
A Constraint Grammar POS-Tagger for Tibetan

Edward Garrett
SOAS, University of London

eg15@soas.ac.uk

Nathan W. Hill
SOAS, University of London

nh36@soas.ac.uk

Abstract

This paper describes a rule-based part-of-
speech tagger for Tibetan, implemented
in Constraint Grammar and with rules
operating over sequences of syllables
rather than words.

1 A POS-tagger for Tibetan

In earlier work, we described a rule-based tagger
for Classical Tibetan, implemented using regular
expressions (Garrett et al., 2014). Since then, the
rule tagger has kept moving: our grammatical
understanding of Tibetan has evolved by reading
and hand tagging 236,167 Tibetan words.1

The primary purpose of the rule-based tagger
has been to speed up the hand tagging of texts.
The output of a lexical tagger, assigning to each
word all of its possible tags, is fed into the rule
tagger, which then removes only those analyses
precluded by the context. The result of this
process is highly ambiguous, with an average of
1.3936 remaining tags per word. However, it is
also highly accurate, with 99.8 percent of words
receiving the correct tag (van Halteren, 1999). In
consequence, the human can focus their efforts
on determining the correct tag for words that
remain ambiguous, without needing to worry
about words that the rule tagger is sure about.

In the development of the tagger, no attempt
was made to divide the corpus into separate
training and test sets. To do so would have been
counterproductive, as it would have required us
to read and tag texts without learning from them.
To the contrary, we have seized every chance to
develop and further refine the rule set. It is a
pleasing result and some measure of success that
the tagger performs well when evaluated against
the materials that inspired it.

Despite its initial promise and usefulness, the
regular expressions tagger has been deprecated.
It soon became evident that maintaining the rule

1 Numbers in this section reflect a snapshot of the
Classical Tibetan corpus as of 15 June, 2015.

set required a regular expressions wizard with a
keen eye for slashes. Being both difficult to read
and difficult to maintain, the rule set seemed an
unlikely candidate for linguists to build on and
continue to use in the future. An additional
purely hypothetical concern was that the tagger
might soon require rules that would exceed the
expressive capacity of regular expressions.

These concerns, combined with the fortuitous
discovery of a new framework, led us to translate
the entire rule set into CG-3 (Bick & Didriksen,
2015), the latest version of Constraint Grammar.
We translated our regex rules into CG rules with
operators such as SELECT and REMOVE.

To give an example, in (1) we show the input
to the tagger as a sequence of cohorts in CG-3
format. Each cohort consists of a surface form,
shown within brackets inside quotes, followed by
one or more readings. Each reading includes a
lemma followed by one or more tags. Rules then
apply to the input to remove impossible readings.

(1) "<ཨ་ནེ་>"
"ཨ་ནེ་" n.count

"<དང་>"
"དང་" case.ass
"དང་" cv.ass
"དང་" v.invar

"<ཨ་u་>"
"ཨ་u་" n.count

The word དང་ has three possible readings. In (1),
དང་ is being used to coordinate two nouns, and so
the correct reading is associative case or
[case.ass]. Two separate rules remove [v.invar]
and [cv.ass] as possible readings. A simplified
version of the former rule is shown in (2).

(2) REMOVE v.xxx (-1C n.xxx)
(0 ("<དང་>")) (1C n.xxx) ;

This rule removes [v.invar] from དང་ when it is
sandwiched between two unambiguous (signified
by C) nominals (n.xxx).

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

19

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SOAS Research Online

https://core.ac.uk/display/42548924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The exercise of translating the rules into CG
had no effect on the overall performance of the
system, since it introduced no new rules or rule
types. However, the exercise did put the rule
tagger on a more secure footing for the future.
Translated into CG, most of the rules can now be
deciphered by linguists. Moreover, the general
readability of CG means that linguists are now
willing to take a stab at creating and modifying
rules without the help of a technician.

2 Segmentation as syllable tagging

Tibetan orthography does not use whitespace or
other means to mark the boundaries between
words. However, the intersyllabic tsheg character
(U+0F0B), resembling a dot, is used to mark the
boundaries between orthographic syllables.2 For
example, consider the following sentence:

(3a) ང་ཡིས་མི་མང་པོ་བསད་
I killed many people.

(3b) ང་|p.pers
ཡིས་|case.agn
མི་|n.count
མང་པོ་|adj
བསད་|v.past

The correct segmentation for (3a) is shown in
(3b), where each word appears on its own line,
and the pipe character separates a word from its
POS-tag. Only one word in this example consists
of more than a single syllable.

Following Xue's (2003) general approach to
Chinese word segmentation, Liu et al. (2011)
propose that Tibetan word segmentation be
recast as a syllable tagging problem. The task is
then to tag each syllable according to its position
in the word. We adopt their 6+2 tag set, which
they say yields the best results given the average
length of Tibetan words. We analyze (1) as:

(3c) ང་|S
ཡིས་|S
མི་|S
མང་|X
པོ་|E
བསད་|S

2 In this paper, henceforth, we refer to orthographic
syllables with the term “syllable” . By doing so,
we are not committing to analysing these units as
syllables in the sense of phonological theory.

