents the empirical data for WIP at the 

selected operation. The actual values are not allowed to be published 

since they depict confidential information about the company 

performance.   
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Figure 8-20: Empirical Validity of WIP at Focus Operation 

 

Although the courses between simulation and historical data do not match 

exactly, the dimension and average trend of the simulation results are 

valid except for a few outliers that are not predictable.   

2) Compare dimension and development of FF at focus operation.  

Figure 8-21 shows the visual comparison of simulated and empirical 

values from another operation. The blue line refers to the simulated 

results without application of PdM, whereas the grey line represents the 

empirical data for FF at the selected operation. The actual values are not 

allowed to be published since they depict confidential information about 

the company performance. 

At the first glance, the simulated FF and the FF from the empirical data 

show significant differences for the selected operation and period. These 

differences are mainly caused by oscillations that exist within the 

historical data and that cannot be predicted by PdMSM mainly because of 

noise. However, the dimensions are comparable and the trends show 

similarities such as higher values in the first third of the period and 

decreasing values in the last third.   
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Figure 8-21: Empirical Validity of FF at Focus Operation 

 

3) Compare dimension and development of unscheduled downtime 

at selected workcenter.  

Because the term ‘workcenter’ refers to a set of machines, the historical 

data that is stored at machine-level must be aggregated. The comparison 

data uses the weekly average of unscheduled downtimes over six 

machines that belong to the same workcenter. The historical unscheduled 

downtimes are then cumulated over one year. Figure 8-21 shows the 

visual comparison of simulated and empirical values. The blue line refers 

to the simulated results without application of PdM, whereas the grey line 

represents the empirical data for unscheduled downtime at the selected 

workcenter.  

The figure demonstrates that dimension and final values of the both 

simulated and historical UD is similar though the starting points and 

slopes are slightly different. Again, the actual values are not allowed to be 

published since they depict confidential information about the company 

performance. 
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Figure 8-22: Empirical Validity of Unscheduled Downtime at Selected 
Workcenter 

 

These results support the empirical validity of the model because the 

dimension and trend of selected simulated values are consistent with the real 

production system over one year.  

8.6.5 Application Validity 

The model must be capable of supporting the method that was defined in 

Section 8.2. Therefore, the application validity must be verified by executing 

the method that uses the model and its results.  

1) Identify a high-volume product and gather data for model 

initialisation  

The model requires a detailed level of initial configuration in the context of 

a selected product. To verify the correctness of the simulation model, a 

high-volume product from the case study company is selected. The test 

environment consists of information about the product route from the FoL 

production area including its operations and workcenters. Furthermore, 

the planning data, such as RPT, expected cpk, expected failure rate or 

expected MTTR, are required for those operations and workcenters that 

are focussed on during the experiment. To configure the production-line 

sub-model, the historical performance data is also required to specify the 
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average CT, batch size and WIP. For the operator sub-model the 

expected number of operators, as well as the planned operator 

availability, are crucial for the initialisation. All types of data that are 

required to initialise the model are either retrieved from the databases that 

were discussed in Section 5.5, or must be configured based on expert 

assessment for soft information. 

 

2) Select operations that shall be compared 

The test case compares two operations from a selected product route to 

evaluate which one would generate more benefit over one year when 

PdM has been applied. The route consists of 133 operations. The first 

operation performs an evaporation process that is released to four 

machines; the second operation performs a sputtering process that is 

released to three machines. Although both operations belong to the 

workshop ‘metallisation’ and the process goal is to add layers of one or 

many noble metals to a wafer, the single process execution as well as the 

equipment complexity is quite different. The evaporation operation uses 

machines that load a number of wafers from one or many lots – the batch 

size – into one big chamber and processes them in parallel. The 

operation ends for all wafers at the same time. By contrast, the sputtering 

operation requires cluster machines that consist of up to six chambers. 

Each chamber can only process one wafer at the same time. A handling 

robot moves the wafers one by one from the loading station into the 

desired chamber to perform the process. After the process has finished, 

the handling robot moves the wafer either to the next chamber to add 

another noble metal layer or back to the loading station when the process 

goal is achieved. The operation ends when all wafers from a lot have 

achieved the process goal. Due to the machine complexity, each sputter 

chamber can have downtimes independently, but the machine is still 

ready for production but with less capacity. Therefore, each chamber 

stores its own set of status data in the CIM database and the amount of 

historical data is significantly higher compared to the evaporation 

machines. 
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3) Identify goals of PdM 

A simulation user must be aware of the performance indicators that shall 

be analysed and compared to evaluate the benefits of PdM. For this 

simulation model, twelve performance indicators from different sub-

models were selected. The selected indicators are dynamic variables or 

stock variables. To export the simulation data into an Excel file that is 

accessed through an AnyLogic connector, it is necessary to create and 

configure a dataset per variable. AnyLogic writes the weekly results of 

each variable during the experiments into its associated dataset. Each 

experiment requires two runs. The first run has deselected the ‘PdM 

Active’ flag to indicate a manufacturing process under normal conditions. 

The second run has activated this flag to enable the impact associations 

through PdM in all sub-models. After each run, the user must press a 

button to trigger the data export into Excel. Figure 8-23 shows the 

components that are required to process this data export including the 

selected datasets.  

 

 

Figure 8-23: Data Export Configuration for Experiment Results 
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4) Initialise and execute experiments 

To compare the selected operations, an initialisation file per scenario is 

created and configured for each parameter that was discussed in Section 

8.5. Since the configuration values depict confidential information, they 

are not allowed to be published. More details about the manufacturing 

process and the use of sputtering and evaporation are presented in 

Section 5.4. Table 8-10 shows the configuration for all sub-models of the 

sputtering scenario.  

Table 8-10: Configuration for Sputtering Experiment 

Workcenter 

Assist Rate 3 Probability Avoid Downtime 0.4 

Failure Rate 11 Percentage New EQ Invest 0.1 

MTTR Plan 0.02 Percentage Spare Part Replacement 0.7 

Number Similar Machines 12 Repair Improve Factor 0.1 

Equipment Lifespan Planned 12 Percentage SD 0.05 

Percentage UD 0.06 Percentage SB 0.5 

Operator 

Number Operators 4 External Motivation Factor 0.1 

Degree Qualification 0.8 Number Operators Motivated 2 

    Number Operators Unmotivated 2 

Equipment Maintenance 

EM Staff Min 3 EM Staff Opt 5 

EM Current 4 EM OOS 2 

EM Pool 0     

Product Line 

Fab Utilization 0.8 RPT Prod 4.3 

PreProc CT 0.07 PreProc BS 20 

PostProc CT 0.41 PostProc BS 22 

Single Process Variety 0.4 Setup Rate 100 

Post Proc WIP 6757 PreProc WIP 1243 

Focus Op WIP 150     

Focus Operation 

RPT 5 Number Process-released Machines 3 

Batch Size 24 Percentage Process Inspections 0.1 

4M Synchronicity 1 cpk 2 

Percentage Wafer to Scrap 0.1 Percentage Expected Volume 0.1 

Percentage Wafer to Rework 0.2 Percentage Machine-rel. Process Failures 0.2 

Target Automation Degree 0.8 Noise Factor 0.3 

Costs 

Cost Rate EM 4000 Cost Rate Inventory 10000 

Cost Rate Personnel 4000 Cost Rate Product 9000 

Cost Rate Spare Parts 15000     

 

The same preparation must be performed for the evaporation scenario. Table 

8-11 shows the configuration data for all sub-models.  
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Table 8-11: Configuration for Evaporation Experiment 

Workcenter 

Assist Rate 3 Probability Avoid Downtime 0.4 

Failure Rate 3 Percentage New EQ Invest 0.1 

MTTR Plan 0.03 Percentage Spare Part Replacement 0.7 

Number Similar Machines 20 Repair Improve Factor 0.1 

Equipment Lifespan Planned 12 Percentage SD 0.1 

Percentage UD 0.16 Percentage SB 0.3 

Operator 

Number Operators 4 External Motivation Factor 0.1 

Degree Qualification 0.8 Number Operators Motivated 1 

    Number Operators Unmotivated 2 

Equipment Maintenance 

EM Staff Min 4 EM Staff Opt 7 

EM Current 5 EM OOS 2 

EM Pool 1     

Product Line 

Fab Utilization 0.8 RPT Prod 4.30 

PreProc CT 0.30 PreProc BS 20 

PostProc CT 0.18 PostProc BS 22 

Single Process Variety 0.4 Setup Rate 100 

Post Proc WIP 3081 PreProc WIP 4919 

Focus Op WIP 150     

Focus Operation 

RPT 7 Number Process-released Machines 4 

Batch Size 18 Percentage Process Inspections 0.30 

4M Synchronicity 1 cpk 2.10 

Percentage Wafer to Scrap 0.15 Percentage Expected Volume 0.10 

Percentage Wafer to Rework 0.1 Percentage Machine-rel. Process Failures 0.10 

Target Automation Degree 0.6 Noise Factor 0.30 

Costs 

Cost Rate EM 5000 Cost Rate Inventory 10000 

Cost Rate Personnel 3000 Cost Rate Product 9000 

Cost Rate Spare Parts 6000     

 

Both experiments are performed with PdMSM based on these parameter 

values to generate and export the results. After each experiment has 

been finished, the user must copy the created result file and rename it by 

an operation-specific identifier. This is necessary because AnyLogic does 

not allow the creation of new Excel files and requires a template file as 

connection endpoint. A user is not limited to compare only two operations. 

Therefore, it is important to manage the result files by name; otherwise, 

with a bigger number of result files, the contents cannot be associated to 

a particular experiment in worst case. 

5) Analyse and Evaluate results 

A result file consists of multiple sheets, where each sheet belongs to one 

dataset from the experiment. The order is specified in the function body of 

the data export buttons as shown in Figure 8-23. A sheet consists of two 

series of data, where the left one refers to the normal execution and the 
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right one to the execution with PdM consideration. By adding a 

percentage formula to a further column, a user can compare the relative 

differences for each week. Figure 8-24 shows an excerpt of one of the 

result files.  

 

Figure 8-24: Sample Experiment Result with two Data Series and a 
Percentage Comparison in column G 

 

A simulation user can perform experiment-specific analyses with only one 

result file. For instance, the user wants to understand the development of 

the unscheduled downtime over a year with and without application of 

PdM. Figure 8-25 shows a comparison of the UD results for the sputter 

experiment. Since the simulated values are strongly related to the 

company performance, they are not allowed to be published.  

 

Figure 8-25: Development of UD for Sputter Workcenter 
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The blue line refers to the normal scenario without application of PdM, 

whereas the orange line visualizes the development of UD if PdM was 

applied at the workcenter. The comparison of both time series indicates 

that the sum of UD over one year would decrease by ca. 15% after 

application of PdM. 

6) Comparison of the results of all experiments 

To compare different operations, the user can use the percentage 

comparison results from each file and merge them into a new analysis 

document. Figure 8-26 shows how the equipment availability of sputtering 

and the evaporation workcenters would change after the application of 

PdM.  

 

Figure 8-26: Comparison of Sputtering and Evaporation regarding Equipment 
Availability Evolution after PdM Application 

 

From Figure 8-26, it can be seen that the equipment availability at the 

evaporation workcenter would improve approximately twice the sputtering 

workcenter with a continuous rate over the year. To understand the 

influence of PdM application on the performance of the focus operations, 

the flow factor development can be compared as shown in Figure 8-27.  
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Figure 8-27: Comparison of Sputtering and Evaporation regarding Product 
Line FF Evolution after PdM Application 

 

The figure shows that the performance of both operations would improve 

by the application of PdM. By end of the simulated year, the sputter 

operation would have improved the most, whereas the evaporation 

operation would have the largest benefit until week 38. Another aspect is 

to compare the influence of PdM application on the overall product line 

performance between the selected operations. Figure 8-27 depicts this 

type of comparison for the selected operations.  

 

Figure 8-28: Comparison of Sputtering and Evaporation regarding Product 
Line FF Evolution after PdM Application 
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The result is that the performance of the whole product line would 

decrease marginally over time if PdM was applied at the evaporation 

workcenter. By the application of PdM at the sputter workcenter, the 

entire product line performance would increase over time.  

7) Identify preferable workcenter

The analysis reveals that the PS performance would improve most 

significantly by applying PdM to the sputtering workcenter. This 

improvement is effective to the specific operation as well as to the entire 

product line. In contrast, the evaporation equipment availability would 

increase at most when applying PdM. A production manager must choose 

the preferred workcenter depending on the previously selected goals. If 

only the equipment performance improvement is the target, it is worth 

applying PdM to the evaporation machines. If the logistics aspects are 

considered in order to improve the entire product line performance, the 

results suggest applying PdM to the sputtering workcenter.  

This sub-section has demonstrated the application validity by describing the 

application of the method using the developed model in detail. The 

discussion has included: how to define a scenario, how to initialise an 

experiment, how to export experiment results, and how to analyse and 

compare the results in order to identify the workcenter where PdM would 

generate the most significant improvements for the SI PS performance.  

8.7 New Knowledge from Experiments 

The experiments have demonstrated that the quantitative benefits of PdM 

application are dependent on the selected operation and workcenter. 

Whereas the PPES provides a general and qualitative trend for direct and 

transitive influences of PdM on the SI PS performance, the PdMSM allows a 

more specific differentiation. There are differences between product lines, 

their operations and the workcenters that are used to process the operations. 

These details must be considered in order to analyse the quantitative 

influences of PdM. Besides the expected effects that were mentioned by 

experts or inferred by PPES, the experiments have revealed new findings 

regarding the application of PdM in SI that are discussed as follows.  
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1) PdM leads to reduction of downtimes and failures, but not

necessarily to the reduction of MTTR.

The simulation results show that MTTR grows when PdM is applied, 

although downtime and number failure decrease. This effect is 

contradictory to the expert interview results and PPES. Figure 8-29 shows 

the effect for the evaporation experiment.  

Figure 8-29: Results for MTTR 

An analysis of the detailed simulation results suggests that this effect 

comes from a disproportionate development of repair time and the 

number of failures. These elements are the required elements for the 

MTTR calculation. Although both the sum of repair time (ca. −29%) and 

the number of failures (ca. −33%) over a year are reduced significantly by 

application of PdM, the number of failures decreases by a higher factor 

compared to the repair time. This is why the MTTR increases in this 

situation. Technically, this effect is produced due to the independence of 

the flows in PdMSM that add failures and UD. Practical reasons for this 

effect can be the insufficient balance of EM availability between the 

production shifts or the reduction of EM staff because of PdM. In such 

cases, also fewer failures can take longer to be repaired. The new insight 

is that a disproportionate reduction of failures and repair times must be 

averted when applying PdM in order to reduce MTTR.  
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2) While PdM improves the Equipment Availability and Equipment 

Capacity, it could increase the Flow Factor (operation and line).  

Several experiments have demonstrated that the application of PdM at 

both selected operations would increase the flow factor of the product line 

– which is a negative effect – under certain conditions. Figure 8-30 shows 

the flow factor development for a scenario where the parameter ‘Expected 

Volume Percentage’ is increased from 0.1 to 0.2 for both operations. This 

modification increases the reserved capacity of the underlying workcenter 

for the selected operation and product line.  

 

Figure 8-30: Comparison of Sputter and Evaporation Operations with 
Negative Effect on PS Performance after PdM Application 

 

A similar consequence appears for the focus operation itself. This effect 

does not meet the expectations of the interviewed experts. An analysis of 

the simulation environment reveals the WIP at the focus operation as a 

limiting cause. Although the operation including all PS participants could 

potentially perform faster due to PdM, there is not enough WIP available to 

turn this improvement into a real performance benefit. Figure 8-31 shows 

the results of WIP availability before and after PdM is applied for the 

evaporation operation.  
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Figure 8-31: Results for WIP Availability 

 

Further simulation runs with different configurations suggest that this 

effect only appears for operations that are processed with workcenters 

where overcapacity exists. When PdM is applied, the degree of 

overcapacity increases. In addition, the WIP availability decreases, 

and therefore, the operation performance decreases as well. When the 

capacity limit is reached permanently, the initial flow factor is already 

significantly higher. This can happen, for instance, in case of ‘tool 

dedication’ when only one machine is available for a certain process 

as part of the operation. To demonstrate this effect, the evaporation 

experiment from the application validity test is limited to three instead 

of four process-released machines. The initially higher flow factor can 

be improved by applying PdM because of the increased workcenter 

capacity. Figure 8-32 shows the FF evolution for both scenarios under 

limited capacity: the experiment indicates that the average FF would 

decrease by almost 50% due to application of PdM in this situation.  
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Figure 8-32: Results for Flow Factor at Focus Operation with Limited 
Capacity 

 

The WIP availability is constantly equal to one, because there are 

permanently more wafers waiting to be processed than the workcenter 

is able to serve. The application of PdM does not reduce the WIP 

availability in this case, as shown by Figure 8-33.  

 

Figure 8-33: Results for WIP Availability at Focus Operation with Limited 
Capacity 

 

This new finding supports model users in order to select proper 

operations. PdM provides only benefit to the PS performance, if the 

associated workcenter is limited in capacity.  
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3) Percentage of EM-related cost reduction that is triggered by PdM 

is dependent on spare part lifespan. 

EM costs and spare part costs are mainly affected by the application of 

PdM compared to other types of costs. The comparison in Figure 8-34 

shows how PdM would reduce both types of costs over one year.  

 

Figure 8-34: Comparison of Influences of PdM on EM and Spare Part Costs 

 

Despite an early outlier in the development of the spare part costs for 

evaporation equipment, the courses of the lines are similar. Because the 

percentage differences are calculated based on stock variables, which do 

not have any subtracting flow, the final values consider the sum of costs 

from the entire simulation horizon. The figure depicts that PdM would 

reduce both costs by a higher percentage when applying at the sputter 

operation. It should be considered that the weekly cost rates are different 

for both operations in the experiments. The sputter operation generates 

much higher spare part costs, whereas the evaporation generates more 

EM costs. Further experiments were executed to understand the 

dependencies, for instance, with equal cost rates. However, the height of 

the weekly costs does not influence the percentage difference that can be 

achieved through PdM. Finally, the degree of exhausting wear limits was 

identified as the root cause for this result. Figure 8-35 shows the 

percentage differences for both operations when PdM is applied.  
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Figure 8-35: Comparison of the Degree of Exhausting Wear Limits when 
applying PdM 

 

Caused by other influences within the workcenter sub-model such as 

failure reduction, the degree improvement is slightly higher for the 

sputtering operation. The new insight is that the percentage cost 

reduction is independent of the absolute costs. If a PdM project is initiated 

to reduce costs and the cost rates of the potential production areas are 

similar, the area with the highest percentage of improvement of 

exhausting wear limits shall be selected. However, if the cost rates are 

different, it is crucial to calculate the absolute cost reduction based on the 

percentage improvement in order to select the preferable area.  

 

4) Degree of yield improvement by application of PdM is dependent 

on the current scrap rate at the focus operation. 

Experts have stated that they believe that the yield increases by the 

application of PdM. However, it was not clear from the primary data or the 

PPES under which conditions the yield would improve at most. Figure 

8-36 shows a comparison of the two operations sputtering (blue line) and 

evaporation (orange line) based on results from the application validation. 

The figure depicts the percentage yield improvement that is generated by 

applying PdM per operation.  



357 8.7 New Knowledge from Experiments 

Figure 8-36: Yield Improvement Comparison between Sputtering and 
Evaporation when PdM is applied 

Further experiments under varying conditions have been executed to 

confirm or refute, for instance, the percentage of machine-related 

process failures or the WIP level at the pre-process as influencing 

factors. Finally, the root cause for this effect could be found at the higher 

initial scrap percentage at the evaporation operation compared to 

sputtering. The new insight is that the degree of yield improvement 

gained by PdM is not static but dependent on the operation scrap rate. If 

yield improvement is the goal, priority within a PdM project must be given 

to those workcenters whose associated operations have a comparatively 

high scrap rate.  

5) PS Availability does not increase necessarily but potentially

decreases by the application of PdM.

Similar to the flow factor finding, the PS availability can only be improved 

by the application of PdM when the capacity at the workcenter is limited. 

This effect occurs at least if the four partners are synchronous. However, 

the partners are not necessarily synchronous in a real SI PS. In such 

situations, the PS availability is lower than in a synchronous environment 

and this leads to poor manufacturing efficiency. To understand the 
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consequences under different circumstances, Figure 8-37 provides a 

comparison of the results of four experiments. It should also be noted that 

the initial PS availabilities of each experiment without application of PdM 

are also different.  

 

Figure 8-37: PS Availability Comparison under Capacity Consideration after 
PdM Application 

 

The blue and orange lines show the percentage differences in PS 

availability if PdM is applied for sputtering and evaporation operation. The 

figure shows that the availability generally increases for these two 

scenarios (by approx. 2.5 to 3.2%), and therefore, PdM has a positive 

effect. The grey line refers to the experiment where sputtering has an 

increased capacity for the selected operation, which leads to overcapacity 

without an increased production volume. In this situation, the application 

of PdM would improve the PS availability during the first weeks; however, 

it mostly decreases for the rest of the year, which is a negative effect on 

the PS performance. Generally, this particular experiment shows 

oscillations in the PS availability with and without the application of PdM; 

this is why the percentage differences that are depicted by the course of 

the grey line are strongly fluctuating. The results verify that PdM can 
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improve the PS availability only in capacity-limited environments. The 

yellow line refers to an experiment where the evaporation uses the same 

configuration as for the orange line, except for the four partners that are 

not synchronous. The results suggest that PdM would provide the most 

significant percentage improvement in this situation. Regarding PS 

performance, the analysis leads to three new insights:  

1) The application of PdM improves the PS availability of an operation 

under capacity restrictions even if the four partners are synchronous.  

2) The application of PdM improves most effectively the PS availability of 

an operation where the four partners are non-synchronous. 

3) The application of PdM decreases the PS availability of an operation 

where overcapacity exists. 

These insights must be considered when an operation or workcenter is 

selected for a PdM project with the goal of PS availability improvement. 

8.8 Summary 

This chapter has discussed the quantitative analysis and evaluation of 

impacts of PdM on the PS performance in SI under the consideration of 

attributes and dynamics of a real production environment. A method was 

defined that supports SI companies in the identification of a preferable 

workcenter where the application of PdM generates the most significant 

benefits for the PS performance. In order to develop a valid simulation model, 

the model scope and considerations were specified as prerequisites for the 

development process. The model development process transformed CLM 

elements into SD variables that participate in six interacting sub-models. 

Each sub-model is concerned with a specific aspect when evaluating the 

benefits of PdM for SI PS performance. All variables are connected through 

differential equations, which were discussed as part of the development 

process, or algebraic equations, which are listed in the appendix A3. In 

addition, the development of the simulation user interface was discussed.  

To prove the validity of PdMSM, several established test procedures were 

executed and passed. The test procedure ‘application validity’ described in 

detail the application of the method based on PdMSM in order to compute 
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and evaluate the benefits of PdM for particular scenarios. It was 

demonstrated that the method allows the identification of preferred 

operations from a product line where PdM should be applied in order to 

generate the most significant benefits for the PS performance. Finally, new 

knowledge has been presented to differentiate the quantitative influences of 

PdM application on the SI PS performance under special circumstances, 

such as overcapacity and synchronisation of the four partners. These insights 

demonstrate that there are also situations where the application of PdM may 

worsen the SI PS performance. With its presented capabilities, the method 

based on the PdMSM solves RO4. 
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Chapter 9 Conclusions and Further Work 

9.1 Main Achievements 

This section summarizes the main achievements from this thesis according 

to the initially formulated RQs.  

RQ 1: What is the current state in research on simulating and 

evaluating the production system performance in SI? 

The semi-systematic literature review presented a concise view on 

applications, parameters, calculation types and structural flexibility of PMs 

that are proposed for SI PS. The underlying core methods that are used 

within those models can be classified as analytical, deterministic, statistical, 

ML-based and others. The reviewed models are employed with challenges

from automation, logistics, quality, setup and maintenance as well as 

patterns and causal relationships. The models are able to predict 

performance indicators of SI PS such as work in progress, cycle time, wait 

time and going rate.  

The review has also discovered that none of those models can be applied to 

investigate PS behaviour from the perspective of PA. Due to the selected 

type of calculation, most of the models are not extendible to serve scenarios 

other than those initially intended. The model review has further shown that 

the fundamental associations and effects between PA and SI PS 

performance have not yet been analysed. This result supports the 

importance of this study, which is explicitly employed to investigate the 

impact of PA on the performance of PS in the SI.  

RQ 2: Which are the performance-critical characteristics of an SI PS, 

how are they causally related, and how are they affected by application 

of PdM? 

As preparation for answering this question, two groups of experts where 

interviewed: IE and EM experts. The raw data was transformed into a 

common CLM. This CLM consists of records that indicate which source term 

has an increasing or decreasing impact on a target term including the 

impact’s weight. A term can be any PS characteristic or aspect of PdM. By 
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transforming this CLM into a diagram, the causal relations between the terms 

are visualized as a network, which indicates the existence of transitive 

relations. The direct benefits that PdM might facilitate were pointed out, such 

as the reduction of machine downtimes or the increased coordination of 

maintenance processes. However, according to the IE and EM experts, PdM 

would not directly help to avoid machine downtimes. Based on the number of 

occurrences in impact associations, the most directly influenced terms as 

well as the most directly influencing terms were discovered. Although the IE 

experts did not believe that PdM would directly affect the PS performance, 

the causal loop relationships revealed high occurrences of flow factor, cycle 

time, and going rate as target terms within all captured associations. These 

are the main performance-critical characteristics of an SI PS that must be 

investigated regarding influences of the application of PdM.  

RQ 3: Can a knowledge-based system be developed to compute the 

transitive or even contradictory impacts of PdM on SI PS performance 

qualitatively? 

Based on the results of RQ 2, a knowledge-based system been developed. 

The development process showed the importance of exactness in defining 

core terms and their mutual relationships. An inference engine that is part of 

a knowledge-based system requires specific information about the inner 

logics of more complex terms. An ontology tree was developed to model 

similarity between concepts. By applying object properties, complex terms 

could be divided into logically dependent concepts and influences between 

concepts as captured in the CLM could be configured. Concepts, ontology 

tree and object property associations between concepts build the framework 

of the PPES. This framework defines the participants of the model and their 

fundamental relations.  

Each direct effect between concepts was formulated as SWRL rule. Special 

rules were created to describe the logics of transitivity for PPES. These rules 

are essential to gain results for transitive effects between concepts through 

the inference engine. The PPES calculated 34 transitive effects, such as that 

PdM increases the yield or decreases the product costs. These effects where 

not stated by the experts and are, therefore, considered as new knowledge. 

In addition, contradictory effects have been identified where transitive paths 
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within the ontology lead to conflicting associations between two selected 

concepts. The identified contradictory effects are the influence of PdM on: 

 Equipment utilization

 Little’s Law (which indicates that the metrics behind the formula would

improve)

 Production system variability (also known as ‘Alpha PS’)

 Speed of reaction in case of a machine failure

The identification of contradictory effects represent new knowledge in 

addition to the expert interview results. With its capabilities as expert system, 

properly modelled contents and the evaluated results, PPES answers RQ 3.  

RQ 4: Can a simulation model be developed to quantify the impacts of 

PdM on SI PS performance over time under consideration of particular 

workcenters, operations and production line characteristics? 

To gain reproducible results, a method that supports researchers and SI 

companies in applying the PdMSM was defined and explained. The method 

described the process of data gathering, model configuration and execution 

as well as result evaluation. The PdMSM development process transformed 

CLM elements into SD variables that participate in six interacting sub-

models. Each sub-model is concerned with a specific aspect when evaluating 

the benefits of PdM for SI PS performance. All variables are connected 

through differential equations or algebraic equations that consist of the 

impact values provided by the interviewed experts.  

The model can be applied to differentiate the quantitative influences of PdM 

application on the SI PS performance under special circumstances. The 

newly created knowledge can be summarized by following statements:  

1. ’Mean Time to Repair’ decreases only if EM managers ensure that

PdM supports proportionate reduction of failures and repair times.

2. Logistics performance improves only if the underlying workcenter is

limited in capacity or the four partners are non-synchronous.

3. PdM supports optimal cost decreases for workcenters where the

degree of exhausting wear limits can be most effectively improved.



364 9.2 Contributions to the New Knowledge Generation 

4. The degree of yield improvement gained by PdM is dependent on the

scrap rate of the operations that are associated to a particular

workcenter.

5. If a workcenter has overcapacity, PdM will potentially worsen the

logistics PS performances, even if the particular workcenter

performance can be improved.

It was demonstrated that PdMSM allows the identification of workcenters in a 

product- and operation-specific context where the application of PdM would 

generate the most significant benefits for the SI PS performance. In addition, 

the experiments demonstrated that there are situations where the application 

of PdM would reduce the SI PS performance. These results based on the 

PdMSM answer RQ 4.  

9.2 Contributions to the New Knowledge Generation 

The literature review results indicate a growing importance of PA and PdM in 

particular in the area of semiconductor manufacturing. This finding supports 

the significance of this research. The overall aim of this research was to 

analyse and evaluate the impacts of PA on the PS performances in the SI. 

The following are the key contributions of this thesis:  

1) The thesis proposed a new framework to discover in which way PA

can be applied in order to overcome challenges in SI value chains.

This perspective of benefit evaluation in the area of PA was not

present prior to this project. The framework can be adopted by other

research projects in the area of PA and SI.

2) The thesis contributes with the PPES in order to support researchers

and practitioners in discovering transitive effects within SI PS

qualitatively. Through the analysis and evaluation of the PPES, 34

transitive positive as well as 4 contradictory effects were identified.

This result confirms hypothesis 1 that was stated in 2.6 for PdM as

particular PA application. The inference engine of the PPES provides

valuable explanations why pairs of concepts can have contradictory

associations that are both true. This type of knowledge was not

present prior to this study. In addition, it was proved that PdM is able
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to support SI companies in mastering challenges in SI value chains as 

proposed by the conceptual framework. 

3) Since previous studies in the area of PdM in SI did not consider

performance effects beyond machines, a differentiation of advantages

and limitations of PdM regarding the various aspects of PS

performance was not existing prior to this study. Hence, a further key

contribution of this thesis is the generation and presentation of this

new knowledge based on simulated dynamic effects in accordance to

behaviours from a real SI PS. The results that were generated through

PdMSM confirm hypothesis 2 for PdM: it was proved that the benefits

of PdM regarding SI PS performance are not static but dependent on

particular workcenters and operations in the context of a specific

production line. In addition, the experiments revealed scenarios where

the benefits of PdM would gain the most significant improvements,

where the benefits are limited or where the application of PdM would

even decrease the PS performance (e.g., made visible by increased

flow factor or decreased PS availability).

4) A practical key contribution of this thesis is a method based on

PdMSM to discover, quantify and evaluate the impacts of PdM on the

SI PS performance over time under consideration of workcenter-,

operation-, and production-line-specific characteristics. Due to the

extensive efforts that are required to build a PdM solution for particular

machines, it is important to select suitable workcenters where the

benefits of PdM are optimal. The method enables a company to

differentiate the benefits of PdM based on environmental

characteristics such as raw process time, number of similar machines

and WSPW. By applying the method, different workcenters can be

compared to understand which one would generate the most

significant benefit for the SI PS performance if it would be managed

through PdM. Criteria for the preselection of operations and

associated workcenters as well as considerations for intended goals

have been discussed in Section 8.7.

Further contributions of this thesis can be divided into theoretical work and 

practical applications. Following contributions are mainly associated to 

theoretical work: 
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1) Primary challenges of SI value chains have been identified and 

evaluated based on topical research in this area. In addition, the 

current and potential future implications of the Covid-19 pandemic on 

SI have been studied and presented.  

2) Major issues in the theoretical definition of PA have been detected and 

discussed. These issues include among others an unclear 

demarcation from DM and a mismatching selection of PA techniques. 

It was concluded that a benefit cannot be calculated neither for PA in 

general nor for a particular PA method. Instead, it was suggested to 

calculate the benefit of PA based on particular PA applications. 

3) Crucial PA applications that are relevant to semiconductor 

manufacturing have been identified and collected. The thesis 

contributes with a critical review of current research activities that are 

concerned with these applications. The detected issues per PA 

application can be consolidated as follows: 

a. Though PdM is an established term, it is not commonly defined 

in literature. In addition, PdM as a strategy is not clearly related 

to other maintenance strategies. Existing studies that evaluate 

the benefits of PdM in general and for particular machines did 

not consider logistics aspects, though logistics was identified as 

most challenging area in wafer fabrication.  

b. SM is not clearly defined in literature and shows significant 

overlaps to other PA applications. SM can be considered as a 

holistic approach that seamlessly integrates multiple PA 

applications. However, such an approach depends on 

collaborative standards, which was identified to be a weak spot 

in SI value chains. 

c. Traditional process control consists of multiple applications 

such as R2R, SPC and FDC, where most of them would 

improve by application of PA. Though ML outperforms 

traditional SPC techniques, it is not evident from literature that 

SI companies migrate to ML-based SPC solutions. Further 

research is required to understand this reluctance and to 

develop strategies that support this migration. An additional 
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finding is that implications of predictive process control on the 

logistics performance of an SI PS were not studied so far.  

d. PQ was not commonly defined in literature. Some authors

considered it as a result from PdM, though advanced

approaches beyond fault prediction were demonstrated and

published. Studies on applications that reduce the testing

efforts and support quality-by-design have been reviewed.

However, influences of PQ on the logistics PS performance

were not studied so far. Predictive reliability applications were

argued to do not have impact on SI PS performance.

e. Predictive dispatching was found to outperform traditional

dispatching techniques. Nevertheless, it was not evident from

literature that there is a trend in SI to move on towards ML-

based dispatching. In addition, predictive scheduling shows

significant benefits compared to analytical or deterministic

approaches. However, it was detected that applications are

often called ‘predictive’ without applying PA as considered in

this thesis context.

4) The thesis contributes with the presentation of the state of research for

PMs in SI. In advance, it was found that the term ‘performance’ was

not consistently defined in literature; therefore, a particular definition

for the scope of this thesis has been introduced. KPIs that are crucial

to SI manufacturing within the defined scope have been presented

and associated to selected challenges from SI value chains. Overall,

18 PMs that are capable of predicting influences of various

parameters on the SI PS performance have been identified and

evaluated. The parameters under study were, for instance, batch size

at bottleneck tools, lot size policies, scheduling policies or dispatch-

rule parameters. The review process identified different applied

calculation types (e.g., analytical and statistical) and different types of

challenges (e.g., automation and logistics). Another finding of the

review is that none of the examined models is capable of supporting

the aim of this research.

5) The majority of researchers in the area of PdM are concerned with

benefits of PdM regarding machine performance or by applying
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optimal PA methods, e.g., Munirathinam and Ramadoss (2016), 

Moyne, Samantaray et al. (2016) or Hashemian (2011). Therefore, the 

general contribution of this study is the presentation of logical 

associations that reveal how PdM influences the key performance 

indicators in semiconductor manufacturing beyond machines through 

transitive causal relationships. These associations are captured within 

the CLM. 

6) Though the thesis discussed only the transitive effects that are found 

for PdM, the PPES consists of the full picture of logical relationships 

within a SI PS that are relevant to IE and EM. Hence, it provides also 

details about transitivity within a SI PS beyond PdM. Overall, 694 

transitive relationships were inferred, which can be analysed and 

evaluated by further research projects. It is believed that PPES and its 

comprehensive knowledgebase can be applied to any study that is 

concerned with the logical nature of performance effects in 

semiconductor chip manufacturing. By developing the PPES with 

Protégé based on OWL and SWRL as technical foundation, 

established standards are applied that support the sharing of the 

results and reusability of the ontology in the science community.  