The S tag is given to syllables forming words on
their own, while X and E mark the first and last
syllables of disyllabic words. Longer words are
marked with X-Y-E (trisyllabic), X-Y-Z-E
(quadrisyllabic), and X-Y-Z-M*-E, with any
number of M, for words of 5 or more syllables.

Two additional complex tags, SS and ES, are
needed for the class of “abbreviated” syllables.
These are situations of orthographic fusion where
no intersyllabic tsheg separates the end of a word
from the case marker or converb that follows it.
Since such fusion only affects phonologically
open syllables, whereas the same grammatical
functions are indicated with different markers
after closed syllables, we achieve consistency
and avoid the unnecessary proliferation of POS-
tags by treating such markers as their own words.
(4) shows a form of the first-person pronoun with
fused agentive case; because the syllable must be
treated as two words, it is assigned the tag SS.
Similarly in (5), meaning “of the many”, because
the genitive case marker must be pulled off from
the word that precedes it to form its own word,
the syllable is tagged ES instead of E.

(4) ངས་ > ང|p.pers ས་|case.agn
ངས་|SS

(5) མང་པ/འ1་ > མང་པོ|adj འི་|case.gen
མང་|X
པ/འ1་|ES

It is important to remember that while the
genitive marker shown in (5) only ever occurs in
abbreviated syllables (and so only ever occurs in
syllables tagged SS or ES), other abbreviated
case markers and converbs look the same as
natural word endings. For example, there are
many possible analyses of the syllable མར་. It
may continue an existing word (not shown), or
be the beginning of a new word. The final ར་ may
be the natural ending of the word, as in (6a),
meaning “butter”, or a case marker, as in (6b),
meaning “down there”.

(6a) མར་ > མར་|n.mass
མར་|S

(6b) མར་ > མ|d.dem ར་|case.term
མར་|SS

In summary, we use syllable tags to represent
words as a sequence of tagged syllable tokens,
as an alternative to joining syllables together into
a sequence of word tokens. Special care must be
taken when dealing with abbreviated syllables.
As illustrated in (5), while such case markers and

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

20

converbs are always counted as their own tokens
in word-based tagging, they are fused with the
preceding token in syllable-based tagging.

3 A syllable-based POS-tagger

In the next phase of the rule-based tagger, we
modify the CG rules to operate over sequences of
syllables rather than words. To do so, we change
both the input and the rules themselves. Cohorts
now become syllables instead of words. Syllable
cohorts that belong to unambiguous words have
only one reading, with one tag drawn from the
6+2 tagset and another drawn from the POS-
tagset. Syllables belonging to ambiguous words
will receive multiple readings, with each reading
receiving the same 6+2 tag but a different POS-
tag:3

(7) "<ཨ་>"
"ཨ་" X n.count

"<ནེ་>"
"ནེ་" E n.count

"<དང་>"
"དང་" S case.ass
"དང་" S cv.ass
"དང་" S v.invar

"<ཨ་>"
"ཨ་" X n.count

"<u་>"
"u་" E n.count

We recast rule (2) in syllabic terms, with only
one difference from the original.

(8) REMOVE v.xxx (-1C n.xxx)
(0 ("<དང་>") LINK T:IsWord)
(1C n.xxx) ;

Since the context word དང་ is monosyllabic, and
since the POS-tag of a word is marked on all of
its syllables, we can pretend that positions -1 and
1 are occupied by the words before and after དང་.
In this and many other rules, we add a condition
for monosyllabic wordhood.

(9) TEMPLATE IsWord = 0C (S) ;

The template in (9) tests whether a syllable is an
unambiguous monosyllabic word (and so tagged
S) as opposed to being part of a word with the
preceding or following syllable. Many rules, for
3 This approach brings to mind Ng and Low's

(2004) all-at-once character-based POS-tagger
and segmenter for Chinese.

example, target the syllable མ་, which is either
negation [neg] or the noun “mother” [n.count].
Obviously, such rules should not apply to མ་
when it is part of a larger word such as bl་མ་
“lama” [n.count].

Syllable-based rules become more interesting
when they must manipulate multisyllabic words.
For example, disyllabic nominals may be either
verbal nouns or count nouns, but verbal nouns
may not be followed by determiners. Simplifying
somewhat by ignoring an exception to the rule,
here is the original word-based rule:

(10) REMOVE n.v.xxx (0 (n.count))
(1C (d.plural)) ;

The syllable-based rule adds an extra condition
when scanning for the determiner:

(11) REMOVE n.v.xxx (0 (n.count))
(T:NextInitial LINK 0C (d.plural)) ;

The template T:NextInitial ensures that the rule
will correctly remove the impossible reading
from both syllables of the nominal.

(12) LIST Initial = S X SS ;
TEMPLATE NextInitial=*1C Initial ;

Initials are defined as those syllables that can
begin words. The template scans forward to the
next syllable that can be an initial, and proceeds
if that syllable is an initial on all of its readings.
Since the syllables of a disyllabic nominal will
be tagged X and E, the next initial for both is the
first syllable of the word that follows.