7)  

Beyond the theoretical work, the thesis provided following contributions for 

practical application:  

1) By applying the PPES to real SI companies, the generated insights 

may influence decision processes about PdM investments at SI 

companies. Practitioners can query the PPES to retrieve particular 

logical dependencies also beyond PdM. This is a valuable contribution 

due to the complex nature of SI PS, where managers and engineers 

from different departments are potentially not aware about particular 

challenges from other areas or conflicts of goals that exist between 

multiple areas. PPES as a tool may support companies to bring 

managers and engineers on the same level of knowledge by revealing 

these conflicts and hidden dependencies from a holistic view.  

2) The thesis identified and discussed the most relevant PA applications 

and capabilities for SI frontend manufacturing: (1) PdM, (2) SM, (3) 
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predictive process control, (4) PQ, and (5) predictive dispatching and 

scheduling. The conceptual framework presented the benefits of each 

application and suggested in which way they can be applied to 

overcome challenges in SI value chains. IT and production managers 

can build on these findings in order to define PA strategies and set up 

appropriate PA projects for their company. In addition, PA techniques 

that have been verified in literature to gain most promising results for a 

particular PA application were highlighted. For instance, the ‘super 

learning’ approach is proposed to be applied for PdM in order to 

improve the prediction quality. Data scientists and data engineers at SI 

companies can use these outcomes in order to decrease own 

research efforts when implementing a PA solution.  

9.3 Limitations and Further Work 

Despite the clear research methodology and the various results that 

contribute new knowledge to the research community that is concerned with 

PA in SI, there are limitations that need to be addressed. These limitations 

exist due to the time and resource constraints of the researcher and are 

discussed as follows:   

1) Most of the content of this thesis is employed with the development,

analysis and evaluation of models. The primary data for building these

models were gathered through expert interviews. It must be

highlighted that the model results are only as good as the interviewed

experts. Furthermore, most of the experts share years of experience

with the case study company. Therefore, it is possible that aspects,

associations and challenges, which are specifically relevant to other SI

companies, are not sufficiently covered by the models.

2) The application of case study as research strategy provided a

snapshot of the SI PS under study including the expectations

regarding PdM. Because SI is a fast changing environment and

technological capabilities of PA improve rapidly, it is expected that the

results of this study have a timely limited validity.

3) The research focussed primarily on PdM although more PA

applications exist that are relevant to semiconductor manufacturing as
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presented by the conceptual framework. The decision to focus on one 

particular application was made based on the assumption that a wider 

evaluation would have exceeded the capacity of a doctoral thesis. The 

discussed efforts to gather and analyse the primary data regarding EM 

(see Chapters 5 and 6) and to build and evaluate tools to discover the 

impacts of PdM on SI PS performance (see Chapters 7 and 8) 

demonstrate that this assumption was correct.  

4) The case study was conducted at a wafer fabrication facility.

Therefore, the results of this thesis are mainly valid and applicable for

the frontend part of the SI value chain. It is not suggested to apply the

results of this thesis to backend PS without further research.

5) The focus of this research was to examine production performance

from selected perspectives. The selection of experts that participated

the interviews supported this focus. Hence, other performance aspects

that are beyond the professional expertise of the interview partners

are only covered insufficiently or are potentially missing. During the

model development, some of these gaps have been identified, for

instance, there is only a small number of causal relations captured that

consider operators or costs.

6) Although both PPES and PdMSM support reusability and applicability

in practise, their primary audience are researchers. Especially the

PdMSM owns some limitations that prevents the direct and efficient

application at real SI companies. Generally, it was built using an

academic license in AnyLogic, which excludes generating an

executable JAR file and commercial use. Therefore, the developed

model itself cannot be distributed to SI companies. If a company owns

a commercial license of AnyLogic, they can build an own PdMSM

based on the provided documentations. However, before applying the

model for commercial use, some technical limitations must be solved:

(1) PdMSM does only focus on one product line during a simulation

run and (2) operations must be selected prior to the actual experiment. 

7) From theoretical perspective, the potentially limited accessibility of

literature regarding existing PMs or PA applications in semiconductor

manufacturing must be considered. PMs from other SI companies

could exist that were not published but could be applied to solve this
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research aim. Therefore, they could not be reflected in this research. 

In addition, there could be relevant literature in further libraries that are 

not accessible via Google Scholar. Though studies from Khabsa and 

Giles (2014) and Lewandowski (2010) suggest that Google Scholar 

covers nearly 90% to 100% of all English literature and journals in 

particular, it cannot be fully excluded that relevant articles are missed 

to reflect in this research.  

Based on these limitations, following further work is proposed that builds on 

this research project:  

1) Further research can be conducted, for instance, in five to ten years to

compare the evolutions of both SI and PdM and in which way it affects

the results of this research.

2) Further research can be conducted to analyse and evaluate particular

impacts of predictive scheduling and other presented PA applications

on SI PS performance. The proposed research methodology in this

thesis is expected to support other projects as well. The developed

tools can be reused for other cases, because they cover the core

associations within a wafer fabrication PS. However, it might be

required to add other perspectives to the models such as from process

engineers or quality engineers for other PA applications.

3) Further research is required to discover specific performance aspects

and causal relationships for the backend part. Observations at three SI

companies underpin the independency of frontend and backend from

logistics perspective (e.g., different units of issue (‘chip’ is the logistic

unit in backend, whereas frontend works with ‘wafer’ that consist of

thousands of chips); different types of operations and machines;

different engineering knowledge). Therefore, it is not suggested to

merge backend-specific results into the frontend-oriented

knowledgebase that have been developed through this thesis. The

transitive and quantified results of merged models would not generate

reliable insights. It is proposed to conduct manufacturing performance

research in SI for frontend and backend separately.



372 9.3 Limitations and Further Work 

4) Based on the marginally covered performance perspectives, a

proposal for further research is to evaluate the particular impacts of

PdM on the socioeconomic aspects of semiconductor manufacturing,

which may include employee performance but also social aspects.

Another research project could be employed with the analysis and

evaluation of detailed cost developments when applying PdM in SI PS.

Both PPES and PdMSM can be reused and extended for these

purposes.

5) The PdMSM was primarily developed to serve this particular research

project. To apply the proposed method efficiently to practice, further

work must be spent in order to improve the simulation capabilities. It is

suggested that an advanced model should consider (1) multiple

product lines that share the same workcenters, (2) multi-operation

comparison at the same time within the model as well as (3) merging

operation-specific results that refer to the same workcenters. These

enhancements would also reduce the manual efforts for data analysis

and comparison that is performed in Excel.



373 Bibliography 

Bibliography 

Abbott, D. (2014) Applied predictive analytics: Principles and techniques for 

the professional data analyst, Indianapolis, IN, Wiley. 

ACE (2015) ‘Daten und Fakten: Fahrzeugbestand altert spürbar’ [Online]. 

Available at https://www.ace.de/fileadmin/user_uploads/Der_Club/Presse-

Archiv/Grafiken/ace-studie-fahrzeugbestand-altert.pdf (Accessed 14 

February 2020). 

Adams, W. C. (2015) ‘Conducting Semi-Structured Interviews’, in Newcomer, 

K. E., Hatry, H. P. and Wholey, J. S. (eds) Handbook of practical program

evaluation, San Francisco, Jossey-Bass & Pfeiffer Imprints, Wiley, pp. 492–

505. 

Adobe (2020) Weniger Rätselraten mit Predictive Analytics | Adobe Analytics 

[Online]. Available at https://www.adobe.com/de/analytics/predictive-

analytics.html (Accessed 30 December 2020.985Z). 

Alam, S., Chu, T., Lohokare, S. and Saito, S. (2020) Globality and 

Complexity of the Semiconductor Ecosystem [Online]. Available at https://

www.accenture.com/_acnmedia/PDF-119/Accenture-Globality-

Semiconductor-Industry.pdf (Accessed 18 May 2020). 

Ali Abuhasel, K. (2016) ‘A Dynamic Approach Of Using Dispatching Rules In 

Scheduling’, Jurnal Teknologi, vol. 78, no. 6. 

Alimadadi, A., Aryal, S., Manandhar, I., Munroe, P. B., Joe, B. and Cheng, X. 

(2020) ‘Artificial intelligence and machine learning to fight COVID-19’, 

Physiological genomics, vol. 52, no. 4, pp. 200–202. 

Alpaydin, E. (2020) Introduction to machine learning, Cambridge, 

Massachusetts, The MIT Press. 

AnyLogic (n.d.) Layout of large SD models [Online]. Available at https://

help.anylogic.com/index.jsp?topic=

%2Fcom.anylogic.help%2Fhtml%2Fsd%2FLayout_Large_SD.html&cp=

0_14_12 (Accessed 18 October 2019). 

AnyLogic (n.d.) Multimethodenmodellierung [Online]. Available at https://

www.anylogic.de/use-of-simulation/multimethod-modeling/ (Accessed 20 

March 2020). 



374 Bibliography 

Applied Materials (n.d.) Dispatching & Reporting | Applied Materials [Online]. 

Available at http://www.appliedmaterials.com/global-services/automation-

software/dispatching-reporting (Accessed 17 March 2020). 

Armstrong, M. (2017) Smartphone Life Cycles Are Changing [Online]. 

Available at https://www.statista.com/chart/8348/smartphone-life-cycles-are-

changing/ (Accessed 14 February 2020). 

Arnold, N. A. (2016) Wafer defect prediction with statistical machine learning 

[Online]. Available at https://www.semanticscholar.org/paper/Wafer-defect-

prediction-with-statistical-machine-Arnold/

5c36f93fb94b8ff1a92c3f7913022e2975578232 (Accessed 21 April 2020). 

Asmundsson, J., Rardin, R. L. and Uzsoy, R. (2006) ‘Tractable Nonlinear 

Production Planning Models for Semiconductor Wafer Fabrication Facilities’, 

IEEE Transactions on Semiconductor Manufacturing, vol. 19, no. 1, pp. 95–

111. 

Aunkofer, B. (2020) ‘Was ein Data Scientist wirklich können muss’, CIO, 3 

December [Online]. Available at https://www.cio.de/a/was-ein-data-scientist-

wirklich-koennen-muss,3577657 (Accessed 29 December 2020.427Z). 

Avigad, J., Lewis, R. Y. and van Doorn, F. (2017) 7. First Order Logic — 

Logic and Proof 0.1 documentation [Online]. Available at https://

leanprover.github.io/logic_and_proof/first_order_logic.html (Accessed 19 

March 2020). 

Awad, M. and Khanna, R. (2015) Efficient Learning Machines: Theories, 

Concepts, and Applications for Engineers and System Designers, Berkeley, 

CA, Apress. 

Azadeh, A., Hatefi, S. M. and Kor, H. (2012) ‘Performance improvement of a 

multi product assembly shop by integrated fuzzy simulation approach’, 

Journal of Intelligent Manufacturing, vol. 23, no. 5, pp. 1861–1883. 

Azizi, A. (2015) ‘Evaluation Improvement of Production Productivity 

Performance using Statistical Process Control, Overall Equipment Efficiency, 

and Autonomous Maintenance’, Procedia Manufacturing, vol. 2, pp. 186–

190. 

Bailey, K. D. (1994) Typologies and taxonomies: An introduction to 

classification techniques, Thousand Oaks, Calif., SAGE Publications. 



375 Bibliography 

Bajic, B., Cosic, I., Lazarevic, M., Sremcev, N. and Rikalovic, A. (2018) 

‘Machine Learning Techniques for Smart Manufacturing: Applications and 

Challenges in Industry 4.0’, in TEAM 2018 - 9th International Scientific and 

Expert Confernence, pp. 29–38. 

Balzert, H. (2011) Lehrbuch der Objektmodellierung: Analyse und Entwurf 

mit der UML 2 ; mit e-learning-Online-Kurs, 2nd edn, Heidelberg, Spektrum, 

Akad. Verl. 

Barbee, S. G. (2007) The Discovery by Data Mining of Rogue Equipment in 

the Manufacture of Semiconductor Devices, Central Connecticut State 

University [Online]. Available at https://www.researchgate.net/profile/Steve_

Barbee/publication/32220309_The_discovery_by_data_mining_of_rogue_

equipment_in_the_manufacture_of_semiconductor_devices/links/

02e7e521797b099d7c000000.pdf (Accessed 3 June 2020). 

Barga, R., Fontama, V. and Tok, W. H. (2015) Predictive Analytics with 

Microsoft Azure Machine Learning, Berkeley, CA, Apress. 

Barnes, D. (2001) Understanding business: Processes, London, New York, 

Open University; Routledge. 

Belhadi, A., Zkik, K., Cherrafi, A., Yusof, S.'r. M. and El fezazi, S. (2019) 

‘Understanding Big Data Analytics for Manufacturing Processes: Insights 

from Literature Review and Multiple Case Studies’, Computers & Industrial 

Engineering, vol. 137, p. 106099 [Online]. DOI: 10.1016/j.cie.2019.106099. 

Besnard, J., Gleispach, D., Gris, H., Ferreira, A., Roussy, A., Kernaflen, C. 

and Hayderer, G. (2012) ‘Virtual Metrology Modeling for CVD Film 

Thickness’, International Journal of Control Science and Engineering, vol. 2, 

no. 3, pp. 26–33 [Online]. Available at http://www.sapub.org/global/

showpaperpdf.aspx?doi=10.5923/j.control.20120203.02. 

Biebl, F., Glawar, R., Jalali, A., Ansari, F., Haslhofer, B., Boer, P. d. and 

Sihn, W. (2020) ‘A conceptual model to enable prescriptive maintenance for 

etching equipment in semiconductor manufacturing’, Procedia CIRP, vol. 88, 

pp. 64–69 [Online]. DOI: 10.1016/j.procir.2020.05.012. 

Bink, R. and Zschech, P. (2017) ‘Predictive Maintenance in der industriellen 

Praxis’, HMD Praxis der Wirtschaftsinformatik. 



376 Bibliography 

Blei, D. M. (2008) ‘Hierarchical Clustering’ [Online]. Available at http://

www.cs.princeton.edu/courses/archive/spr08/cos424/slides/clustering-2.pdf 

(Accessed 21 January 2019). 

Boehmke, B., Hazen, B., Boone, C. A. and Robinson, J. L. (2020) ‘A data 

science and open source software approach to analytics for strategic 

sourcing’, International Journal of Information Management, vol. 54, 

p. 102167.

Bolard, C. (2018) ‘Data Engineer VS Data Scientist - Towards Data Science’, 

Towards Data Science, 5 December [Online]. Available at https://

towardsdatascience.com/data-engineer-vs-data-scientist-bc8dab5ac124 

(Accessed 29 December 2020.160Z). 

Bossel, H. (2004) Systeme, Dynamik, Simulation: Modellbildung, Analyse 

und Simulation komplexer Systeme, Norderstedt, Books on Demand. 

Botha, A., Garner, M., Wagner, C. and Kawulich, B. (2012) Doing social 

research : a global context, Maidenhead, Berkshire, McGraw-Hill Higher 

Education. 

Bryman, A. and Bell, E. (2015) Business research methods, Oxford, Oxford 

University Press. 

Budgaga, W., Malensek, M., Pallickara, S., Harvey, N., Breidt, F. J. and 

Pallickara, S. (2016) ‘Predictive analytics using statistical, learning, and 

ensemble methods to support real-time exploration of discrete event 

simulations’, Future Generation Computer Systems, vol. 56, pp. 360–374. 

Burney, S.M.A. and Saleem, H. (2008) Inductive and Deductive Research 

Approach. 

Caliri, G. V. (2000) ‘Introduction to Analytical Modeling’, in 26th International 

Computer Measurement Group Conference, December 10-15, 2000, 

Orlando, FL, USA, Proceedings. 

Cao, Q., Samet, A., Zanni-Merk, C., Beuvron, F. B. de and Reich, C. (2019) 

‘An Ontology-based Approach for Failure Classification in Predictive 

Maintenance Using Fuzzy C-means and SWRL Rules’, Procedia Computer 

Science, vol. 159, pp. 630–639. 

Ceriotti, M. (2019) ‘Unsupervised machine learning in atomistic simulations, 

between predictions and understanding’, The Journal of Chemical Physics, 

vol. 150, no. 15, p. 150901 [Online]. DOI: 10.1063/1.5091842. 



377 Bibliography 

Chahal, H., Jyoti, J. and Wirtz, J. (2019) ‘Business Analytics: Concept and 

Applications’, in Chahal, H., Jyoti, J. and Wirtz, J. (eds) Understanding the 

role of business analytics: Some applications, Singapore, Springer, pp. 1–8. 

Chang, H.-J., Su, R.-H., Yang, C.-T. and Weng, M.-W. (2012) ‘An economic 

manufacturing quantity model for a two-stage assembly system with 

imperfect processes and variable production rate’, Computers & Industrial 

Engineering, vol. 63, no. 1, pp. 285–293. 

Chen, T., Wang, Y.-C. and Tsai, H.-R. (2009) ‘Lot cycle time prediction in a 

ramping-up semiconductor manufacturing factory with a SOM–FBPN-

ensemble approach with multiple buckets and partial normalization’, The 

International Journal of Advanced Manufacturing Technology, vol. 42, 11-12, 

pp. 1206–1216. 

Chiarini, A. (2013) Lean Organization: From the Tools of the Toyota 

Production System to Lean Office, Milano, Springer. 

Chien, C.-F., Hsu, C.-Y. and Hsiao, C.-W. (2012) ‘Manufacturing intelligence 

to forecast and reduce semiconductor cycle time’, Journal of Intelligent 

Manufacturing, vol. 23, no. 6, pp. 2281–2294. 

Chilisa, B. (2012) Indigenous research methodologies, Los Angeles, London, 

New Delhi, Songapore, Washington DC, SAGE. 

Chiu, Y.-C., Cheng, F.-T. and Huang, H.-C. (2017) ‘Developing a factory-

wide intelligent predictive maintenance system based on Industry 4.0’, 

Journal of the Chinese Institute of Engineers, vol. 40, no. 7, pp. 562–571. 

Chris Huntingford, Elizabeth S Jeffers, Michael B Bonsall, Hannah M 

Christensen, Thomas Lees and Hui Yang (2019) ‘Machine learning and 

artificial intelligence to aid climate change research and preparedness’, 

Environmental Research Letters, vol. 14, no. 12, p. 124007 [Online]. 

DOI: 10.1088/1748-9326/ab4e55. 

Cohen, P. R. and Wahlster, W., eds. (1997) Proceedings of the 35th annual 

meeting on Association for Computational Linguistics -, Morristown, NJ, 

USA, Association for Computational Linguistics. 

Coleman, C., Damodaran, S., Chandramouli, M. and Deuel, E. (2017) 

Industry 4.0 and predictive technologies for asset maintenance | Deloitte 

Insights [Online]. Available at https://www2.deloitte.com/us/en/insights/focus/



378 Bibliography 

industry-4-0/using-predictive-technologies-for-asset-maintenance.html 

(Accessed 7 March 2020). 

Collis, J. and Hussey, R. (2014) Business research: A practical guide for 

undergraduate & postgraduate students, Basingstoke, Hampshire, Palgrave 

Macmillan. 

Computer History Museum (2016a) 1901: Semiconductor Rectifiers Patented 

as "Cat's Whisker" Detectors [Online]. Available at https://

www.computerhistory.org/siliconengine/semiconductor-rectifiers-patented-

as-cats-whisker-detectors/ (Accessed 16 May 2020). 

Computer History Museum (2016b) 1956: Silicon Comes to Silicon Valley 

[Online]. Available at https://www.computerhistory.org/siliconengine/silicon-

comes-to-silicon-valley/ (Accessed 16 May 2020). 

Critical Manufacturing (2017) MES in Industry 4.0. Move from Corrective-

Preventive to Predictive Action [Online]. Available at https://

criticalmanufacturing.com/en/newsroom/blog/posts/blog/mes-in-industry-4-0-

move-from-corrective-preventive-to-predictive-action (Accessed 16 March 

2020). 

Crossley, M. L. (2008) The desk reference of statistical quality methods, 2nd 

edn, Milwaukee, Wis., ASQ Quality Press. 

Crotty, M. (2015) The foundations of social research: Meaning and 

perspective in the research process, London, SAGE. 

Cytoscape (2018) What is Cytoscape? [Online]. Available at https://

cytoscape.org/what_is_cytoscape.html (Accessed 20 March 2020). 

D’Haen, J., van den Poel, D. and Thorleuchter, D. (2013) ‘Predicting 

customer profitability during acquisition: Finding the optimal combination of 

data source and data mining technique’, Expert Systems with Applications, 

vol. 40, no. 6, pp. 2007–2012. 

Dangelmaier, W. (2017) Produktionstheorie 1, Berlin, Heidelberg, Springer 

Berlin Heidelberg. 

Deloitte (2020) COVID-19: A Black Swan Event for the Semiconductor 

Industry? [Online]. Available at https://www2.deloitte.com/content/dam/

Deloitte/us/Documents/technology-media-telecommunications/us-tmt-covid-

19-a-black-swan-event-for-the-semiconductor-industry.pdf (Accessed 16

May 2020). 



379 Bibliography 

Dengel, A. (2012) ‘Ontologien und Ontologie-Abgleich in verteilten 

Informationssystemen’, in Dengel, A. (ed) Semantische Technologien, 

Heidelberg, Spektrum Akademischer Verlag, pp. 131–160. 

Denno, P. O., Kulkarni, A., Balasubramanian, D. and Karsai, G. (2018) ‘An 

Analytical Framework for Smart Manufacturing’ [Online]. Available at https://

tsapps.nist.gov/publication/get_pdf.cfm?pub_id=924718 (Accessed 15 May 

2020). 

deRon, A. J. and Rooda, J. E. (2005) ‘Equipment Effectiveness: OEE 

Revisited’, IEEE Transactions on Semiconductor Manufacturing, vol. 18, 

no. 1, pp. 190–196. 

Developer Economics (2017) ‘What is the best programming language for 

Machine Learning?’, Towards Data Science, 5 May [Online]. Available at 

https://towardsdatascience.com/what-is-the-best-programming-language-for-

machine-learning-a745c156d6b7 (Accessed 13 December 2020.154Z). 

Eisenhardt, K. M. (1989) ‘Building Theories from Case Study Research’, The 

Academy of Management Review, vol. 14, pp. 532–550. 

Elizondo-Noriega, A., Tiruvengadam, N., Guemes-Castorena, D., Tercero-

Gomez, V. G. and Beruvides, M. G. (2019) ‘System Dynamics Modeling of 

the Effects of the Decision to Purchase Industrial Robots on a Manufacturing 

Organization’, PICMET '19: Portland International Conference on 

Management of Engineering and Technology : proceedings : Technology 

Management in the World of Intelligent Systems. Portland, OR, USA, 

8/25/2019 - 8/29/2019. Portland, OR, PICMET, Portland State University, 

Dept. of Engineering and Technology Management, pp. 1–9. 

El-Shimy, H. (2018) Build and compare models using IBM SPSS Modeler 

[Online], IBM. Available at https://developer.ibm.com/technologies/analytics/

tutorials/build-and-compare-models-using-ibm-spss-modeler/ (Accessed 24 

May 2020). 

Fan, S.-K. S., Hsu, C.-Y., Tsai, D.-M., He, F. and Cheng, C.-C. (2020) ‘Data-

Driven Approach for Fault Detection and Diagnostic in Semiconductor 

Manufacturing’, IEEE Transactions on Automation Science and Engineering, 

vol. 17, no. 4, pp. 1925–1936. 

Fazlollahtabar, H., Rezaie, B. and Kalantari, H. (2010) ‘Mathematical 

programming approach to optimize material flow in an AGV-based flexible 



380 Bibliography 

jobshop manufacturing system with performance analysis’, The International 

Journal of Advanced Manufacturing Technology, vol. 51, 9-12, pp. 1149–

1158. 

Feng, W., Zheng, L. and Li, J. (2011) ‘Scheduling policies in multi-product 

manufacturing systems with sequence-dependent setup times’, Proceedings 

of the 2011 Winter Simulation Conference: (WSC) ; 11-14 Dec. 2011, 

[Phoenix, Arizona, USA,] ; including the MASM (Modeling and Analysis for 

Semiconductor Manufacturing) Conference. Phoenix, AZ, USA. Piscataway, 

NJ, IEEE, pp. 2050–2061. 

Fettke, P. (2016) UML-basierte Modellierung — Enzyklopaedie der 

Wirtschaftsinformatik [Online]. Available at https://www.enzyklopaedie-der-

wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/

Systementwicklung/Hauptaktivitaten-der-Systementwicklung/

Problemanalyse-/Objektorientierte-Modellierung/UML-basierte-Modellierung/

index.html (Accessed 19 March 2020). 

Fielden, J. (2018) ‘Semiconductor inspection and metrology challenges’, 

2018 31st International Vacuum Nanoelectronics Conference (IVNC): 

Technical digest : Kyoto Research Park, Kyoto, Japan, 9-13 July, 2018. 

Kyoto, 7/9/2018 - 7/13/2018. [Piscataway, NJ], IEEE, pp. 1–2. 

Finlay, S. (2014) Predictive analytics, data mining and big data: Myths, 

misconceptions and methods, Basingstoke [u.a.], Palgrave Macmillan. 

Fleissner, P. (2005) Einführung in die Sozialkybernetik [Online], TU Wien. 

Available at http://www.informatik.uni-leipzig.de/~graebe/Texte/Fleissner-

05.pdf (Accessed 20 October 2019).

Fordyce, K. (2012) The Semiconductor Supply Chain - Enterprise-Wide 

Planning Challenges, Arkieva. 

Forrester, J. W. (1973) Confidence in Models of Social Behavior -- With 

Emphasis on System Dynamics Models. 

Forrester, J. W. (2013) Industrial dynamics, Mansfield Centre, CT, 

Cambridge, MA, Martino; MIT Press. 

Forster, C., Zapp, M., Aelker, J., Westkämper, E. and Bauernhansl, T. (2013) 

‘Collaborative Value Chain Management between Automotive and 

Semiconductor Industry: An Analysis of Differences and Improvement 

Measures’, Procedia CIRP, vol. 12, pp. 312–317. 



381 Bibliography 

Fox, J. (2019) Optoelectronic Components - Annual report, IHS Markit. 

Gackowiec, P. (2019) ‘General overview of maintenance strategies – 

concepts and approaches’, Multidisciplinary Aspects of Production 

Engineering, vol. 2, no. 1, pp. 126–139. 

Galliers, R. (1991) ‘Choosing Appropriate Information Systems Research 

Approaches: A Revised Taxonomy’, The Information Research Arena of the 

90s, pp. 327–345. 

Gao, R. X., Wang, L., Helu, M. and Teti, R. (2020) ‘Big data analytics for 

smart factories of the future’, CIRP Annals, vol. 69, no. 2, pp. 668–692. 

Gargini, P. A. (2017) ‘A Brief History of the Semiconductor Industry’, in 

Puers, R. (ed) Nanoelectronics: Materials, devices, applications, Weinheim, 

Germany, Wiley-VCH, pp. 1–52. 

Gartner (2020) Gartner Forecasts Worldwide Semiconductor Revenue to 

Decline 0.9% in 2020 Due to Coronavirus Impact [Online]. Available at 

https://www.gartner.com/en/newsroom/press-releases/2020-04-09-gartner-

forecasts-worldwide-semiconductor-revenue-to-0 (Accessed 16 May 2020). 

Gass, S. I. and Fu, M. C., eds. (2013) Encyclopedia of operations research 

and management science, 3rd edn, New York, London, Springer. 

Gibbs, G. R. (2010) Coding part 2: Thematic coding. [Online]. Available at 

http://www.youtube.com/watch?v=B_YXR9kp1_o (Accessed 25 March 

2020). 

Glimm, B., Horrocks, I., Motik, B., Stoilos, G. and Wang, Z. (2014) ‘HermiT: 

An OWL 2 Reasoner’, Journal of Automated Reasoning, vol. 53, no. 3, 

pp. 245–269. 

Gogtay, N. and Thatte, U. (2017) ‘Principles of Correlation Analysis’, The 

Journal of the Association of Physicians of India, vol. 65, pp. 78–81. 

Golombek, M. (2020) Data Science: Buzzword mit gehaltvollem Kern | 

Informatik Aktuell [Online], Informatik Aktuell. Available at https://

www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/data-science-

buzzword-mit-gehaltvollem-kern.html (Accessed 29 December 2020.486Z). 

Gronwald, K.-D. (2015) Integrierte Business-Informationssysteme: ERP, 

SCM, CRM, BI, Big Data Analytics - Prozesssimulation, Rollenspiel, Serious 

Gaming, 2015th edn, Berlin, Springer Berlin. 



382 Bibliography 

Grösser, S. (2018) Definition: System Dynamics [Online]. Available at https://

wirtschaftslexikon.gabler.de/definition/system-dynamics-47445/version-

270709 (Accessed 20 March 2020). 

Guerrero, A., Villagrá, V. A., de Vergara, Jorge E. López and Berrocal, J. 

(2005) ‘Ontology-Based Integration of Management Behaviour and 

Information Definitions Using SWRL and OWL’, in Schönwälder, J. and 

Serrat, J. (eds) Ambient Networks: 16th IFIP/IEEE International Workshop 

on Distributed Systems: Operations and Management, DSOM 2005, 

Barcelona, Spain, October 24-26, 2005. Proceedings, Berlin, Heidelberg, 

Springer Berlin Heidelberg, pp. 12–23. 

Guthrie, G. (2010) Basic research methods: An entry to social science 

research, New Delhi, India, Thousand Oaks, Calif., SAGE Publications. 

Guzik, G. N., Amir and Bezic, M. (2004) Key performance indicator system 

and method, USA US10811654. 

Haidegger, T., Barreto, M., Gonçalves, P., Habib, M. K., Ragavan, S. K. V., 

Li, H., Vaccarella, A., Perrone, R. and Prestes, E. (2013) ‘Applied ontologies 

and standards for service robots’, Robotics and Autonomous Systems, 

vol. 61, no. 11, pp. 1215–1223. 

Hair, J. F. (2007) ‘Knowledge creation in marketing: The role of predictive 

analytics’, European Business Review, vol. 19, no. 4, pp. 303–315. 

Hansch, W. and Schober, E. (2015) Factory Dynamics [Online], Bundeswehr 

University Munich. Available at https://dokumente.unibw.de/pub/bscw.cgi/

d9324722/07_Factorydynamics_I.pdf (Accessed 1 April 2018). 

Harrison, H., Birks, M., Franklin, R. and Mills, J. (2017) ‘Case Study 

Research: Foundations and Methodological Orientations’, Forum Qualitative 

Sozialforschung / Forum: Qualitative Social Research, vol. 18, no. 1 [Online]. 

Available at http://www.qualitative-

research.net/index.php/fqs/article/download/2655/4080UR - 

http://www.qualitative-research.net/index.php/fqs/article/view/2655/4079. 

Hashemian, H. M. (2011) ‘State-of-the-Art Predictive Maintenance 

Techniques’, IEEE Transactions on Instrumentation and Measurement, 

vol. 60, no. 1, pp. 226–236. 

Henning, C. (2018) ‘Mit KI gegen Produktfehler’, AWS-Institut GmbH, 20 

September [Online]. Available at https://www.aws-institut.de/im-io/



383 Bibliography 

kuenstliche-intelligenz/mit-ki-gegen-produktfehler/ (Accessed 16 March 

2020). 

Hesami, M., Naderi, R., Tohidfar, M. and Yoosefzadeh-Najafabadi, M. (2020) 

‘Development of support vector machine-based model and comparative 

analysis with artificial neural network for modeling the plant tissue culture 

procedures: effect of plant growth regulators on somatic embryogenesis of 

chrysanthemum, as a case study’, Plant methods, vol. 16, p. 112. 

Hilsenbeck, K. (2005) Optimierungsmodelle in der 

Halbleiterproduktionstechnik, Technische Universität München. 

Hitachi (2015) History of semiconductors : Hitachi High-Tech GLOBAL 

[Online]. Available at https://www.hitachi-hightech.com/global/products/

device/semiconductor/history.html (Accessed 16 May 2020). 

Holst, A. (2020) Global Big Data market size 2011-2027 [Online], Statista. 

Available at https://www.statista.com/statistics/254266/global-big-data-

market-forecast/ (Accessed 22 May 2020). 

Hong, Y., Hou, B., Jiang, H. and Zhang, J. (2020) ‘Machine learning and 

artificial neural network accelerated computational discoveries in materials 

science’, WIREs Computational Molecular Science, vol. 10, no. 3. 

Hopp, W. J. and Spearman, M. L. (2011) Factory physics, 3rd edn, Long 

Grove, Ill., Waveland Press. 

Horridge, M., Jupp, S., Moulton, G., Rector, A., Stevens, R. and Wroe, C. 

(2007) A Practical Guide To Building OWL Ontologies Using Protégé 4 and 

CO-ODE Tools [Online], The University Of Manchester. Available at http://

mowl-power.cs.man.ac.uk/protegeowltutorial/resources/

ProtegeOWLTutorialP4_v1_1.pdf (Accessed 5 January 2019). 

Horrocks, I., Patel-Schneider, P. F., Boley, H. and Tabet, S. (2004) SWRL: A 

Semantic Web Rule Language Combining OWL and RuleML [Online], W3C. 

Available at https://www.w3.org/Submission/SWRL/ (Accessed 3 January 

2018). 

Huang, C.-L. (1999) ‘The construction of production performance prediction 

system for semiconductor manufacturing with artificial neural networks’, 

International Journal of Production Research, vol. 37, no. 6, pp. 1387–1402. 



384 Bibliography 

Huang, J. J.-S., Jan, Y.-H., Chen, H. S., Chang, H. S., Ni, C. J. and Chou, E. 

(2016) ‘Predictive Reliability Model of 10G/25G Mesa-Type Avalanche 

Photodiode Degradation’, Applied Physics Research, vol. 8, no. 3, p. 66. 

Hunter, G. (1996, cop. 1971) Metalogic: An introduction to the metatheory of 

standard first order logic, 6th edn, Berkeley, Los Angeles, London, University 

of California Press. 

Iannone, R. and Elena, M. (2013) ‘Managing OEE to Optimize Factory 

Performance’, in Schiraldi, M. (ed) Enterprise Risk Management to Drive 

Operations Performances, INTECH Open Access Publisher. 

IC Insights (2020) O-S-D Report [Online]. Available at https://

www.icinsights.com/services/osd-report/ (Accessed 17 May 2020). 

Illingworth, V. and Pyle, I. C. (2004) Dictionary of computing, 6th edn, 

Oxford, Oxford University Press. 

Intel (2011) Intel Global Manufacturing Facts, Intel [Online]. Available at 

http://download.intel.com/newsroom/kits/22nm/pdfs/Global-Intel-

Manufacturing_FactSheet.pdf (Accessed 13 February 2020). 

Iskandar, J., Moyne, J., Subrahmanyam, K., Hawkins, P. and Armacost, M. 

(2015) ‘Predictive Maintenance in semiconductor manufacturing’, 2015 26th 

Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). 

Saratoga Springs, NY, USA, 5/3/2015 - 5/6/2015, IEEE, pp. 384–389. 

Ivanov, D., Dolgui, A. and Sokolov, B. (2019) ‘The impact of digital 

technology and Industry 4.0 on the ripple effect and supply chain risk 

analytics’, International Journal of Production Research, vol. 57, no. 3, 

pp. 829–846. 