A similar template, T:PrevFinal, scans left to
grab the final syllable of the preceding word. Not
unlike (11), (13) draws on the template in (14) to
remove the tag [n.count] from both syllables of a
verbal noun when it follows [case.term].

(13) REMOVE (n.count) (T:PrevFinal
LINK 0C (case.term)) (0 n.v.xxx) ;

(14) LIST Final = S E SS ES ;
TEMPLATE PrevFinal=*-1C Final ;

By linking conditions, we can scan more than
one word in either direction. For example, the
rule below selects the tag [d.det] for རང་ when it
occurs in the context [n.count] [adj] རང་ མི་ འduག་.
Since Tibetan adjectives can be multisyllabic, it
is necessary to seek past all syllables of the
adjective to the final syllable of the preceding
noun.

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

21

(15) SELECT (d.det) (-1C (adj) LINK
T:PreviousFinal LINK 0C (n.count))
(0 ("<རང་>") LINK T:IsWord)
(1 ("<མི་>") LINK T:IsWord)
(2 ("<འduག་?>"r) LINK T:IsWord) ;

As noted in the previous section, special care
must be taken with abbreviated syllables. The
genitive case marker, for instance, manifests as
the abbreviated syllable འི་, as in (5) above, or as
one of several standalone syllables. Therefore, a
rule such as the following which specifies ལས་ as
a noun rather than ablative case if preceded by a
genitive must accommodate both standalone (16)
and abbreviated case (17).

(16) SELECT (n.count) (-1 ("<(གི་|gyི་|kyི་)>"r)
LINK T:IsWord) (0 ("<ལས་>") LINK
T:IsWord) ;

(17) SELECT (n.count) (T:PrevAbGen)
(0 ("<ལས་>") LINK T:IsWord) ;

(18) TEMPLATE IsAbGen = 0 ("<.+འི་>"r) ;
TEMPLATE PrevAbGen = T:PrevFinal
LINK T:IsAbGen ;

In other cases, syllable-based tagging obviates
the need for specific rules relating to abbreviated
syllables. For example, (19) removes noun tags
from ས་, provided that it is not preceded by end
of sentence punctuation or by an intersyllabic
tsheg. In addition to being a freestanding word
meaning “earth”, ས་ also marks agentive case
when attached to open syllables, as in (4) above.

(19) REMOVE n.xxx (-1 tshegless)
(0 (case.agn) LINK 0 ("<ས་?>"r)) ;

(20) SET shad = ("<[།༔༎༏༐༑]+>"r) ;
SET tshegless = ("<.*[^་]>"r) - shad ;

No such rule is needed in the syllable-based rule
tagger. If ས་ is attached to the preceding syllable,
then that syllable will be tagged SS or ES, and
the hypothesis that ས་ means “earth” will simply
not arise.

4 Future directions

The syllable-based tagger adds complexity to the
word-based tagger without improving its overall
performance. So why use it?

In a traditional pipeline approach, tokenization
or segmentation precedes part-of-speech tagging,
with the output of the former process feeding the

latter. This has the disadvantage that errors made
at earlier stages in the pipeline propagate to later
stages. The success of the pipeline is effectively
limited by the quality of its initial component. So
a Tibetan POS-tagger can only be as good as the
word segmentation system that precedes it.

Another common limit of traditional pipelines
is that different components often require that the
data be represented in different ways. In practice,
this can be an obstacle to component interaction.
By bringing the data requirements of the word
segmenter and the POS-tagger in line with each
other, we hope to facilitate the development of
more cooperative NLP components, including a
joint approach to segmentation and tagging.4

References
Eckhard Bick and Tino Didriksen. 2015. CG-3 -

Beyond classical constraint grammar. Proceedings
of the 20th Nordic Conference on Computational
Linguistics (NODALIDA 2015), pages 31-39.

Edward Garrett, Nathan Hill and Abel Zadoks. 2014.
A rule-based part-of-speech tagger for Classical
Tibetan. Himalayan Linguistics, 13(1):9–57.

Hans van Halteren. 1999. Performance of taggers. In
Hans van Halteren (ed.), Syntactic Wordclass
Tagging. Springer: Netherlands, 81-94.

Huidan Liu, Minghua Nuo, Longlong Ma, Jian Wu,
and Yeping He. 2011. Tibetan word segmentation
as syllable tagging using conditional random field.
25th Pacific Asia Conference on Language,
Information and Computation, 168–177.

Hwee Tou Ng and Jin Kiat Low. 2004. Chinese part-
of-speech tagging: One-at-a-time or all-at-once?
Word-based or character-based? Proceedings of
EMNLP. Barcelona, Spain.

Nianwen Xue. 2003. Chinese word segmentation as
character tagging. Computational Linguistics and
Chinese Language Processing, 8(1):29-48.

4 The Classical Tibetan corpus, as well as the various
rule taggers described in this paper, are available on the
following GitHub site: https://github.com/tibetan-nlp

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

22