Jang, J., Chung, J., Suh, J. and Rhee, J. (2007) ‘Estimation of the mean 

waiting time of a customer subject to balking: A simulation study’, 

International Journal of Flexible Manufacturing Systems, vol. 18, no. 2, 

pp. 121–144. 

Jeffery, R. (1993) ‘A view on the use of three research philosophies to 

address empirically determined weaknesses of the software engineering 

process’, in Rombach, H. D., Basili, V. R. and Selby, R. W. (eds) 

Experimental software engineering issues: Critical assessment and future 

directions : international workshop, Dagstuhl Castle, Germany, September 

14-18, 1992 : proceedings, Berlin, New York, Springer-Verlag, pp. 111–115.



385 Bibliography 

Jetbrains (n.d.) PyCharm: die Python-IDE von JetBrains für professionelle 

Entwickler [Online]. Available at https://www.jetbrains.com/de-de/pycharm/ 

(Accessed 20 March 2020). 

Jong, M. de and Srivastava, A. (2019) What’s next for semiconductor profits 

and value creation? [Online], McKinsey. Available at https://

www.mckinsey.com/industries/semiconductors/our-insights/whats-next-for-

semiconductor-profits-and-value-creation (Accessed 10 February 2020). 

Kampmann, C. (1991) ‘Replication and revision of a classic system 

dynamics model: Critique of “population control mechanisms in a primitive 

agricultural society”’, System Dynamics Review, vol. 7, no. 2, pp. 159–198. 

Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., Kim, B. H. 

and Noh, S. D. (2016) ‘Smart manufacturing: Past research, present 

findings, and future directions’, International Journal of Precision Engineering 

and Manufacturing-Green Technology, vol. 3, no. 1, pp. 111–128. 

Kaufmann, B. and Hülsebusch, C. (2015) ‘Employing Cybernetics in Social 

Ecological Systems Research’, in Jeschke, S., Schmitt, R. and Dröge, A. 

(eds) Exploring Cybernetics, Wiesbaden, Springer Fachmedien Wiesbaden, 

pp. 167–184. 

Keating, E. K. (1999) Issues to Consider While Developing a System 

Dynamics Model [Online], Northwestern University. Available at http://

metasd.com/wp-content/uploads/2010/03/SDModelCritique.pdf (Accessed 

26 August 2019). 

Khabsa, M. and Giles, C. L. (2014) ‘The Number of Scholarly Documents on 

the Public Web’, PLOS ONE, vol. 9, no. 5, e93949 [Online]. 

DOI: 10.1371/journal.pone.0093949. 

Khoza, S. C. and Grobler, J. (2019) ‘Comparing Machine Learning and 

Statistical Process Control for Predicting Manufacturing Performance’, in 

Moura Oliveira, P., Novais, P. and Reis, L. P. (eds) Progress in artificial 

intelligence: 19th EPIA Conference on Artificial Intelligence, EPIA 2019, Vila 

Real, Portugal, September 3-6, 2019, Proceedings, Cham, Switzerland, 

Springer, pp. 108–119. 

Kim, D. and Kang, S. (2019) ‘Effect of Irrelevant Variables on Faulty Wafer 

Detection in Semiconductor Manufacturing’, Energies, vol. 12, no. 13, 

p. 2530.



386 Bibliography 

Kim, J. K., Lee, J. S. and Han, Y. S. (2019) ‘Fault Detection Prediction Using 

a Deep Belief Network-Based Multi-Classifier in the Semiconductor 

Manufacturing Process’, International Journal of Software Engineering and 

Knowledge Engineering, vol. 29, no. 08, pp. 1125–1139. 

Koitzsch, M., Honold, A., Noll, H. and Nemecek, A. (2012) ‘A Calculation 

Model for the Economic Effects of Implementing Predictive Maintenance 

Algorithms into Semiconductor Fabrication Lines’. 

Kotu, V. (2015) Predictive analytics and data mining: Concepts and practice 

with RapidMiner [Online], Waltham, MA, Morgan Kaufmann. Available at 

http://proquest.tech.safaribooksonline.de/9780128014608. 

Kozjek, D., Vrabič, R., Rihtaršič, B., Lavrač, N. and Butala, P. (2020) 

‘Advancing manufacturing systems with big-data analytics: A conceptual 

framework’, International Journal of Computer Integrated Manufacturing, 

vol. 33, no. 2, pp. 169–188. 

Kuhnle, A., Röhrig, N. and Lanza, G. (2019) ‘Autonomous order dispatching 

in the semiconductor industry using reinforcement learning’, Procedia CIRP, 

vol. 79, pp. 391–396. 

Kuo, C.-J., Liu, C.-M. and Chi, C.-Y. (2008) ‘Standard WIP Determination 

and WIP Balance Control with Time Constraints in Semiconductor Wafer 

Fabrication’, in Journal of Quality, pp. 409–420. 

Kusiak, A. (2018) ‘Smart manufacturing’, International Journal of Production 

Research, vol. 56, 1-2, pp. 508–517. 

Laerd (n.d.) Spearman's Rank-Order Correlation - A guide to when to use it, 

what it does and what the assumptions are [Online]. Available at https://

statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-

statistical-guide.php (Accessed 23 December 2020.233Z). 

Larose, D. T. and Larose, C. D. (2015) Data mining and predictive analytics 

[Online], Hoboken, New Jersey, John Wiley & Sons. Available at http://

proquest.tech.safaribooksonline.de/9781118868706. 

Lee, J., Lapira, E., Yang, S. and Kao, A. (2013) ‘Predictive Manufacturing 

System - Trends of Next-Generation Production Systems’, IFAC Proceedings 

Volumes, vol. 46, no. 7, pp. 150–156 [Online]. DOI: 10.3182/20130522-3-

BR-4036.00107. 



387 Bibliography 

Lee, S. M., Lee, D. and Kim, Y. S. (2019) ‘The quality management 

ecosystem for predictive maintenance in the Industry 4.0 era’, International 

Journal of Quality Innovation, vol. 5, no. 1, p. 759. 

Lepenioti, K., Bousdekis, A., Apostolou, D. and Mentzas, G. (2020) 

‘Prescriptive analytics: Literature review and research challenges’, 

International Journal of Information Management, vol. 50, pp. 57–70. 

Lewandowski, D. (2010) ‘Google Scholar as a tool for discovering journal 

articles in library and information science’, Online Information Review, 

vol. 34, no. 2, pp. 250–262. 

L'Heureux, A., Grolinger, K., Elyamany, H. F. and Capretz, M. A. M. (2017) 

‘Machine Learning With Big Data: Challenges and Approaches’, IEEE 

Access, vol. 5, pp. 7776–7797. 

Li, C., Liu, J. and Li, B. (2018) ‘Performance Prediction and Evaluation 

Based on the Variability Theory in Production Lines Using ARENA 

Simulation’, Wireless Personal Communications, vol. 40, no. 18, p. 4815. 

Li, Y., Jia, G., Cheng, Y. and Hu, Y. (2017) ‘Additive manufacturing 

technology in spare parts supply chain: a comparative study’, International 

Journal of Production Research, vol. 55, no. 5, pp. 1498–1515. 

Liao, D.-Y., Chen, C.-Y., Tsai, W.-P., Chen, H.-T., Wu, Y.-T. and Chang, S.-

C. (2018) ‘Anomaly Detection for Semiconductor Tools Using Stacked

Autoencoder Learning’, 2018 International Symposium on Semiconductor 

Manufacturing (ISSM): Proceedings of technical papers : December 10-11, 

2018, KFC Hall, Toyko, Japan. Tokyo, Japan, 12/10/2018 - 12/11/2018. 

Piscataway, New Jersey], IEEE, pp. 1–4. 

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. and Hinton, G. (2020) 

‘Backpropagation and the brain’, Nature Reviews Neuroscience, vol. 21, 

no. 6, pp. 335–346. 

Lionberger, R. A., Lawrence Lee, S., Lee, L., Raw, A. and Yu, L. X. (2008) 

‘Quality by Design: Concepts for ANDAs’, The AAPS Journal, vol. 10, no. 2, 

pp. 268–276 [Online]. DOI: 10.1208/s12248-008-9026-7. 

Little, J. D. C. and Graves, S. C. (2008) ‘Little’s law’, in Building intuition, 

Springer, pp. 81–100. 



388 Bibliography 

Liu, X. and Zeng, M. (2017) ‘Renewable energy investment risk evaluation 

model based on system dynamics’, Renewable and Sustainable Energy 

Reviews, vol. 73, pp. 782–788. 

Loeffler, J. (2019) ‘What was it that turned silicon valley into the home for 

technological progress? You can have detailed informa’, Interesting 

Engineering, 31 August [Online]. Available at https://

interestingengineering.com/the-origin-story-of-silicon-valleyand-why-we-

shouldnt-try-to-recreate-it (Accessed 16 May 2020.367Z). 

López, S. A. and Cuadrado-Gallego, J. J. (2008) ‘Supervised learning 

methods application to sentiment analysis’, IDEAS 2019: 23rd International 

Database Applications & Engineering Symposium : Athens, Greece, 2019-

06-10 - 2019-06-12. Athens, Greece, 6/10/2019 - 6/12/2019. New York, New

York, The Association for Computing Machinery, pp. 1–6. 

Lou, P., Liu, Q., Zhou, Z., Wang, H. and Sun, S. X. (2012) ‘Multi-agent-based 

proactive–reactive scheduling for a job shop’, The International Journal of 

Advanced Manufacturing Technology, vol. 59, 1-4, pp. 311–324. 

Łukasiak, L. and Jakubowski, A. (2010) ‘History of Semiconductors’, Journal 

of Telecommunications and Information Technology, nr 1, pp. 3–9. 

Lyu, J., Liang, C. W. and Chen, P.-S. (2020) ‘A Data-Driven Approach for 

Identifying Possible Manufacturing Processes and Production Parameters 

That Cause Product Defects: A Thin-Film Filter Company Case Study’, IEEE 

Access, vol. 8, pp. 49395–49411 [Online]. 

DOI: 10.1109/access.2020.2974535. 

Ma, L., Yu, H., Wang, Y. and Chen, G. (2012) ‘The Knowledge 

Representation and Semantic Reasoning Realization of Productivity Grade 

Based on Ontology and SWRL’, in Li, D. and Chen, Y. (eds) Computer and 

Computing Technologies in Agriculture V, Berlin, Heidelberg, Springer Berlin 

Heidelberg, pp. 381–389. 

Malerba, F. (1985) The semiconductor business: The economics of rapid 

growth and decline, Madison, Wisc., Univ. of Wisconsin Press. 

Manning, C. D., Raghavan, P. and Schütze, H. (2018) Introduction to 

information retrieval, 3rd edn, Cambridge, Cambridge University Press. 



389 Bibliography 

Matas, B. (2019) Semiconductor Unit Shipments Exceeded 1 Trillion Devices 

in 2018 [Online]. Available at https://www.icinsights.com/data/articles/

documents/1132.pdf (Accessed 11 February 2020). 

Matheus, C. J., Baclawski, K., Kokar, M. M. and Letkowski, J. J. (2005) 

‘Using SWRL and OWL to Capture Domain Knowledge for a Situation 

Awareness Application Applied to a Supply Logistics Scenario’, in Hutchison, 

D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F., Mitchell, J. C., Naor, 

M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, 

D., Tygar, D., Vardi, M. Y., Weikum, G., Adi, A., Stoutenburg, S. and Tabet, 

S. (eds) Rules and Rule Markup Languages for the Semantic Web, Berlin,

Heidelberg, Springer Berlin Heidelberg, pp. 130–144. 

Mauerer, J. (2020) ‘Was ist was bei Predictive Analytics?’, 

COMPUTERWOCHE, 22 September [Online]. Available at https://

www.computerwoche.de/a/was-ist-was-bei-predictive-analytics,3098583,3 

(Accessed 30 December 2020.854Z). 

McCullagh, P. (2002) ‘What is a statistical model?’, The Annals of Statistics, 

vol. 30, no. 5, pp. 1225–1310. 

McGrath, D. (2018) SIA Calls for Removal of Semiconductor Tariffs - EE 

Times Asia [Online], EE Times. Available at https://www.eetasia.com/news/

article/18072402-sia-calls-for-removal-of-semiconductor-tariffs (Accessed 11 

February 2020). 

McGregor, J. (2016) Arm Address Changes In Market Dynamics With New 

Licensing Model [Online], Forbes. Available at undefined (Accessed 11 

February 2020). 

McKay, K. N. and Wiers, V. C. S. (2003) ‘Planning, scheduling and 

dispatching tasks in production control’, Cognition, Technology & Work, 

vol. 5, no. 2, pp. 82–93. 

Medelyan, A. (2019) Coding Qualitative Data: How to Code Qualitative 

Research [Online]. Available at https://getthematic.com/insights/coding-

qualitative-data/ (Accessed 25 March 2020). 

Meidan, Y., Lerner, B., Rabinowitz, G. and Hassoun, M. (2011) ‘Cycle-Time 

Key Factor Identification and Prediction in Semiconductor Manufacturing 

Using Machine Learning and Data Mining’, IEEE Transactions on 

Semiconductor Manufacturing, vol. 24, no. 2, pp. 237–248. 



390 Bibliography 

Mindfire Solutions (2018) What is PyCharm IDE? [Online]. Available at 

https://medium.com/@mindfiresolutions.usa/what-is-pycharm-ide-

cc0735784f64. 

Mirmozaffari, M., Boskabadi, A., Azeem, G., Massah, R., Boskabadi, E., 

Dolatsara, H. A. and Liravian, A. (2020) ‘Machine learning Clustering 

Algorithms Based on the DEA Optimization Approach for Banking System in 

Developing Countries’, European Journal of Engineering Research and 

Science, vol. 5, no. 6, pp. 651–658. 

Mishra, D. K., Dey, N., Deora, B. S. and Joshi, A., eds. (2020) ICT for 

competitive strategies: Proceedings of 4th International Conference on 

Information and Communication Technology for Competitive Strategies 

(ICTCS 2019), December 13th-14th, 2019, Udaipur, India, Boca Raton, CRC 

Press, Taylor & Francis Group. 

Motaghare, O., Pillai, A. S. and Ramachandran, K. I. (2018) ‘Predictive 

Maintenance Architecture’, 2018 IEEE International Conference on 

Computational Intelligence and Computing Research (ICCIC). Madurai, 

India, 12/13/2018 - 12/15/2018, IEEE, pp. 1–4. 

Moyne, J. and Iskandar, J. (2017) ‘Big Data Analytics for Smart 

Manufacturing: Case Studies in Semiconductor Manufacturing’, Processes, 

vol. 5, no. 4, p. 39. 

Moyne, J., Del Castillo, E. and Hurwitz, A. M. (2000) Run-to-run control in 

semiconductor manufacturing, CRC Press. 

Moyne, J., Hajj, H., Beatty, K. and Lewandowski, R. (2007) ‘SEMI E133—

The Process Control System Standard: Deriving a Software Interoperability 

Standard for Advanced Process Control in Semiconductor Manufacturing’, 

IEEE Transactions on Semiconductor Manufacturing, vol. 20, no. 4, pp. 408–

420. 

Moyne, J., Samantaray, J. and Armacost, M. (2016) ‘Big Data Capabilities 

Applied to Semiconductor Manufacturing Advanced Process Control’, IEEE 

Transactions on Semiconductor Manufacturing, vol. 29, no. 4, pp. 283–291. 

Moyne, J., Schellenberger, M. and Pfitzner, L. (2014) ‘The Factory 

Integration Roadmap in Semiconductor manufacturing’, 2014 44th European 

Solid State Device Research Conference (ESSDERC): 22-26 Sept. 2014, 



391 Bibliography 

Palazzo del Casinò, Venezia Lido, Italy. Venice Lido, Italy, 9/22/2014 - 

9/26/2014. Piscataway, NJ, IEEE, pp. 154–156. 

Moyne, J., Schulze, B., Iskandar, J. and Armacost, M. (2016) ‘Next 

generation advanced process control: Leveraging big data and prediction’, 

2016 27th Annual SEMI Advanced Semiconductor Manufacturing 

Conference (ASMC): 16-19 May 2016. Saratoga Springs, NY, USA, 

5/16/2016 - 5/19/2016. [Piscataway, NJ], IEEE, pp. 191–196. 

Moyne, J., Schulze, B., Iskandar, J. and Armacost, M. (2016) ‘Next 

generation advanced process control: Leveraging big data and prediction’, 

2016 27th Annual SEMI Advanced Semiconductor Manufacturing 

Conference (ASMC): 16-19 May 2016. Saratoga Springs, NY, USA, 

5/16/2016 - 5/19/2016. [Piscataway, NJ], IEEE, pp. 191–196. 

Mozota, B. B. (1998) ‘Structuring Strategic Design Management: Michael 

Porter's Value Chain’, Design Management Journal (Former Series), vol. 9, 

no. 2, pp. 26–31. 

Munirathinam, S. and Ramadoss, B. (2014) ‘Big data predictive analytics for 

proactive semiconductor equipment maintenance’, IEEE International 

Conference on Big Data (Big Data), 2014: 27 - 30 Oct. 2014, Washington, 

DC, USA. Washington, DC, USA, 10/27/2014 - 10/30/2014. Piscataway, NJ, 

IEEE, pp. 893–902. 

Munirathinam, S. and Ramadoss, B. (2016) ‘Predictive Models for 

Equipment Fault Detection in the Semiconductor Manufacturing Process’, 

International Journal of Engineering and Technology, vol. 8, no. 4, pp. 273–

285. 

Musen, M. A. (2018) Object Property Characteristics [Online], Stanford 

University. Available at http://protegeproject.github.io/protege/views/object-

property-characteristics/ (Accessed 5 January 2019). 

Naeher, U., Suzuki, S. and Weiseman, B. (2011) The evolution of business 

models in a disrupted value chain [Online], McKinsey. Available at https://

www.mckinsey.com/~/media/mckinsey/dotcom/client_service/

semiconductors/pdfs/mosc_1_business_models.ashx (Accessed 11 

February 2020). 

Nathan Associates Inc. (2016) Beyond Borders: The Global Semiconductor 

Value Chain [Online], Semiconductor Industry Association. Available at 



392 Bibliography 

https://www.semiconductors.org/wp-content/uploads/2018/06/SIA-Beyond-

Borders-Report-FINAL-June-7.pdf (Accessed 10 February 2020). 

Neely, A., Gregory, M. and Platts, K. (1995) ‘Performance measurement 

system design: a literature review and research agenda’, International 

journal of operations & production management, vol. 15, no. 4, pp. 80–116. 

Ng, A. and Piech, C. (2013) K Means [Online], Stanford University 

(Accessed 22 January 2019). 

Nicholds, B. A., Mo, J. P.T. and O’Rielly, L. (2018) ‘An integrated 

performance driven manufacturing management strategy based on overall 

system effectiveness’, Computers in Industry, vol. 97, pp. 146–156. 

Nield, T. (2019) ‘Data Science Has Become Too Vague - Towards Data 

Science’, Towards Data Science, 25 January [Online]. Available at https://

towardsdatascience.com/data-science-has-become-too-vague-538899bab57 

(Accessed 29 December 2020.851Z). 

NIST SEMATECH (2012) 6.1.3. What is Process Control? [Online]. Available 

at https://www.itl.nist.gov/div898/handbook/pmc/section1/pmc13.htm 

(Accessed 8 March 2020). 

Nosratabadi, S., Mosavi, A., Duan, P. and Ghamisi, P. (2020) Data Science 

in Economics [Online]. Available at https://arxiv.org/pdf/2003.13422. 

Nouiri, M., Trentesaux, D. and Bekrar, A. (2019) ‘Towards Energy Efficient 

Scheduling of Manufacturing Systems through Collaboration between Cyber 

Physical Production and Energy Systems’, Energies, vol. 12, no. 23, p. 4448. 

Noy, N. and McGuinness, D. (2000) Ontology Development 101: A Guide to 

Creating Your First Ontology [Online], Stanford University. Available at 

https://protege.stanford.edu/publications/ontology_development/

ontology101.pdf (Accessed 2 January 2019). 

Oechsner, R., Pfeffer, M., Pfitzner, L., Binder, H., Müller, E. and 

Vonderstrass, T. (2002) ‘From overall equipment efficiency (OEE) to overall 

Fab effectiveness (OFE)’, Materials Science in Semiconductor Processing, 

vol. 5, 4-5, pp. 333–339. 

Oleksiy, K. (2018) Semantic Technologies for Developers: Reasoning 

[Online], University of Jyväskylä. Available at http://users.jyu.fi/~olkhriye/

ties4520/lectures/Lecture04.pdf (Accessed 6 March 2019). 



393 Bibliography 

Olofsson, O. (2018) MTBF und MTTR - Berechnungstabelle [Online]. 

Available at https://world-class-manufacturing.com/de/KPI/mtbf.html 

(Accessed 1 April 2018). 

Park, S. H., Park, C.-S., Kim, J.-S. and Baek, J.-G. (2017) ‘Principal curve-

based monitoring chart for anomaly detection of non-linear process signals’, 

The International Journal of Advanced Manufacturing Technology, vol. 90, 9-

12, pp. 3523–3531. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, 

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., 

Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. 

(2011) ‘Scikit-learn: Machine Learning in Python’, Journal of Machine 

Learning Research, vol. 12, pp. 2825–2830. 

Pomorski, T. (1997) ‘Managing overall equipment effectiveness [OEE] to 

optimize factory performance’, IEEE International Symposium on 

Semiconductor Manufacturing, 1997. San Francisco, CA, USA, 6-8 Oct. 

1997. Piscataway, IEEE, A33-A36. 

Press, G. (2018) ‘How Apple, Amazon, Facebook, Google And Microsoft 

Made 2018 The Year That IT Mattered A Lot’, Forbes, 30 December 

[Online]. Available at https://www.forbes.com/sites/gilpress/2018/12/30/how-

apple-amazon-facebook-google-and-microsoft-made-2018-the-year-that-it-

mattered-a-lot/ (Accessed 28 March 2020). 

PricewaterhouseCoopers (2019) ‘Opportunities for the global semiconductor 

market’ [Online]. Available at https://www.pwc.de/de/technologie-medien-

und-telekommunikation/opportunities-for-the-global-semicondur-market.pdf 

(Accessed 11 February 2020). 

Qi, C., Sivakumar, A. I. and Gershwin, S. B. (2008) ‘Impact of Production 

Control and System Factors in Semiconductor Wafer Fabrication’, IEEE 

Transactions on Semiconductor Manufacturing, vol. 21, no. 3, pp. 376–389. 

Qin, S. J., Cherry, G., Good, R., Wang, J. and Harrison, C. A. (2004) ‘Control 

and Monitoring of Semiconductor Manufacturing Processes: Challenges and 

Opportunities’, IFAC Proceedings Volumes, vol. 37, no. 9, pp. 125–136 

[Online]. DOI: 10.1016/S1474-6670(17)31804-9. 

Qu, T., Thürer, M., Wang, J., Wang, Z., Fu, H., Li, C. and Huang, G. Q. 

(2017) ‘System dynamics analysis for an Internet-of-Things-enabled 



394 Bibliography 

production logistics system’, International Journal of Production Research, 

vol. 55, no. 9, pp. 2622–2649. 

Rahmandad, H. and Sterman, J. (2018) System Dynamics or Agent-Based 

Models? Wrong question! Seek the right level of aggregation [Online], 

System Dynamics Society. Available at https://www.systemdynamics.org/

assets/docs/sdorabm.pdf (Accessed 29 October 2019). 

Rani, N. A. A., Baharum, M. R., Akbar, A. R. N. and Nawawi, A. H. (2015) 

‘Perception of Maintenance Management Strategy on Healthcare Facilities’, 

Procedia - Social and Behavioral Sciences, vol. 170, pp. 272–281. 

Raoslash, dseth, H., Schjaoslash and lberg, P. (2016) ‘Data-driven 

Predictive Maintenance for Green Manufacturing’, Proceedings of the 6th 

International Workshop of Advanced Manufacturing and Automation. 

Manchester, UK, 11/10/2016 - 11/11/2016. Paris, France, Atlantis Press. 

Rauniaho-Mitchell, T. (2020) How to optimize material flow in manufacturing 

with data analytics [Online]. Available at https://www.elisasmartfactory.com/

how-to-optimize-material-flow-in-manufacturing-with-data-analytics-and-

machine-learning/ (Accessed 24 May 2020). 

Rauschert, S., Raubenheimer, K., Melton, P. E. and Huang, R. C. (2020) 

‘Machine learning and clinical epigenetics: a review of challenges for 

diagnosis and classification’, Clinical epigenetics, vol. 12, no. 1, p. 51. 

Rédei, G. P. (2008) Encyclopedia of Genetics, Genomics, Proteomics and 

Informatics, Dordrecht, Springer Science+Business Media. 

Refa (2019) 7 Verschwendungsarten [Online]. Available at https://refa.de/

service/refa-lexikon/7-verschwendungsarten (Accessed 16 June 2019). 

Ren, S., Zhang, Y., Liu, Y., Sakao, T., Huisingh, D. and Almeida, C. M.V.B. 

(2019) ‘A comprehensive review of big data analytics throughout product 

lifecycle to support sustainable smart manufacturing: A framework, 

challenges and future research directions’, Journal of Cleaner Production, 

vol. 210, pp. 1343–1365 [Online]. DOI: 10.1016/j.jclepro.2018.11.025. 

Ressler, J., Dean, M., Benson, E., Dorner, E. and Morris, C. (2007) 

‘Application of Ontology Translation’, in Aberer, K. (ed) The Semantic Web: 

6th International Semantic Web Conference, 2nd Asian Semantic Web 

Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 

2007 ; proceedings, Berlin [u.a.], Springer, pp. 830–842. 



395 Bibliography 

Richardson, G. P. and Pugh, A. L. (1988) Introduction to system dynamics 

modeling with DYNAMO, 5th edn, Cambridge, Mass., MIT Press. 

Ripley, B. D. and Chen, F. (2003) Data Mining by Scaling Up Open Source 

Software, Proceedings of the 2003 session of the International Statistical 

Institute. 

Robertson, J. (2008) Fabless future: Struggling AMD spins off factories 

[Online], ABC News. Available at https://abcnews.go.com/Technology/story?

id=5982365&page=1 (Accessed 11 February 2020). 

Roch, S. (2017) ‘Der Mixed-Methods-Ansatz’, in Winkel, J., Fichten, W. and 

Großmann, K. (eds) Forschendes Lernen an der Europa-Universität 

Flensburg, pp. 95–110. 

Rothe, J., Gaxiola, G., Marshall, L., Asakawa, T., Yamagata, K. and 

Yamamoto, M. (2014) ‘Emerging challenges to Carrier Logistics’, 2014 25th 

Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC): 

19-21 May 2014, Saratoga Springs, NY. Saratoga Springs, NY, 5/19/2014 -

5/21/2014. Piscataway, NJ, IEEE, pp. 103–108. 

Saito, M. (2009) ‘Global Semiconductor Industry Trend—IDM Versus 

Foundry Approaches [Point of View]’, Proceedings of the IEEE, vol. 97, 

no. 10, pp. 1658–1660. 

Sambrekar, A. A., Vishnu, C. R. and Sridharan, R. (2018) ‘Maintenance 

strategies for realizing Industry 4.0: An overview’, Emerging Trends in 

Engineering, Science and Technology for Society, Energy and Environment: 

Proceedings of the International Conference in Emerging Trends in 

Engineering, Science and Technology (ICETEST 2018), January 18-20, 

2018, Thrissur, Kerala, India, p. 341. 

Sandrock, J. (2006) System dynamics in der strategischen Planung: Zur 

Gestaltung von Geschäftsmodellen im E-Learning, Wiesbaden, Dt. Univ.-

Verl. 

Sathishkumar, S., Devi Priya, R. and Karthika, K. (2020) ‘Survey on Data 

Mining and Predictive Analytics Techniques’, in Ranganathan, G., Chen, J. 

L.-Z. and Rocha, Á. (eds) Inventive Communication and Computational 

Technologies: Proceedings of ICICCT 2019, Singapore, Springer, pp. 971–

981.



396 Bibliography 

Saunders, M., Lewis, P. and Thornhill, A. (2009) ‘Understanding research 

philosophies and approaches’, Research Methods for Business Students, 

vol. 4, pp. 106–135. 

Schellenberger, M. (2018) Predictive Probing: A novel approach to minimize 

efforts at final test [Online], Fraunhofer IISB. Available at http://

www1.semi.org/eu/sites/semi.org/files/events/presentations/05_

Martin%20Schellenberger_Fraunhofer-IISB.pdf (Accessed 18 March 2020). 

Schlauderer, S. and Overhage, S. (2017) BPMN — Enzyklopaedie der 

Wirtschaftsinformatik [Online]. Available at https://www.enzyklopaedie-der-

wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/

Systementwicklung/Hauptaktivitaten-der-Systementwicklung/

Problemanalyse-/Workflow-Modellierung/bpmn/bpmn/?searchterm=bpmn 

(Accessed 19 March 2020). 

Schmitt, J., Bönig, J., Borggräfe, T., Beitinger, G. and Deuse, J. (2020) 

‘Predictive model-based quality inspection using Machine Learning and Edge 

Cloud Computing’, Advanced Engineering Informatics, vol. 45, p. 101101 

[Online]. DOI: 10.1016/j.aei.2020.101101. 

Schober, P., Boer, C. and Schwarte, L. A. (2018) ‘Correlation Coefficients: 

Appropriate Use and Interpretation’, Anesthesia and analgesia, vol. 126, 

no. 5, pp. 1763–1768. 

Schulte im Walde, S. (2003) Experiments on the Automatic Induction of 

German Semantic Verb Classes, Institut für Maschinelle Sprachverarbeitung, 

Universität Stuttgart. 

Scott, A. J. (1987) ‘The Semiconductor Industry in South-East Asia: 

Organization, Location and the International Division of Labour 1’, Regional 

Studies, vol. 21, no. 2, pp. 143–159. 

Scully, P. (2019) ‘Predictive Maintenance Companies Landscape 2019’, IoT 

Analytics GmbH, 8 October [Online]. Available at https://iot-analytics.com/

predictive-maintenance-companies-landscape-2019/ (Accessed 7 March 

2020). 

Segura, M. G., Oleghe, O. and Salonitis, K. (2019) ‘Analysis of lean 

manufacturing strategy using system dynamics modelling of a business 

model’, International Journal of Lean Six Sigma [Online]. 

DOI: 10.1108/IJLSS-05-2017-0042. 



397 Bibliography 

SEMI (2017) SEMI International Standards [Online]. Available at http://

www.semi.org/en/Standards (Accessed 9 July 2017). 

Semiconductor Industry Association (2020) Worldwide Semiconductor Sales 

Decrease 12 Percent to $412 Billion in 2019 [Online]. Available at https://

www.semiconductors.org/worldwide-semiconductor-sales-decrease-12-

percent-to-412-billion-in-2019/ (Accessed 16 May 2020). 

Senge, P. M. and Forrester, J. W. (1980) ‘Tests for building confidence in 

system dynamics models’, System dynamics, TIMS studies in management 

sciences, vol. 14, pp. 209–228. 

Shepherd, S. P. (2014) ‘A review of system dynamics models applied in 

transportation’, Transportmetrica B: Transport Dynamics, vol. 2, no. 2, 

pp. 83–105. 

Siegel, E. (2013) Predictive analytics: The power to predict who will click, 

buy, lie, or die, Hoboken, New Jersey, John Wiley & Sons. 

Singer, J. and Vinson, N. (1999) ‘Empirical Software Engineering Research 

Ethics’, Sixth international software metrics symposium. Boca Raton, FL, 

USA, 4-6 Nov. 1999, IEEE Computer Society, p. 326. 

Singer, P. (2020) ISS: The 2020 Market Outlook - Semiconductor Digest 

[Online]. Available at https://www.semiconductor-digest.com/2020/01/28/iss-

the-2020-market-outlook/ (Accessed 16 May 2020). 

Singleton, A. and Arribas‐Bel, D. (2019) ‘Geographic Data Science’, 

Geographical Analysis. 

Snyder, H. (2019) ‘Literature review as a research methodology: An 

overview and guidelines’, Journal of Business Research, vol. 104, pp. 333–

339 [Online]. DOI: 10.1016/j.jbusres.2019.07.039. 

Soltis, P. S., Nelson, G., Zare, A. and Meineke, E. K. (2020) ‘Plants meet 

machines: Prospects in machine learning for plant biology’, Applications in 

Plant Sciences, vol. 8, no. 6. 

Sood, B. (2013) Root-Cause Failure Analysis of Electronics [Online], 

University of Maryland. Available at https://www.smta.org/chapters/files/

Philadelphia_SMTA_Philly_Rev2.pdf (Accessed 16 June 2019). 

Staab, S. and Studer, R. (2009) Handbook on ontologies, 2nd edn, Berlin, 

Springer. 



398 Bibliography 

Stanford University (n.d.) protégé [Online]. Available at https://

protege.stanford.edu/ (Accessed 20 March 2020). 

Statista (2016) The Smartphone Price Gap [Online]. Available at https://

www.sitepronews.com/2016/06/10/the-smartphone-price-gap/ (Accessed 14 

February 2020). 

Steinwandter, V., Borchert, D. and Herwig, C. (2019) ‘Data science tools and 

applications on the way to Pharma 4.0’, Drug Discovery Today, vol. 24, 

no. 9, pp. 1795–1805 [Online]. DOI: 10.1016/j.drudis.2019.06.005. 

Stephens, S. (2001) ‘Supply Chain Operations Reference Model Version 5.0: 

A New Tool to Improve Supply Chain Efficiency and Achieve Best Practice’, 

Information Systems Frontiers, vol. 3, no. 4, pp. 471–476. 

Sterman, J. D. (2000) Business dynamics: Systems thinking and modeling 

for a complex world, Boston [Mass.], London, Irwin McGraw-Hill. 

Stich, P., Wahl, M., Czerner, P., Weber, C. and Fathi, M. (2020) ‘Yield 

prediction in semiconductor manufacturing using an AI-based cascading 

classification system’, 2020/07, IEEE. 

Strandberg, P. E. (2019) ‘Ethical Interviews in Software Engineering’, 2019 

ACM/IEEE International Symposium on Empirical Software Engineering and 

Measurement (ESEM 2019): Porto de Galinhas, Recife, Brazil, 19 - 20 

September 2019. Porto de Galinhas, Recife, Brazil, 9/19/2019 - 9/20/2019. 

Piscataway, NJ, IEEE, pp. 1–11. 

Sun, C., Rose, T., Ehm, H. and Herbig, T. (2016) ‘Best Practice Sharing for 

Complexity Management in Supply Chains of the Semiconductor Industry’, 

Procedia CIRP, vol. 41, pp. 538–543. 

Sun, Y., Liu, N., Shang, J. and Zhang, J. (2017) ‘Sustainable utilization of 

water resources in China: A system dynamics model’, Journal of Cleaner 

Production, vol. 142, pp. 613–625. 

Svátek, V. and Sváb-Zamazal, O. (2010) Entity Naming in Semantic Web 

Ontologies: Design Patterns and Empirical Observations [Online], University 

of Economics, Czech Republic. Available at https://www.researchgate.net/

publication/266455598_Entity_Naming_in_Semantic_Web_Ontologies_

Design_Patterns_and_Empirical_Observations (Accessed 6 January 2019). 



399 Bibliography 

Swaen, B. (2015) Conceptual framework [Online], Scribbr. Available at 

https://www.scribbr.com/dissertation/conceptual-framework/ (Accessed 19 

March 2020). 

Swanson, L. (2001) ‘Linking maintenance strategies to performance’, 

International Journal of Production Economics, vol. 70, no. 3, pp. 237–244. 

Takeda Berger, S. L., Zanella, R. M. and Frazzon, E. M. (2019) ‘Towards a 

data-driven predictive-reactive production scheduling approach based on 

inventory availability’, IFAC-PapersOnLine, vol. 52, no. 13, pp. 1343–1348. 

Tao, F., Qi, Q., Liu, A. and Kusiak, A. (2018) ‘Data-driven smart 

manufacturing’, Journal of Manufacturing Systems, vol. 48, pp. 157–169. 

Tate, A. E., McCabe, R. C., Larsson, H., Lundström, S., Lichtenstein, P. and 

Kuja-Halkola, R. (2020) ‘Predicting mental health problems in adolescence 

using machine learning techniques’, PloS one, vol. 15, no. 4, e0230389. 

Techopedia (2019) What is Microsoft Excel? - Definition from Techopedia 

[Online]. Available at https://www.techopedia.com/definition/5430/microsoft-

excel (Accessed 20 March 2020). 

Tel (2018) The History of Semiconductor [Online] (Accessed 16 May 2020). 

Thaduri, A., Kumar Verma, A., Gopika, V., Gopinath, R. and Kumar, U. 

(2013) ‘Reliability prediction of semiconductor devices using modified 

physics of failure approach’, International Journal of System Assurance 

Engineering and Management, vol. 4, no. 1, pp. 33–47 [Online]. 

DOI: 10.1007/s13198-013-0146-9. 

Thoben, K.-D., Wiesner, S. and Wuest, T. (2017) ‘“Industrie 4.0” and Smart 

Manufacturing – A Review of Research Issues and Application Examples’, 

International Journal of Automation Technology, vol. 11, no. 1, pp. 4–16. 

Tiddens, W. W., Braaksma, A. J. J. and Tinga, T. (2018) ‘Selecting suitable 

candidates for predictive maintenance’, Int. J. Prognostics Health Manag, 

vol. 9, no. 1, p. 20. 

Toni, A. D. and Tonchia, S. (2001) ‘Performance measurement systems - 

Models, characteristics and measures’, International journal of operations & 

production management [Online]. DOI: 10.1108/01443570110358459. 

Tu, Y.-M. and Lu, C.-W. (2017) ‘The Influence of Lot Size on Production 

Performance in Wafer Fabrication Based on Simulation’, Procedia 

Engineering, vol. 174, pp. 135–144. 



400 Bibliography 

Tuv, E., Guven, M., Ennis, P. and Hai Liang Lee, D. (2018) Faster, More 

Accurate Defect Classification Using Machine Vision [Online], Intel. Available 

at https://www.intel.com/content/dam/www/public/us/en/documents/best-

practices/faster-more-accurate-defect-classification-using-machine-vision-

paper.pdf (Accessed 15 March 2020). 

Varadarajan, A. and Sarin, S. C. (2006) ‘A Survey Of Dispatching Rules For 

Operational Control In Wafer Fabrication’, IFAC Proceedings Volumes, 

vol. 39, no. 3, pp. 715–726. 

Villareal, G., Na, J., Lee, J. and Ho, T. (2018) ‘Advantages of using big data 

in semiconductor manufacturing’, 2018 29th annual SEMI advanced 

semiconductor manufacturing conference (ASMC 2018): Saratoga Springs, 

New York, USA 30 April-3 May 2018. Saratoga Springs, NY, USA, 4/30/2018 

- 5/3/2018. Piscataway, New Jersey, Institute of Electrical and Electronics

Engineers, pp. 139–142. 

Vo, H. V., Bach, F., Cho, M., Han, K., LeCun, Y., Pérez, P. and Ponce, J. 

(2019) ‘Unsupervised image matching and object discovery as optimization’, 

Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 8287–8296. 

Vontobel (2020) How the Crisis Could Boost Big Tech [Online]. Available at 

https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-

media-telecommunications/us-tmt-covid-19-a-black-swan-event-for-the-

semiconductor-industry.pdf (Accessed 16 May 2020). 

W3C (2015) Inference [Online]. Available at https://www.w3.org/standards/

semanticweb/inference (Accessed 6 March 2019). 

Wang, J., Ma, Y., Zhang, L., Gao, R. X. and Wu, D. (2018) ‘Deep learning for 

smart manufacturing: Methods and applications’, Journal of Manufacturing 

Systems, vol. 48, pp. 144–156. 

Wang, K.-S. (2013) ‘Towards zero-defect manufacturing (ZDM)—a data 

mining approach’, Advances in Manufacturing, vol. 1, no. 1, pp. 62–74. 

Wang, L., Chu, J. and Wu, J. (2007) ‘Selection of optimum maintenance 

strategies based on a fuzzy analytic hierarchy process’, International Journal 

of Production Economics, vol. 107, no. 1, pp. 151–163. 



401 Bibliography 

Ward, J. (2014) A Brief History Of Early Semiconductors [Online]. Available 

at http://semiconductormuseum.com/MuseumStore/TransistorMuseum_

Brief_History_of_Early_Semiconductors.pdf (Accessed 16 May 2020). 

Wazed, M. A., Ahmed, S. and Nukman, Y. (2010) ‘Impacts of quality and 

processing time uncertainties in multistage production system’, International 

Journal of Physical Sciences, Vol.5(6), pp. 814–825. 

Weber, C. M. and Fayed, A. (2010) ‘Optimizing Your Position on the 

Operating Curve: How Can a Fab Truly Maximize Its Performance?’, IEEE 

Transactions on Semiconductor Manufacturing, vol. 23, no. 1, pp. 21–29. 

Wei, S., Ma, Y., Li, R. and Hu, L. (2020) ‘Toward Smart Manufacturing: Key 

Technologies and Trends Driving Standardization’, Computer, vol. 53, no. 4, 

pp. 46–50. 

Weigert, G. (2013) ‘Leistungsbewertung von Fertigungssystemen durch 

normierte Betriebskennlinien’, in Dangelmaier, W., Laroque, C. and Klaas, A. 

(eds) Simulation in Produktion und Logistik 2013: 

[Entscheidungsunterstützung von der Planung bis zur Steuerung ; 15. ASIM 

Fachtagung] ; Paderborn, 09. - 11. Oktober 2013, Paderborn, Heinz-Nixdorf-

Inst. Univ. Paderborn. 

Weik, M. H. (2000) Computer science and communications dictionary, 

Boston, Kluwer Academic Publishers. 

Weisstein, E. W. and Sakharov, A. (n.d.) Propositional Calculus [Online], 

Wolfram Research, Inc. Available at http://mathworld.wolfram.com/

PropositionalCalculus.html (Accessed 2 January 2018). 

Xie, J. and Pecht, M. (2003) ‘Reliability prediction modeling of semiconductor 

light emitting device’, IEEE Transactions on Device and Materials Reliability, 

vol. 3, no. 4, pp. 218–222. 

Yan, J., Meng, Y., Lu, L. and Li, L. (2017) ‘Industrial Big Data in an Industry 

4.0 Environment: Challenges, Schemes, and Applications for Predictive 

Maintenance’, IEEE Access, vol. 5, pp. 23484–23491. 

Yang, T., Chen, M.‐C. and Su, C.‐T. (2003) ‘Quality management practice in 

semiconductor manufacturing industries – empirical studies in Taiwan’, 

Integrated Manufacturing Systems, vol. 14, no. 2, pp. 153–159. 

Yin, R. K. (2009) Case Study Research: Design and Methods, SAGE 

Publications. 



402 Bibliography 

Yu, Q., Yang, H., Lin, K.-Y. and Li, L. (2020) ‘A Predictive Dispatching Rule 

Assisted by Multi-Layer Perceptron for Scheduling Wafer Fabrication Lines’, 

Journal of Computing and Information Science in Engineering, vol. 20, no. 3, 

p. 1332.

Zahmani, M. H., Atmani, B. and Bekrar, A. (2015) ‘Efficient Dispatching 

Rules Based on Data Mining for the Single Machine Scheduling Problem’, 

Computer Science & Information Technology (CS & IT ), November 06, 

2015, Academy & Industry Research Collaboration Center (AIRCC), 

pp. 199–208. 

Zhang, H., Jiang, Z. and Guo, C. (2009) ‘Simulation-based optimization of 

dispatching rules for semiconductor wafer fabrication system scheduling by 

the response surface methodology’, The International Journal of Advanced 

Manufacturing Technology, vol. 41, 1-2, pp. 110–121. 

Zhang, J., Qin, W. and Wu, L. H. (2015) ‘A performance analytical model of 

automated material handling system for semiconductor wafer fabrication 

system’, International Journal of Production Research, vol. 54, no. 6, 

pp. 1650–1669. 

Zhang, R., Hajjar, J. and Sun, H. (2020) ‘Machine Learning Approach for 

Sequence Clustering with Applications to Ground-Motion Selection’, Journal 

of Engineering Mechanics, vol. 146, no. 6, p. 4020040. 



403 Appendix 

Appendix 

A1 IE Data Matrix 

# Source Type Target 
Numbers 
of 
Responses 

Impact 
(Mean) 

1 4M Synchronicity decrease CT Variance 4 −9

2 4M Synchronicity decrease 
Standby Time 
Duration 

1 −10

3 Alpha Tool increase Alpha PS 1 5 

4 Batch Size increase Alpha PS 1 5 

5 Degree of Automation increase 
Importance Of 
Operator Qualification 
Level 

1 10 

6 Degree of Automation decrease 
Operator Qualification 
Level 

4 −6

7 
Degree of Knowledge of 
Engineers about Factory 
Physics 

decrease 
Material Flow 
Variance 

4 −5.25

8 
Degree of Operator 
Qualification Level 

decrease CT 1 −8

9 
Degree of Operator 
Qualification Level 

decrease FF 1 −7

10 
Degree of Operator 
Qualification Level 

increase GR 2 4 

11 
Degree of Production 
Staff Motivation 

decrease CT 4 −4.5

12 
Degree of Unevenness in 
WIP Distribution 

decrease GR 1 −10

13 Dispatcher Compliance decrease FF 1 −3

14 Dispatcher Compliance decrease 
Standby Time 
Duration 

3 −5.33

15 Dispatcher Compliance decrease WIP Variance 1 −3

16 Dispatcher Maturity increase 4M Synchronicity 1 6 

17 Dispatcher Maturity decrease 
Standby Time 
Duration 

3 −6

18 EM Availability increase Equipment Availability 2 4.5 

19 EM Availability decrease 
Standby Time 
Duration 

3 −6

20 EM Availability decrease 
Unscheduled Down 
Duration 

5 −7.6

21 EM Qualification Level decrease 
Scheduled Down 
Duration 

1 −5

22 EM Qualification Level decrease 
Unscheduled Down 
Frequency 

1 −1

23 Equipment Availability increase DGR 1 5 

24 Equipment Availability decrease FF 1 −4

25 Equipment Availability increase GR 1 10 

26 Equipment Availability decrease WIP Variance 1 −3

27 Equipment Going Rate increase GR Math. Math. 

28 Equipment Reservations decrease Capacity 1 −3

29 Equipment Reservations increase 
Engineering Time 
Duration 

1 10 

30 Equipment Reservations increase FF 1 3 

31 Equipment Reservations increase 
Standby Time 
Duration 

3 3.33 

32 Equipment Reservations increase WIP Variance 1 2 

33 Fab Utilisation increase Downtime Frequency 1 7 

34 Fab Utilisation increase 
Scheduled Down 
Percentage 

1 3 

35 
Flexibility of Operator 
Qualification Level 

decrease CT 1 −8
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# Source Type Target 
Numbers 
of 
Responses 

Impact 
(Mean) 

36 GR increase DGR Math. Math. 

37 
High Percentage Process 
Inspections 

increase CT 3 3 

38 Lot Prioritisations increase CT Variance 1 6 

39 Lot Prioritisations decrease GR 2 0 

40 Maintenance Strategy increase Equipment Going Rate 1 4 

41 
Maximum Wait Time for 
Batches 

increase 
Standby Time 
Duration 

1 2 

42 MTBA decrease Alpha PS 3 −5

43 MTBF decrease Alpha PS 2 5 

44 MTBF increase Equipment Availability 2 5 

45 MTOL increase Alpha PS 4 5 

46 MTTR increase Alpha PS 4 5 

47 OEE decrease Alpha PS 2 −5

48 OEE increase Capacity 1 −5

49 Operator Availability decrease CT 4 −6.75

50 Operator Availability decrease FF 1 -8

51 Operator Availability increase GR 1 10 

52 Operator Availability decrease 
Standby Time 
Duration 

5 −3.2

53 Operator Availability decrease WIP Variance 1 −4

54 
Operator Qualification 
Level 

decrease FF 1 −3

55 
Operator Qualification 
Level 

increase 
Flexibility of Operator 
Qualification Level 

2 8 

56 
Operator Qualification 
Level 

decrease 
Standby Time 
Duration 

2 −6

57 
Percentage of Bottleneck 
Equipment 

increase CT 3 8.67 

58 
Performance 
Synchronicity of Similar 
Machines 

decrease FF 1 −5

59 PM Application decrease Alpha Tool 4 −6

60 PM Application increase 
Degree Of Production 
Staff Motivation 

1 6 

61 PM Application increase EM Availability 5 8.6 

62 PM Application increase Equipment Uptime 5 7 

63 PM Application increase GR 5 6 

64 PM Application increase Material Flow 1 10 

65 PM Application decrease MTBO 2 −5

66 PM Application decrease MTOL 2 −7.5

67 PM Application increase 
Scheduled Down 
Frequency 

5 5.4 

68 PM Application increase 
Synchronicity Of EM 
Availability 

1 4 

69 PM Application decrease 
Unscheduled Down 
Duration 

1 −10

70 PM Application decrease 
Unscheduled Down 
Frequency 

5 −7

71 Process Availability increase GR 1 10 

72 
Process Development at 
Production Equipment 

increase CT 1 2 

73 
Process Development at 
Production Equipment 

increase 
Engineering Time 
Duration 

1 10 

74 
Process Development at 
Production Equipment 

decrease Equipment Capacity 3 −7.67

75 
Process Development at 
Production Equipment 

decrease GR 2 2 

76 
Process Development at 
Production Equipment 

increase 
Unscheduled Down 
Frequency 

3 1.67 

77 Process Maturity increase Equipment Availability 1 2 

78 Process Maturity increase Process Stability 4 9.5 

79 Process Maturity increase Rest 3M Availability 1 8 

80 Process Maturity decrease 
Standby Time 
Duration 

1 −2
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# Source Type Target 
Numbers 
of 
Responses 

Impact 
(Mean) 

81 Process Maturity decrease 
Unscheduled Down 
Frequency 

6 −5.83

82 Process Stability decrease CT 3 −6.33

83 Process Stability increase Degree of Automation 1 8 

84 Process Stability increase Equipment Availability 1 2 

85 Process Stability decrease FF 1 −4

86 Process Stability decrease 
High Percentage 
Process Inspections 

3 −3

87 Process Stability decrease 
Standby Time 
Duration 

1 −2

88 Process Stability decrease 
Unscheduled Down 
Frequency 

4 −8

89 Process Stability decrease WIP Variance 1 −3

90 Process Variety increase 
Scheduled Down 
Percentage 

1 5 

91 
Processing Time 
Variance 

increase FF 1 5 

92 Rate Efficiency increase GR 1 5 

93 Rest 3M Availability decrease 
Standby Time 
Duration 

4 −4

94 Rework decrease GR 1 −10

95 
Scheduled Down 
Frequency 

increase Alpha PS 1 5 

96 
SCM Order Patterns 
Variance 

increase WSPW Variance 1 10 

97 Setup Frequency decrease Equipment Capacity 3 −4.67

98 Setup Frequency increase 
Importance Of EM 
Availability 

3 7.33 

99 Setup Frequency increase 
Scheduled Down 
Duration 

1 5 

100 Single Process Variety increase Alpha PS 1 5 

101 Single Process Variety decrease Equipment Capacity 1 −4

102 Single Process Variety increase Setup Frequency 3 5.67 

103 Tool Dedication increase Alpha PS 1 5 

104 Tool Dedication increase CT 2 7.5 

105 Tool Dedication decrease Deliverability 1 −10

106 Tool Dedication decrease Equipment Capacity 3 −1

107 Tool Dedication increase FF 1 −2

108 Tool Dedication increase 
Importance Of 
Equipment Availability 

1 3 

109 Tool Dedication increase 
Material Flow 
Variance 

1 10 

110 Tool Dedication increase 
Risk of Product Line 
Down 

4 8.25 

111 Tool Dedication decrease 
Standby Time 
Duration 

2 −5.5

112 Tool Dedication increase WIP Variance 1 8 

113 Transportation Variability decrease Equipment Capacity 1 −5

114 
Utilisation Profile 
Variance 

increase CT 1 10 

115 
Utilisation Profile 
Variance 

increase 
Percentage of 
Bottleneck Equipment 

1 5 

116 WIP Variance increase CT Variance 4 4.75 

117 WIP Variance increase FF 1 −3

118 WIP Variance increase 
Standby Time 
Duration 

1 6 

119 WSPW Variance increase FF 1 2 

120 WSPW Variance increase 
Risk of Equipment 
bottleneck 

3 2.67 

121 WSPW Variance increase 
Standby Time 
Duration 

3 4.67 

122 WSPW Variance increase WIP Variance 5 3.8 

123 Yearly WIP reductions increase WSPW Variance 1 3 
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A2 EM Data Matrix 

# Source Type Target Number of 
Responses 

Impact 

1 Offline PM 
application 

decrease Speed of reactions 3 Simulation Config. 

2 Offline PM 
application 

increase Quality of statistics 1 Simulation Config. 

3 Offline PM 
application 

increase Probability to find new 
failure patterns 

1 Simulation Config. 

4 Offline PM 
application 

increase Quality of monitoring 1 Simulation Config. 

5 Offline PM 
application 

increase Quality of planning 
procedures 

2 Simulation Config. 

6 Offline PM 
application 

increase Independence in 
running analyses 

1 Simulation Config. 

7 Offline PM 
application 

increase Transparency in 
effectiveness of EM 
activities 

1 Simulation Config. 

8 Offline PM 
application 

increase Number of relevant 
data sources 

4 Simulation Config. 

9 Offline PM 
application 

increase Level of understanding 
of historical failure 
patterns 

3 Simulation Config. 

10 Online PM 
application 

decrease Quality of statistics 2 Simulation Config. 

11 Online PM 
application 

increase Dependency on 
existing knowledge 

1 Simulation Config. 

12 Online PM 
application 

increase Data traffic 1 Simulation Config. 

13 Online PM 
application 

increase Dependency on EM 
processes 

1 Simulation Config. 

14 Online PM 
application 

increase Dependency on 
algorithm quality 

1 Simulation Config. 

15 Online PM 
application 

increase Efforts to prepare data 
and algorithm 

2 Simulation Config. 

16 Online PM 
application 

increase Probability of  to avoid 
failures 

2 Simulation Config. 

17 Online PM 
application 

increase Speed of reactions 4 Simulation Config. 

18 Percentage of 
Preventive 
Maintenance 

decrease MTTR 1 5 

19 Percentage of 
Preventive 
Maintenance 

increase Speed of analysis 1 8 

20 Percentage of 
Preventive 
Maintenance 

increase Speed of reactions 1 10 

21 Percentage of 
Preventive 
Maintenance 

decrease Frequency of 
Unscheduled Machine 
Downtimes 

1 9 

22 Percentage of 
Preventive 
Maintenance 

decrease Duration of Machine 
Downtimes 

5 7 

23 Percentage of 
Preventive 
Maintenance 

increase Quality of planning 
procedures 

1 3 

24 Percentage of 
Preventive 
Maintenance 

increase Probability to avoid late 
effects 

1 7 
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# Source Type Target Number of 
Responses 

Impact 

25 Percentage of 
Preventive 
Maintenance 

increase Probability to avoid 
collateral damages 

1 5 

26 Percentage of 
Reactive 
Maintenance 

decrease Efficiency in 
coordination of 
maintenance process 

1 10 

27 Percentage of 
Reactive 
Maintenance 

decrease Probability to avoid 
collateral damages 

2 5,5 

28 Percentage of 
Reactive 
Maintenance 

decrease Probability to avoid 
total failures 

3 6 

29 Percentage of 
Reactive 
Maintenance 

increase Number of EM persons 
per shift 

2 6,5 

30 Percentage of 
Reactive 
Maintenance 

increase Percentage of new 
equipment invests 

1 6 

31 Percentage of 
Reactive 
Maintenance 

decrease Equipment lifespan 1 8 

32 Percentage of 
Reactive 
Maintenance 

decrease Quality of monitoring 1 5 

33 Percentage of 
Reactive 
Maintenance 

decrease Efficiency of spare part 
logistics 

1 6 

34 Percentage of 
Reactive 
Maintenance 

decrease Evenness of 
distribution of 
equipment downtimes 

1 3 

35 Percentage of 
Reactive 
Maintenance 

increase Percentage of rework 1 10 

36 Percentage of 
Reactive 
Maintenance 

decrease Degree of exhausting 
wear limits 

1 8 

37 Percentage of 
Reactive 
Maintenance 

increase Duration of Machine 
Downtimes 

2 8,5 

A3 PdMSM Formulas for Dynamic Variables 

Variable Formula 

 Down_Percentage  UD_flow+SD_Percentage 

Degree_Of_Exhausting_Wear_
Limits 

 Number_Failures > 0 ? 1- 
Number_of_SparePartReplacements/Number_Failures : 0 

 MTTR  (Number_Failures > 0 ? RepairTime/Number_Failures : 0) 

 MTBF  (Number_Failures > 0 ?  Uptime/(Number_Failures) : 0) 

 EQ_Availability  time() > 0 ? Uptime/time() : 0.8 

 MTOL  (Number_Failures > 0 ? 
UnscheduledDownTime/Number_Failures : 0) 

 Prob_Avoid_Downtime 
Prob_Avoid_Downtime_Plan+(Prob_Avoid_Downtime_Plan*5.2
8*ImpactFactor*Predictive_Maintenance) 

 Equipment_Lifespan  Equipment_Lifespan_Planned 

-
Equipment_Lifespan_Planned*8*ImpactFactor*Percentage_Of_
Reactive_Maintenance 
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Percentage_Of_New_Equipme
nt_Invests 

 Percentage_Of_New_Equipment_Invests_Planned 

+Percentage_Of_New_Equipment_Invests_Planned*6*ImpactF
actor*Percentage_Of_Reactive_Maintenance

 partnerAvailability_woWIP getPSAvailability(1, processAvailability, EQ_Availability, 
Operator_Availabilty) 

 processingRateCurrent processingRateMax*partnerAvailability_woWIP 

 processingRateMax Nmbr_Runs_Weekly*BatchSize 

 Nmbr_Runs_Weekly  (1/RPT)*Nmbr_ProcessReleased_Machines*(1-
noiseFactor)*expectedVolumePercentage 

 FF_focusOperation  CT_focusOperation/RPT 

 CT_focusOperation  FocusOperation/GR_focusOperation 

 GR_focusOperation  processedWafers/(time()*expectedVolumePercentage) 

 Degree_Tool_Dedication 1-Nmbr_ProcessReleased_Machines/Nmbr_Similar_Machines

 WIP_Availability 
limitMax(1,wafersToProcess/(partnerAvailability_woWIP*proces
singRateMax)) 

 PS_Availability  getPSAvailability(WIP_Availability, processAvailability, 
EQ_Availability, Operator_Availabilty) 

 FourM_Synchronicity  Four_M_Synchronicity ? 1 : 0 

 percentageProcessInspections  percentageProcessInspections_Plan 

-
percentageProcessInspections_Plan*3*ImpactFactor*processC
apability 

 procCapability  processCapability 

partnerAvailability_woEquipmen
t_and_Operator 

getPSAvailability(1, processAvailability, WIP_Availability, 1) 

 setupFrequency  1/(Number_SetupActions/time()) 

 DegreeAutomation  DegreeAutomation_Plan 

+DegreeAutomation_Plan*8*ImpactFactor*processCapability

DegreeOperatorQualificationLe
vel 

 DegreeOperatorQualificationLevel_Plan-
6*ImpactFactor*DegreeAutomation 

 Operator_Availabilty  limitMax(1, 
auxOperatorAvailability+auxOperatorAvailability*0.045*DegreeP
roductionStaffMotivation  

+auxOperatorAvailability*0.08*DegreeOperatorQualificationLev
el)

DegreeProductionStaffMotivatio
n 

 MotivatedOperators/Nmbr_Operator_OnShift 

 Nmbr_Operator_OnShift  UnmotivatedOperators+MotivatedOperators 

 auxOperatorAvailability  Nmbr_Operator_OnShift/required_nmbr_op_per_shift 

 Capa_Tool 
GR_focusOperation*processAvailability*EQ_Availability*Nmbr_
ProcessReleased_Machines 

 ProductiveTime  Uptime-StandbyTime 

 MTBA  Number_Assists > 0 ? ProductiveTime/Number_Assists : 0 

 Utilization  GR_focusOperation/Capa_Tool 

 percRepairTime  RepairTime/time() 
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 EM_Availability  Nmbr_EM_OnShift/(requiredEM_Opt-
requiredEM_Opt*8.6*ImpactFactor*Predictive_Maintenance) 

 Predictive_Maintenance  PM_Active 

Degree_Of_Machine_Related_
Process_Failures 

percentageScrap*(percentageMRPF_Plan-
percentageMRPF_Plan*8.4*ImpactFactor*Predictive_Maintenan
ce) 

 percentageScrap  ScrapWafers/processedWafers 

 processedWafers  GoodWafers+ToReworkWafers+ScrapWafers 

 Yield  GoodWafers/processedWafers 

 percentageRework  ToReworkWafers/processedWafers 

 WIP_productionLine  PreProcess+FocusOperation+PostProcess 

 CT_productionLine  WIP_productionLine/GR_productionLine 

 FF_productionLine  CT_productionLine/RPT_product 

 GR_productionLine 
(PreProcessFinishedStock+PostProcessFinishedStock+process
edWafers)/time() 

Efficiency_In_Coordination_Of_
Maintenance_Process 

 EM_Default_Values(7) -
10*ImpactFactor*(1+Percentage_Of_Reactive_Maintenance)*E
M_Default_Values(7) 

+8.8*ImpactFactor*EM_Default_Values(7)*Predictive_Maintena
nce

Percentage_Of_Reactive_Maint
enance 

 EM_Default_Values(6) -
EM_Default_Values(6)*10*ImpactFactor*Predictive_Maintenanc
e 

Percentage_Of_Preventive_Mai
ntenance 

1-Percentage_Of_Reactive_Maintenance

Probability_To_Avoid_Collateral
_Damages 

 EM_Default_Values(1) 
+5*ImpactFactor*(1+Percentage_Of_Preventive_Maintenance)*
EM_Default_Values(1)

Probability_To_Avoid_Late_Eff
ects 

 EM_Default_Values(4) 
+5*ImpactFactor*(1+Percentage_Of_Preventive_Maintenance)*
EM_Default_Values(4)

Quality_Of_Planning_Procedur
es 

 EM_Default_Values(3) 
+5*ImpactFactor*(1+Percentage_Of_Preventive_Maintenance)*
EM_Default_Values(3)

 Speed_Of_Analysis  EM_Default_Values(3) 
+5*ImpactFactor*(1+Percentage_Of_Preventive_Maintenance)*
EM_Default_Values(3)

 Speed_Of_Reactions  EM_Default_Values(4) 
+5*ImpactFactor*(1+Percentage_Of_Preventive_Maintenance)*
EM_Default_Values(4)

Degree_Of_Evenness_Of_Distr
ibution_Of_Equipment_Downti
mes 

 EM_Default_Values(2) -
3*ImpactFactor*(1+Percentage_Of_Reactive_Maintenance)*EM
_Default_Values(2) 

Efficiency_Of_Spare_Part_Logi
stics 

 EM_Default_Values(3) -
6*ImpactFactor*EM_Default_Values(3)*(1+Percentage_Of_Rea
ctive_Maintenance) 
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+6.4*ImpactFactor*EM_Default_Values(3)*Predictive_Maintena
nce

 Quality_of_monitoring  EM_Default_Values(7) -
5*ImpactFactor*(1+Percentage_Of_Reactive_Maintenance)*EM
_Default_Values(7) 

 synchronicity_EM_Availability  EM_Default_Values(6) 
+EM_Default_Values(6)*4*ImpactFactor*Predictive_Maintenanc
e

 uniBS  uniform(preProcBatchsize*0.9,preProcBatchsize*1.1) 

 uniCT  uniform(preProcCT*0.9,preProcCT*1.1) 

 WSPW  WSPW_Samples(round(time()))/7 

 actualTimeStep  getEngine().getNextStepTime()-time() 

 timeGrowth  Standby_flow+UD_flow+UP_flow 

 avg_NmbrEMOnShift  Nmbr_EM_OnShiftDS.getYMean() 


	Title Page
	Abstract
	Author’s declaration
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Chapter 1  Introduction
	1.1 Project Background
	1.2 Motivation
	1.3 Research Questions, Overall Aim and Objectives
	1.4 Contributions to the New Knowledge Generation
	1.5 Thesis Structure

	Chapter 2 Literature Review
	2.1 Introduction
	2.2 The Semiconductor Industry
	2.2.1 History and Industry Overview
	2.2.2 Optoelectronic Industry
	2.2.3 Semiconductor Value Chain
	2.2.4 Challenges in SI Value Chains

	2.3 Definition and Overview of Predictive Analytics
	2.4 Methods of Predictive Analytics
	2.5 Predictive Analytics Applications in Semiconductor Manufacturing
	2.5.1 Overview
	2.5.2 Predictive Maintenance
	2.5.3 Smart Manufacturing
	2.5.4 Predictive Process Control
	2.5.5 Predictive Quality
	2.5.6 Predictive Dispatching and Scheduling

	2.6 Conceptual Framework
	2.6.1 Existing Frameworks
	2.6.2 Proposal of a New Framework

	2.7 Summary and Importance of This Thesis

	Chapter 3 Research Methodology and Design
	3.1 Research Methodology
	3.1.1 Research Philosophy
	3.1.2 Research Approach
	3.1.3 Research Strategies
	3.1.4 Research Choice
	3.1.5 Time Horizon
	3.1.6 Techniques for Data Collection and Analysis

	3.2 Specific Research Methods
	3.2.1 Ontology
	3.2.2 First-Order Logic
	3.2.3 System Dynamics

	3.3 Software Tools for the Research Project
	3.3.1 Microsoft Excel
	3.3.2 Cytoscape
	3.3.3 Protégé
	3.3.4 PyCharm
	3.3.5 AnyLogic

	3.4 Research Design
	3.5 Ethical issues

	Chapter 4 Predicting and Evaluating Production System Performance in SI
	4.1 Introduction
	4.2 Production System
	4.3 Evaluation of PS Performance
	4.4 Performance Indicators and Metrics in the SI
	4.4.1 Logistics-Oriented KPIs
	4.4.2 Quality-Oriented KPIs
	4.4.3 Engineering-Oriented KPIs
	4.4.4 Maintenance-Oriented KPIs

	4.5 Performance Models with Focus on SI
	4.6 Summary

	Chapter 5 Data Collection and Presentation
	5.1 Introduction
	5.1.1 Introduction
	5.1.2 Case Study Company and Products
	5.1.3 Aims of Data Collection

	5.2 Data Collection Preparation
	5.2.1 General Preparations
	5.2.2 Selection of the Experts
	5.2.3 Design of the Questionnaires
	5.2.4 Experiences from a PdM Pilot Project

	5.3 Data Collection
	5.4 Manufacturing Process
	5.5 Data from IT Systems
	5.6 Summary

	Chapter 6 Data Analysis and Evaluation
	6.1 Introduction
	6.2 Analysis of Interviews with Experts in IE
	6.2.1 Factors with Impact on PS Performance
	6.2.2 Influences of Performance Factors on Production Machines
	6.2.3 Influences of Production Machines on Performance Factors
	6.2.4 Influences of PS Performance Factors on Factory KPIs
	6.2.5 Influences between PS Performance Factors
	6.2.6 Influences of PdM on Production Machine Performance
	6.2.7 IE Data Cleansing and Consolidation

	6.3 Analysis of Expert Interviews from Equipment Maintenance
	6.3.1 Expectations of Online versus Offline Analytics for PdM
	6.3.2 Savings and Benefits gained by Preventive Maintenance
	6.3.3 Influence of PdM on Machine Component Performance
	6.3.4 Influence of PdM on Spare Part Stock
	6.3.5 Influence of PdM on EM Operations
	6.3.6 Automation of EM Operations through PdM and ERP integration
	6.3.7 EM Data Consolidation

	6.4 Analysis of Expectations Regarding Predictive Maintenance
	6.5 Consolidation and Evaluation
	6.6 Summary

	Chapter 7 A Production Performance Expert System for the SI
	7.1 Introduction
	7.2 Scope and Boundaries
	7.3 Term Transformation into Ontology Concepts
	7.4 Class Hierarchy and Specifications
	7.5 Object Properties
	7.6 First-Order Logical Model Propositions
	7.7 PPES Verification
	7.7.1 Ontology Population and Reasoning
	7.7.2 Proof of Correctness of Inferred Axioms
	7.7.3 Empirical Validity
	7.7.3.1 Impact of Percentage of Rework on Utilization
	7.7.3.2 Impact of Going Rate on Wafer Starts Per Week
	7.7.3.3 Impact of Work in Progress on Flow Factor
	7.7.3.4 Impact of Machine Downtime on Work in Progress
	7.7.3.5 Impact of Machine Uptime on Overall Equipment Efficiency
	7.7.3.6 Impact of Percentage of Rework on Going Rate


	7.8 PPES Analysis and Evaluation
	7.9 Summary

	Chapter 8 A Simulation Model for Evaluating Impacts of PdM on SI PS Performance
	8.1 Introduction
	8.2 Proposition of a Method for the Model Application
	8.3 Model Scope and Considerations
	8.3.1 Problem Definition
	8.3.2 Boundary Adequacy
	8.3.3 Time Horizon and Time Step
	8.3.4 Methods for Differential Calculus
	8.3.5 Type of Aggregation
	8.3.6 Noise

	8.4 Transforming Terms into SD Variables
	8.5 Model Development
	8.5.1 Production Line Sub-Model
	8.5.1.1 General Model Structure
	8.5.1.2 Model Elements and Equations

	8.5.2 Workcenter Sub-Model
	8.5.2.1 General Model Structure
	8.5.2.2 Model Elements and Equations

	8.5.3 Focus Operation Sub-Model
	8.5.3.1 General Model Structure
	8.5.3.2 Model Elements and Equations

	8.5.4 Equipment Maintenance Sub-Model
	8.5.4.1 General Model Structure
	8.5.4.2 Model Elements and Equations

	8.5.5 Operator Sub-Model
	8.5.5.1 General Model Structure
	8.5.5.2 Model Elements and Equations

	8.5.6 Costs Sub-Model
	8.5.6.1 General Model Structure
	8.5.6.2 Model Elements and Equations

	8.5.7 Creation of User Interface for Simulation

	8.6 Model Verification
	8.6.1 Structure Assessment
	8.6.2 Parameter Assessment
	8.6.3 Extreme Conditions
	8.6.4 Empirical Validity
	8.6.5 Application Validity

	8.7 New Knowledge from Experiments
	8.8 Summary

	Chapter 9 Conclusions and Further Work
	9.1 Main Achievements
	9.2 Contributions to the New Knowledge Generation
	9.3 Limitations and Further Work

	Bibliography
	Appendix
	A1 IE Data Matrix
	A2 EM Data Matrix
	A3 PdMSM Formulas for Dynamic Variables




